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Abstract
We formulate a hybridizable discontinuous Galerkin method for parabolic equations
with non-linear tensor-valued coefficients and jump conditions (Henry’s law). The
analysis of the proposed scheme indicates the optimal convergence order for mildly
non-linear problems. The same order is also obtained in our numerical studies for
simplified settings.A series of numerical experiments investigate the effect of choosing
different order approximation spaces for various unknowns.

Keywords Hybridizable discontinuous Galerkin (HDG) method · Non-linear
tensor-valued diffusion coefficients · Henry’s law · Darcy flow · Mixed-order
approximation · Jump condition · Stability and convergence analysis
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1 Introduction

Mathematical models involving jump conditions at phase or material interfaces are
widespread in many CFD, environmental, and biomedical applications. Examples
include coupled subsurface/free-surfaces flow systems (Sochala et al. 2009), incom-
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pressible two-phase flows with different densities (Abels et al. 2012,) interfaces
between cells or cell parts (Jäger et al. 2009), simulations of different phases within
concrete (Muntean and Böhm 2009), and many more. For Darcy flows considered in
the current work, the position of the interface is often fixed and known in advance, and
the diffusion coefficient is a symmetric tensor with a uniformly symmetric positive
definite inverse. This is precisely the setup investigated and analyzed in this paper for
a numerical scheme based on a hybridizable discontinuous Galerkin (HDG) method.

The HDG methods first proposed by Cockburn and co-workers in Cockburn et al.
(2008b, 2009) inherit many benefits of discontinuous Galerkin (DG) methods such as
natural support for non-conforming meshes and hanging nodes, hp-adaptivity, local
mass conservation, etc. Moreover, due to the hybrid nature of these methods, they
intrinsically support static condensation, which allows decreasing the size of the sys-
tem of linear equations while keeping this linear system sparse and symmetric positive
definite. Static condensation can be interpreted both in an algebraic sense or as an
alternative interpretation of the numerical scheme in terms of skeleton unknowns and
numerical fluxes. The latter interpretation suggestsmore general numerical fluxes (that
can otherwise only be achieved at higher computational costs) and thus can be utilized
to build HDG schemes with an increased accuracy, i.e. optimally convergent and even
superconvergent methods, which can be exploited by post-processing techniques (see
Nguyen et al. 2009 for an overview of the early developments of the HDG methods).

The aforementioned advantages of the HDGmethodology gave rise to a large num-
ber of applications for different problems. To name just a few: incompressible Stokes
(Nguyen et al. 2010) and Navier–Stokes (Nguyen et al. 2011a) equations, Maxwell
equations (Nguyen et al. 2011b), linear elasticity (Di Pietro and Ern 2015), linearized
shallow-water equations (Bui-Thanh 2016). Furthermore, comparisons of accuracy,
robustness, and computational efficiency between HDG and DG (Woopen et al. 2014;
Jaust et al. 2018), HDG and classical Finite Elements (Kirby et al. 2012), HDG and
Finite Volumes (Ahnert and Bärwolff 2014) also received some attention. Notably,
some recent studies (Vila-Pérez et al. 2022; Kronbichler and Wall 2018) suggest that
HDG schemes are not necessarily faster than the corresponding DG discretizations—
this aspect must be rather evaluated on a case-by-case basis. However, in a decade
of development, only a few studies focusing on porous media problems appeared in
the HDG literature: For example, Samii et al. (2016) investigates an adaptive HDG
method to deal with anisotropic diffusion in an elliptic setting, Costa-Solè et al. (2019),
Fabien et al. (2018) apply hybrid methods to two-phase flows in porous media, Gatica
and Sequeira (2018) analyzes the Brinkman problem, and Moon et al. (2019) investi-
gates multiscale approaches that are related to HDG. However, discontinuities in the
solution (arising from physics) are disregarded in their respective models.

Our main interest in connection with HDG schemes concerns the flow and transport
in porous media, where their DG counterparts proved to be very useful with their affin-
ity to unstructured meshes and adaptivity combined with low regularity requirements
on the solution and coefficients—making the DG method well-suited for complex
geometries encountered in real-world problems (Ray et al. 2017). Another feature
distinguishing the HDG schemes from their DG counterparts is the convergence for
approximation spaces of order zero. This capability is often desirable for porousmedia
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applications, wheremany numerical models utilize lowest order spaces (cf. Samii et al.
2016).

In the current work, we investigate an LDG-H method—a particular type of HDG
scheme (Cockburn et al. 2009) related to the local DG (LDG) discretizations. We ana-
lyze stability and convergence when applied to instationary equations with (mildly)
non-linear tensor-valued diffusion coefficients exemplified by Darcy flows. Numer-
ically, we confirm our analytical findings for linear, optionally anisotropic diffusion
tensors on polytopically bounded domains with flat interfaces. Of particular inter-
est are approximation spaces of different orders for different unknowns such as in
Cockburn et al. (2009), Rupp et al. (2018). Our formulation in principal allows for
non-linear diffusion tensors and enforces jumps in the primary unknown described
by Henry’s law. Similar problems have already been analyzed for LDG (Rupp et al.
2018) and enriched Galerkin (Rupp and Lee 2020) schemes. The analysis relies in
part on techniques employed for an LDG formulation in Aizinger et al. (2018), Rupp
and Knabner (2017), Rupp et al. (2018), Reuter et al. (2019) and extends them to the
LDG-H method.

The first analysis for a HDG-type method was given by Cockburn et al. (2008b)
for a special LDG-H variant called the single face hybridizable (SFH) method; its
distinctive feature is the penalty coefficient τ chosen as a positive constant on one face
of each simplex and zero everywhere else. A more general result for elliptic problems
followed in Cockburn et al. (2010) that relied on a special projection (exclusively
for simplex-meshes) tailored to fit the characteristics of HDG methods. These results
were generalized to non-conforming simplicial meshes in Chen and Cockburn (2012)
and squares, cubes, and prisms in Cockburn et al. (2012). An analysis for a Poisson
equation involving additive jumps in the primary and the flux unknowns (as opposed
to multiplicative jumps considered here) was presented in Dong et al. (2017), and
parabolic problems with non-linear diffusion tensors were considered in Moon et al.
(2017).

