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1. Introduction

The user of a product powered by a lithium-ion battery (LIB) has
the expectation of being able to retrieve information about the

current state of charge (SOC) and thus fun-
damental information about the remaining
usage time or driving range at any time.
In contrast to physical quantities such as
voltage or current, the SOC is a state that
cannot be measured directly, but must be
estimated using calculation methods.[1]

Hence, a considerable computational effort
is required to obtain precise information
about the remaining battery capacity. A
variety of approaches has been developed
to estimate the SOC.[2] For a detailed
review on different battery state estimation
approaches, refer to Wang et al.[3]

According to the current state of the art,
the estimates of the states are realized by
mathematical descriptions of the system
behavior in combination with filter
algorithms. Based on measurable input
data, the states can thus be determined
via recursive equations. During operation
of the physical system, these calculation
steps are repeated continuously. Thus, cur-

rent information about the desired system state is available at any
time.[4] The Kalman filter (KF) or KF variants are most commonly
used for this purpose.[3,5–8] Shrivastava et al.[9] show a combined
SOC and state of energy estimation using the dual forgetting
factor (FF) adaptive extended Kalman filter (AEKF).
Additionally, the authors establish a new sliding window-
approximate weighted total least square algorithm for the estima-
tion of the maximum available capacity and maximum available
energy estimation. Other approaches like from Zhang et al.[10]

utilize a gated recurrent unit neural network to determine the
SOC. Wang and Chen[11] propose an unscented particle filter
for SOC estimation and compare their results to an extended
KF (EKF).

The accuracy of the estimation by the KF depends on the
choice of its filter parameters (covariances). The covariance
matrices of the error, process noise, and measurement noise
determine the performance of the KF. Modifications of these
parameters have a large influence on the convergence speed
and precision of the estimation. Adjusting the three mentioned
quantities is called filter tuning. The determination of these
parameters usually turns out to be difficult. On the one hand,
they can vary in a very wide range. A comparison of different
values from the literature shows how strongly the parameters
for filter tuning can deviate. While in ref. [6] the covariance
matrix is initialized with values down to 10�12, in ref. [12] this
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For the estimation of the state of charge of lithium-ion batteries Kalman filters are
the state of the art. To ensure precise and reliable estimations these filters use
covariance matrices, which need to be tuned correctly by the developer. This
process is time-consuming and depends largely on the experience and skill of the
developer. Hence, filter tuning is not reproducible and not optimal with regard to
goals as accuracy and convergence speed. Herein a multiobjective optimization
framework called hyperspace exploration is used for the first time to automate the
filter tuning procedure for an extended Kalman filter and two versions of adaptive
extended Kalman filters. Four key performance indicators, including the maxi-
mum error in the estimation of the state of charge and the according root mean
square error, are used to describe, validate, and compare the filter performance.
This automated process enables optimal usage of the degrees of freedom in filter
tuning and no longer requires manual tuning while the whole hyperspace,
including different use cases and validation scenarios, is considered in the
optimization. Furthermore, the proposed approach yields a novel method for the
evaluation of filter parameters and their influence on the estimation behavior.
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is done with values up to 100. On the other hand, there is no
known method for direct calculation of the parameters for use
in battery state estimation. Often, the determination of the filter
parameters is carried out by a trial-and-error method and the suc-
cess depends on the experience of the developer.[13,14]

An exact determination of the covariances of the process noise
and the measurement noise (see Equation (6) and Table 1)
required for the KF is one of the major challenges for the design
of a KF. According to Abbeel et al.,[15] the noise parameters usu-
ally result from a variety of different effects: system andmeasure-
ment dynamics are not accurately represented, hidden states
exist in the environment that are not considered in the model
used by the KF, discretization errors of the measurement, and
approximation errors, e.g., in the Taylor series approximation
for the linearization in an EKF.

Ting et al.[16] propose an evolutionary algorithm to determine
these parameters. Atukalp and Kink[17] have developed an analyt-
ical tuning method that calculates the noise parameters dynami-
cally by identifying the main contributors to those uncertainties
formulating them as probability density functions and combin-
ing them to a single variance. The contributing parts to those
uncertainties are then varied using a Monte Carlo method.
The authors verify their results by comparing them with
Coulomb counting of highly precise measurements. Their
SOC estimation shows a root mean square error (RMSE) of
under 1.5% and a maximum error below 2.8%. Theiler
et al.[13] present a genetic algorithm for filter parameter tuning.
They use dynamic load profiles and compare simulated states
with estimated states using data with added noise by predefined
uncertainties. The covariance matrices are subject to a multi-
objective optimization (MOO) by applying a genetic algorithm
based on the survival of the fittest principle. The authors show
the feasibility of the proposed method. Wang et al.[18] also show
the applicability of genetic algorithms for this purpose by imple-
menting a distributed evolutionary algorithm in Python with con-
siderable success.

