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Abstract

We consider locally recoverable codes (LRCs) and aim to determine the smallest possible length n =
nq(k, d, r) of a linear [n, k, d]q-code with locality r. For k ≤ 7 we exactly determine all values of n2(k, d, 2)
and for k ≤ 6 we exactly determine all values of n2(k, d, 1). For the ternary field we also state a few
numerical results. As a general result we prove that nq(k, d, r) equals the Griesmer bound if the minimum
Hamming distance d is sufficiently large and all other parameters are fixed.
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1 Introduction

A code over a finite alphabet is called locally recoverable (LRC) if every symbol in the encoding is a function
of a small number of (at most r) other symbols. They have e.g. applications in distributed storage and
communications. Here we will consider linear codes over a finite field Fq as alphabet. An [n, k, d]q-code C is
a k-dimensional subspace of Fn

q with minimum Hamming distance (at least) d. We also speak of [n, k]q-codes
if we do not want to specify the minimum Hamming distance. A code symbol is said to have r-locality if it
can be repaired from at most r other code symbols. An (n, k, r)q-LRC is an [n, k]q-code with r-locality for
all code symbols. For given parameters n, k and alphabet size q one would like to have codes with small
locality r, allowing e.g. a fast recovery process when the code is used for distributed storage, and a large
minimum Hamming distance d, in order to deal with possible errors in the transmission. However, there is
a natural tradeoff between minimizing r and maximizing d. To this end we mention the bound

d ≤ n− k −
⌈
k

r

⌉
+ 2 (1)

by Gopalan et al. [GHSY12], which reduces to the classical Singleton bound when r = k. Surely we have
1 ≤ r ≤ k and MDS codes attain the bound for r = k. Replicating each symbol in an MDS code twice yields
codes attaining the bound for r = 1. If the field size is sufficiently large then the upper bound (1) can always
be attained with equality [GHSY12]. Further constructions requiring smaller field sizes can e.g. be found
in [TB14], i.e. q ≥ n + 1 assuming that r + 1 divides n, see also [LXY18, TBGC15]. However, small finite
fields as alphabets are often desirable for practical reasons [GC14]. In [TPD16] the search for constructions
meeting the stated bound (1) with equality was stated as an open problem. Constructions for the binary
case can e.g. be found in [GC14, HYUS15, HYUS16]. For q ∈ {2, 3, 4} all cases where Inequality (1) can be
attained with equality were characterized in [HXC16], [HXC17], and [XKG22], respectively. For q ≥ n + 1
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codes with d = n − k −
⌈
k
r

⌉
+ 1, i.e. one less than the upper bound (1), indeed exist [TB14]. Using the

function kqopt(n, d) for the maximum possible dimension k of an [n, k, d]q-code the bound

k ≤ min
t∈N

{
rt+ kqopt(n− t(r + 1), d)

}
(2)

for [n, k, d]q-codes with locality r was obtained in [CM15] and e.g. used in [HXS+20] to conclude explicit
parametric bounds on codes with a given locality.

Another classical bound for linear codes is the Griesmer bound [Gri60] relating the minimal possible
length nq(k, d) of an [n, k, d]q-code to its other parameters:

nq(k, d) ≥ gq(k, d) :=

k−1∑
i=0

⌈
d

qi

⌉
. (3)

Solomon and Stifler gave a construction showing that this bound can be attained for any given parameters
k and q if d is sufficiently large [SS65]. Consequently, the determination of the function nq(k, ·) becomes
a finite problem for each pair of parameters k, q. For k ≤ 7, the function n2(k, ·) has been completely
determined in [BM73] and [vT81]. After a lot of work of different authors, the determination of n2(8, d)
has been completed in [BJV00]. Here we will show that for any given pair of parameters k, q there exist
(n, k, 2)q-LRCs and (n, k, 1)q-LRCs with length n = nq(k, d) and minimum Hamming distance d assuming
that d is sufficiently large. So, also the determination of the largest possible Hamming distance of (n, k, 2)q-
and (n, k, 1)q-LRCs becomes a finite problem for any parameters k and q.

In the literature also special subclasses of LRCs, like e.g. maximally recoverable codes [CHL07], have
been considered. The required field size of a maximally recoverable codes was e.g. improved in [GWFHH19].
There the authors used matroid theory, see also [GFHWH17, WFHEH16], to show non-existence of some
codes with prescribed parameters by characterising linearity over small fields via forbidden uniform minors.
In [PKLK12] the authors introduced the notion of (r, δ)-LRCs. Corresponding LP and other bounds can e.g.
be found in [GJR23]. In [GFHWH19] the authors introduced a slight variant of the definition of locality,
called dimension-locality, and study corresponding bounds.

The remaining part of this paper is structured as follows. In Section 2 we introduce the necessary
preliminaries. A geometric reformulation of locality is then discussed in Section 3 and used to bound the
minimal possible lengths of [n, k, d]q-codes with locality r. Then we summarize several constructions and
non-existence results for LRCs in Section 4. For several small parameter sets we were able to completely
determine the minimum possible length of an [n, k, d]q-code with locality r ∈ {1, 2} as a function of the
minimum Hamming distance d. We close the paper in Section 5 by stating enumeration results for [n, k, d]q-
codes with locality r for some small parameters. The focus on exact values for small parameters is thought
as a supplement to the existing literature which mainly considers different general bounds. While we cannot
draw asymptotic conclusions from our obtained data, we remark that the number of used nodes n is typi-
cally rather small in many real-world applications, see e.g. HDFS-Xorbas used by Facebook [APD+13] and
Windows Azure storage [HSX+12]. Since variants and extensions of LRCs are comprehensive, we refrain
from discussing similar results for some of them.

2 Preliminaries

For a given linear code C we denote its minimum Hamming distance by d(C) and the dual code by C⊥.
Apart from the field size q, the length n, the dimension k, and the minimum Hamming distance d of a linear
[n, k, d]q-code we consider the locality as an additional parameter.

Definition 1. A (linear) code C ⊆ Fn
q has locality r if for every coordinate i ∈ {1, . . . , n} there exists a set

Si ⊆ {1, . . . , n} with i /∈ Si, |Si| ≤ r, and if cj = c′j for all j ∈ Si for two codewords c, c′ ∈ C then we have
xi = yi.
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We also speak of a locally recoverable code (LRC). The set Si is called a recovery set for coordinate i.
Denoting the projection map onto the coordinates from some set S ⊆ {1, . . . , n} by πS , we can introduce
recovery functions fi : πSi

(C) → Fq satisfying fi(πSi
(c)) = ci for all c ∈ C and all 1 ≤ i ≤ n.

Lemma 2. ([ABH+18, Lemma 10]) Let C be an [n, k]q-code and Si a recovery set for coordinate 1 ≤ i ≤ n
with recovery function fi. Then, fi is an Fq-linear map.

So, we can express the locality of a given linear code C via the existence of certain codewords in its dual
code C⊥:

Lemma 3. A linear [n, k]q-code C has locality r ≥ 1 iff for every coordinate 1 ≤ i ≤ n there exists a dual
codeword c ∈ C⊥ with weight at most r + 1 that contains i in its support.

Definition 4. An [n, k]q-code C is non-degenerate, if there does not exist a coordinate 1 ≤ i ≤ n such
that ci = 0 for all codewords c ∈ C. We call C projective if the coordinates of the codewords are linearly
independent; that is, there exists no coordinate i ̸= j ∈ {1, . . . , n} and λ ∈ Fq\{0} such that ci = λ · cj for
every c ∈ C.

In other words, a linear code C is non-degenerate if every column of a generator matrix G of C is non-
zero. If no column of a generator matrix C is a scalar multiple of another column, then the corresponding
linear code C is projective.

By PG(k − 1, q) we denote the finite projective geometry of dimension k − 1 and order q. A well-
known and often exploited interpretation of non-degenerated linear codes is the following. The columns of
a generator matrix G of a non-degenerated [n, k]q-code C may be interpreted as points of the projective
space PG(k − 1, q). In the other direction, a multiset of points M in PG(k − 1, q) is a mapping from the
set of points to the natural integers. Here, for each point P we call M(P ) the multiplicity of P . The
cardinality |M| of our multiset M is the sum over all point multiplicities and equals the length n of the
corresponding (non-degenerate) code C. By γ(M) we denote the maximum point multiplicity of M. So,
we have d(C⊥) = 2 iff γ(M) ≥ 2 and γ(M) = 1 iff C is projective. Using the geometric language we call
2−, 3−, 4−, and (k − 1)-dimensional subspaces lines, planes, solids, and hyperplanes, respectively. So, each
dual codeword c ∈ C⊥ of weight three geometrically corresponds to a triple of points spanning a line and
each dual codeword of weight 2 geometrically corresponds to a point with multiplicity at least 2. We call
a multiset of points M in PG(k − 1, q) spanning if the points with positive multiplicity span the ambient
space PG(k− 1, q). The multiset of points corresponding to an [n, k]q-code is always spanning. In the other
direction we have that a multiset of points in PG(k− 1, q) might correspond to an [n, k′]q-code with k′ < k.
The minimum Hamming distance of C is at least d iff we have M(H) ≤ n−d for every hyperplane H, where
M(H) is defined as the sum of all multiplicities of the points contained in H, i.e., M(H) =

∑
P≤H M(P ).

Writing
[
n
k

]
q
for the number of k-dimensional subspaces in PG(n−1, q) we can state that each t-dimensional

subspace contains
[
t
1

]
q
points and PG(n − 1, q) contains

[
n

n−1

]
q
=

[
n
1

]
q
hyperplanes in total. Since each

point is contained in
[
k−1
1

]
q
hyperplanes and each pair of different points is contained in

[
k−2
1

]
q
hyperplanes,

assuming k ≥ 3, we have

(n− d) ·
[
k − 1

1

]
q

≥
∑

H :P≤H

M(H) = n ·
[
k − 2

1

]
q

+ qk−2 · M(P ) (4)

for every point P . Similarly,

(n− d) · qk−1 ≥
∑

H :P ̸≤H

M(H) = qk−2 · (n−M(P )) (5)

for every point P . For two multisets of points M,M′ ∈ PG(k − 1, q) we write M+M′ for the multiset of
points in PG(k− 1, q) with multiplicity M(P )+M′(P ) for every point P . Similarly, for each multiset M in
PG(k− 1, q) and each integer t ≥ 1 we write t ·M for the multiset of points in PG(k− 1, q) with multiplicity
t · M(P ) for every point P .
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3 Geometric reformulation of locality and minimal possible lengths
of [n,k,d]q-codes with locality r

Directly from Lemma 3 we conclude:

Lemma 5. Let C be a linear [n, k]q-code and M be the corresponding multiset of points in PG(k − 1, q)
of cardinality n. Then, C has locality r ≥ 1 iff for every point P with positive multiplicity M(P ) ≥ 1
either M(P ) ≥ 2 or there are t ≤ r points with positive multiplicity and being different from P that span an
t-dimensional subspace S with P ≤ S.

