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Abstract

Localized surface plasmon resonances in metal nanostructures allow the confinement of
electromagnetic fields in exceptionally small volumes below the optical diffraction limit.
In particular, the nanoparticle-on-mirror (NPoM) geometry offers precise control over
all fabrication steps. Cavities on the scale of only a few nanometers are built from gold
nanoparticles on a gold substrate, separated by ultrathin spacer layers. In this work,
the interaction of oriented emitters with individual NPoMs is investigated in simulation
and experiment. We develop sensitive optical spectroscopy methods with spatial and
polarization resolution. Complementary to the experiments, we provide a universal and
comprehensive theoretical framework to efficiently model the emitters, cavities, and their
interaction.

First, we give a theoretical overview of light-matter interaction and quantum emitters. We
introduce the Purcell enhancement of spontaneous emission in inhomogeneous environ-
ments, such as plasmonic cavities. Furthermore, we discuss the transition from weak to
strong coupling, where the emitter and cavity form hybrid states.

To investigate the interaction of emitters with NPoMs, we first study both systems inde-
pendently. We use dye monolayers encapsulated between two hectorite nanosheets as
homogeneous incoherent emitter ensembles. The dye layers can be dropcasted onto any
hydrophilic substrate, yielding uniform structures as thin as 4 nm and with lateral sizes of
tens of microns. To accurately represent the dye monolayer in later simulations, we first
experimentally characterize its optical properties. We determine the refractive index of the
ultrathin structure by white light reflection spectroscopy with spatial resolution. The reflec-
tion spectra are fitted to transfer matrix calculations, taking into account the absorption of
the dyes. The broadband fluorescence of the dye monolayer originates from two electronic
transitions, which we disentangle by singular value decomposition. The orientation deter-
mination of both transition dipoles individually is essential to model the interaction with
plasmonic nanoresonators. Therefore, we introduce and apply a novel and fast technique
to determine the orientations of spectrally overlapping transition dipoles in dense dye
layers. The presented hyperspectral imaging method generates polarization-dependent
fluorescence spectra of the dye monolayers with diffraction-limited spatial resolution. We
develop a statistical model for the dipole orientation distribution of incoherent ensembles
to describe the measured data, revealing spatial maps of the dipole orientation on glass
and gold substrates. In addition, we show how the time-averaged emission intensities of
both transitions can act as a clock for picosecond molecular dynamics.

In the next part, we investigate the intrinsic resonances of NPoMs composed of a smooth
gold substrate, a few-nanometer thick dielectric spacer, and a colloidal gold nanoparticle.
We employ numerical simulations to decompose the optical response into quasi-normal
modes (QNMs), allowing a low-level understanding of the fundamental NPoM resonances.
Based on this, we quantify the influence of unavoidable variations in particle size and
shape on the resonance frequencies. For comparison with the experiment, we compute the
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diffraction patterns of each mode in the detector plane using a numerical far-field imaging
technique. We then introduce an experimental setup for polarized scattering spectroscopy
with spatial resolution to identify the fundamental modes of individual NPoMs in both
the spatial and spectral domains, depending on the excitation and detection polarizations.
We study the resonances of many individual NPoMs as a function of the gap size, varied
between 1 nm and 4 nm by atomic layer deposition, and find a good agreement with the
theoretical predictions.

Finally, we combine our results from the independent characterization of the cavity and
emitters to analyze the fluorescence enhancement of the coupled system. The broadband
emission of the dye monolayer allows us to determine the coupling strengths to different
NPoM modes. In the simulations, we consider both excitation and emission enhancement to
compute the experimentally observable fluorescence enhancement by each NPoM mode at
each dipole position. In the experiment, we model the fluorescence enhancement spectra by
a sum of NPoM resonances, which are determined by independent scattering spectroscopy.
Thus, the coupling coefficients of the dye monolayer to the in-plane and out-of-plane NPoM
modes can be directly compared between experiment and simulation. Our approach can
be universally applied to describe the Purcell enhancement of emitters in cavities. We
give an outlook on how strong coupling with dye monolayers might be observed in future
experiments. Furthermore, we present our first results on nanostructured spacer layers to
control the density and position of emitters in the future.
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Zusammenfassung

Metall-Nanostrukturen besitzen lokalisierte Oberflächenplasmonen-Resonanzen. Diese
ermöglichen es, elektromagnetische Felder in außergewöhnlich kleinen Volumen unter-
halb der optischen Beugungsgrenze zu konzentrieren. Insbesondere Nanopartikel, die
an einen Spiegel gekoppelt sind (engl. „nanoparticle-on-mirror“, NPoM) bieten eine
präzise Kontrolle über alle Herstellungsschritte. Resonatoren mit einer Länge von wenigen
Nanometern werden aus Gold-Nanopartikeln auf einem Goldsubstrat, die durch ultradünne
Abstandsschichten getrennt sind, gebildet. In dieser Arbeit wird die Wechselwirkung von
orientierten Emittern mit einzelnen plasmonischen Nanoresonatoren in Simulation und
Experiment untersucht. Wir entwickeln sensitive optische Spektroskopiemethoden mit
räumlicher und Polarisationsauflösung. Ergänzend zu den Experimenten präsentieren wir
einen universellen und umfassenden theoretischen Rahmen, um Emitter, Resonatoren und
deren Wechselwirkung effizient zu modellieren.

Zunächst geben wir einen theoretischen Überblick über die Licht-Materie-Wechselwirkung
und Quantenemitter. Wir diskutieren den Purcell-Effekt, der die Verstärkung der spontanen
Emission in inhomogenen Umgebungen wie plasmonischen Nanoresonatoren beschreibt.
Darüber hinaus behandeln wir den Übergang von schwacher zu starker Kopplung, bei der
Emitter und Resonator hybride Zustände bilden.

Um die Wechselwirkung von Emittern mit den Nanoresonatoren zu untersuchen, studieren
wir zunächst beide Systeme unabhängig voneinander. Wir verwenden Farbstoff-Monolagen,
die zwischen zwei Hectorit-Nanoschichten eingebettet sind, als homogenes, inkohärentes
Emitter-Ensemble. Die Farbstoffschichten können auf ein beliebiges hydrophiles Substrat
aufgebracht werden und ergeben homogene Strukturen mit einer Dicke von 4 nm und einer
lateralen Größe von einigen zehn Mikrometern. Um die Farbstoff-Monolagen in späteren
Simulationen präzise modellieren zu können, charakterisieren wir zunächst ihre optischen
Eigenschaften experimentell. Wir bestimmen den Brechungsindex der dünnen Schichten
durch Weißlicht-Reflexionsspektroskopie mit räumlicher Auflösung. Die Reflexionsspek-
tren werden unter Berücksichtigung der Absorption der Farbstoffe an Transfermatrix-
Rechnungen gefittet. Die breitbandige Fluoreszenz der Farbstoff-Monolage entsteht durch
zwei elektronische Übergänge, die wir durch Singulärwertzerlegung voneinander trennen.
Die Orientierungsbestimmung der beiden Übergangsdipole ist für die Modellierung der
Wechselwirkung mit plasmonischen Nanoresonatoren unerlässlich. Daher zeigen und ver-
wenden wir ein neuartiges und schnelles Verfahren zur Bestimmung der Orientierungen von
spektral überlappenden Übergangsdipolen in dichten Farbstoffschichten. Die vorgestellte
hyperspektrale Bildgebungsmethode erzeugt polarisationsabhängige Fluoreszenzspektren
der Farbstoff-Monolagen mit beugungsbegrenzter räumlicher Auflösung. Wir entwickeln
ein statistisches Modell für die Verteilung der Dipolorientierung inkohärenter Ensem-
bles, um die experimentellen Daten zu beschreiben und schließlich räumliche Karten der
Dipolorientierung auf Glas- und Goldsubstraten zu berechnen. Außerdem zeigen wir,
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wie die zeitlich gemittelten Emissionsintensitäten beider Übergänge als Stoppuhr für die
molekulare Dynamik im Bereich von Pikosekunden dienen können.

Im nächsten Teil untersuchen wir die Eigenresonanzen der Nanoresonatoren, die aus
einem flachen Goldsubstrat, einem wenige Nanometer dicken dielektrischen Abstand-
shalter und einem kolloidalen Gold-Nanopartikel bestehen. Wir verwenden numerische
Simulationen, um die optische Antwort in Quasi-Normalmoden (QNM) zu zerlegen, um
ein tiefgehendes Verständnis der grundlegenden Resonanzen zu entwickeln. Auf dieser
Grundlage quantifizieren wir den Einfluss unvermeidlicher Variationen der Partikelgröße
und -form auf die Resonanzfrequenzen. Zum Vergleich mit dem Experiment berechnen
wir die Beugungsmuster jeder Mode in der Detektorebene mit Hilfe einer numerischen
Fernfeld-Abbildungstechnik. Anschließend stellen wir einen Versuchsaufbau für polar-
isierte Streuspektroskopie mit räumlicher Auflösung vor, um die fundamentalen Moden
einzelner Nanoresonatoren sowohl mit räumlichen als auch mit spektralen Methoden in
Abhängigkeit von Anregungs- und Detektionspolarisation zu identifizieren. Wir unter-
suchen die Resonanzen vieler einzelner Nanoresonatoren als Funktion der Resonatorlänge,
die durch Atomlagenabscheidung zwischen 1 nm und 4 nm variiert wird, und finden eine
gute Übereinstimmung mit den theoretischen Vorhersagen.

