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Abstract

In this cumulative thesis we investigate with computer simulations the trans-
port of colloidal microparticles through inhomogeneous energy landscapes.
We mainly focus on magnetic colloids interacting with magnetic patterns,
but we also consider transport in optical systems.

Inspired by the transport properties of electrons in twisted bilayer graphene,
we study a particle-based classical system made of colloidal particles located
between two-dimensional magnetic patterns that are rotated relative to each
other. Flat channels in the magnetic potential develop due to the interference
between the magnetic fields of both patterns. We show that there exist specific
angles, the so called magic angles, at which these flat channels permeate the
whole system. These percolated flat channels allow for macroscopic colloidal
transport through the whole system when the colloidal particles are pushed
by a drift force significantly weaker than the average magnetic force in the
system. Flat channels also occur at angles different than the magic angles.
However, these channels do not allow for macroscopic transport since they
contain areas through which the colloidal particles can not pass when they
are pushed by reasonable drift forces. We consider both square and hexagonal
twisted magnetic patterns and characterize the effect of the temperature, the
twist angle, and the driving strength on the colloidal transport.

Next we demonstrate that the phenomenology found in twisted magnetic
patterns is robust under changes in the underlying physical system. To this
end, we investigate colloidal particles in twisted arrays of optical tweezers. We
show that at the same magic angles as in the magnetic system, the mobility
of colloidal particles in the optical system massively increases.

Beyond drift transport, magnetic particles above single magnetic patterns
can also be transported using topologically protected motion. A uniform
external magnetic field drives the motion. The orientation of the field varies
in time performing modulation loops. Loops that wind around specific
orientations are able to transport the magnetic particles by one unit cell
of the underlying magnetic pattern. We demonstrate here that topological
transport is also possible in twisted magnetic patterns, and investigate the
competition between drift and topological transport. The interplay between
the two transport modes can both enhance and hinder the colloidal transport
between the twisted patterns. Delicate commensuration effects involving the
strength of the drift force and the period of the modulation loop, enable
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macroscopic transport significantly faster than the pure topological transport.
On the other hand, when the two transport modes oppose each other the
transport of colloidal particles comes to a complete halt, even for strong drift
forces.

Above periodic magnetic patterns, identical colloidal particles driven by mod-
ulation loops are always transported along the same direction. Particles that
belong to different topological classes, such as e.g. paramagnetic and dia-
magnetic particles, can be simultaneously transported in different directions.
However, all particles belonging to the same topological class perform the
same motion everywhere above the periodic pattern. Here, we develop a
class of inhomogeneous (non-periodic) patterns that enables a new type of
topologically protected colloidal transport in which the transport direction
depends on the absolute position above the pattern. We use both the local
symmetry of the magnetic pattern and the modulation loop to encode the
complexity of the transport. By doing so, we are able to control the transport
of several identical colloidal particles simultaneously and independently. We
also design an inhomogeneous pattern that features a particle trap. Several
repetitions of a modulation loop move the colloidal particles toward the trap
independently of their initial positions. Our computer simulation results are
in excellent agreement with experiments.

Finally, we design a class of inhomogeneous magnetic patterns that possess
a cloaked region. That is, a region in the pattern that is invisible to the
asymptotic scattering of magnetic colloids performed with modulation loops.
When particles move on a path towards the cloaked region, their trajectories
are automatically deformed to move around the cloak. When the particles
pass the cloaked region, their trajectories are the same as if the cloak was
not there.
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Kurzdarstellung

In dieser kumulativen Doktorarbeit wird der Transport von kolloidalen Teil-
chen durch inhomogene Energielandschaften untersucht. Der Fokus liegt auf
magnetischen Kolloiden, die mit magnetischen Mustern interagieren. Zu-
sätzlich wird auch der Transport kolloidaler Teilchen in optischen Systemen
untersucht.

Inspiriert von den elektronischen Transporteigenschaften in zueinander ver-
drehten Graphendoppellagen, untersuchen wir die Transporteigenschaften
von kolloidalen Teilchen in zueinander verdrehten magnetischen Mustern.
Durch die Interferenz der Magnetfelder der zwei Muster entstehen flache
Kanäle im magnetischen Potential. Wir zeigen, dass besondere, so genannte
magische Winkel existieren, bei denen die flachen Kanäle das gesamte System
durchziehen. Diese Kanäle erlauben makroskopischen, kolloidalen Transport
durch das gesamte System, wenn die kolloidalen Teilchen mittels einer, im
Vergleich zu den durchschnittlichen magnetischen Kräften, kleinen Kraft
getrieben werden. Bei Winkeln, verschieden von den magischen Winkeln,
existieren auch flache Kanäle. Diese erlauben jedoch keinen makroskopischen
Transport, weil die Kanäle Abschnitte enthalten, die die kolloidalen Teilchen
bei moderaten Driftkräften nicht passieren können. Wir untersuchen sowohl
Muster mit quadratischer als auch hexagonaler Symmetrie.

Im Anschluss testen wir, ob die Phänomenologie, die in dem eben diskutierten
magnetischen System auftritt, robust unter Änderung des physikalischen
Systems ist. Hierzu analysieren wir den Transport von kolloidalen Teilchen
in einem System von zueinander verdrehten optischen Pinzetten anstelle der
verdrehten magnetischen Muster. Wir zeigen, dass auch in diesem System
ein massiver Anstieg in der Mobilität der kolloidalen Teilchen zu messen ist,
wenn der Drehwinkel zwischen den Pinzetten magisch ist.

Zusätzlich zu Drifttransport können kolloidale Teilchen auch mittels topolo-
gisch geschütztem Transport bewegt werden. Geschlossene Kurven (Loops) in
der Orientierung eines räumlich homogenen externen Magnetfelds treiben die
Bewegung. Wenn diese Loops bestimmte Orientierungen umkreisen, erzeugen
sie topologisch geschützten Transport der kolloidalen Teilchen über dem zu-
grundeliegenden Muster. Wir zeigen, dass topologisch geschützter Transport
auch zwischen verdrehten, magnetischen Mustern möglich ist. Des Weiteren
untersuchen wir das Zusammenwirken des Drifttransports und des topolo-
gischen Transports. Durch das Zusammenwirken der zwei Transportmodi

iii



kann die durchschnittliche Geschwindigkeit der Teilchen sowohl erhöht, als
auch erniedrigt werden. Feine Abstimmung der Amplitude der Driftkraft und
der Ausrichtung der Loops ermöglichen, dass der makroskopische Transport
der kolloidalen Teilchen deutlich schneller als rein topologischer Transport
wird. Andererseits können die Teilchen sogar bei starken Driftkräften zum
kompletten Stopp gebracht werden, wenn die beiden Transportmodi entge-
genwirken.

Über periodischen, magnetischen Mustern werden alle identischen Teilchen,
die durch einen Modulationsloop getrieben werden, in die selbe Richtung
bewegt. Teilchen, die unterschiedlichen topologischen Klassen angehören, bei-
spielsweise paramagnetische und diamagnetische Teilchen, können simultan
in verschiedene Richtungen transportiert werden. Alle Teilchen, die der selben
topologischen Klasse angehören, werden jedoch in die selbe Richtung transpor-
tiert. Wir entwickeln eine neue Klasse von inhomogenen (nicht periodischen)
Mustern, die einen neuen Typ von topologischem Transport ermöglichen, bei
dem die Transportrichtung der kolloidalen Teilchen von ihrer absoluten Positi-
on über dem Muster abhängt. Wir benutzen sowohl die lokale Symmetrie der
magnetischen Muster, als auch die Modulationsloops um die Komplexität des
Transports zu kodieren. Diese Herangehensweise erlaubt es, eine Vielzahl von
identischen Teilchen simultan und unabhängig voneinander zu kontrollieren.
Außerdem konstruieren wir inhomogene Muster, die eine Teilchenfalle bein-
halten. Die wiederholte Anwendung eines Modulationsloops bewegt kolloidale
Teilchen in das Zentrum der Falle, unabhängig von der initialen Position der
Teilchen. Unsere Computersimulationen stimmen exzellent mit Experimenten
überein.

Schlussendlich entwerfen wir eine neue Klasse an inhomogenen, magnetischen
Mustern mit einer Tarnregion, eine Region im Muster, die unsichtbar gegen-
über asymptotischer Streuung von kolloidalen Teilchen durch topologische
Loops ist. Wenn sich Teilchen auf die Tarnregion zubewegen, werden sie
automatisch sanft um die Tarnregion herum geleitet, sodass ihre Trajektorien
nach Passieren der Tarnregion so aussehen, als würde die Tarnregion nicht
existieren.
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1 Introduction

1.1 Colloidal transport

Life requires the interplay between different length scales. Chemical reactions,
that happen on length scales of ångströms, are required to keep a mammal,
with length scale of a meter, alive [6]. These length scales need to be bridged
such that the desired reactions occur at the right position in the body and at
the right time [7, 8]. Proteins, which under certain circumstances behave like
colloids [9], play a large role in controlling the chemistry of cells and larger
living organisms [10]. Colloids are usually defined as insoluble particles in
the length scale of nanometers to micrometers suspended in a solvent [11].
However, colloids can under some circumstances serve as a model for smaller
systems like atoms and molecules [12–14] and also for larger ones such as
granular systems [15].

As humans we have designed macroscopic machines that can control and
build complex structures in the millimeter to meter range.1 For example
if you, the reader, are reading this thesis on a printed copy, the copy was
produced by a printer which printed the letters with sub-millimeter accuracy
on the paper. The paper itself was produced by machines. The wood required
for the paper was probably harvested by machines and transported to the
factory by truck or by train, which are again extremely complex machines.
All of these machines make our current life possible. If I had to do all these
tasks manually, I would not have had time to do the research presented in
this thesis. This rather complex process was for an arguably simple paper
copy. If you are reading this thesis on an electronic device, the machines
allowing you to read the thesis are way more intricate. It is already in the
name of the device, electronic device. Elemental particles, electrons in this

1We have also developed much smaller machines like nanobots [16] and also much bigger
machines like the accelerator ring of the LHC with a length of 27 km [17]. They however
do not govern our everyday life.
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case, are controlled on a nanometer scale in order for you to be able to read
this text [18, 19]. However there a not many machines in our everyday life
that control colloidal particles.

This thesis develops new ways to controlling colloidal particles by using
inhomogeneous energy landscapes. This might be a starting point to build
machines that operate reliably on colloidal particles. Such machines would
be beneficial in e.g. curing diseases [20], reducing the amount of chemicals
needed in the chemical analysis of samples [21–23], and in high precision
measuring devices [24, 25].

In living organisms, colloidal particles are most often dissolved in aqueous
solutions [26]. They can however also be dissolved in other fluids such as air
(e.g. fog or smoke). Collisions with the constituents of the solvent generate
a friction force on the colloidal particles and also cause them to undergo
Brownian motion [27, 28]. As colloids play an important role in our lives, it
is crucial to both understand their motion and to be able to control them
precisely. In the theoretical description of colloids, the solvent is often not
considered explicitly, but rather only implicitly via its effects on the colloidal
particles [27]. However, when the solven flow becomes important, e.g. when
particles diffuse near an elastic membrane [29] the solvent and hydrodynamic
interactions need to be considered explicitly. The equation of motion for the
i -th colloidal particle in the case of an implicit solvent then reads

m r̈i = –γṙi + f i + ηi , (1.1)

where m is the mass of the colloidal particle, ri is its position, the overdots
denote temporal derivatives, γ is the friction coefficient against the implicit
solvent, f i are all the deterministic forces (internal and external) acting
on particle i , and ηi is a random force with vanishing mean and standard
deviation given by the fluctuation dissipation theorem [27]. In the overdamped
regime, the viscosity of the solvent is high. The inertial term can then be
neglected, and equation (1.1) simplifies to

γṙi = f i + ηi . (1.2)

The randomness of the Brownian forces can hinder the precise control of the
particles. Strong forces on the other hand can limit the relative importance
of Brownian motion. Individual particles, for example, can be controlled
very precisely by optical tweezers [30, 31]. However this method does not
scale easily to many particles, as one needs in principle one tweezer for each
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particle. The collective motion of colloidal particles can be controlled for
example by temperature gradients [32] and also by external fields such as a
gravitational field [33, 34]. These collective effects can be used to realize an
arbitrary flow of the particles with a given one body density [35, 36]. However,
when doing so, then the control over the individual particles is lost. In this
thesis we will use topologically protected motion and inhomogeneous energy
landscapes to address these problems. This will allow us to simultaneously
and independently transport identical particles in different directions using a
single external field.

1.2 Topological transport of magnetic colloids
above magnetic patterns

Topology, once a subject of pure math, has been found to have many appli-
cations in physics, ranging from quantum systems [37–39] over soft matter
systems [40–42] to cosmological studies [43–45]. Topological protection means
that some property of a system depends only on a topological invariant.
Continuous deformations to the system do not change the invariant quantity
and therefore the property behaves qualitatively the same as in the undis-
turbed system. When a change in the topological invariant is made (imagine
plugging the hole of a torus) the system behaves in a significantly different
manner.

As a though experiment, we can imagine a chain. It is made of a given
number of links. Topologically these are tori interlocked by Hopf links [46].
When one of the tori is deformed continuously the chain remains a chain.
However, if one intermediate link of the chain is opened (a non-continuous
deformation), the chain can no longer function as a chain. It is now two
shorter chains.

Electrical circuits are another example where the topology is crucial for the
proper functioning of a system. Imagine one of the simplest electrical circuits:
an LED soldered to two wires that are connected to a power supply. When
the power supply outputs the right voltage for the LED, it will light up, no
matter the precise path of the wires. We can move the wires around, twist
them and entangle them however we please, and the LED still lights up. But
if we change the topology, by e.g. cutting a wire or connecting the LED to
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the wrong poles of the power supply, it will no longer light up.

So we have seen that topology can fundamentally determine the behavior
of a system. Where can topology be used in colloidal systems to precisely
control their motion?

It has been recently shown that the motion of magnetic colloids above periodic
magnetic patterns driven by an external magnetic field can be topologically
protected [47–56]. A detailed explanation can be found in Ref. [54]. In this
thesis we focus on similar systems and hence we explain in the following the
general setup and terminology. The magnetic colloidal particles used in the
experiments are widely used in biology, biochemistry [57–59] and also other
experiments in physics such as, e.g. to study active systems, by spinning the
colloidal particles [60–62].

The systems are comprised of magnetic patterns with regions of alternating
magnetization normal to the plane of the pattern. The patterns are usually
made of a periodic tiling of unit cells. As each of the unit cells are identical,
the pattern can be described by only one unit cell and the rule on how
to connect it to itself in order to recover the whole pattern. A simple yet
interesting case is a checkerboard pattern [56], see figure 1.1 (a) for a sketch
of the system. Opposite edges of the unit cell can be connected, which causes
the topological properties of the pattern to be those of a torus. At a distance
of roughly one unit cell above the patterns, paramagnetic colloidal particles
are submersed in water and are forced to move in a 2D-plane, the action space
A, which can also be folded back to a torus. The colloidal particles have a
magnetic susceptibility χ. An external magnetic field Hext(t) homogeneous
in space but varying in time t , with amplitude much stronger than that of
the magnetic field of the pattern Hp is used to control the motion of the
particles. The possible set of all orientations of Hext is called control space C.
As the set of all possible orientations of a 3D-vector, in this case Hext, is the
surface of a sphere, C is also the surface of a sphere. In the following, closed
loops in C will be used to move particles. This can be done since there exist
closed loops in C such that when the orientation of Hext returns to its initial
one, the particles have moved one unit-cell in A.

The external magnetic field and the magnetic field of the pattern induce a
magnetic moment m parallel to the combined magnetic field, in the colloidal
particles. The magnetic energy of a particle at position ri and time t is then
given by minus the product of its magnetic moment times the magnetic field
that it experiences, i.e. –m(ri , t) ·

(
Hp(ri ) + Hext(t)

)
∝ –(Hp(ri ) + Hext(t))2.
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As only non constant terms in this expression lead to forces on the particle,
we can omit the contribution proportional to Hext

2. The term proportional
to Hp2 can be neglected compared to the cross-term Hp · Hext, since Hp2 ≪
|Hp · Hext|, as |Hp| ≪ |Hext|. Hence the relevant part of the magnetic
potential to understand the colloidal motion is the cross-term

Vext(ri , t) ∝ –2Hp(ri ) · Hext(t). (1.3)

When Hext is varied on timescales significantly slower than the relaxation time
of the colloidal particles into a minimum of Vext, the transport is adiabatic,
in the sense that particles will follow the minima in Vext (provided that a
minimum exists). We will stay in this regime and therefore it is sufficient to
discuss the extrema of Vext to understand the transport. There are regions
Aa ⊂ A, so called allowed regions, which are defined as the set of all points
r ∈ A for which there exists an orientation in C such that Vext(r) attains a
minimum [54], see figure 1.1 (b) for a visualization. There exist also regions
Af ⊂ A, the forbidden regions, which are the set of points r ∈ A for which
there exists no orientation in C for which Vext(r) is a minimum, but a saddle
point [54].2 The allowed and forbidden regions are separated by the so called
fences, see figure 1.1 (b) for a visualization. The points where two fences
meet are called the gates. A visualization of the allowed and the forbidden
regions, the fences, the gates and illustrative particle trajectories is shown
in figure 1.1(a-d) for a square pattern. In a square pattern there exist two
distinct regions of Aa per unit cell. One in the center of the unit cell, and the
other connects adjacent unit cells together. These different allowed regions
are connected by four gates, see figure 1.1 (b). If driven by a modulation
loop a particle crosses the same gate twice, it remains in its original unit
cell. If the particle however crosses two different gates, it is transported to
a different unit cell. Now the question “how can we control which gates do
the particles cross?” arises. To answer it, we can try to map points in A to
points in C by finding the points in C that make the points in A stationary.
However, this mapping is not bijective. One can construct a manifold by
building the direct product A ⊗ C. When one restricts this product to all
the stationary points, i.e. those where ∇Vext = 0, one attains the so called
stationary manifold M [56]. This manifold contains all information about the
adiabatic transport of our system [54]. Points in M can then be projected to

2The reader might wonder why we did only talk about minima and saddle points in Vext,
and have seemingly omitted the discussion of maxima. Note that via the transformation
from Hext to –Hext a maximum is converted to a minimum. Hence, the maxima are
included in the discussion of Aa.
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Figure 1.1: Schematic overview of the transport above periodic square patterns. (a)
3D view the setup. (b) allowed and forbidden regions. (c) stereographic projection
of control space together with a modulation loop (orange) that transports particles
along the trajectories shown in (d). The purple line depicts the equator of C. The
blue points (lines) are the fences in C (A), the orange arrow indicates the sense of
circulation and the orange dots mean that the loop is closed on the south pole. (d)
top view of (a). The dashed black lines are particle trajectories after two loops.
The yellow square in (a) and (d) depicts a unit-cell. Adapted from publication 4,
originally licensed under the CC BY 4 license [65].

A and C. This projection is shown in figure 1.2 (a-c), including all fences and
gates. The fences of the square pattern are four equidistant points along the
equator of C, see figure 1.2 (a), which are connected by the gates. This means
that we can perform a closed loop with Hext in C that crosses two different
gates. As a consequence, the loop moves particles from one unit cell to an
adjacent one. As different gates in C are separated by the fence points, the
set of winding numbers of the path of Hext in C around the fences (and only
it) determines which direction and how many unit cells the particles travel.
The exact trajectory of the particle in action space depends on the details of
the path in C, but not the unit cell in which the particle will reside after the
loop. The set of winding numbers around the fences is a topological invariant.
Therefore the transport of the colloidal particles is topologically protected.
One can concatenate loops that transport particles in different directions
by topologically trivial paths in C, which allows the colloidal particles to be
transported to any desired location above the pattern.

While explaining the topological nature of the transport of colloidal particles,
we have used the symmetry of the square pattern numerously. So one is
naturally curious about what happens when the square pattern is replaced by a
pattern of a different symmetry class, e.g. C6 or S6 (Schoenflies notation [64]).
Figure 1.3 (a-d) shows the effects of changing the symmetry of the underlying
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Figure 1.2: Projection of the stationary manifold M (b) on to A (c) and C (a) for
a pattern with square symmetry. A loop (L) is represented by a purple dashed line
in (a-c) as LC in C, LM in M and as LA in A). Red and yellow colors represent
forbidden regions, blue and green colors represent allowed regions in A and M.
Gates are labeled by g(x ), x ∈ 1, 2, 3, 4 and depicted as solid lines in (a), as dashed
lines in (b) and as circles with arrows in (c). Fences are shown as white circles
in (a) and as solid lines in (b) and (c). The labels (n), (s) indicate whether the
orientation of the external magnetic field points to the north or to the south of C.
Adapted from [56], originally licensed under the CC BY 3 license [63].

pattern. In patterns with C6 and S6 symmetry the fences in C are no longer
points but one dimensional curves that meet in the so called bifurcations
points [55], see figure 1.3 (a,b). In patterns with C6 and S6 symmetry, the set
of winding numbers around the bifurcation points determines the direction
of transport [54]. As the possible directions of transport are given by the
symmetry of the patterns, the particles can get transported in different
directions above patterns with different symmetry classes, see figure 1.3 (c,d)
for illustrative trajectories. Above a pattern with C6 or S6 symmetry for
example, the particles can get transported along any of the three symmetry
directions of the pattern (in positive and negative direction), allowing for six
directions separated by 60◦. However, a loop in C that transports particles
above a pattern with C6 symmetry in one direction does not necessarily
transport particles above a pattern with S6 symmetry in the same direction,
since the fences/bifurcation points are in different locations. We will use
this in the next section to achieve locally different transport directions above
spatially inhomogeneous patterns.

7

https://creativecommons.org/licenses/by/3.0/


Figure 1.3: Overview of the transport above hexagonal patterns for the case of C6
symmetry (a,c) and S6 symmetry (b,d). (a) and (b) depict the unit cell of action
space with the allowed (forbidden) regions in green (red) and the fences (gates) in
blue (yellow). Control space in (a) and (b) is shown in the stereographic projection
of C. The purple lines depict the equator, blue lines represent the fences and black
dots show the bifurcation points. The orange line shows an illustrative modulation
loop of the external magnetic field. Orange dots indicate, that the loop is closed
on the south pole, which can not be shown in the stereographic projection. (c)
and (d) show the magnetic pattern in dark and light gray for regions of positive
and negative magnetization normal to the pattern respectively. The unit cells of
the patterns are highlighted in yellow. Black arrows depict the lattice vectors ai ,
i ∈ 1, 2, 3 of both patterns. Illustrative trajectories of colloidal particles (orange
spheres), driven by the loops shown in (a) and (b) are indicated by dashed black
lines. The direction of transport is indicated by a small black arrow. Adapted from
publication 4, originally licensed under the CC BY 4 license [65].



1.3 Simultaneous and independent transport
of colloidal particles

In the previous section we have seen that one can control particles precisely,
but there are limitations. One limitation that arises above periodic patterns
is that all identical particles above the pattern are transported in the same
direction, independently of their absolute position above the pattern. There
is no option to let the transport of particles be dependent on their absolute
position above the pattern. It would be great to be able to do so in order to
build colloidal machines that can parallelize workloads.

Previous works have used non-identical particles. Visualizations of these
works are shown in figure 1.4 (a-c): Above hexagonal patterns, para- and
diamagnets can be controlled independently of each other [55], see figure 1.4
(a). Mirzaee-Kakhki et al. [49] showed that bipeds (colloidal rods of variable
length) can belong to different topological classes. Hence, they can be moved
in different directions above periodic patterns subject to the influence of
the same loop in control space, see figure 1.4 (c). The reason these two
approaches work is that particles in different topological classes have different
fences in control space. Therefore one can move one class of particles without
moving the other. Which then in turn allows one to construct loops that
individually control each class of particles. Another option is to use identical
particles, such as octupoles comprised of two para- and two diamagnets, and
place them in non-equivalent minima above a periodic pattern which allows
them to be transported in different directions subjected to the influence of
the same external control loop [47], see figure 1.4 (b).

Bipeds need a different length to be transported in different directions but still
all bipeds of the same length perform the same trajectory above the pattern.
This can be an inconvenience. It would be useful, if one could use identical
particles and have them be transported in different directions depending
on their absolute position above the pattern. We show in this thesis that
by using inhomogeneous patterns we can make identical particles behave
differently in different parts of the pattern. We summarize two fundamentally
different approaches to the locally different transport in publication 4.

A simple approach is to combine pure patterns with different global rotations.
As a starting point, imagine three square patterns rotated such that their
respective unit cells are rotated by 0◦, 15◦ and 30◦ around a reference axis
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Figure 1.4: Overview of publications where particles perform different tasks when
subject to the influence of the same control loop. (a) simultaneous and independent
transport of para- and diamagnets (indicated by blue and green arrow respectively)
above hexagonal patterns. Diamagnets always move to the right, while the transport
direction of the paramagnets is chosen to be one of the six possible directions in
hexagonal patterns. In the center panel the motion subject to the influence of a
more intricate loop is shown. Here the two particles perform a Franconian dance.
Adapted from [55]. (b) braiding (top) and weaving (bottom) with octupoles, action
space on the left, control space to the right. Adapted from [47]. (c) simultaneous
and independent transport of colloidal bipeds of different lengths. Bipeds of length
2 (b2) and of length 3 (b3) are in the same topological class, so they write the
same letter “T”. Bipeds of length 5 (b5), 7 (b7) and of length 10 (b10) are in
different topology classes, therefore they are used to write different letters “R,E,A”,
respectively. Adapted from [49]. The images in the panels are originally licensed
under the CC BY 4 license [65].

https://creativecommons.org/licenses/by/4.0/


normal to the pattern, respectively. Recall from section 1.2 that the fences
of the square pattern are four equidistant points on the equator in C. By
rotating the patterns, the corresponding fences are also rotated, and therefore
not overlapping. This allows us to e.g. wind around the fences of one pattern,
but not around the fences of the other patterns. We can now combine the
three patterns by placing them next to each other without overlap. The
reason these modes of transportation still work on the combined patterns is
that locally the combined pattern is similar to the periodic patterns. The
fence points that determine the local transport are only given by the local
symmetry properties of the pattern. Which allows for independent transport
of the particles above the three sublattices.