So, locality is also a geometric property of a multiset of points M and we directly say that M has
locality r is its corresponding code has locality r. We remark that especially the locality of a linear code
does not depend on a specific representation in terms of a generator matrix with is e.g. different for private
information retrieval (PIR) codes, see [KY21, Proposition 9]. For small values of r we can also spell out the
condition of Lemma 5 more directly.

Lemma 6. Let C be a linear [n, k]q-code and M be the corresponding multiset of points in PG(k − 1, q) of
cardinality n. Then, C has locality 1 iff every point P with positive multiplicity M(P ) ≥ 1 has multiplicity
at least 2.

Or in other words, a non-empty multiset of points has locality 1 iff no point has multiplicity exactly 1.

Lemma 7. Let C be a linear [n, k]q-code and M be the corresponding multiset of points in PG(k − 1, q)
of cardinality n. Then, C has locality 2 iff for every point P with positive multiplicity M(P ) ≥ 1 we have
M(P ) ≥ 2 or there exist points Q,R with |{P,Q,R}| = 3, dim(⟨P,Q,R⟩) = 2, and M(Q),M(R) ≥ 1.

A multiset of points M over the binary field F2 has locality 2 iff every point with multiplicity 1 is
contained in a full line, i.e., all three points of the line have positive multiplicity.

Lemma 8. Let C be an [n, k]q-code with dual minimum distance d⊥ = 3. If the number of dual codewords
of weight 3 is less than (q − 1) · n/3, then the locality of C is larger than 2.

Proof. Due to Lemma 3 the locality of C is at least 2. So, due to Lemma 7, any point with positive
multiplicity w.r.t. the corresponding multiset of points M has to be contained in a line that contains at least
three points with positive multiplicity. Our n points with positive multiplicity cannot be covered by fewer
than n/3 such lines. However, since each such line corresponds to (q − 1) dual codewords of weight 3, we
obtain a contradiction.

Similar to the notion of nq(k, d) let nq(k, d, r) denote the minimal possible length of an [n, k, d]q-code
with locality r, i.e., the minimum possible cardinality of a spanning multiset of points in PG(k − 1, q) with
locality r. So, clearly we have

nq(k, d, r) ≥ nq(k, d) ≥ gq(k, d) =

k−1∑
i=0

⌈
d

qi
.

⌉
(6)

and nq(k, d, r) ≤ nq(k, d, r
′) for all r ≥ r′. In Theorem 10 we will show nq(k, d, r) = gq(k, d) for sufficiently

large d and fixed parameters q, k, and r.

Example 9. Let M be the (multi-)set of points in P(k − 1, q) where each point has multiplicity exactly 1.

Then, M has cardinality qk−1
q−1 =

[
k
1

]
q
and each hyperplane H has multiplicity M(H) = qk−1−1

q−1 =
[
k−1
1

]
q
, so

that |M|−M(H) = qk−1. The corresponding linear code is called k-dimensional q-ary simplex code and has

parameters [n, k, d]q =
[[

k
1

]
q
, k, qk−1

]
q
. If k ≥ 2 then M has locality r = 2 since each point has multiplicity

1 and each point is contained in at least one line (whose points also have multiplicity 1 each). For each
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integer t ≥ 1 the multiset of points t · M has cardinality t ·
[
k
1

]
q
and locality 1 iff t ≥ 2. The corresponding

linear code, called t-fold simplex code, has parameters [n, k, d]q =
[
t ·

[
k
1

]
q
, k, t · qk−1

]
q
. Note that we have

n = gq(k, d) for all t ≥ 1.

Theorem 10. Let q be an arbitrary prime power, k ∈ N≥2, and r ∈ N≥1. If d is sufficiently large, then we
have nq(k, d, r) = gq(k, d).

Proof. It suffices to prove the statement for locality r = 1. Due to [SS65] there exists a constant d′ (depending
on k and q) such that for all d ≥ d′ we have nq(k, d) = gk(k, d).

1 For d ≥ d′ consider an [n, k, d]q-code with
n = gq(k, d) and let M be the corresponding multiset of points in PG(k − 1, q). Setting t :=

⌊
d/qk−1

⌋
, we

have d ≥ t · qk−1 and n ≤ (t+ 1) ·
[
k
1

]
q
. Using this and Inequality (5) we conclude

M(P ) ≥ n(1− q) + dq ≥ t− qk

for every point P . So, if d is sufficiently large, then we have t ≥ qk + 2 and M has locality 1 due to
Lemma 6.

So for every set of parameters q, k, and r the determination of nq(k, d, r), as a function of d, is a finite
problem. In principle we can determine the exact value of nq(k, d, r) for each given set of parameters as the
optimum target value of an integer linear program (ILP). We will spell out the details for r ∈ {1, 2} and
leave the general problem as an exercise for the interested reader.

Proposition 11. Let q, k, and d be arbitrary but fixed parameters. Then, nq(k, d, 1) is given as the optimum
target value of the following ILP:

minn subject to∑
P∈P

xP = n

x⟨ei⟩ ≥ 1 ∀1 ≤ i ≤ k∑
P∈P : P≤H

xP ≤ n− d ∀H ∈ H

xP ≥ 2yP ∀P ∈ P
xP ≤ ΛyP ∀P ∈ P
xP ∈ N ∀P ∈ P
yP ∈ {0, 1} ∀P ∈ P,

where ei denotes the ith unit vector, P denotes the set of points in PG(k − 1, q), H denotes the set of
hyperplanes in PG(k − 1, q), and Λ is a sufficiently large constant.

Proof. For a feasible solution of the stated ILP we can define a multiset of points M via M(P ) = xP ∈ N
for all points P ∈ P. The cardinality of M is given by

∑
P∈P M(P ) =

∑
P∈P xP = n. Since M(H) =∑

P∈P : P≤H xP ≤ n−d the corresponding linear code C has Hamming distance at least d. Since M(⟨ei⟩) =
x⟨ei⟩ ≥ 1 the multiset M is spanning, i.e., the linear code C has dimension k. For any point P ∈ P the
constraints xP ≥ 2yP and xP ≤ ΛyP are equivalent to xP = 0 for yP = 0 and to 2 ≤ xP ≤ Λ for yP = 1,
i.e., we have M(P ) ̸= 1. Thus, M and C have locality 1.

For the other direction consider an [n, k, q]q-code C ′ and its corresponding multiset of points M′. Since
M′ is spanning there exists an isomorphic multisets of points M with M(⟨ei⟩) ≥ 1 for all 1 ≤ i ≤ k. Let C
denote the [n, k, d]q-code corresponding to M. Setting xP = M(P ) ∈ N for all points P ∈ P all constraints
that do not involve a y-variable are satisfied. If C ′ has locality 1, so does C and M. From Lemma 6
we conclude xP = M(P ) ̸= 1 for all P ∈ P. So, if M(P ) = 0 we can set yP = 1. If 2 ≤ M(P ) ≤ Λ

1For k ≥ 3, e.g. d ≥ (k − 2)qk−1 − (k − 1)qk−2 + 1 is sufficient [Mar97].
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for a sufficiently large constant Λ we can set yP = 1. With this all constraints are satisfied, i.e., we have
constructed a feasible solution of the above ILP. We remark that choosing Λ =

⌈
d/qk−1

⌉
·
[
k
1

]
q
≥ n always

works considering a t-fold simplex code with t =
⌈
d/qk−1

⌉
.

We remark that we may also start with a rather small value for Λ. If we find a feasible solution with
target value n, then we can deduce nq(k, d, r) ≤ n. Using this n we can utilize Inequality (4) to deduce an
upper bound for Λ.

Using indicator variables uP ∈ {0, 1} for M(P ) ≥ 1 and zL ∈ {0, 1} for lines L containing at least three
points with positive multiplicity we can adjust the previous ILP to model multisets of points with locality 2.

Proposition 12. Let q, k, and d be arbitrary but fixed parameters. Then, nq(k, d, 2) is given as the optimum
target value of the following ILP:

minn subject to∑
P∈P

xP = n

x⟨ei⟩ ≥ 1 ∀1 ≤ i ≤ k∑
P∈P : P≤H

xP ≤ n− d ∀H ∈ H

xP ≥ uP ∀P ∈ P
xP ≤ ΛuP ∀P ∈ P
xP ≥ 2yP ∀P ∈ P∑

P∈P :P≤L

uP ≥ 3zL ∀L ∈ L

yP +
∑

L∈L :P≤L

zL ≥ uP ∀P ∈ P

xP ∈ N ∀P ∈ P
yP ∈ {0, 1} ∀P ∈ P
uP ∈ {0, 1} ∀P ∈ P
zL ∈ {0, 1} ∀L ∈ L,

where ei denotes the ith unit vector, P denotes the set of points in PG(k − 1, q), L denotes the set of lines
in PG(k − 1, q), H denotes the set of hyperplanes in PG(k − 1, q), and Λ is a sufficiently large constant.

Lemma 13. For each n ≥ nq(k, d, r) there exists an [n, k, d]q-code with locality r.

Proof. Assume nq(k, d, r) < ∞. Let C ′ be an [n′, k, d]q-code with n′ = nq(k, d, r) and locality r. Consider
the corresponding multiset of points M′ in PG(k − 1, q) and let P by an arbitrary point with positive
multiplicity. Define the multiset of points M in PG(k−1, q) by setting M(Q) = M′(Q) for all points Q ̸= P
and M(P ) = M′(P )+n−n′ ≥ M′(P ). by construction we have |M| = n and M has locality r. The linear
code C corresponding to M also has minimum Hamming distance at least d.

The previous results are in principle sufficient to determine nq(k, d, r) for small parameters q, k, and r,
so that we may just give tables of the obtained computational results. However, we prefer to give general
constructions and non-existence results in the next section first.

4 Constructions and non-existence results

In this section we want to study some general constructions to upper bound nq(k, d, r). To this end we
denote the ith unit vector by ei, whenever the dimension of the ambient space is clear from the context, and
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for each subspace S its characteristic function is denoted by χS , i.e., χS(P ) = 1 if P ≤ S and χS(P ) = 0
otherwise. In a few cases we can also give theoretical non-existence proofs for certain parameters to obtain
lower bounds for nq(k, d, r). First, let us define n′

q(k, r) as the minimum length n of an [n, k]q-code with
locality r. Clearly, we have nq(k, d, r) ≥ nq(k, r). As observed earlier, the maximum possible locality is given
by r = k and we have nq(k, d, 1) ≥ nq(k, d, 2) ≥ · · · ≥ nq(k, d, k).

Proposition 14. For each integer k ≥ 1 we have n′
q(k, 1) = 2k and n′

q(k, 2) =
⌈
3k
2

⌉
.