The current paper (based, in part, on results presented in Rupp 2019) is structured as
follows. The next section introduces the model problem followed by its semi-discrete
LDG-H formulation in Sect. 3. Section 4 contains the energy stability and convergence
estimates for the semi-discrete formulation. Numerical convergence studies and a real-
istic problem with discontinuous diffusion coefficients are presented in Sect. 5.

2 Problem formulation

Similarly to Rupp et al. (2018), we consider a bounded Lipschitz domain Ω ⊂ R
d

subdivided into two open, disjoint, non-degenerated, Lipschitz polytopesΩ l ,Ωg such
that Ω̄ = Ω̄ l∪Ω̄g .We assume ∂Ω to be disjointly subdivided intoΓD andΓN denoting
the Dirichlet and Neumann boundaries, respectively. Moreover, ΓLG := ∂Ω l ∩ ∂Ωg

is the boundary between Ω l and Ωg where the Henry jump condition is imposed. The
problem can be formulated as follows:

∂t u + ∇ · q = f in (0, T ) ×
(
Ω l ∪ Ωg

)
, (1a)

D−1 (u)q + ∇u = 0 in (0, T ) ×
(
Ω l ∪ Ωg

)
, (1b)
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ul/ug = HLG on (0, T ) × ΓLG, (1c)

ql · νl + qg · νg = 0 on (0, T ) × ΓLG, (1d)

q · ν = gN on (0, T ) × ΓN, (1e)

u = uD on (0, T ) × ΓD, (1f)

u (0, x) = u0 (x) inΩ l ∪ Ωg, (1g)

for HLG ∈ R
+, f ∈ L2

(
0, T ; L2 (Ω)

)
, and uD, gN ∈ L2

(
0, T ; H1

(
Ω l ∪ Ωg

))
. The

inverse of the diffusion tensor D−1 (·) ∈ L∞
(
0, T ;W 1,∞ (

Ω l ∪ Ωg
)d,d

)
is assumed

to be strongly Lipschitz and uniformly symmetric positive definite with constants LD

and CD , respectively (see Remark 2.1). Here and in the following, να denotes the
outward unit normal with respect to Ωα (α = l, g), and ν is the outward unit normal
with respect to Ω .

Remark 2.1 1. In this work, D−1 (·) being Lipschitz means that there is a constant
LD > 0 such that for all v,w ∈ L2 (Ω)

‖D−1 (v) − D−1 (w) ‖L2(Ω)d,d ≤ LD‖v − w‖L2(Ω).

2. D−1 (·) being uniformly symmetric positive definite is equivalent to the existence
of a constant CD ≥ 1 (independent of u ∈ L2 ((0, T ) × Ω), t ∈ (0, T ), and
x ∈ Ω l ∪ Ωg) such that for all ξ ∈ R

d

C−1
D ‖ξ‖22 ≤ ξ · D−1 (u) ξ ≤ CD‖ξ‖22. (2)

This implies ‖D−1 (u (t, ·)) ‖L∞(Ω) ≤ CD .
3. In the setting of the Darcy equation, the flux unknown q = −D (u)∇u can be

interpreted as Darcy flux, and its “continuity” (1d) across ΓLG ensures the conser-
vation of mass, while the primary unknown u can be interpreted as the hydraulic
head.

Having defined our problem, we now specify the requirements for a weak solution to
the above problem.

Problem 2.2 (Weak problem) A weak solution of (1) on domain Ω is defined as
(u,q) ∈ L2 ((0, T ) × Ω) × L2 ((0, T ) × Ω)d satisfying the following conditions:

1. For α = l, g, the restriction of u to Ωα fulfills uα ∈ H1 ((0, T ) × Ωα).
2. The restriction of q to Ωα fulfills qα ∈ L2

(
0, T ; H1 (Ωα)d

)
for α = l, g.

3. System (3) holds for any smooth test functions ϕu, ϕq, any Lipschitz subdomain
Ωe ⊂ Ω , and for a.e. t ∈ (0, T ):

∫

Ωe

∂t u ϕu dx −
∫

Ωe

q · ∇ϕu dx +
∫

∂Ωe\ΓN

q · νϕu dσ +
∫

∂Ωe∩ΓN

gN ϕu dσ =
∫

Ωe

f ϕu dx,

(3a)∫

Ωe

D−1 (u)q · ϕq dx −
∫

Ωe

u
(∇ · ϕq

)
dx +

∫

Ωe∩ΓLG

(
ul − ug

)
ϕq · νl dσ
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+
∫

∂Ωe\ΓD

u ϕq · ν dσ +
∫

∂Ωe∩ΓD

uD ϕq · ν dσ = 0. (3b)

Note that this problem can be formulated under quite general conditions concerning
the non-linearity. Our analysis covers the case of mildly non-linear problems. At
the same time, our numerical studies in Sect. 5 are limited to linear problems and
explore the effects of different approximation polynomial orders, discontinuity size,
and diffusion coefficient anisotropy.

3 An LDG-Hmethod capable of dealing with jump conditions

3.1 Basic definitions and some auxiliary results

The notation will be, as far as possible, kept analogous to the notation in Rupp et al.
(2018)with some parts taken fromSamii et al. (2016). Thismeans that in the following,
Th = {Ki : i = 1, . . . , Nel} denotes a d-dimensional non-overlapping polytopic
partition of Ω (see Di Pietro and Ern 2012, Def. 1.12) such that, for each element Ki ,
eitherKi ⊂ Ωl orKi ⊂ Ωg is fulfilled. For simplicity, all partitions ofΩ are assumed
to be geometrically conformal (in the sense of Ern and Guermond 2004, Def 1.55).
We denote by F = F (Th) the set of faces, by FI the set of interior faces (that do not
intersect with ΓLG), by FD Dirichlet, and by FN Neumann boundary faces, and by
FLG the set of faces that belong to ΓLG. Note that every face of the mesh is an element
of one and only one of the following sets: FI,FLG,FD,FN.

The test- and ansatz-spaces are defined as the broken polynomial spaces of order
at most k:

P
d
k (Th) := {v ∈ L2 (Ω)d : v|K is a polynomial of degree at most k, ∀K ∈ Th}.

