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Volcanic ash deposition as a selection mechanism towards
woodiness
Carl Beierkuhnlein1✉, Manuel Nogales2, Richard Field3, Ole R. Vetaas4, Anna Walentowitz1, Frank Weiser1, Reinhold Stahlmann1,
María Guerrero-Campos5, Anke Jentsch6, Félix M. Medina7 and Alessandro Chiarucci8

The high proportion of woody plant species on oceanic islands has hitherto been explained mainly by gradual adaptation to
climatic conditions. Here, we present a novel hypothesis that such woodiness is adaptative to volcanic ash (tephra) deposition.
Oceanic islands are subject to frequent eruptions with substantial and widespread ash deposition on evolutionary time scales. We
postulate that this selects for woodiness through an increased ability to avoid burial of plant organs by ash, and to re-emerge above
the new land surface. We sense-checked using observations of plant occurrences and distributions on La Palma (Canary Islands) in
April 2022, 4 months after the end of the eruptions of the Tajogaite volcano (Cumbre Vieja ridge). In contrast to herbs and grasses,
most woody plants persisted and were already in full flower in areas with 10+ cm ash deposition. Remarkably, these persisting
woody plants were almost exclusively endemics.
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INTRODUCTION
Islands contribute substantially to global biodiversity because many
endemic species are restricted to individual islands or archipelagos1.
In addition, because of their comparable origin through volcanism,
discrete boundaries, and isolation from vast mainland areas, oceanic
islands can be seen as model ‘natural experimental laboratories’ for
understanding drivers of biodiversity2–4.
A series of fundamental theories, concepts and discussions have

been presented recently on the evolution and morphology of
island plants (e.g5–8.). One major question is why island floras
contain such numerous woody plant species, many of which
belong to families and genera dominated by herbaceous species
on the mainland9. In several genera, woodiness evolved repeat-
edly10,11. The tendency to ‘secondary insular woodiness’ may
indicate island-specific selective filtering favouring the evolution
of woodiness.
Darwin12 was puzzled by this question, attributing island

arborescence to the struggle for light. Climatic conditions such
as drought have been recently promoted as drivers of woodi-
ness9,13,14. However, additional biotic and abiotic drivers of trait
selection may be relevant, which are not represented in global
climatic data sets.
The Canarian archipelago has been studied for centuries, and

excellent data are available regarding taxonomy, species distribu-
tion and endemism (e.g. refs. 15–22). Additionally, these islands are
well monitored in terms of geology and climate, which facilitates
excellent analyses of drivers influencing plant morphology and
functioning. This makes the Canary Islands an excellent arena to
challenge and develop theories in biogeography and evolution.
The 2021 Tajogaite volcanic eruptions on La Palma offered a

unique opportunity to investigate facets of island biogeographical
and even more ecological and evolutionary theories that had
previously been postulated, and to develop new theories. We

draw on a common feature of many islands with high endemism
—volcanism—to postulate a new hypothesis to offer an additional
explanation for the selection of woodiness, be it ancestral, derived,
or insular. Specifically, we hypothesise that the hitherto neglected,
but frequent, phenomenon of ash deposition is an important
evolutionary force promoting woody growth forms on volcanic
islands.

Island rules and phenomena
Endemism is characteristic of oceanic islands and can be
explained by their spatial and functional isolation23,24. Currently,
the drivers of this island phenomenon are understood based on
phylogenetic and climatic data5,9,25,26. The insular climate is
generally rather moderate compared with continental terrestrial
habitats, providing long-term stability of environmental condi-
tions. Furthermore, the oceanic matrix reduces the difference
between the maximum and minimum temperatures due to the
high energy-storing capacity of water, which also influences the
moisture conditions. In contrast, ocean currents, predominant
wind regimes and topography cause considerable variation in
local climates within many oceanic islands.
Ecologically distinctive lineages on islands are known to exhibit