Schließlich kombinieren wir unsere Ergebnisse aus der unabhängigen Charakterisierung
der Nanoresonatoren und der Emitter, um die Fluoreszenzverstärkung des gekoppelten
Systems zu analysieren. Die breitbandige Emission der Farbstoff-Monolage ermöglicht es
uns, die Kopplungsstärken an verschiedene Moden der Nanoresonatoren zu bestimmen.
In den Simulationen berücksichtigen wir sowohl die Anregungs- als auch die Emissionsver-
stärkung, um die experimentell beobachtbare Fluoreszenzverstärkung durch jede einzelne
Mode an jeder Dipolposition zu berechnen. Im Experiment modellieren wir die Fluoreszenz-
Verstärkungsspektren durch eine Summe von Resonatormoden, die unabhängig davon
durch Streuspektroskopie bestimmt werden. So können die Kopplungskoeffizienten der
Farbstoff-Monolage zu den Moden des Nanoresonators, die parallel und senkrecht zum
Substrat orientiert sind, direkt zwischen Experiment und Simulation verglichen werden.
Unser vorgestellter Ansatz kann allgemein verwendet werden, um die Purcell-Verstärkung
von Emittern in Kavitäten zu beschreiben. Wir geben einen Ausblick darauf, wie die starke
Kopplung an Farbstoff-Monolagen in zukünftigen Experimenten beobachtet werden könnte.
Außerdem stellen wir unsere ersten Ergebnisse zu nanostrukturierten Abstandshaltern vor,
um zukünftig die Dichte und Position von Emittern kontrollieren zu können.
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Introduction 1
The development of the optical microscope brought about a new era for mankind to
investigate the essential compartments of our environment. Antoni van Leeuwenhoek
significantly contributed to the development of the microscope in the 17th century to
study red blood cells and bacteria with unprecedented resolution. Knowledge about the
microscopic composition of materials is essential to understand the macroscopic properties.
Electronic transitions of molecules in the visible spectral region give rise to the color of
materials we observe with our eyes. The invention of the laser established the field of
modern optical spectroscopy, where microscopic objects can be investigated and controlled
with high spatial and temporal resolution.

The optical resolution is inherently limited by diffraction. Considerable effort has been
invested in the 20th century to overcome this fundamental limit. A milestone was the
development of scanning near-field optical microscopy (SNOM), where scientists at IBM
in 1984 could finally obtain a lateral resolution of λ/20 [1]. The Nobel Prize in Chemistry
was awarded for super-resolved fluorescence microscopy techniques like photoactivated
localization microscopy (PALM) [2] and stimulated emission depletion (STED) [3] in 2014.
Moreover, it has been found that metal nanostructures can confine the electromagnetic
energy below the optical diffraction limit by localized surface plasmon resonances (LSPR).
The resonance frequencies can be tuned over a wide spectral range by the size, shape,
and material of individual nanostructures and their dielectric environment [4]. Early
experiments demonstrated that the roughness of metals on the nanoscale can significantly
increase the efficiency of Raman scattering from adsorbed molecules [5], known today
as surface-enhanced Raman scattering (SERS). The development of advanced fabrication
techniques such as electron beam lithography (EBL), focused ion beam milling (FIB), and
the chemical synthesis of noble metal nanoparticles meant a breakthrough for the field of
nano-optics and plasmonics [6–8].

The electromagnetic field confinement of metal nanostructures enables the controlled
interaction with emitters in the optical near-field. The electric field enhancement can be
increased even further in hotspots between coupled plasmonic nanostructures separated
by only a few nanometers [9]. In particular, the nanoparticle-on-mirror (NPoM) geometry
gained growing interest in the past decade [10–13]. The simple fabrication allows the
incorporation of a wide range of materials into the gap between the metal nanoparticle and
the metal substrate. The nanoparticles can be metal spheres, cubes, and other shapes [14].
Ultrasmooth metal substrates are routinely fabricated by template stripping [15]. The
resonances of the NPoM are very sensitive to the gap thickness and morphology, which
allows for precision applications such as rulers with sub-nanometer accuracy [16]. Protru-
sions in the metal surface can give rise to pico-cavities where the dimensions of the field
hotspot are on the order of single atoms [17, 18]. The NPoM geometry allows accessing
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the ultimate level of light confinement, as the observations of nonlocality of the metal
dielectric function [19] and quantum tunneling [20] demonstrate.

The photophysics of emitters significantly depends on the local environment. Incorporated
into the NPoM gap, emitters experience increased radiative and non-radiative energy
pathways [21]. On the one hand, losses in the metal give rise to emission quenching. It has
been demonstrated that the orientation-dependent quenching above metal substrates can
even facilitate the three-dimensional localization of emitters [22–24]. On the other hand,
the NPoM can efficiently radiate into the far-field based on the hybridization of cavity and
antenna modes [14, 25]. The balance of radiative and non-radiative decay channels, thus,
impacts the observed emission enhancement. Furthermore, the electric field distribution
in the gap determines the excitation enhancement of the emitter. Previous experiments
have demonstrated that the radiative rates of emitters in plasmonic nanoresonators can be
enhanced by several orders of magnitude while maintaining a high quantum efficiency
[26, 27]. Hence, the NPoM geometry is a promising candidate for ultrafast single photon
emission [28, 29] for applications in linear optical quantum computing [30]. The NPoMs
support a variety of modes that allow shaping the emission spectrum [31–35]. Optimizing
the interaction with emitters can lead to hybrid modes formed by gap plasmons and
emitters. In the strong coupling regime, the energy coherently oscillates between the
emitter and plasmon. Strong coupling at room temperature has been demonstrated for
single quantum dots [36, 37], single molecules [38], molecule aggregates [39–43], and
two-dimensional materials [44].

This work aims to investigate the coupling of oriented emitters with plasmonic nanoparticle-
on-mirror resonators, which requires sophisticated experimental and theoretical methods.
Two main aspects set this work apart from previously published works. First, the transition
dipoles of emitters need to be aligned with the nanoresonator modes for efficient coupling.
Therefore, we present a novel all-optical method to determine the transition dipole orien-
tations in dense dye layers. Our hyperspectral imaging approach allows us to disentangle
the orientations of multiple transition dipoles. Second, we use the broadband fluorescence
of the dye monolayers to investigate the coupling to the in-plane and out-of-plane modes
provided by the NPoM. Complementary numerical simulations enable us to determine
the coupling strengths of the fundamental NPoM modes with the dye monolayer for an
intuitive comparison with the experiments. We generalize the quasi-normal mode excita-
tion coefficients of Kongsuwan et al. [45] to model the incoherent ensemble of broadband
emitters with polarization resolution.

Chapter 2 reviews fundamental theoretical concepts of light-matter interaction and quan-
tum emitters. We start with the macroscopic description of dielectrics and metals and
then introduce the field of plasmonics. Furthermore, we discuss the spontaneous emission
of dipoles in homogeneous and inhomogeneous environments. Specifically, we focus on
the Purcell enhancement of dipoles at conductive interfaces and inside cavities. We then
continue with the general photophysics of molecules and line broadening mechanisms.
Finally, we describe the transition from weak to strong coupling in the framework of cavity
quantum electrodynamics.

In Chapter 3, we characterize the dye monolayer, which will be coupled to plasmonic
resonators in Chapter 5. The dye monolayer is encapsulated between hectorite nanosheets.
Therefore, we first introduce numerical methods for radiating dipoles in layered media.

2 Chapter 1 Introduction



Numerical simulations require the refractive index and thickness of the encapsulated dye
monolayer as input parameters. Hence, we demonstrate a general method to determine the
dielectric function of multilayer systems with spatial resolution. We apply this technique
to the hectorite nanosheets and the dye monolayers. Moreover, the transition dipole
orientations of the dye monolayer are essential for efficient interaction with nanoresonators.
Therefore, we present a novel method to disentangle the orientations of multiple spectrally
overlapping transition dipoles to characterize the orientational order of the dye monolayer
on different substrates. Finally, we discuss the fluorescence quenching depending on the
orientation and distance of the dipoles to the gold substrate.

Chapter 4 presents the fabrication, experimental characterization, and numerical modeling
of individual gold nanoparticles on a gold substrate with defined gap thickness. We aim for
a fundamental understanding of the basic modes supported by the NPoM. Therefore, we
introduce and calculate the quasi-normal modes of NPoMs and investigate the influence of
geometric and dielectric variations on the resonance frequencies. We compute the far-field
radiation associated with the individual modes to obtain the polarization-dependent diffrac-
tion patterns in the detector plane for comparison with experiments. Our hyperspectral
imaging setup allows us to investigate the scattering of many individual NPoMs in the
spectral and spatial domains. We model the polarization-dependent spectra by in-plane
and out-of-plane NPoM resonances.