For hybridization purposes, another ansatz space—the so-called skeleton space on the
element faces (excluding those with the Dirichlet boundary conditions)—needs to be
defined:

Pk (F \ FD) :=
⎧⎨
⎩μ ∈ L2

⎛
⎝ ⋃

F∈F\FD

F

⎞
⎠ : μ|F ∈ Pk(F), ∀F ∈ F \ FD

⎫⎬
⎭ .

For an element-wise defined scalar function w and an element-wise vector function
v, we define the jump �·� on ∂Ki ∩ ∂K j for neighboring mesh elements Ki ,K j ∈
Th, Ki �= K j in the following way:

�w� = w|Ki νKi + w|K j νK j , �v� = v|Ki · νKi + v|K j · νK j ,

where νK is the outward unit normal with respect to K. Note that a jump in a scalar
variable is a vector, whereas a jump in a vector is a scalar. For F ∈ FI, an interior face
shared by cellsK− and K+, and for x ∈ F , we define the one-sided values of a scalar
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quantity w = w(x) by

w−(x) := lim
ε→0+ w(x − ενK−) and w+(x) := lim

ε→0+ w(x − ενK+)

and for F ∈ FLG, a face on ΓLG shared by cells Kl ⊂ Ω l and Kg ⊂ Ωg , and for
x ∈ F , we define the one-sided values of a scalar quantity w = w(x) by

wl(x) := lim
ε→0+ w(x − ενKl ) and wg(x) := lim

ε→0+ w(x − ενKg ).

Definition 3.1 (Shape and contact regularity) A family of meshes Th is said to be
shape and contact regular (short regular) if, for all h > 0, Th admits a geometrically
conformal,matching simplicial submesh T̄h (Di Pietro and Ern 2012, Definition 1.37)
such that

1.
(
T̄h

)
h>0 is shape-regular in the usual sense of Ciarlet (1990), meaning that there

is a parameter λ1 > 0, independent of h, such that for all K̄ ∈ T̄h ,

λ1hK̄ ≤ ρK̄,

where ρK̄ is the diameter of the largest ball that can be inscribed in K̄.
2. there is a constant λ2 > 0, independent of h, such that for all K ∈ Th and for all

K̄ ∈ T̄h with K̄ ⊂ K,

λ2hK ≤ hK̄,

Lemma 3.2 (Discrete trace inequality) Let (Th)h>0 be a regular mesh family with
parameters λ1, λ2, λ3. Then, for all h > 0 and all p ∈ P

d
k (Th), the following holds

with Ctr only depending on λ1, λ2, d, and k:

∑
F∈F

h1/2F ‖p‖L2(F) ≤ Ctr

∑
K∈Th

‖p‖L2(K) = Ctr‖p‖L2(Ω),

∑
F∈F

h1/2F ‖p · ν‖L2(F) ≤ √
d Ctr

∑
K∈Th

‖p‖L2(K) = √
d Ctr‖p‖L2(Ω).

For an interior face, ‖p‖L2(F) is assumed to contain traces from both elements

‖p‖L2(F) = ‖p|Ki ‖L2(F) + ‖p|K j ‖L2(F).

Proof The first inequality follows from Lemma 1.46 in Di Pietro and Ern (2012) and
the fact that hF ≤ hT for all faces F of element T . The second inequality follows
from the first one and the fact that ν is a constant vector on each face. ��

To simplify notation, we denote in the following ‖ · ‖L2(A) as ‖ · ‖A and use explicit
norm notation for all other norms.
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3.2 Spatial discretization

For hybridization, a new variable on the skeleton space Pk (F \ FD) is introduced and
denoted by λh . In the following, we propose a modification of the LDG-H method
described in Samii et al. (2016) capable of dealing with jump conditions across
a submanifold ΓLG (i.e., Henry’s Law) using instationary Darcy flow as an exam-
ple application. An investigation of the same model problem using a classical LDG
method was conducted in Rupp et al. (2018).
To deal with Henry’s law, the numerical trace ûh is defined as

ûh|∂K :=

⎧⎪⎪⎨
⎪⎪⎩

uD ∂K ∩ ∂ΩD
λh ∂K \ (∂ΩD ∪ ΓLG)

λh (∂K ∩ ΓLG) ∧ (K ⊂ Ωg)

HLGλh (∂K ∩ ΓLG) ∧ (
K ⊂ Ω l

)
(4)

whereas the numerical flux q̂h is chosen as

q̂h|∂K := qh + τ
(
uh − ûh

)
νK,

where τ ≥ 0 is a stabilization parameter (possibly depending on h). Formore informa-
tion on the stabilization parameter τ , the reader is referred to Cockburn et al. (2008a),
Cockburn et al. (2008b).

The (semi-discrete) LDG-H formulation of the model problem (1) reads:

Problem 3.3 (Semi-discrete LDG-H problem for Henry’s law) Find (uh,qh, λh) ∈
Pk (Th) × P

d
k̂
(Th) × Pk̄ (F\FD) such that (5) holds for all

(
ϕu,ϕq, ϕλ

) ∈ Pk (Th) ×
P
d
k̂
(Th) × Pk̄ (F\FD), all K ∈ Th, and a.e. t ∈ (0, T )

∫

K
∂t uhϕu dx −

∫

K
qh · ∇ϕu dx +

∫

∂K\(ΓD∪ΓLG)

(
qh · νK + τ (uh − λh)

)
ϕu dσ

+
∫

∂K∩ΓLG

⎛
⎝qh · νK +

⎧
⎨
⎩

τ
(
ulh − HLGλh

)
if K ⊂ Ωl

τ
(
ugh − λh

)
if K ⊂ Ωg

⎞
⎠ϕu dσ

+
∫

∂K∩ΓD

(qh · ν + τ (uh − uD)) ϕu dσ =
∫

K
f ϕu dx, (5a)

∫

K
D−1 (uh) qh · ϕq dx −

∫

K
uh

(
∇ · ϕq

)
dx +

∫

∂K\(ΓD∪ΓLG)
λhϕq · νK dσ

+
∫

∂K∩ΓLG

({
HLGλh if K ⊂ Ωl

λh if K ⊂ Ωg

)
ϕq · νK dσ +

∫

∂K∩ΓD

uD ϕq · ν dσ = 0, (5b)

∑

F∈FI

∫

F

(
�qh� + τ

(
u−
h + u+

h − 2λh
))

ϕλ dσ +
∑

F∈FN

∫

F
(qh · ν + τ (uh − λh)) ϕλ dσ

+
∑

F∈FLG

∫

F

(
�qh� + τ

(
ulh + ugh − (1 + HLG)λh

))
ϕλ dσ =

∑

F∈FN

∫

F
gNϕλ dσ. (5c)

Here, k, k̂, k̄ denote orders of polynomial ansatz spaces for different unknowns.
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Remark 3.4 (5c) is a globally coupled system that ensures the local mass conservation,
whereas (5a), (5b) are element-local and can be solved elementwise.