or lack specific morphological and behavioural syndromes or
dispersal traits27–29. The characteristic dominance or absence of
specific traits or syndromes is often explained by the lack of biotic
interactions and drivers of speciation, as islands are species-poor
compared with continental landscapes of the same size. Conse-
quently, there may be a large portion of empty Grinellian niche
space—so certain habitats are not occupied, mutualistic relation-
ships such as pollination may be reduced to very few pollinators,
seed dispersal systems of fleshy-fruited plants may involve
different animal taxa, and antagonistic relationships such as
predation or herbivory may be missing.
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Paradoxically, apparent opposite effects can emerge from such
deficiencies in biotic interactions between and within species.
These phenomena are best understood for animals. Gigantism
(disproportionally large organisms compared to related species in
mainland areas) can arise from a lack of predation. Nanism (also
known as dwarfism) can arise from resource limitations and the
advantages of early reproduction29. Additionally, abiotic drivers
specific to islands affect the life cycles and morphology of biota.
Amongst plants, the loss of armature or other defensive traits
against herbivory is common in the absence of large herbivores30.
An obvious syndrome is the tendency towards woodiness on
islands31–35. Woodiness (and also growth form) has been
conceptually approached from ecological and evolutionary
perspectives, including links to biodiversity patterns at different
scales, ranging from islands to biomes8,36,37.
The evolution of convergent, and thus non-random, traits and

growth forms is a classic and still unresolved key topic in ecology
and biogeography. Insular woodiness is a common syndrome. It is
found across different families and on many islands all over the
globe that have been isolated during evolutionarily relevant time
scales32–34,37,38. The Canary Islands provide examples of the
evolution of secondary woodiness in many taxa independently,
showcased by studies for the plant genera Echium31, Sonchus39,
Aeonium40, Sideritis41, Pericallis42, Cheirolophus43 and Euphorbia44.
All these taxa show substantial radiations, some considered
“explosive”, within the Canarian archipelago. As a result, many
endemic species have emerged, of which high proportions are
endemic to single islands. Today, the genus Echium involves 68
accepted species (plus 4 accepted hybrids) (Plants of the World
Online, accessed 17.01.2023, see databases). From 28 Echium
species of the Canary Islands, 26 are endemics, and 25 of them are
woody, despite being descended from herbaceous ancestors.

Geological processes
Oceanic islands are a specific type of island, typically being
volcanic and on, or at the edge of, oceanic tectonic plates. This
contrasts with continental islands such as those located on the
shelves, or continental fragments. Several main properties
differentiate these two types of islands. Continental islands are
of very different sizes, up to almost continental scale (e.g.,
Madagascar), can be very old and thus host biota that evolved
over long periods of time. Continental islands are often highly
diverse in parent material due to their accumulation of different
rock types through Earth’s history. Oceanic islands, conversely, are
relatively small, young, and formed almost completely of volcanic
bedrock45,46. Thus, they are relatively uniform in petrography and
soils, which supports global comparability and facilitates the
detection of fundamental ecological processes. Both types of
islands can host high mountains or mountain ranges, but on
oceanic islands these are solely created by volcanic activity. These
specific characteristics and processes contribute to the importance
of oceanic islands as study systems for biogeography, ecology,
and evolution.
Hitherto, ongoing impacts of geological processes on island

biotas have been widely ignored. This contrasts with geomor-
phological processes that shape oceanic islands’ surfaces (e.g.
refs. 47–49)—drivers of long-term structuring of topography are
increasingly understood, such as the role of climatic conditions for
erosive processes or the legacy of oceanic islands in Earth history,
documented in guyots and seamounts50–52. However, very few
studies focus on the direct influence of volcanism on the
vegetation of oceanic islands53,54. Given that volcanic islands that
developed on the oceanic crust have always been isolated from
other terrestrial habitats, the parent material for soil formation
stems from volcanic processes. Pedogenesis may, however,
additionally be influenced by aerosols such as the dust
transported from continental deserts. Nevertheless, it is volcanic

eruptions that shape oceanic islands, as recently observed in the
Canary Islands and in Tonga. When this active phase is terminated,
erosion and landslides take over and modify the islands’
topography.
Volcanic activity has shaped the current topography of oceanic