A second way of achieving locally different transport is to continuously morph
a pattern through the family of hexagonal patterns. Hexagonal patterns can
be constructed by the interference of three waves with q-vectors that are
rotated 120◦ relative to each other. All three of the q-vectors can carry a
phase ϕi , i ∈ {1, 2, 3}. The three phases can be combined into a local shift
of the unit cell, and a symmetry phase ϕ. When the symmetry phase is
changed continuously the aforementioned transformation of patterns through
the different symmetry classes occurs. By doing this, the fences in C also move
continuously. One can for example deform a C6-pattern into a S6-pattern,
from there into an inverted C6-pattern (C6), from there into an inverted
S6-pattern (S6), and back into the original C6-pattern. A visualization of
such a continuously deformed pattern together with the corresponding fences
is shown in figure 1.5 (a,b).

Another class of inhomogeneous energy landscapes can be constructed by the
interference of two periodic patterns. We see an example in the following
section in which we investigate twisted patterns.

1.4 Similarities to twisted graphene in the
colloidal world

Graphene is a monoatomic layer of Graphite [66]. It can be produced with a
pencil and some scotch tape [67]. As a 2D material with fascinating properties
that can be produced without special equipment it sparked a new area of
research [68–76]. Its electronic structure has surprising attributes: Electrons
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Figure 1.5: (a) magnetic pattern that continuously deforms from C6, to S6, to
C6, to S6 and back to C6, with changing polar angle. The local symmetry phase
of the pattern is illustrated by the colored perimeter. The green hexagonal mesh
shows the boundaries of units cells of a pure hexagonal pattern. At the origin a
topological defect in the symmetry phase ϕ occurs (highlighted in yellow). (b) unit
cells and corresponding control spaces at representative values of the symmetry
phase are shown in a 3D visualization and a stereographic projection. Blue lines
depict the fences, purple lines correspond to the equator. Blue (yellow) hexagons
indicate C6 (S6) symmetry points in the unit cells. Adapted from publication 4,
originally licensed under the CC BY 4 license [65].

move through graphene with vanishing rest mass and are therefore described
by Dirac’s equation [76]. Another interesting property of the electronic
structure of graphene is that electrons in it can travel micrometers in distance
without scattering even at room temperature [76]. This can be pushed even
further by stacking two sheets of graphene on top of each other, and twisting
them to the so called magic angle of ≈ 1.05◦, where superconductivity can
occur [68]. This sparked the idea in us to see whether we can find interesting
transport properties of colloidal particles in twisted magnetic patterns. We
were further motivated by other classical systems that exhibit phenomenology
similar to twisted graphene such as acoustic metamaterials [77] and vortex
pinning [78].
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1.4.1 Twisted bilayer graphene

Twisting two hexagonal lattices with respect to each other causes a Morié
pattern to appear. The Morié pattern consists of structures that are substan-
tially bigger than the unit cells of the underlying patterns. We call these
structures supercells. These large scale structures also develop when two
stacked sheets of graphene are twisted relative to each other. In this process,
the electric potentials combine and can be described by a superlattice. As
the lattice becomes large in real space, the Brillouin zone in Fourier space
becomes small, the so called mini Brillouin zone. The electronic bands in it
become flat at the magic angle. At this angle and half filling of the bands,
twisted graphene is a strongly correlated insulator [73]. When electrostatically
doped to approximately two electrons per unit cell, a superconducting phase
appears that cannot be explained with phonon-electron coupling [73]. This
phenomenon is due to the flat bands and therefore can only occur at the
magic angle.

1.4.2 Twisted magnetic patterns

In a classical system we can obviously not find any superconducting states, but
we can still test whether there are magic angles at which the system changes
from a colloidal insulator to a colloidal conductor. As an analogy to twisted
graphene, we vertically combine and twist two identical periodic patterns. In
contrast to twisted graphene we cannot stack the patterns directly on top of
each other, as we need the particles to be able to travel between the patterns.
Therefore we separate them by a distance ∆. We choose the magnitude of ∆
to be in the order of the size of a lattice vector of the individual patterns.
Here, the exact details of the underlying patterns become less important
and only their symmetry properties remain [54]. Regarding the pattern
symmetries we choose pure hexagonal and square patterns. We want to
understand how the magnetic potential of these twisted systems changes with
the twist angle. Morié patterns are in general not periodic, even when the
underlying patterns are. However, there exist specific angles at which the
combined lattice attains a periodicity again:

αper(q/p, n) = 2 arctan
(

q/p sin(π/n)
1 + q/p cos(π/n)

)
, (1.4)

where q and p are co-prime integers that carry information about the period
of the pattern and n = 2 (3) for square (hexagonal) patterns [1]. When
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q = 1 and p = nk + 1, with k ∈ N, the Morié pattern has a periodicity of
exactly one (two) supercell(s) for underlying hexagonal (square) patterns [1].
The difference between periodic structures and supercells in square patterns
is visualized in figure 1.6 (a-d). In the aforementioned cases (q = 1 and
p = nk + 1) the formulae for the periodic angles simplifies to

α
sq
m (k) = 2 arcsin

(
1

2
√

k2 + k + 1/2

)
, (1.5)

αhex
m (k) = arccos

(
3(2k + 1)2 – 1
3(2k + 1)2 + 1

)
, (1.6)

for the square α
sq
m and the hexagonal αhex

m systems respectively. For reasons
that will become clear later, these angles are called magic angles. Notice
that the magic angle of twisted graphene is contained in these magic angles,
αhex

m (31) ≈ 1.05◦. At the boundaries of the supercells some of the wave
vectors that generate the magnetic potential destructively interfere, which
causes flat channels to appear [1]. Note that the flat channels in the colloidal
system are located in real space, while the flat bands in graphene are in
momentum space. Performing loops in C will periodically alter these channels.
As the system is complex enough on its own, we start by investigating a
system with fixed orientation of Hext. Later we will allow for loops of the
orientation of the external magnetic field. Here we set Hext to point north all
the time, i.e. normal to the pattern. This simplifies the magnetic potential
to a sum of cosines [1]:

Vmag(r) ∝
n∑

i=1
[cos (qi · (r – a1/2)) + cos (Rαqi · r)] , (1.7)

where qi are the reciprocal lattice vectors (n in total, where n = 2 in square
patterns and n = 3 in hexagonal patterns) of the untwisted system, a1 is the
first lattice vector and Rα is a rotation matrix that rotates by α around an
axis going through the origin and being normal to the pattern.

In order to test whether the flat channels support the macroscopic transport
of colloidal particles or not, we apply a drift force to the particles. In an
electrical conductor one would apply a voltage to the sample and measure
the current through the system to test its resistance/conductance. As our
colloidal particles do not have an electrostatic charge, we can not simply
apply a voltage. Instead, we apply a constant drift force that points along the
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Figure 1.6: Magnetic potential generated by two twisted square patterns for
twist angles at which the resulting Morié pattern is periodic. Blue (red) regions
indicate negative (positive) magnetic potential. White lines in (b-d) highlight
pseudo unit cells of the Morié pattern, where each region of the potential in a
white square is slightly different. The colored area is the actual periodic unit
cell of the Morié pattern. Yellow lines in (c) highlight a supercell. (a) magic
case for αper(1/7, 2) = α

sq
m (3) ≈ 16.26◦. (b) αper(1/7, 2) ≈ 14.25◦ periodic cell

contains 4 supercells. (c) αper(2/15, 2) ≈ 15.19◦ periodic cell contains 16 supercells.
(d) αper(3/22, 2) ≈ 15.53◦ periodic cell contains 64 supercells. Adapted from
publication 1, originally licensed under the CC BY 4 license [65].



direction of the flat channels and then measure the mobility of the particles.3
In an experimental realization of the system the drift force might be facilitated
through e.g. gravity or a pressure gradient in the solvent which would cause
a solvent flow. In publication 1 we show that the system becomes a colloidal
conductor for forces above a critical force at exactly these specific angles and
it is a very good insulator otherwise. Therefore we call the angles at which
the system allows for macroscopic colloidal transport magic angles.

Are these properties unique to our magnetic system, or do they hold more
generally when two lattices are combined? To show that the latter is actually
the case, we investigate a twisted array of optical tweezers.

1.4.3 Twisted optical tweezers

Optical tweezers are used widely in many biological, biochemical and bio-
physical research projects [79]. They are often used as a means to precisely
manipulate particles and to measure forces in the piconewton regime [79]. An
array of tweezers can be used to sort particles of different sizes [80, 81]. The
force exerted on a particle by an optical tweezer depends on the diameter
of the particle. Therefore one can build a machine that sorts particles of
different sizes [80]. Here, we extend the idea of using an array of optical
tweezers to sort particles, in order to show that a colloidal particle between
two twisted arrays of tweezers inherits similar properties to that of a magnetic
colloidal particle between two twisted magnetic patterns. The particles in
the twisted array of optical tweezers are subject to a substantially different
potential than the magnetic colloids from last section. The potential is given
by [80]

V (r) =
–V0

1 + e–A[g(r)–1] , (1.8)

where the constant A controls the steepness of the potential, V0 controls the
amplitude, and g(r) is given by the same sum of cosines as in the magnetic
potential in equation (1.7). The physical phenomenology of high mobility
of colloidal particles in arrays twisted to a magic angle, and low mobility
otherwise remains, even though the system is different. This suggests that the
aforementioned phenomenology is not just a special case of magnetic colloidal
particles, but can happen in a wider range of physical systems. Additionally

3We could also measure the mobility of the particles under the influence of loops of the
external field. This method is used in publication 3 and explained in section 1.4.4.
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by exemplifying this robustness with respect to the concrete physical system,
we open the possibility of studying analogous systems to a wider community,
as using optical tweezers is in principle simpler than producing magnetic
microfilms.

1.4.4 Competition between topological and drift
transport

We have previously hinted that when using twisted magnetic patterns one
can also perform loops of the orientation of the external magnetic field. An
interesting observation is that even without a drift force (i.e. the particles
are solely driven by loops of the orientation of Hext) the particles are drawn
towards the flat channels [3]. This effect can be used to increase the number
of particles in the flat channels. If one only uses a drift force, i.e. no external
loops, then only the particles that are initialized in the proximity of a flat
channel will be mobile. All the other particles inside the supercells will
remain stuck (at reasonable drift forces). With external loops however one
can set the drift force to a subcritical value and still achieve macroscopic
transport. At subcritical drift forces the particles can not travel through
the flat channels completely, since they get stuck at the corners. Here, the
topological loops can be used to transport particles around the corner and
towards the flat channels. Additionally, particles in the inner regions of the
supercells get transported to the flat channels by the loops in the orientation
of Hext. Hence, after approximately L/a loops all particles are in the flat
channels. Here, L is the period of the Morié pattern and a is the period of
the underlying patterns. The interplay between topological loops and the
drift force produces several interesting effects including

• subharmonic responses of the average velocity to the driving loop at
sub- and supercritical drift forces

• average velocities of up to one supercell per loop at subcritical drift
force

• vanishing mobility at sub- and even supercritical drift forces

• integer steps in the average velocity (scaled by half the size of a supercell)
at supercritical drift forces
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1.5 Cloaking

A very powerful measuring tool is to shoot something, the scatterer, at the
object under investigation, and then measure the scattered/reflected signal.
This technique is used to study objects of vastly different scales. It has
been used e.g. to investigate gravitational lensing [82], where light from
stars gets bend by heavy objects and then land in our telescopes, down
to measuring elemental particles at CERN [83]. To show how abundant
scattering experiments are, be mindful of what you, the reader, are doing at
the moment. You are performing a scattering experiment to read this thesis.
If you read it on a printed copy, surrounding light (the scatterer) is being
scattered on the page and hits your retina (the detector). The ink of the
printed text absorbs most of the visible part of the electromagnetic spectrum,
while the surrounding paper reflects most of it. This difference in scattering
properties of the ink and the paper, allows you to perform the scattering
experiment, which we call reading a paper copy. If you read this thesis on
a monitor, there are minor differences, e.g. the light is probably emitted by
your monitor, and the filtering is likely done by polarizers in your screen, not
the ink on the paper. But fundamentally reading this thesis is a scattering
experiment done in the visible spectrum.4

A proper scatterer has to be chosen to probe the object under investigation.
If we for example try to detect the letters on this page using scattering radio
waves, we will most likely not be able to read the letters. With a measuring
technique used this widely, it is of high interest how the measuring method
can be circumvented. There are two main ways how an object can hide from a
scattering experiment. Either the object does not interact with the scatterer
— one could call this a badly designed experiment — or the object interacts in
such a way, that it hides itself from the scatterer. This is called cloaking and
it has been shown e.g. in acoustic and electromagnetic systems [84–86].

In this thesis we show how inhomogeneous magnetic patterns with a topolog-
ically cloaked region in their center can be designed. Results of computer
simulation will be discussed in chapter 3.

4Reading is also a scattering experiment for visually impaired readers using a braille
device. Their fingers are measuring where the dots in each cell are, by measuring at
which height a resistance to force of their finger pushing down occurs.
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2 Publications

2.1 Overview of the publications

During this thesis I have worked on five different subjects that are linked in
various ways. Four works are either published [1, 2] or under review [3, 4]).
The manuscript for the fifth work is in preparation [5]. Therefore, instead of a
manuscript we present in chapter 3 the main ideas and simulation results. The
overarching theme of all publications is the precise control of the transport of
colloidal particles. The thesis mostly focuses on magnetic colloidal particles
that move in a fixed plane above or between magnetic patterns [1, 3–5].
Additionally we also investigated the transport of colloidal particles in an
array of optical tweezers in publication 2. An overview of how the different
works are linked can be found in figure 2.1. The publications in this thesis
are presented in chronological order of when we started working on them.

Publications 1 to 3 investigate the transport of colloidal particles in twisted
patterns. The first two investigate the angle dependence of the transport of
colloidal particles under the influence of twisted patterns when a drift force
is applied to the system. Publication 1 gives an in-depth analysis on the dy-
namics of paramagnetic colloidal particles between twisted magnetic patterns
in a constant external magnetic field. Publication 2 shows that the general
phenomenology of publication 1 can be reproduced in the system of an array
of optical tweezers. In publication 3 we extend the analysis of publication 1
by adding loops of the orientation of the external magnetic field to study the
competition between drift and topological transport. Publication 4 and the
work presented in chapter 3 do not consider twisted patterns. Instead, in
publication 4 we demonstrate how to achieve locally different transport of
identical particles subject to the same external magnetic field above a single
inhomogeneous magnetic pattern. In chapter 3 we show how to add a cloaked
region to magnetic patterns.
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Figure 2.1: Schematic overview of the five works that are part of this thesis.
Publications are depicted as large circles with Px in them, where x denotes the
number of the publication. The small circles with enclosed symbols illustrate the
main concepts of the publications. P5 is shaded gray, as the manuscript is currently
in preparation.

2.2 Author contributions

During this cumulative thesis I have worked on four publications, which are
published [1, 2] or under review [3, 4]. I am the first author in all the four
publications. For all publications I developed the simulation code, ran the
simulations, interpreted the data, and wrote the initial draft including the
figures.

Additionally, in the first publication with the title “Enhanced colloidal trans-
port in twisted magnetic patterns”, I had the idea of pushing particles through
the twisted patterns with a drift force. In the second publication with the
title “Colloidal transport in twisted lattices of optical tweezers”, I had the idea
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of extending the work of publication 1 to optical tweezers. I reimplemented
the simulation code to use the recent adaptive BD algorithm [87]. In the
third publication with the title “Competition between drift and topological
transport of colloidal particles in twisted magnetic patterns”, I had the idea
of combining topological transport with the transport facilitated through a
constant drift force. In the fourth publication with the title “Simultaneous
and independent topological control of identical microparticles in non-periodic
energy landscapes” I had the idea to deform patterns to allow for locally
different transport directions. I designed the patterns and the loops to make
the particles move along the desired paths.

In the publication currently in preparation, with results discussed in chapter 3,
I was one of the designers of the patterns and performed simulations to guide
the experimental realization.

2.3 Enhanced colloidal transport in twisted
magnetic patterns

In this first work of my thesis we were inspired by the astonishing properties
of bilayer graphene twisted to magic angles. We set out to see whether some
analogies to the magic angles can be found in a system of magnetic colloidal
particles located between twisted magnetic patterns. In order to do so we
study with Brownian dynamics simulations the effect of a constant drift
force acting on magnetic colloidal particles located between twisted magnetic
patterns of hexagonal and square symmetry. Due to the interference of the
magnetic field of both patterns, the full magnetic potential develops flat
channels. At the magic angles, already discussed in section 1.4, the resulting
potential is periodic. There exists an angle dependent critical drift force
above which there is transport in patterns twisted to a magic angle. Below
the critical force there is no macroscopic transport. There also exists an
optimal orientation for the drift force, given by the average direction of the
flat channels. The dependence of the critical drift force on the magic angle is
different for a pair of twisted square patterns as compared to a pair of twisted
hexagonal patterns. In the square patterns the critical force is monotonic as
a function of the magic angle, extrapolating to vanishing critical drift force
at vanishing twist angle. In twisted hexagonal patterns, however, there are
two regimes. At small twist angle, αm < 6◦, the critical drift force increases
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when the twist angle decreases, while the critical drift force also increases for
increasing magic twist angles above 6◦. Hence, there exists an optimal twist
angle in twisted hexagonal patterns which is α

optimal
m ≈ 6.01◦.

As a next step we investigated the effects of temperature on the colloidal
transport. We find that the particles have the highest mobility at vanishing
temperature and high drift force. This is not surprising as the high mobility
transport is facilitated through the flat channels, and Brownian motion
scatters the particles out of the flat channels. We find the following for small
temperatures. When the temperature is increased from the zero temperature
limit, the mobility decreases, for the case of the drift force being above the
critical drift force. In the case of subcritical drift force, Brownian motion helps
the colloidal particles to overcome the potential barriers at the corners of
supercells, and therefore the overall mobility increases. When the temperature
is however increased substantially, the mobility no longer drops, but increases
again. Here, the channels next to the flat channels begin to allow for colloidal
transport, as the Brownian motion becomes strong enough to let the particles
traverse them. The mobility then attains a new local maximum, as for even
higher temperatures the particles get scattered out of the channels that allow
for transport again.

We conclude the work by investigating the mobility of the colloidal particles
for non-magic angles. We observe that there is no macroscopic transport at
non-magic angles in the zero temperature limit. At finite temperatures there
is macroscopic transport for all angles, but the mobility of the particles is
massively increased for magic twist angles.
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Publication 1

Enhanced colloidal transport in twisted
magnetic patterns

Commun. Phys. 5, 48 (2022)

Nico C. X. Stuhlmüller1, Thomas M. Fischer2 &
Daniel de las Heras1

1Theoretical Physics II, Department of Physics, University of Bayreuth, 95447 Bayreuth,
Germany
2Experimental Physics X, Department of Physics, University of Bayreuth, 95447 Bayreuth,
Germany.

Supplementary videos and their description can be found on the website of
the journal.
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ARTICLE

Enhanced colloidal transport in twisted magnetic
patterns
Nico C. X. Stuhlmüller 1, Thomas M. Fischer 2 & Daniel de las Heras 1✉

Bilayers of two-dimensional materials twisted at specific angles can exhibit exceptional

properties such as the occurrence of unconventional superconductivity in twisted graphene.

We demonstrate here that novel phenomena in twisted materials emerges also in particle-

based classical systems. We study the transport of magnetic colloidal particles driven by a

drift force and located between two twisted periodic magnetic patterns with either hexagonal

or square symmetry. The magnetic potential generated by patterns twisted at specific magic

angles develops flat channels, which increase the mobility of the colloidal particles compared

to that in single patterns. We characterize the effect of the temperature and that of the

magnitude of the drift force on the colloidal mobility. The transport is more enhanced in

square than in hexagonal twisted patterns. Our work extends twistronics to classical soft

matter systems with potential applications to lab-on-a-chip devices.

https://doi.org/10.1038/s42005-022-00824-3 OPEN

1 Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany. 2 Experimatalphysik X, Physikalisches Institut, Universität
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The emerging field of twistronics1 studies the properties of
bilayers of two-dimensional materials that are rotated
relative to each other by a twist angle. Twisted bilayers

generically create a quasiperiodic moiré pattern. However, for
specific twist angles, the pattern is periodic with a super unit cell
that is a multiple of the primitive unit cell of a monolayer.
New properties, not present in the individual monolayers, can
emerge in the resulting moiré superlattices2–4. These include
superconductivity5,6, ferromagnetism7, and correlated insulating
states8–11 in twisted bilayer graphene. The formation of moiré
patterns in twisted materials also affects the properties of both
light12–16 and acoustic waves17–20.

We extend here twistronics to a classical, particle-based, system
made of magnetic colloidal particles that are located between two
periodic magnetic patterns and are driven by a weak drift force.
The patterns are twisted at a small angle. For specific magic
angles, a partial destructive interference between the magnetic
fields of the patterns generates flat channels in the total magnetic
potential which results in enhanced long-range anisotropic col-
loidal transport. We study with Brownian dynamics simulations
the effect of the twist angle, the temperature, and the magnitude
of the drift force on the mobility of the particles for both square
and hexagonal twisted patterns. Our results and conclusions may
apply to other twisted materials and constitute the basis for novel
lab-on-a-chip applications.

Results
Setup. We study the motion of paramagnetic colloidal particles
confined to the middle plane between two parallel periodic
magnetic patterns that are separated by a distance Δ, see Fig. 1a.
We consider both square and hexagonal periodic lattices with
regions of positive and negative magnetization normal to the
pattern. The patterns are twisted by an angle α and shifted by half
a unit lattice vector.

A uniform external magnetic fieldHext, much stronger than the
pattern fields (Hp,i with i= 1, 2) points normal to the patterns. At
vertical distances comparable or larger than the size of the unit

cell, i.e., Δ≳ a with a the magnitude of the lattice vectors, the
total magnetic potential is dominated by the coupling between
external and pattern fields: Vmag∝−∑iHext ⋅Hp,i. Hence, only
the components of the pattern fields normal to the patterns
contribute to the potential. The magnetic potential of single
square and hexagonal patterns in presence of Hext is shown in
Fig. 1b. Details about the calculation of Vmag are provided in
Methods.

Using single patterns it is possible to transport the particles via
modulation loops of the orientation of the external field21,22. The
loops are closed such that the orientation returns to its initial
value after one loop. Loops that wind around special directions of
the external field transport the particles by one unit cell after
completion of the loop. The transport is topologically protected
since the precise shape of the loop is irrelevant, only the winding
numbers around the special directions determine the transport.
Here, we explore a different type of transport. We keep the
external field constant in time and apply a uniform static external
drift force, fd, in the plane parallel to the patterns, see Fig. 1a. We
calculate the particle trajectories using overdamped Brownian
dynamics simulations. Hence, the equation of motion for a single
particle reads:

ξ _r ¼ �∇VmagðrÞ þ fd þ η; ð1Þ

where ξ is the friction coefficient against the (implicit) solvent, _r is
the time derivative of the position vector, and η is the delta-
correlated random thermal force with standard deviation and
amplitude given by the fluctuation-dissipation theorem. We work
in units of the magnitude of a lattice vector a, the energy
parameter of the magnetic potential ε (see Methods), and the
friction coefficient ξ. The intrinsic time-scale is τ= ξa2/ε and
absolute temperature T is measured in reduced units kBT/ε with
kB the Boltzmann constant.

The amplitude of the drift force is small compared to the
magnetic forces. Hence, colloidal transport is not possible above a
single pattern lacking flat channels. If the temperature is not high
enough to overcome the potential barriers, the particles simply

Fig. 1 Setup. a Paramagnetic colloidal particles immersed in a solvent are placed between two periodic and parallel magnetic patterns twisted by an angle α
and shifted by half a lattice vector. The magnetization of the patterns is indicated by the white and black arrows. A uniform external magnetic field Hext

points normal to the patterns. A drift force fd points in the plane of the patterns. b Magnetization and magnetic potential Vmag of single square and
hexagonal patterns. A unit cell together with the lattice vectors ai, i= 1, 2 are indicated in yellow. The shift vectors applied to the twisted system, a1/2, are
represented in blue. The shift vectors connect points with fourfold (green square) or sixfold (violet hexagon) symmetry to points with twofold symmetry
(orange rectangles). The trajectories of a particle above only one of the patterns and located in the central unit cell are plotted in red and indicated by black
arrows (drift force fda/ε= 10). The temperature is set to kBT/ε= 0.01 (square pattern) and kBT/ε= 1 (hexagonal pattern).

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00824-3
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diffuse near the minima of the magnetic potential, see
characteristic trajectories in Fig. 1b. The situation is different
for the case of twisted patterns.