4 Stability and error analysis

Our analysis heavily relies on techniques presented in Aizinger et al. (2018), Rupp
and Knabner (2017), Rupp et al. (2018), Reuter et al. (2019), additional results used
in the proofs are introduced in the corresponding sections.

4.1 Stability estimate

First, we introduce a new function H̃LG(x) that generalizes the Henry coefficient to
the whole domain Ω (note that argument x is omitted later on):

H̃LG(x) :=
{
1 x ∈ �Ω l \ ΓLG,

HLG x ∈ �Ωg.

Theorem 4.1 (Energy stability of the semi-discrete problem)Assume that (uh,qh, λh)
is a solution of Problem 3.3. For every regular, geometrically conformal family of
meshes (Th)h>0 and for all τ, h > 0 in (5), there exists a function C (s) such that for
a.e. s ∈ (0, T )

∥∥∥
√
H̃LGuh (s, ·)

∥∥∥
2

Ω
+

∫ s

0

[ ∥∥∥∥
√
H̃LGD−1 (uh)qh

∥∥∥∥
2

Ω

+
∑

F∈F\FD

τ H̃LG ‖λh‖2F +
∑
F∈FD

τ H̃LG‖uh‖2F
]
dt ≤ C (s) .

Here, the second term is interpreted as

∥∥∥∥
√
H̃LGD−1 (uh)qh

∥∥∥∥
2

Ω

=
∫

Ω

H̃LGqTh D
−1 (uh)qh dx.

We highlight that C(s) depends on h and becomes larger as h goes to 0. Nonetheless,
for each fixed value of h, we obtain temporal stability and therefore globally unique
existence of semi-discrete solutions.

Proof The proof uses ideas from the proof of Rupp et al. (2018, Theorem 4.9). Special
care must be taken of the boundary with the specified jump condition ΓLG.
We test Eq. (5) with H̃LGuh , H̃LGqh , and −H̃LGλh , integrate the second equation by
parts, and sum the first two over all K ∈ Th . This yields
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∫

Ω

(∂t uh) H̃
LGuh dx −

∑
K∈Th

∫

K
H̃LGqh · ∇uh dx

+
∑
F∈FD

∫

F
(qh · ν + τ (uh − uD)) H̃LGuh dσ

+
∑
F∈FI

∫

F

(
H̃LG�qhuh� + τ

(
u−
h − λh

)
H̃LGu−

h + τ
(
u+
h − λh

)
H̃LGu+

h

)
dσ

+
∑

F∈FLG

∫

F

(
�qh H̃LGuh� + τ

(
ulh − HLGλh

)
ulh + τ

(
ugh − λh

)
HLGugh

)
dσ

+
∑
F∈FN

∫

F
(qh · ν + τ (uh − λh)) H̃

LGuh dσ =
∫

Ω

f H̃LGuh dx,

∫

Ω

D−1 (uh) H̃
LGqh · qh dx +

∑
K∈Th

∫

K
H̃LG∇uh · qh dx −

∑
F∈(FI∪FLG)

∫

F
�uh H̃

LGqh� dσ

−
∑

F∈(FD∪FN)

∫

F
uh H̃

LGqh · ν dσ +
∑
F∈FI

∫

F
λh H̃

LG�qh� dσ +
∑
F∈FN

∫

F
λh H̃

LGqh · ν dσ

+
∑
F∈FD

∫

F
uD H̃

LGqh · ν dσ +
∑

F∈FLG

∫

F
λh H

LG�qh� dσ = 0,

∑
F∈FI

∫

F

(
�qh� + τ

(
u−
h − λh + u+

h − λh
)) (−H̃LGλh

)
dσ

+
∑

F∈FLG

∫

F

(
�qh� + τ

(
ulh − HLGλh + ugh − λh

)) (
−HLGλh

)
dσ

+
∑
F∈FN

∫

F
(qh · ν + τ (uh − λh))

(
−H̃LGλh

)
dσ =

∑
F∈FN

∫

F
gN

(
−H̃LGλh

)
dσ.

Adding the above equations together and using algebraic simplifications gives

1

2
∂t‖

√
H̃LG uh‖2Ω +

∥∥∥∥
√
H̃LGD−1 (uh)qh

∥∥∥∥
2

Ω

+
∑
F∈FN

τ H̃LG
(
‖uh‖2F + ‖λh‖2F

)

+
∑
F∈FI

τ H̃LG
(
‖u−

h ‖2F + ‖u+
h ‖2F + 2‖λh‖2F

)
+

∑
F∈FD

τ H̃LG‖uh‖2F

+
∑

F∈FLG

τ
(
‖ulh‖2F + HLG‖ugh‖2F + HLG

(
HLG + 1

)
‖λh‖2F

)

=
∫

Ω

H̃LG f uh dx
︸ ︷︷ ︸

Ξ1

−
∑
F∈FN

H̃LG
∫

F
gNλh dσ

︸ ︷︷ ︸
Ξ2

+
∑
F∈FI

τ H̃LG
∫

F
2λh

(
u−
h + u+

h

)
dσ

︸ ︷︷ ︸
Ξ3

+
∑

F∈FLG

τHLG
∫

F
2λh(u

l
h + ugh) dσ

︸ ︷︷ ︸
Ξ4

+
∑
F∈FN

τ H̃LG
∫

F
2λhuh dσ

︸ ︷︷ ︸
Ξ5
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+
∑
F∈FD

τ H̃LG
∫

F
uDuh dσ

︸ ︷︷ ︸
Ξ6

−
∑
F∈FD

H̃LG
∫

F
uDqh · ν dσ.