Chapter 5 combines the ingredients of Chapters 3 and 4 by studying the coupling of the dye
monolayer to individual NPoMs. We first employ a theoretical model for the interaction
of the dye monolayer with the NPoM modes. Specifically, we calculate the excitation
coefficients of the quasi-normal modes, considering the inhomogeneous excitation of the
dipoles in the gap. Each dipole incoherently emits into the far-field via the NPoM modes in
the weak coupling regime. The results are compared with experimental results for many
individual NPoMs. We combine scattering and fluorescence spectroscopy of many individual
NPoMs to compare the experimental findings with the numerical simulations. Furthermore,
we study the photobleaching of the dye monolayer inside the NPoM gap. Finally, we give
an outlook toward strong coupling and future experiments with nanostructured emitter
layers. We end with a general conclusion in Chapter 6.
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Theory of emitters in structured

environments 2
In this thesis, we investigate the coupling of dye monolayers with plasmonic nanoresonators.
Hence, we briefly review some fundamental concepts of light-matter interaction and
quantum emitters. In particular, we discuss the spontaneous emission in homogeneous
and inhomogeneous environments. Finally, we describe the transition from weak to strong
coupling of emitters in cavities.

2.1 Light-matter interaction

As long as the involved structures are significantly larger than the atomic scale, Maxwell’s
classical theory provides an accurate description of electrodynamics. In free space, the
fundamental solutions to Maxwell’s equations are transverse electromagnetic waves [46].
The vectorial electric field E and magnetic field B of a plane wave depend on the position
r and time t and are represented as

E(r , t) = E0

�

ei(k·r−ωt) + c.c.
�

, (2.1)

B(r , t) = B0

�

ei(k·r−ωt) + c.c.
�

. (2.2)

Unless otherwise noted, we use the negative sign convention e−iωt for electromagnetic
waves, consistent with physics literature. The wave vector k = k0 in vacuum determines
the wave propagation direction and the wavelength λ = 2π/|k0|. Electromagnetic waves
in free space are transverse, i.e., k, E, and B are perpendicular to each other. The wave
propagation speed is the ratio between frequency ω and the magnitude of the wave vector.
In vacuum, the speed of light c0 = ω/k0 = (ϵ0µ0)

−1/2 is determined by the vacuum
permittivity ϵ0 and the vacuum permeability µ0.

Inside matter, the electric field displaces the negatively charged bound electrons from the
positively charged atomic nuclei. The charge separation induces a small dipole moment
p in each atom. The sum over all dipoles p i in a unit volume, hence, gives rise to a
macroscopic polarization P(r ) =

∑

i p i. The polarization, in turn, generates an electric
field which in isotropic media points in the opposite direction of the incoming wave. In
the context of the presented work, it is sufficient to assume a linear relation P = ϵ0χE

with susceptibility χ . The susceptibility is generally a tensor but reduces to a scalar value
for isotropic media.

To describe the reaction of matter to an incoming electromagnetic wave, we introduce the
dielectric displacement D in the macroscopic description of Maxwell’s equations

D = ϵ0E + P = ϵϵ0E , (2.3)

5



with relative permittivity ϵ = 1 + χ. A similar relation B = µ0µH exists between the
magnetic flux density B and magnetic field strength H . Since only nonmagnetic media are
considered in this work, we set the relative permeability µ= 1 in the following.

Resonances of the material, such as electronic transitions, lead to a frequency-dependent
response to incoming waves. Hence, the dielectric function ϵ(ω) = ϵ′(ω) + iϵ′′(ω) is
generally complex-valued and varies with frequency. Similarly, the refractive index ñ(ω) =
p

ϵ(ω) = n(ω) + iκ(ω) can be separated into real and imaginary parts. Inside media,
the wave vector depends on the refractive index as k(ω) = ñ(ω)k0. The plane wave in
Equation 2.1 then reads

E(r, t) = E0

�

ei(n(ω)k0·r−ωt) + c.c.
�

e−κ(ω)k0·r . (2.4)

Hence, the real part of the refractive index determines the wave propagation speed, known
as phase velocity, given by the dispersion relation

c(ω) =
ω

n(ω)|k0|
. (2.5)

The imaginary part of the refractive index gives rise to an exponential decay of the electric
field magnitude with the propagation distance. Hence, κ(ω) describes the absorption in
dissipative media.

2.1.1 Lorentz oscillator model

As outlined in the previous section, the material response depends on the frequency of
the incident electromagnetic wave. In a simple model, the electrons are bound to the
nuclei by a mechanical spring. Due to their much smaller mass me, the electrons oscillate
against the stationary nucleus when driven by an external electric field E(t) = E0e−iωt .
The equation of motion for the displacement x (t) of a damped driven harmonic oscillator
reads [47]

ẍ (t) + γẋ (t) +ω2
0x (t) = − e

me

E(t) , (2.6)

with elementary charge e, damping constant γ and resonance frequency ω0. The solution
of the differential equation has the form

x (t) =
e

me

1

ω2
0 −ω2 − iγω

E0e−iωt . (2.7)

The displacement has a maximum at the frequency ω =
q

ω2
0 − γ2/2. Furthermore, finite

damping causes a phase shift between the driving electric field and the charge oscillation.
The charge separation generates a dipole moment p(t) = −ex (t). The macroscopic
polarization P = nep = ϵ0χE in a medium with electron density ne is expressed by the
susceptibility

χL(ω) =
nee2

ϵ0me

1

ω2
0 −ω2 − iγω

. (2.8)
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If multiple resonances exist, the susceptibilities of all resonances with index i add up due
to the linear relation of polarization and electric field. Using the definition of the plasma

frequency ωp =

r

nee2

ϵ0me
, the dielectric function reads [48]

ϵL(ω) = ϵ∞ +
∑

i

ω2
p,i

ω2
0,i −ω2 − iγiω

. (2.9)

An offset ϵ∞ is introduced to account for unknown high-energy resonances, which takes
the value ϵ∞ = 1 otherwise. The dielectric function is split into real and imaginary parts

ϵL(ω) = ϵ
′
L(ω) + iϵ′′L (ω)

= ϵ∞ +
∑

i

ω2
p,i

ω2
0,i −ω2

(ω2
0,i −ω2)2 + γ2

i
ω2
+ i
∑

i

ω2
p,i

γiω

(ω2
0,i −ω2)2 + γ2

i
ω2

. (2.10)

2.1.2 Dielectric function of metals

In the discussion about the Lorentz-oscillator model, we argued that the electrons experi-
ence a restoring force due to their interaction with the positively charged nuclei. In metals,
however, electrons can move freely against the fixed lattice of positively charged atom
cores [49]. Collisions with ions damp the movement of the electrons. In the Drude model,
the equation of motion for a free electron driven by an electric field reads [47, 50]

ẍ (t) + γẋ (t) = − e

me

E(t) . (2.11)

The solution can be derived from the Lorentz oscillator model in the limit of vanishing
eigenfrequency ω0→ 0. The dielectric function at an electron density ne has the form

ϵD(ω) = ϵ∞ −
ω2

p

ω2 + iγω

= ϵ∞ −
ω2

p

ω2 + γ2
+ i

ω2
pγ

ω(ω2 + γ2)
, (2.12)

where again the the offset ϵ∞ is introduced. For comparison, the measured dielectric
function of various bulk metals can be found in the literature. Here, we will focus on the
optical properties of gold, the material investigated in this work. Johnson and Christy
measured the dielectric function of gold in the ultraviolet and visible range [51]. Figure 2.1
compares the measured values with the Drude model using ħhωp = 8.95 eV, ħhγ = 65.8 meV,
and ϵ∞ = 6 [47]. The Drude model reproduces the shape of real and imaginary parts in
the measured data well in the visible to near-infrared range. However, the validity of the
Drude model breaks down at higher energies where the transition between the d-band
and the sp-conduction band occurs [47]. The influence of the interband transition can
be seen very clearly in the imaginary part of the dielectric function, which increases at
energies above 2 eV.

2.1 Light-matter interaction 7



0 1 2 3 4 5 6

energy / eV

R
e

(ε
)

Im
(ε

)

7

6

5

4

3

2

1

0
0 1 2 3 4 5 6

energy / eV

a) b)

Johnson &

Christy

Drude

2-pole

Lorentz

5

0

-5

-10

-15

-20

-25

-30

Fig. 2.1.: Dielectric function of gold. Comparison of the measurement by Johnson and Christy
(black), the Drude model (blue), and a two-pole Lorentzian model (orange) using the
parameters in the main text.

As already introduced in Equation 2.9, a sum of Lorentzian oscillator terms can model
a material with multiple resonances. As all terms fulfill the Kramers-Kronig relation
individually, causality is also ensured for the sum of the contributions. For the numerical
simulations in this work, we use a two-pole Lorentzian function

ϵ2P L(ω) = ϵ∞

�

1+
ω2

p,1

ω2
0,1 −ω2 − iγ1ω

+
ω2

p,2

ω2
0,2 −ω2 − iγ2ω

�

, (2.13)

using the parameters from Ref. [45]

ϵ∞ = 6, ωp,1 = 5.37 · 1015 rad/s, ωp,2 = 2.2636 · 1015 rad/s,
ω0,1 = 0, ω0,2 = 4.572 · 1015 rad/s,
γ1 = 6.216 · 1013 rad/s, γ2 = 1.332 · 1015 rad/s.

The resulting dielectric function is shown as the orange line in Figure 2.1 and describes
the measured data well in the visible range investigated in this work. This demonstrates
that gold can be well approximated by a Drude term (index 1) for a free electron gas
and a Lorentz term (index 2) for the interband transition. Other resonances at higher
frequencies contribute to the offset ϵ∞.