islands through its regime of repeated disturbance. Such islands
are generally not created during one single phase of eruptions but
exhibit ongoing volcanism over long periods of time. In the case
of La Palma, the oldest volcanic rocks are dated to 1.8 million
years55. Volcanic and other processes, including giant landslides,
are well studied on this island56–58. Modern eruptions are
documented, including in the recent past59, with three events
taking place in the last 75 years: in 1949 (San Juan), 1971
(Teneguía) and 2021 (eruption of Tajogaite, Cumbre Vieja).
Strombolian-type eruptions are prominent volcanic processes

ejecting large amounts of cinders, lapilli, ashes, and lava bombs.
The repeated deposition of substantial amounts of volcanic ash is
reflected in the geological structure of volcanic islands, which
often show long-term alternation of tephra (ash) layers with layers
of basalt. Evidently, ash deposits are a frequent phenomenon at
evolutionarily relevant time scales; considering this eminent
contribution to the development and dynamics of terrestrial
habitats, the role of volcanic ash has not received sufficient
attention60. Most research on pyroclastic ashes is related to
atmospheric processes (e.g. Eyjafjallajökull eruption61,) and to
large-scale impacts in Earth history62. In contrast to lava flows, this
parent material has been widely ignored in ecological studies, for
instance on primary succession63. Very few studies have
investigated the vegetation on volcanic tephra substrate64,65.
A good example of the impact of these processes is La Palma, in

the Canary Islands. Eruptions during the last 500 years are well
documented on La Palma through historical reports66,67. The
geological map of the island indicates basaltic and pyroclastic
outcrops throughout the entire development during the Qua-
ternary period68. Subrecent and undated tephra layers on the
entire island indicate frequent ash deposition events, typically
with considerable ash depth. The recent volcanic fissure eruption
of “Tajogaite” (Cumbre Vieja) on La Palma, between 19 September
and 13 December 2021, was very well monitored, including the
development of volcanic cones, lava flows, and explosive
activity69–72, and, most notably, also impacts on ecosystems73,74.
Ash deposition was a massive phenomenon during this eruptive
phase (Fig. 1). Extensive deposits of volcanic ashes covered
previously developed soils and vegetation (Fig. 2). Ayris and
Demelle75 demonstrated that precipitation can impede the
erosion of deposited but not yet consolidated ash by wetting
and cementation, which explains the stable surfaces of lapilli
fields. Even if tephra is not a solid rock, it can predominate as a
stable surface for centuries.

Volcanic ash deposition as a selective force towards
woodiness
Plants with woody stems are less physically affected by ash
deposition than herbaceous species that have soft tissues and
relatively low growth height. Consequently, populations of
herbaceous species may tend to be more prone to extinction at
local or even island scale, than populations of woody species73.
Plants belonging to taxa with predominantly herbaceous growth
forms but with capacity or pre-adaptation to woodiness are more
likely to survive single events of ash deposition than more
obligately herbaceous taxa. This creates positive selective pressure
towards the secondary insular woodiness trait, which is likely to
become predominant in the long run when ash deposition is
frequent (on evolutionary timescales).
The development of woodiness in floras is considered an

outstanding trait within angiosperms14,76. There are two quantitative
foci of global plant species, in terms of functional traits, one
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representing herbaceous and one representing woody species77,
indicating fundamental drivers in the evolution of angiosperms
differentiating between herbaceous and woody species. The
functional responses of plant traits to climate differ substantially
beyond woodiness78. Island biota, however, only provide small
proportions of global assessments and databases. Additionally, their
habitats are characterized by a high degree of climatic constancy
due to their small area of terrestrial habitat within an oceanic matrix.
Thus, we can question which climatic drivers, beyond constancy,
would explain the dominance of woodiness on islands.
Considering how frequent volcanic eruptions are in the histories