︸ ︷︷ ︸
Ξ7

(6)

Using Young’s and Cauchy-Schwarz’ inequalities, Ξi terms can be estimated as fol-
lows:

|Ξ1| ≤ 1

2
‖
√
H̃LG f ‖2Ω + 1

2
‖
√
H̃LG uh‖2Ω

|Ξ2| ≤
∑
F∈FN

H̃LG
(
1

τ
‖gN‖2F + τ

4
‖λh‖2F

)

|Ξ3| ≤
∑
F∈FI

τ H̃LG
(

‖λh‖2F + ‖u−
h ‖2F + 1

2
‖λh‖2F + 2‖u+

h ‖2F
)

|Ξ4| ≤
∑

F∈FLG

τ

((
HLG

)2 ‖λh‖2F + ‖ulh‖2F + HLG
(
1

2
‖λh‖2F + 2‖ugh‖2F

))

|Ξ5| ≤
∑
F∈FN

τ H̃LG
(
1

4
‖λh‖2F + 4‖uh‖2F

)

|Ξ6| ≤
∑
F∈FD

τ H̃LG
(
1

2
‖uD‖2F + 1

2
‖uh‖2F

)

|Ξ7| ≤
∑
F∈FD

H̃LGd CDCtr

2hF
‖uD‖2F +

∑
F∈FD

H̃LG

2
C−1
D

hF

d Ctr
‖qh · ν‖2F

≤
∑
F∈FD

H̃LGd CDCtr

2hF
‖uD‖2F + 1

2

∫

Ω

H̃LGD−1 (uh) qh · qh dx

The last inequality is obtained by first invoking Lemma 3.2 and then using (2) point-
wise. Substituting the above estimates into (6) and collecting similar terms gives us
the following expression:

∂t‖
√
H̃LG uh‖2Ω +

∥∥∥∥
√
H̃LGD−1 (uh)qh

∥∥∥∥
2

Ω

+
∑

F∈F\FD

τ H̃LG‖λh‖2F +
∑
F∈FD

τ H̃LG‖uh‖2F

≤‖
√
H̃LG f ‖2Ω + ‖

√
H̃LG uh‖2Ω +

∑
F∈FN

2H̃LG

τ
‖gN‖2F +

∑
F∈FI

2 τ H̃LG‖u+
h ‖2F

+
∑

F∈FLG

2 τHLG‖ugh‖2F +
∑
F∈FN

6 τ H̃LG‖uh‖2F +
∑
F∈FD

(
τ + d CDCtr

hF

)
H̃LG‖uD‖2F .

The stability result follows from, first, using the discrete trace inequality given
in Lemma 3.2 on boundary integral terms involving unknown solution and then apply-
ing Grönwall’s inequality. Notably, this might create a factor h−1

F,min (with hF,min
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denoting the minimum face diameter) on the right-hand side of the stability estimate.
��

Remark 4.2 Although the factor h−1
F,min enters the right-hand side of the stability esti-

mate, this estimate can still be used to ensure that for any fixed h > 0 the discrete
solution is stable and therefore exists globally for any time. Our estimate should be
understood in that sense. However, this result does not imply the existence of a weak
solution by letting h ↘ 0. In order to show that theweak solution of (1) exists uniquely,
one can, for example, use the results of Rupp and Lee (2020) and plug them into the
general existence and uniqueness theory presented in Evans (2010, §7.1.2).

4.2 Convergence order estimate

The convergence analysis of the semi-discrete scheme given in Problem 3.3 relies on
a special type of Projection (Πw,Πv) introduced in Cockburn et al. (2010) and also
used in Chabaud and Cockburn (2012). It is defined on each simplex K as

∫

K
Πvq · v dx =

∫

K
q · v dx ∀v ∈ P

d
k−1 (K) ,

∫

K
Πwuw dx =

∫

K
uw dx ∀w ∈ Pk−1 (K) ,

∫

F
(Πvq · ν + τΠwu) μ dσ =

∫

F
(q · ν + τu) μ dσ ∀F ⊂ ∂K, ∀μ ∈ Pk (F) .

(7)

The approximation properties of this projection are given in the following

Lemma 4.3 (Corollary of Theorem 2.1 from Cockburn et al. 2010) Let τ |∂K be non-
negative, and let τmax

K := max τ |∂K > 0. Then for k ≥ 0 and for given u ∈ Hk+1 (K)

and q ∈ Hk+1 (K)d , system (7) is uniquely solvable for Πvq and Πwu. Furthermore,
there exists a constant CΠ independent of K and τ such that

‖Πvq − q‖K ≤ CΠhk+1
(
|q|Hk+1(K)d

+ τmax
K |u|Hk+1(K)

)
,

‖Πwu − u‖K ≤ CΠhk+1
(

|u|Hk+1(K) + 1

τmax
K

|q|Hk+1(K)d

)
,

where | · |Hk+1(K) denotes the standard semi-norm on Hk+1 (K).

Proof This corollary trivially follows fromCockburn et al. (2010, Theorem2.1) proved
in the appendix of Cockburn et al. (2010). For k = 0, only the third equation of (7)
makes sense and is sufficient to compute the projection. ��
Remark 4.4 The fact that this analysis technique only works for simplex-shaped ele-
ments certainly constitutes a limitation of ourmethodology; however, our convergence
results shown in Sect. 5 indicate that our scheme also converges with the same order
for rectangular elements.
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For the analytical solution (u,q) and the discrete solution (uh,qh) of our problem,
we denote

eu := uh − Πwu, θu := Πwu − u,

eq := qh − Πvq, θq := Πvq − q,

eλ := λh − Πu, θλ := Πu − u,

egλ := λh − Πug, θ
g
λ := Πug − ug,

elλ := HLGλh − Πul , θ lλ := Πul − ul ,

(8)

Here, Π denotes an L2-projection acting on a given ζ ∈ L2(F\FD). Note that the
restriction of Πζ to F ∈ F\FD is in Pk (F) and satisfies:

Π : F → Pk(F), 〈Πζ − ζ, μ〉F = 0, ∀μ ∈ Pk (F) .