Proof. Let M be a spanning multiset of points in PG(k− 1, q) with locality 1. Due to Lemma 6 every point
P with positive multiplicity M(P ) ≥ 1 satisfies M(P ) ≥ 2. Since M is spanning, it contains at least k

points with positive multiplicity, so that |M| ≥ 2k. An attaining example is e.g. given by M =
∑k

i=1 2 ·χ⟨ei⟩.
For the other case let M be a spanning multiset of points in PG(k − 1, q) with locality 2. Due to

Lemma 7 every point P with positive multiplicity M(P ) ≥ 1 either has multiplicity at least 2 or is contained
in a line L that contains at least three points of positive multiplicity. So, let {L1, . . . , Lm} be the set
of those lines. For each index 1 ≤ i ≤ m let Si be the subspace spanned by the points of the lines
L1, . . . , Li. To also capture the case m = 0 let us denote the empty space by S0. With this we have
dim(S0) = 0, M(S0) = 0, dim(S1) = 2, and M(S1) ≥ 3. For i ≥ 2 we show M(Si) ≤ ⌈3 dim(Si)/2⌉ and
dim(Si−1) ≤ dim(Si) ≤ dim(Si−1) + 2 by induction. So, if Li is completely contained in Si−1, then we have
dim(Si) = dim(Si−1) and M(Si) = M(Si−1). If the intersection of Si−1 and Li is non-empty but Li is not
completely contained in Si−1, then Q := Si−1 ∩ Li is a point. So, we have dim(Si) = dim(Si−1) + 1 and
M(Si) ≥ M(Si−1) + 2. If the intersection of Li and Si−1 is empty, then we have dim(Si) = dim(Si−1) + 2
and M(Si) ≥ M(Si−1) + 3. Now let us consider the set of points P with positive multiplicity that are not
contained in Sm. By construction, none of these points is contained in a line L that contains at least three
points with positive multiplicity. So, we have M(P ) ≥ 2 for each such point. Since M is spanning we have
at least k − dim(Sm) of those points and conclude

|M| ≥
⌈
3 dim(Sm)

2

⌉
+ 2 (k − dim(Sm)) ≥

⌈
3k
2

⌉
.

For even k an attaining example is given by the set of points

{⟨e2i−1⟩, ⟨e2i⟩, ⟨e2i−1 + e2i⟩ : 1 ≤ i ≤ k/2}

and for odd k and example is given the sum of 2 · χ⟨ek⟩ and the characteristic function of the set of points

{⟨e2i−1⟩, ⟨e2i⟩, ⟨e2i−1 + e2i⟩ : 1 ≤ i ≤ (k − 1)/2} .

Corollary 15. For each integer k ≥ 1 we have nq(k, 1, 2) = nq(k, 2, 2) =
⌈
3k
2

⌉
.

Proof. Due to Proposition 14 it suffices to state attaining examples and indeed we will just verify that the
examples from the proof of Proposition 14 have minimum Hamming distance d = 2.

If k is even let M =
∑k

i=1 χ⟨ei⟩ +
∑k/2

i=1 χ⟨e2i−1+e2i⟩, so that |M| = 3k
2 , M is spanning, and has locality

r = 2. For each 1 ≤ i ≤ k/2 let Li the the line spanned by the points ⟨e2i−1⟩, ⟨e2i⟩ , and ⟨e2i−1 + e2i⟩. For
each hyperplane H at most k/2− 1 lines Li can be fully contained in H and the others intersect in at most
a point, so that M(H) ≤ 3k

2 − 2. Thus, the linear code C corresponding to M has minimum Hamming
distance d = 2.

If k is odd let M =
∑k−1

i=1 χ⟨ei⟩ +
∑(k−1)/2

i=1 χ⟨e2i−1+e2i⟩ + 2 · χ⟨ek⟩, so that |M| =
⌈
3k
2

⌉
= 3k+1

2 , M is
spanning, and has locality r = 2. For each 1 ≤ i ≤ (k − 1)/2 let Li the the line spanned by the points
⟨e2i−1⟩, ⟨e2i⟩ , and ⟨e2i−1 + e2i⟩. By P be denote the point ⟨ek⟩. For each hyperplane H that contains P at
most (k − 1)/2− 1 lines Li can be fully contained in H and the others intersect in at most a point, so that
M(H) ≤ 3k+1

2 − 2. For each hyperplane H that does not contain P we also have M(H) ≤ 3k+1
2 − 2, so that

the linear code C corresponding to M has minimum Hamming distance d = 2.
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Proposition 16. For each integer k ≥ 2 we have n′
q(k, k) = k + 1.

Proof. Let M be a spanning multiset of points in PG(k− 1, q) with locality k. Since M is spanning we have
|M| ≥ k. Up to symmetry the unique spanning multiset of points in PG(k − 1, q) of cardinality k is given
by the set of points {⟨ei⟩ : 1 ≤ i ≤ k} which does have a finite locality. Thus, we have n′

q(k, k) ≥ k+ 1. An
attaining example is given by the set of points

{⟨ei⟩ : 1 ≤ i ≤ k} ∪

{〈
k∑

i=1

ei

〉}
.

Here we can easily check that each subset of k points spans the entire ambient space.

We remark that the point set of our construction is called projective base or frame in the literature. Due
to Proposition 14 we also have n′

q(k, k) = k+1 for k = 1 and we may also consider the double-point 2 ·χ⟨e1⟩
as a degenerated cases of a projective base.

For small dimensions k ≤ 2 the determination of nq(k, d, r) can be resolved completely analytically:

Proposition 17. We have nq(1, d, r) = max{2, d}, nq(2, d, 1) = 2
⌈
d
2

⌉
+ 2 if d < 2q, nq(2, d, 1) = d+

⌈
d
q

⌉
if

d ≥ 2q, and nq(2, d, r) = d+
⌈
d
q

⌉
for r ≥ 2.

Proof. In PG(1− 1, q) the unique multiset of points with cardinality n is given by M = n ·χ⟨e1⟩ which does
not have a finite locality if n = 1 and has locality 1 if n ≥ 2. Since there are no hyperplanes in PG(1− 1, q)
we need to observe that the non-zero weights of the codewords of the corresponding linear code C all are
equal to n. Thus, we conclude nq(1, d, r) = max{2, d}.

Let M be a spanning multiset of points of cardinality n in PG(2 − 1, q) and C its corresponding linear
code [n, k]q-code. The minimum Hamming distance of C is at least d iff we have M(P ) ≤ n − d for every
point P . Let us uniquely write d = aq + b with a ∈ N and b ∈ {0, 1, . . . , q − 1}. With this we have

n ≥ nq(k, d, r) ≥ nq(k, d) ≥ gq(k, d) =

k−1∑
i=0

⌈
d

qi

⌉
= d+

⌈
d

q

⌉
= a(q + 1) + b+

⌈
b
q

⌉
. (7)

Let L denote the ambient space, which is a line in our situation. If b = 0 and a ≥ 1, then a · χL attains this
bound and has locality 2 (or 1 if a ≥ 2). If b ≥ 1 and a ≥ 0, then the multiset of points given by the sum of
a · χL and the characteristic function of arbitrary b+1 ≤ q different points on L attains this bound and has
locality 2 if a ≥ 1 or b ≥ 2; we even have locality 1 if a ≥ 2. So, for locality r = 2 it remains to consider the
case d = 1 where we can consider the multiset of points 2 · χP for an arbitrary point P . Thus, for r ≥ 2 we

have nq(2, d, r) = d+
⌈
d
q

⌉
and nq(2, d, 1) = d+

⌈
d
q

⌉
if d ≥ 2q.

For locality r = 1, dimension k = 2, and 1 ≤ d < 2q each point P in a multiset M with these parameters
satisfying M(P ) ≥ 1 indeed has to satisfy M(P ) ≥ 2. If we have l ≤ 2 points with positive multiplicity, then
we have n ≥ 2l +M(P ) − 2 ≥ 2l and d ≤ n −M(P ) ≤ 2l − 2 for every point P with positive multiplicity.
Thus, for even 2 ≤ d < 2q we have nq(2, d, 1) = d+2 and for odd 1 ≤ d < 2q we have nq(2, d, 1) = d+3.

For k ≥ 3 we remark that even the determination of nq(k, d) is a long-standing open problem for q > 9,
so that we do not expect a closed-form solution for nq(k, d, r) when k ≥ 3.

A well-known construction for distance-optimal linear codes is due to Solomon and Stiffler [SS65].

Lemma 18. Let k ≥ 2,

n = σ[k]q −
k−2∑
i=0

εi

[
i+ 1

1

]
q

,

and

n− d = σ[k − 1]q −
k−2∑
i=1

εi

[
i

1

]
q

,
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where σ ∈ N and εi ∈ N for all 0 ≤ i ≤ k − 2. If there exist subspaces S1, . . . , Sl in PG(k − 1, q) such that

# {1 ≤ j ≤ l : dim(Sj) = i} = εi+1 (8)

for 1 ≤ i ≤ k − 1 and
# {1 ≤ j ≤ l : P ∈ Sj} ≤ σ (9)

for each point P in PG(k − 1, q), then an [n, k, d]q-code exists.

In terms of a multiset of points the underlying construction is given by M = σ · χV −
l∑

j=1

χSj , where V

denotes the ambient space PG(k − 1, q). In the literature mostly the case n = gk(k, d) is considered, while
the construction works of course in general. There are also many criteria available in the literature when
those subspaces Sj exist given the other numerical parameters. Here we will just speak of a Solomon-Stifler
construction of type [σ; εk−2, . . . , ε1, ε0] and will mostly leave the existence proof for subspaces satisfying the
conditions of Lemma 18 to the reader.

Example 19. Let M be the multiset of points in PG(k−1, q), where k ≥ 2, obtained from the Solomon-Stifler
construction of type [1; 1, 0, . . . , 0] and C its corresponding [n, k, d]q-code. Then, we have n =

[
k
1

]
q
−
[
k−1
1

]
q
=

qk−1, d = (q − 1)qk−2, and n = gq(k, d). Note that the maximum point multiplicity of M is 1 and that
very line L that contains two points of positive multiplicity has multiplicity M(L) = q since L intersects the
subspace Si in exactly a point. Thus, we have nq(k, (q − 1)qk−2, 2) = qk−1 for all q ≥ 3.

The just considered set of points is also known under the term affine subspace. For the binary case q = 2,
where our construction does not give a multiset of points with locality 2, we can use the well-known result
that each code with the above parameters can be obtained from the Solomon-Stifler construction of type
[1; 1, 0, . . . , 0], see e.g. [KY21, Lemma 12], to conclude:

Lemma 20. For each k ≥ 2 we have n2(k, 2
k−2, 2) ≥ 2k−1 + 1.

Lemma 21. Let C ′ be a projective [n′, k′, d′]2-code with k′ ≥ 2. Then, we have n2(k
′+1,min{2d′, n′ + 1} , 2) ≤

2n′ + 1.

