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Impact Article

Designing formulations 
of bio‑based, multicomponent 
epoxy resin systems via machine 
learning
Rodrigo Q. Albuquerque, Florian Rothenhäusler, and Holger Ruckdäschel*

Petroleum-based epoxy resins are commonly used as a  matrix in fiber-
reinforced polymer composites. Bio-based epoxy resin systems could be a more 
environmentally friendly alternative to conventional epoxy resins. In this work, novel 
formulations of multicomponent, amino acid-based resin systems exhibiting high or 
low glass-transition temperatures ( Tg ) were designed via Bayesian optimization and 
active learning techniques. After only five high-Tg experiments, thermosets with Tg 
already higher than those of the individual components were obtained, pointing out 
the existence of synergistic effects among the amino acids used and confirming 
the efficiency of the theoretical design. Linear and nonlinear machine learning (ML) 
models successfully predicted Tg with a mean absolute error of 3.98◦C and R2 
score of 0.91. A price reduction of up to 13.7% was achieved while maintaining 
the Tg of 130◦C using an optimized formulation. The LASSO model provided 
information about the dependence of Tg on the number of active hydrogen atoms 
and aromaticity. This study highlights the importance of Bayesian optimization and 
ML to achieve a more sustainable development of epoxy resin materials.

Impact statement
This article shows how the sustainability of epoxy resin 
systems (ERSs) can be significantly improved by com-
bining experimental and theoretical strategies. First, 
amino acids are used as curing agents in multicompo-
nent formulations to produce bio-based ERSs. Second, 
the number of trial-and-error experiments required to 
obtain formulations with high or low glass-transition 
temperatures (Tg) is greatly reduced using machine 
learning (ML) strategies to design all experiments. 
Not only is it shown how Tg can be maximized in only 
five new theoretically designed formulations, but the 
economic advantages of the proposed approach are 
also discussed. The trends between Tg and the type 
of optimized biocomponents are discussed based on 
the unambiguous interpretation of the best-trained 
ML model. The results presented in this study pave 
the way for the theoretical design of more sustainable 
polymeric materials. Introduction

Fiber-reinforced polymer composites are an 
important class of materials for lightweight 
structures due to their high weight specific 
modulus and strength.1,2 Epoxy resins are 
commonly used as a matrix for fiber-rein-
forced polymer composites due to their low 
viscosity, good storability, and high glass-
transition temperature ( Tg).3 Here, the Tg of 
the matrix is a crucial property as it determines 
the composite’s maximum service tempera-
ture as well as the matrix’ modulus and heat 
resistance.4 However, epoxy resins and many 
of their curing agents, such as amines, anhy-
drides, and phenolic compounds, are harmful 
in case of skin contact or when ingested.5–8 
Furthermore, these compounds are derived 

via chemical processes from petroleum, which 
causes considerable CO2 emissions. In addi-
tion, making materials more sustainable can 
help slow down climate change.

Sustainability during the design phase of 
thermoset formulations could be achieved by 
different means. First, petroleum-based com-
ponents can be substituted or combined with 
bio-based components. For example, petro-
leum-based amine curing agents for epoxy res-
ins can be substituted with amino acids, such 
as l-tryptophan.9–14 Other amino acids were 
used in similar ways, as reported by Shibata 
et al.,15 who investigated among other things, 
the thermo-mechanical and tensile properties 
of an epoxidized sorbitol polyglycidyl ether 
cured with l-cysteine, l-arginine, or l-lysine. 
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Rothenhäusler et al.16,17 studied the glass-transition tempera-
ture, viscosity, and latency of a diglycidyl ether of bisphenol A 
(DGEBA) cured with l-arginine and its mechanical properties 
at different temperatures, as well as the mechanical properties 
of DGEBA cured with five other amino acids.18 The mechanical 
performance of the resulting thermosets was slightly lower than 
that of their amine-cured counterparts.

There are a wide variety of amino acids with aliphatic, 
cyclic, or aromatic structures.19 Aliphatic amino acids, such 
as l-arginine, l-citrulline, and l-glutamine, could possess 
numerous active hydrogen atoms. In contrast, l-tryptophan 
and l-tyrosine have only few active hydrogen atoms but 
incorporate large aromatic rings that are useful for achieving 
high Tg.20 As amino acids have widely different structures, 
the combination of different amino acids as curing agents 
in one single material could be advantageous. Amino acids 
could react with one another via peptide reaction21 (see Fig-
ure 1) to form a curing agent that possesses both numerous 
active hydrogen atoms as well as aromatic structures. Thus, 
there could be potential for synergistic effects when combin-
ing certain amino acids in distinct ratios.

Finding the optimal solution for one or more material 
properties when formulating new resin systems by trial and 
error is inefficient, time-consuming, and cost-intensive.22 
However, this can be overcome using machine learning 
(ML), which helps shorten material design phases.20,23

Pruksawan et al.24 described a method for the optimi-
zation of epoxy-based adhesives with a small data set and 
four variables via active learning and Bayesian optimization. 
The tested thermosets consisted of one resin and one curing 
agent and the investigation was focused on optimizing the 

curing conditions and the epoxy amine ratio. In that work, 
the Bayesian optimization was performed after 47 experi-
ments to find an adhesive joint strength ca. 13% higher than 
the largest property measured in the previous experiments.

Similarly, Kang et al.25 used an artificial neural network 
(ANN) for the prediction of lap shear strength and impact 
peel strength of epoxy adhesives. They analyzed the influ-
ence of the thermoset composition (weight ratios of resin, 
filler, curing agent, and flexibilizer) on the resulting mechan-
ical properties. With 50 datapoints for lap shear strength and 
impact peel strength each, the ANNs did not show a high 
performance, with R2 of 0.642 and 0.588, respectively.