of oceanic islands, ash deposition impact must be regarded as a
potential major driver of selection towards traits that enable
organisms to cope with, survive, or even benefit from ash
deposits. In contrast to the destructive impacts (on standing
biomass) caused by lava flows, ash deposits have characteristics
more typical of a selective filter. A random drift of body sizes, as
suggested by Biddick & Burns6, is unlikely to occur in the presence
of such selective processes.
Although volcanic eruptions may seem infrequent relative to

human perceptions, they are in fact frequent on evolutionary time
scales and can re-occur within the life-cycles of long-lived
perennial plants. Cursory evidence suggests that individual trees,
such as the individual “patriarch” Juniperus cedrus tree in the Teide
National Park on Tenerife, may be >1200 years, perhaps even
1500 years79. Such plants will have survived impacts of repeated
volcanic activity. In the case of the “patriarch” tree, reported
historical eruptions during its existence were reflected in the radial
increment of its trunk, but clearly it survived those episodes80.
Different effects are expected, depending on the gradient of

ash thickness. On La Palma, the 2021 Tajogaite eruptions led to
volcanic ash deposition almost everywhere on the island, ranging
from a thin layer that is hardly noticeable in parts of the island
distant from the eruption craters to a depth of around 20 metres
next to the craters71. Where ash deposits are thickest, almost no
vegetation remained, except for tips of trees sticking out of the
newly created ash surface. At intermediate distances from the
craters, with ash thickness ranging between 0.25 and 1m, no

herbaceous understory vegetation emerged from this ash layer,
while endemic shrub species did emerge, in profusion. Many of
these shrub species exhibit secondary (insular) woodiness.
However, the process of ash deposition also favours species that
exhibit continental, ancestral woodiness (or pre-adaptations to it).
Altogether, we found a broad spectrum of endemic woody
species emerging from the ash. Most of them were vital,
resprouting, and flowering <4months after the end of the
volcanic activity. These single-island endemic and multi-island
endemic shrubs included species of ancestral and of derived
secondary insular woodiness.
Ashes can completely cover the former soil and understorey

vegetation after pyroclastic eruptions. If there are no seed sources
on safe sites in the vicinity, no rapid plant establishment on top of
the new ash layer can be expected where the seed bank in the
former topsoil is too deeply buried. Most herbaceous species
cannot make it through thick layers of deposits. Therefore, we
hypothesise that ash deposits function as a selective filter and
evolutionary driver favouring woody species (Fig. 3) and thus also
promoting the selection of the secondary (insular) woodiness trait.
This process, which affects whole populations and is frequent in
evolutionary time on volcanic islands, selects for perennial woody
plants whose structures are still functional after ash deposition.
Repeated events will increasingly support such populations.
Our ash deposition filter concept bears a striking link to the

classical life form concept of Raunkiaer81,82 for perennial plants.
Central to his concept is the position of the resprouting organs
(buds, bulbs, rhizomes, seeds) during an unfavourable period (e.g.,
frost during winter), with respect to the soil surface, and as a second
criterion to the height of the snow layer. Geophytes (with rhizomes
or bulbs) endure the unfavourable period under the soil surface,
hemicryptophytes (e.g., herbaceous rosette plants) right at the
surface, buds of woody chamaephytes (dwarf shrubs) are covered
by snow and thus are protected from harmful deep frost events, and
finally, nanophanerophytes (shrubs, understorey trees) and phaner-
ophytes (trees) are exposed to the climate all year round. This
classification is still widely used even under climatic conditions
where lasting snow layers during winter do not currently exist, and

Fig. 1 Volcanic ashes. Ash (tephra) deposition during the recent eruption of the Tajogaite volcano in 2021 on La Palma, including the depth
of the newly formed ash layer, the location of the new craters, and the lava flow (own records for ash thickness).
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even short phases of deep snow (>30 cm), that would cover (and
protect) chamaephytes completely, have become very rare.
The frequency and seasonal regularity of winters are funda-

mentally different from the kind of unpredictable impact related
to volcanic eruptions, but at the time scale of long-lived woody
species’ life cycles, such pulses are highly probable. Propagules of
plants that show traits enabling the survival of such pulses have
comparative advantages83. Experimental and modelling evidence
suggests that ecosystem recovery after pulse disturbances is likely