2.1.3 Plasmonics

Noble metals possess extraordinary optical properties. The high reflectivity at visible
wavelengths originates from the negative real part of the dielectric function [47, 50]. In
the bulk material, the electron gas can be freely displaced against the fixed atom lattice by
an external electric field, as already discussed in the Drude model. On the surface, however,
a displacement of the electrons perpendicular to the interface generates an electric field
pointing in the opposite direction. This electric field provides a restoring force for the
electrons. The characteristic frequency associated with this restoring force is the plasma
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Fig. 2.2.: Charge distribution of (a) surface plasmons at the interface between metal and dielectric
and (b) localized surface plasmons at metal nanoparticles. (c) Calculated electric field
distribution around a 10 nm gold nanoparticle in the quasi-static approximation.

frequency ωp. Hence, the electrons can sustain collective charge-density oscillations. The
quanta of these oscillations are called (volume) plasmons. Consequently, the inelastic
scattering of electrons at metal surfaces peaks at multiples of the energy ħhωp [47].

To describe the interaction of electromagnetic waves with metallic structures, we need
to consider the boundary conditions between different materials imposed by Maxwell’s
equations. Interfaces can support waves propagating along the interface while the electro-
magnetic field is exponentially damped perpendicular to the boundary. It can be shown
that interface modes only exist if the dielectric functions of the materials fulfill [47]

ϵ1(ω) · ϵ2(ω)< 0 and ϵ1(ω) + ϵ2(ω)< 0 .

We assume that one material has a real-valued dielectric function ε2(ω). Consequently,
the dielectric function of the other material ε1(ω) needs to have a negative real part with
a larger absolute value. It is apparent from Figure 2.1 that gold has a significant negative
real part and therefore supports localized modes at interfaces to dielectrics. These surface
charge density oscillations are called surface plasmon polaritons (SPP, see Figure 2.2a).
A non-vanishing imaginary part of the dielectric function leads to damping of the waves
propagating along the surface. Typical plasmon propagation lengths on gold surfaces are
on the order of 10µm in the visible range. At the same time, the penetration depth is a few
tens of nanometers into the metal and a few hundreds of nanometers into the dielectric [47].
The controlled propagation of these localized waves in plasmonic waveguides has, for
instance, applications in optical circuitry with quantum emitters [52–54].

The excitation of SPPs requires both energy and momentum conservation. However,
it can be shown that the dispersion of the SPP does not intersect with the light line
ω = ck, prohibiting an excitation from the far-field. Alternatively, SPPs can be excited by
evanescent waves from total internal reflection or near-field interaction with nanoscopic
scatterers. Evanescent waves provide the necessary wavevector to match the SPP dispersion.
Furthermore, grating structures and other discontinuities can facilitate coupling into the
interface mode from free space by providing additional momentum [47].

In contrast to propagating plasmons at the interface between metals and dielectrics, small
metal particles feature non-propagating localized modes, as sketched in Figure 2.2b. Due
to the curved surface of the particles, these modes couple to free-space radiation very
efficiently. The localized surface plasmon resonances (LSPR) heavily depend on the particle
size and the materials involved. The presence of a resonance condition can easily be derived
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by solving Maxwell’s equations in the quasi-static limit, assuming a spherical metal particle
with a diameter d much smaller than the wavelength [47]. In this approximation, the
electric field distribution of a 10 nm gold nanoparticle is presented in Figure 2.2c. It can
be shown that the electric field outside of the sphere matches that of a dipole placed
in the sphere center. The quasi-static approximation breaks down if the particle size
becomes comparable to the wavelength. Notably, the electric field distribution around
an arbitrary spherical particle in a homogeneous environment can be solved analytically
within the framework developed by Gustav Mie [55]. The nanoparticles behave like
nanoscopic resonators, where the resonance frequency strongly depends on the particle
size, shape, and its dielectric environment. Furthermore, the electric field around the
metal nanoparticle is confined to length scales below the optical diffraction limit (compare
Figure 2.2c). Hence, plasmonic nanoparticles provide a sensing platform for a wide range
of fluorescent and non-fluorescent molecules down to the single molecule limit with sub-
diffraction position accuracy [56, 57]. Importantly, the radiation from quantum emitters
is very sensitive to the local environment. Therefore, the following section will give an
overview of the emission in homogeneous and inhomogeneous environments.

2.2 Quantum emitters

2.2.1 Emission from a classical dipole

In a classical model, a quantum emitter can be considered an electric dipole source
emitting electromagnetic waves. The dipole momentum p(r , t) = p(r )e−iωt generates an
electromagnetic field [46]

E(r , t) =
1

4πϵ0ϵ

�

k2(r̂ × p)× r̂
eikr

r
+ (3r̂ (r̂ · p)− p)

�

1
r3
− ik

r2

�

eikr

�

, (2.14)

H(r , t) =
ck2

4π
(r̂ × p)

eikr

r

�

1− 1
ikr

�

, (2.15)

with unit vector r̂ = r
r and distance from the dipole r = |r |. The components of E and H

decay with different powers of r. The field components∝ r−2 and r−3 decay quickly with
distance and are called electromagnetic near-field. These components dominate when
dipoles in close distance interact to exchange energy or excite surface plasmons. Only the
r−1 term, called electromagnetic far-field, survives at larger distances. The time-averaged
Poynting vector

〈S〉= 1
2

Re(E ×H∗) (2.16)

quantifies the energy flux density and has the dimension energy per area and time. The
radiated power dP per solid angle dΩ is

dP

dΩ
= r2〈S〉 · r̂ = |p|2ω4

32π2ϵ0ϵc
3

sin2 θ . (2.17)

10 Chapter 2 Theory of emitters in structured environments



The radiation pattern of a dipole has the well-known sin2 θ shape, where most power is
emitted perpendicular to the dipole axis. Integrating the Poynting vector over a closed
sphere in the far-field yields the total radiated power [47]

P =

∫

dP

dΩ
dΩ =

∫

∂ V

〈S〉 · r̂dA=
|p|2

4πϵ0ϵ

ω4

3c3
. (2.18)

An important finding is that P scales with the fourth power of the frequency. Knowing
that electromagnetic waves are radiated as photons with energy ħhω, we can calculate the
number of emitted photons per second

ΓD =
P

ħhω
=
|p|2

4πħhϵ0ϵ

ω3

3c3
. (2.19)

2.2.2 Fermi’s golden rule and the density of states

Up to now, we have modeled an atom as a point dipole that absorbs and emits light by
harmonic oscillations of the charge distribution. However, we did not consider that the
electrons in the atom have discrete energy levels. Transitions between the energy levels
describe the absorption and emission of photons with matching energy. If the atom is in the
ground state, no further emission can occur without prior excitation. Hence, the classical
dipole model for an atom has restrictions that only a quantum mechanical treatment can
overcome.

A first step towards this is describing the absorption in a semi-classical approach [58,
59]. Here, an atom with discrete energy levels En and corresponding wave functions |ψn〉
interacts with a classical electric field E(t). The wavefunction is a superposition of these
states

|ψ(t)〉=
∑

n

cn(t) |ψn〉 , (2.20)

with time-dependent expansion coefficients cn(t). The Hamiltonian H̃0 defines the station-
ary system of the electron residing in its eigenstates. Hence, the |ψn〉 are the eigenfunctions
of the time-independent Schrödinger equation H̃0 |ψn〉 = En |ψn〉. The interaction with
electromagnetic waves is described as a first-order perturbation H̃ ′(t) = −E(t) · µ̃, corre-
sponding to the classical energy of a dipole in an electric field. Here, µ̃ = er is the dipole
operator. The Hamiltonian then reads

H̃(t) = H̃0 + H̃ ′(t) . (2.21)

The transition rate from initial state |ψi〉 to final state |ψ f 〉 with corresponding energies
Ei and E f can then be deduced from the time evolution of the coefficients. We need to
consider the density of states ρ(ω), where ρ(ω)dω gives the number of final states in a
frequency interval between ω and ω+ dω. The final states can be photon and electron
states. In a two-level system, the initial and final states are discrete, so ρ(ω f i) is the
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density of photon states at the resonance frequency ħhω f i = E f − Ei [58]. First-order
perturbation theory yields the famous Fermi’s golden rule of the transition rate [58]

ΓA, f i =
2π

ħh2 |E0 · 〈ψ f |µ̃|ψi〉|2ρ(ω f i) . (2.22)

The transition rate scales with the squared absolute value of the transition matrix element,
which is the scalar product of the transition dipole moment µ f i = 〈ψ f |µ̃|ψi〉 and the
electric field amplitude. Furthermore, the transition rate is proportional to the density of
final states.

2.2.3 Spontaneous emission in homogeneous environments

Stimulated emission can be seen as a reverse absorption process where the energy of
the final state is smaller than the initial state; hence, ω f i = Ei − E f > 0. In contrast,
spontaneous emission can only be described in a fully quantum treatment where the atom
interacts with the vacuum field. It can be shown that the spontaneous emission rate is
given by [58, 60]

Γ f i =
πω f i

3ħhϵ0ϵ
|µ f i |2ρ(ω f i) . (2.23)

The density of states in free space

ρ(ω) =
ω2

π2c3
(2.24)

can be derived by counting the allowed modes in a box with dimensions L×L×L and taking
the limit L →∞. Remarkably, the spontaneous emission rate obtained from quantum
mechanics agrees with the classical emission rate up to a factor of 4, which is discussed in
the literature [60].