In practice, however, the matrices are usually manually
adjusted to the desired conditions by matching them with refer-
ence data for the states to be estimated. The reference data comes
from precise measurements from which the estimated states can
be determined and is only available at this level of accuracy dur-
ing the development phase. The developer then adjusts the tun-
ing parameters until the KF reproduces the measured values
with the desired behavior. In such an approach, the experience
of the user plays a considerable role.[14,15] Campestrini[14] formu-
lates certain rules of thumb that can guide the programmer: 1) if
the diagonal elements of the covariance matrix of the process

noise have value 0, the filter assumes a perfect model and does
not correct the states. If, in contrast, the values are high, the esti-
mation errors increase because the filter assumes that at each
time point uncertainties affect the states. Here, a trade-off must
be made between the ability to correct incorrect values and the
magnitude of the estimation error. 2) The convergence behavior
of the filter is controlled by the error covariance matrix.[19,20]

When its diagonal elements are zero, the filter assumes exact ini-
tial values and adjusts incorrect initial values only slowly. Too
high values can cause unstable filter behavior. Here, a compro-
mise between convergence speed and stability must be found.
3) For low values of the measurement noise variance, the filter
assumes high measurement accuracy, and it calculates states
based on the measured values rather than the model. At high
values, the Kalman gain decreases because the measured values
are not trusted enough, and the estimate follows the model with-
out noticeable correction. Again, a trade-off must be made.

In this article, two approaches are tested and compared: 1) the
already established adaptive KF (AKF), which adjusts the filter
parameters during operation based on the deviations between
estimation andmeasurement. 2) A framework for system design,
the hyperspace exploration (HSE), is adapted to automate the
process of adjusting the filter parameters. The HSE is applicable
in this context, since it was developed for analyzing and solving
complex optimization problems.[21]

It is an evolution of the MOO methods introduced by the
groups mentioned before and presents a holistic approach with
high potential for automation. With this automated process, the
filter covariance parameters no longer require manual tuning
and the method presents a unique way for the evaluation of filter
parameters and their influence on the estimation results.
The HSE finds the best covariance values for the specific appli-
cation in regard to the desired filter behavior. The framework
also takes into account different use-case scenarios, allowing
for the identification of use-case specific individual trade-offs
between target indicators. In addition to that, it makes the eval-
uation of trade-offs accessible through the utilization of a surro-
gate model.[21]

To the best of the authors’ knowledge, this work is the first that
employs the HSE framework to the optimal tuning of a KF.

2. State Estimation and Filter Parameter
Determination

Battery states must be calculated from measurable quantities
about which information is available at any time. In addition
to the SOC, the available power is also of interest to the battery
management system (BMS), as is the state of health (SOH) for
predicting the remaining service life, which also requires an esti-
mate of the battery capacity. This changes with the lifetime of the
cell due to aging effects.[22]

To calculate these states, the cell parameters must be deter-
mined from a suitable battery model and the measured variables
current I, voltage U, and temperature T. For more details about
the interaction of the individual estimated states within a BMS
see Waag.[22] In the following, two commonly used estimation
approaches are briefly discussed.

Table 1. Kalman filter steps.

Initialization x̃0 ¼ E x0½ ]; P̃0 ¼ E x0 � x̃0ð Þ x0 � x̃0ð ÞT

State estimation x̂kþ1 ¼ Ak � xk þ bk � uk

Covariance estimation P̂kþ1 ¼ Ak P̃kAT
k þQ

Kalman gain Lkþ1 ¼ P̂kþ1CT
k Ck P̂kþ1CT

k þ r
� ��1

State update x̃kþ1 ¼ x̂kþ1 þ Lkþ1 yk � Ck x̂kþ1 � Ckuk½ �
Covariance update P̃kþ1 ¼ I� Lkþ1Ckð ÞP̂kþ1
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2.1. SOC Estimation

The open-circuit voltage (UOCV) method uses the dependence of
UOCV on the SOC (see Figure 1). A look-up table (LUT) can be
generated from measured UOCV data, from which the SOC can
be determined for the respective voltage value. In this procedure,
theUOCV curve is formed from the mean value of the charge and
discharge curves to account for hysteresis effects.[23] For cell
chemistries with a low slope forUOCV, such as lithium iron phos-
phate, voltage deviations of only a few can cause an SOC error of
10%.[24] This method is not suitable as the sole SOC determina-
tion method for an LIB to which a load is applied, because it does
not take into account dynamic losses. Thus, it is only useful for
applications with long relaxation periods, and even then it is not
always guaranteed that the cell is completely at rest.[25,26] The
most common method for determining the SOC is the so-called
Coulomb counting. It calculates the amount of charge added and
removed from a cell based on an integration of the measured
charge and discharge current over time. From this amount of
charge, the

SOC ¼ SOC0 �
Z

t

0

ηC � I τð Þ
Cn

dτ (1)

is calculated.
For this, the start value SOC0 at the beginning of the current

measurement must be known as accurately as possible (see
Equation (1)). Inaccuracies in the current measurement accumu-
late through integration, so that the estimated value deviates fur-
ther and further from the real value. A reset on known events can
increase accuracy. By inserting the Coulomb efficiency ηC, the
current losses are taken into account. Coulomb counting is a sim-
ple method that is easy to implement with high potential for

inaccuracies, especially if the current measurement is not precise
enough.[25,26]

Model-based estimation combines the two aforementioned
methods by not deriving the SOC exclusively from one measur-
able variable (voltage for the UOCV method, current for Coulomb
counting), but combining both information. Based on a model
of the cell, this approach calculates the internal and non-
measurable states of the system from the directly measurable
quantities of current, terminal voltage, and temperature.[22]