Fig. 2 Impact and recovery. a Flowering Single Island Endemic
shrub Echium brevirame at a site with 30 cm fresh ash layer, 4 months
after the end of the eruptions. b Resprouting canopy branches of
Pinus canariensis that were exposed to toxic sulphur gases during the
eruptions, sticking out of metres-deep ash deposits. (Fotos by C.
Beierkuhnlein).
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Fig. 3 Theoretical concept. Hypothesised selection of woody plants
through ash deposition. a Understorey plant life-form spectrum
before ash deposition on developed oxidized soil. b New volcanic
ash deposition covers previous vegetation structure (here ~0.5 m
depth), causing photosynthetically active organs to die. Exposed
leaves may become chlorotic (yellowish) from toxic gas impact and
are likely to be shed. c Death of plants that cannot reach the new
surface (geophytes, graminoids, forbs). These may become locally
extinct (red X). Resprouting of woody plants that protrude from the
ashes (trees, larger shrubs) or reach the new surface with new
shoots (small shrubs). d flowering and reproduction of remaining
species populations. e dispersal of propagules, germination, and
establishment on the newly formed soil surface while parent plants
remain alive.
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to be significant but incomplete, and highly dependent on the
type of impact and ecosystem84,85.
However, most research on disturbance impacts focuses on

human perturbations or on extant ecosystems of large spatial and /
or economic importance, such as wildfires in boreal forests86. Rarer
and more spatially limited impacts of natural volcanic eruptions in
continental landscapes, such as the Mt. Saint Helens event, are seen
as singularities as they affect only a small portion of biomes,
ecosystems, and species range sizes. On islands, catastrophic
volcanic eruptions that may sterilize entire islands, like the Krakatau
eruption of 1883, have been considered with respect to species
extinctions, new colonization, and succession87. On Stromboli,
constant eruptive activity and ash deposition affect the island flora,
which is species-poor relative to other islands of the Aeolian
archipelago88. And even if geological processes are increasingly
acknowledged to be important in shaping oceanic islands’
topography and stimulating evolution and island biodiversity
through habitat diversity48,49, the general dynamic model of oceanic
island biogeography (GDM)47 is focused on the general life cycle of
oceanic islands but does not highlight the selective contribution of
short-term impacts on speciation.

Woodiness and endemism
The relative dominance of woodiness in island floras requires
explanation. The secondary (insular) woodiness is of particulate
interest because it has emerged in a broad spectrum of plant
clades. This phenomenon is highly polyphyletic and homoplas-
tic89. Functional and morphological patterns that are irrespective
of taxonomy or phylogenetic lineages are caused by selective
mechanisms. Concerning the global importance of woodiness and
its legacy in Earth’s history, more than one single mechanism is
likely to be the cause of it. Woodiness comes with a series of very
different advantages and trade-offs.
On islands, ecological opportunity90 and favourable climatic

conditions24, such as the absence of frost or the constant supply
of moisture, are seen as essential drivers of morphological
adaptation in island clades. However, geological processes typical
to oceanic islands have been “neglected to a surprising extent” in
research on secondary woodiness91. In addition to the constancy
of long-term climatic conditions, short-term disruptive disturbance
events are an evident and very characteristic feature of volcanic
islands. Thus, ecological constraints through repeated

disturbances can hardly be ignored. Interpreting plant traits just
based on the available geoinformation background, such as
extensive data on climate or island area, can be misleading. For
volcanic islands on the oceanic crust, high degrees of spatial
isolation and climatic constancy coincide with intermittent
volcanic activity.
Repeated mechanical perturbations and a related unstable