2.2.4 Purcell enhancement in inhomogeneous environments

The spontaneous emission rate is partly a property of the quantum emitter itself, influenced
by the transition frequency ω f i and the absolute value of the transition dipole moment
µ f i. Nevertheless, Γ also scales with the density of states the atom can emit into. The
availability of modes heavily depends on the surrounding of the emitter. If an emitter is
placed at a node of the electric field in a cavity, there is no available mode to emit into,
and the spontaneous emission rate would be zero. For example, guitar strings cannot be
excited at the points where they are attached to the body due to the boundary conditions.
Similarly, the in-plane electric field at the interface of a dielectric and a conductor must be
zero. If an in-plane electric field were present, the electrons inside the conductor would
move to compensate for the electric field.

Karl Drexhage has conducted pioneering experiments on the variations of the spontaneous
emission rate of rare earth ions Eu3+ close to a silver mirror [61]. He found that the
spontaneous emission lifetime τ= 1/Γ oscillates with the distance between the ion and
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the mirror. Our experiments in this thesis are closely related to this work. On the one
hand, the polarized emission of dipole emitter layers on glass and gold substrates will
be investigated in Chapter 3. On the other hand, the nanoparticle-on-mirror systems are
equivalent to a scattering dipole on a metal substrate (see Chapter 4). To motivate the
fundamental principle, we analytically derive the density of states of a quantum emitter
near a perfect conductor, following the tutorial by Barnes et al. [60].

A cube with lengths L × L × L supports the wave vectors

k(nx , ny , nz) =
2π
L

�

nx ê x + ny ê y + nz êz

�

, (2.25)

with integer numbers nx ,y,z and cartesian unit vectors ê x ,y,z . The corresponding discrete
frequencies are

ω(nx , ny , nz) =
2πc0

Ln

Ç

n2
x + n2

y + n2
z , (2.26)

where n is the refractive index. The polarization of the waves needs to be perpendicular
to the wave propagation direction given by wave vector k. We choose one polarization
direction ê1 in the x y-plane and a second polarization direction ê2 perpendicular to it

ê1(nx , ny , nz) =
nx ê y − ny ê x
q

n2
x + n2

y

, (2.27)

ê2(nx , ny , nz) =
1

q

n2
x + n2

y + n2
z

 

Ç

n2
x + n2

y êz − nz

nx ê x + ny ê y
q

n2
x + n2

y

!

, (2.28)

such that k, ê1 and ê2 are orthogonal at every choice of nx ,y,z . In a homogeneous environ-
ment, modes with every wavevector defined above are allowed. However, the electric field
at the interface to the perfect conductor must fulfill the boundary conditions. Charges can
move freely inside the conductor at the interface to the dielectric. Hence, any in-plane
electric field component must be zero at the boundary. The following superpositions of
upward and downward traveling plane waves ensure vanishing x and y field components
at the metal-dielectric interface at z = 0:

E(1)nx ,ny ,nz
(r ) =

1p
L3

�

ê1(nx , ny , nz)e
ik(nx ,ny ,nz)·r − ê1(nx , ny ,−nz)e

ik(nx ,ny ,−nz)·r
�

,

(2.29)

E(2)nx ,ny ,nz
(r ) =

N(nz)p
L3

�

ê2(nx , ny , nz)e
ik(nx ,ny ,nz)·r + ê2(nx , ny ,−nz)e

ik(nx ,ny ,−nz)·r
�

,

(2.30)

with normalization constants N(nz > 0) = 1 and N(nz = 0) = 1/
p

2. We only consider
positive values for nz, as negative values correspond to the same mode and would be
counted twice otherwise. Since the electric fields are normalized in the unit volume, the
partial (or projected) local density of states (PLDOS) follows from counting the modes at
a certain frequency ω for a certain dipole position r 0 and dipole orientation êd

ρp(êd , r 0,ω) =
∑

nx ,ny ,nz≤0

∑

ζ=1,2

|êd · E(ζ)nx ,ny ,nz
(r 0)|2δ(ω−ω(nx , ny , nz)) , (2.31)
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Fig. 2.3.: Spontaneous emission of a single dipole at a distance z0 to a perfect conductor. (a)
Sketch of the perpendicular (left) and parallel (right) dipole and its image dipole in
the conductor. (b) Calculated PLDOS for both dipole orientations and the LDOS as a
function of the distance to the conductor interface. Inspired by Ref. [60].

with Kronecker delta δ. In the limit L→∞, the sum turns into an integral that can be
evaluated numerically. It is instructive to look at two separate cases, a dipole oriented
parallel (ρp,∥) to the interface êd = ê x and a dipole oriented perpendicular (ρp,⊥) to the
interface êd = êz .

At small distances z0→ 0, the radiation from a horizontal dipole is canceled by the image
dipole in the conductor pointing in the opposite direction. Hence, the PLDOS for parallel
dipole orientation ρp,∥ vanishes. In contrast, at small distances, ρp,⊥ is twice the DOS in
free space since the dipole and its image dipole add up to radiate even more efficiently
(see Figure 2.3). At large distances z0→∞, the influence of the mirror on the radiative
properties becomes negligible. Hence, the PLDOS ρp,∥ = ρp,⊥ =

ρ0
3 approaches that of

free space up to a factor of three, as further discussed below. The oscillations of the PLDOS
with distance and the dependency on dipole orientation show that the local environment
of a dipole significantly influences its emission properties. Therefore, nanostructures must
be carefully designed for efficient coupling to free-space radiation.

The analytic derivation provided the partial local density of states (PLDOS). This is the
density of states that an emitter at a certain position r 0 and with a certain orientation êd

experiences. For unknown orientations, the PLDOS becomes the local density of states
(LDOS) which emitters with arbitrary orientations see on average. The LDOS is the sum
over all three dipole orientations

ρl(r 0,ω) = 2ρp,∥(r 0,ω) +ρp,⊥(r 0,ω) , (2.32)

where x- and y-directions are equal. At small distances, the local density of states still
differs from the density of states (DOS) introduced in the discussion of homogeneous
environments. LDOS and DOS only become equivalent at large distances, where the

14 Chapter 2 Theory of emitters in structured environments



influence of the mirror is negligible (see Figure 2.3b). In general, the DOS is a volume
average of the LDOS for all possible dipole positions

ρ(ω) =

∫

V
ρl(r ,ω)d3r
∫

V
d3r

. (2.33)

For a dipole in an inhomogeneous environment, the DOS needs to be replaced by the
PLDOS in the spontaneous emission rate

Γ f i =
πω f i

3ħhϵ0ϵ
|µ f i |2ρp(êd , r 0,ω f i) . (2.34)

In this work, we investigate dye layers embedded in a nanoresonator. The cavity can
be assigned a certain volume V . In its fundamental meaning, the DOS is the number of
possible states with index n divided by the volume

ρ(ω) =
1
V

∑

n

δ(ω−ωn) . (2.35)

The cavity has a certain resonance frequency ωc . Due to inevitable losses, the resonance
is not infinitely sharp, requiring a spectral width ∆ωc. The resonance typically has a
Lorentzian shape; hence, we can define the DOS on resonance (ω0 =ωc) as

ρ(ω0) =
2

π∆ωcV
. (2.36)

We introduce the quality factor Q =ω/∆ω and multiply a factor of 3, assuming that the
dipole orientation matches the electric field direction of the cavity mode. This yields

ρ(ω0) =
6Q

πω0V
. (2.37)

We define the Purcell factor Fp as the enhancement of the spontaneous emission rate in
the resonator with respect to free space [60]

Fp =
Γin cavity

Γno cavity
=
ρ(ωc)

ρ0(ωc)
=

6πc3

ω3
c

Q

V
=

3
4π2

Q

V

�

λ

n

�3

. (2.38)

The Purcell factor thus scales with the ratio of the quality factor and the mode volume.
Large quality factors around 20,000 have been achieved for photonic crystal nanocavities at
room temperature, while the mode volume is on the order of the optical wavelength [62].
In contrast, plasmonic nanocavities have much smaller quality factors Q < 100, while
the mode volume can be well below the diffraction limit [63]. In leaky optical cavities
like the plasmonic nanoresonators investigated in this work, an effective mode volume
needs to be introduced [64, 65]. Furthermore, we assumed in our discussion that there is
only one cavity resonance, while real cavities can feature multiple spectrally overlapping
resonances [66].
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Fig. 2.4.: Radiative and non-radiative decay pathways for organic molecules upon excitation (blue
arrow), known as the Jablonski diagram. The molecule has a singlet ground state S0
and excited state S1, as well as a triplet excited state T1.

2.2.5 Radiative and non-radiative processes in molecules

The considerations about spontaneous emission and its enhancement in cavities apply to
any quantum emitter. In the presented work, we specifically use organic molecules. The
photophysics of this emitter class is briefly reviewed in this section, as an understanding
of radiative and non-radiative rates is essential to model the interaction with plasmonic
nanostructures.

In organic molecules, the photon emission is typically red-shifted to the absorption fre-
quency. This process is known as Stokes shift and originates from rearrangements in the
molecule’s environment upon excitation. Furthermore, the atoms of the molecule can
oscillate relative to each other at infrared frequencies. These quantized vibrations give
rise to a fine structure of electronic energy levels. Based on the much smaller mass of
the electrons, the motion of electrons and atom cores can be separated, known as the
Born-Oppenheimer approximation. Hence, the molecule wave function can be written as
a product of the electronic and the vibrational wave functions. Transitions between the
discrete energy levels require a non-vanishing electronic transition dipole moment. The
transition rate scales with the Franck-Condon factor, quantifying the spatial overlap of
the vibrational wavefunctions of initial and final states. Furthermore, the spin must be
conserved in the transition [59].