This is then used to calculate the theoretical terminal voltage.
A comparison of the calculated terminal voltage with the voltage
actually measured at the real cell represents a criterion for the
accuracy of the estimate. However, the difficulty with model-
based approaches is to properly evaluate the voltage deviation.
It can not only be due to estimation errors that should be
corrected, but also measurement noise and/or modeling
errors.[25]

2.2. Battery Model

Depending on the requirements, the behavior of a battery cell can
be modeled with varying degrees of accuracy. In case of the BMS,
methods are preferable that represent the physical behavior with
sufficient accuracy and moderate computational effort.[27]

According to Campestrini,[14] black box models, which do not
require knowledge of the exact physical processes, are one
solution for BMS applications. Their parameters are no longer
physically interpretable, which is why this method is used for
diagnostic purposes, rather than for accurate mapping of the
cell’s input and output behavior. It is advantageous that the
determination of the parameters can be fully automated.[28]

Black box models include neural networks,[29,30] fuzzy logic,[31]

and stochastic models.[32,33]

Equivalent circuit models (ECM) are a popular alternative to
more complex models. Almost all state-of-the-art BMS make
use of them. This method of describing terminal behavior is par-
ticularly suitable because of its simplicity and robustness, and it
represents the cell properties sufficiently accurately for the state
estimates.[34] The basic idea of these models is to imitate the real
cell behavior by an electrical circuit. The ECM can only represent
the input and output behavior, but not cell-internal electrochem-
ical processes. In this method, the model parameters are fitted to
empirical data in the time domain. For load profiles that deviate
strongly from the parameterization profile, extrapolation must be
performed, resulting in deviations between predicted and real
cell behavior.[25]

The Thevenin model is often used to describe a battery cell. It
is a simple ECM consisting of a voltage source, a series resistor
and an resistor–capacitor (RC) element connected in series. This
model can be extended by any number of RC elements.[35] The
corresponding ECM is shown in Figure 2. In the present work,
the direction of the current I is defined that the cell is charged
when the sign is positive and discharged when the sign is nega-
tive. The mathematical description of the ECM can be expressed
in form of a discrete state space representation using the Euler
method. For this purpose, it is first necessary to define the input
and output variables as well as the states that are to describe the
system. The cell current I serves as the input variable and the cell

Figure 1. Dependency of the SOC on the UOCV for an NCA and a lithium
iron phosphate cell.
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voltage Ucell as the output variable. Both are directly measurable,
which allows later a comparison between calculated andmeasured
cell voltage. States that are not directly measurable are chosen as
state variables. On the one hand, the voltage across the RC element
must be taken into account to calculate the total cell voltage. On the
other hand, states can be implemented that are to be additionally
estimated such as the SOC of the cell. Thus, the state vector

xk ¼ URC,k, SOCk
� �

T (2)

is defined. With the difference equation of the RC element

URC,kþ1 ¼ 1� Δt
RC

� �
�Uk þ

Δt
C

� Ik (3)

and after discretization of the SOC in Equation (1) the state space
representation

xkþ1 ¼
URC,kþ1

SOCkþ1

" #
¼ Ak � xk þ bk � uk

¼ 1� Δt
RC

� �
0

0 1

" #
�

URC,k

SOCk

" #
þ

Δt
C

ηC�Δt
Cn

2
4

3
5� Ik

(4)

follows. From the state vector, the input current and the UOCV

corresponding to the SOC at time k� Δt, the response equation
for the state space representation of the battery model

yk ¼ Ucell,k ¼ UOCV SOCkð Þ þURC,k þ Ik � RΩ (5)

can be derived. In this case, the term yk is equal to the cell voltage.

2.3. Extended Kalman Filter

The measured values often cannot be exactly reproduced by the
model. These differences are unavoidable due to measurement
inaccuracies, incorrect model parameters, and the equations for
the state itself.[12] Another possibility in addition to the measures
already mentioned in Section 2.1 to minimize the error is the use
of state observers. They are built on the concept of model-based
estimation. Based on the state space model, the state observer
continuously updates and corrects the state Equation (4), in this
case online. Different algorithms can be used for this purpose.
The Luenberger observer is mainly used for linear control sys-
tems, while the sliding-mode observer is used for nonlinear
behavior. A third possibility is the so-called KF.[36] The KF offers

the advantage that it works recursively and, in contrast to filters
that average over an interval of measured values, it requires only
the last and the current value of the measurement. This makes its
use suitable for estimation in real-time applications.[25] The KF
relies on the difference between Equation (4) and the output
Equation (5) of the model to predict the state of a physical
process.[14] The deviation from the measured system output
adjusts the estimates. Accordingly, it is based on minimizing
the mean-squared error.[25] For efficient computation by a
BMS, it is convenient to use the discrete model.[4] The state
equation of a KF is generally extended by the process noise wk

xkþ1 ¼
1� Δt

RC

� �
0

0 1

" #
� URC,k

SOCk

� 	
þ

Δt
C
ηC�Δt
Cn

" #
� Ik þ

w1,k

w2,k

� 	
(6)

and the system response by the measurement noise vk

yk ¼ Ucell,k ¼ UOCV SOCkð Þ þURC,k þ Ik � RΩ þ vk (7)