Proof. Let M′ be a spanning multiset of points in PG(k′ − 1, 2) corresponding to C ′, so that M′ has
maximum point multiplicity 1. For each hyperplane H ′ of PG(k′−1, 2) we have M′(H ′) ≤ n′−d′. Let S be
a k′-dimensional subspace in PG(k− 1, 2), where k = k′ +1, and P be the set of points in PG(k− 1, 2) that
arise from an embedding of M′ in S. Choose an arbitrary point P outside of S and let L be the set of lines
spanned by P and each element of P, so that |L| = n′. With this, we define the multiset of points M in
PG(k, 2) as the characteristic function of the points contained in at least one line in L, so that |M| = 2n′+1.
For each hyperplane H of PG(k− 1, 2) that contains P we have M(H) ≤ 1+2(n′ − d′) since at most n′ − d′

lines of L can be fully contained in H. (The other lines intersect the hyperplane H just in point P .) For
every other hyperplane H in PG(k − 1, 2), i.e. P is not contained in H, we have M(H) = n′ since any line
in L intersects H in precisely a point. Thus, we have M(H) ≤ max{1 + 2(n′ − d′), n′}. So, for the linear
code C corresponding to M is an [n, k, d]2-code with n = 2n′ + 1, k = k′ + 1 and d = min{2d′, n′ + 1}. By
construction, every point in PG(k− 1, 2) with positive multiplicity w.r.t. M lies on a line consisting of three
points with positive multiplicity each. Thus, M as well as C have locality 2 and we can deduce the stated
upper bound.

Proposition 22. For each k ≥ 2 we have m2(k, 2
k−2, 2) = 2k−1 + 1.

Proof. Due to Lemma 20 it suffices give a construction showing m2(k, 2
k−2, 2) ≤ 2k−1+1. For k = 2 such an

example is given by the characteristic function of a line. For k ≥ 3 we apply Lemma 21 with the first order
Reed-Muller code with parameters (n′, k′, d′) =

(
2k−2, k − 1, 2k−3

)
(which corresponds to the characteristic

function of an affine space in geometrical terms).
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Next we want to give an easy sufficient criterion when a code obtained from the Solomon-Stifler con-
struction has locality 2:

Lemma 23. Let M be a spanning multiset of points in PG(k − 1, q) obtained from the Solomon-Stifler

construction with type [σ; εk−2, . . . , ε1, ε0]. If
∑k−1

i=0 εi ·
[
i+1
1

]
q
< σ ·

[
k−1
1

]
q
, then M has locality r = 2.

Proof. Let M = σ · χV −
l∑

j=1

χSj
using the notation from Lemma 18, where V denotes the ambient space

PG(k − 1, q). In PG(k − 1, q) each point P is on
[
k−1
1

]
q
many lines and so χV as well as σ · χV contain[

k−1
1

]
q
lines through P in its support. Since M arises from σ · χV by decreasing point multiplicities by∑k−1

i=0 εi ·
[
i+1
1

]
q
< σ ·

[
k−1
1

]
q
and removing a point from the support costs multiplicity σ, at least one full

line through P remains if M(P ) ≥ 1.

Theorem 24. For each t ∈ N we have n2(3, 3+4t, 2) = 6+7t, n2(3, 4+4t, 2) = 7+7t, n2(3, 5+4t, 2) = 10+7t,
and n2(3, 6 + 4t, 2) = 11 + 7t. Moreover, we have n2(3, 1, 2) = n2(3, 2, 2) = 5.

Proof. In PG(3− 1, 2) consider Solomon-Stifler constructions with types [t+ 1; 0, 1], [t+ 1; 0, 0], [t+ 2; 1, 1],
and [t+ 2; 1, 0], respectively. The lengths n and minimum distances d as well as the dimension k = 3 are as
stated. Using Lemma 23 we can easily check that all those examples have locality r = 2 (and in some cases
even locality r = 1). Proposition 22 yields n2(3, 2, 2) = 5, so that it remains to show n2(3, 1, 2) ≥ 5, which
is implied by Proposition 14.

Corollary 25. We have n2(3, 1, 2) = g2(3, 1) + 2, n2(3, 2, 2) = g2(3, 2) + 1, and n2(3, d, 2) = g2(3, d) for all
d ≥ 3.

We remark that we have n2(3, d) = g2(3, d) for all d ≥ 1.

Lemma 26. For k ≥ 4 we have n2(k, 3, 2) ≤ 2k.

Proof. For 1 ≤ i ≤ k−1 let Li = ⟨ei, ei+1⟩ and Lk = ⟨ek, e1⟩. With this, let M be the characteristic function
of all points that are contained in one of the lines Li, so that |M| = 2k, M has locality r = 2, and M is
spanning. For each hyperplane H there exists and index 1 ≤ i ≤ k such that P := ⟨ei⟩ is not contained in
H. The two lines Lj that contain P intersect H in precisely a point so that M(H) ≤ 2k − 3. Thus, the
linear code C corresponding to M has minimum Hamming distance d.

Theorem 27. For each t ∈ N we have n2(4, 5 + 8t, 2) = 11 + 15t, n2(4, 6 + 8t, 2) = 12 + 15t, n2(4, 7 +
8t, 2) = 14 + 15t, n2(4, 8 + 8t, 2) = 15 + 7t, n2(4, 9 + 8t, 2) = 19 + 15t, n2(4, 10 + 8t, 2) = 20 + 15t,
n2(4, 11 + 8t, 2) = 22 + 15t, and n2(4, 12 + 8t, 2) = 23 + 15t. Moreover, we have n2(4, 1, 2) = n2(4, 2, 2) = 6,
n2(4, 3, 2) = 8, and n2(4, 4, 2) = 9.

Proof. In PG(4 − 1, 2) consider Solomon-Stifler constructions with types [t + 1; 0, 1, 1], [t + 1; 0, 1, 0], [t +
1; 0, 0, 1], [t+1; 0, 0, 0], [t+2; 1, 1, 1], [t+2; 1, 1, 0], [t+2; 1, 0, 0], and [t+2; 1, 0, 0], respectively. The lengths
n and minimum distances d as well as the dimension k = 4 are as stated. Using Lemma 23 we can easily
check that all those examples have locality r = 2 (and in some cases even locality r = 1).

Proposition 22 yields n2(4, 4, 2) = 9. Proposition 14 yields n2(4, 3, 2) ≥ n2(4, 2, 2) ≥ n2(4, 1, 2) ≥
⌈
3·4
2

⌉
=

6. Corollary 15 yields n2(4, 1, 2) = n2(4, 2, 2) = 6 and Lemma 26 yields n2(4, 3, 2) ≤ 8.
Due to Lemma 13 it suffices to assume that M is a spanning multiset of points in PG(4 − 1, 2) with

cardinality 7, locality 2, M(H) ≤ 4 for every hyperplane H and conclude a contradiction. First, assume
that P1 is a point with multiplicity at least 2. If L is a line in the support of M, then we have P1 ≤ L since
otherwise the hyperplane spanned by P1 and L would have multiplicity at least 5. However, for any point
P2 with positive multiplicity that is not contained in L the hyperplane spanned by P2 and L has multiplicity
at least 5 – contradiction. So, if one point P1 has multiplicity at least two, then all points with positive
multiplicity have multiplicity at least two. However, a hyperplane spanned by three such points, that are
not contained in a line, has multiplicity at least 6 – contradiction. Thus, the maximum point multiplicity
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of M is 1 and for each point P with positive multiplicity there exists a line LP in the support of M. No
two different such lines can intersect in a point since otherwise the hyperplane spanned by these two lines
would have multiplicity at least 5. However, since 7 is not divisible by 3 the points with positive multiplicity
cannot be partitioned into pairwise disjoint lines.

Corollary 28. We have n2(4, 1, 2) = g2(4, 1) + 2, n2(4, 2, 2) = g2(4, 2) + 1, n2(4, 2, 3) = g2(4, 3) + 1,
n2(4, 2, 4) = g2(4, 4) + 1, and n2(4, d, 2) = g2(4, d) for all d ≥ 5.

We remark that we have n2(4, d) = g2(4, d) for all d ≥ 1.

Theorem 29. For each t ∈ N we have n2(5, 9 + 16t, 2) = 20 + 31t, n2(5, 10 + 16t, 2) = 21 + 31t, n2(5, 11 +
16t, 2) = 23 + 31t, n2(5, 12 + 16t, 2) = 24 + 31t, n2(5, 13 + 16t, 2) = 27 + 31t, n2(5, 14 + 16t, 2) = 28 +
31t, n2(5, 15 + 16t, 2) = 30 + 31t, n2(5, 16 + 16t, 2) = 31 + 31t, n2(5, 17 + 16t, 2) = 36 + 31t, n2(5, 18 +
16t, 2) = 37 + 31t, n2(5, 19 + 16t, 2) = 39 + 31t, n2(5, 20 + 16t, 2) = 40 + 31t, n2(5, 21 + 16t, 2) = 43 + 31t,
n2(5, 22 + 16t, 2) = 44 + 31t, n2(5, 23 + 16t, 2) = 46 + 31t, and n2(5, 24 + 16t, 2) = 47 + 31t. Moreover,
we have n2(5, 1, 2) = n2(5, 2, 2) = 8, n2(5, 3, 2) = 10, n2(5, 4, 2) = 11, n2(5, 5, 2) = 13, n2(5, 6, 2) = 14,
n2(5, 7, 2) = 16, and n2(5, 8, 2) = 17.

Proof. In PG(5 − 1, 2) consider Solomon-Stifler constructions with types [t + 1; 0, 1, 1, 1], [t + 1; 0, 1, 1, 0],
[t+1; 0, 1, 0, 1], [t+1; 0, 1, 0, 0], [t+1; 0, 0, 1, 1], [t+1; 0, 0, 1, 0], [t+1; 0, 0, 0, 1], [t+1; 0, 0, 0, 0], [t+2; 1, 1, 1, 1],
[t + 2; 1, 1, 1, 0], [t + 2; 1, 1, 0, 1], [t + 2; 1, 1, 0, 0], [t + 2; 1, 0, 1, 1], [t + 2; 1, 0, 1, 0], [t + 2; 1, 0, 0, 1], and [t +
2; 1, 0, 0, 0], respectively. The lengths n and minimum distances d as well as the dimension k = 5 are as
stated. Using Lemma 23 we can easily check that all those examples have locality r = 2 (and in some cases
even locality r = 1).