Note that HLGegλ = elλ on ΓLG since ul = HLGug and Π is linear.
To deal with non-linear diffusion coefficients we state

Lemma 4.5 The following inequality holds for u ∈ Hk+1(Ωα), uh ∈ Pk (Th), q ∈
L∞ (Ωα)d ∩ Hk+1(Ωα)d , α = l, g, and eq defined in (8):
∫

Ω

(
D−1 (uh) − D−1 (u)

)
q · eq dx ≤ ε‖eq‖2Ω

+ L2D
4ε

‖q‖2
L∞(Ω)d

⎛
⎝‖eu‖2Ω + C2

Πh2k+2
∑

K∈Th

(
|u|Hk+1(K) + 1

τmax
K

|q|Hk+1(K)d

)2
⎞
⎠

for some arbitrary ε > 0.

Proof Using Hölder’s, Young’s inequalities and properties of D−1(·) we obtain
∫

Ω

(
D−1 (uh) − D−1 (u)

)
q · eq dx ≤ ‖q‖L∞(Ω)d

‖
(
D−1 (uh) − D−1 (u)

)
‖Ω‖eq‖Ω

≤ LD‖uh − u‖Ω‖q‖L∞(Ω)d
‖eq‖Ω ≤ ε‖eq‖2Ω + L2D

4ε
‖q‖2

L∞(Ω)d

(
‖eu‖2Ω + ‖θu‖2Ω

)
,

and the result then follows by Lemma 4.3. ��
Remark 4.6 A result related to Lemma 4.5 is mentioned in Rupp et al. (2018, Rem.
4.8) without proof. In our analysis, the projection defined in Lemma 4.3 is used instead
of the standard L2-projection utilized in Rupp et al. (2018).

Next, we prove our main convergence result.

Theorem 4.7 (Convergence order estimate for the LDG-H method) Let (u,q) ∈
H1

(
0, T ; Hk+1(Ω l ∪ Ωg)

) × H1
(
0, T ; Hk+1(Ω l ∪ Ωg)d

)
be a solution to Prob-

lem 2.2. Then for every regular, geometrically conformal family of simplicial meshes
Th and a uniformly bounded for all h > 0 parameter τ = const > 0, the solution
of Problem 3.3 (uh,qh, λh) ∈ Pk (Th) × P

d
k (Th) × Pk (F\FD) converges for almost
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every s ∈ (0, T ) with order k+1 to the solution of Problem 2.2 (u,q) in the following
sense:

‖
√
H̃LG eu (s, ·) ‖2Ω +

∫ s

0

[
‖
√
H̃LG eq‖2Ω +

∑
F∈FN

τ H̃LG‖eu − eλ‖2F

+
∑
F∈FI

τ H̃LG
(
‖e−

u − eλ‖2F + ‖e+
u − eλ‖2F

)
+

∑
F∈FD

τ H̃LG‖eu‖2F

+
∑

F∈FLG

τ
(
‖elu − elλ‖2F + HLG‖egu − egλ‖2F

) ]
dt ≤ Ch2k+2,

where C is independent of h.

Proof We subtract Eqs. (3a)–(3b) from Eqs. (5a) to (5b), respectively, introduce
±Πwu,±Πvq terms into corresponding integrals in (5c), test the equations with
H̃LGeu , H̃LGeq, and −H̃LGeλ, respectively, integrate the second equation by parts,
and sum over all K ∈ Th . This yields

∫

Ω

∂t eu H̃
LGeu dx −

∑
K∈Th

∫

K
H̃LGeq · ∇eu dx +

∑
F∈FD

∫

F

(
eq · ν + τeu

)
H̃LGeu dσ

+
∑
F∈FI

∫

F

(
H̃LG�eqeu� + τ

(
e−
u − eλ

)
H̃LGe−

u + τ
(
e+
u − eλ

)
H̃LGe+

u

)
dσ

+
∑

F∈FLG

∫

F

(
�eq H̃

LGeu� + τ
(
elu − elλ

)
elu + τ

(
egu − egλ

)
HLGegu

)
dσ

+
∑
F∈FN

∫

F

(
eq · ν + τ (eu − eλ)

)
H̃LGeu dσ = −

∫

Ω

∂tθu H̃
LGeu dx,

∫

Ω

D−1 (uh) eq · H̃LGeq dx +
∑
K∈Th

∫

K
H̃LG∇eu · eq dx −

∑
F∈FI

∫

F
H̃LG�eueq� dσ

−
∑

F∈(FD∪FN)

∫

F
eu H̃

LGeq · ν dσ −
∑

F∈FLG

∫

F
�eu H̃

LGeq� dσ +
∑
F∈FI

∫

F
H̃LG�eq�eλ dσ

+
∑

F∈FLG

∫

F

(
elλe

l
q · νKl + egλH

LGegq · νKg

)
dσ +

∑
F∈FN

∫

F
eλ H̃

LGeq · ν dσ

= −
∫

Ω

H̃LG
(
D−1 (uh) θq +

(
D−1 (uh) − D−1 (u)

)
q
)

· eq dx,

−
∑
F∈FI

∫

F

(
�eq� + τ

(
e−
u + e+

u − 2eλ

))
H̃LGeλ dσ −

∑
F∈FN

∫

F

(
eq · ν + τ (eu − eλ)

)
H̃LGeλ dσ

−
∑

F∈FLG

∫

F

(
�eq� + τ

(
elu − elλ + egu − egλ

))
HLGegλ dσ = 0.