Process noise is a stochastic quantity and models non-
measurable external conditions that affect the states.
Measurement noise accounts for uncertainties in the measure-
ment system. Both variables are considered as uncorrelated
white Gaussian noise with known covariance matrices.
Generally, both noise terms do not exhibit these properties in
reality, although most authors agree that this method is never-
theless considered practical.[4] The covariance is a measure of
the probability that the calculated value corresponds to the actual
value in the physical system. The higher the values of the
covariance, the more uncertain is the estimate of the associated
states. The covariance matrix P of the state vector is calculated
according to

P̃k ¼ E xk � x̃kð Þ xk � x̃kð ÞT½ � (8)

where E ⋅½ � defines the statistical operator for the expected value.[4]
For the recursive determination of the states, the KF resorts to

the principle of Gaussian sequential probabilistic deduction,
which consists of six steps. Thus, at the end of each iteration,
the probable value x̃k for the state can be calculated together
with the corresponding covariance matrix P̃k. The updated esti-
mates at the end of the previous iteration are the starting point
for the estimate at the new measurement point. The feedback
creates a loop in the algorithm that continuously corrects the
calculation.[25]

The loop and the six steps are shown in Figure 3. Before the
calculation starts, the filter must first be initialized. The initial
values x̃0 and P̃0 should be chosen as well as possible based
on the available information.[4,14]

First, the update for x̂k and P̂k is performed. Then, the algo-
rithm calculates the system response and the gain matrix Lk to
correct the quantities in the time update. The equations for the
KF associated with each step can be obtained from Table 1. The
matrices Ak, Bk, and Ck can be time-varying and are taken from
the state space model. The matrix Q and the scalar r are the cova-
riances of wk and vk. These two covariances for the noise terms
cannot be computed, but must be fixed a priori.[4]

The filter has already been proven in a wide variety of forms
for battery state estimation in numerous studies.[3,12,36–39] The

Figure 2. Equivalent circuit model (ECM) with one RC element.
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variant used in this work is the EKF. It is often applied to non-
linear systems (compare refs. [4,6,40–43]) and linearizes the
model at each measurement point by forming the derivative.[44]

This is mostly done by a first-order Taylor series approxima-
tion.[14] Applying a linear KF to this system results in an EKF for
an originally nonlinear system.[4]

For an application of the EKF, a nonlinear state space model is
needed. The equation of the states then takes the form

xkþ1 ¼ f xk, ukð Þ (9)

and the system response corresponds to

yk ¼ g xk, ukð Þ (10)

Because of the nonlinearity of the equations, the matrices A
and C for the EKF must be replaced by the partial derivatives of
the functions f in Equation (4) and g in Equation (5) as well as in
Table 1. Otherwise, the procedure of an EKF equals that of an
ordinary KF.[6]

The recursive algorithm of the KF makes it possible to avoid
the time-consuming storage of multiple measurement data, as is
the case with a moving average filter.

2.4. Adaptive Extended Kalman Filter

To solve the problem of inaccurate estimations due to insuffi-
cient covariance values, an AEKF can be used. Here, the entries
in the covariance matrices are adjusted during the operation of
the EKF with the aim of limiting the estimation error. Several
methods exist to achieve this goal. Mehra[45] classified them into
four categories: Bayesian estimation, maximum likelihood meth-
ods, correlation methods, and covariance matching methods. In
this work, two variants of the covariance matching methods are
used. The goal of these methods is to keep the deviations
between the measured and the predicted values of the output var-
iable consistent with the theoretical covariances of the EKF[45] In
the following, the moving window average (MWA) and FF
approaches used in this work are explained in more detail. In
the approach with an MWA, the mean value

Rσ
k ¼

1
σ

Xk
m¼k�σþ1

ym � ym,measured

� �
ym � ym,measured

� �
T (11)

is determined for the sum over the deviations between calculated
and measured output variables during the last σ iterations of the
KF (see Equation (11)).[6] Using this average, the covariance
matrices of the system noise

Q kþ1 ¼ LkRσ
kL

T
k (12)

and measurement noise

rkþ1 ¼ Rσ
k þ CkPkþ1CT

k (13)

are then fitted.[6]

A second version of the AEKF uses an FF instead of an MWA
to adjust the covariances during operation of the KF. The FF can
be of any value between 0 and 1. Smaller values lead to a higher
reliance on the current deviations between the estimation of the
output and the measured value, higher values lead to a focus on
the history of these deviations. For FF ! 1, the AEKF turns into a
regular EKF. The adjustment of the covariances

Q kþ1 ¼ 1� dkð ÞQ kþ dk

Lk yk� yk,measured

� �
yk� yk,measured

� �
TLk þ P̂kþ1�AkP̃kAT

k

� �
(14)

and

rkþ1 ¼ 1� dkð Þrk
þ dk yk � yk,measured

� �
yk � yk,measured

� �
T�CkP̂kþ1CT

k

� � (15)

is done with the FF according to ref. [46]. The parameter dk is
defined as 1�FF

1�FFk
.[46] In this work, the AEKF is used as a bench-

mark to have a comparison value for the results of the EKF with
the tuned parameters.