environment are mostly linked with herbaceous species character-
ized by high dispersal capacity and many small seeds. Species with
short life cycles would also have a higher likelihood of speciation. It
is expected that more “extreme” site conditions would favour short-
lived herbaceous species91. This is inconsistent with the outstanding
dominance of native and endemic woody species including
ancestral woody and stem-succulent plants (Table 1)22. Besides
dispersal, García-Verdugo et al.92 argue that population persistence
should be considered to understand island diversification better.
Here, we suggest an additional mechanism selecting for

woodiness on volcanic islands, which takes into account that
the frequent deposition of volcanic ashes changes the soil surface,
which has until now been treated as a constant site condition. This
soil surface change affects established plants dependent on their
growth height and mechanical stability. The gradient of ash
thickness from several metres close to volcanic cones to
millimetres in remote parts of islands allows the survival, also, of
herbaceous species, but repeatedly favours the selection of
woodiness across large areas relative to island sizes. With ash
covering a vast area around a focal plant, the advantage of
extensive seed production in short-lived herbaceous species,
mainly attributed to disturbed sites, does not come into effect as
their seeds are simply buried and are locally taken out of the
ecological and evolutionary game.
The hypothesized selective contribution of volcanic ash deposi-

tion should not be seen as the only, or even the main, driver of
woodiness on volcanic islands. However, it is likely to be an
additional and hitherto neglected mechanism, which favours all
species with woody structures, independent of their phylogenetic
origin. Evidently, multiple factors can be causes of the dominance of
woody species in different ecosystems. Volcanic (oceanic) islands are
a special case. However, such islands are very similar in geo-
ecological processes, soil formation, nutrient availability, climate, and
disturbance regimes. Their common origin on the oceanic crust and
their abundance and permanent existence (as a type) during Earth’s
history, requires a better understanding of selective mechanisms
resulting in speciation and endemism.

DISCUSSION
Due to the clear spatial limitation and isolation of islands, they are
classic arenas for developing ecological and evolutionary theories42.
Different types of islands (e.g. continental, oceanic, old, young, large,
small) exhibit different processes and outcomes on, for instance,
plant morphology93. In addition to the size of geographic space and
its isolation, other physical aspects such as topography and climate
have been applied to explain insular endemism and woodiness with
large macroecological data sets94. However, short-term but frequent
(on evolutionary times scales) singularities such as moderate
volcanic eruptions have hitherto been widely ignored. This may
be because diffuse processes cannot readily be traced a posteriori in
ecology, evolution, and succession research73.
The recent volcanic eruption on the island of La Palma yielded a

large lava flow and modified the landscape of the southwestern
slopes of the island. However, ash deposition affected a much larger
area. Hitherto, research on the ecological impacts of pyroclastic
ashes has been restricted to case studies related to continental
volcanos65,95–99. Consequently, the contribution of such processes to
the selection of plant life forms, and to endemicity, has not been
considered until now. Here, we postulate that such ash deposition—
a common trait of strombolian volcanic eruptions—selects for

Table 1. Number and proportion of woody and endemic plant
species for the entire archipelago and the island of La Palma22.

Canary
Islands

La Palma

All plant species 2417 1161

Life-Form= Phan./Nanophan./Cham. (% of
all plant species)

804 33.3% 308 26.5%

Endemic Species (% of all plant species) 608 25.2% 208 17.9%

Single Island Endemics (SIE) (% of all plant
species)

359 14.9% 47 4.0%

Multi Island Endemics (MIE) (% of all plant
species)

249 10.3% 161 13.9%

Endemic Woody Species (% of End. Spec.) 410 67.4% 134 64.4%

Single Island Woody Endemics (SIWE) (% of
End. SIE)

269 74.9% 38 80.9%

Multi Island Woody Endemics (MIWE) (% of
End. MIE)

141 56.6% 96 59.6%

The rows from ‘Life-Form’ to ‘MIE’ include percentages of all plants (first
row). The last three rows include percentages of the equivalent rows
above.
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woody perennials and thus can be an (additional) explanation of the
insular woodiness syndrome on oceanic islands. This mechanism is
novel to the literature and to the ongoing debate about the island
woodiness syndrome.
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volcano.cfm?vn=383010.
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