Proposition 22 yields n2(5, 8, 2) = 17. Proposition 14 yields n2(5, 3, 2) ≥ n2(5, 2, 2) ≥ n2(5, 1, 2) ≥⌈
3·5
2

⌉
= 8. Corollary 15 yields n2(5, 1, 2) = n2(5, 2, 2) = 8. Lemma 26 implies n2(5, 3, 2) ≤ 10. Applying

Lemma 21 to an [5, 4, 2]2-code gives n2(5, 4, 2) ≤ 11. The generator matrices
1111111010000
0001111101000
0110011100100
1011100000010
1000111000001

,

11111110010000
00011111101000
01100110100100
10101011100010
11010011000001

 and


0000000001111111
0001111110000011
0010001110001101
0100010110010110
1000111000101001


give [13, 5, 5]2-, [14, 5, 6]2-, and [16, 5, 7]2-codes with locality 2, so that we have n2(5, 5, 2) ≤ 13, n2(5, 6, 2) ≤
14, and n2(5, 7, 2) ≤ 16. For the lower bounds we have n2(5, 3, 2) ≥ n2(5, 3) = 10, n2(5, 4, 2) ≥ n2(5, 4) = 11,
n2(5, 5, 2) ≥ n2(5, 5) = 13, and n2(5, 6, 2) ≥ n2(5, 6) = 14. Finally, if C is an [15, 5, 7]2-code with locality
r = 2, then adding a parity check bit yields an [16, 5, 8]2-code C ′. Let M and M′ denote the multisets
of points corresponding to C and C ′, respectively. Given its parameters, the code C ′ is unique up to
isomorphism and can be obtained by the Solomon-Stifler construction of type [1; 1, 0, 0, 0, 0], see e.g. [KY21,
Lemma 12]. Note that the maximum point multiplicity of M′ is 1 and that M′ does not contain a full line
in its support. Since M′ arises from M by increasing the point multiplicity of a (specific) point by one,
also the maximum point multiplicity of M is 1 and M′ does not contain a full line in its support. Thus, M
cannot have locality 2 and we have n2(5, 7, 2) = 16.

Corollary 30. We have n2(5, 1, 2) = g2(5, 1) + 3, n2(5, 2, 2) = g2(5, 2) + 2, n2(5, 2, 3) = g2(5, 3) + 2,
n2(5, 2, 4) = g2(5, 4) + 2, n2(5, 2, 5) = g2(5, 5) + 1, n2(5, 2, 6) = g2(5, 6) + 1, n2(5, 2, 7) = g2(5, 7) + 1,
n2(5, 2, 8) = g2(5, 8) + 1, and n2(5, d, 2) = g2(5, d) for all d ≥ 9.

We remark that we have n2(5, d) = g2(5, d) for all d ∈ N\{3, 4, 5, 6}. Note that the code C ′ used in the
proof of Theorem 29 to show n2(5, 7, 2) > 15 also has to be even, i.e., all of its weights are divisible by 2. So,
for some parameters we might be able to show that the weight distribution of an even [n, k, d]2-code C

′ (where
also d is even) is unique and can be determined using theoretical methods. So, for each [n−1, k, d−1]2-code
C adding a parity check bit yields such an even [n, k, d]2-code with known weight distribution. Applying the
MacWilliams transform we then compute also the dual weight distribution of C ′. To this end let us slightly
generalize Lemma 8 and the proof idea for n2(5, 7, 2) > 15.
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Lemma 31. Let C be an [n, k, d]2-code with odd minimum distance d and C ′ be the [n + 1, k, d + 1]2-code
obtained from C by adding a parity check bit. If C ′ has dual minimum distance d⊥ = 3 and at less than n/3
dual codewords of weight 3, then the locality of C is larger than 2.

Proof. Let M and M′ be the multisets of points corresponding to C and C ′, respectively. Note that M′

arises from M by increasing the point multiplicity of a certain point P by 1. Using the fact that the dual
minimum distance of C ′ is 3 we conclude that both M′ and M have a maximum point multiplicity of 1.
Since C ′ contains less than n/3 dual codewords of weight 3, at most n− 1 points with positive multiplicity
in M′ can be contained in a line that is fully contained in the support of M′. Thus, there exists a point
Q ̸= P with M(Q) = 1 that is not contained in line L that is fully contained in the support of M. Using
Lemma 7 we conclude that the locality of M and C is at least 3.

Lemma 32. For each t ∈ N≥2 we have nq(2t, 4, 2) ≤ 3t+ 3 and n2(2t+ 1, 4, 2) ≤ 3t+ 5.

Proof. Consider the t triples of points Li = {e2i−1, e2i, e2i−1 + e2i} for 1 ≤ i ≤ t, the triple of points

L′ =
{∑t

i=1 e2i−1,
∑t

i=1 e2i,
∑2t

i=1 ei

}
, and the triple of points L′′ =

{∑t+1
i=1 e2i−1,

∑t
i=1 e2i,

∑2t+1
i=1 ei

}
.

(Over F2 these triples are full lines.) With this let M = χL′ +
∑t

i=1 χLi and M′ = 2 ·χP +χL′′ +
∑t

i=1 χLi ,
where P = ⟨e2t+1⟩. Note that M spans PG(2t − 1, q), M′ spans PG(2t, q), |M| = 3t + 3, |M′| = 3t + 5,
and both multisets of points have locality r = 2. So, it remains to upper bound the multiplicities of the
hyperplanes of the respective ambient spaces. By construction, the multiplicities of H ∩ L′, H ∩ L′′, and
H ∩ Li, where 1 ≤ i ≤ t, are not equal to 2 for each hyperplane H.

Let us first consider M in PG(2t − 1, q). Note that a hyperplane H cannot fully contain all Li for
1 ≤ i ≤ t. Due to symmetry we assume that L1 is not fully contained in H. If also another triple Li with
2 ≤ i ≤ t is not fully contained in H, then we have M(H) ≤ 3t + 3 − 2 · 2. So, let us assume that H fully
contains all triples Li for 2 ≤ i ≤ t. If |H ∩ L1| = 1, then due to symmetry we assume ⟨e1⟩ ≤ H, so that H is
uniquely determined and we have M(H) ≤ 3t+3− 2 · 2 since L′ is not fully contained in H. If |H ∩ L1| = 0
then L′ cannot be fully contained in H, so that M(H) ≤ 3t+ 3− 5.

Next consider M′ in PG(2t, q). There is a unique hyperplane H that fully contains Li for 1 ≤ i ≤ t.
Here we have M′(H) ≤ 3t + 5 − 4 since H does not contain P and also does not fully contain L′′. In the
remaining cases we assume due to symmetry that H does not fully contain L1. If also another triple Li with
2 ≤ i ≤ t is not fully contained in H, then we have M(H) ≤ 3t + 5 − 2 · 2. Similarly, if H does not fully
contain L′′, then we have M(H) ≤ 3t + 5 − 2 · 2. So, let us assume that H fully contains all triples Li for
2 ≤ i ≤ t and also fully contains L′′. However, then there is a unique possibility for H and we can easily
check that P is not contained in H and we also have M(H) ≤ 3t+ 5− 2 · 2.

Note that the upper bounds in Lemma 32 are valid for t < 2 also while there are better constructions for
dimension k = 1 and dimension k = 3, when q = 2. In Table 2 we will see that there are 41 [12, 6, 4]2-codes
while only the example from Lemma 32 has locality r = 2.

Theorem 33. For each d ∈ N≥21 ∪ {17, 18} we have n2(6, d, 2) = g2(6, d). Moreover, we have n2(6, 1, 2) =
n2(6, 2, 2) = 9, n2(6, 3, 2) = n2(6, 4, 2) = 12, n2(6, 5, 2) = n2(6, 6, 2) = 15, n2(6, 7, 2) = n2(6, 8, 2) = 18,
n2(6, 9, 2) = 22, n2(6, 10, 2) = 23, n2(6, 11, 2) = 25, n2(6, 12, 2) = 26, n2(6, 13, 2) = 30, n2(6, 14, 2) = 31,
n2(6, 15, 2) = n2(6, 16, 2) = 33, n2(6, 19, 2) = 41, and n2(6, 19, 2) = 42.

Proof. For d ≥ 21 we can consider the Solomon-Stifler construction and use Lemma 23 to check that all those
examples have locality r = 2 (and in some cases even locality r = 1). Proposition 22 yields n2(6, 16, 2) = 33
and Corollary 15 yields n2(6, 1, 2) = n2(6, 2, 2) = 9. Lemma 32 gives n2(6, 3, 2) ≤ n2(6, 4, 2) ≤ 12.
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The generator matrices
111111100100000
000111110010000
011001101001000
100011101000100
101110010000010
001110101000001

,

111111111110100000
000001111111010000
001110001111001000
010110110011000100
111000010111000010
011011100101000001

,

1111111111111110100000
0000000111111111010000
0001111000011111001000
0110011001100111000100
1000101011111000000010
0011100110101010000001

,

11111111111000000100000
00000111111111110010000
00111001111001111001000
01011010001010111000100
11101100111111011000010
11110011011111101000001

,

1111111111111110000100000
0000000111111111110010000
0001111000011110111001000
0110011001100111011000100
1010111110101011111000010
0100101010111101001000001

,

11111111111111100000100000
00000001111111111100010000
00011110000111101110001000
01100110011001101101000100
10001010101000111111000010
00111101001010110101000001

,

111111111111111111111110100000
000000000001111111111111010000
000001111110000001111111001000
001110001110001110001111000100
010110110010110010010110000010
100011010110010110101010000001

,

1111111111111111111110000100000
0000000001111111111111110010000
0000011110000001111110111001000
0011100110001110001111111000100
0101111000110010010111001000010
0110001011001110110010011000001

,

1111111111111111111000000000000100000
0000000000111111111111111110000010000
0000011111000011111000011111110001000
0011100011001100111001100110111000100
0100101101010101001010101011011000010
1001100110100101010100101101101000001

,

11111111111111111110000000000000100000
00000000011111111111111111110000010000
00001111100001111110000111111110001000
00110001100110001110011001110111000100
01010010101010110010101010111011000010
10010111001101010111110100011101000001

,

11111111111111111111111000000000000100000
00000000000001111111111111111111000010000
00000001111110000111111000001111111001000
00011110001110011000111001110011011000100
01100110110010101001011010110101101000010
10101010010100110010001111011001110000001

,

111111111111111111111110000000000000100000
000000000001111111111111111111111100010000
000001111110000001111110000011111110001000
001110001110000110011110011100011101000100
010110010010011011100110100100101111000010
111010110100101110101011101101010111000001


give [15, 6, 6]2-, [18, 6, 8]2-, [22, 6, 9]2-, [23, 6, 10]2-, [25, 6, 11]2-, [26, 6, 12]2-, [30, 6, 13]2-, [31, 6, 14]2-, [37, 6, 17]2-
, [38, 6, 18]2-, [41, 6, 19]2-, and [42, 6, 20]2-codes with locality r = 2, so that we have n2(6, 5, 2) ≤ n2(6, 6, 2) ≤
15, n2(6, 7, 2) ≤ n2(6, 8, 2) ≤ 18, n2(6, 9, 2) ≤ 22, n2(6, 10, 2) ≤ 23, n2(6, 11, 2) ≤ 25, n2(6, 12, 2) ≤ 26,
n2(6, 13, 2) ≤ 30, n2(6, 14, 2) ≤ 31, n2(6, 17, 2) ≤ 37, n2(6, 18, 2) ≤ 38, n2(6, 19, 2) ≤ 41, and n2(6, 20, 2) ≤
42. For the lower bounds we have n2(6, 6, 2) ≥ n2(6, 6) = 15, n2(6, 8, 2) ≥ n2(6, 8) = 18, n2(6, 9, 2) ≥
n2(6, 9) = 22, n2(6, 10, 2) ≥ n2(6, 10) = 23, n2(6, 11, 2) ≥ n2(6, 11) = 25, n2(6, 12, 2) ≥ n2(6, 12) = 26,
n2(6, 17, 2) ≥ n2(6, 17) = 37, n2(6, 18, 2) ≥ n2(6, 18) = 38, n2(6, 19, 2) ≥ n2(6, 19) = 41, and n2(6, 20, 2) ≥
n2(6, 20) = 42. Due to length restrictions we deduce the lower bounds n2(6, 4, 2) ≥ n2(6, 3, 2) ≥ 12,
n2(6, 5, 2) ≥ 15, n2(6, 7, 2) ≥ 18, n2(6, 13, 2) ≥ 30, n2(6, 14, 2) ≥ 31, and n2(6, 15, 2) ≥ 33 from ILP compu-
tations.