Enhanced transport in twisted patterns. At specific twist angles,
the so-called magic angles, a periodic moiré pattern with super-
cells of size roughly given by a=ð2 sinðα=2ÞÞ develops in the
magnetic potential, see Fig. 2 and Supplementary Fig. 1. At a
magic angle αpm with p= {sq, hex} for square and hexagonal
patterns, respectively, a lattice site of the twisted pattern coincides
with another lattice site of the other pattern (see Methods). At the
center of the supercells Vmag resembles that of the underlying
square or hexagonal patterns. However, near the edges of a
supercell, a change towards a twofold symmetry (stripes) occurs.
The stripes in Vmag are almost flat compared to the inner regions
due to a partial destructive interference of the magnetic field of
both patterns. A small drift force is therefore able to push the
particles along the edges of the supercells, while its effect is
negligible for particles inside the supercells, see particle trajec-
tories in Fig. 2 and Supplementary Movies 1, 2.

The patterns are shifted by half the first lattice vector such that
points with different rotational symmetries (see Fig. 1b) coincide

in the combined system. The shift creates a twofold symmetric
point of the magnetic potential at the origin (axis of rotation).
This is only possible by shifting the patterns by half a lattice
vector and it maximizes the destructive interference between the
fields of both patterns. Any lattice vector can be used since the
resulting magnetic potentials are the same up to a global rotation.
The shift generates a combined pattern which is anisotropic. The
curvature of the magnetic potential at the edges of the supercell
is either negative (Vmag is minimum) or positive (Vmag is
maximum), see Fig. 2 and Supplementary Fig. 1. For weak drift
forces, the particles are transported only along the edges for
which the potential is a minimum. In analogy to the flat bands
that occur in reciprocal space in twisted graphene3, we call these
edges in real space flat channels. It is worth mentioning that there
exists a correspondence between real space and reciprocal space,
and that flat channels in real space, similar to those in Fig. 2, also
occur in twisted bilayers of 2D materials23. At magic twist angles,
the flat channels of neighboring cells are connected and the
particles can be transported over macroscopic distances.

The roughness of the potential increases progressively from the
edges towards the center of the supercell. At multiple distances of
a from an edge with a flat channel and parallel to it there exist
secondary channels. Secondary channels also occur parallel to the
edges for which Vmag is maximum. There, the first two secondary
channels are located at a distance of a/2 from the edge. Along the
secondary channels, the magnetic potential is still flat enough to
support transport for either strong driving or high temperature as
demonstrated below. The smaller the magic angle, the larger the
supercell is and more secondary channels are sufficiently flat to
transport particles. In addition, the potential along both the
secondary and the flat channels gets flattened by decreasing the
twist angle. For all magic angles, the flat channel (located at the
edges of the supercell) is always the flattest one and requires
therefore the minimal drift force to transport particles.

Critical drift force. To investigate the minimal (critical) drift
force fc required to achieve macroscopic transport, we point the
drift force along the average direction between two consecutive
flat channels, see Fig. 2 and Methods, and set the temperature to
zero such that the diffusive motion due to thermal fluctuations
does not hinder the phenomenology. Then we measure the
mobility of the colloidal particles, μ, defined as the average
velocity divided by the amplitude of the drift force, see details in
Methods. The mobility vanishes for small drift forces, increases
abruptly at a given critical value fc, and it saturates for strong drift
forces, see illustrative examples in Fig. 3a. The value and the
behavior of the critical drift force depend on both the type of
pattern and the magic angle αpm, see Fig. 3b.

At the corners of a supercell (intersection between two edges),
the magnetic potential has more structure than in the center of the
edges, see Fig. 2. Hence, for both hexagonal and square twisted
patterns, the transport along the edges of the supercells requires
weaker drift forces than the transport over the corners. The
particles spend a significant amount of time crossing the corners.
This effect can be observed in Supplementary Movies 1 and 2
which show the particle dynamics in square and hexagonal twisted
patterns, respectively. Plots of the crossing time at the corners for
different temperatures and magnitudes of the drift force are shown
in Supplementary Fig. 2. In square twisted patterns the height of
the magnetic potential near the corners increases with the twist
angle, and also the potential at the edges becomes rougher. These
two effects cause the critical force to increase monotonically with
the twist angle, Fig. 3b. In the limit αsqm ! 0 the critical force
vanishes and macroscopic transport occurs for an infinitesimally
small drift force. Note that in the limit of vanishing twist it is also

Fig. 2 Twisted patterns. Magnetic potential, Vmag, in square (a) and
hexagonal (b) twisted patterns. The patterns are twisted at a magic angle of
αsqm � 4:24� in (a) and αhexm � 4:41� in (b) around the axis normal to the
patterns that passes through the origin (blue circle). The lattice vectors, a1
and a2 with a1 parallel to the x-axis, of the untwisted pattern are
represented with yellow arrows. The untwisted pattern is shifted by a1/2. A
supercell (green solid line) and a unit cell (dashed yellow line) of the
twisted patterns is highlighted in each pattern together with trajectories
followed by both, particles transported via flat channels and particles stuck
inside the supercells, as indicated. The magnitude of the drift force is
fda/ε= 10 and its direction is indicated by a green arrow. The temperature
is kBT/ε= 0.01 in (a) and kBT/ε= 0.8 in (b).
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necessary to have both patterns in order to create a destructive
interference along the direction of the shift.

In twisted hexagonal patterns, the potential at the edges of the
supercells also gets rougher by increasing the twist angle. However, in
contrast to twisted square patterns, the potential at the corners of a
supercell becomes flattened by increasing the magic angle. The
balance between these opposing effects generates a non-monotonic
critical force in hexagonal twisted patterns, Fig. 3b. By increasing the
magic angle, the critical force first decreases, then it reaches a
minimum at αhexm � 6:01�, and finally it increases again.

Direction of the drift force. To investigate the effect of the
direction of the drift force, we fix the twist angle to a magic angle in
hexagonal patterns and calculate the critical force as a function of Δd,
which is the angle between the drift force and the average direction
between two consecutive flat channels. Any deviation of the drift
force from the average direction between two consecutive flat
channels increases the critical force, see Fig. 3c. For deviations larger
than those shown in Fig. 3c transport along the flat channels is no
longer possible. Instead, a drift force (~200 ε/a) stronger than the
magnetic forces of the single patterns is then required to transport the
particles that no longer follow the flat channels. We also show in
Supplementary Fig. 3 the critical force as a function of the magic
angle for different directions of the drift force.

Finite temperature. We next characterize the effect of Brownian
motion on colloidal transport. We show in Fig. 4 the dynamical

phase diagram of the colloidal mobility in the plane of temperature
and magnitude of the drift force for patterns twisted at a magic angle.

The highest mobility occurs for strong forces and low
temperatures. By increasing the temperature at a constant
magnitude of the drift force, the mobility first decreases and then
increases again. This effect is more prominent in the square case,
Fig. 4a, although it also occurs in hexagonal twisted patterns, Fig. 4b.
The first minimum in the mobility is caused by particles getting
scattered off the central flat channel due to Brownian motion. (A
conceptually related Pomeranchuk effect in twisted graphene24,25 in
which increasing temperature induces a metal-insulator transition
has been recently observed.) The secondary channel does not allow
for macroscopic transport in a given range of temperatures and
force amplitudes. However, a further increase in the temperature
allows transport along the secondary channel (larger thermal
fluctuations permit the particles to cross the potential barriers)
and the mobility increases again. At even higher temperatures the
mobility decreases again since particles get scattered into the next
secondary channel. This oscillatory behavior in the mobility
continues until the thermal energy is large enough compared to
the magnetic potential energy and the transport becomes diffusive.

A similar argument explains also the negative differential
mobility observed by increasing the magnitude of the drift force
at finite temperature (T > 0). First μ increases, as expected, and
then it decreases. If a particle leaves the flat channel at the corners
of a supercell (due to Brownian motion), it is driven away from
the corner faster for stronger fd. This decreases the mobility since
the probability that a particle returns to the flat channel decreases

Fig. 3 Critical force. a Mobility μ in twisted square patterns as a function of the magnitude of the drift force fd for three magic angles. The vertical arrows
indicate the value of the critical forces for each magic angle. b Magnitude of the critical force fc required to transport particles at T= 0 as a function of the
magic angle αpm in twisted square (green) and hexagonal (blue) patterns. The dashed green line is a linear fit for magic angles αsqm <4� in twisted square
patterns. The critical force extrapolates to zero in the limit αsqm ! 0. c Magnitude of the critical force fc as a function of the direction of the drift force Δd

(measured as the angle formed by the drift force and the optimal drift force). Data at T= 0 for hexagonal patterns twisted at a magic angle αhexm � 4:41,
indicated with a vertical arrow in (b). Dotted lines in panels (a) and (c) are guides for the eye.
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with the distance to the corners. A further increase in the drift
force enables transport along a secondary channel and hence
increases the mobility again. This oscillatory behavior seems to
continue until the external drift force completely dominates the
magnetic forces.

In square twisted patterns, the secondary channels that are first
activated for transport are those located at a distance a/2 from the
edges for which Vmag is maximum (the edges without flat
channels), see Supplementary Movie 3. There the potential is
flatter than along the secondary channels located at a distance a
from the flat channels and parallel to them. In contrast, in twisted
hexagonal patterns, the active secondary channels are those
parallel to the flat channels. Transport along the secondary
channels located in edges where Vmag is maximum does not occur
simply because fd is perpendicular to those channels. Supple-
mentary Movies 4 and 5 show the motion of particles in twisted
hexagonal patterns using a flat and a secondary channel,
respectively. (In Supplementary Movie 4 at time t= 11.48τ, a
particle jumps from a secondary channel into the flat channel,
where it is transported much faster.) The different type of
secondary channels active for transport in square and hexagonal
twisted patterns is likely the reason behind the different
amplitudes of the second peak of the mobility in the dynamical
phase diagrams, see Fig. 4.

Critical force and transport for non-magic angles. So far we
have discussed the transport in patterns twisted at magic angles.

For non-magic angles, the magnetic potential is in general no
longer periodic but quasiperiodic (there exist other non-magic
angles for which the potential is also periodic but the unit cell
contains several supercells different from each other and the
transport is not optimal, see Methods and Supplementary
Note 1). For non-magic angles, each supercell differs slightly from
its neighbors and the flat channels are not as flat as those at a
magic angle. As a result the drift force required to transport the
particles increases as compared to the magic case.

For a nonperiodic magnetic potential, the critical force depends
on both the initial location of the particle and the required
traveled distance that is imposed a priori to calculate fc. In Fig. 5
we plot fc as a function of the twist angle (scaled with the magic
angle) for square and hexagonal twisted patterns. The force is
calculated by averaging over a total of 100 trajectories of particles
that are at time zero-initialized on different flat channels. Three
data sets corresponding to the average critical force required to
transport the particles a distance equivalent to the length of 10,
100, and 1000 supercells are shown. The critical force has a sharp
minimum at the magic angle which gets narrower by increasing
the traveled distance used to compute fc. The non-smooth
behavior of the critical force at non-magic angles is to be expected
due to the Diophantine equations that determine the periodicity
of twisted patterns, see Methods and Supplementary Note 1. We
show in Supplementary Note 1 that for any angle for which the
potential is nonperiodic the particles encounter at some point the
most unfavorable magnetic potential along the flat channel.

Fig. 4 Dynamical phase diagram. Colloidal mobility μ (see color bar) in the plane of magnitude of the drift force fd and temperature T for twisted a square
patterns at a magic angle αsqm � 4:24� and b hexagonal patterns at a magic angle αhexm � 4:41�. The white dots indicate the selected temperatures and
magnitudes of the drift force simulated to create the plots. The blue and red arrows indicate the position in the diagrams of selected state points.
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Hence, even the smallest deviation from a magic angle causes a
substantial increase of the critical force required to transport the
particles indefinitely (continuous flow).

In hexagonal twisted patterns, the continuous flow at non-
magic angles and strong drift forces occur as in the magic case via
the flat channels (at least for the deviations from the magic case
shown in Fig. 5). At drift forces even higher than those in Fig. 5b
the particles will eventually leave the flat channels in the
hexagonal twisted patterns and follow the direction of fd. In
square patterns, the particles leave the flat channels at non-magic
angles and large drift forces. Hence, the continuous flow happens
mostly through the entire pattern (see Supplementary Movie 6).
The flat channels are deeper and narrower in hexagonal than in
square twisted patterns which causes the differences in the
continuous flow at non-magic angles.

We plot in Fig. 6 the average distance dt traveled by a particle
located initially at the origin (fixed point of rotation) as a function
of the scaled twist angle α=αpm. Different magic angles αpm are
analysed at a fixed magnitude of the drift force. We show the
zero-temperature limit (Fig. 6a, b) as well as finite temperature
cases (Fig. 6c, d) for both squares (Fig. 6a, c) and hexagonal
(Fig. 6b, d) twisted patterns. The value of dt is sensitive to the

initial position of the particle. Nevertheless, these curves are
useful to understand the physical mechanisms behind particle
transport since their global characteristics are robust. The
magnitude of the drift forces is above that of the critical force
of the corresponding magic angle but below the magnitude
required to achieve continuous flow at non-magic angles (with
the exception of the red-solid lines in Fig. 6 in which fd is below
the critical force at the magic angle). The required drift forces and
therefore the traveled distances are higher in hexagonal than in
square twisted patterns. (Recall that the critical force is larger in
hexagonal than in square twisted patterns, see Fig. 3b.)

The zero-temperature limit reflects how the magnetic potential
changes with the twist angle. In the inset of Fig. 6a we show how
the traveled distance changes when the drift force acts during
longer periods of time t3 > t2 > t1 (see also Supplementary Movie 7).
In patterns twisted at a magic angle, the number of supercells
traveled is proportional to the time (provided that the drift force is
above the critical one). At non-magic angles, the particles hit at
some point a blocked corner/edge and stay there forever. The
smaller the deviation from the magic angle is, the further from the
origin this blocking occurs. As the twist angle approaches the magic
angle, the region around the fixed point of rotation becomes
increasingly similar to the magic case and therefore the particles
travel longer distances but they eventually hit a dead end and the
motion stops. In the limit of drift forces acting for an infinite period
of time and comparable in amplitude to the critical force of the
closest magic angle, the colloidal mobility at T= 0 is only different
than zero if the patterns are twisted at a magic angle.

At zero-temperature, dt grows discontinuously by approaching
the magic angle, Fig. 6a, b. The jumps in dt between two
consecutive plateaus correspond to roughly the distance traveled
across one supercell. Note that the larger scale of the plot in the
hexagonal case, Fig. 6b, hinders the visualization of the plateaus
but they still occur as shown in the inset.

The distance that the particles travel at the magic angle
increases by decreasing αpm in square twisted patterns and it
decreases in hexagonal patterns. This different behavior is, as in
the case of the critical drift force, due to how the magnetic
potential changes at the corners of the supercells by varying the
magic angle in each type of twisted pattern.

The effect of the critical drift force for magic angles is illustrated in
the data set for square patterns at αsqm � 4:24� (red line in Fig. 6a).
The magnitude of the drift force, fda/ε= 10, is below the zero-
temperature critical drift force for this magic angle, see Fig. 3, and
therefore the transport stops completely at an angle smaller than the
magic angle. However, thermal fluctuations are able to reactivate
the transport (red line in Fig. 6c). At finite temperatures (Fig. 6c, d)
the transport does no longer stop when a particle hits a blocking
region since Brownian motion allows the particle to traverse the
potential barrier (the mobilities are therefore different than zero). The
temperature enhances, in general, the transport at non-magic angles.
In both types of patterns, the effect is more prominent for small twist
angles (blue lines in Fig. 6). However, at magic angles (and provided
that the drift force is large enough to transport the particles at T= 0)
the traveled distance is smaller at finite temperature than at T= 0. At
magic angles, the magnetic potential is optimal for transport and
Brownian motion only reduces its efficiency.

Discussion
The patterns can be experimentally realized using e.g., exchange-
bias thin magnetic films irradiated through a lithographic
mask26,27 as well as garnet films28,29. Using micrometer-sized
colloidal particles at a distance comparable to the length of a
lattice vector above these patterns21,22 results in magnetic poten-
tial energies significantly larger than the thermal energy (at room

Fig. 5 Critical force at non-magic angles. Zero-temperature critical force fc
required to transport a particle as a function of the twist angle α scaled with
the magic angle αpm in a square αsqm ¼ 6:026� and b hexagonal αhexm ¼
6:009� patterns. The different data sets show the critical force required to
transport the particle at a distance equivalent to 10 (blue), 100 (orange),
and 1000 (green) lengths of a supercell. Data were obtained by averaging
over the trajectories of 100 particles initialized on different flat channels.
The distribution of the individual measurements is illustrated by the
shadow regions, which show the minimum and the maximum values of fc
required to transport 50% (dark regions) and 80% (light regions) of the
particles.
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temperature). Hence, the use of similar setups21,22 would result in
experiments on twisted patterns that are effectively close to the
zero-temperature limit. The observation of the finite temperature
effects discussed here should be possible by either decreasing the
magnetic forces (e.g., weaker patterns and larger colloid-pattern
distance) or increasing the Brownian force (using e.g., magnetic
nanocolloids). As in the case of single patterns21,22, we expect
good agreement between simulations and experiments in twisted
magnetic patterns.

Regarding the drift force, colloidal particles respond to several
types of external fields30. Gravitational31 and electric32 fields, as
well as pressure33 and temperature34 gradients, are possible means
to experimentally achieve such drift forces. We estimate that the
strength of the Earth’s gravitational field is above the critical force
required to transport micrometer-sized particles in solvents with a
significant particle-solvent density difference. Instead of a drift
force, it would be interesting to use self-propelled active particles35.
The twisted patterns could then be used to study and possibly tune
transport properties of active Brownian particles36, such as e.g., the
polarization37, in complex environments38.

The colloidal transport using flat channels in twisted patterns is
faster than the topologically protected transport in single
patterns21,22. There, the particles are adiabatically driven via mod-
ulation of the orientation of the external magnetic field. In twisted
patterns, topologically protected transport is also available and it can
be used to e.g., initially move the colloidal particles from the inside

of the supercells towards the flat channels. The availability of two
types of transport mechanisms, namely flat channels and topological
transport, together with the control over the flat channels offered by
the twist angle are two advantages over static channels added
directly to the potential in e.g., lab-on-a-chip devices.

The critical force required to transport the particles is always
significantly smaller in the square than in hexagonal twisted
patterns and therefore the enhanced colloidal transport is more
pronounced in twisted square patterns. The effect is specially
relevant approaching the limit of very small twist angles since the
critical force vanishes in the case of square twisted patterns.
Hence, given (i) the similarities between our colloidal system and
electronic systems and (ii) the correspondence in electronic sys-
tems between flat bands in reciprocal space and flat channels in
real space, it is plausible to think that twisted bilayers of two-
dimensional materials with square unit cells39–44 are promising
candidates for new electronic applications.

Methods
Magnetic potential. The total magnetic field at position r is H(r)=Hp,1(r)+
Hp,2(r)+Hext, with Hp,i the magnetic field of pattern i= 1, 2 and Hext the uniform
external magnetic field, which is normal to the patterns. Hence the magnetic
potential acting on a paramagnetic particle with effective volume veff is

Vmag ¼ �veff χμ0H
2ðrÞ; ð2Þ

with μ0 the vacuum permeability and χ the particle susceptibility. We scale the
particles down to effective point particles and increase their susceptibility such that

Fig. 6 Transport at magic and non-magic angles. Average distance traveled by a particle as a function of the twist angle α (scaled with the magic twist
angle αpm) at zero-temperature (a, b) and finite temperature (c, d) in either square (a, c) or hexagonal (b, d) twisted patterns. Data sets for several magic
angles are presented, as indicated. The magic angle increases in the direction of the pink arrows. The traveled distance is obtained by averaging the motion
of 100 particles located initially at the origin (axis of rotation of the patterns) and driven by a drift force (acting during 100τ) of magnitude fda/ε= 10 in the
square (a, b) and fda/ε= 80 in the hexagonal (c, d) patterns. The temperature is T= 0 in (a) and (b), kBT/ε= 0.3 in (c) and kBT/ε= 0.8 in (d). The drift
forces and temperatures used here are indicated with colored arrows in Fig. 4. The inset in (a) shows data for a drift force acting during t1= 25τ, t2= 50τ,
and t3= 75τ (at T= 0 and αsqm ¼ 3:27�).
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veffχ remains constant. If the vertical distance between the particle and the patterns
is sufficiently large (comparable or larger than the size of the unit cell of the
pattern) only the first Fourier-mode of each pattern contributes significantly to the
magnetic field21,45. Additionally, the potential is dominated by the cross-term
Vmag ≈−2veffχμ0Hext ⋅ (Hp,1+Hp,2) since Hext is uniform and much stronger than
Hp,i. In this limit, the system-specific parameters like the amplitudes of all magnetic
fields and the distance between the patterns can be absorbed into a single constant
ε. The potential is therefore given by

Vmag ¼ �χεaqp ∑
N

i¼1
cos qi � r� a1

2

� �� �
þ cos Rαqi � r

� �h i
; ð3Þ

where N= 4, 6 for the square and hexagonal patterns, respectively, Rα denotes a
rotation matrix by the twist angle α around the direction normal to the pattern, and
the vectors qi are given by

qi ¼ qp
sin 2πi=N
� �

cos 2πi=N
� �

 !
; ð4Þ

where the superscript p= {sq, hex} and qsq= 2π/a in the square pattern and qhex ¼
2π= a sinðπ=3Þ� �

in the hexagonal pattern. The first term in the right-hand side of
Eq. (3) corresponds to the pattern shifted by a1/2 and the second term to the pattern
twisted by an angle α. Shifting the patterns by a different quantity also creates, in
general, structures similar to flat channels. However, a shift by half a lattice vector
minimizes the roughness of the magnetic potential at the flat channels and specially
at the corners of the supercells by maximizing the destructive interference between
the filed of both patterns (see Supplementary Note 1). Further mathematical details
about the single hexagonal and square patterns can be found in previous works21,45.

Computer simulations. The particle trajectories are calculated with overdamped
Brownian dynamics simulations. We discretize the equation of motion, Eq. (1),
using a time step dt/τ= 10−5 and integrate it in time via the standard Euler
algorithm.

Magic angles. The magnetic potential of patterns twisted by an angle α develop
moiré interference patterns at length scales roughly given by a=ð2 sinðα=2ÞÞ. At
magic twist angles the combined magnetic potential of both patterns becomes
periodic at the length scale of the supercells. In the twisted square pattern, the
potential has a checkerboard layout of two alternating supercells, which can be
transformed into each other by a rotation of π around their centers. The unit cell of
a twisted square pattern is therefore twice the size of the supercell, see Fig. 1a. For
hexagonal patterns twisted at a magic angle, the unit cell and the supercells
coincide, see Fig. 1b. In both hexagonal and square twisted patterns there exist
other twist angles (non-magic) for which the patterns are also periodic but the
periodicity is recovered only after multiple supercells (which can not be trans-
formed into each other with similarity transformations). In those patterns, the flat
channels are not connected over macroscopic distances and hence the colloidal
transport is not enhanced as in the magic case, see Supplementary Note 1. The
mathematical condition for a magic twist angle, in which every supercell is
equivalent, can be expressed as a Diophantine problem46,47 with solution

αsqm ¼ 2 arcsin
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ kþ 1=2

q

0
B@

1
CA; ð5Þ

αhexm ¼ arccos
3ð2kþ 1Þ2 � 1

3ð2kþ 1Þ2 þ 1

� �
; ð6Þ

where k is a natural number. To obtain these expressions in the hexagonal case, we
adjusted the procedure by Shallcross et al.46 to include the constraint of having
identical supercells.

Drift force. In both hexagonal and square twisted patterns the flat channels
develop along consecutive edges of the supercells. The drift force points along the
bisector of the directions of the flat channels, as shown in Fig. 2. Hence,

fd ¼ f d
cos αpd
sin αpd

 !
; ð7Þ

where the angle αpd is given by

αsqd ðkÞ ¼ αsqm ðkÞ=2þ sgn ðαsqm ðkÞÞ
ð�1Þkþ1π

4
; ð8Þ

αhexd ðkÞ ¼ αhexm ðkÞ=2þ sgn ðαhexm ðkÞÞ ð�1Þkþ1π

6
; ð9Þ

in square and hexagonal twisted patterns, and k 2 N. The factor (−1)k+1 and the
sign of the magic angle in the above expressions reflect the fact that the edges that
support transport alternate from one magic angle to the next one as well as by
changing the sign of the twist angle. A drift force pointing along a different

direction will also induce transport provided that the force is not orthogonal to any
of the directions of the flat channels.

Critical force. To estimate the value of the critical force we assume the following
form for the mobility curves (Fig. 3a) near the transition from no-transport to
transport

μðf dÞ ¼ μ0
f d � f c

f c

� �γ

; ð10Þ

where μ0, the critical force fc and γ are used as fitting parameters.

Mobility. We define the mobility μ as the average distance traveled by the particles
divided by the amplitude of the drift force

μ ¼ rðtf Þ � rðtiÞ
		 		
 �
ðtf � tiÞf d

: ð11Þ

We calculate the average distance h rðtf Þ � rðtiÞ
		 		i by initializing 100 non-

interacting particles at the origin (axis of rotation) and let them travel under the
influence of the drift force for a total time of 100τ. To eliminate the dependence
on the initial conditions we average the distances traveled by the particles during
the second half of the simulation, i.e., ti= 50τ and tf= 100τ in Eq. (11). How-
ever, to characterize the system at non-magic angles, we consider the full tra-
jectories in Fig. 6 (such that all particles share the same initial position).
Therefore, the mobilities calculated with the distances reported in Fig. 6 differ
slightly from those shown in Fig. 4.