Another ML approach described in the literature to predict 
Tg of one-component epoxy resin systems based on the chem-
ical structure of the molecular units of the mixture has been 
recently published by Ruckdäschel et al.20 After generating 
ca. 1800 molecular descriptors, feature selection was used 
to get the most important ones, from where an ML ensemble 
model was trained to predict Tg , giving R2 and mean absolute 
error of 0.86 and 16.15◦C , respectively, for the test set.

Ramprasad et al.26 have reported a virtual experiment using 
different active learning (AL) strategies to screen 736 differ-
ent polymers to find high-Tg ones. In this investigation, more 
than 100 local and global descriptors related to the chemical 
structure and morphology of different polymers were used as 
(fingerprint) features and Tg as the target property to train a 
ML model. The model showed an R2 score of 0.66 for the 
comparison of experimental and predicted Tg using a data set 
of 42 samples.

To the best of our knowledge, the ML-based prediction 
and optimization of mechanical properties of bio-based mul-
ticomponent thermosetting systems were not yet addressed 
in the literature. Therefore, the aim of this investigation is 
to optimize and predict the glass-transition temperature of 
DGEBA cured with a mixture of seven amino acids, whose 
reaction is accelerated by a substituted urea. The goal is to 
check whether ML models can help find the maximum and 
minimum Tg in the nine-component system and predict Tg 
for randomly chosen mixtures with as few experiments as 
possible. Despite starting with only a couple of experiments, 
a very efficient Bayesian optimization can still be performed 
to achieve novel thermosets with optimized properties. Eco-
nomical considerations come naturally from the great diver-
sity of designed formulations exhibiting similar Tg , as will be 
shown in the results.

Materials and methods
Materials
D.E.R. 331 with an epoxide equivalent weight of 187 
gmol

−1 was purchased from Blue Cube Assets GmbH & 
Co. KG, Olin Epoxy (Stade, Germany). l-Arginine (purity 
98.9%), l-citrulline, γ-aminobutyric acid (GABA) (purity 
100%), l-glutamine (purity 100%), l-proline (purity 100%), 
l-tryptophan (purity 100%), and l-tyrosine were purchased 
from Buxtrade GmbH (Buxtehude, Germany). The reaction 
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Figure 1.   Peptide bond formation (gray) between two α-amino acids. 
The hydroxyl group of the carboxyl group of one amino acid reacts 
with one of the hydrogen atoms of the amino group of another amino 
acid.21
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between epoxy resin and amino acids is accelerated by 
DYHARD UR400, a substituted urea, which was bought 
from Alzchem Group AG (Trostberg, Germany). The curing 
agents’ molecular weight ( Mw ), number of active hydrogen 
atoms (f), and resulting amine equivalent weight (AEW) are 
shown in Table I.

Resin formulation
For each amino acid, one epoxy amino acid masterbatch 
was prepared via three-roll milling of the resin amino acid 
mixture (Figure 2). The preparation follows the procedure 
already applied and described in the literature.16 All seven 
masterbatches are prepared so that the stoichiometric ratio R 
of epoxy groups to active hydrogen atoms is equal to 1. For 
each experiment, the masterbatches are weighed according 
to the ratios Pn of the respective experiment. Here, the ratios 
correspond to the percentage of epoxy groups that react with 
the hydrogen atoms of the amino acid of the respective mas-
terbatch. Thus, the sum of the ratios Pn is equal to one (see 
Equations 1 and 2).

For example, in a formulation with the ratios

half of the epoxy groups ideally would react with l-arginine, 
40% with l-citrulline, and 10% with GABA. After weighing 
in the corresponding weight ratios of the masterbatches, one 
weight percentage of the accelerator (DYHARD UR400) was 
added before mixing in a centrifuge speed mixer by Hauschild 
Engineering (Hamm, Germany) at 3000 min

−1 for 120 s. The 
mixture was degassed for 60 min at 10 mbar to ensure the 
elimination of entrapped air prior to curing.

Curing cycle and sample preparation
The amino acid epoxy mixture was poured into aluminum 
molds that were preheated at 90◦C . Afterward, the material 
systems were cured for 2 h at 120◦C and 2 h at 170◦C and 
cooled down to room temperature over 4 h in a Memmert 
ULE 400 convection oven from Memmert GmbH + Co. KG 
(Schwabach, Germany). Dynamic mechanical analysis (DMA) 
specimens were prepared from the cured plates according to 
standard ISO 6721-7 with a Mutronic DIADISC5200 diamond 
plate saw from MUTRONIC Präzisionsgerätebau GmbH & 
Co. KG (Rieden am Forggensee, Germany).

Thermal characterization
Glass-transition temperature Tg was determined via DMA 
on specimens with dimensions 50 mm × 10 mm × 2 mm 
using a Rheometrics Scientific ARES RDA III from TA 
Instruments Inc. (New Castle, Del., USA). Here, a shear 
strain amplitude of 0.1% with a frequency of 1 Hz was 
applied during heating with a rate of 3 Kmin

−1 . For this 
investigation, the temperature of the peak value of the loss 
factor tan δ was chosen as Tg . Two specimens were tested 
per formulation and their average Tg taken as target property 
for the ML modeling.