We remark that our stated [18, 6, 8]2-code is a projective two-weight code. It belongs to the family of BY
codes [BE97]. A [26, 6, 12]2-code with locality r = 2 can be obtained by shortening the unique [27, 7, 12]2-
code.2 There is a unique [38, 6, 18]2-code, see e.g. [BJ01], shortening gives [37, 6, 17]2-codes with locality
r = 2. Note that both codes attain the Griesmer bound, see e.g. [Hel83] for constructions of binary codes

2Uniqueness was e.g. computationally verified in [BJ01]. For a purely theoretic argument see “The uniqueness of the binary
linear [27, 7, 12] code” by A. E. Brouwer from April 1992, available at https://www.win.tue.nl/∼aeb/preprints.html.
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attaining the Griesmer bound when d > 2k−1. We remark that there are 7 non-isomorphic [43, 7, 20]2 codes,
see e.g. [BJ01], and all their shortenings yield [42, 6, 20]2-codes with locality r = 2.

Theorem 34. We have n2(7, 1, 2) = n2(7, 2, 2) = 11, n2(7, 3, 2) = n2(7, 4, 2) = 14, n2(7, 5, 2) = 17,
n2(7, 6, 2) = 18, n2(7, 7, 2) = n2(7, 8, 2) = 20, n2(7, 9, 2) = 24, n2(7, 10, 2) = 25, n2(7, 11, 2) = 27,
n2(7, 12, 2) = 28, n2(7, 29, 2) = 62, n2(7, 30, 2) = 63, n2(7, 31, 2) = n2(7, 32, 2) = 65 and n2(7, d, 2) = n2(7, d)
for all other values of d.

Proof. Corollary 15 yields n2(7, 1, 2) = n2(7, 2, 2) = 11, Lemma 32 yields n2(7, 3, 2) ≤ n2(7, 4, 2) ≤ 14, and
Proposition 22 yields n2(6, 32, 2) = 65. For 45 ≤ d ≤ 64 and for d ≥ 73 we can consider the Solomon-Stifler
construction and use Lemma 23 to check that all those examples have locality r = 2 (and in some cases even
locality r = 1). The Magma function BKLC(q, n, k) (Best Known Linear Codes) yields for small parameters
q, k, and n an [n, k, d]q-code that maximizes the minimum distance d [BCP97]. Using q = 2, n = n2(7, d),
and k = 7 we obtained a series of codes, one for each value of d, that we can check for locality r ≤ 2. This
check was successful for d ∈ {14, . . . , 16} ∪ {20, . . . , 24} ∪ {27, 28} ∪ {33, . . . , 44} ∪ {65, . . . , 72}.

The generator matrices

11111110001000000
00011111100100000
01100110010010000
10100110100001000
11101111100000100
10011011000000010
01111111110000001


,



111111111001000000
000000111110100000
000111111010010000
011001011000001000
011111101110000100
001111100000000010
011011000010000001


,



11111111111001000000
00000111111100100000
00011001111010010000
00101110011010001000
00111010101100000100
01101111000100000010
10101001011100000001


,



111111111110000001000000
000001111111111100100000
001110000110011110010000
010010011110100110001000
110111100111101110000100
001101101001011110000010
001110011011001000000001


,



1111111111111100001000000
0000000111111111100100000
0001111000111101110010000
0010011011000111110001000
0110100101011100110000100
0111001000101010110000010
1100111000110010010000001


,



111111111111111000001000000
000000000111111111110100000
000011111000111001110010000
001100111011001010110001000
110001011001110111000000100
110110011000011010010000010
011110101110110011110000001


,



1111111111111110000001000000
0000000001111111111100100000
0000111110001110011110010000
0111000110010110101110001000
1011011001100011110000000100
0101101011100100110100000010
1001001110111000111000000001


,



1111111111111110000000001000000
0000000111111111111111000100000
0000111000111110000111110010000
0011011011000110011011010001000
0111101101001010101100110000100
1001011101011000011101000000010
0010111011010011100101000000001


,



111111111111111111100000000000001000000
000000000111111111111111111100000100000
000011111000001111100001111111100010000
001100111001110001100110011101110001000
010101011010010110101110100110110000100
011110001000111011011000101110000000010
101010011100010101111011000110100000001


,
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

1111111111111111111000000000000001000000
0000000001111111111111111111000000100000
0000111110000011111000011111111100010000
0011001110011100011001100011001110001000
0101010110101101100010100101010110000100
1001101010010100111111001000110010000010
1100001011001111001101010000101110000001


,



111111111111111111111100000000000001000000
000000000000111111111111111111100000100000
000000111111000011111100000111111100010000
000111001111001100001100011001101110001000
011011110011011101110111101011111110000100
101111010101100100111101110110110110000010
110101100011001110011010101100110100000001


,

give n2(7, 5, 2) ≤ 17, n2(7, 6, 2) ≤ 18, n2(7, 7, 2) ≤ n2(7, 8, 2) ≤ 20, n2(7, 9, 2) ≤ 24, n2(7, 10, 2) = 25,
n2(7, 11, 2) ≤ 27, n2(7, 12, 2) ≤ 28, n2(7, 13, 2) ≤ 31, n2(7, 17, 2) ≤ 39, n2(7, 18, 2) ≤ 40, and n2(7, 19, 2) ≤
42. For the other cases we will state explicit examples by listing sets of points for the occurring non-zero
multiplicities, where the points are stated as integers whose base-2-representation is a generator of the point.

• d = 55: 1→ {1, 2, 4, 7, 8, 9, 12, 13, 16, 19, 21, 22, 25, 27, 32, 35, 37, 38, 39, 41, 44, 47, 49, 50, 55, 56, 59, 61, 64,
67, 73, 76, 81, 84, 90, 91, 94, 98, 100, 103, 104, 105, 107, 108, 110, 112, 115, 117, . . . , 122}, 2→ {70};

• d = 56: 1→ {1, 2, 4, 8, 10, . . . , 13, 16, 19, 21, 22, 25, 31, 32, 35, 37, 38, 40, 41, 42, 44, 47, 50, 52, 55, 56, 59, 61,
62, 64, 67, 69, 74, 76, 80, 82, 84, 87, 91, 93, 94, 98, 100, 103, 110, 111, 112, 115, 117, 121, 122, 125}, 3→ {97};

• d = 62: 1→ {1, 2, 4, 5, 8, . . . , 11, 13, 14, 16, . . . , 19, 21, 22, 28, 30, 32, 35, 36, 37, 40, 43, 44, 46, 49, 51, 52, 55,
59, 60, 61, 64, 67, 69, 72, 74, 76, 79, 81, 82, 85, 87, 90, . . . , 93, 98, 99, 103, 105, 106, 112, 115, 120, 122, 125,
126, 127}, 2→ {101};

• d = 63: 1→ {1, 3, 4, 7, 8, 11, 13, 15, 16, 17, 20, 21, 26, 27, 29, 30, 32, 33, 40, 42, 45, 46, 49, 50, 54, 55, 56, 59,
60, 64, 65, 68, 73, 74, 76, 77, 81, 83, 85, 86, 88, 91, 93, 95, 98, 99, 101, 102, 106, 107, 108, 111, 114, 115, 120,
125, 126}, 2→ {2, 36, 116};

• d = 65: 1→ {1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44, 47, 49, 50, 52, 55,
56, 59, 61, 62, 64, 67, 69, 70, 73, 74, 76, 79, 81, 82, 84, 87, 88, 91, 93, 94, 96, 97, 98, 100, 103, 104, 107, 109,
110, 112, 115, 117, 118, 121, 122, 124, 127}.

The lower bounds in those cases where n2(7, d, 2) > n2(7, d) are verified using ILP computations.

Lemma 35. We have nq(k, 2d
′, 1) ≤ 2 · nq(k, d

′), nq(k, d
′ + 2 · qk−1, 1) ≤ 2 ·

(
qk − 1

)
/(q − 1) + nq(k, d

′),
and nq(k, 3d

′ − 1, 1) ≤ 3 · nq(k, d
′)− 1.

Proof. If M is the multiset of points corresponding to an [n′, k, d′]q-code, then 2 · M corresponds to an
[2n′, k, 2d′]q-code with locality 1 since each point has an even multiplicity. Denoting the ambient space by
A, we have that M+2 ·χA corresponds to an

[
2 ·

(
qk − 1

)
/(q − 1) + n′, k, 2 · qk−1 + d′

]
q
-code with locality

r = 1 since each point has multiplicity at least 2. Observing that 3 ·M corresponds to an [3n′, k, 3d′]q-code
with locality 1 since each point has an multiplicity that is divisible, we can decrease the point multiplicity
of one point with positive multiplicity by one to obtain an [3n′ − 1, k, 3d′ − 1]q-code.

Theorem 36. We have n2(3, 1, 1) = n2(3, 2, 1) = 6, n2(3, 3, 1) = n2(3, 4, 1) = 8, n2(3, 5, 1) = 11,
n2(3, 6, 1) = 12, n2(3, 7, 1) = 14, and n2(3, d, 1) = n2(3, d) for all d ≥ 8.

Proof. The lower bounds for d ≤ 7 can be obtained by ILP computations. The necessary upper bounds can
be deduced from Lemma 35 and n2(k, d− 1, 1) ≤ n2(k, d, 1).