Figure 3. Procedure of the recursive state estimator. After initialization,
the states and the covariance are calculated with current measured values.
Thereupon, the error adjustment takes place and the values are corrected
accordingly.
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3. Experimental Section

3.1. Key Performance Indices

To compare and to evaluate the performance of different filtering
approaches at different operating states, metrics are required.
For this purpose, four key performance indicators (KPIs) are
established and used in this paper. Figure 4 shows an overview
of the four KPIs illustrated by an exemplary course of the error
for the estimation of the SOC during an SLC A load profile. One
of the most commonly used metrics is the RMSE

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
k¼1

yk � yk,measured

� �
2

s
. (16)

Here, the squared deviation between a calculated value y at
step k and the corresponding measured value at the same time
step ymeasured is accumulated for a certain time period and nor-
malized. Since the RMSE averages over the complete course of
the error, large deviations can occur for a short time without
being significantly reflected in the KPI. Therefore, the maximum
absolute deviation

max jΔSOCjð Þ ¼ max jyk � yk,measuredj
� �

(17)

is additionally introduced as a KPI.
Furthermore, the drift of the estimated value compared to the

measured value is considered. The estimation drift may be neg-
ligible for short load profiles but can lead to larger deviations of
the estimation from the reference due to accumulating errors.
The gradient a of the regression line of the deviation between
estimated and measured value is used as part of a KPI

ΔSOCdrift ¼ yk � yk,measured � a� tþ c (18)

for the drift behavior. The unit of the gradient a is %
h .
[47]

To evaluate the transient response to an incorrect initial value,
the estimation error after 10% of the total duration of the respec-
tive load profile

ΔSOCtrans ¼ ε10% ¼ y10% � y10%,measured (19)

is used. The transient behavior of the state estimation algorithms
may change for different load dynamics.[47]

3.2. Cells and Load Profiles

The optimization is carried out for a Samsung INR 18 650-25 R
lithium–nickel–cobalt-aluminum-oxide (NCA) cell. For this pur-
pose, pulse measurements are executed at different SOCs to
parameterize the ECM. The UOCV curves are generated with
pseudo OCV measurements with C

20. The parameters and voltage
curves are given in Appendix (see Figure A1). To show the capa-
bilities of the observers the meanmodel parameters are used (see
Table 2) and only theUOCV is implemented as an LUT and, there-
fore, considered SOC dependent in this model. Afterward, HSE
is trained with the measured voltage and SOC curves for the two
generic standard load cycles (SLC) profiles (see Figure 5) intro-
duced by Campestrini.[47] To validate the approach, EKFs tuned
with the resulting filter parameters then estimate the SOC of the
cells for measurements based on the Urban Dynamometer
Driving Schedule (UDDS) by the United States Environmental
Protection Agency. All measurements were performed with a
BaSyTec system. The simulations of the models and state estima-
tion algorithms run with a sample time Δt of 0.4. This value
results from a compromise between simulation time of the
HSE and accuracy of the estimations. Additionally, AEKFs tuned
by hand with the trial-and-error method are used for estimating
the SOC of the mentioned load profiles. These estimations serve
as benchmark for the EKFs tuned with the HSE approach.
The tuning by hand is carried out by the authors and their sub-
jective experience in filter tuning and reflects the estimations
with the smallest deviations that could be reached after extensive
testing.

3.3. Robustness Analysis

Errors in the current or voltage measurement, incorrect param-
eters of the elements in the ECM, or a bad initial estimation of
the state can lead to unstable behavior or inaccurate estimations
of the KF and its variants.[36]

To investigate the resilience of the tuned filters against those
errors, several failure cases are defined. In the first case, a ran-
dom noise signal with an amplitude of 0.1% of the 1C current is
added to the regular current signal. The second case consists of a
random variation of the parameters in the ECM by up to 10%.
This indicates how the filter behaves in case of ECMs that are not
well parameterized. For the third case, the KFs are initialized
with an incorrect value for the SOC. Therefore, the value
SOC0 is set 10% below the correct value to gain information
about the convergence behavior.

Figure 4. Overview of the definitions of the key performance indicators
(KPIs) illustrated by an exemplary profile of the estimation error.

Table 2. Used model parameters for simulation.

Chemistry RΩ R C ηC

NCA 26.5 6.5 3.75 99.5%
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4. MOO Approach

4.1. Hyperspace Exploration

The HSE represents an approach to system design for complex
problems. It combines methods for virtual prototyping with
methods for the design of virtual experiments (DovE). The
generic HSE workflow includes five steps. The results of these
steps are several sets of pareto-optimal design parameters for
the considered system. Figure 5 provides an overview of the steps
in the workflow of the HSE as well as an overview of the different
subspaces of the hyperspace.[21]

In the first step, the hyperspace is spanned as the Cartesian
product of the design space D, the use case space U, and the tar-
get space T. The design space contains all possible design var-
iants for the system that are considered for optimization. The
use case space includes the possible use cases, in which the sys-
tem to be optimized can operate, while the target space consists
of the desired target variables that are part of the objective func-
tions of the system. In steps 2–5 of the HSE, the surrogate opti-
mization of computationally expensive multiobjective problems
(SOCEMO) algorithm (see the yellow boxes in Figure 5) is

employed. The initial DovE, the second step of the HSE, is con-
ducted using the Latin hypercube sampling in the SOCEMO
algorithm, here with a symmetric Latin hypercube.[48,49] More
details about the SOCEMO algorithm are provided by Müller
in ref. [48]. After obtaining the experiment plan from the
DovE, computationally expensive evaluations of the model are
performed during the third step for each element of the experi-
ment plan. The number of evaluations is defined previously dur-
ing the DovE step. From the results of the evaluations a surrogate
model of the system is constructed. The surrogate