Design of experiments
Initially, the ratios P1 to P7 of the amino acids used in five differ-
ent formulations were randomly generated and the correspond-
ing materials were subsequently prepared. After each material 
preparation, Tg was measured. The initial data set had five sam-
ples (or formulations), each described by seven features ( P1–P7 ) 
and one target property ( Tg ). The Bayesian optimization was 
then performed twice using Gaussian process regression (GPR), 
where new samples were queried using 106 virtual experiments 
to suggest the next two formulations to be prepared: one for-
mulation to maximize Tg and another one to minimize Tg . In 
real applications, one would either maximize or minimize Tg , 
but both situations were investigated here as a proof of concept. 

� 1P =

[

P1 P2 P3 P4 P5 P6 P7

]

,

� 2
7

∑

n=1

Pn = 1.

P =

[

0.5 0.4 0.1 0 0 0 0

]

,

Table I.   Molecular weight ( Mw ), number of active hydrogen atoms 
(f), and resulting amine equivalent weight (AEW) of the amino acids 

used as curing agents.

Amino Acid Mw ( gmol−1) f AEW ( gmol−1)

l-arginine 174.2 7 24.89

l-citrulline 175.2 6 29.20

GABA 103.1 3 34.37

l-glutamine 146.2 5 29.24

l-proline 115.1 2 57.55

l-tryptophan 204.2 4 51.05

l-tyrosine 181.2 3 60.40

Figure 2.   Molecular structures of the amino acids used as curing 
agents.
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The two new suggested formulations were used to prepare the 
corresponding materials and their Tg was measured.

The data set was then updated with these new datapoints 
and this procedure continued, being intercalated with AL 
(see the “Active learning” section). After achieving 29 sam-
ples, six new samples were added to the data set to improve 
the final model. These last samples were selected from the 
virtual experiments using kernel ridge regression (KRR), 
which screened samples that could exhibit Tg in the range of 
80–100◦C because the current data set was composed mostly 
of samples with higher Tg (>100◦C).

Models
The ML models were built using the Scikit-learn library.27

Different models were screened using all 35 samples of the 
current data set. Default hyperparameters were used in each model 
(see the Supplementary information), unless stated otherwise. The 
hyperparameter optimization is tricky for such a small data set and 
would involve splitting it into a training set, a validation set, and a 
test set. This is expected to generate models with very high vari-
ance, as shown in the “Results and discussion” section.

The models were evaluated using k-fold cross-validation 
(CV), which was repeated for all values of k in the range of 2–10, 
from where the best k parameter was obtained for each model.

The mean absolute error (MAE) and the coefficient of 
determination ( R2 score) were used as model evaluation met-
rics. MAE is given by

where n is the number of samples and yi and ŷi are the true 
and predicted target property, respectively, for sample i. R2 is 
the quotient of the explained variance to the total variance in 
a regression model.

Overfitting was evaluated by training ML models using the 
training set and performing predictions on both the train-
ing and test sets, from where their prediction errors (MAE) 
were compared. The investigated models are briefly sum-
marized below and are also described in more detail in Ref-
erence 23.

Gaussian process regression (GPR). GPR uses a multivari-
ate Gaussian fitted on the data set to perform predictions on 
new data. One usually adopts for the GPR a mean of zero and 
the covariance matrix given by a kernel function.28 Predictions 
are also described by a Gaussian distribution, from where one 
readily gets the corresponding mean and the standard deviation, 
automatically giving uncertainty values for the predictions.

Kernel ridge regression (KRR). This method uses an L2 
regularization term and the so-called kernel trick to make pre-
dictions. Regularization means that larger weight coefficients 

� 3MAE =

1

n

n
∑

i=1

| yi − ŷi |,

� 4R
2(y, ŷ) = 1−

∑

n

i=1
(yi − ŷi)

2

∑

n

i=1
(yi − ȳ)2

.

in the linear combinations of features are penalized more than 
smaller ones. With L2 regularization, the penalty is propor-
tional to the square of those coefficients and the latter tend to 
become small, but not necessarily zero.29,30

K-nearest neighbors (KNNs). The predictions are based 
on the similarity between datapoints, which is often calcu-
lated using the simple Euclidean distance between them. This 
method is very efficient and is considered nonparametric 
because no real training is required, only the distances between 
datapoints are computed.31

Gradient boosting regression (GBR). GBR builds an addi-
tive model stepwisely, allowing the optimization of arbitrary 
differentiable loss functions. At each stage, a regression tree 
is fitted to the negative gradient of the current loss function. 
This method uses the gradient descent technique to add new 
estimators (in this case, regression trees) one at a time to create 
an optimized ensemble model.32

Support vector regression (SVR). The general idea of SVR 
is to find the best hypertube (defined by the weighting coef-
ficients and the bias) passing through most of the samples in 
the data set, where the maximum acceptable deviation from 
the target property is given by the positive parameter ε: most 
of the samples are therefore inside a multidimensional ε-tube 
(also called an ε-insensitive tube).33

Least squares (LS). This method finds a linear combina-
tion of the features that minimizes the sum of squares of the 
errors between the true and the predicted target property. By 
default, the LS model has no regularization term and is one of 
the simplest models to build. The weighting coefficients of the 
linear combination are found by minimizing the loss function, 
which is the mean squared error.34

LASSO. This is basically an LS model with an L1 regu-
larization term that penalizes large weighting coefficients via 
a term that is linear on the weighting coefficients themselves. 
The L1 regularization is particularly useful in the context of 
feature selection, as it tends to favor solutions with fewer 
nonzero coefficients, effectively reducing the number of fea-
tures upon which the given solution depends.35