Theorem 37. We have n2(4, 1, 1) = n2(4, 2, 1) = 8, n2(4, 3, 1) = n2(4, 4, 1) = 10, n2(4, 5, 1) = n2(4, 6, 1) =
14, n2(4, 7, 1) = n2(4, 8, 1) = 16, n2(4, 9, 1) = 20, n2(4, 10, 1) = 22, n2(4, 11, 1) = 23, n2(4, 12, 1) = 24,
n2(4, 13, 1) = 27, n2(4, 14, 1) = 28, n2(4, 15, 1) = 30, n2(4, d, 1) = n2(4, d) for all d ≥ 16.

15



Proof. The lower bounds for d ≤ 15 can be obtained by ILP computations. Except d = 9 and d = 13, the
necessary upper bounds can be deduced from Lemma 35 and n2(k, d − 1, 1) ≤ n2(k, d, 1). For d = 9 let A
denote the ambient space and E := ⟨e1, e2, e3⟩. A suitable [19, 4, 9]2-code with locality r = 1 can be obtained
from the multiset of points 2 · χA\E + χ⟨e4⟩ + χ⟨e4+e1⟩ + χ⟨e4+e2⟩ + χ⟨e4+e3⟩. For d = 13 let A denote the
ambient space and E := ⟨e1, e2⟩. A suitable [27, 4, 13]2-code with locality r = 1 can be obtained from the
multiset of points 2 · χA\L + χ⟨e3⟩ + χ⟨e3+e1⟩ + χ⟨e3+e2⟩.

Theorem 38. We have

d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
n2(5, d, 1) 10 10 12 12 17 18 19 20 24 25 27 28 30 30 32 32 37

d 18 19 20 21 22 23 24 25 26 27 28 29 30 31 36 38
n2(5, d, 1) 38 41 42 45 46 47 48 52 54 55 56 59 60 62 72 76

for small values of d and n2(5, d, 1) = n2(5, d) in all other cases.

Proof. The lower bounds for d ≤ 38 can be obtained by ILP computations. The necessary upper bounds
can almost always be deduced from the constructions in Lemma 35 and n2(k, d− 1, 1) ≤ n2(k, d, 1). For the
other cases we will state explicit examples by listing sets of points for the occurring non-zero multiplicities,
where the points are stated as integers whose base-2-representation is a generator of the point.

• d = 5: 2→ {1, 2, 8, 16, 23, 29, 30}, 3→ {4};

• d = 7: 2→ {2, 4, 8, 14, 16, 23, 26, 29}, 3→ {1};

• d = 9: 2→ {1, 2, 15, 16, 23, 27}, 3→ {4, 8, 29, 30};

• d = 10: 2→ {1, 2, 4, 8, 16}, 3→ {15, 23, 27, 29, 30};

• d = 11: 2→ {1, 2, 4, 5, 8, 15, 16, 17, 27, 28, 29, 30}, 3→ {23};

• d = 17: 2→ {2, 4, 7, 8, 11, 14, 16, 21, 22, 25, 31}, 3→ {1, 13, 19, 26, 28};

• d = 18: 2→ {7, 11, 13, 14, 19, 21, 22, 25, 26, 28}, 3→ {1, 2, 4, 8, 16, 31};

• d = 19: 2→ {1, 2, 4, 8, 11, 16, 28}, 3→ {7, 13, 14, 19, 21, 22, 25, 26, 31};

• d = 21: 2→ {8, 13, 31}, 3→ {1, 2, 4, 7, 11, 14, 16, 19, 21, 22, 25, 26, 28};

• d = 23: 2→ {8}, 3→ {1, 2, 4, 7, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31};

• d = 25: 2→ {0, 1, 2, 3, 4, 6, 7, 8, 10, 13, 14, 15, 16, 21, 22, 25, 26, 27, 28, 30}, 3→ {13, 19, 21, 25};

• d = 27: 2→ {1, 2, 4, 7, 8, 11, 13, 14, 16, 18, 19, 21, 22, 25, 26, 28, 31}, 3→ {3, 5, 9, 15, 20, 24, 30};

• d = 29: 2→ {1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31},
3→ {6, 9, 19};

• d = 35: 2→ {3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28},
3→ {1, 2, 4, 8, 15, 16, 23, 27, 29, 30};

• d = 37: 2→ {1, 4, 5, 6, 8, 9, 11, 12, 18, 19, 22, 23, 26, 27, 30, 31},
3→ {2, 3, 7, 10, 14, 15, 16, 17, 20, 21, 24, 25, 28, 29}.

Theorem 39. We have
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d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
n2(6, d, 1) 12 12 14 14 20 20 22 22 27 28 30 30 33 34 35 36 41

d 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
n2(6, d, 1) 42 45 46 49 50 51 52 57 58 59 60 62 62 64 64 70 72

d 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
n2(6, d, 1) 74 76 78 80 81 82 86 88 90 90 93 94 95 96 101 102 105

d 52 53 54 55 56 57 58 59 60 61 62 63 64 71
n2(6, d, 1) 106 109 110 111 112 116 118 119 120 123 124 126 126 142

d 72 75 76 78 84
n2(6, d, 1) 143 150 151 156 168

for small values of d and n2(6, d, 1) = n2(6, d) in all other cases.

Proof. The lower bounds for d ≤ 84 can be obtained by ILP computations. The necessary upper bounds
can almost always be deduced from the constructions in Lemma 35 and n2(k, d− 1, 1) ≤ n2(k, d, 1). For the
other cases we will state explicit examples by listing sets of points for the occurring non-zero multiplicities,
where the points are stated as integers whose base-2-representation is a generator of the point.

• d = 9: 2→ {8, 13, 16, 42, 52, 55}, 3→ {1, 2, 4, 27, 32};

• d = 13: 2→ {1, 2, 4, 7, 8, 16, 19, 32, 37, 41, 47, 50, 52, 56, 61}, 3→ {29};

• d = 15: 2→ {1, 2, 4, 8, 23, 27, 29, 30, 32, 47, 51, 53, 54, 57, 58, 60}, 3→ {16};

• d = 17: 2→ {4, 5, 15, 16, 18, 25, 30, 32, 41, 42, 53, 61, 62}, 3→ {1, 2, 8, 38, 51};

• d = 18: 2→ {1, 4, 8, 16, 32, 34, 39, 43, 44, 49, 52, 58}, 3→ {2, 31, 45, 55, 57, 62};

• d = 19: 2→ {1, 2, 4, 8, 16, 23, 27, 32, 33, 34, 36, 39, 40, 43, 46, 47, 48, 51, 54, 58, 62}, 3→ {61};

• d = 21: 2→ {1, 2, 4, 8, 11, 16, 17, 19, 22, 42, 46, 50, 51, 53, 55, 57, 62}, 3→ {15, 32, 41, 44, 52};

• d = 23: 2→ {1, 2, 3, 4, 7, 8, 9, 15, 16, 25, 27, 31, 32, 35, 37, 40, 45, 46, 50, 51, 52, 57, 62, 63}, 3→ {21};

• d = 25: 2→ {4, 8, 11, 13, 14, 16, 19, 21, 22, 32, 37, 41, 42, 44, 47, 49, 50, 52, 55, 59, 62}, 3→ {1, 2, 25, 35, 61};

• d = 27: 2→ {1, 4, 7, 8, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44, 47, 49, 50, 55, 56, 59, 62},
3→ {2};

• d = 33: 2→ {1, 2, 4, 7, 8, 11, 16, 19, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44, 47, 50, 52, 55, 56, 62},
3→ {13, 14, 21, 49, 59, 61};

• d = 34: 2→ {1, 4, 7, 13, 14, 16, 19, 21, 22, 28, 31, 32, 41, 44, 47, 49, 50, 56, 59, 61, 62},
3→ {2, 8, 25, 26, 35, 37, 38, 42, 52, 55};

• d = 35: 2→ {4, 7, 14, 16, 21, 22, 25, 26, 28, 31, 35, 37, 38, 41, 42, 47, 50, 55, 56, 59, 61, 62},
3→ {1, 2, 8, 11, 13, 19, 32, 44, 49, 52};

• d = 37: 2→ {1, 11, 16, 19, 21, 26, 28, 32, 35, 38, 42, 47, 49, 50, 52, 55, 61, 62},
3→ {2, 4, 7, 8, 13, 14, 22, 25, 31, 37, 41, 44, 56, 59};

• d = 38: 2→ {2, 4, 8, 11, 16, 22, 37, 41, 42, 47, 50, 52, 55, 56, 61, 62},
3→ {1, 7, 13, 14, 19, 21, 25, 26, 28, 31, 32, 35, 37, 38, 44, 49, 59};

• d = 39: 2→ {1, 4, 7, 8, 11, 13, 14, 19, 21, 23, 37, 38, 41, 44, 52, 55, 56, 61},
3→ {2, 16, 22, 25, 26, 28, 31, 32, 35, 42, 47, 49, 50, 59, 62};
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• d = 40: 2→ {8, 14, 16, 19, 26, 31, 32, 35, 42, 47, 49, 50, 52, 54, 55, 59, 61},
3→ {1, 2, 4, 7, 11, 13, 21, 22, 25, 28, 37, 38, 41, 44, 56, 62};

• d = 41: 2→ {2, 21, 22, 38, 47, 49, 55, 59, 61, 62}, 3→ {1, 4, 7, 8, 11, 13, 14, 16, 19, 25, 26, 28, 31,
32, 35, 37, 41, 42, 44, 50, 52, 56};

• d = 45: 2→ {1, 2, 4, 7, 8, 9, 10, 11, 13, 14, 15, 16, 21, 22, 24, 25, 26, 27, 28, 29, 30, 32, 35, 37, 38,
41, 42, 43, 44, 45, 46, 47, 49, 50, 52, 56, 57, 58, 60, 61, 62, 63}, 3→ {12, 31, 55};

• d = 47: 2→ {8}, 3→ {1, 2, 4, 7, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44,
47, 49, 50, 52, 55, 56, 59, 61, 62};

• d = 49: 2→ {1, 3, 4, 5, 6, 8, 10, 13, 14, 15, 16, 17, 18, 21, 22, 23, 25, 27, 28, 30, 32, 33, 35, 36, 38,
39, 40, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 62, 63}, 3→ {2, 9, 26, 29, 56};

• d = 50: 2→ {1, 3, 4, 6, 8, 10, 13, 14, 15, 16, 18, 19, 21, 23, 25, 26, 27, 28, 30, 31, 32, 34, 35, 37, 38,
39, 41, 42, 43, 44, 46, 49, 50, 51, 52, 54, 56, 58, 59, 61, 62, 63}, 3→ {2, 7, 11, 22, 47, 55};

• d = 51: 2→ {1, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28, 32, 33, 34, 35, 40,
41, 42, 43, 51, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63}, 3→ {2, 11, 21, 31, 36, 39, 45, 46, 48};

• d = 53: 2→ {1, 3, 4, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 20, 21, 23, 24, 26, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63}, 3→ {2, 5, 19, 25, 47};