Our previous discussion about spontaneous emission focused on the radiative decay from
an excited state, called fluorescence. However, various non-radiative decay pathways exist
where the energy is dissipated as heat, transferred to long-lived states, or transferred to
other molecules [67]. The singlet ground state S0 and the first excited singlet state S1
are schematically shown in the Jablonski diagram in Figure 2.4. The excitation from the
ground state typically originates from the lowest vibrational level at ambient conditions,
as shown by the vertical blue arrow. The final state might be a higher vibrational level. On
a picosecond timescale, the molecule relaxes to the lowest vibrational level in the excited
electronic state in a process called vibrational relaxation (VR). From here, the molecule
can radiate a fluorescence photon, shown by the vertical green arrow. Alternatively, the
excitation in the molecule can decay to the ground state non-radiatively by internal con-
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version (IC) and subsequent vibrational relaxation. These non-radiative processes are
summarized in the Figure as wavy black vertical arrows. The reduction of fluorescence
intensity by non-radiative processes is called quenching. Due to spin-orbit coupling in
aromatic molecules, a nonzero probability exists for a spin-flip, where the excitation decays
from a singlet (S1) to a triplet (T1) state or vice-versa. The wavy black horizontal arrow
depicts this intersystem crossing (ISC) process. Compared to the excited state, the triplet
state is long-lived as a second spin flip is required for decay to the singlet ground state.
The decay can be radiative by phosphorescence (red arrow) or non-radiative by ISC and
subsequent VR. The population of the molecule triplet state is the dominant photodegra-
dation pathway for many organic chromophores, as the energy can be exchanged with
molecular oxygen. Oxygen has a triplet ground state 3O2 and a singlet excited state 1O∗2.
Therefore, oxygen can quench the population of the molecule triplet state. Excited state
oxygen is very reactive and can destroy chromophores irreversibly. Thus, fluorescence
experiments are often carried out in oxygen-free environments.

The rates of radiative decay γr and non-radiative decay γnr add up, so the total rate constant
is

γtot = γr + γnr . (2.39)

The inverse time constant τ = 1/γtot is called fluorescence lifetime, typically on the order
of nanoseconds. The percentage of energy radiated as photons defines the quantum
efficiency

η =
γr

γr + γnr
. (2.40)

2.2.6 Line broadening mechanisms

Heisenberg’s uncertainty principle requires that the fluorescence lifetime τ and the full
width at half maximum (FWHM) of the peak in the emission spectrum δω have an inverse
relation [68]

δω =
δE

ħh
⪆

1
τ

. (2.41)

The spectral lineshape is Lorentzian, consistent with the results from the Lorentz oscillator
model in Chapter 2.1.1. As the uncertainty relation defines a lower limit, the linewidth is
called natural linewidth.

The observed linewidth typically differs from this lower limit. At ambient conditions,
the environment of the emitter fluctuates statistically. The fluctuations act back on the
molecule’s transition energy. An example is the scattering with phonons in a solid environ-
ment, which can be eliminated at cryogenic temperatures. If every molecule exhibits the
same fluctuations, the linewidth is homogeneously broadened, and the lineshape remains
Lorentzian.

In contrast, the line is inhomogeneously broadened if the probability for absorption or
emission at a particular frequency is not equal for all molecules. For instance, irregularities
in the molecule environment inhomogeneously shift the transition energies. In this case,
the lineshape changes from Lorentzian to a Voigt profile, which is the convolution of a
Lorentzian and a Gaussian distribution.
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2.2.7 From weak to strong coupling

Incorporating emitters into nanostructured environments can amplify the spontaneous
emission by the Purcell effect. If the coupling strength between the emitter and the local
environment – in this work, the plasmonic nanoresonator – is strong enough, hybrid
light-matter states (polaritons) are formed. Energy is then coherently exchanged between
the plasmonic system and the emitter, known as Rabi oscillations. Cavity quantum electro-
dynamics (cavity QED) provides a general mathematical framework. We approximate the
emitter as a two-level system with transition frequencyωem and the cavity as a single-mode
plasmonic resonator with frequency ωpl. Neglecting decoherence and damping, we then
write the Jaynes-Cummings Hamiltonian [69, 70]

Ĥ = ħhωplâ
†â+ħhωemσ̂

†σ̂+ħh
g

2

�

â†σ̂+ σ̂†â
�

, (2.42)

where â†, â are the bosonic raising and lowering operators for the plasmon, and σ̂†, σ̂ are
the Pauli raising and lowering operators for the two-level system. The coupling constant

g =
2µem · E0

ħh
(2.43)

quantifies the interaction of the emitter transition dipole µem with the electric field E0 at
the emitter position. In a cavity with mode volume V where the emitter is at the position
of maximum electric field and aligned with the field direction, the coupling strength is
estimated as [47, 69, 70]

g =
|µem|
ħh

√

√

√
ħhωpl

2ϵ0ϵV
. (2.44)

Diagonalization of the Jaynes-Cummings Hamiltonian yields two hybrid mode frequen-
cies

ω± =
1
2
(ωpl +ωem)±ΩR . (2.45)

The vacuum Rabi frequency

ΩR =
1
2

q

g2 + (ωpl −ωem)
2 . (2.46)

quantifies the inverse time period of the energy oscillation between the plasmon and emitter.
Damping can be considered using the general master equation in Lindblad form [71].
However, an accurate solution requires significant computational effort. In many cases,
the electric field generated by the plasmon can be approximated in a classical description.
Furthermore, to compute the linear scattering of the coupled system, we assume that the
coherences between ground and excited states are small and the population of the ground
state dominates. In addition, we make the approximation that the energy decays much
slower than the dephasing of the emitter at room temperature. It can be shown that the
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quantum mechanical equations then reduce to two coupled classical harmonic oscillators
for the plasmon µpl and the emitter µem [69, 72]

µ̈pl + γplµ̇pl +ω
2
plµpl = g

ωpldpl

dem
µem + F0(t) , (2.47)

µ̈em + γemµ̇em +ω
2
emµem = g

ωemdem

dpl
µpl . (2.48)

This simple coupled oscillator description is used frequently in the literature as it provides
an intuitive access to the relevant properties of the coupled system, including damping [73,
74]. Here, both plasmon and emitter are described by individual dipole moments. As
the plasmon dipole is typically much stronger than the emitter transition dipole moment,
dpl≫ dem, only the plasmon is driven by the term F0(t) = 4ωpld

2
plE(t) originating from

the external electric field E(t). In absence of the driving field and in the limit g, γem, γpl,
|ωem −ωpl| ≪ωpl, the normal mode frequencies read

ω± =
1
2
(ωpl +ωem)−

1
4

i(γpl + γem)±ΩR , (2.49)

with normal mode splitting

ΩR =
1
2

√

√

g2 +
�

ωpl −ωem

�2 − 1
4

�

γpl − γem

�2
. (2.50)

Similar to coupled mechanical oscillators, we obtain two normal modes. The low-energy
mode corresponds to both systems oscillating in phase (symmetric), whereas the systems
oscillate with opposite phase (antisymmetric) in the high-energy mode. The hybrid modes
inherit the linewidths from the uncoupled systems. It is therefore required to define a
threshold for strong coupling where the coupling exceeds the losses. Although definitions
vary in the literature [69, 74, 75], a common threshold is that the system needs to conduct
at least one Rabi oscillation before damping, corresponding to

g >
1
4

�

γpl + γem

�

. (2.51)

A peak splitting is, however, only observable in the spectra if the energy splitting exceeds
the average linewidths of the uncoupled resonances, i.e., g > 1

2

�

γpl + γem

�

. In contrast,
the system is in the weak coupling regime for smaller coupling strengths, where the Purcell
effect enhances the spontaneous emission.

In the presence of a harmonic external driving field with frequency ω, the solution for the
coupled oscillator model is given by

µpl(ω) =
F0

�

ω2
em −ω2 − iωγem

�

�

ω2
em −ω2 − iωγem

� �

ωpl −ω2 − iωγpl

�

−ωemωpl g
2

, (2.52)

µem(ω) =
F0ωem

dem
dpl

�

ω2
em −ω2 − iωγem

� �

ωpl −ω2 − iωγpl

�

−ωemωpl g
2

. (2.53)

2.2 Quantum emitters 19



1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4

energy / eV energy / eV

0

2

1

g
 /
 γ

p
l

ωpl

ωem

ωpl

ωem

n
o
rm

. 
in

te
n
s
it
y

0

1

γpl = 0.2 eV

γem = 0.1 eV

1/4(γpl+γem)

a) scattering b) spontaneous

    emission

Fig. 2.5.: Calculated (a) scattering cross section σscat(ω) from the classical coupled oscillator
model and (b) spontaneous emission spectra Ipl(ω) from the full quantum model as
a function of the coupling strength g. The parameters used in the calculations are
ωem = 2 eV, ωpl = 2.05 eV, γpl = 0.2 eV, and γem = 0.1 eV. The spectra are normalized
to the respective maxima at each g value.