Random forests (RFs). This model averages the predictions 
of many uncorrelated decision trees, each of which consider-
ing different (randomly generated) subsets of the features and 
samples. Each decision tree consists of a sequence of simple 
rules, each based on a single feature. After all uncorrelated 
trees are grown, the predicted target property of any sample is 
calculated by simply averaging the predictions for that sample 
using all trees.36

Active learning
Active learning (AL) is an excellent tool to choose the next 
sample to increase the size of the current data set aiming 
at enhancing the predictive capability of the ML model in 
use. The simplest way to perform AL is by training different 
models with randomly chosen subsets (bootstraps) of the 
original data set and using these models to predict the tar-
get properties of the same sample. The best sample (out of 
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the pool of virtual experiments) that is chosen to be added 
to the data set is the one for which the average prediction 
exhibited the largest standard deviation or uncertainty. This 
technique is called uncertainty sampling.37 In other words, 
if the ML models are not certain about the prediction for 
a given sample, this means that adding this sample to the 
data set would help the model to describe new situations 
that it was not able to describe before. All AL steps car-
ried out in this work were done using the KRR model with 
default hyperparameters and 10 bootstraps with size of 70% 
of the data set.

Bayesian optimization
A GPR model was used as the regressor in the Bayesian opti-
mization approach. The Matérn kernel, which is a generaliza-
tion of the radial basis function kernel, was used as the kernel 
for the GPR model. After training the GPR model using the 
training set, predictions were performed on all virtual experi-
ments (each virtual experiment was a formulation [i.e., a 7D 
normalized vector]) and the mean and standard deviation of 
the predictions were used to build an acquisition function 
(here, the maximum expected improvement) from where the 
next sample was selected. This procedure gave samples with 
potentially high Tg . To find samples with low Tg , −Tg was used 
as the property to be maximized.

Figure 3 shows how new experiments were suggested via 
Bayesian optimization. In the case of AL-suggested experi-
ments, the next virtual sample chosen is simply the one with 
highest uncertainty (SD).

Experimental evaluation
The first experimental evaluation was performed by con-
tinuously training successive models with increasingly large 
data sets in the following way. The predicted Tg for sample 6 
was obtained from a fresh ML model trained with all previous 
samples (1–5) and compared with the experimental Tg for that 
sample. Then, samples 1–6 were used to train another fresh ML 
model to predict Tg for sample 7, which was then compared 
with the Tg measured for that sample and so on, until Tg of 
sample 35 was predicted using a model trained with samples 
1–34. This was done with all investigated models described in 
the “Models” section.

The second experimental evaluation was performed by 
training a KRR model using the first 29 samples to screen the 
virtual experiments to find six new samples exhibiting Tg in 
the range of 80–100◦C . The predicted and experimental Tg for 
these samples were then compared.

The last experimental evaluation was performed by ran-
domly choosing five experiments from the pool of virtual ones 
and predicting Tg for all of them using the investigated models. 

Figure 3.   Workflow used in the Bayesian optimizations. Starting with an initial, random data set (top, left), a Gaussian process regression model is 
trained and used to perform predictions (μ) and uncertainties (SD) for a large virtual data set (top, right), which is graphically shown below (bottom, 
right). μ and SD are combined to obtain the utility for all virtual samples (bottom, left). The virtual sample with the highest utility is experimentally 
measured and added to the initial data set.
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These experimental validations are discussed in the “Results 
and discussion” section.

Results and discussion
Designed experiments
The strategy used to obtain extreme Tg formulations that could 
be concomitantly used to create/train a good ML predictive 
model with as few experiments as possible is shown in Fig-
ure 4. Region I (“Rdn”) contains five different experimental 
formulations (samples 1 to 5), which were randomly selected 
from the pool of 106 virtual formulations, also called virtual 
experiments. These initial samples were used to train two 
GPR models to perform predictions of Tg on all the virtual 
experiments, from where the corresponding mean and variance 
were used as the basis for the Bayesian optimization procedure 
(region II, “BO”), which finally suggested formulations lead-
ing to high (triangles) or low (squares) Tg . Note that for the 
prediction of formulations with maximum Tg , the Bayesian 
optimization consisted of exploitation steps only ( Tg increased 
monotonically), whereas in the case of predictions related to 
low Tg , exploitation and exploration steps were observed (i.e., 
the model has also suggested formulations not having extreme 
[low] Tg whenever this has led to a substantial enhancement of 
the model’s predictive capability), which happens after explor-
ing/visiting new regions of the seven-dimensional configura-
tional space of the formulations. In region II, the Bayesian 
optimization was already able to maximize Tg with only few 
experiments. The high Tg of sample 13 (131◦C ) seemed to be 
a (local) maximum. Due to the very large number of possible 
combinations between seven different amino acids and to the 
fact that the true function that defines Tg is not known, it can-
not be confirmed that this is a global maximum. No conver-
gence of low Tg was found in region II (squares) after carrying 
out 14 experiments in total. To explore different regions of the 

multidimensional formulation space and to check other pos-
sible local maxima, as well as to achieve lower Tg , three new 
experiments suggested via AL (region III) were performed. As 
expected, after experiments 15–17, a new round of Bayesian 
optimization (region IV) was then able to find a much lower 
Tg via an exploitation step (sample 19, square), while no Tg 
higher than that of experiment 13 was suggested (sample 18, 
triangle) as a result of an exploration step.

Once the strategy of using AL steps before the Bayesian 
optimization has proven to be efficient, a new AL round was 
again performed (region V), this time suggesting eight new 
experiments. After that, a last Bayesian optimization was done 
(region VI), which found two formulations (samples 28 and 
29) exhibiting high and low Tg , respectively.