• d = 55: 2→ {1, 3, 4, 6, 8, 10, 13, 15, 16, 18, 21, 23, 25, 26, 27, 28, 30, 33, 35, 36, 38, 40, 42, 45, 47,
48, 50, 53, 55, 57, 59, 60, 62}, 3→ {2, 7, 11, 14, 19, 22, 31, 32, 37, 41, 44, 49, 52, 56, 61};

• d = 57: 2→ {1, 3, . . . , 8, 10, . . . , 19, 21, 23, . . . , 28, 30, . . . , 37, 39, . . . , 44, 46, 47, 49, . . . , 56, 58,
60, 61, 62, 63}, 3→ {2, 22, 38, 59};

• d = 59: 2→ {1, 3, ,̇11, 13, 15, 16, 18, 20, . . . , 28, 30, 32, . . . , 36, 38, 40, 42, 44, . . . , 51, 53, 55, 56,
57, 59, . . . , , 63}, 3→ {2, 14, 19, 31, 37, 41, 52};

• d = 61: 2→ {1, 3, . . . , 23, 25, 27, . . . , 39, 41, . . . , 47, 49, 51, . . . , 63}, 3→ {2, 26, 50};

• d = 65: 2→ {1, 3, 4, 6, . . . , 14, 16, . . . , 20, 22, 25, . . . , 36, 38, 39, 41, 43, 44, 45, 48, 49, 51, . . . , 60, 62},
3→ {2, 5, 15, 21, 24, 37, 40, 46, 47, 50, 56, 63};

• d = 66: 2→ {1, 3, 4, 7, . . . , 12, 14, . . . , 19, 21, . . . , 37, 39, . . . , 42, 44, 47, . . . , 60, 62, 63},
3→ {2, 5, 6, 13, 20, 38, 45, 46, 61};

• d = 67: 2→ {1, 3, 4, 6, 8, 9, 10, 12, 13, 15, 16, 17, 19, 21, 22, 24, . . . , 32, 35, 37, 38, 40, . . . , 47, 49,
51, 52, 54, 56, 57, 58, 60, 61, 63}, 3→ {2, 7, 11, 14, 18, 20, 23, 33, 34, 36, 39, 50, 55, 59, 62};

• d = 68: 2→ {3, 6, 10, 15, 16, 17, 19, . . . , 22, 24, 25, 26, 28, 29, 31, 33, . . . , 36, 38, 39, 40, 42, 43, 45, 46,
47, 49, 52, 56, 61}, 3→ {1, 2, 4, 7, 8, 11, 13, 14, 18, 23, 27, 30, 32, 37, 41, 44, 48, 51, 53, 54, 57, 58, 60, 63};

• d = 69: 2→ {1, 5, . . . , 10, 12, 13, 15, . . . , 18, 20, 21, 23, 25, 29, . . . , 35, 37, 40, 41, 43, . . . , 46, 48, 49,
51, . . . , 54, 57, 58, 59, 61}, 3→ {2, 3, 4, 11, 14, 19, 22, 26, 27, 28, 38, 39, 42, 47, 50, 55, 56, 62, 63};

• d = 70: 2→ {1, 3, 5, 6, 8, 11, 12, 14, 16, 19, 21, 23, 24, 26, 29, 30, 32, 33, 36, . . . , 45, 48, . . . , 51, 54, 55,
58, . . . , 63}, 3→ {2, 4, 7, 9, 10, 15, 17, 18, 20, 25, 28, 31, 34, 35, 46, 47, 52, 53, 56, 57};

• d = 73: 2→ {1, 4, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 26, 28, 29, 31, . . . , 34, 36, 37, 39, . . . , 42, 44, 45, 48,
49, 52, 53, 57, 60}, 3→ {2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 27, 30, 35, 38, 43, 46, 47, 50, 51, 54, 55,
58, 59, 62, 63};
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• d = 74: 2→ {1, 4, 5, 8, 9, 12, 13, 15, 16, 17, 18, 20, 21, 24, 25, 28, 32, 33, 34, 36, 37, 40, 41, 44, 49, 52, 53,
56, 57, 60, 61, 63}, 3→ {2, 3, 6, 7, 10, 11, 14, 19, 22, 23, 26, 27, 30, 31, 35, 38, 39, 42, 43, 46, 47, 50, 51,
54, 55, 58, 59, 62};

• d = 77: 2→ {1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 30, 34, 35, 38, 39, 42, 43, 44, 46, 47, 51, 54,
55, 58, 59, 62, 63}, 3→ {2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 31, 32, 33, 36, 37, 40, 41, 45, 48,
49, 52, 53, 56, 57, 60, 61};

• d = 83: 2→ {1, 8, 9, 12, 18, 26, 27, 31, 32, 33, 36, 40, 44, 45, 50, 51, 55, 59, 62, 63}, 3→ {2, . . . , 7, 10, 11,
13, . . . , 17, 20, . . . , 25, 28, 29, 30, 34, 35, 37, 38, 39, 41, 42, 43, 46, . . . , 49, 52, 53, 54, 56, 57, 58, 60, 61};

Theorem 40. We have

d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 21
n3(3, d, 1) 6 6 8 8 11 12 14 14 16 16 18 18 21 22 24 26 32

for small values of d and n3(3, d, 1) = n3(3, d) in all other cases.

Proof. The lower bounds for d ≤ 21 can be obtained by ILP computations. The necessary upper bounds
can almost always be deduced from the constructions in Lemma 35 and n3(k, d− 1, 1) ≤ n3(k, d, 1). For the
other cases we will state explicit examples by listing sets of points for the occurring non-zero multiplicities,
where the points are stated as integers denoting the position in the list of lexicographical minimal vectors
that are generators of a point (starting to count from zero).

• d = 5: 2→ {0, 1, 11, 12}, 3→ {4};

• d = 13: 2→ {4, 5, 7, 11, 12}, 3→ {0, 1, 2, 9}.

Theorem 41. We have

d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
n3(4, d, 1) 8 8 10 10 14 14 16 16 18 18 20 20 24 25 27 28 29 30

d 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 37
n3(4, d, 1) 33 34 36 36 38 38 41 42 44 46 47 48 50 50 52 52 54 58

d 38 39 40 41 42 43 44 45 47 49 50 51 53 57 61 62 63 69
n3(4, d, 1) 59 61 62 63 64 67 68 69 72 75 76 78 80 87 93 94 95 104

for small values of d and n3(4, d, 1) = n3(4, d) in all other cases.

Proof. The lower bounds for d ≤ 69 can be obtained by ILP computations. The necessary upper bounds
can almost always be deduced from the constructions in Lemma 35 and n3(k, d− 1, 1) ≤ n3(k, d, 1). For the
other cases we will state explicit examples by listing sets of points for the occurring non-zero multiplicities,
where the points are stated as integers denoting the position in the list of lexicographical minimal vectors
that are generators of a point (starting to count from zero).

• d = 13: 2→ {0, 1, 9, 13, 26, 33}, 3→ {4, 20, 30, 34};

• d = 14: 2→ {1, 13, 21, 26, 38}, 3→ {0, 4, 11, 24, 34};

• d = 15: 2→ {0, 1, 2, 4, 11, 12, 13, 18, 21, 24, 27, 32}, 3→ {34};

• d = 17: 2→ {0}, 3→ {1, 4, 11, 13, 18, 26, 30, 32, 37};

• d = 19: 2→ {0, 1, 4, 5, 7, 13, 16, 27, 29, 35, 36, 39}, 3→ {2, 14, 22};
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• d = 25: 2→ {0, 1, 4, 5, 9, 11, 13, 20, 21, 24, 25, 26, 30, 33, 35, 38}, 3→ {2, 14, 36};

• d = 26: 2→ {1, 3, 4, 5, 7, 9, 13, 15, 16, 24, 28, 29, 35, 36, 39}, 3→ {0, 20, 25, 32};

• d = 27: 2→ {0, 1, 2, 3, 4, 5, 6, 13, 16, 19, 22, 26, 30, 31, 36, 38}, 3→ {10, 14, 27, 39};

• d = 29: 2→ {0, 1, 2, 4, 6, 9, 10, 13, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 29, 32, 35, 37}, 3→ {8};

• d = 37: 2→ {1, 3, 4, 6, 7, 8, 11, 12, 13, 14, 18, 19, 21, 23, 24, 25, 27, 28, 31, 33, 34, 35, 39}, 3→ {0, 17, 29, 38};

• d = 38: 2→ {0, 1, 3, 4, 6, 7, 8, 11, 13, 15, 16, 20, 21, 22, 23, 26, 27, 30, 32, 33, 36, 38}, 3→ {12, 17, 28, 34, 37};

• d = 39: 2→ {0, 1, 3, 4, 5, 8, 9, 12, 13, 16, 17, 21, 23, 24, 31, 32, 35, 36, 37, 39}, 3→ {10, 15, 20, 25, 27, 28, 29};

• d = 41: 2→ {0, 1, 2, 4, 12, 13, 14, 18, 20, 21, 22, 24, 26, 27, 28, 32, 33, 39}, 3→ {5, 7, 9, 11, 16, 29, 34, 35, 37};

• d = 43: 2→ {0, 1, 4, 5, 8, 9, 10, 12, 17, 29, 30, 33, 34, 36}, 3→ {3, 13, 14, 18, 19, 21, 22, 24, 25, 26, 32, 37, 38};

• d = 45: 2→ {1, 4, 10, 12, 15, 20, 23, 25, 27, 28, 29, 31, 36}, 3→ {0, 3, 8, 9, 13, 16, 17, 21, 24, 32, 35, 37, 39},
4→ {5};

• d = 49: 2→ {1, . . . , 11, 13, . . . , 17, 19, . . . , 22, 25, . . . , 36, 38}, 3→ {0, 24, 39};

• d = 67: 2→ {0, 5, 7, 12, 14, . . . , 17, 19, 21, 22, 27, 29, 32, 34, 39}, 3→ {1, 2, 4, 6, 8, 9, 10, 11, 13, 18, 20,
23, . . . , 26, 28, 30, 31, 33, 35, . . . , 38};

• d = 68: 2→ {0, 1, 3, 4, 8, 12, 31, . . . , 39}, 3→ {5, 6, 7, 9, 10, 11, 13, . . . , 30};

We remark that all [69, 4, 45]3-codes that have locality r = 1, when considered as a multiset of points in
PG(3, 3), have maximum point multiplicity of at least 4 (and not 3 as in all other stated examples for the
other parameters).

5 Enumeration results

Instead of solving ILPs to determine locally recoverable codes with the minimum possible length nq(k, d, r)
one may also enumerate all [n, k, d]q-codes with minimum possible length n = nq(k, d) or slightly larger
length and check whether those codes have relatively small locality constants r. For those enumerations we
have applied the software LinCode [BBK21]. We present our computational results in Tables 1, 2, and 3.
Locality r = 1 did not occur in any of these cases.
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