Most of the projection error terms vanish due to the orthogonality properties of the
chosen projection specified in Lemma 4.3. Adding up the equations, simple algebraic
manipulations give us
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1

2
∂t‖

√
H̃LG eu‖2Ω + ‖

√
H̃LG D−1 (uh) eq‖2Ω

+
∑
F∈FD

τ H̃LG‖eu‖2F +
∑
F∈FN

τ H̃LG‖eu − eλ‖2F

+
∑
F∈FI

τ H̃LG
(
‖e−

u − eλ‖2F + ‖e+
u − eλ‖2F

)

+
∑

F∈FLG

τ
(
‖elu − elλ‖2F + HLG‖egu − egλ‖2F

)

= −
∫

Ω

H̃LG∂tθueu dx
︸ ︷︷ ︸

Λ1

−
∫

Ω

H̃LGD−1 (uh) θq · eq dx
︸ ︷︷ ︸

Λ2

−
∫

Ω

H̃LG
(
D−1 (uh) − D−1 (u)

)
q · eq dx

︸ ︷︷ ︸
Λ3

Using Young’s and Cauchy-Schwarz’ inequalities as well as Lemma 4.5 we get

|Λ1| ≤ 1

2
‖
√
H̃LG eu‖2Ω + 1

2
C2

Π H̃LGh2k+2
∑
K∈Th

(
|∂t u|Hk+1(K) + 1

τmax
K

|∂tq|Hk+1(K)d

)2

|Λ2| ≤ 1

4
‖
√
H̃LG D−1 (uh) eq‖2Ω + CDC

2
Π H̃LGh2k+2

∑
K∈Th

(
|q|Hk+1(K)d + τmax

K |u|Hk+1(K)

)2

|Λ3| ≤ 1

4CD
‖
√
H̃LG eq‖2Ω

+ CDL
2
D H̃

LG‖q‖2L∞(Ω)

⎛
⎝‖eu‖2Ω + C2

Πh2k+2
∑
K∈Th

(
|u|Hk+1(K) + 1

τmax
K

|q|Hk+1(K)d

)2
⎞
⎠

The remainder of the proof boils down to some simple algebraic manipulations, omit-
ting some non-negative left-hand-side terms, and using Grönwall’s inequality. ��

Remark 4.8 The fact that the above estimates contain τ in both numerator and denom-
inator indicates that choosing τ as a constant (per face F ∈ F \ FD) is optimal in
contrast to τ = 1/h, or τ = h, or any other h-dependent choice.

5 Numerical results

In Secs. 5.1, 5.3, the discretization in time is performed via the implicit Euler scheme,
and the implementation has been carried out in the C++ based Finite Element toolbox
M++ (Wieners 2005). The numerical results in Sec 5.2 were obtained using the pro-
gramming framework introduced in Rupp et al. (2022), Rupp and Kanschat (2021)
and rely on the Crank-Nicolson time stepping method.
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5.1 Numerical convergence study for piecewise constant diffusion coefficients

First, we verify the convergence estimates by using a smooth test problem with known
solution. Our smooth test problem is

T = 1, Δt = 10−4,

Ω l = (0, 10) × (0, 5) , Ωg = (0, 10) × (5, 10) ,

HLG = 10, τ ∈ {1, 1/h},
D =

{
0.1 if x2 < 5,
1 otherwise,

u =
{
10 cos (x1 + t) cos (x2 + t) if x2 < 5,
cos (x1 + t) cos (x2 + t) otherwise.

We choose Ω as a square of side length ten and set Neumann boundary conditions
at the top and bottom boundaries while letting the left and right boundaries be of
Dirichlet type. The right-hand side function, initial-, and boundary conditions are
chosen appropriately. The spatial domain is discretized by 2i × 2i squares (where
i denotes the number of refinement steps). As the mesh skeleton space associated
with the edges grows with each mesh refinement, the error on the skeleton space is
scaled with respect to the measure of the skeleton space. sadov Choosing the penalty
parameter τ = 1 and using equal order approximations for all unknowns, the LDG-
H-discretization shows an optimal order of convergence of k + 1 in both variables
for ansatz spaces of order k (see Tables 1, 2 and 3 uppermost block). Notably, this
means an improved order of convergence in the flux variable compared to the LDG
discretization of the same order. For τ = 1/h the order of convergence in the flux
variable decreases by one. This is consistent with analytical results and also with
numerical studies for elliptic problems given in Cockburn et al. (2008a).

In Rupp et al. (2018), different orders of approximation spaces for the scalar and the
flux variable were investigated for an LDG method. There it was shown analytically
that if the order was reduced for the flux variable by one to k − 1 while the order for
the scalar variable was still k, both variables would converge at least with order k. In
numerical experiments presented in Rupp et al. (2018), the order of convergence for
the scalar variable appeared to be higher than the analytical result indicates whereas
the estimate for the flux variable was sharp. Next, we consider similar scenarios for our
LDG-H scheme with penalty parameters τ = 1 and τ = 1/h, respectively. Since there
is yet another ansatz space to approximate the solution on element boundaries, there
arises one additional possibility to vary the order of approximation. For τ = 1, the
experimental order of convergence for all variables decreased as soon as we reduced
the order of one of the approximation spaces. In the case of τ = 1/h though, the
order of convergence decreased when we reduced the order of approximation for the
primary uh or the hybrid variable λh , and no convergence was detected if the order
of one of the corresponding spaces was 0. However, if the order of the approximation
space for the flux variable is reduced by one, the same effect as for the LDG method
can be seen: The experimental order of convergence turns out to be the same as for the
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approximations using equal orders for all variables (Tables 2 and 3 third block). Thus
one may be able to substantially reduce the total number of the degrees of freedom
(the flux unknown is a d-dimensional vector!) without sacrificing the convergence
order. Usually, this is not considered to be significant since classical HDG literature
assumes the local solutions to be computationally cheap and the total performance to
be dominated by the global solve. However, hybrid methods are often implemented in
a matrix-free fashion (see e.g. Rupp et al. 2022). In this case, the base assumption that
solving a local system of equations is cheap still holds, but since local systems have
to be solved in every mesh cell per iteration of an iterative solver per time step the
local solution time dominates the overall runtime of the code. The authors experienced
this bottleneck when implementing their own code (Rupp and Kanschat 2021). In this
specific situation, a significant speedup is obtained by our approach.

5.2 Numerical convergence study for piecewise continuous, spatially varying
diffusion coefficients

The convergence study presented in Sect. 5.1 focused on a simple example in two
spatial dimensions. There we observed that one sees the convergence orders of k + 1
for all unknowns if one chooses all polynomial spaces order k and τ = 1. Next, we
demonstrate that a variable diffusion coefficient or the number of spatial dimensions
does not affect the convergence rates. To this end, we consider

T = 1, Δt = 10−4,

Ω l = (0.5, 1) × (0, 1)d−1 , Ωg = (0, 0.5) × (0, 1)d−1 ,

HLG = 10, τ = 1,

D = e
∑d

i=1 xi ×
{

1 if x1 < 0.5,
1

HLG otherwise,
u =

[
d∏

i=1

sin(xi + t)

]
×

{
1 if x1 < 0.5,

HLG otherwise.