ŝ ¼ f α d, uð Þ � t d, uð Þ (20)

is a function family that approximates the relation between the
elements d and u of the design and use case space to the elements
t of the target space.[21]

The SOCEMO algorithm uses radial basis functions (RBFs) to
build the surrogate. For each objective inside the target space, a
separate RBF with the general form

f α ¼
Xn
k¼1

αiϕ kd � dik2ð Þ þ P dð Þ (21)

Figure 5. Overview of the hyperspace exploration (HSE) principle based on Palm,[21] as well as the subspaces of the hyperspace.
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is calculated. In Equation (21), α denotes the scalar coefficients
linking the vectors from the different spaces, ϕ denotes the
respective real-valued function, in this case, the cubic function,
and p is the linear polynomial tail.[48] During the optimization
step, the SOCEMO algorithm employs different search strategies
aiming at finding well-distributed, pareto-optimal sets of param-
eters from the design space. For more information about HSE,
refer to Palm and Holzman.[21] In their work, they also present
two examples for HSE applications in the automotive sector. The
first example examines whether electric vehicles (EV) benefit
from shiftable gear boxes and compares different topologies
for the gear box via HSE. The second example evaluates the ben-
efit of 2-wheel versus 4-wheel drive trains for EVs using the HSE.

4.2. Adaption for KF Tuning

To implement the process of tuning the KF parameters into the
HSE, the design space encompasses the covariances of the noise
termsQ and r as well as the initial values of the covariance matrix
P. Since the covariance matrices are diagonal and the model
includes two observed states and one output variable, the design
space consists of a total of five design parameters. The upper
boundary for the elements of the design space is chosen to be
10 and the lower boundary is chosen to be 10�12 for each of
the parameters. The use case space consists of the different appli-
cations of the system. In this work, the considered use cases are
two different load profiles with different dynamic characteristics
as well as a Li-ion cell with NCA chemistry. The load profile SLC
A is used as a profile with low dynamics and the load profile SLC
B as a profile with high dynamics.[47] The NCA cell mentioned in
Section 3.2 is used for the experiments. Additionally, different
cases like aged cells or temperature variations can be included
in this step, but are beyond the scope of this work.

With the method of Latin hypercube sampling, the DovE is
created, where the experiments containing the variations of
the load profiles and different values for the covariance entries
are planned. Then, the simulations of the EKF for these different
scenarios according to the DovE are executed. From the results of
the evaluations, a surrogate model of the system is constructed.
The surrogate model maps the functional influence of the differ-
ent variables in the design space and use case space on the target
space, which comprises the four KPIs established in Section 3.1.
A physical interpretation of the surrogate model like in an ECM
is no longer possible. The actual optimization of the covariance
entries is conducted with the surrogate model, because it is com-
putationally inexpensive and can be executed fast. The algorithm
runs until a certain number of complete evaluations of the EKF
has been reached and provides the pareto-optimal values for the
filter parameters in regard to the KPIs.

4.3. Combined Method

To further optimize the filter behavior, an MOO via HSE is
trained for an AEKF with 2000 iterations at the two SLC load pro-
files mentioned before. Thereafter, the same validation proce-
dure as for the EKF follows with the newly calculated filter
parameters and the AEKF algorithm. The aim is to combine
the step of initial tuning via the HSE and the adaption of the

parameters during operation by the AEKF. This should result
in a better convergence behavior.

5. Results and Validation

The run time is largely dependent on the number of expensive
evaluations of the KF as well as of the used sample times Δt and
the duration of the load profiles. The actual number of evalua-
tions performed is slightly higher than the specified maximum
number of evaluations due to the positioning of the checkpoints
within the code. Further increasing the maximum number of
evaluations only shows a slight increase in the performance of
the filter with the obtained parameters. In Table 3, the corre-
sponding run times and the number of actual evaluations are
mentioned for different predefined numbers of evaluations.

To be able to compare the estimation behavior of the filters
using the parameters obtained via HSE, two state of the art
AEKFs are tuned with the commonly used technique of
trial-and-error. Therefore, the two variants with an MWA and
an FF are tuned by hand for the SLC A profile and adjusted
to also perform sufficiently well for the SLC B profile. This shows
one of the major advantages of the HSE concept. By including
several profiles in the use case space it is possible to optimize
the parameters for different load profiles at once. In the conven-
tional method the filter is typically optimized for one profile only.
The resulting filter parameters can be seen in Table 4. For com-
parability reasons, the MWA and FF variants tuned by hand are
run with similar parameters. The HSE results show far smaller
values for the values of P.

5.1. HSE Tuning for EKF

The resulting estimations of the tuned filters for the two training
profiles and the UDDS validation profile are depicted in Figure 6.

Table 3. Number of predefined and actual evaluations and run time of the
HSE.

Defined number of evaluations Actual number of evaluations Run time

250 328 2546

500 536 4171

1000 1832 14 625

2000 2979 22 912

Table 4. Filter parameters for tuning. MWA and FF by trial and error. HSE
EKF and HSE AEKF via HSE.