Data availability
All the data supporting the findings are available from the corresponding author upon
reasonable request.
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Supplementary Figure 1. Twisted square patterns. Magnetic potential, Vmag, (color-coded) in twisted square patterns.
One pattern is twisted around the axis normal to the patterns that passes through the origin (indicated by blue circles). The
magic twist angle is αsq

m ≈ 2.01◦ in (a), αsq
m ≈ 4.24◦ in (b), and αsq

m ≈ 8.80◦ in (c). The untwisted pattern is shifted by a1/2.
Panels (d), (e), and (f) are close views of selected regions for the magic angle αsq

m ≈ 2.01◦ (panel (a)), as indicated by the color
boxes. The scale factor of the potential (see colorbar) is s/ε = 60 in (a),(b), and (c), s/ε = 40 in (d), s/ε = 15 in (e), and
s/ε = 40 in (f). Panel (d) is a close view of a flat channel and the adjacent secondary channels (parallel to the flat channel and
at a distance a of it), as indicated. Panel (e) is a close view of a corner that joins two flat channels. Panel (f) is a close view of
an edge for which the potential is maximum. Two secondary channels, parallel to the edge and at a distance a/2 from it, are
indicated. The lattice vectors a1 and a2 of the untwisted pattern are parallel to the x− and y−axes, respectively (see yellow
arrows in panels (d),(e), and (f)).
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Supplementary Figure 2. Dwelling time at the corners. Median time that a particle needs to cross the corner of a supercell
td as a function of the magnitude of the drift force fd at different temperatures, as indicated, in square (a) and in hexagonal
(c) patterns twisted at a magic angle. Panels (b) and (d) show the crossing time td as a function of the temperature for
different magnitudes of the drift force fd, as indicated, in square and hexagonal twisted patterns, respectively. The magic angle
is set to αsq

m ≈ 6.03◦ and αhex
m ≈ 6.01◦ in square and hexagonal patterns twisted at a magic angle, respectively. The crossing

time for each individual particle is calculated by initializing the particle at position xsq
0 ≈ (3.9, 0.3) or xhex

0 ≈ (2.0, 0.2) for
the square and hexagonal twisted patterns, respectively, and then measuring the time it takes the particle to cross a circle of
radius rsq = L/2 or rhex = L/3. Here, L = a/(2 sin(α/2)) and the circles are centered at the origin (axis of rotation). The
initial positions are those of the the last local minima in the magnetic potential before the corners of the supercell. The circles
of radii rp, p ∈ {sq, hex}, cut through the corner of the supercells. When a particle has crossed the aforementioned circle it
accelerates away from the corner of the supercell. To estimate td we take the median of 1000 individual crossing times. The
strongest drift forces in panels (b) and (d), represented by green circles, are above the critical drift force at zero temperature
and therefore the crossing time remains finite at T = 0. The other two values of the magnitude of the drift forces in (b) and
(d), represented by blue and orange circles, are below the critical drift force at zero temperature and hence the curves diverge
at zero temperature. Dashed lines are guides for the eye.
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Supplementary Figure 3. Effect of the direction of the drift force. Magnitude of the critical force fc required to transport
particles at T = 0 as a function of the magic angle αp

m in twisted square (square symbols) and hexagonal (hexagonal symbols)
patterns for different directions of the drift force ∆d, as indicated by the color of the symbols. The direction of the drift force
is given by ∆d which is the angle (in degrees) between the applied drift force and the optimal drift force. The optimal drift
force points along the average direction between two consecutive flat channels.
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SUPPLEMENTARY NOTE 1

We show here that for any non-magic angle the potential along the flat channels is at some point be unfavorable for
the colloidal transport. To this end, we describe the local properties of patterns twisted at an arbitrary angle using
the global properties of patterns twisted at angles for which the resulting potential is periodic.

Laboratory and local reference frames. Let s1 and s2 designate the shift vectors of patterns 1 and 2, respectively,
and let f denote the fixed point of the rotation. That is, the patterns are rotated relative to each other a total twist
angle α about an axis normal to the patterns that passes through f . In the main paper, we fix a laboratory reference
frame in which f = 0 (origin) and the shift vectors are s1 = a1/2 and s2 = 0. For our purpose here, we use also
a local reference frame in which the fixed point is at the desired position f = r and the shift vectors are hence
position-dependent s1(r), s2(r). Shifting the patterns by the shift vectors in the local reference frame and twisting
around the local fixed point generates the same potential as if we shift the patterns by the laboratory shift vectors
and twist around the origin. Locations r and r′ with similar shift vectors in the local reference frame, i.e at positions
r and r′, share a similar magnetic potential.

Periodic potentials and magic angles. The potential generated by two twisted patterns is periodic for any values
of f , s1, and s2 provided that the twist angle is [1, 2]

α(n)
per(q/p) = 2 arctan

(
q/p sin(π/n)

1 + q/p cos(π/n)

)
, (S1)

where p and q are co-prime integers, n = 2 for square patterns, and n = 3 for hexagonal patterns. Although
the resulting potential is periodic for any pair of co-primes p and q, the magic angles are only those for which

q/p = 1/(nk + 1) with k ∈ N (see Methods). Hence αp
m = α

(n)
per(1/(nk + 1)). For these values, the unit cell of the

twisted patterns is the smallest one in terms of supercells: The unit cell of patterns twisted at magic angles is twice
the size of the supercells in square patterns and of the same size in hexagonal patterns (see Fig. 2 of the main paper).
For any other co-primes p and q in Eq. (S1) the potential is also periodic but the unit cell of the twisted patterns
contains more (slightly different) supercells and, as we see below, the potential along the flat channels is at some point
unfavorable for the transport.

An arbitrary twist angle α can be approximated by an angle α
(n)
per(q/p) using sufficiently large integers p and q.

Hence, understanding transport in the periodic potentials given by twist angles α
(n)
per(q/p) is enough to understand

the transport for arbitrary twist angles.

Critical force at the corners of the supercells. In Supplementary Fig. 4 panels (a), (b), and (c) we show the

magnetic potential in one unit cell of squared patterns twisted at magic angle αsq
m = α

(2)
per(1/7) ≈ 16.260◦ with fixed

point at the origin (f = 0) and for different shift vectors: s1 = a1/2 and s2 = 0 in panel (a), s1 = 0.125(3a1 − a2)
and s2 = −0.125(a1 + a2) in panel (b), s1 = 0.25(a1 − a2) and s2 = −0.25(a1 + a2) in panel (c). We highlight with
symbols (dashed lines) the position of the corners (edges) of the supercells.

Only one shift vector is enough to characterize specific locations of the pattern, such as the corners of the supercells,
since there is a constraint that links both shift vectors at that specific location. For example, at the corners of the
supercells r = rc, the interference between both patterns is destructive and we get s1(rc) − s2(rc) = ±(a1 + a2)/n
This equation for the position of the corners leads to a square (hexagonal) lattice that defines the supercells of the
twisted pattern for any twist angle, independently of whether the angle is magic or not.

Knowing s1(rc) in the local reference frame at the position of the corner fully determines s2(rc) at the same position.
Also, we can use the periodicity of the single patterns to fold the shift vectors into the unit cell of the single patterns.
In panel (g) of Supplementary Figure 4 we indicate with the same symbols as in panels (a,b,c) the coordinates of the
shift vector s2(rc) at the corners of the supercells. Note that at magic angles the unit cell contains two supercells and
hence only two sets of shift vectors at the corners exist [there are two triangles of each color in panel (g)]. In panel
(h), we plot a color map of the critical force required to cross a supercell in the plane of the components of the shift
vector s2(rc) at the corners of the crossed supercell. In both panel (g) and panel (h) we have folded the shift vector
s2(rc) into the unit cell of a single pattern. The critical force has two global minima corresponding to the corners of
patterns twisted at magic angles and shifted by half a unit vector [panel (a) and green triangles]. Again, these are
the patterns discussed in the main text. For any other corner the critical force required to cross it increases.

Next, we consider patterns twisted at angles close to a magic angle and for which the potential is also periodic. We
show in Supplementary Figure 4(d,e,f) the magnetic potential in one unit cell for three of such patterns. The twist
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Supplementary Figure 4. Transport at non-magic angles. Magnetic potential in one unit cell of square patterns twisted at

the magic angle αsq
m = α

(2)
per(1/7) around f = 0 and with shift vectors s1 = a1/2 and s2 = 0 in panel (a), s1 = 0.125(3a1−a2) and

s2 = −0.125(a1 +a2) in panel (b), s1 = 0.25(a1−a2) and s2 = −0.25(a1 +a2) in panel (c). Panel (a) is the same type of twisted
patterns as those discussed in the main text. The color map has been saturated to better visualize the regions of positive (red)
and negative (blue) magnetic potential. The colored triangles indicate the position of the corners of the supercells. Panels (d),
(e), and (f) show the magnetic potential in one unit cell of square patterns twisted around f = 0 with shift vectors s1 = a1/2

and s2 = 0 [like in panel (a)]. The twist angles generate a non-magic but periodic potential: α
(n)
per(q/p) with q/p = 1/8 in

(d), q/p = 2/15 in (e), and q/p = 3/22 in (f). One unit cell contains 4 (d), 8 (e), and 32 (f) slightly different supercells (for
visualization purposes, we draw with white lines pseudo unit cells, each containing 2 supercells). The symbols indicate the
position of the corners of the supercells. The dashed lines illustrate the flat channel that would transport a particle located at
the origin. (g) Components of the shift vector s2 at the corners of the supercells for the patterns shown in panels (a) to (f).
Triangles correspond to patterns twisted at a magic angle (a,b,c) and other symbols represent patterns twisted at non-magic
angles (d,e,f). The shift vector has been folded into the unit cell of a single square pattern. (h) Diagram of the critical force
(color map) required to pass a supercell in the plane of the components of the shift vector s2. Data calculated with computer

simulations in squared patterns twisted at αsq
m = α

(2)
per(1/7). (i) Shift vectors (in the plane of the components of s2) of the

trajectory points closest to the corners of supercells in square patterns twisted at magic angle αsq
m = α

(2)
per(1/19) ≈ 6.026◦ (blue

crosses) and at non-magic angle α
(2)
per(131457/2500000) ≈ 6.020◦ (orange crosses). In the non-magic case the motion stops after

55 corners have been crossed. Data obtained for T = 0 and fda/ε = 25.
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angles are given by Eq. (S1) with q/p = 1/8 = 0.125 in (d), q/p = 2/15 ≈ 0.133 in (e), and q/p = 3/22 ≈ 0.136 in (f).
That is, in the three cases the angle is close to the magic twist angle q/p = 1/7 discussed above. The supercells are
therefore of approximately the same size as in the magic case, e.g. panel (a), but since the angle is non-magic the unit
cell contains several supercells (note the different scales used in the panels of Supplementary Figure 4). There are four
(d), sixteen (e), and thirty two (f) supercells per each unit cell. The supercells slightly differ from each other, and
therefore their corresponding shift vectors at the corners, shown in (h), are also different. Clearly, the shift vectors
at the corners spread along the whole space instead of being concentrated around the region of small critical force
(even though in the three cases f = 0 and the shift vectors are s1 = a1/2 and s2 = 0, i.e. the shift vectors and the
fixed point are like in the twisted patterns discussed in the main text). The higher the number of supercells per unit
cell [i.e. the larger value of q in Eq. (S1)] the more spread the shift vectors are. This illustrates that transport in
patterns twisted at magic angles is much more favorable than transport in periodic patterns twisted at angles that
are non-magic.

Finally, to approximate a generic, non-periodic, twist angle [i.e. α 6= α
(n)
per(q/p)] with arbitrary precision we need

large values of p and q in Eq. (S1). However, increasing the value of q/p also increases the spread of the shift vectors
at the corners of the supercells, which means that larger drift forces are required to pass all the supercells of a unit
cell. To illustrate this phenomenon, we simulate the trajectories of particles moving in twisted patterns for which

q/p = 131457/2500000 ≈ 0.05258 and hence α
(2)
per(131457/2500000) ≈ 6.020◦. This value of q/p is very close to the

magic case q/p = 1/19 ≈ 0.05263, which we also simulate. For the magic case, αsq
m = α

(2)
per(1/19) ≈ 6.026◦. In the

simulations, the particle trajectories never pass exactly through the corners of the supercells but close to them. For
this reason, we plot in panel (i) of Supplementary Figure 4 the components of the shift vector s2(r) corresponding to
the trajectory points that are closest to the corners of the supercells for both the magic case (blue crosses) and the
non-magic case (orange crosses). For the magic case we found only two points that correspond to the position of the
minimal critical force (note again that the used shift vectors are not those at the corners but the closest ones along
the trajectories). In contrast, in the non-magic case the shift vectors deviate more and more from the initial position
until the particle gets stuck and the motion stops. Note that the motion stops when the shift vectors approach the
diagonal along which the critical force to cross the supercells is large, see panel (h). If we want to sustain transport
indefinitely, we would need to use a drift force that is able to cross the most unfavorable supercell. Similar phenomena
(not shown) occurs for hexagonal twisted patterns.

SUPPLEMENTARY REFERENCES

∗ delasheras.daniel@gmail.com; www.danieldelasheras.com
[1] S. Shallcross, S. Sharma, E. Kandelaki, and O. A. Pankratov, Electronic structure of turbostratic graphene, Phys. Rev. B

81, 165105 (2010).
[2] T. Kariyado and A. Vishwanath, Flat band in twisted bilayer Bravais lattices, Phys. Rev. Res. 1, 033076 (2019).

39



2.4 Colloidal transport in twisted lattices of
optical tweezers

In this publication we investigate whether enhanced colloidal transport [1] is
also possible in a significantly different system, comprised of twisted arrays
of optical tweezers. Twisted arrays of optical tweezers are experimentally
doable. For example as arrays of optical tweezers have been used to sort
particles according to their size [80, 81]. Optical tweezers are widely used,
as alluded to in section 1.4.3, so this publication is meant to present to a
large community the phenomenology of high mobility in patterns twisted to
magic angles. It also makes the phenomenology occurring in the magnetic
system [1] more widely accessible, as it is easier to produce an array of optical
tweezers as compared to the twisted magnetic patterns.

We start by discussing the differences between the optical potential in which
the particles move and the magnetic potential [1]. The optical potential has
an additional parameter A, which controls the steepness of the tweezers. We
then determine the critical force for several values of A in hexagonal and
square patterns for a wide range of magic angles. In the square systems, the
critical force follows the same trend as in the magnetic system: Decreasing the
magic angle also decreases the drift force required for transport, extrapolating
to vanishing drift force for vanishing magic angle. This is true for all values
of A investigated. However, at A = 5 plateaus and steps start to form in the
drift force required for macroscopic transport. Here the critical drift force
roughly stays the same for some magic angles and then rapidly decreases
when the magic angle is decreased.

In the hexagonal systems we also mostly recover the behavior of the critical
drift force [1]. However, at A = 5 the critical drift force, does no longer
increase for increasing magic angle above αm > 6◦, instead it decreases. In
the limit of A → 0 the optical potential converges to the magnetic potential,
so we expect strong similarities between the optical and the magnetic system
for small A.

Finally we investigate how far particles travel in the optical lattice as a
function of the twist angle, including non-magic angles. We here find very
sharp peaks in the traveled distance, at magic angles. At non magic angles
the total distance that the particles travel is extremely small as compared to
the magic cases.
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We simulate the transport of colloidal particles driven by a static and homogeneous drift force, and subject to
the optical potential created by two lattices of optical tweezers. The lattices of optical tweezers are parallel to
each other, shifted, and rotated by a twist angle. Due to a negative interference between the potential of the two
lattices, flat channels appear in the total optical potential. At specific twist angles, known as magic angles, the
flat channels percolate the entire system and the colloidal particles can then be transported using a weak external
drift force. We characterize the transport in both square and hexagonal lattices of twisted optical tweezers.

DOI: 10.1103/PhysRevE.106.034601

I. INTRODUCTION

Optical tweezers [1] use optical gradient forces to manip-
ulate micrometer-sized colloidal particles. Lattices of optical
tweezers arranged in arbitrary patterns can be created, e.g.,
using diffractive optical elements [2], combining beam split-
ters and refractive optics [3], by means of computer-generated
holograms [4], and even rapidly moving a single beam among
different locations such that the desired pattern emerges as a
result of a time-averaged optical potential [5–7].

Periodic lattices of optical tweezers in combination with a
driving force are widely used to sort particles [8–11]. Using
a three-dimensional periodic optical lattice, MacDonald et al.
[8] were able to sort particles exploiting the differences in the
interactions between the particles and the optical lattice. Also,
as shown by Lacasta et al. [10], particles moving in a periodic
optical potential can behave differently according to their size
or particle index of refraction.

Motivated by the emerging field of twistronics [12], we
adapt here the setup of Lacasta et al. [10] to model two sets
of periodic lattices of optical tweezers that are parallel to each
other and are also twisted by a given twist angle. Using com-
puter simulations we study the transport of colloidal particles
subject to the combined potential of both lattices and driven
by a uniform and time-independent drift force. At specific
twist angles, known as magic angles, the transport is more
efficient due to the formation of flat channels in the combined
optical potential of both lattices. Emergent phenomena in
twisted bilayers, such as the occurrence of superconductivity
in twisted graphene [13], has been observed in fundamentally
different physical systems, including the appearance of quasi-
one-dimensional channels along which Abrikosov vortices
can freely flow in twisted pinning lattices [14], the formation
of flat bands in twisted acoustic metamaterials [15], and en-
hanced colloidal transport in twisted magnetic patterns [16].
In contrast to single magnetic patterns, the magnetic potential
of two twisted patterns develops flat channels along which it
is possible to transport a magnetic colloidal particle applying

*www.danieldelasheras.com; delasheras.daniel@gmail.com

a weak drift force [16]. The flat channels percolate the entire
system only for specific values of the twist angle. We show
here with computer simulations that similar phenomena arise
also in a fundamentally different system made of twisted
lattices of optical tweezers.

II. MODEL AND RESULTS

A schematic of the model is shown in Fig. 1. The colloidal
particles, which are driven by a drift force, are restricted to
move in the middle plane between two parallel lattices of
optical tweezers. We consider two periodic lattices of optical
tweezers with square and hexagonal symmetries. The lattices
are twisted by an angle α and shifted by half a unit lattice vec-
tor. A destructive interference between the optical potential
generated by both lattices results in the formation of channels
along which the potential is almost flat. Using a weak drift
force it is then possible to transport the colloidal particles
along the flat channels. At specific twist angles, known as
magic angles, the flat channels percolate the entire system
allowing transport over arbitrarily long distances.

A. Optical potential

Following Lacasta et al. [10], we approximate the optical
potential at position r by

V (r) = − V0

1 + e−A[g(r)−1]
, (1)

with positive constants A and V0 that control the steepness
and the depth of the optical potential, respectively. The spatial
modulation and the interference between the two arrays of
optical tweezers is controlled by the function

g(r) =
N∑

i=1

{
cos

[
qi ·

(
R−α/2 · r − a1

2

)]

+ cos (qi · Rα/2 · r)

}
, (2)

where each of the two terms in the summation represents one
of the lattices of optical tweezers.
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FIG. 1. Schematic of the model: side (left) and top (right) views.
A colloidal particle immersed in a solvent is located above a glass
plate in the middle plane between two lattices of optical tweezers.
The lattices are identical but are rotated by an angle α around an
axis normal to them. The interference between the optical potential
of both lattices creates an anisotropic potential landscape for the
colloidal particles.

The lattices are shifted relative to each other by half of the
first lattice vector of the single lattice prior to being rotated,
a1/2, which we set along the x axis, i.e., a1 = aêx, with a
the magnitude of all the lattice vectors. The relative shift by
half of a lattice vector maximizes the destructive interference
between the two lattices at the flat channels. The matrix Rθ

is a rotation matrix by an angle θ around the axis normal to
the lattice that passes through the origin. In Eq. (2) we rotate
each lattice by an angle α/2 in opposite directions such that

the total rotation between the lattices is the twist angle α. The
reciprocal lattice vectors qi are given by

qi = q

(
sin (π i/N )
cos (π i/N )

)
, (3)

where in the square lattice N = 2 and q = 2π/a, and in the
hexagonal lattice N = 3 and q = 2π/[a sin(π/3)].

B. Magic angles

The total optical potential that results from the interference
between both lattices is a moiré pattern. For specific twist
angles the resulting potential is periodic. Among those angles
for which the potential is periodic, we find the so-known
magic angles, with particularly small lattice constants, given
by [16]

αm(k, N ) = 2 arctan

(
1

Nk+1 sin
(

π
N

)
1 + 1

Nk+1 cos
(

π
N

)
)

, (4)

where k is a natural number and again N = 2 for the square
lattices and N = 3 for the hexagonal lattices.

The optical potential of lattices twisted at magic angles [see
Figs. 2(a) and 2(b)] develops super unit cells of length given
by approximately a/[2 sin(αm/2)]. That is, the super unit cells
grow by decreasing the magic angle. The super unit cells
contain regions where the interference between the lattices is
positive and hence the potential resembles that created by a
single lattice, shown also as insets in Figs. 2(a) and 2(b). In
addition, the super unit cells also contain regions at which
the interference is mostly destructive. There, the potential
develops flat channels along which transport is possible using

FIG. 2. Optical potential (A = 1) generated by two square (a) and two hexagonal (b) twisted lattices of optical tweezers twisted at magic
angles: αm ≈ 6.026◦ in (a) and αm ≈ 6.009◦ in (b). A super unit cell of the moiré pattern is highlighted (yellow dashed line). A drift force fd

points in the direction of two consecutive flat channels (orange arrows) and drives the motion of the particles. Characteristic particle trajectories
are depicted in orange. The amplitude of the external force is set to fd = 0.4V0/a (a) and to fd = 0.8V0/a (b). The optical potential of single
square and hexagonal lattices is shown in the top left-hand corner of the panels. Cuts of the potential (square lattices) perpendicular and along
the flat channel that passes through the origin are depicted in (c) as a function of the distance traveled by a particle initially at the origin.
The force required to travel along the channel (negative gradient of the potential) is significantly smaller than the force required to travel
perpendicular to the channel.
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degrees degrees degrees

FIG. 3. Critical force in twisted square (a) and hexagonal (b) lattices as a function of the magic angle for different values of A. (c) shows
the corresponding log - log plots for both types of lattices, as indicated. A linear fit on the log - log data for small magic angles returns a slope
s ≈ 1 in square lattices. In hexagonal lattices, s ≈ 1/3 for both A = 1 and A = 2, and s ≈ 1/2 for A = 5. The inset in (b) depicts the mobility
μ vs the magnitude of the drift force fd for the optical potential depicted in Fig. 2(a). The orange arrow indicates the value of the critical
force fc.

a weak drift force. The flat channels cross the super unit cell in
square twisted lattices [Fig. 2(a)] and are located at the edges
of the super unit cells in hexagonal twisted lattices [Fig. 2(b)].
We show in Fig. 2(c) a cut of the optical potential in the
directions perpendicular to a flat channel and also along the
flat channel, as indicated. The force required to travel along
the flat channel (given by the negative gradient of the optical
potential) is significantly weaker than that required to travel
perpendicular to the flat channel. Increasing the parameter A
makes the potential flatter along the central region of a flat
channel. However, it also makes the potential steeper near the
intersections between two flat channels. At the magic angles
the flat channels percolate the entire system.

C. Computer simulations

We neglect inertial effects and therefore use overdamped
dynamics to simulate the motion of a single colloidal particle.
At high laser intensity the Brownian forces can be neglected
as compared to the optical forces, we therefore set the temper-
ature to zero such that Brownian motion does not hinder the
phenomenology. The equation of motion for a single particle
reads

γ ṙ = −∇V (r) + fd , (5)

where γ is the friction coefficient against the implicit solvent,
ṙ indicates the time derivative of the position vector, and fd

is a homogeneous external drift force. The magnitude of a
lattice vector a, the energy parameter of the optical potential
V0, and the friction coefficient γ define our system of units.
The intrinsic timescale is therefore τ = γ a2/V0. We integrate
the equation of motion using an adaptive Heun-Euler scheme
[17], setting the relative allowed error per time step to 10−2

and the absolute allowed error in the positions to 10−4a.

D. Drift force

To drive the colloidal motion we use a drift force fd point-
ing along the bisector of the directions of two flat channels

[see Figs. 2(a) and 2(b)]. Hence,

fd = fd

(
cos αd

sin αd

)
, (6)

where the angle is αd (k) = (−1)kπ/4 in square lattices and
αd (k) = (−1)kπ/6 in hexagonal lattices, and the index k ∈ N
is the same as for the magic angles in Eq. (4). The prefactor
(−1)k alternates the direction of the drift force between the
first and the fourth quadrants, reflecting the fact that the flat
channels that support transport alternate from one magic angle
to the next one.

Figures 3(a) and 3(b) show the magnitude of the critical
drift force fc required to transport colloidal particles along the
flat channels; log - log plots are shown in Fig. 3(c). To calcu-
late fc we measure in the simulations the colloidal mobility μ

under the influence of the drift force,

μ = |�r(t f )|
t f fd

, (7)

where �r(t f ) is the distance traveled by a particle during a to-
tal time t f = 3000τ in twisted square lattices, and t f = 1000τ

in twisted hexagonal lattices. The colloidal mobility vanishes
for weak drift forces, increases rapidly at the critical drift force
fc, and it saturates for strong drift forces [see an example in
the inset of Fig. 3(b)].