At this stage, the data set consisted of 29 formulations and 
their corresponding Tg values. Although these few experi-
ments have already met one of the goals of this investigation 
that was to find new formulations having high and low Tg , 
training a ML model with so few datapoints would not give a 
very accurate model or allow to perform a good model evalu-
ation. Because most of the datapoints concentrated at higher 
Tg (>100◦C ), a steered-based procedure was performed (region 
VII), where a KRR model trained with the whole data set was 
used to suggest six new formulations out of the virtual experi-
ments having Tg in the specific range of 80–100◦C . Indeed, the 
measured Tg of the new formulations were in the theoretically 
expected range (see the datapoints in region VII), which can 
already be seen as a first experimental validation of the ML 
model, as also discussed in the next sections.

Reactions and synergistic effects
The current maximum and minimum Tg measured for all sug-
gested formulations are depicted in Figure 4 as cyan and red 
lines, respectively. Starting from five random points having 
Tg in the relatively small range of 100–115◦C (region I), the 
Bayesian optimization-based design of experiments was able 
to detect formulations with Tg , which cover a much wider 
range (76–131◦C ). DMA of the individual masterbatches 
reveals that the highest and lowest Tg were 129.48 (l-cit-
rulline) and 80.91◦C (GABA), respectively (see Table II). 
Because this range (81–129) is smaller than the one found for 
the new suggested formulations (76–131), synergistic inter-
actions between the different amino acids seem to take place 
when they are mixed, causing Tg to be higher than those of the 
individual amino acids.

The number of theoretically possible reactions among 
seven different amino acids is extremely high (see Figure 5) 
and discussing them is not in the scope of this investigation. 
These reactions are, however, responsible for the expansion of 
the range of Tg beyond the Tg ’s of the individual components. 
When only considering the amine-epoxy reaction (blue), the 
peptide reaction (orange), and the esterification of hydroxyl 
groups with carboxyl groups (green), there are already more 
than 70 possible reactions. However, this does not take into 
account that the reaction of carboxyl groups with different 

Figure 4.   Measured Tg of formulations suggested via random 
drawings (Rdn), Bayesian optimization (BO), active learning (AL), 
and steered drawings, which are separated into regions I to VII. The 
steered drawings suggested formulations that could possess Tg in 
the range of 80–100◦C.
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amino groups of an amino acid leads to a completely differ-
ent product and that the number of ways that seven different 
amino acids can be sequentially combined in the same peptide 
is exceedingly large. This shows that the material, although 
limited in the number of its components, results in a highly 
complex, heterogeneous network, once cured.

The trends observed in the composition and Tg of the 
designed and prepared formulations are shown in Figure 6, 
where the ratios P1–P7 refer to the amino acids as shown in 
Table II. Note that the selected samples shown in the x-axis 
of Figure 6 exhibit Tg (thick-dashed lines) that either contin-
uously increase (Figure 6a) or continuously decrease (Fig-
ure 6b). Before starting a more general discussion on the 
overall trends of the composition of the formulations, the com-
position of sample 13, which has a very high Tg (130.84◦C ), 
is examined. As shown in Figure 6a, this sample is mostly 
composed of l-glutamine ( P4 = 0.31), l-tyrosine ( P7 = 0.27), 
l-arginine ( P1 = 0.24), and l-tryptophan ( P6 = 0.17), whose 
Tg ’s lie in the range of 112–124.94◦C . This means that the Tg 
of the mixture is about 6 ◦C higher than the highest Tg (l-tryp-
tophan) and about 18◦C higher than the lowest Tg (l-arginine) 

of its main components, which again points out to the exis‑ 
tence of synergistic effects by combining different amino 
acids.

Taking into account the selected samples shown in Fig-
ure 6, the largest positive and negative ratio variations for 
those formulations were +0.181 ( P6 ) and −0.161 ( P2 ) for sam-
ples with increasing Tg and +0.517 ( P3 ) and −0.192 ( P7 ) for 
samples with decreasing Tg . This anticipates that formulations 
with higher amounts of l-tryptophan and lower amounts of 
l-citrulline tend to exhibit high Tg (Figure 6a) and vice versa. 
Similarly, formulations tend to exhibit low Tg (Figure 6b) if 
they have higher amounts of GABA and lower amounts of 
l-tyrosine. In fact, this is in part expected because l-trypto-
phan and GABA give rise to individual materials with one of 
the highest Tg (124.94◦C ) and the lowest Tg (80.91◦C ), respec-
tively, as shown in Table II. Interestingly, the amino acid with 
the highest individual Tg (l-citrulline) does not seem to help 
getting high Tg materials. In fact, the formulation with the 
highest Tg (sample 28, Tg = 130.86◦C ) has only a very small 
amount of l-citrulline ( P2 = 0.034).

The thickness of the lines P1–P7 in Figure 6 is proportional 
to the respective numbers of active hydrogen atoms ( ≡ f  ) in 

Table II.   Tg measureda for masterbatches containing only one 
amino acid.

The stoichiometric ratio R of active H atoms to epoxy functional 
groups is 1.
a Experiments done in duplicates.