Parameter MWA FF HSE EKF HSE AEKF

v 9� 10�9 9� 10�9 8.7� 10�5 1� 10�12

w11 2� 10�10 2� 10�10 1 4.8� 10�8

w22 2� 10�7 2� 10�7 1� 10�12 1

P11 1� 10 1� 10 9.9� 10�1 2� 10�12

P22 1� 10 1� 10 6.1� 10�11 1.7� 10�12

σ 1� 102 – – –
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Figure 6, 7 and 8 compare the manually tuned KF variants and
the KF variants optimized by HSE with a reference case. The ref-
erence curves are measurements on the battery cell at the men-
tioned load profiles. The corresponding KPIs are represented in
the spider diagrams next to the profiles. In case of the SLC A
profile with less dynamics, the MWA AEKF overall performs
with a slightly higher precision (RMSE of 1.3%) compared to
the FF variant, which reaches an RMSE of 1.4%. However,
the MWA AEKF shows higher deviations from the reference
curve at the beginning, but manages to converge during the

course of the profile. This results in a considerably larger
max jΔSOCjð Þ compared to the FF AEKF (3.3–2.4%). This trend
consequently manifests itself in the KPI for the transient behav-
ior ΔSOCtrans, where the FF variant is far superior with a value of
0.4% compared to the 3.3% of the MWA AEKF. The drift KPI is
rather low for both variants and suggests that this negative influ-
ence can be neglected in this case. The best performance in all
categories for this profile shows the EKF tuned by the HSE. The
RMSE is reduced to 0.2% and max jΔSOCjð Þ shows a value of
0.3%. Therefore, a properly tuned EKF is able to outperform

(a)

(b)

(c)

Figure 6. Estimation results for a) the SLC A, b) the SLC B, and c) the Urban Dynamometer Driving Schedule (UDDS) profiles. Compared are manually
tuned moving window average (MWA) and forgetting factor (FF) adaptive extended Kalman filters (AEKFs) and an extended Kalman filter (EKF) tuned by
the HSE.
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the state-of-the-art AEKFs that are manually tuned. The same
trend is observable for the SLC B profile with higher dynamics.
The FF AEKF yields lower values in all 4 KPIs compared to the
MWA AEKF. Additionally, the MWA AEKF leads to high fluctu-
ations in its estimation, which results in an RMSE of 4.3% and a
maximum deviation of 9.9%. The drift for both variants is con-
siderably higher due to the lack of static behavior in this profile.
The worse performance for the SLC B profile can be explained by
the filter tuning process. The AEKFs have first been tuned for
estimations with very high precision for the SLC A profile and
then the parameters were adjusted for the dynamic profile for

acceptable estimations. In case of the HSE tuned EKF, no KPI
surpasses a value of 0.2%. A comparison of the estimations
for the UDDS profile, which has not been part of the training
data set, shows the filter behavior for profiles that have not been
part of the tuning process. The FF AEKF and HSE EKF derive
estimations on a similar level regarding all KPIs, although the
values for the later are lower in every aspect and do not surpass
0.3%. Again, the MWA AEKF performs the worst of the three
variants, with higher fluctuations of the estimations, an RMSE
of 3.7% and a maximum deviation of 8.6%. By considering both
training sets at once in the MOO by the HSE, the filter

(a)

(b)

(c)

Figure 7. Estimation results for a) the SLC A, b) the SLC B, and c) the UDDS profiles. Compared are manually tuned MWA and FF AEKFs and an AEKF
tuned by the HSE.
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parameters found are suitable to a wider range of applications
compared to the traditional, manual tuning process, which
mainly focuses on one profile.

5.2. HSE Tuning for AEKF

To illustrate the abilities of deriving the filter parameters via
HSE, in the following, optimized versions of both AEKF variants
are compared to their manually tuned counter parts (see
Figure 7). The respective filter parameters are stated in
Table 4. The MWA AEKF estimation behavior is only improved
by the HSE in case of the SLC A profile, while no significant
changes can be identified for the other two use cases. This indi-
cates that suitable filter parameters have already been deter-
mined by the manual tuning process. However, for the first
mentioned profile, the RMSE is reduced from 1.3% to 0.6%
and also the transient behavior is improved significantly as is
shown by a reduction of ΔSOCtrans from 3.3% to 0.4%. In case
of the FF AEKF, an improvement of the estimations for the two

SLC profiles is observable, while maintaining the overall strong
results for the UDDS profile. For the first load profile, the course
of the estimation is approximated by the HSE closer toward the
reference curve as can be deduced from the fact that the RMSE is
reduced from 1.4% to 0.4% and the maximum deviation
from 2.4% down to 0.6%. Similar behavior is illustrated in
Figure 7b for the SLC profile with higher dynamics. Here, the
RMSE decreases from 2.6% to 0.9% and max jΔSOCjð Þ from
3.4% to 1.2%. Thus, an improvement is achieved by automated
filter tuning with the HSE framework compared to the time
intensive tuning by the user.