The numerical results shown in Table 4 indicate that the expected orders of conver-
gence are obtained for the primary unknown (for conciseness, we omit the errors for the
flux and skeleton unknowns). The first two columns (d = 1, d = 2) consider the afore-
mentioned setting. The third column (HLG = 1000) describes the two-dimensional
example in which the factor HLG has been increased to 1000. Finally, the last column
(D̃) corresponds to the anisotropic tensor-valued coefficient

D̃ = D

(
1 0
0 100

)

used instead of the scalar D for the two-dimensional experiments.
In all cases, we can see similar convergence rates. This showcases that Henry’s

constant does not influence the convergence rate but does influence the constant, since
the solution’s semi-norm scales with it. Moreover, the results validate our claim that
our method is suitable for anisotropic diffusion.
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Table 4 Errors (E) and estimated orders of convergence (eoc)

i d = 1 d = 2 HLG = 1000 D̃
Eu eocu Eu eocu Eu eocu Eu eocu

P1 × P
d
1 × P1 1 3.58E−1 1.74E−1 1.73E1 1.09E1

2 8.97E−2 2.00 6.86E−2 1.35 6.83E0 1.35 4.52E0 1.27

3 2.23E−2 2.01 2.46E−2 1.48 2.45E0 1.48 1.63E0 1.47

4 5.57E−3 2.00 7.95E−3 1.63 7.92E−1 1.63 5.32E−1 1.62

5 1.39E−3 2.00 2.35E−3 1.75 2.35E−1 1.75 1.60E−1 1.73

P2 × P
d
2 × P2 1 1.22E−2 9.02E−3 8.96E−1 6.74E−1

2 1.44E−3 3.08 1.62E−3 2.47 1.61E−1 2.47 1.20E−1 2.48

3 1.75E−4 3.04 2.64E−4 2.62 2.63E−2 2.62 1.95E−2 2.62

4 2.16E−5 3.02 3.94E−5 2.74 3.92E−3 2.74 2.94E−3 2.73

5 2.69E−6 3.01 5.55E−6 2.83 5.52E−4 2.83 3.96E−4 2.89

P3 × P
d
3 × P3 1 1.25E−4 1.48E−4 1.47E−2 1.17E−2

2 1.20E−5 3.38 1.53E−5 3.28 1.52E−3 3.27 1.11E−2 3.39

3 8.25E−7 3.87 1.27E−6 3.59 1.26E−4 3.59 9.06E−5 3.62

4 5.29E−8 3.96 9.47E−8 3.75 9.44E−6 3.74 6.75E−6 3.74

5 3.46E−9 3.93 6.48E−9 3.89 6.42E−7 3.88 4.68E−7 3.85

Remark 5.1 (Sharp convergence rates) None of the aforementioned numerical exper-
iments indicate that the observed rates of convergence exceed those obtained in our
error analysis. Thus, we deduce that our analytical findings are sharp with respect to
the observed rate.

5.3 Nested rectangle problem

To demonstrate the robustness of our method we show results for a more involved
non-smooth test problem given by

T = 1, Δt = 10−4,

Ω l = (0, 10) × (0, 5) , Ωg = (0, 10) × (5, 10) ,

HLG = 0.5, τ = 1/h,

D =
{
0.1 if x2 < 5,
4 otherwise,

u0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

5 if ((2.5 <= y <= 5) ∧ (2.5 <= x <= 7.5))
∨ ((3.75 <= y <= 5) ∧ (0 <= x <= 10)) ,

10 if ((5 <= y <= 7.5) ∧ (2.5 <= x <= 7.5))
∨ ((5 <= y <= 6.25) ∧ (0 <= x <= 10)) ,

0 otherwise.
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Fig. 1 Solution for the nested rectangle problem (left panel): initial condition (top), final states at T = 1

for P1 × P
d
1 × P1 (middle) and P2 × P

d
2 × P2 (bottom). Difference plots (right panel): uh |P2×P

d
2×P2

−
uh |P1×P

d
1×P1

, uh |P1×P
d
1×P1

− uh |P1×P
d
0×P1

(middle), uh |P2×P
d
2×P2

− uh |P2×P
d
1×P2

(bottom)

On a square of side length ten, we set homogeneous Neumann boundary conditions
on all boundaries and set the right-hand-side function to zero.

The initial condition for the nested rectangle problem is plotted in Fig. 1 (top left),
the solutions at time T = 1 for piecewise linear and piecewise quadratic (equal order)
approximation are shown in Fig. 1 (middle left) and Fig. 1 (bottom left), respectively,
and the difference plot between these two is displayed in Fig. 1 (top right). In order to
illustrate the effect of reducing by one the approximation order for the flux unknown
qh , we also display the difference plots between equal and reduced (for qh) order
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solutions for linear in Fig. 1 (middle right) and quadratic in Fig. 1 (bottom right)
approximations. Especially for the piecewise quadratic approximation the difference
between the solutions appears to be very small.

6 Conclusions

The current work introduced and investigated a hybridizable DG formulation for
parabolic equations with non-linear tensor-valued coefficients and jump conditions
described by Henry’s law. Optimal convergence estimates were proved for mildly
non-linear problems on simplexmeshes, and numerical studies demonstrated the same
convergence on rectangular meshes. Our numerical studies of mixed-order approxi-
mations indicate the same behavior as in the case of LDG discretizations, namely the
possibility of reducing the approximation order for flux unknowns by one polynomial
order without any loss of convergence or accuracy. Extending the analysis techniques
to more general element shapes appears to be very desirable though challenging.

An important future step that needs to be undertaken in order to apply our method
to real-world scenarios is the implementation and analysis of the presented approach
for cases, in which the interface is curved and evolving in time. In such scenarios, it
is particularly important to accurately track the interface and update the quadrature
rules on the interface and in the elements. In these cases, hybrid versions of Cut-
FEM or extended FEMmight be useful. Another possible research direction concerns
more involved non-itineraries and numerical treatment of highly anisotropic diffusion
tensors.
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