Ratio Label Amino Acid Tg ± STD in ◦C

P1 l-arginine 112.78 ± 0.18

P2 l-citrulline 129.48 ± 0.41

P3 GABA 80.91 ± 0.16

P4 l-glutamine 113.84 ± 0.18

P5 l-proline –

P6 l-tryptophan 124.94 ± 0.11

P7 l-tyrosine 119.36 ± 0.60

Figure 5.   Overview about the theoretically possible reactions 
between individual components of the investigated material.

a

b

T
g /°C

T
g /°C

Figure 6.   Relation between the compositions of the formulations  
( P1 – P7 ) and the observed Tg for samples with (a) increasing Tg and  
(b) decreasing Tg . The thickness of the lines P1 – P7 is proportional to 
the number of active hydrogen atoms of each amino acid.



8         MRS BULLETIN  •  VOLUME 48  •  SEPTEMBER 2023  •  mrs.org/bulletin

Designing formulations of bio‑based, multicomponent epoxy resin systems via machine learning

the structure of each amino acid. For the low Tg case, this 
indicates that smaller f values are associated with low Tg . For 
the high Tg case, the influence of f is less clear at first sight. In 
addition, there is an optimum ratio of aliphatic amino acids, 
which have a high f, to aromatic amino acids, which do have 
only few active hydrogen atoms. One hypothesis is that the 
aliphatic amino acids (l-arginine and l-glutamine) react via 
peptide bond formation with the aromatic ones (l-tryptophan 
and l-tyrosine) thereby forming an aromatic curing compound 
with a high number of active hydrogen atoms. Even though 
the hypothesis discussed above is based on a relatively simple 
reaction between aliphatic and aromatic amino acids, there are 
indeed numerous ways for this reaction to occur. A more thor-
ough analysis of the influence of the composition and func-
tionality on the final Tg of the prepared materials, performed 
via the LASSO model and using all samples, is discussed in 
the “Model interpretation” section.

Economical considerations
The optimization of the material properties via the design 
of thermoset formulations is of key interest for polymer 

engineers. Economical aspects also play a strong role in find-
ing the best formulation. This is particularly easy to take into 
account when formulations exhibit similar target properties, 
where cheaper formulations are clearly given priority. Table 
III shows the prices of curing agents of some high Tg samples 
(price CA), as well as the prices of the corresponding curable 
epoxy resin amino acid mixtures (price M), which includes 
the price of DGEBA.

Although the Tg of the listed samples is almost the same, 
their prices vary considerably. For instance, choosing sam-
ple 11 instead of only l-citrulline changes the price M from 
9.74 to 8.40 Euro kg−1 , which represents a drop of 13.7% in 
cost. Note that the Tg of sample 11 is even slightly higher than 
that of the material with only l-citrulline as the curing agent. 
When the same comparison is performed using the price CA, 
this drop is even more pronounced (33.6%). This economical 
aspect becomes crucial whenever a material is produced at an 
industrial scale.

Model evaluations
Different models were initially tested with default hyper-
parameters (see the Supplementary information) and their 
performances evaluated by k-fold CV, as shown in Figure 7. 
The statistics of the evaluation was improved by splitting the 
35-sample data set (into k folds) 200 times, each generating 
different training/test sets, from where the error bars in Fig-
ure 7 were obtained. In addition, the parameter k used in the 
k-fold CV evaluation was also optimized for each model–the 
optimal k value corresponding to the lowest MAE error found 
in each case is shown in parentheses below the model’s name 
in Figure 7. The models had somehow similar performances 
for the test set (MAE = 2.6–5.4◦C ), where the nonparamet-
ric GPR, together with SVR exhibited the lowest MAE and 
highest R2 values. Even the largest MAE value obtained for 
the test set, calculated for the RF model (5.4◦C ), was about 

three times lower than the error obtained 
for the prediction of Tg of epoxy systems 
and evaluated on the test set (16.2◦C ), as 
reported in our previous work.20

The comparison between the model 
performances for predictions on the 
training and test sets reveals more pro-
nounced differences among the models 
(compare the red and pink bars in Fig-
ure  7). When a model performs well 
for the training set and performs much 
worse for the test set, it is said to overfit 
the data, while similar performances for 
both training and test sets indicate that 
overfitting is minimized. The models 
GPR, GBR, and KNN have exhibited 
strong overfitting because they have 
an error of zero for the training set and 
errors in the range of 2.6–5.1◦C for the 
test set. The LASSO model, on the other 

Table III.   Prices of curing agents (CA) and curable epoxy resin–
curing agent mixtures (M), in Eurokg−1 , and corresponding  

measured Tg in ◦C.

The resin used was DGEBA (price in June 2022 = 4 Euro kg−1).

CA Tg Price CA Price M

l-citrulline 129.48 46.49 9.74

Sample 8 128.19 32.69 8.73

Sample 9 129.07 31.78 8.46

Sample 11 130.70 30.88 8.40

Sample 13 130.84 30.25 8.67

Sample 28 130.86 34.31 9.47

Figure 7.   k-fold cross-validation (CV) evaluation of the different models investigated. Default 
hyperparameters were used (see the Supplementary information). The performances refer to 
predictions on the training and test sets averaged more than 200 random k-fold splittings. The 
number in parentheses is the best k value found for each model. Error bars give ±1 standard 
deviation.
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hand, has shown very similar errors for the training and test 
sets, which indicates that overfitting mostly does not take 
place. All other models have shown nonnegligible overfittings. 
For instance, in the case of the KRR model, the MAE error 
for the test set is more than three times larger than that for the 
training set (see Figure 7).