5.3. Robustness Against Disturbances

In the following, the results of the robustness analysis from
Section 3.3 are shown for an example with relatively low dynam-
ics (SLC A) and the UDDS profile as an example with higher
dynamics. Again, a comparison between the two manually tuned
AEKF variants and the ones tuned by HSE is conducted. All

(a)

(b)

(c)

Figure 8. Estimation results for a) initialization with SOC0 � 10% (state of charge [SOC]), b) additional noise on the input signal, and c) random variation
of the ECM parameters by 10%. The SLC A profile is pictured on the left and the UDDS on the right.
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mentioned fault cases have not been included in the tuning pro-
cess. Therefore, this study shows the robustness of the found
solutions against disturbances. Figure 8a depicts the estimations
in case of incorrect initialization of the filters. Thus, the values of
SOC0 have been chosen 10% lower than the correct value. The
influence of this disturbance on the estimation process can best
be seen in the KPIs for the transient behavior ΔSOCtrans and for
the maximum deviation max jΔSOCjð Þ. In case for the manually
tuned AEKFs, the difference between the reference SOC and the
estimation after 10% of the total timeΔSOCtrans amounts to 3.3%
for the MWA variant and 7.3% for the FF AEKF at the SLC A
profile. The respective values for the HSE tuned filters do not
exceed 0.4% which means a significant increase in convergence
speed. Also max jΔSOCjð Þ is decreased from 6.9% to 3.7%
(MWA AEKF) and from 7.6% to 0.9% (FF AEKF). These values
give an impression on the adjustment of the initial deviation by
the filters. Similar to the results in Figure 7, the MWA AEKF is
hardly influenced by the HSE for dynamic profiles. However,
with the HSE parameters and the UDDS profile ΔSOCtrans sinks
from 12.5% to 0.3% for the FF AEKF and the maximum
deviation can be reduced from 12.5% to 1%. Therefore, conver-
gence speed is increased by usage of the automated filter tuning
process.

Figure 8b shows the estimations with additional noise on the
input signal I (see Figure 2). The FF AEKF is not affected by the
additional noise and all values for the KPIs do not exceed values of
0.6% for both load profiles and both filter tuning variants. The
MWA variant is also not decisively changed by this disturbance
in case of the dynamic profile. However, the RMSE and the
KPI for the drift behavior are influenced at the SLC A profile
and increase to values of 3.6% and 3.3%. Additionally, the maxi-
mum deviation reaches values of 6.3%. Tuning the MWA filter
with the HSE has no influence on the behavior of the estimation
with noisy system input.

The random variation of the ECM parameters by 10% in
Figure 8c simulates how the filters react, when the ECM is
not parameterized well or the cell ages over time and, therefore,
the cell parameters have changed with time. For the profile with
low dynamics redundantly, small differences between the man-
ually tuned and HSE optimized filter parameters can be
observed. The FF AEKF performs overall very well again for this
profile and the KPIs do not exceed values of 0.7%. The MWA
variant shows a maximum deviation of 7.3% and an RMSE of
1.8%. The other KPIs are similar to the values for the case with-
out disturbances (see Figure 7a). However, the manually tuned
FF AEKF performs significantly better for the UDDS profile com-
pared to the HSE tuned parameters. An explanation for this
behavior is that the HSE with its 1000 iterations specializes
on the ECM with the correct parameters and is therefore more

sensitive to changes in that regard. The manually tuned variant
allows more leeway in that regard.

6. Conclusion and Future Work

As stated in the introduction, KFs are commonly used to
account for uncertain current measurements or inaccurate
model parameters for state estimation, e.g., SOC, in battery
diagnosis and in BMSs. The main drawback of this algorithm
is the dependency on manually tuned meta parameters, the
covariances of the filter. Therefore, the results are strongly
influenced by the skill and experience of the respective devel-
oper. The filter can be tuned either for convergence speed or
for estimation accuracy, and usually the developer has to find
the compromise that works best for the specific application.
In this article, the time extensive tuning process of KFs to esti-
mate the SOC of LIBs is automated for the first time by applying
MOO via the holistic framework of the hyperspace exploration.
With this algorithm, it is no longer necessary to manually
search decent values for the covariance matrices, which is
time-consuming and not a reproducible way of determining
these parameters. Furthermore, tuning by HSE ensures a
way to compare different filter applications, because the estima-
tion behavior is no longer dependent on the skill of the user to
find suitable values for the covariances. This framework also
allows implementing different objective functions in the opti-
mization and, e.g., tunes the filter behavior simultaneously
for precision and convergence speed. Furthermore, different
load profiles can be considered during the tuning process
and improve the estimation for varying applications. This is
especially of interest for hybrid and battery EVs. The hyperspace
exploration is a useful tool, as the framework allows to include
different driving cycles in the use case space and differently
aged cells or temperature variations in the design space.
These scenarios are then considered in the overall optimization
by the algorithm. Different KPIs are established in this work to
evaluate and compare the performance of the filter variants. It
could be shown that the filter parameters found by the auto-
mated process perform at least as well as the manually tuned
filters and in case of an AKF with an FF or an extended KF,
the estimation results could even be improved in terms of pre-
cision and convergence behavior for load profiles with high and
low dynamics. However, if the parameters of the ECMs deviate
strongly from the values of the real system, inaccuracies occur.
One of the advantages of the HSE is that a variation of the model
parameters can be integrated in the use case space. Therefore,
this source of inaccuracies is then integrated in the optimiza-
tion process. This will be part of the authors’ future work
regarding filter tuning by MOO.
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