The plasmon dominates the scattering, as dpl≫ dem. Therefore, the scattering cross section
is proportional to the squared dipole moment of the plasmon [72]

σscat(ω)∝ω4|µpl(ω)|2 . (2.54)

Besides scattering, the simple coupled oscillator model also allows calculating the absorp-
tion of plasmon and emitter using σabs∝ω · Im [µ(ω)]. Due to the quantum nature of
spontaneous emission, the fluorescence emission is not equivalent to an inverse absorption
process. Therefore, a full quantum treatment is required to determine the spontaneous
emission of the coupled system. The intensity of a single emitter radiated via the plasmon
is [69, 76]

Ipl(ω) =
γpl

π

�

�

�

�

�

−ig/2
�

(γpl + γem)/2+ i(ωem −ωpl)/2− i(ω−ωpl)
�2
+Ω2

R

�

�

�

�

�

2

. (2.55)

Figure 2.5 compares the scattering and emission spectra of the coupled system as a function
of the coupling strength using exemplary parameters. In both scattering and emission
spectra, the lines broaden and then split into two modes when increasing the coupling
strength. Notably, the peak splitting into upper and lower polariton in the scattering
spectra emerges even for coupling parameters below the strong coupling threshold. The
apparent dip in the scattering cross section is caused by destructive interference of the
broad plasmon and the more narrow emitter resonance, known as a Fano lineshape [36,
72]. To distinguish this intermediate coupling regime from strong coupling, it is a consensus
in the literature that the line broadening and peak splitting must be visible also in the
emission spectra.

In this work, we investigate the coupling between dye monolayers and nanoresonators. In
this case, many emitters with individual coupling constants gi are present in the cavity.
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Assume an ensemble of N independent emitters with identical damping constants. If
each emitter interacts with a single mode of the plasmonic structure, the strong coupling
condition can be generalized to [69, 73]

p
N grms >

1
4

�

γpl + γem

�

, (2.56)

with grms =
∑N

i=1 gi/N . The observable coupling constant, therefore, scales with the
square root of the number of emitters in a first approximation. The interaction of a
molecule ensemble with plasmonic modes will be investigated in Chapter 5.
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Oriented dye monolayers in

hectorite nanosheets 3

The coupling efficiency of emitters with plasmonic nanoresonators depends not only on
the photophysics of the dye itself but also on the position and orientation of the emitter.
Precise control over these parameters on the nanoscale requires considerable effort [77–79].
The sample fabrication becomes much more reliable and robust using spatially extended
emitter structures such as two-dimensional materials. For instance, tungsten diselenide
(WSe2) can facilitate strong coupling with plasmonic nanoresonators [37, 44, 80, 81].
These materials can be routinely exfoliated onto different substrates or chemically grown
to cover large areas [82]. The optical properties can be altered by introducing defects and
fabricating heterostructures [83, 84].

Yet, the growth of self-assembled monolayers (SAM) on plasmonic substrates provides
an even more versatile framework. A precise design of the molecules allows control over
the height on a sub-nanometer scale [85–87]. The position-dependent surface-enhanced
Raman scattering even allows sensing the inhomogeneous electric field distribution in-
side the nanocavities [88]. Furthermore, substantial fluorescence enhancement has been
observed for ultrathin dye-loaded spacer layers incorporated into particle-on-mirror plas-
monic nanoresonators [89]. A wide variety of molecule monolayers can be attached to the
substrates using click-chemistry with the SAMs [90].

In this work, we use dye monolayers sandwiched between two ultrathin hectorite nano-
sheets, a synthetic clay material [91]. This renders the fabrication of the dye monolayer
independent of the substrate, as the layers are already formed in solution. The resulting
quasi-two-dimensional sandwich structure can be dropcasted on any hydrophilic substrate.
The synthetic procedure is summarized as follows1: Sodium hectorite is obtained by melt
synthesis following a published procedure [91–95]. After partial ion exchange with a
cationic fluorophore, strictly alternating interlayers of the dye and the hydrated sodium
are obtained. The transparent hectorite nanosheets provide the separation of the layers.
This state is called “ordered interstratified” and is shown in Figure 3.1. Note that the local
charge balance facilitates the symmetry breaking in the stacking direction. We use cationic
pyrene-derivative dye (C16Py), which has a spectrally broad emission between 500 and
700 nm. The broadband emission will allow us to determine the coupling strength with
plasmonic nanoresonators in a wide spectral range in Chapter 5.

The clay platelets spontaneously delaminate after osmotic swelling in water. The resulting
hectorite double stacks provide an encapsulated dye monolayer and can be dropcasted
onto any hydrophilic substrate on demand. Previous works have shown that this synthesis

1Volodymyr Dudko from Prof. Breu’s group (Inorganic Chemistry I, University of Bayreuth) synthesized the
encapsulated dye monolayer and characterized the structure by powder x-ray diffraction (PXRD) and CHN
analysis.
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Fig. 3.1.: The sodium ions in the hectorite crystal are partially exchanged with the dye (C16Py),
organized as strictly alternating interlayers. The left state is called “ordered interstrati-
fied”. Individual hectorite double stacks are obtained after swelling and delamination
[91]. The chemical structure of the C16Py dye and the orientations of the two transition
dipoles (green and orange) are shown on the right.

procedure provides exceptionally high aspect ratios and consistent thickness [92]. Further-
more, the dye is expected to be densely packed with a significant out-of-plane orientation
of the transition dipole [96]. Hence, these structures are promising candidates for efficient
coupling with plasmonic nanoresonators. In principle, the dye can be substituted by a
wide variety of other cationic dyes tailored for specific applications [93]. Furthermore, the
dye density could be adjusted by mixing with other non-fluorescing cationic molecules.
Thus, the hectorite nanosheets provide a versatile framework for controlled light-matter
interaction on the nanoscale.

In this chapter, we investigate the optical properties of the encapsulated C16Py dye
monolayers. We first introduce the transfer matrix formalism to calculate the polarization-
dependent absorption and emission of dipoles in arbitrary multilayered environments.
We cover radiative and non-radiative decay pathways to model the radiation even in
dissipative environments like gold. We then introduce an intuitive and generally applicable
experimental method based on white light reflection spectroscopy to determine the refrac-
tive index of the hectorite double stacks with diffraction-limited spatial resolution. This
will enable us to model the encapsulated dye monolayers in later numerical simulations
precisely.

Knowledge of the orientation of the dye molecules and their spatial homogeneity is
crucial for efficient coupling with plasmonic nanostructures. Therefore, we present a
novel, universal, and fast method to disentangle the orientations of spectrally overlapping
transition dipoles in dense dye layers [97]. We demonstrate that the dye monolayer has
two dominating transitions contributing to the fluorescence spectrum, as sketched by
the two transition dipole moments in Figure 3.1. A comprehensive theoretical model
allows an individual orientation determination of both transition dipoles. Furthermore,
we investigate the orientational order on different substrates. Precise knowledge about
the dipole orientations will be required in Chapter 5 to model the interaction of the dyes
with plasmonic nanostructures.

Parts of this chapter are published in Nano Letters 2022, 22, 7499–7505 [97]. Figure
adaptations with permission. Copyright 2022 American Chemical Society.
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3.1 Numerical methods for the optics of layered media

3.1.1 Reflection and transmission at interfaces

The simplest example of a multilayered structure is two media separated by a planar
interface. Therefore, we start with the reflection and transmission of electromagnetic
waves at boundaries between two different materials [47, 98]. The wave vectors of
incoming, reflected, and transmitted waves lie in one plane. Thus, it is sufficient to
consider only this plane of incidence in our analysis. We choose the xz-plane, as shown in
Figure 3.2a. The electric field of a plane wave then reads

Eei(k·r−ωt) = Eeikx x eikzze−iωt . (3.1)

Using the wave vector k0 = 2π/λ in vacuum, we get

k2
x + k2

z = n2k2
0 . (3.2)

The electric fields can be decomposed into s- and p-polarization, where s denotes the
polarization perpendicular and p denotes the polarization parallel to the plane of incidence.
This defines the respective unit vectors

Ê
(s)
=





0
1
0



 and Ê
(p)
=

1
nk0





±kz

0
kx



 (3.3)

with |Ê(s)|2 = |Ê(p)|2 = 1. The ± sign in the x-component denotes the direction of travel,
as incoming and reflected electric field point into opposite x-directions (see Figure 3.2a).
Maxwell’s equations for nonmagnetic media impose boundary conditions on the electric
field. Hence, we define reflection and transmission coefficients r12 and t12 for the electric
fields propagating from medium 1 to medium 2 [47, 98]

r
(s)

12 =
kz,1 − kz,2

kz,1 + kz,2
= −r

(s)

21 , (3.4)

t
(s)

12 =
2kz,1

kz,1 + kz,2
=

kz,1

kz,2
t
(s)

21 , (3.5)

r
(p)

12 =
ϵ2kz,1 − ϵ1kz,2

ϵ2kz,1 + ϵ1kz,2
= −r

(p)

21 , (3.6)

t
(p)

12 =
2
p
ϵ1ϵ2kz,1

ϵ2kz,1 + ϵ1kz,2
=

kz,1

kz,2
t
(p)

21 . (3.7)

Similarly, the reflection and transmission coefficients of an incoming wave traveling in
the opposite direction are denoted r21 and t21. Due to our definition of the electric field
vectors in Figure 3.2, the signs of r

(s)

12 and r
(p)

12 differ at perpendicular incidence. The
x-component of the wavevector is conserved upon reflection and transmission and is thus
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Fig. 3.2.: (a) Electric field and wave vector direction of incoming, reflected and transmitted plane
waves at a planar interface between two media. The p-polarized field vector is shown
in red, the s-polarized in blue. (b) We discriminate right and left traveling waves with
amplitudes U± in a multilayer structure.

determined by the incident wave only. The propagation direction defines an angle θ with
respect to the z-axis

θ = arcsin
kx

nk0
= arcsin

√

√

1− kz

nk0
. (3.8)

We define the power reflection coefficient R12 = |r12|2, which quantifies the percentage
of the incident power reflected at the interface. In transmission, we must consider that
the propagation direction changes as a result of refraction. Therefore, the power trans-

mission coefficient is T12 =
n2 cosθ2
n1 cosθ1

|t12|2 =
kz,2
kz,1
|t12|2. This ensures energy conservation

T12 + R12 = 1.