In square lattices, the critical force at which transport
along the channels is activated decreases monotonically by
decreasing the magic angle [see Fig. 3(a)]. For small magic
angles, the critical force scales linearly with the magic angle
[see Fig. 3(c)]. In hexagonal lattices [Fig. 3(b)], the critical
force presents two distinct regimes. First, for small magic
angles, there is a rapid decrease of fc by increasing the magic
angle. In the second regime, depending on the steepness of
the potential, the critical force either slightly increases [e.g.,
A = 1 in Fig. 3(b)] or it slightly decreases [e.g., A = 5 in
Fig. 3(b)]. For both square and hexagonal lattices, increasing
the steepness of the potential A also increases the magnitude
of the critical drift force. Increasing A makes the potential
flatter along the channels, but it also increases the steepness
of the potential at the intersection between two flat channels
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degrees degrees

FIG. 4. Distance traveled by a particle originally at the origin in twisted square (a) and hexagonal (b) lattices (A = 1) as a function of the
angle. In (a), the drift force fd = 0.4V0/a acts for a total time t = 3000. The arrows indicate the direction of the drift force, rotated 45◦ (solid
line) or −45◦ (dashed line) with respect to the direction of the first lattice vector. In (b), fd = 0.8V0/a, t = 1000τ , and the drift force is rotated
30◦ (solid line) or −30◦ (dashed line) with respect to the direction of the first lattice vector.

which results in higher values of the magnitude of the critical
force.

In Figs. 4(a) and 4(b) we represent the distance traveled
by a particle, d , as a function of the twist angle for both
square and hexagonal lattices, respectively. The particle is at
time zero located at the axis of rotation of both lattices (i.e.,
in the middle of a flat channel). The motion is driven by a
drift force acting for a total time 3000τ (1000τ ) in square
(hexagonal) lattices, and whose magnitude is larger than the
critical force required to move particles at any of the magic
angles that occur in the represented range of twist angles. For
each lattice, we plot two curves, corresponding to drift forces
that according to Eq. (6) point either in the first or in the fourth
quadrant. The curves clearly show that the edges that support
transport alternate from one magic angle to the next one. The
distance traveled by the particles presents sharp peaks at the
magic angles and hence even a small deviation from the magic
angle has a marked effect on the transport. In square lattices
the value of d at the magic angles decreases by increasing the
magic angle since the critical force increases with the magic
angle [see Fig. 3(a)], and we keep the magnitude of the drift
force constant. The opposite behavior is observed in hexago-
nal lattices for the range of angles shown in Fig. 4(b). That
is, d at the magic angles increases by increasing the magic
angle. For the range of angles shown in Fig. 4(b), the critical
drift force in hexagonal lattices decreases by increasing the
magic angle, which explains the observed traveled distance at
the magic angles.

III. CONCLUSIONS

Despite being substantially different systems, the colloidal
transport in twisted optical lattices is quite similar to the
transport in twisted magnetic patterns [16]. There, magnetic
colloidal particles are located in the middle plane between two
periodic magnetic patterns that are parallel to each other and
are twisted by a given angle. A uniform external magnetic
field Hext normal to the patterns couples to the field created
by both patterns Hp. The total magnetic potential is then
dominated by the cross term Vmag ∝ Hext · Hp. Both the total
magnetic potential in twisted patterns and the optical poten-

tial in twisted lattices of optical tweezers [Eq. (1)] coincide
only in the limit A → 0. Even though we have stayed away
from that limit here, the transport in both systems shares
similar characteristics, demonstrating the robustness of the
phenomena.

The setup described here with optical lattices offers ad-
ditional flexibility with respect to that in magnetic patterns.
First, the steepness of the potential of single optical lattices,
controlled here by the parameter A, can be adjusted experi-
mentally by varying the width of the tweezers. Moreover, in
contrast to magnetic patterns, optical tweezers are a standard
experimental technique which is widely available and it can
be used with nonmagnetic colloidal particles.

We have modeled the individual optical traps by isotropic
potentials. Experimentally, it is possible to control the shape
of the optical trap [18], and a certain degree of anisotropy is
almost unavoidable. Above a certain threshold, the anisotropy
of the optical trap can have an effect on, e.g., microrheology
measurements [18], and might also alter the structure of the
flat channels shown here. Controlling the anisotropy of the
traps (e.g., the length-to-width aspect ratio and the direction of
an elliptical trap) offers another degree of freedom to modify
the colloidal transport.

Several types of external forces are available experimen-
tally to drive the motion [19]. These include, among others,
electric and magnetic fields, pressure gradients, and the grav-
itational field of Earth in the case of micron-sized colloidal
particles with a substantial contrast between the bare and the
solvent mass densities.

There exist other twist angles for which the combined
potential of the two lattices is also periodic [16]. However, for
those angles, the direction along which transport is possible
along the flat channels changes inside the super unit cell.
Hence, stronger drift forces are required to cause macroscopic
transport.

We have focused here on the dilute regime where interpar-
ticle interactions do not play any role. Interesting collective
effects appear in many-body particle systems driven on
periodic landscapes, including structural transitions and direc-
tional locking [20–22]. It would be also interesting to study
collective effects in the dynamics of many-body particles in
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twisted lattices such as the superadiabatic forces [23,24] and
the occurrence of solitons [25].

Another interesting extension of the present work is the
characterization of the transport in twisted three-dimensional
optical lattices. Moreover, using periodic two-dimensional
magnetic patterns together with a homogeneous magnetic
field, one can topologically transport magnetic colloidal par-
ticles placed above the patterns [26–28]. There exist special
modulation loops of the orientation of the external field such
that once the loop returns to its initial position the particle
has been transported by one unit cell above the pattern. The

colloidal motion is topologically protected and takes place
in a plane due to the two-dimensional nature of the mag-
netic patterns. Optical potentials could be used to extend the
study of topologically protected colloidal transport to three-
dimensional systems.
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2.5 Competition between drift and topological
transport of colloidal particles in twisted
magnetic patterns

In this work we go back to the a system of twisted magnetic patterns [1].
However, in contrast to the previous work, we perform loops of the orientation
of the external magnetic field in addition to a constant drift force acting
on the particles. Rich phenomenology emerges due to the interplay of
the two transport modes (topological transport and drift transport). We
investigate hexagonal patterns twisted to the optimal twist angle, as described
in section 2.3.

First, we investigate pure topological transport in twisted magnetic patterns.
We observe that the transport of colloidal particles locks into one of sixteen
directions when the orientation of the loops of the external magnetic field
is changed. This is more than the 2 × 6 = 12 directions that one would
naively expect from the combination of two hexagonal patterns. A remarkable
similarity to publication 1 is that the average velocity of particles along the
flat channels using only topological transport is larger than in other directions.
This is due to the interference of the two patterns causing larger “unit”-cells
along the flat channels, here the particles travel a larger distance in one loop,
and hence their average velocity is higher.

When in addition to the topological transport a constant drift force is acting
on the particles new transport modes arise. To study them in depth we
calculated a dynamical phase diagram of the average velocity as a function of
the direction of the loops and the amplitude of the drift force. There are two
clearly distinguishable regions in the dynamical phase diagram separated by
the critical drift force fc . In both regions there are several different transport
modes. One particularly interesting mode at subcritical drift force, is the
occurrence of macroscopic transport significantly faster than pure topological
transport. Here, the drift force pushes the particles along the flat channel,
but the amplitude of the drift force is too small to overcome the potential
barriers at the corners of the supercells. Hence the particles get stuck at the
corner. However, the topological transport can move the particles over these
potential barriers, provided that the direction is the appropriate one. This
transport mode leads to average velocities of the particles of the order of one
supercell per loop. There also exist transport modes with a subharmonic
response, i.e. it takes two loops for particles to cross the corners of supercells.

48



At supercritical drift force, these subharmonic modes still remain, yet with
much higher average velocity. When the topological transport and the drift
force oppose each other, we find regions in the phase diagram with vanishing
average velocity where the colloidal particles are indefinitely stuck inside a
region of approximately one unit-cell.

We have also investigated the effect of finite temperature in the dynamical
phase diagram. We conclude that the overall structure of the phase diagram
remains unchanged at reasonable temperatures, while details get lost due to
the occurrence of Brownian motion.
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We simulate the motion of paramagnetic particles between two magnetic patterns with hexagonal
symmetry that are twisted at a magic angle. The resulting Morié pattern develops flat channels
in the magnetic potential along which colloidal particles can be transported via a drift force of
magnitude larger than a critical value. Colloidal transport is also possible via modulation loops of
a uniform external field with time varying orientation, in which case the transport is topologically
protected. Drift and topological transport compete and cooperate giving rise to several transport
modes. Cooperation makes it possible to move particles at drift forces weaker than the critical
force. At supercritical drift forces the competition between the transport modes results e.g. in an
increase of the average speed of the particles in integer steps and in the occurrence of subharmonic
responses. We characterize the system with a dynamical phase diagram of the average particle speed
as a function of the direction of the topological transport and the magnitude of the drift force.

I. INTRODUCTION

Interesting phenomenology often emerges as a result of a competition between two physical effects. Equilibrium
phase transitions are a primary example. The liquid-vapor transition in simple liquids is the result of a balance
between internal energy and entropy. A competition between different entropic terms drives multitude of phase
transitions in hard body models [1], including the freezing transition in a system of hard spheres. In non-equilibrium,
the interplay between internal interactions and external forces determines the steady states in the asymmetric simple
exclusion process [2].

We study here the competition between two different transport types (topological and drift) in an out-of-equilibrium
colloidal system inspired in twisted graphene [3–12]. Bilayers of graphene twisted to a magic angle show new emergent
phenomena including superconductivity, ferromagnetism, antiferromagnetism and correlated insulator properties [4,
9, 13–16]. Topology plays a major role in these states [12, 17].

In our colloidal system [18], the particle transport shares some similarities with electronic transport in twisted
graphene. Paramagnetic colloidal particles are placed between twisted hexagonal magnetic patterns. Due to the
negative interference between the magnetic fields of both patterns, flat channels develop in the total magnetic potential
acting on the particles. The flat channels percolate the entire system for patterns twisted at magic angles, in which
case a weak drift force is able to sustain macroscopic transport.

We have also extensively studied (with computer simulations and experimentally) the topologically protected trans-
port of paramagnetic colloids above single periodic magnetic patterns [19–23]. There, the transport is driven by a
uniform external magnetic field of varying orientation. The orientation changes in time performing loops and there
exist special loops that induce particle transport. That is, once the orientation returns to the initial one (after one
loop) the particle has been transported by at least one unit cell of the magnetic pattern.

In this work, we use computer simulations to first study the topological transport in hexagonal magnetic patterns
twisted at a magic angle. Next, we add a drift force acting on the particles along the direction of the flat channels
and investigate the competition between drift and topological transport. We present a dynamical phase diagram of
the system in the plane of direction of the topological transport and strength of the drift transport. Several transport
modes arise. Some of them result from commensuration effects that involve the length of the flat channels, the period
of the modulation loop, and the strength of the drift force. We also discuss briefly how the transport is affected by
the occurrence of Brownian motion (finite temperature effects).

II. SETUP

Paramagnetic colloids are placed between parallel magnetic bi-layers of hexagonal patterns that are shifted by half
a unit-vector and twisted at a magic angle [18]. A sketch of the system is shown in Fig. 1(a). The colloidal particles
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(suspended in an inert solvent) are free to move in the middle plane located between the patterns which we refer to
as action space. Experimentally, restricting the motion to a plane is possible using e.g. a polymer coating that acts
as a spacer above which the particles sediment [21].

FIG. 1. Setup and magnetic potential. (a) Schematic overview. A paramagnetic particle (yellow) is located in the
middle plane between two parallel layers of thin magnetic hexagonal patterns shifted by an in plane vector rs and afterwards
rotated relative to each other by an angle αm. Black and white regions are magnetized normal to the patterns but in opposite
directions, as indicated by the white and black arrows in the upper pattern. Violet (dark blue) arrows are three rotated lattice

vectors of the bottom (top) pattern, i.e. R±αm/2ai. A drift force (orange arrow) pushes the particle in the direction of the
zig-zag like flat channels. (b) Control space C depicted by a wireframe sphere. Solid lines are reader facing while dashed lines
indicate that they are on the back side of the sphere. The green circle is a modulation loop performed by Hext(t), which is itself
depicted at a particular orientation using a green arrow. The direction of the loop is characterized by the angle φe, shown in
red. (c) Magnetic potential V (colorbar) for different orientations of the external magnetic field (left column: north, i.e. along
the z-axis, center column: along the x-axis). The first row shows the potential in presence of both patterns. A zig-zag flat
channel is highlighted in orange. The drift force points in the direction of the orange arrow. The second row is the potential
when only the bottom pattern is present. The third column is a close view of selected regions (yellow squares). The scale bar
is s = 45 (top row), and s = 25 (bottom row).

Single hexagonal patterns can be generated by the superposition of three waves with wave vectors qi, i = 1, 2, 3
given by

qi(α) =
4π√
3a
R−α

(
− sin(2πi/3)

cos(2πi/3)

)
, (1)

where a is the amplitude of a lattice vector and Rα is a two dimensional rotation matrix by an angle α around the
axis normal to the pattern. At elevation z larger than the magnitude of a lattice vector (z > a), the magnetic field of
a single pattern is well approximated by [18, 21, 23]

Hp(r;α, rs) = H0a

3∑

i=1

(
qi(α) sin (qi(α) · r −Rαrs)
q cos (qi(α) · r −Rαrs)

)
, (2)

where H0 is the magnitude of the field of the pattern (controlled by the saturation magnetization of the pattern
domains and the elevation z), r denotes the position in action space (i.e. a plane at constant elevation above the
pattern), and rs is a shift vector (parallel to the pattern). The magnetic pattern that generates such magnetic field
contains regions of positive and negative magnetization normal to the pattern, see Fig. 1(a), given by

M(r;α, rs) = M0sign

(
3∑

i=1

cos (qi(α) · r −Rαrs) + 1/2

)
, (3)

with M0 = M0êz the saturation magnetization of the domains and êz the unit vector normal to the patterns. An
external homogeneous magnetic field Hext, much stronger in amplitude than Hp, drives the topological transport.
The amplitude of the external field is constant in space and time, but its orientation varies with time performing
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loops. That is, after a loop is completed, the orientation returns to its initial value. The set of all possible orientations
of Hext is the surface of a sphere which we refer to as control space C, see Fig. 1(b).

The total magnetic potential, V , created by the twisted patterns and the external field is proportional to the scalar
product of the total magnetic field with itself

V ∝ −(Hp1 +Hp2 +Hext)
2. (4)

Here Hp1 and Hp2 are the magnetic fields of each of the twisted patterns. In the limit |Hext| � |Hp|, the cross-term
dominates the magnetic potential which simplifies them to [18]

V (r, t) = −2χµ0veff (Hp1(r) +Hp2(r)) ·Hext(t). (5)

Here t is the time variable, χ denotes the magnetic susceptibility of the particles, veff their effective volume, and µ0

is the vacuum permeability.
The patterns are parallel to each other and shifted by half a unit-vector to maximize the negative interference of

the magnetic fields along the flat channels. Then, we rotate the patterns by angles ±αm/2 around an axis normal to

them, Fig. 1(a). We use here αm/2 = arctan
(√

3/33
)
≈ 3.00◦ such that the total twist is αm, which corresponds to

the magic angle with the smallest drift force required to achieve macroscopic transport (when the external magnetic
field is static and points normal to the patterns [18]).

Hence, using Eq. (2), the magnetic field of both patterns are then given by Hp1(r) = Hp(r;−αm/2,a3/2) and
Hp2(r) = Hp(r;αm/2,0). The lattice vectors of the unrotated pattern are defined such that ai · qj(0) = δij for
i, j = 1, 2 and a3 · q3(0) = 0. (the vector a3 is a linear combination of a1 and a2). The magnetic potential, Eq. (5),
that results after insertion of the expressions for Hp1 and Hp2 using Eq. (2) is valid only at the middle plane between
the patterns where the colloidal particles move.

Due to the interference between the fields of both patterns a Moiré pattern develops. We call the large periodic struc-
tures of the Moiré pattern supercells. These supercells have a supercell lattice constant of L/a = 1/(2 sin(αm/2)) ≈
9.5 [18], with a being the magnitude of a lattice vector of one single pattern. Near the edges of the supercells there
exist flat channels along which the magnetic potential is rather flat, see Fig. 1(c). These flat channels are the result
of the negative interference of two wave vectors of the patterns, one from each pattern. Along the flat channels it is
possible to transport colloidal particles using a weak external drift force. What makes magic angles special is that
the resulting Morié pattern is periodic with a period of one supercell (smallest possible period).
Simulations. Experiments in closely related systems are in the overdamped regime [21]. We therefore use Brownian
dynamics simulations to simulate the particle motion. Three different types of transport are involved: Brownian
motion induced by the implicit solvent, drift transport originated by an external force constant in space and time,
and topological transport facilitated through loops of the orientation of the external magnetic field. The equation of
motion of a single particle is then

γṙp = −∇V (rp, t) + fd + η, (6)

where rp is the position of the particle, the overdot indicates time derivative, ∇ indicates the derivative with respect
to rp, η is a delta correlated random force due to the implicit solvent, fd is the drift force, and γ is the friction
coefficient against the implicit solvent.

We use adaptive Brownian dynamics [24] to integrate the equation of motion (the maximum relative tolerance is set
to 10−3 and the maximum absolute tolerance to 10−4). We work in units of the lattice constant of the single patterns
a, the friction coefficient γ, and the energy scale of the magnetic potential, defined as as ε = χµ0veffH0Hext which
contains the relevant natural constants and particle characteristics together with the magnitudes of the magnetic
fields, see Eq. (5). Note that the magnetic potential varies approximately 102ε from minima to maxima in twisted
patterns, see Fig. 1(c). Our time scale is given by τ = γa2/ε.

Most simulations are done at zero temperature (i.e. no Brownian motion) because in the experimental setups the
Brownian motion is usually negligible as compared to the magnetic forces [22]. Nevertheless, we briefly analyze the
effect of finite temperature on the transport at the end of the Results section.

III. RESULTS

A. Pure topological transport

We first focus on the pure topological transport in twisted patterns. That is, the transport induced by modulation
loops of the external magnetic field in absence of drift forces.
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Topological transport in single patterns. The topological transport facilitated via magnetic forces above single
periodic patterns [21–23] as well as inhomogeneous patterns [19, 20, 25] is well understood. Here, we briefly recap the
fundamentals of the topological transport above periodic magnetic patterns.

The combination of the two magnetic fields (pattern and external) creates a complex energy landscape not constant
in space. See the bottom panels of Fig. 1(c) for two plots of the potential in hexagonal patterns corresponding to
two orientations of the external field. To understand the transport of the colloidal particles we need to focus on the
stationary points of the potential. The particles are adiabatically transported via a minimum of the potential (and
travel to a minimum nearby via a ratchet in case that the transporting minimum disappears during the modulation
loop). Note that a maximum can be always transformed into a minimum by simply inverting the orientation of the
external magnetic field, see Eq. (5). The potential also contains saddle points but the particles can only rest in
the minima of the potential since a saddle point is not a local equilibrium position. There exist regions above the
pattern in which V can never be a minimum for any orientation of Hext. Those regions are called the forbidden
regions [22] and they can contain only saddle points. The regions for which there exist an orientation in Hext such
that V is minimum are called the allowed regions. In the allowed regions it is always possible to find a minimum (or
a maximum) of V but never a saddle-point. The complete action space splits into forbidden and allowed regions, the
shape of which varies with the symmetry of the pattern [21].

The boundaries between allowed and forbidden regions in action space are the fences. The intersection of fences in
action space are the gates as they allow particles to move from one allowed region to the adjacent one. Both fences
and gates also exist in control space. To transport a particle in action space, the modulation loop in control space
need to wind around special orientations of the external field (determined by the position of the fences in C). The
set of winding numbers of the modulation loop around the special orientations in C is the topological invariant that
protects the motion and determines the transport direction. The exact path follow by the loop in C is irrelevant in
the sense that any two loops with the same topological invariant will transport a particle between the same type of
allowed regions. In hexagonal patterns, it is possible to transport particles along six directions given by ±ai with
i = 1, 2, 3.

Topological transport in twisted patterns. We investigate next the topological transport in hexagonal mag-
netic patterns twisted at a magic angle. To transport the particles, we impose an external magnetic field that orbits
control space following great circles. The modulation loop crosses both poles of C and the equator at latitudes φe
and φe + π. We measure φe relative to the average direction between two consecutive flat channels (counterclockwise
rotation by thirty degrees of the x-axis [18]). An illustration of a modulation loop together with C can be seen in
Fig. 1(b). The period of one loop is set to τ0/τ = 5. The total magnetic potential varies along the modulation loop.
Figure 1(c) depicts the magnetic potential for two different orientations of the external magnetic field in both twisted
and single patterns.

When continuously varying φe along the equator, the direction of transport locks into one of sixteen discrete
directions, see particle trajectories in Fig. 2(a). Six of these directions point along the flat channels that develop near
the edges of the supercells. Six other directions point along the lattice vectors of the hexagonal Morié grid. The last
four directions point roughly orthogonal to the conducting flat channel. The topological transport between twisted
pattern is possible along more directions than one would naively expect from the combination of two single patterns
(i.e., 2× 6 = 12 directions). Analogous to single patterns, the transport direction is not a continuous function of the
orientation of the loop in control space, but it rather shows discrete topological transitions.

In order measure the efficiency of the topological transport, we calculate the average speed of the particles during
the modulation loop. We average over one hundred different realizations. The particles are initialized randomly in a
square region with side length 10 a around the origin that covers a complete supercell. To eliminate the dependence
on the initial conditions, we let the system reach a steady state by applying fifty modulation loops before measuring
the average speed µ during another fifty loops, i.e.

µ =
1

50τ0
〈|rp(100 τ0)− rp(50 τ0)|〉 , (7)

where 〈·〉 denotes the average over the different realizations.
The average speed as a function of the angle φe is depicted in Fig. 2(b) for two values of the temperature kBT/ε = 0

and 0.1, with kB the Boltzmann constant. The transport along any of the flat channels is faster than that along the
six directions of the underlying hexagonal patterns. In most cases, the particles that move along the flat channels do
so with an average speed of approx. 1.4 a/τ0 and reach a peak speed of 1.6 a/τ0 in some specific cases. In contrast,
the average speed along the symmetry directions of the inner cells of the combined patterns is 1 a/τ0, which is the
same as in single hexagonal patterns (one unit cell per loop). The increased speed along the flat channels arises from
the Moiré pattern. Units cells with parallelogram symmetry and larger than the hexagonal cells form along the flat
channels due to the negative interference between two pattern waves. Therefore, the particles travel a larger distance
per loop along the flat channels than along the hexagonal lattice vectors (even though in both cases one modulation
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FIG. 2. Pure topological transport. (a) Trajectories of particles located between patterns twisted at a magic angle. The
small hexagon in the bottom left of (a) depicts the size of a supercell. The particles are randomly initialized around the origin
and driven by 100 modulation loops of different orientation φe. The trajectories are colored according to the direction of the
modulation loop φe (see color bar). (b) Average speed of the particles µ for different values of the orientation of the modulation
loops φe and two values of the temperature: T = 0 (blue line) and kBT/ε = 0.1 (orange line). Thick-dark gray lines point in
the average direction of flat channels. Thin-light gray lines point in the direction of the unit vectors of the supercells.

loop transports the particles one unit cell). The Brownian motion smooths, as expected, the zero temperature results
but the main characteristics of the transport remain unchanged, cf. the blue and orange curves in Fig. 2(b).

Concentrating particles into the flat channels. As discussed, there exist loops that transport the particles in
the directions of the flat channels and hence it is possible to concentrate all particles in there. This is helpful for the
transport in twisted patterns using drift forces [18] since the particles that are stuck inside the supercells could be
moved towards the flat channels and become therefore mobile.

B. Pure drift transport

Before we discuss the interplay between drift and topological transport, we briefly summarize the transport due to
only drift forces. A complete description of the pure drift transport is given in Ref. [18]. There, the external magnetic
field is static and points normal to the pattern. A uniform drift force of magnitude fd drives the motion. The optimal
direction of the drift force is along the average direction of two consecutive flat channels, see Fig. 1(c). For patterns
twisted at magic angles, the magnetic potential is periodic with a periodicity of one supercell. The particles can get
pushed easily through the flat channels located near the edges of supercells provided that the magnitude of the drift
force is above a critical value fc. For the system investigated here the critical force is fc = 39.5 ε/a [18]. For weaker
drift forces the particles located in a flat channel get stuck at the corners of the supercells, i.e. the place where two
flat channels meet. The particles that are located outside of the flat channels are forever trapped even for magnitudes
of the drift force much larger than the critical one.

C. Combined drift and topological transport

In Fig. 3 we show the trajectories of particles subject to both a drift force and a modulation loop of the external
magnetic field. The trajectories are colored according to the orientation of the modulation loop φe. We depict
trajectories for a drift force much weaker, weaker, and stronger than the critical drift force in Figs. 3(a), 3(b) and 3(c),
respectively. Even at subcritical drift forces the speed in the direction of the drift force is increased. For weak drift
forces, fd � fc, the particles are pushed along the flat channels until they hit a corner and get stuck. Therefore the
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FIG. 3. Topological and drift transport. Trajectories of particles located between patterns twisted at a magic angle
and driven by both a drift force of magnitude fd and 100 modulation loops of orientation φe. The particles are randomly
initialized around the origin. The trajectories are colored according to the direction of the modulation loop φe (see color bar).
The magnitude of the drift force is fda/ε = 5 (a), 25 (b), and 45 (c). That is, below (a,b) and above (c) the critical drift force
fca/ε = 39.5. The insets in panels (b) and (c) show the complete trajectories of the particles after 100 loops. The orange
arrows indicate the direction of the drift force.

particles can travel up to L per loop even if fd � fc.
At supercritical drift forces, fd > fc, the particles can overcome the potential barriers at the corners of the supercells

and the transport is then dominated by the drift force. At first glance, the topological transport hinders the transport
along the flat channels as compared to a system without topological loops. There, Hext always points normal to
the patterns which is optimal to increase the colloidal mobility. However, to achieve macroscopic transport the
topological loops are important. Without the modulation loops, only the particles that are initialized close enough to
a flat channels can move. Particles inside the supercells would remain there. The topological loops are able to move
the particles towards the flat channels and therefore to enable macroscopic transport.