Further decreasing overfitting can be done, for instance, by 
fully optimizing the hyperparameters, especially those related 
to regularization. However, this is tricky because of a very 
small number of samples that need to be further divided into 
(training + validation) and test sets. Taking the KRR model 
as an example, the optimized hyperparameters have shown a 
strong dependence on the training/validation set used. Per-
forming 10 different hyperparameter optimizations on this 
model (see the Supplementary information), each one with a 
different set of 22 randomly chosen samples for the training/
validation set and the remaining 13 samples for the test set 
gave MAE = 3.348◦C (±1.292) and R2 = 0.849 (±0.155) for the 
predictions on the different test sets. The model performance 
on the corresponding training sets gave MAE = 1.490◦C 
(±0.490) and R2 = 0.985 (±0.007), which means that KRR is 
still overfitting, although a bit less, as the test error is roughly 
two times the training error instead of more than three times, 
as previously discussed. Most importantly, the variance of the 
model becomes very large, as concluded from the standard 
deviation obtained for the MAE error (1.292◦C ) as compared 
to that shown for the non-optimized model (0.448◦C).

It is worth to point out that further improving the model 
performance and also decreasing overfitting can be more easily 
done by simply increasing the size of the data set far beyond 
35 samples, which is out of the scope of this work because, 
among others, this is not a sustainable solution for the efficient 
design of experiments.

Based on the model performances achieved on the test set 
(MAE and R2 ), as well as on the overfitting considerations, the 
LASSO model was chosen to be discussed here in more detail 
(see the Supplementary information for more details on the 
other models). This model is also very important to help inter-
pret the relation between the composition of the formulations 
and the observed Tg (see the “Model interpretation” section). 
Figure 8a shows the comparison between the experimental 
(blue line) and predicted (red line) Tg for samples 6–35. Each 
predicted Tg was calculated using a fresh LASSO model trained 
with all previous samples, which means that samples 1–5 were 
used to train a model to predict Tg for sample 6, then samples 
1–6 were used to train another model to predict Tg for sample 
7, and so on. The MAE error for each prediction is shown in 
Figure 8b (bars), where the red line is a moving average of MAE 
over periods of five samples.

Figure 8c shows the evaluation of the LASSO model using 
a k-fold CV (best k = 10) with all 35 samples. The meaning of 
k = 10 is that nine parts or folds of the data set are used to train 
a fresh model, which then performs predictions on the tenth, 
left-out fold–see the “Materials and methods” section for more 
details on the CV procedure). An average error of about 4 ◦C 

and a reasonably good R2 parameter were obtained. The perfor-
mance of the LASSO model, trained with all 35 samples, was 
then evaluated on the randomly selected experimental valida-
tion set (Figure 8d), which gave a small MAE error (<5◦C ). 
The experimental validation is also discussed further on.

Model interpretation
In order to interpret the model in terms of the relation between 
Tg and the composition Pn used for the formulations, the 
LASSO model was used. This model does feature selection 
because of the L1 regularization term in its loss function, from 
where the weight coefficients of some of the features can com-
pletely vanish, facilitating the interpretation of the results.

The LASSO model trained with all 35 samples gave the 
following relation between the predicted Tg (= ŷ ) and the com-
position ( P1 − P7 ) of the amino acid formulation:

where the weight coefficients for P1 , P2 , and P4 were zero. 
Equation 5 reveals that increasing the fractions of the amino 
acids GABA ( P3 ) and l-proline ( P5 ) in a formulation strongly 
decreases Tg , whereas l-tryptophan ( P6 ) and l-tyrosine ( P7 ) 
exhibit a much weaker but positive influence on Tg . This trend 
is better understood by checking the measured Tg of epoxy 
systems having only individual amino acids (Table II), where 
l-tryptophan and l-tyrosine have relatively high Tg ’s (125ºC 
and 119◦C , respectively) when compared with GABA (81◦C ). 
This means that one needs to use high Tg components in the 
formulations to increase the final Tg of the cured thermoset 
and vice versa, as intuitively expected if one ignores possible 
reactions between amino acids during curing (vide infra for a 
counter proof). By examining the number f of active hydrogen 
atoms in each amino acid (see Table I) and taking into account 
Equation 5, it becomes clear that aliphatic amino acids with 
large f values as in the case of l-arginine, l-citrulline, and 
l-glutamine (  f � 5 ) do not influence positively or negatively 
Tg of the multicomponent material. Aliphatic or cyclic amino 
acids with a small number of active hydrogen atoms (  f � 3 ) 
seem to decrease the thermosets’ Tg . On the contrary, the frac-
tion of aromatic amino acids ( P6 and P7 ) positively influences 
Tg (see the positive/negative signs in Equation 5). The posi-
tive influence aromatic structures have on Tg has also been 
observed in other materials.20

Interestingly, the amino acid l-citrulline ( P2 ), which 
has the highest Tg (129◦C ) for the pure epoxy has shown 
no influence on the Tg of the investigated seven-component 
formulations, according to Equation 5. As explained, there 
are many possible complex interactions involving all seven 
amino acids present in the epoxy material and this is the 
reason why counting exclusively on intuition is not always 
the best way to design new experiments with multidimen-
sional parameters. Instead, using Bayesian optimization to 
select the best formulations seems to be a better approach 
(see Figure 4). Ideally, however, the combination of intui-
tion and modeling for such tasks is preferred, especially 

� 5ŷ = −0.47P3 − 0.52P5 + 0.02P6 + 0.05P7,
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if the number of parameters gets large (typically, >20), 
when the Bayesian optimization then becomes much less 
efficient.

Although it was not possible to cure a sample with only 
l-proline in the formulation due to the pronounced porosity 
observed during curing, Equation 5 suggests that this mate-
rial would have a considerably low Tg.