A general effect of the drift force is that the direction of transport migrates towards the average direction between
two consecutive flat channels. This is expected since whenever a particle enters a flat channel, it gets transported
along the channel.

D. Dynamical phase diagram

To rationalize the complex interplay between drift and topological transport, we plot in Fig. 4(a) a dynamical phase
diagram in which we represent the average speed µ (color coded), see Eq. (7), as a function of the direction of the
topological loop (φe) and the magnitude of the drift force (fd). The competition between the drift force and the
topological transport generates a rich phenomenology. Two main regions corresponding to sub- and super-critical
drift forces are clearly visible, see Figs. 4(b) and 4(c), respectively. We have identified several transport modes for
which we show illustrative trajectories in Fig. 4 panels (d) to (l) and in the Supplementary Movies.

E. Sub-critical drift forces

We discuss first the region where the amplitude of the drift force is below the critical value that would allow particles
to move freely through the flat channels [18], i.e. fd < fc.

Enhanced transport. Even for very weak drift forces, the particles can traverse the flat channels near the edges
of supercells when the external magnetic field points normal to the pattern. However, they can not overcome the
potential barrier that exists in the corners of the flat channels as long as the amplitude of the drift force is subcritical.
Topological transport induced by a nontrivial loop is needed in order to move the particles around the corner and
hence achieve macroscopic transport. There are two corners that need to be crossed per supercell. Hence, the highest
average speed that we would naively expect is µ ≈ L/(2τ0) ≈ 4.77 a/τ0. This value corresponds to particles crossing
one corner per modulation loop.
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FIG. 4. Dynamical phase diagram. Average speed of the particles (µ colorbar) as a function of the direction of the
modulation loops φe and the amplitude of the drift force fd. Panel (a) shows the complete dynamical phase diagram, whereas
panels (b) and (c) are enlarged views of the subcritical fd < fc and supercritical regions fd > fc. The yellow line in (a) indicates
the critical drift force. The resolution in panels (a), (b), and (c) is 0.1 a/ε and 3 ◦ for the main panels and 0.3 ◦ for the close view
in (c). Illustrative trajectories at specific state points (indicated by symbols) are shown in panels (d) to (l). The background
depicts the magnetic potential (V colorbar) when the external magnetic field points along the z-axis (north of control space).
The orange arrow in (d) indicates the direction of the drift force. The particle trajectories are colored according to the temporal
evolution of the external loops that drives them (tmodτ0 colorbar). The loop points towards the north (south) of control space
if tmodτ0 is in an interval of width τ0/4 around 0 (τ0/2). In panels (j) to (l) the supercells are surrounded by a black outline
to increase their visibility. The scale bars have a length of 5a. The amplitudes of the drift forces are fda/ε = 16.1 (d), 16.0
(e), 37.0 (f), 23.0 (g), 35.0 (h), 50.5 (i), 50.5 (j), 50.4 (k), 50.2 (l) and the orientation of the modulation loop φe = −7.5◦ (d),
−7.5◦ (e), −52.5◦ (f), 147.0◦ (g), −7.5◦ (h),−172.5◦ (i), 0.0◦ (j), 0.0◦ (k), 0.0◦ (i).
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Depending on the value of φe, the modulation loop can transport the particles into a conducting flat channel, into
a nonconducting channel, or into the inner regions of supercells. To achieve high speed transport at subcritical drift
forces, we need to transport particles from one conducting channel to the next one using the least possible amount of
loops. This can be done with only a single loop provided that φe is within the approximate interval [−40◦, 40◦] and
that fd > 16 ε/a. In this case, an average speed of µ ≈ L/(2τ0) ≈ 4.77 a/τ0 can be reached, see Figs. 4(a) and 4(b).
Illustrative trajectories showing this transport mode are shown in Fig. 4(d) and Supplementary Movie 1.

A transport mode with half the average speed of the previous mode is shown in Fig. 4(e) and Supplementary Movie 2.
This mode happens for smaller drift forces, i.e. fd < 16 ε/a, but within roughly the same interval of orientations of the
external loop, see Fig. 4(b). Here the drift force is not strong enough to push the particles into the corner of the flat
channels. Instead, the particles stop approximately one unit cell away from the corner. Therefore, two modulation
loops are required for the particles to cross each corner. One loop is needed to transport the particle into the corner
and another loop to transport the particle over the corner. This results in an average speed of half a flat channel per
loop, i.e. µ ≈ L/(4τ0) ≈ 2.38.

If the particles get scattered into non-conducting channels or into a supercell, the average speed becomes close to
µ ∼ a/τ0, as it takes of the order of L/a loops to traverse the supercell and hence get back to a conducting channel.
This transport mode is also present at supercritical drift forces. An illustrative trajectory is shown in Fig. 4(h) and
Supplementary Movie 3.

Unexpectedly, an average speed corresponding to traverse one entire supercell per loop is also possible even for
subcritical drift forces. This transport mode is due to the occurrence of secondary transient flat channels parallel to
the main flat channel and separated by a distance of half the magnitude of a lattice vector [18]. These flat channels
become the local minimum when the external magnetic field points towards the south pole of C. For a range of
drift forces and orientations of the modulation loop, there exist a commensuration effect between the drift and the
topological transport. The external field switches from north to south and back to north at the right times when the
particles are sufficiently close to the corners of the supercells. This allows the particles to pass the corner by moving
to the active flat channels at all times during the loop. As a result the particles are never stuck in the corners and
travel always in a flat channel with average speed of µ ≈ L/τ0 ≈ 9.57 a/τ0. A trajectory is shown in Fig. 4(f) and
Supplementary Movie 4. Note how the loop moves the particles from one channel to the next one at positions close
to the corners of the supercells.

Reduced transport. The interplay between topological and drift transport can also reduce the average speed
below that of the pure topological transport µ ≈ a/τ0. For external loops with directions φe within the intervals
[−180◦,−90◦] and [90◦, 180◦] an average speed of less than one unit cell per loop is prevalent. In this region, the
modulation loops transport the particles in a direction with a component opposite to the drift force. When the
particles enter a flat channel they move along the channel, i.e., opposite to the direction facilitated by the modulation
loops. As a result the average speed decreases substantially. In extreme cases, the average speed vanishes as the
particles get trapped in a closed trajectory where the modulation loop and the drift force cause particles to never
leave an area of one unit cell. An illustrative particle trajectory is shown in Fig. 4(g) and Supplementary Movie 5.

F. Supercritical drift forces

At drift forces larger than the critical drift force, i.e. fd > fc, the dynamical phase diagram shows a complex
structure for modulation loops pointing roughly in the interval φe ∈ [−60◦, 60◦], see Figs. 4(a) and 4(c). Here, regions
of high and low average speed alternate quickly when increasing the magnitude of the drift force. Fast transport is
achieved when the particles stay in the flat channels, see an example in Fig. 4(j) and Supplementary movie 6. In these
cases the particles can get trapped at the corners of the supercells when the loop blocks the corner. The loop then
continues in such a way that the particles are transported through the corner into the flat channel. Recall that the
critical drift force corresponds to the optimal orientation of the external field (pointing towards the north of control
space). Hence, even though we explore now the region fd > fc the particles can get stuck at the corners for other
orientations of the external field.

In the slow regions, the particles are forced to move inside the supercells by the topological transport. There they
need O(L/a) loops to traverse the supercell and reach a flat channel again. Once they are in a flat channel they can
traverse it during one loop, after which they are forced back into the interior region of a supercell. Averaging over
many loops causes the average speed of the particles to be O(a/τ0) since the low speed in the supercells dominates
over the high speed in the flat channel. An illustrative trajectory is shown in Fig. 4(l) and Supplementary Movie 7.

When going from one region of high speed to the next one by increasing the drift force, see Fig. 4(c), the average
speed increases by the length of one edge of a supercell per loop, i.e. L/(2τ0). Due to the stronger drift force, the
particles can travel along the flat channels at higher speed which allows them to traverse one more edge during the
loop as compared to the previous high speed region.
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The shape of the fast regions in the dynamical phase diagram resembles the Hofstadter’s butterfly [26], known from
the commensuration effects in the quantum Hall effect and in twisted bilayer graphene [27, 28]. Here, commensuration
effects between the topological and the drift transport occur. The time required to traverse one edge of a supercell is
roughly te ≈ (L/2)/µe with µe the speed along the flat channel. At zero temperature, µe is mostly determined by the
drift force µe ≈ fd/γ, and hence te ≈ γ(L/2)/fd. When the period of the modulation loop commensurates with this
time there is fast region in the supercritical dynamical phase diagram. Since in our system L/a ≈ 9.5 and τ0 = 5τ
we expect fast regions to occur at intervals ∆fd ≈ 1 which is consistent with the simulation results, Fig. 4(c). If te
and τ0 do not commensurate, the particles get transported in the interior regions of the supercells and their average
speed is reduced considerably.

FIG. 5. Scaled average speed. Average speed µ (scaled with the speed corresponding to travel half a supercell per loop)
as a function of the magnitude of the drift force fd in the supercritical region (fd > fc). The direction of the modulation loop
is φe = 0. The arrows indicate the regions in which the average speed jumps to half the value of the next high average speed
region. The horizontal dotted-lines indicate the integer values of the scaled average speed. Results for zero temperature (blue)
and finite temperature (orange) are shown.

If one rescales the average speed of the particles by the length of flat channels, i.e. measure the average speed in
units of L/(2τ0), the rescaled average speed increases in integer steps, similar to the quantum Hall effect, see Fig. 5.
The figure corresponds to a vertical cut of the dynamical phase diagram for supercritical drift forces and φe = 0◦. A
close inspection to the data shown in the figure reveals that there exists an intermediate step between fast and slow
regions in which the response is subharmonic. There, the particles never leave the flat channels but they require two
loops to continue their path along the flat channel. This phenomenon can be seen in Fig. 4(k) and Supplementary
Movie 8. The system responds with only half the frequency of the external modulation.
Complete stop. Even for supercritical drift forces, there are large regions of the phase diagram with very low average
speed. There, the direction of the topological transport opposes the direction of the drift force. In some cases the
particles can be brought to a complete halt. See an illustrative trajectory in Fig. 4(i) and Supplementary Movie 9.
This happens for supercritical forces and loop orientations φe within the intervals [−180◦,−155◦] and [155◦, 180◦]
approximately.

G. Finite temperature

The general structure of the phase diagram is robust against Brownian motion. We show in Fig. 6 the dynamical
phase diagram at temperature kBT/ε = 0.1. The alternation between fast and slow regions for supercritical forces
resembles those found in the limit of vanishing temperature, Fig. 4(a). The discrete steps in the average speed get
broadened by the effect of the temperature and the plateaus do not reach the same heights. This broadening is wider
than the size in which the subharmonic response occurs, which therefore disappears at this temperature (compare the
zero and finite temperature curves in Fig. 5).

Also, the main features of the dynamical phase diagram at subcritical forces remain the same in presence of Brownian
motion. Particles reach an average speed of more than one supercell per loop even for drift forces smaller than the
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critical force. This was expected as thermal fluctuations allow the particles to cross the corners of flat channels even
if the drift force is not strong enough.

FIG. 6. Finite temperature. Dynamical phase diagram at finite temperature (kBT/ε = 0.1) of the average speed of the
colloidal particles µ (colorbar) in the plane of direction of the topological loop φe and magnitude of the drift force fd. The
horizontal yellow line indicates the magnitude of the critical drift force in the limit of zero temperature.

IV. CONCLUSIONS

We have shown that topologically nontrivial loops of the orientation of a uniform external magnetic field can
transport paramagnetic particles located between twisted magnetic patterns. Topological transport is possible along
several directions including the flat channels of the twisted Moiré pattern and the lattice vectors of the hexagonal
pattern that emerges inside the supercells.

The competition between topological and drift transport gives rise to a plethora of interesting transport modes.
These include integer steps in the average speed of the particles, a subharmonic response, and a complete transport
stop.

Based on previous works [19–22], we expect a good agreement between simulations an experiments. It should
however be noted that small imperfections on the magnetization domains can have a large effect on the transport
along flat channels using only drift forces [29]. Hence, very precise magnetic patterns might be required to observe the
complete phenomenology reported here. Performing experiments on twisted patterns is not as simple as using single
patterns. Simply tracking the motion of particles sandwiched between two opaque patterns is already not simple since
optical microscopy is no longer possible. As an alternative, one could create single magnetic patterns designed to
mimic the pattern field of two patterns twisted at magic angles. A gradient pressure and the gravitational field are
examples of possible drift forces that could be used in e.g. a magnetophoretic device [30–32].

We have only considered the limit of very dilute suspensions with no interparticle interactions. It would be in-
teresting to study the effects that the many-body interparticle interactions have on the transport. Many-body non-
equilibrium superadiabatic forces [33, 34] might alter the dynamical phase diagram and new states such as the oc-
currence of solitons [35, 36] might appear. Interparticle repulsion might scatter particles away from the flat channels,
while interparticle attraction could drag particles together through flat channels resulting in an increased mobility.
Hydrodynamic effects, which have not been considered here, might also alter the phenomenology.

V. DATA AVAILABILITY

All the data supporting the findings are available from the corresponding author upon reasonable request.
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2.6 Simultaneous and independent topological
control of identical microparticles in
non-periodic energy landscapes

After having studied the motion of colloidal particles in twisted patterns, we
investigate the transport of magnetic colloidal particles above single inhomo-
geneous patterns. Here, we find multiple ways to make identical particles
move in different directions when subject to the influence of a single loop of
the orientation of the external magnetic field. As mentioned in section 1.3,
multidirectional transport of magnetic colloidal particles above magnetic
patterns was previously only possible by using different types of particles,
or complex magnetic octupoles. Here, we use inhomogeneous patterns to
make the direction of transport dependent on the absolute position of simple
paramagnetic particles above the pattern. Brownian dynamics simulations
and experiments coincide up to experimental and numerical uncertainties.
The particles are moved solely by topological transport facilitated through
loops of the orientation of the external magnetic field.

We first vary the symmetry phase of hexagonal patterns, discussed in sec-
tion 1.3, to construct complex patterns above which the transport of colloidal
particles can be controlled with simple loops of Hext. By changing the sym-
metry phase of the pattern locally, we can change the direction in which the
particles travel at that position above the pattern. By doing so we create a
complex pattern, above which the particles can be controlled with relatively
simple loops. Later we do the opposite; we design simple patterns, but
complex loops. As a first proof of concept of the first approach we design a
particle trap by changing the symmetry phase linearly with the polar angle
around the center of the pattern. This creates a topological defect in the
symmetry phase at the center of the pattern, which can act as an attractor
for particles, given the appropriate loop. This trap in not only for academic
purposes, it also solves the problem of needing to manually initialize particles
to specific locations above the patterns in experimental realizations. The
trap allows randomly initialized particles to get concentrated in the center of
the trap. After several repetitions of the loop there will be a particle in the
center of the trap. The particle can then be moved to an arbitrary position
by applying the corresponding loops.

We then locally change the symmetry phase of the pattern to a more complex
structure in order for the particles to follow an arbitrarily complex trajectory;

65



the letter “B” in our case. This illustrates that we have precise control over
the particles and can let them do arbitrary tasks.

Next we focus on a different approach: using simple patterns but intricate
loops. The simple patterns are composed of subpatterns of the same symmetry
class that are rotated relative to each other. As these subpatterns have
their fences in different locations in C, we can transport particles above the
different subpatterns independently. We demonstrate that we have complete
control of the particles by writing the letters “A” through “D” in differently
rotated subpatterns with simulations and experiments. We then show using
simulations that when experimental constraints are overcome, there is the
possibility to do more intricate tasks, such as writing the letters “A” through
“R” simultaneously.

Finally, we combine the two approaches. In order to overcome the initialization
hurdles, we add our trap patterns to the patterns of different rotations. This
allows us to randomly initialize particles above the trap patterns, repeat the
attractor loop several times until we can be sure that the particles are in
the trap. Afterwards we move the particles to a desired position above the
rotated patterns, and let them draw the shape of a square, a triangle and a
cross simultaneously and independently.
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Topological protection ensures stability of information and particle transport
against perturbations. We explore experimentally and computationally the
topologically protected transport of magnetic colloids above spatially inho-
mogeneous magnetic patterns, revealing that transport complexity can be
encoded in both the driving loop and the pattern. Complex patterns support
intricate transport modes when the microparticles are subjected to simple
time-periodic loops of a uniformmagnetic field. We design a pattern featuring
a topological defect that functions as an attractor or a repeller of micro-
particles, as well as a pattern that directs microparticles along a prescribed
complex trajectory. Using simple patterns and complex loops, we simulta-
neously and independently control the motion of several identical micro-
particles differing only in their positions above the pattern. Combining
complex patterns and complex loops we transport microparticles from
unknown locations to predefined positions and then force them to follow
arbitrarily complex trajectories concurrently. Our findings pave the way for
new avenues in transport control and dynamic self-assembly in colloidal
science.

The transport of microscopic colloidal particles suspended in fluids is
relevant for a wide range of physical and biological phenomena
including sedimentation1, drug delivery2–4, self-assembly5–7, microfluidic
devices8–13, and active systems14–16. External fields are often used to
control the motion of colloidal particles17–19. These include spatially
uniform fields such as gravitational20, electric21, and magnetic22–24 fields,
as well as spatially inhomogeneous fields such as the manipulation of
colloidal particles with optical tweezers25. Directed colloidal transport
can be achieved via Brownianmotors26–28 that combine non-equilibrium
fluctuations with spatially inhomogeneous energy landscapes29–31.

Usually, the colloidal particles are transported along the same
direction but the simultaneous transport of different particles across

different directions is useful and even a requisite in systems of various
length scales. For example, the transport of cargo on traffic networks
requires organizing various subtasks simultaneously32. Sorting of
microparticles driven on periodic lattices is possible because the
particles travel along different directions depending on, e.g. their
size33–36. In biology, the metabolism and structural diversity of the cell
demand the regulation of a vast array of molecular traffic across
intracellular and extracellular membranes.

In previous work, we have shown that robust, multidirectional,
and simultaneous control of colloidal particles that differ in, e.g. their
magnetic properties can be achieved with topological protection37,38.
As illustrated in Fig. 1a, paramagnetic particles are placed above a
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periodic magnetic pattern made of regions of positive and negative
magnetizations normal to the pattern. A uniform external magnetic
field of varying orientation drives the motion. The particles are trans-
ported following the minima of the periodic magnetic potential which
results from the interplay between the complex but static field of the
pattern and the simple but time-dependent uniformexternal field. The
orientation of the magnetic field varies in time-performing loops.
Hence, after one loop the orientation returns to its initial value. Loops
that wind around specific orientations induce the transport of the
colloidal particles by one unit cell of the magnetic pattern. During the
loop, minima of the magnetic potential cross from one unit cell to the
adjacent. Once the loop ends, the particle is in a position equivalent to
the initial one but in a different unit cell. The motion is topologically
protected in the sense that the precise shape of the loop is irrelevant.
Only the set of winding numbers of the modulation loop around
the specific orientations (the topological invariant) determines the
transport direction. The motion is therefore robust against
perturbations.

The specific orientations of the external field that are relevant to
control themotion depend on both the symmetry of the pattern37 (e.g.
square vs. hexagonal) and the particle properties. Hence, particleswith
different properties, e.g. paramagnetic and diamagnetic particles
above hexagonalmagnetic patterns39 aswell asmicro-rods of different
lengths38, can be transported in different directions independently and
simultaneously using periodic patterns. However, the use of periodic
patterns imposes several limitations on the transport. All particles that
belong to the same topological class (e.g. identical paramagnetic
particles or rods of the same length) are transported along the same
direction, independently of their absolute position above the pattern
as schematically represented in Fig. 1a. In addition, the location of the
particles above the pattern is unknown a priori and it must be deter-
mined externally via, e.g. direct visualization via microscopy.

These limitations are overcome here using inhomogeneous (non-
periodic) patterns.Wemake either the symmetry, Fig. 1b, or the global
orientation, Fig. 1c, of themagnetic patterndependent on the absolute
position above the pattern. As a result, the specific orientations of the

external field that control the motion depend also on the space
coordinate. The direction of the transport can then be locally con-
trolled by the modulation loop of the external field and also via the
local symmetry of the inhomogeneous magnetic pattern. We can
imprint the complexity of the transportmainly to the pattern, and then
use simple loops to generate complex transport as illustrated in Fig. 1b.
Following this idea we create non-periodic patterns that transport the
particles to a desired position by just repeating simple modulation
loops. We also create patterns in which the colloidal particles follow
arbitrarily complex trajectories driven by a simple time-periodic
modulation loop. Additionally, we create simple patterns and encode
the complexity of the transport in themodulation loops as sketched in
Fig. 1c. This allows us to simultaneously and independently control the
transport of identical colloidal particles located at different positions
above the pattern. We design for example a complex modulation loop
that controls the transport of 18 identical colloidal particles individu-
ally and simultaneously. Beyond its fundamental interest, our work
opens a new route to control the transport in colloidal systems with
potential applications in reconfigurable self-assembly40–43.

Results
Theplane inwhich theparticlesmove (action space) splits into allowed
and forbidden regions. In the allowed (forbidden) regions the sta-
tionary points of the magnetic potential are minima (saddle points).
The boundaries between allowed and forbidden regions in action
space are the fences. The position of the fences in control space C (a
sphere that represents all possible orientations of the external field)
depends on the symmetry of the pattern and it determines the loops
that induce colloidal transport (see Fig. 1). An extended summary of
the transport in periodic patterns37 is provided in Supplementary
Note 1 and Supplementary Figs. 1 and 2.

Here we focus on transport in inhomogeneous patterns. Sophis-
ticated transport modes can be achieved by adding complexity to
either the patterns, the loops, or to both of them. We see examples of
each type in the following sections. Details about the experiments and
computer simulations are given in the “Methods” section.

Fig. 1 | Periodic vs inhomogeneouspatterns. a Periodic square pattern (aunit cell
is highlighted in yellow),bhexagonal pattern inwhich the symmetryphaseϕ varies
in space, and c a pattern made of two square patterns rotated by an angle of 45°.
The patterns are made of regions with positive (black) and negative (white) mag-
netization normal to the pattern, see vertical arrows in (a). A polymer coating
protects the patterns and acts as a spacer for the paramagnetic colloidal particles
(orange) that are suspended in a solvent andmove in a plane parallel to the pattern
(action space). The motion is driven by a uniform external field (green arrow). The
control space C (gray spheres) represents all possible orientations of the external
field. The orientation of the external field varies in time performing a loop (green
curves). Loops that wind around special orientations induce particle transport.
These special orientations are determined by the position of the fences and

bifurcation points in control space which depend on the local symmetry of the
pattern. Shown are the fences of square patterns for one (a) and two (c) different
orientations, as well as those of four hexagonal patterns with different symmetry
phasesϕ (b).We also indicate the bifurcation points (black circles) in (b) which are
those points where two fence segments meet. Next to the fences, we show the
corresponding unit cell of the pattern. In periodic patterns (a) all the particles
move in the samedirection (orange arrows), independently of their position above
the pattern. In inhomogeneous patterns, a single modulation loop can induce
transport in different directions depending on the position of the particle above
the pattern. Complex particle trajectories can be generated using complex pat-
terns and simple loops (b) or simple patterns and complex loops (c).
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Complex patterns and simple loops
There is a full family of periodic hexagonal patterns characterized by
the value of the symmetry phase ϕ (see the “Methods” section) and
illustrative examples in Fig. 1b. We render the symmetry phase a con-
tinuous function of the position, which creates an inhomogeneous
symmetry phasemodulated pattern such as the example in Fig. 1b. For
slow enough spatial changes of the symmetry phase, the cells of the
modulated pattern deviate only weakly from the Wigner–Seitz cells of
corresponding periodic patterns with fixed values of the symmetry
phase. Hence, knowing how to control the transport in periodic pat-
terns is enough to control the transport in inhomogeneous situations.

We focus first on complex inhomogeneous patterns designed to
achieve locally different transport for a single specific task.Most of the
complexity of the transport is embedded in the pattern and therefore
the modulation loops of the external field are simple.

Topological defect in the symmetry phase
Weshow inFig. 2 a symmetry phasemodulated hexagonal pattern. The
details to generate the pattern aregiven in the “Methods” section. Each
time we wind around the center of the pattern we go through the full
family of hexagonal patterns exactly once (including the inverse pat-
terns with opposite magnetization) and return to the initial symmetry
phase. This introduces a topological defect at the center of the pattern
where the symmetry phase is not well defined.

The symmetry phase is constant along radial directions and the
modulation is weak everywhere except near the defect. To illustrate
this, we have dissected the pattern into hexagonal cells in Fig. 2a. We
also show enlarged Wigner Seitz cells of periodic patterns with a
symmetry phase corresponding to that of the radial ray of the inho-
mogeneous pattern. The Wigner Seitz cells of the periodic patterns
resemble closely the cells of the inhomogeneous pattern, even in the
proximity of the central defect. It is therefore expected that the
transport in the inhomogeneouspatterncanbeunderstood in termsof
the transport in periodic patterns.

The location of the fences in the control space varies substantially
as we wind around the defect in the action space. (See the stereo-
graphic projections of control space for selected values of the sym-
metry phase in Fig. 2a and Supplementary Fig. 1.) Hence, it is possible
to transport the microparticles into different directions depending on
the sector of the pattern. In particular, we can construct modulation
loops that use the central defect of the pattern as either an attractor or
a repeller of colloidal particles.