To a first approximation, some linearity between fea-
tures and target can be assumed because the LASSO model 

was indeed consistent with some experimental observations 
and previous experimental findings. However, the nonlinear 
KRR model performed only slightly worse than LASSO 
and could also have led to the conclusion that a nonlinear 
relationship between features and target is not unlikely, 
although this relationship cannot be interpreted directly, as 
was the case with LASSO. A thorough investigation of lin-
earity between features and target to get as close to ground 
truth as possible needs to be done after hyperparameter 
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Figure 8.   (a) Comparison between predicted and experimental Tg . The prediction for sample i was performed by training a fresh model using 
samples 1 to i–1. (b) Error for the predictions shown in (a) (bars) and their moving average (red line). (c) Tenfold cross-validation evaluation of the 
performance of the model including all 35 samples. (d) Comparison between the predicted and experimental Tg for the experimental validation 
set of randomly selected formulations. The predictions shown in all subplots were performed using a LASSO model with default, non-optimized 
hyperparameters (α = 0.1).
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optimization to obtain more reliable results and should 
especially be done with a much larger data set (>>35 sam-
ples). However, a much larger data set is in conflict with 
the main goal of this manuscript, which is, among others, 
to propose a sustainable solution for the development of 
new biomaterials with as few experiments as possible, as 
we have shown here.

Experimental validation
The steered drawing of six new formulations from the virtual 
experiments exhibiting Tg in the desired range of 80–100◦C 
(see Figure 4, region VII) was a first experimental validation 
of the model trained with only 29 samples. The second experi-
mental validation was discussed in the frame of Figure 8a, 
where every new measured Tg was compared with the Tg pre-
dicted from a fresh model trained using all previous measure-
ments. The final experimental validation was performed by 
selecting five random formulations from the pool of virtual 
experiments and comparing the measured Tg of the newly 
prepared samples with the predicted Tg calculated using the 
model trained with all 35 previous samples, as already shown 
in Figure 8d, which gave a MAE error of 4.730◦C . The use of 
other models (see Table IV and the Supplementary informa-
tion) gave similar errors. Note that the randomicities inherent 
to the GBR and RF models were taken into account by averag-
ing the predictions of 200 different runs, from where standard 
deviations were calculated, as shown in Table IV. According 
to our experience and that of our academic and industrial part-
ners, being able to predict Tg for any new formulation with an 
absolute error smaller than about 10◦C already enables one to 
design new materials for different applications in a reliable 
fashion. In another investigation,20 the MAE error for the pre-
diction of Tg for an experimental validation set of novel epoxy 
resin systems was about 31◦C , which is considerably worse 
than the current model.

Final considerations
Although the linear LASSO model has provided an equa-
tion that agreed with the experimental findings and the same 
equation has been used to predict Tg for five new experiments 

randomly selected from a pool of 106 virtual experiments, 
yielding a very small error (4.73◦C ), small nonlinearities in 
the data set cannot be excluded because of the reduced size 
of our data set. Further increasing the size of the data set 
to address this issue in more detail is beyond the scope of 
this paper, as mentioned earlier. We refer the reader to the 
work of Sofos et al.,38,39 who have recently discussed how to 
extract physically meaningful equations from larger data sets 
using numerical and analytical ML approaches applied to 
other systems, from where model linearities can be better 
discussed.

Conclusion
It was shown that bio-based epoxy resin systems with tai-
lored Tg can be efficiently designed with a minimum num-
ber of experiments via Bayesian optimization and AL tech-
niques. The highest/lowest Tg measured for the designed 
formulations was higher/lower than those of the individual 
components of the formulations, which pointed out the 
synergistic effects when combining different amino acids 
as curing agents. The efficiency of the presented method 
is highlighted by the convergence of the high-Tg formula-
tions after five iterations of Bayesian optimization. In this 
paper, sustainability was achieved by the use of bio-based 
curing agents and the implementation of Bayesian optimi-
zation during the material design phase, leading to shorter 
material development phases and epoxy resin systems with 
optimized properties.

In view of the exploration/exploitation steps during the 
theoretical design of experiments, very diverse formula-
tions with extreme Tg were found, from where economi-
cal aspects could be easily considered. For the examples 
discussed, it was shown that the price reduction of the 
thermoset and the curing agent was 13.7% and 33.6%, 
respectively. Consequently, Bayesian optimization could 
help to save significant costs when producing thermosets 
at industrial scale.

Based on the weakest tendency to overfit and on the high-
est accuracy toward the experimental validation set, the best 
model found in this investigation was the LASSO. This fea-
ture selection-based model also provided an easy interpreta-
tion of the influence of the chemical structure (aromaticity 
and number of active hydrogen atoms, f) on the final Tg for 
the corresponding thermoset. Amino acids with very high 
f values ( �5 ) did not seem to influence Tg positively or 
negatively. For the low-f amino acids (  f � 3 ), those with 
aromatic moieties had a positive impact on Tg , in agreement 
with literature reports.

The findings discussed in this work pave the way toward 
more sustainable solutions to efficiently design epoxy resin 
system exhibiting desired properties. Future works may dis-
cuss the Bayesian optimization approach developed here to 
design optimal formulations of tailored thermosets by opti-
mizing different target properties simultaneously.

Table IV.   MAE error for the prediction of Tg for the experimental 
validation set calculated using the models previously evaluated in 

Figure 7.

Model MAE in ◦C (±STD)

KRR 5.485

LASSO 4.730

GBR 5.700 (±0.040)

GPR 6.618

LS 6.339

SVR 7.408

KNN 9.505

RF 5.940 (±0.334)
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