A stereographic projection of the modulation loop that attracts
the particles towards the defect is shown in Fig. 2a next to each
enlarged Wigner–Seitz cell. The loop is made of two subloops. Only
one of the subloops is active (green) for each value of the symmetry
phase ϕ. The subloop is active in the sense that it induces net
transport for those particles located in sectors of the pattern with

Fig. 2 | Pattern with a topological defect. a Magnetic pattern with a topological
defect in the symmetry phase ϕ. The pattern is dissected into hexagonal cells
(green hexagons). The central cell (yellow) contains the defect. Enlarged
Wigner–Seitz cells of selected periodic hexagonal lattices with symmetry phase ϕ

(see color bar) corresponding to their position in the pattern are shown. Next to
each enlarged cell, weplot a stereographicprojection of the corresponding control
space and themodulation loop that attracts the particles toward the defect. Shown
are the fences (blue), the equator (violet), and both the active (green) and the

inactive (red) subloops. The loop winds as indicated by the circular black arrow.
The two apparently open segments of the loop are actually joined at the south pole
of the control space (not visible due to the projection). The transport direction
(orange arrows) changes at the transition lines (black-dashed lines). b Illustrative
configurations of the position of transition lines (black-dashed lines) that give rise
to particle trajectories moving towards the defect (attractor) or away from it
(repeller). The particle trajectories are illustrated in orange.
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that value of ϕ. The other subloop is inactive (red) in the sense that
after one complete subloop, the particle returns to its position and
hence there is no net transport. Using two subloops we control
simultaneously the transport direction in sectors of the pattern with
opposite magnetization (different values of the symmetry phase).
Note for example how the active subloop in regions with C6 sym-
metry (ϕ = 0) becomes the inactive subloop in those regions with an
inverse pattern C 6 (ϕ = ± π/3) and vice versa (see Fig. 2a). To induce
transport a subloop must wind around at least three bifurcation
points of the fences in control space C, as explained in the Supple-
mentary Note 1. Recall that control space is simply the surface of a
sphere in which each point corresponds to one orientation of the
external magnetic field. The bifurcation points are the points in
which two segments of the fences meet in C, see examples in Sup-
plementary Fig. 2.

The complete attractor loop, made of two subloops, induces four
different transport directions (along ±a1 and along ±a3) depending on
the value of the symmetry phase (see Fig. 2a). Here, ai, i = 1, 2, 3 are
three lattice vectors of the periodic hexagonal pattern (see Fig. 2 and
the “Methods” section). The transition between the different transport
directions, e.g. from+a3 to −a1, occurs at specific values of the sym-
metry phase that can be adjustedwith the loop. See the transition lines
(dashed-black lines) in Fig. 2a.

By controlling the location of the transition lines we fix whether
the defect acts as an attractor or a repeller of particles (see Fig. 2b). In
both cases, the particles wind clockwise around the defect. Instead of
changing the position of the transition lines, we could also control
whether the defect attracts or repels microparticles by reversing the
direction of the transport. However, this requires a complete redesign
of the modulation loop. Simply reversing the direction of the mod-
ulation loop does not reverse in general the transport direction in the
whole pattern due to the occurrence of non-time reversal ratchets in
hexagonal patterns37,39.

In Fig. 3a, b we show the trajectories of a colloidal particle located
above the defect pattern according to Brownian dynamics simulations.
The particle is randomly initialized above the pattern and then sub-
jected to several repetitions of the attractor loop shown in Fig. 2. We
also show the trajectory followed by the particle under the repetition
of the repeller loop, depicted in Fig. 3c. The repeller and the attractor
loops have similar shapes since they differ only in the values of ϕ at
which the transport direction changes. The corresponding experi-
mental trajectories are shown in Fig. 3d. In the experiments, there are
several colloidal particles that are initially located above the pattern in
random positions. If the attractor loop is repeated enough times, one
colloidal particle will have reached the defect with almost certainty.
Once a particle reaches the defect it stays there. In the experiments,
further colloidal particles that try to enter the defect are repelled by
the particle already occupying the center via dipolar repulsion.We can
thus use the attractor loop to initialize one microparticle in the defect
center. Whereas the location prior to the action of the attractor loop
was unknown, it is known after the repeated application of the loop.
The topological initialization is robust to thermal fluctuations. Brow-
niandynamics simulations of colloidal particles athigher temperatures
still initialize the location of the defect. We briefly discuss the effect of
finite temperature in the “Methods” section and Supplementary Fig. 4.

Encoding complex trajectories in the pattern
Patternswith spatialmodulation of the symmetry phase canbe used to
encode arbitrarily complex particle trajectories. The patterns are
designed to induce the desired trajectory when the particles are sub-
jected to the repetition of a simplemodulation loop of the orientation
of the external field. Themodulation loop transports particles along all
possible directions in hexagonal patterns, i.e. along ±ai with i = 1, 2, 3,
but in a way that only one direction is active for a given value of the
symmetry phase. For example, particles on top of regions with C6

symmetry are transported towards −a3. The transport direction

Fig. 3 | Attractor and repeller of particles. a Trajectory of a colloidal particle
(randomly initialized) obtained with Brownian dynamics simulations above a pat-
tern with a central topological defect in the symmetry phase. The blue (orange)
trajectory is generated by the repetition of the attractor (repeller)modulation loop
that moves particles towards (away from) the defect. The pattern is colored
according to the value of the symmetry phase (color bar). The scale bar is 10a.
b Close-up of the region indicated by a yellow square in (a) and the trajectories
around the central defect. The background shows the local magnetization of the
pattern. c Stereographic projection of the repeller loop (green) in C. The equator
(violet circle) and the fences of the C6 and S6 patterns as well as their inverse
patterns, C 6 and S 6, (dashed curves) are also depicted as a reference. The fences
are colored according to the value of the symmetryphase. The twoapparently open

segments of the loop are actually joined at the south pole of the control space (not
visible due to the projection). The loop ismade of two subloopswinding clockwise,
as indicated by the circular arrows. d Experimental trajectories of several colloidal
particles (labeled with a numbered circle) above the same pattern with a topolo-
gical defect (yellow circle). The trajectories induced by the attractor (repeller) loop
are colored in blue (orange). Blue and orange trajectories correspond to different
experiments and have been superimposed in the figure. Note that under the
microscope regions with negative magnetization appear darker than regions with
positivemagnetization, i.e. the opposite of our color choice in e.g. (b). The scale bar
is 10a and the lattice constant of one cell is approx. 14μm.Movies of the simulated
and the experimental motion are provided in Supplementary Movie 1.
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changes at specific values of the symmetry phase determined by the
modulation loop. In Fig. 4awe show themodulation loop togetherwith
the representative fences and the resulting transport direction for
each value of the symmetry phase.

The detailed procedure to generate the patterns is described in
the “Methods” section and Supplementary Fig. 3. In essence, we first
draw the trajectories that the particles should follow by hand. Then, at
each position along the trajectory, we encode the transport direction
using the value of the symmetry phase. Finally, the value of the sym-
metry phase at each point in the complete pattern is calculated as a
spatially resolved weighted average of the symmetry phase along the
trajectory. As a result, the symmetry phase varies smoothly across the
pattern except for the occurrence of string-like topological defects in
the symmetry phase.

Figure 4b shows a symmetry phase modulated pattern together
with the corresponding simulated particle trajectories. The value of
the symmetry phase is color-coded (see color bar). The pattern is
designed to transport the particles along one stable trajectory that
forms a closed loop resembling the letter “B”. In Fig. 4b we have
highlighted the stable trajectory with a thick green line. Most particles
above the pattern either enter the stable trajectory or leave the pat-
tern. Occasionally one particle gets stuck in specific regions of the
pattern. This can potentially be avoided by the introduction of random
fluctuations in the modulation loop. In the presence of strong Brow-
nian motion, the stable trajectories broaden to a width of a few unit
cells, and additional stable trajectories might occur.

Corresponding experimental trajectories are shown in Fig. 4c.
Even though the agreement is not perfect, the experimental trajec-
tories follow closely the prescribed letter “B”, demonstrating, there-
fore, thepotential of themethod. Small variations in theposition of the
fences due to the imperfections of the pattern are likely the reason
behind the deviations shown in the experiments. Fine-tuning the
modulation loop and the height of the particles above the pattern
would likely improve the results.

Simple patterns and complex loops
We follow now the opposite approach by encoding the complexity in
the modulation loop. We create simple inhomogeneous patterns by

concatenating large patches of periodic square patterns. The patches
differ in the global orientation of the lattice vectors given by a global
phase ψ (see the “Methods” section). Each (simple) patch allows for a
rich variety of transport tasks. The task in each patch can be controlled
individually and simultaneously using rather complex modulation
loops in control space.

The fences of the C4 square pattern are four equidistant points on
the equator (see Supplementary Note 1). The four fence points in C
correspond to external fields pointing along the positive and negative
directions of the lattice vectors37,44, i.e. along ±a1 and ±a2. Therefore,
rotating the lattice vectors also rotates the position of the fences in
control space. Thus, it is possible to construct loops that wind around
different fences in C, and hence induce different transport directions,
depending on the orientation of the pattern ψ. An illustration is shown
in Fig. 5a.

Since the fences are points in C it is in principle possible to
concatenate an arbitrarily large number of patches with different
orientations and control the motion in each of them independently.
In practice, limiting factors might appear due to e.g. imperfections
in the patterns that effectively make the fences in C extended
regions, the angular resolution with which the orientation of the
external field can be controlled, and the presence of Brownian
motion. Due to the limiting factors, two patterns can be resolved
independently if they are rotated by an angle of at least Δψ. Hence,
the maximum number of patches that can be controlled indepen-
dently is (π/2)/Δψ since after a rotation of π/2 a C4 pattern repeats
itself (and so do the fences).

With a resolution Δψ = 5° it is then possible to control the motion
in up to 18 patches independently. As an example we program a single
loop in C that writes the first eighteen letters of the alphabet simulta-
neously, (see Fig. 5b and SupplementaryMovie 3). Note that the letters
are rotated by an angle ψ. For simplicity, we have designed an algo-
rithm to write custom trajectories in a square pattern with global
orientation ψ =0. Next, we apply a global rotation to the modulation
loop to control the transport in patterns with a generic orientation ψ.
As a result, the trajectories are also rotated.

The loop that writes the first 18 letters of the alphabet contains
2086 simple commands. Each command is a small closed subloop that

Fig. 4 | Symmetry phase modulated pattern. a Stereographic projection of
control space showing the equator (violet circle), the closed modulation loop
(green-solid curve), and the fences of patterns with C6, S6, C 6 and S 6 symmetries
(dashed curves). The two apparently open segments of the loop are actually joined
at the south pole of the control space (not visible due to the projection). The fences
are colored according to the value of the symmetry phase (see the annular color
bar). The transport directions induced by the loop (orange arrows) change at
specific values of the symmetry phase ϕ as indicated by the transition lines (black-
dashed lines). b Symmetry phase modulated pattern (the color indicates the value
of the symmetry phase). A global rotation, ψ =π/2 in Eq. (6), makes one transport
direction (lattice vector a3) parallel to the vertical axis. Particles above the pattern
and subjected to the repetition of the modulation loop in (a) write the letter ''B''.

Thin cyan lines show simulated particle trajectories for randomly initialized parti-
cles above the pattern. After several repetitions of the modulation loop, most
particles enter the stable trajectory, highlighted with a thick green-solid line.
c Experimental trajectories of colloidal particles above the pattern depicted in (b)
and subjected to the modulation loop shown in (a). The region shown in the
experiments (c) is smaller than that in simulations (b) due to the field of view of the
microscope. The inset in (c) is a close view of the region indicated with a yellow
circle in which we have altered the contrast of the image to better visualize the
magnetization. Under the microscope regions with negative magnetization appear
darker than those with positive magnetization. A colloidal particle (black dot) is
also visible in the inset. A movie of the motion in simulations and experiments is
provided in Supplementary Movie 2.

Article https://doi.org/10.1038/s41467-023-43390-0

Nature Communications |         (2023) 14:7517 5

73



either transports a particle in one unit cell along the four possible
directions of the square lattice or leaves the particle in the same
position, similar to the loops in Fig. 5a. Even though an angular reso-
lution of Δψ = 5° is achievable experimentally, the number of com-
mands required by the complete loop exceeds our current
experimental capabilities. Nevertheless, we show in Fig. 5c, the
experimental trajectories of a simplified loop that writes low-
resolution versions of the first four letters of the alphabet. The loop
is made of 96 simple commands. The agreement with computer
simulations is essentially perfect, as we demonstrate in a one-to-one
comparison in Supplementary Movie 4.

The simultaneous control of the transport in several patches of
rotated square patterns is particularly simple due to the simplicity of
the fences in C. However, the same ideas apply to patterns with other
symmetry classes.

Here,wehave initialized theparticles in thedesiredpositionswithin
their respective patches. As we discuss now, it is possible to automatize
this process by combining the patches with complex patterns.

Complex patterns and complex loops
Complete control over the colloidal transport is achieved by combin-
ing complexpatterns and complex loops. In Fig. 6we combine threeC4

patches that differ in their global orientation ψ and three hexagonal
patterns with a topological defect in the symmetry phase. The transi-
tion between both patterns occurs smoothly within a region of length
equivalent to approximately five unit cells of the square patterns.

We first make use of the patterns with a topological defect to
move randomly placed particles toward the defects. We simply repeat
the attractor modulation loop shown in Fig. 2 several times such that
the particles move and stay at the defects, see the blue trajectories of

the particles in Fig. 6. Once this initialization stage is finished we know
the precise position of the particles and can control them indepen-
dently. Using two simple loops we transport the particles downwards
from the defects to the square patches. We use one loop to move the
particles in the defect pattern (orange trajectories) and another loop
to move the particles in the transition region and the square patches
(green trajectories). Then, a relatively complex loop controls the
motion of the three particles independently. Each particle follows a
complex trajectory drawing either a square, a triangle, or a cross
depending on the value of the global orientation ψ (red trajectories).
Experimentally we tested each part of the loop separately, as shown in
the insets of Fig. 6. Again, the agreement between simulations and
experiments is excellent. The small errors that occur in the experi-
mental trajectories, likely due to imperfections in the pattern, do not
affect the global shape of the trajectories. A movie of the whole pro-
cess is shown in Supplementary Movie 5.

Discussion
We have shown that the combination of a complex static magnetic
field with a simple time-dependent uniform external field of varying
orientation allows us to control the motion of several identical
microparticles independently and simultaneously. The transport
complexity canbe broken down to a finite set of special orientations of
the external field. A modulation loop that winds around one of those
orientations induces transport along a known direction in a known
region of the pattern. Themotion is topologically protected since only
the winding numbers of the modulation loop around the special
orientations (topological invariant) are important. Hence, it is rela-
tively simple to generate loops and patterns that induce arbitrarily
complex trajectories. Our ideasmight be transferable to other systems

Fig. 5 | Simple patterns and complex loops. a Five squaremagnetic patterns (and
their corresponding control spaces) with a different value of the global orientation
ψ, as indicated. The fences in C (blue circles) are four points located on the equator
(violet circle). Thepositionof the fences depends on the valueofψ. Themodulation
loop consists of four interconnected subloops that wind counterclockwise. A
subloop is active (green) if it winds around a fence point (blue circles) and inactive
(red) otherwise. The orange segments of the modulation loop simply connect the
different subloops. Depending on the value of ψ, the modulation loop induces
different transport directions (green arrows) or no transport at all. b A pattern
made of 18 patches with square symmetry and different global orientationψ (color
bar). A modulation loop controls the trajectories of particles above each patch

simultaneously and independently. Theparticle trajectories (black)write thefirst 18
letters of the alphabet. The length of the scale bar is 10a. A movie can be found in
Supplementary Movie 3. c Experimental trajectories of colloidal particles above
four square patches rotated with respect to each other. A schematic unit cell
illustrating the global orientation is depicted in each patch. The length of the scale
bar is 5a and in this case, we use patterns with a = 7μm. A unique modulation loop
transports the four colloidal particles simultaneously. The trajectories are colored
according to the time evolution from blue (initial time) to red (final time). A movie
showing the whole time evolution and a one-to-one comparison with computer
simulations is available in Supplementary Movie 4.
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in which the transport is also based on topological protection. These
include, solitons45, nano-machines46,47, sound waves48,49, photons50,51,
and quantum mechanical excitations52.

The complexity of the transport is encoded in the magnetic
potential which varies in space and in time via the magnetic patterns
and the modulation loops, respectively. An alternative approach that
encodes the transport in the particle shape has appeared recently53.
There, Sobolev et al. find the shape of the rigid body that traces the
desired trajectory when rolling down a slope. We have restricted our
study to identical isotropic paramagnetic particles. However, as dis-
cussed in the “Introduction” section, colloidal particles with different
characteristics (e.g. diamagnetic and paramagnetic particles or parti-
cles with different shapes) might belong to different topological clas-
ses. The fences of particles belonging to different topological classes
are located in different regions in C. Above non-periodic patterns, the
control space of particles belonging to different topological classes
will also depend on the space coordinate. A precise control over the
transport depending not only on the position but also on the particle
characteristics is then possible. Therefore, beyond offering the possi-
bility to control the transport of identical microparticles simulta-
neously, our work also opens a new route towards dynamical self-
assembly in colloidal science. As an example, we have created a col-
loidal rod factory54 in which identical isotropic particles are trans-
ported toward a reaction site in which they self-assemble. Only when
they reach the desired aspect ratio, do the rods leave the poly-
merization site following the desired trajectory. The use of patchy
colloids55–58 with, e.g. hybridizationof complementary DNA strands59–61

and other shape-anisotropic particles62,63 would offer more versatility
to create complex functional structures.

We have considered transport above patterns made of identical
patches rotated with respect to each other. It is also possible to com-
bine patches of patterns with different symmetries provided that their
respective fences do not overlap in control space. Moreover, a com-
bination of both, i.e. a pattern made of patches with different sym-
metries, e.g. C4 andC6, that in addition are rotatedwith respect to each
other would substantially increase the number of tasks that can be
done simultaneously since their respective fences in control space do
not overlap.

In the experiments, the Brownian motion of the colloidal par-
ticles is negligible but it might play a role in other systems with
smaller colloids and/or at higher temperatures. Since the transport
is topologically protected, it is robust against perturbations such as
the presence of Brownian motion44. If we make Brownian motion
more prominent (e.g. by increasing the temperature or reducing the
particle size) the particles start to deviate from the expected tra-
jectories but overall the transport is robust. An example of Brow-
nian dynamics simulations at different temperatures is shown in
Supplementary Fig. 4. The topological protection will disappear
due to Brownian motion at sufficiently high temperatures and for
small enough particles. A possible solution would then be to
increase the magnitude of either the pattern field or the external
magnetic field such that the magnetic forces dominate again the
transport.

Our systems are very dilute and therefore direct interparticle
interactions and hydrodynamic interactions do not play any role.
However, it would be interesting to look at the effect of both super-
adiabatic forces64 and long-range hydrodynamic interactions65 in
denser systems.

Fig. 6 | Complex patterns and complex loops. Brownian dynamics simulations of
the transport of colloidal particles above a complex patternmade of three patches,
each one with a topological defect in the symmetry phase (top) connected to three
patcheswith square symmetry (down) rotatedwith respect to eachother. The color
of the patches with topological defects indicates the value of the symmetry phase
ϕ. The color of the square patches indicates the global rotationψ, illustratedwith a
sketchof themagnetization. Aunique complexmodulation loopmadeof fourparts
drives the transport in the whole system. In the first part, the repetition of the

attractor loop moves the particles toward the defects (blue trajectories) and lets
them wait there. The second part of the loop moves the particles downwards
through the patterns with defects (orange trajectories). The third part of the loop
moves the particles downwards in the square patterns (green trajectories). The last
part of the loop writes a custom trajectory (square, triangle, and cross) depending
on the global orientation ψ of the pattern (red trajectories). Insets show the cor-
responding experimental trajectories. The length of the scale bars (yellow) is 15a.
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Methods
System setup and computer simulations
Identical paramagnetic colloidal particles immersed in a solvent are
located above amagnetic pattern and are restricted tomove in a plane
parallel to the pattern (xy-plane), which we call action spaceA (Fig. 1a).
The pattern contains regions of positive, +m

p
, and negative, �m

p
,

uniform magnetization along the z-direction (normal to the pattern).
Thewidth of the domainwalls between oppositelymagnetized regions
is negligible. The particles are driven by a time- and space-dependent
external magnetic potential VmagðrA,tÞ. The potential is generated by
the static but space-dependent magnetic field of the pattern HpðrAÞ
and a time-dependent but spatially homogeneous external magnetic
field Hext(t). Here rA is the space coordinate in action space and t
denotes the time. The magnitude of the external field (constant) is
much larger than that of the pattern field, i.e. Hext ≫HpðrAÞ for any
position in A. Hence, the magnetic potential, which is proportional to
the square of the total magnetic field Vmag / �ðHext +HpÞ � ðHext +HpÞ,
is dominated by the coupling between the external and the pattern
fields:

VmagðrA,tÞ≈�v0χμ0HpðrAÞ �HextðtÞ: ð1Þ

Here μ0 is the vacuum permeability, χ is the magnetic susceptibility of
the colloidal particle, and v0 is the particle volume37. We have omitted
the termproportional toHext ⋅Hext in V

mag
since it is just a constant and

therefore it does not affect the motion.
In the overdamped limit, the equation of motion of one particle

reads

γ _rA = �∇AVmag +η, ð2Þ

where γ is the friction coefficient against the implicit solvent, the
overdot denotes time derivative, ∇A is the derivative with respect to
rA, and η is a delta-correlated Gaussian random force with zero mean
that models the effect of the collisions between the molecules of the
solvent and the colloidal particle (Brownian motion). We define our
energy scale ε as the absolute value of the average external energy that
a particle would have when the external magnetic field points normal
to the pattern. Hence, absolute temperature T is given in reduced units
kBT/εwhere kB is the Boltzmann’s constant. We use themagnitude of a
lattice vector of the periodic pattern a as the length scale. The
timescale is hence given by τ = γa2/ε. We use adaptive Brownian
dynamics66 to efficiently integrate the equation of motion. In the
experiments, the magnetic forces strongly dominate over the random
forces. Hence, random forces do not play any role. We use Brownian
dynamics simulations due to the overdamped character of the motion
in the viscous aqueous solvent. The code to simulate the colloidal
motion and to generate themodulation loops is available via Zenodo67.

As the external magnetic field is homogeneous in space, it can be
solely described by its orientation. The set of all possible orientations
ofHext forms a spherical surface that we call control space C. A point in
C indicates an orientation of Hext. We drive the colloidal motion by
performing closed loopsof the orientationofHext inC. Loops thatwind
around specific points in C induce colloidal motion. That is, once the
loop returns to its initial position, the colloidal particle has moved to a
different unit cell of the pattern. The transport is topologically pro-
tected since the precise formof the loop is irrelevant. Only thewinding
numbers of the loop around the specific points in C (which are the
topological invariants) determine the transport.

Experiments
Themagnetic filmswith the desired patterns imprinted are thin Co/Au
multilayers with perpendicular magnetic anisotropy68 lithographically
patterned via a home-built69 keV-He-ion bombardment70. Further
details about the fabrication process can be found in refs. 37,71–73.

The patterns have lattice vectors of magnitude 14μm if not stated
otherwise.

To reduce the influence of lateral magnetic field fluctuations due
to the fabrication procedure (which increases near the substrate) we
coat the magnetic pattern with a photo-resist film (thickness 1.6μm).
The coating layer serves other two purposes: it protects the patterns
and it acts as a spacer between the colloidal particles and the pattern
(see Fig. 1), in order to secure the condition ∣Hext∣≫ ∣Hp∣. We then place
paramagnetic colloids of diameter 2.8μm immersed in deionized
water on top of the pattern. The microparticles sediment and are
suspended roughly the Debye length above the negatively charged
coating layer on the pattern. The motion above the pattern is effec-
tively two-dimensional.

The uniform external magnetic field is generated with three coils
arranged around the pattern and controlled with a computer. The
magnitude of the external field is approximately 4 × 103 A/m. Standard
reflection microscopy techniques are used to visualize both the col-
loids and the pattern.

Square and hexagonal periodic patterns
Consider magnetic periodic N-fold symmetric patterns with either
N = 2 (square patterns) orN = 3 (hexagonal patterns). Examples of both
types are shown in Supplementary Fig. 1. In the limit of an infinitely thin
pattern located at z = 0, the magnetization is

MðrÞ=Mðr?ÞδðzÞêz , ð3Þ

with δ(⋅) the Dirac distribution, êz the unit vector normal to the pat-
tern, r⊥ = (x, y), and

Mðr?Þ=mpsign
XN

i= 1
cosðqi � ðr? � bÞ � ϕÞ+m0ðϕÞ

� �
, ð4Þ

where mp is the saturation magnetization of the domains. The wave
vectors qi in the square patterns are

qi =q0
�sinðπi=2� ψÞ
cosðπi=2� ψÞ

� �
, i= 1,2 ð5Þ

withmagnitudeq0 = 2π/a andabeing themagnitudeof a lattice vector,
which in square patterns can be defined with the wave vectors being
the reciprocal lattice vectors. That is, ai ⋅qj = 2πδij (see Supplementary
Fig. 1b). The global phase ψ sets the orientation of the lattice vectors
with respect to a fixed laboratory frame.

In the hexagonal patterns, the wave vectors are

qi =q0
� sinð2πi=3� ψÞ
cosð2πi=3� ψÞ

� �
, i= 1,2,3 ð6Þ

with magnitude q0 = 4π=ða
ffiffiffi
3

p
Þ. Here, the three wave vectors can be

related to three (linearly dependent) lattice vectors via qi ⋅ aj = 2πδij for
i = 1, 2 and a3 ⋅q3 = 0 (see Supplementary Fig. 1b).

In both square and hexagonal patterns, the wave vectors point
into the N different symmetry directions. The translational vector b in
Eq. (4) plays a relevant role only in inhomogeneous patterns. In peri-
odic patterns, we usually set b =0.

In square patterns, the symmetry phase ϕ in the magnetization
(see Eq. (4)), simply causes a trivial shift of all Wigner–Seitz cells with
respect to the origin of the pattern. Hence, for simplicity, we set it to
zero. In hexagonal patterns however, the symmetry phaseϕ has a non-
trivial effect since it determines the point symmetry of the pattern (see
Supplementary Fig. 1c), and therefore the modulation loops required
to transport the colloidal particles37. The Wigner–Seitz cell of a hex-
agonal pattern contains in general three symmetry points with C3

symmetry (rotation through an angle 2π/3 about the symmetry axis).
For special values of the symmetry phase, one of the three-fold
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symmetric points acquires a higher symmetry; either six-fold hex-
agonal C6 symmetry (for ϕ =0 and ϕ = ±π/3) or S6 symmetry, i.e. a C6

followed by a perpendicular reflection (for ϕ = ±π/6).
Finally, the parameterm0 in Eq. (4), which is actually a function of

the symmetry phase ϕ, alters the area ratio between up-magnetized
and down-magnetized domains. Following Loehr et al.37, we use here
m0ðϕÞ= 1

2 cosð3ϕÞδN,3 (therefore in square patterns m0 = 0) to ensure
that the average magnetization in hexagonal patterns is very small, i.e.

Z
Mðr?Þdr? ≈0: ð7Þ

Magnetic field of the pattern
To numerically compute themagnetic field of the pattern,Hp(r), at the
desired position in action space we first discretize the pattern in a
square grid with resolution 0.03a and compute the magnetization at
the grid points via Eq. (4). Next, we compute the magnetic field at the
grid points by convolution of the magnetization with the Green’s-
function of the system:

HpðrÞ=Hpðr?,zÞ=
1
4π

Z
dr0?

r? � r0? + zêz
jr? � r0? + zêz j3

Mðr0?Þ: ð8Þ

Here r⊥ = (x, y) is the position coordinate in a plane parallel to the
pattern. We calculate the magnetic field at an elevation above the
pattern z =0.5a, which is comparable to the experimental value. As
usual, we perform the convolution in Fourier space.

To calculate the magnetic field at a generic, off-grid, position we
simply interpolate the magnetic field using bicubic splines.

Pattern with a topological defect
For the pattern with a topological defect shown in Fig. 2, the symmetry
phase varies with the position r⊥ as

ϕðr?Þ=
1
3

π
2
� arctan q3 � r?,êz � ðr? ×q3Þ

�� �
, ð9Þ

and the global orientational phase is set to ψ =0 in Eq. (6). For our
choice of wave vectors (see Eq. (6) and Supplementary Fig. 1b), the
symmetry phase modulation is simply ϕðr?Þ= π=2� arctanðx,yÞ� �

=3.
Here arctanðy,xÞ returns the four-quadrant inverse tangent of y/x. The
symmetry phase varies therefore betweenϕ = −π/3 and π/3 as we wind
once around the origin. The topological charge of the defect located at
the center of the pattern (r⊥ =0) is q =Δϕ/(2π/p) = 1. Here Δϕ = 2π/3 is
the angle that the director rotates if we wind once counter-clockwise
around the defect, and p = 3 is the p-atic symmetry of the director
field74. (The symmetry phase can be described with a 3-atic director
field for which the local orientations are defined modulo π/3.) Varying
the symmetry phase between −π/3 and π/3 also introduces a shift of
the unit cell, cf. the unit cells for ϕ =π/3 and −π/3 in Supplementary
Fig. 1c. To rectify this shift and avoid therefore discontinuities in the
magnetization of the pattern, we need to use a local shift vector in Eq.
(4) given by

bðr?Þ= � ða1 + a2Þ
ϕðr?Þ
2π

: ð10Þ

The shift vector can be understoodas a Burgers vector since it corrects
for the spatial distortion of the pattern around the defect.

Symmetry phase modulated patterns
To encode in the pattern the desired particle trajectories, we use the
drawing softwareKrita75.Weprescribe the stable trajectory on a square
image with a side-length of 1000 pixels. In Krita, we draw the desired

trajectory with a brush (thickness 1 pixel) that encodes the drawing
direction in the hue of the colored pixels. The drawing direction
directly translates into the transport direction that the particles will
follow above the pattern. This procedure results in an image that is
essentially empty except for the trajectory lines. We then map from
hue to the symmetry phaseϕ. An example of the pattern at this stage is
shown in Supplementary Fig. 3a. The mapping from hue to ϕ is simply
a linear transformation.

Next, we give a value to the symmetry phase everywhere in the
pattern. To calculate the phase at a generic position r⊥ = (x, y) we
average over all the prescribed phases along the trajectories. Each
phase along the trajectory is weighted with a weight function pro-
portional to 1=r2d, with rd the distance between r⊥ and a point on the
trajectory. Special care needs to be taken due to the periodicity of the
symmetry phase76. We first transform the phases along the trajectories
into unit vectors, nextweaverage the vectors, and then transformback
the averaged vector into a value of the symmetry phase. An illustration
of the pattern after this stage is shown in Supplementary Fig. 3b.
Finally, we use the value of the symmetry phase in thewhole pattern to
calculate the magnetization via Eq. (4) (see Supplementary Fig. 3c).

Data availability
The code to simulate the system and to generate themodulation loops
is available at Zenodo67. All other data supporting the findings are
available from the corresponding author upon request.

Code availability
A code to perform the adaptive BrownianDynamics simulations of the
colloidal particles as well as to generate the modulation loops is
available at Zenodo67.
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SUPPLEMENTARY NOTE 1
SIMPLE PATTERNS AND SIMPLE LOOPS

We summarize here the topological transport control of isotropic magnetic colloidal particles above periodic magnetic
patterns. A sketch of the system and the different types of periodic patterns is shown in Supplemental Fig. 1. Detailed
theoretical and experimental studies can be found in Refs. [1–3]. For a given orientation of the external magnetic
field, there is in general at least one minimum of the magnetic potential per Wigner-Seitz cell. During a modulation
loop, the changes in the orientation of Hext are slow enough such that the colloidal particles can follow a minimum
of the magnetic potential at every time. In this sense the colloidal motion is adiabatic except if the minimum that
transports a particles disappears (e.g. due to the annihilation with a saddle point). In such cases, the colloidal particle
performs a ratchet motion towards a minimum nearby.

To control the colloidal transport we therefore need to understand the stationary points of the magnetic potential.
The position of the minima in action space depends on the orientation of Hext and on the symmetry of the pattern.
By analysing the eigenvectors and the eigenvalues of the Hessian matrix of the magnetic potential, it turns out [1–3]
that action space can be split into allowed and forbidden regions for the colloidal particles, see Supplemental Fig. 2.
For each space point in an allowed region it is always possible to find an orientation of Hext such that the magnetic
potential is a minimum. Note also that a minimum of V

mag
can be transformed into a maximum by simply inverting

the external field since V
mag

∝ Hp ·Hext. Hence both minima and maxima of V
mag

can be found in the allowed regions.
For each space point in a forbidden region, there is an orientation of Hext such that the magnetic potential is a saddle
point, but never a minimum.

The boundary between the allowed and the forbidden regions are the fences. The location of the fences in both
action space and control space depend on the symmetry of the pattern. In a square pattern, the fences in C are four
equidistant points on the equator, see Supplemental Fig. 1(a). In hexagonal patterns however the fences are curves,
the shape and the position of which vary with the symmetry phase ϕ, Supplemental Fig. 1(c). Crucially, in hexagonal
patterns the fences of a given pattern and its corresponding inverse pattern (opposite magnetization) do not coincide
in control space, cf. the top and the bottom patterns in Supplemental Fig. 1(c). As we discuss now, this means that
the transport in a given pattern and its inverse pattern can be independently controlled with a single modulation
loop.

The position of the fences is relevant to control the colloidal motion, which in action space occurs through the allowed
regions. Two adjacent allowed regions are connected via points that we refer to as the gates, see Supplemental Fig. 2.
To adiabatically transport a particle from one allowed region to an adjacent allowed region, we need to modulate
Hext in C such that a minimum of the potential crosses the gate that connects both regions. To induce transport
between two consecutive Wigner-Seitz cells using closed modulation loops in C, the loop in C needs to be such that
the particle crosses two different gates once the loop returns to its initial position. In square patterns such loops are
those that wind around the fence points [2, 3] in C, see an example in Supplemental Fig. 2(a). In hexagonal patterns,
the fences in C are curves made of twelve segments. Two fence segments in C meet at a bifurcation point. The loops
that induce transport in hexagonal patterns are those that wind around at least three consecutive bifurcation points
of the fences [1, 3] (enclosing therefore at least two consecutive fence segments). The bifurcation points are indicated

∗ delasheras.daniel@gmail.com; www.danieldelasheras.com
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Supplementary Fig. 1. Setup and magnetic patterns. (a) Sketch of the system: a square magnetic pattern with domains
of positive (black) and negative (white) magnetization parallel to the normal of the pattern. A Wigner-Seitz cell is highlighted
in yellow. Identical colloidal particles are located above the pattern. A spacer restricts the particle motion to action space A,
a plane parallel to the pattern. An external magnetic field Hext spatially uniform (green arrow) drives the motion via closed
loops (green loop) of its orientation in control space C (sphere). The fences in C are represented in blue. (b) Wigner-Seitz
cells in square and hexagonal patterns. The lattice vectors ai and the wave vectors qi are also shown. The magnitude of the
lattice vectors is a. In the experiments a = 14µm. (c) Magnetization of Wigner-Seitz cells and corresponding control spaces in
a family of hexagonal patterns with varying symmetry phase ϕ, as indicated. The fences are represented in blue. The control
space is represented via a sphere and also using a stereographic projection in which the equator is represented as a violet circle.
The patterns in the bottom row have the inverse magnetization than those in the upper row and the unit cell is also shifted.
The yellow and the blue hexagons indicate the position of points with S6 and C6 symmetry, respectively.

in Supplemental Fig. 2(b) and Supplemental Fig. 2(c) for patterns with C6 and S6 symmetries, respectively, together
with illustrative examples of loops that induce transport.

The simplest but non-trivial modulation loops that induce net motion are those that transport the particles along
the symmetry directions of the pattern. These are given by lattice vectors ±ai with i = 1, ..., N and N = 2 (N = 3)
in square (hexagonal) patterns, see Supplemental Fig. 1. Illustrative examples of such modulation loops are shown in
Supplemental Fig. 2.

The transport in square patterns is always adiabatic, and reversing the modulation loop reverses also the direction
of transport [2]. In contrast, in hexagonal patterns the transport can be either adiabatic or ratchet-like [1, 3]. In the
latter case, reversing the loop does not always reverse the direction of the transport. However, the direction of the
transport is in all cases deterministic and topologically protected.

The set of winding numbers of the modulation loop around the fences (square patterns) and around the bifurcation
points (hexagonal patterns) is the topological invariant that protects the motion. Any two loops with the same set
of winding numbers (topological invariant) will transport a particle in the same direction, even though the detailed
trajectories depend of course on the particular shapes of the loops.
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Supplementary Fig. 2. Simple patterns and simple loops. Action space and control space in square patterns (a) and
hexagonal patterns with C6 (b) and S6 (c) symmetries. A unit cell illustrating the allowed (green) and forbidden (red) regions
of action space, as well as the fences (blue lines) and the gates (yellow circles) is represented in each case. The control spaces
(stereographic projections) show the equator (violet circle), the fences (blue), and a modulation loop (orange). The twelve
bifurcation points in C of the fences of C6 and S6 patterns are also indicated with black circles. The modulation loop is the
same in all cases and it is made of two segments of constant azimuthal angle joined at the north and the south poles of control
space. The connection at the south pole (not visible due to the stereographic projection) is illustrated with a dotted orange
segment. The loops wind anticlockwise, as indicated by the circular orange arrows. Magnetization in patterns with square
(d), C6 (e), and S6 (f) symmetries. Black (white) regions are up (down) magnetized. The global phase is set to ψ = π/4 (d),
ψ = π/3 (e), and ψ = π/6 (f). Black dashed lines are Brownian dynamics simulations of the trajectories of colloidal particles
(orange circles) subjected to two consecutive modulation loops. The transport direction is indicated with black arrows. The
trajectories go along the allowed regions only. A unit cell of each pattern with corresponding lattice vectors ai is highlighted in
yellow. For visualization purposes we have shifted the unit cells of the C6 and the S6 patterns with respect to those represented
in Supplemental Fig. 1.
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Supplementary Fig. 3. Generation of symmetry phase modulated patterns. (a) Trajectory drawn in Krita and colored
according to the desired symmetry phase (color bar). The actual line is 1 pixel thick. Here we have made the trajectory thicker
for visualization purposes. (b) Symmetry phase in the whole pattern calculated using the value of the symmetry phase along
the trajectory. (c) Final magnetization of the pattern. The magnetization is positive in the black regions and negative in the
white regions. The inset is a close view of a small region of the pattern, as indicated. Approximately the same region of the
experimental pattern is highlighted in Fig. 4(c) of the main text. The length of the scale bars (yellow) is 15a.

Supplementary Fig. 4. Finite temperature effects. Brownian dynamics simulations of colloidal particles moving above an
inhomogeneous pattern at three different finite temperatures: kBT1/ε ≈ 3 · 10−3, kBT2/ε ≈ 1 · 10−2, and kBT1/ε ≈ 2 · 10−2.
The energy scale ϵ is the absolute value of the average external energy that a particle has when the external field points normal
to the pattern. The particle trajectories are represented in blue (the starting point is indicated with an orange circle). The
scale bar is 10a. The pattern is made of two subpatterns: a top subpattern with a topological defect in the symmetry phase
and a bottom subpattern with square symmetry. The insets are closed views of a small region (indicated by a yellow square)
showing the trajectory (blue) and the magnetization of the pattern.
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2.7 Summary and outlook

In this thesis we have investigated the transport of colloidal particles through
inhomogeneous energy landscapes. We have explored the transport of para-
magnetic particles above [4] and between magnetic patterns [1, 3] and have
also looked into the transport properties of colloidal particles in arrays of
optical tweezers. In publications 1 and 2 we have investigated how colloidal
particles move when positioned between two identical but rotated and shifted
patterns and pushed by a small drift force. We have shown that there exist
magic angles at which the mobility of the particles massively increases. This
can be seen as a classical implementation of twisted bilayer graphene and its
superconducting state at the magic angle. In future works one might inves-
tigate the effects of dynamically changing the twist angle on the transport
properties of the colloidal particles. This might allow us to build a dynamical
sorting machine for particles with different friction coefficients against the
solvent.

In publication 3 we have added topological transport to colloidal particles
sandwiched between twisted patterns and have explored the commensuration
effects of both transport modes, topological- and drift-transport. We have
seen new effects that resemble the quantum hall effect, i.e. that the average
velocity when measured in multiples of half the length of the lattice vector of
the supercells per loop, increases in integer steps for drift forces larger than
the critical force. The two transport types can also completely cancel any
macroscopic transport when they oppose each other. In a future project one
might investigate more complex loops that transport dia- and paramagnets in
different directions, while the drift force points in the same direction for both.
Then the interaction of the particles with each other and the competition of
the external forces might lead to novel phenomena.

We have also investigated the transport of particles above single inhomoge-
neous patterns driven by loops of an external magnetic field. When doing
so, we combined multiple simple periodic patterns to more interesting super-
patterns. In publication 4 we have exploited, that one can continuously
morph a hexagonal pattern through a whole class of patterns by changing its
symmetry phase. When doing this we can control the motion of particles in
different regions of the patterns independently. The path along which the
symmetry of the pattern changes can be chosen as any closed curve. There
exist then loops of the external magnetic field, that make particles follow
this prescribed curve. Patterns with such closed curves have at least one
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topological defect inside the closed curve where the symmetry phase is not
well defined. As a future project one might investigate the effects of multiple
of these defects on the transport of particles. Another possibility for the
combination of simple patterns with each other is to combine patterns of
different symmetry classes.

To conclude, we have developed novel ways to control the motion of colloidal
particles. In future studies it would be interesting to investigate how the
transport properties of the discussed systems change when multiple particles
that interact with each other are considered. We expect a transition from
topological transport to geometric transport in the system of publication 4,
as was already seen by Rossi et al. [52]. In the twisted systems, particle
interactions might allow for easier transport, even in channels that do not
allow for macroscopic transport for single particles. Behavior similar to
that has been observed by Antonov et. al. [89]. Interactions like these and
others might be a possibility to experimentally measure superadiabatic forces
[90–92].

86



3 Topologically cloaked
transport

In this section we show how conformal deformations of the magnetization of
square patterns can be used to construct a cloaked region in the pattern. The
system investigated shares similarities with the inhomogeneous patterns of
publication 4. Here, we also use inhomogeneous magnetic patterns magnetized
normal to the plane of the pattern. Paramagnetic colloidal particles are
suspended above the pattern and driven solely by loops in the orientation of
an external magnetic field. The inhomogeneity of the pattern is achieved by
deforming the magnetization with conformal mappings. We show the process
of constructing the patterns below. As the transport of the colloidal particles
is robust under small deformations in the magnetic pattern, we can locally
rotate a square pattern from –45◦ up to 45◦ and still move the particles along
the co-rotated unit-vectors. If we rotated unit-cells more than ±45◦, the
fence points corresponding to different unit-cells would pass by each other,
and particles would move along undesired directions. Restricting the local
rotation of the unit-cells to ±45◦ allows us to guide the particles around the
cloaked region by letting particles move left and right around the cloaked
region. After the particles have passed around the cloaked regions, their
trajectories are indistinguishable from trajectories above a simple square
pattern without a cloaked region. Next we show how to generate the cloaked
patterns, and afterwards present illustrative particle trajectories.

3.1 Generating cloaked patterns

We map complex numbers U ⊂ C to locations above the pattern using a
conformal map r(z ) = (ℜr(z ),ℑr(z )) and to a magnetization at position r
via a proxy function M(z ; u(z )). We use u(z ) = z + R2/z , with R being a
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measure for the size1 of the cloak and

M(z ; u(z )) ∝ sign [cos(2πℜu(z )) + cos(2πℑu(z ))] n, (3.1)

where n is the vector normal to the pattern.

We restrict the conformal map r(z ) to three cases, that together with u(z ),
form a circular, a square or a boat shaped cloak.

r◦(z ) = z , (3.2)

r⋄(z ) = z

(
1 +

(
2R
πz

)4
)3/4

, (3.3)

r()(z ) = z
√

1 – R2/(2z2) +
R2

2z
√

1 – R2/(2z2)
. (3.4)

The resulting magnetizations together with the cloaked regions for r◦, r⋄ and
r() are shown in figure 3.1 (a-c) respectively. The square and boat shaped
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Figure 3.1: Magnetization of cloaked patterns. (a) circular cloak, (b) square cloak,
(c) boat shaped cloak. Cloaked regions are highlighted in yellow. Black (white)
regions indicate a positive (negative) magnetization normal to pattern. R is set to
2eiπ/4.

cloaks map the complex plane onto itself multiple times. This results in
different z , with in principle different magnetizations, being located at the
same position r. To circumvent this we need to restrict U such that r(z )
maps to the complex plane exactly once. Note that for |z | ≫ |R|, r(z ) ≈ z
1|R| is the radius of the cloak if r(z ) is the identity, however, we also choose non trivial

functions for r(z ), in which case |R| is only an approximate measure for the size of the
cloak
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for all cloaks investigated. Therefore, we only need to take precautions when
|z | is comparable to, or smaller than |R|. To separate the two preimages
(sometimes also called inverse images) of the complex plane under r(z ), we
find the points zb for which ℑr(zb) = 0. These points form a boundary that
separates the preimages. Then all points outside of the boundary map to
the complex plane exactly once, which means if we set U to the set of these
points, we can calculate a unique magnetization.

However, given a point r in action space we can not calculate the magnetiza-
tion there directly. We can only translate a complex number z to a position
in action space, but not the other way round. If we wanted to start from a
given position in action space, we would need to invert the conformal maps
r(z ). Although this is in principle possible since the maps are conformal, it
is in practice quite hard, because r⋄(z ) and r()(z ) are not easily invertible
analytically. Not being able to get the magnetization at a desired position
is a problem, because we want to know M on a rectangular grid such that
it is numerically convenient to compute the magnetic field Hp from M (as
explained in section 4.2), which we need to calculate the forces acting on
the particles. To compute M on a rectangular grid, we calculate M and the
corresponding positions r from a fine polar mesh of U . In order to then find
the magnetization at the desired position rd on the rectangular grid we find
the four closest points in r(U ) that form a convex quadrilateral around rd .
We use these four points to interpolate bilinearly the value of M at rd . This
method restricts the interpolated magnetization at position rd to be bounded
by the magnetization at the four surrounding points. If we had just used the
four closest points, they might form a concave quadrilateral next to rd . A
bilinear interpolation of the magnetization to rd would then not be bounded
by the magnetization of the four quadrilateral points and would additionally
not always result in the right magnetization at rd . In order to find the closest
points to rd in a reasonable time we use k-d trees [93].

3.2 Simulation results

In figure 3.2 (a-c) we show that paramagnetic colloidal particles can be
moved around the cloaked regions by loops of the orientation of the external
magnetic field. In simulation we find that there exists a maximal height
zm for which the particles follow the path around the cloaked region. This
maximal height depends on the magnitude of R and the shape of the cloak.
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Figure 3.2: Trajectories (blue) above cloaked patterns (black and white back-
ground). Black (white) regions have a positive (negative) magnetization normal to
pattern. R is set to eiπ/4. The particles move in a height z = 0.3 a for the circular
(a), z = 0.06 a for the square (b) and z = 0.26 a for the boat-shaped (c) cloak
respectively.

Table 3.1: Maximal height zm for the three differently shaped cloak (vertical
axis) as a function of |R| (horizontal axis). The maximal height
and |R| are give in multiples of a. Empty entries mean that we
did not find a value of zm for which the region in the center is
cloaked.

0.5 1.0 2.0 3.0 3.5 4.0
circular 0.80 0.37
square 0.30 0.06
boat 0.34 0.29 0.33 0.37 0.30 0.26

We present a table of zm for the different shapes of the cloak and different
absolute values of R in table 3.1. We find that only the boat shaped cloak
allows for cloaked areas much larger than a unit-cell. Therefore experiments
should focus on the boat shaped cloak.
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4 Methods

4.1 Integrating the equation of motion

In this thesis we have performed computer simulations of physical systems.
These simulations have been carried out by numerically integrating the
equation of motion, i.e. equation (1.2). One has to choose an integration
method in order to do so. Often the Euler-Maruyama method is chosen
for its simplicity, even though it requires a very small time-step, the size
of which is in principle not known to the simulator a priori [87]. With an
adaptive integration method this guessing of an appropriate time step can be
circumvented [94]. In order for the time-step to be adjusted one needs two
integration methods of different order, such that the error of the integration
methods can be estimated. When the error exceeds a predefined tolerance,
the trial move of the integrator has to be rejected and the time-step needs
to be adjusted. This however is not trivial, because if one naively rejects
the time-step together with the Brownian noise, one alters the distribution
of the noise [87]. Therefore, one has to retain the information of the noise.
One can however not simply keep the random numbers drawn for the noise,
as the standard deviation of the random numbers is linked to the time-step,
which we want to adjust. Sammüller and Schmidt [87] used the Brownian
bridge theorem to overcome this problem in the integration scheme known
as “adaptive Brownian Dynamics”. The algorithm features adaptive time
stepping and is of second order. Due to the advantages of this algorithm we
used it in all our works after its publication, i.e. from publication 2 onward.
It allowed us to speed up the simulations and to have a proper estimate for
the error of the simulations.
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4.2 Calculating the magnetic field from the
pattern magnetization

The magnetic field at a height z above the pattern can be calculated from
the magnetization M(r) of the pattern via a convolution with the Green’s
function of the 3D Poisson equation. In our systems, we can approximate
the magnetization of the pattern to be concentrated on its surface and to
be normal to it. That is M(r) = Ms(rA)δ(z )ez , where r = rA + zez , with
the first two components of r and rA lying in A, and the third component
of r given by zez , where ez is the unit vector normal to the pattern. This
simplifies the expression for the magnetic field at position r to

Hp(r) = Hp(rA, z ) =
1
4π

∫

A

rA – r′A + zez∣∣rA – r′A + zez
∣∣3Ms(rA)d2r′A, (4.1)

where the integral runs over the complete action space. In the case of simple
patterns and linear combinations of them we can analytically calculate the
magnetic field Hp from the magnetization in the limit of the elevation z being
far greater than the absolute value of a lattice vector [54–56]. When the
magnetization is however more intricate than a simple periodic structure, an
analytic calculation becomes exceedingly hard. We then resort to numerical
methods. We perform the convolution in equation (4.1) in Fourier-space to
speed up the calculation. In figure 4.1 the magnetization, panel (a), and the
resulting magnetic field, panels (b-d), for a simple square pattern are shown.
Since the Fourier transform is only bijective when all modes are kept we do
not discard any modes.
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Figure 4.1: Illustrative magnetization (a) and components of the resulting magnetic
field (b-d). Black (white) regions in (a) have a positive (negative) magnetization
normal to the pattern. (b-d) show the x , y , z -component of Hp respectively.
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