3.1.2 Transfer matrix formalism

In the general case of a multilayer system, the electric field in a layer with index i can be
decomposed into waves traveling in left and right directions with amplitudes U−

i
and U+

i

(see Figure 3.2b). We follow the formalism in Refs. [98, 99] and write

E
(s,p)
i
= Ê

(s,p)
�

U−
i,(s,p)e

−ikzz + U+
i,(s,p)e

ikzz
�

ei(kx x−ωt) . (3.9)

Since both polarizations can be treated separately, we drop the indices s and p from now
on. The amplitudes in the neighboring media with indices 1 and 2 have a linear relation

�

U+2
U−2

�

=

�

A B

C D

�

·
�

U+1
U−1

�

= M

�

U+1
U−1

�

(3.10)

with transfer matrix M . In general, the propagation through a multilayer system is
described by the product of the individual matrices M i according to

M total = Mn ·Mn−1 · · ·M1 . (3.11)

26 Chapter 3 Oriented dye monolayers in hectorite nanosheets



Consider the case of an incident wave traveling to the right with amplitude U+1 . The
reflected amplitude U−1 enters on the right side of Equation 3.10 but is unknown in the
first place. Therefore, we define the scattering matrix S, relating the wave amplitudes
propagating toward the interface with those traveling away from it. The entries of the
scattering matrix are the transmission and reflection coefficients we defined earlier

�

U+2
U−1

�

=

�

t12 r21
r12 t21

�

·
�

U+1
U−2

�

= S

�

U+1
U−2

�

. (3.12)

The following relations between the entries of M and S allow us to switch between the
two representations if D ̸= 0 and t21 ̸= 0 [99]:

M =

�

A B

C D

�

=
1

t12

�

t12 t21 − r12r21 r21
−r12 1

�

, (3.13)

S =

�

t12 r21
r12 t21

�

=
1
D

�

AD− BC B

−C 1

�

. (3.14)

Using our definitions of reflection and transmission coefficients from Chapter 3.1.1, the
transfer matrix of an interface reads for both polarizations

M12 =
1

t21

�

1 r21
r21 1

�

=
1

2η

�

1+ κ 1− κ
1− κ 1+ κ

�

(3.15)

with η(s) = 1, η(p) =
p

ϵ2/ϵ1 and κ= η2kz,1/kz,2. The wave propagation over a distance
d imposes a phase of the electric field, corresponding to a complex transmission coefficient
t = t12 = t21 = eikz d . As the propagation direction has already been included in our
definition of the electric field in Equation 3.9, the exponent has a positive sign in both
t12 and t21. The reflection coefficient for propagation inside media is r = r12 = r21 = 0.
Therefore, the transfer matrix of propagation in a homogeneous medium reads

M =

�

eikz d 0
0 e−ikz d

�

. (3.16)

We can determine the overall reflectivity R and transmissivity T of a multilayer structure
by calculating the entries of the scattering matrix.

3.1.3 Dipoles in multilayer environments

Consider an incoming plane wave under a certain angle from the right side of the multilayer
system. The transfer matrix formalism allows us to calculate the electric field at every
position in the multilayer structure. Consequently, we can obtain the excitation strength
of an arbitrary dipole with a known position and orientation inside this system. Since
the propagation of light beams can be reversed, the excitation of the dipole by a plane
wave is equivalent to a dipole radiating into the far-field under the same angle. Hence,
the transfer matrix method enables us to determine the emission pattern of a dipole in a
multilayered environment following Ref. [98]. This derivation will be used in Chapter 3.3
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Fig. 3.3.: The multilayer structure can be reduced to an effective three layer system to compute
the radiation from a single dipole (red).

to model the polarization-dependent emission from the encapsulated dye monolayer on
arbitrary substrates. The comparison between the experiment and simulation will allow
us to determine the transition dipole orientations in the dye monolayer.

The electric field at the position of a dipole is obtained by reducing an arbitrary multilayer
environment to an effective three-layer system, as sketched in Figure 3.3. The layers on
the left and right sides of the dipole are combined in the transfer matrices M left and M right,
including the propagation to and from the dipole. Therefore, the complex field amplitudes
of the left and right propagating waves at the dipole position are given by U+2 and U−2 .
The system is described by

�

U+3
U−3

�

= M right

�

U+2
U−2

�

and

�

U+2
U−2

�

= M left

�

U+1
U−1

�

. (3.17)

Imagine a plane wave entering the system from the right (medium 3). Medium 1 will only
have an outgoing wave to the left, i.e., U+1 = 0. Furthermore, we choose U−1 = 1. This
gives the relations

�

U+2
U−2
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= M left

�

0
1
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=
1

t21
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1
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, (3.19)
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=
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t21 t32

�

(t23 t32 − r23r32)r21 + r32
−r23r21 + 1

�

. (3.21)

After normalization to the amplitude of the incident plane wave U−3 , the electric fields at
the dipole position are

E+2 =
U+2

U−3
=

r21

t21
· t21 t32

1− r23r21
=

r21 t32

1− r23r21
, (3.22)

E−2 =
U−2
U−3
=

1
t21
· t21 t32

1− r23r21
=

t32

1− r23r21
. (3.23)
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The electric field for illumination from the left can easily be obtained by swapping the
indices 1 and 3 and the propagation direction

E−2 =
U+2

U−3
=

r23 t12

1− r21r23
, (3.24)

E+2 =
U−2
U−3
=

t12

1− r21r23
. (3.25)

We define a Finesse parameter

F (s,p) =
1

1− r
(s,p)
23 r

(s,p)
21

. (3.26)

For incident waves from the right (←) and left (→), we determine the electric field at the
dipole position as a superposition of left and right traveling waves E±2 according to

E← =







−F (p) t
(p)
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 . (3.27)

The difference of left and right propagating waves, not the sum, enters in the x-components,
as the x-component of the p-polarized wave flips sign following our definition in Figure 3.2a.
The global minus in the x-component of E← originates from the propagation to the left.

3.1.4 Polarization-dependent emission patterns of dipoles

In the last section, we determined the electric field E = (E′x , E′y , E′z) at the position of a
dipole upon plane-wave excitation of the multilayer system at an angle θ . The calculated
field was normalized by the amplitude of the incident wave. In the following, we choose the
position of the dipole as the origin (x , y, z) = (0, 0, 0). As the beam path can be reversed,
the calculated field strength, projected onto the dipole direction, quantifies its emission
into the far-field under the angle θ . In this section, we develop an analytical framework to
obtain the polarization-resolved emission pattern of the dipole. Calculating the radiation
pattern is essential for comparison with the experiment, as the finite numerical aperture
of the microscope objective only captures a particular angle interval of the radiation. Our
model considers a linear polarizer in the collimated beam after the microscope objective.

To describe the refraction at the microscope objective, we switch from cartesian to spherical
coordinates (see Figure 3.4a) with angular unit vectors

êθ =





cosθ cosφ
cosθ sinφ
− sinθ



 and êφ =





− sinφ
cosφ

0



 . (3.28)

We combine the p-polarized field components Ex and Ez in a field Eθ pointing along the
elevation unit vector eθ . Initially, we only consider rays in the xz-plane, corresponding to
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Fig. 3.4.: (a) Sketch of the dipole emission refracted by an aplanatic objective. The radius R

of the aplanatic sphere equals the focal length. (b) In the numerical calculations, the
electric field in the collimated beam path is calculated at discrete points. The points are
equidistantly spaced in radial and angular directions. The numerical aperture of the
objective defines an upper limit rmax of the radial coordinate marked in red.

an azimuth angle φ = 0. Hence, the s-polarized field Ey equals the azimuthal field Eφ
pointing along eφ . We find

�

Eθ
Eφ

�

=

�

E′x ê x · êθ + E′z êz · êθ
E′y ê y · êφ

�

=

�

E′x cosθ − E′z sinθ
E′y

�

=

�

Ex − Ez

Ey

�

. (3.29)

Following the previous definition of the normalized electric fields (see Equation 3.3), we
write E′x cosθ = Ex and E′z sinθ = Ez. We now consider a single dipole µ = (µx ,µy ,µz).
To generalize our calculations to three dimensions, we need to rotate the plane of incidence
at an angle φ around the z-axis. This is equivalent to rotating the dipole moment in the
opposite direction −φ. Applying the corresponding rotation matrix yields

µ
′ =





cos(−φ) − sin(−φ) 0
sin(−φ) cos(−φ) 0

0 0 1



 ·





µx

µy

µz



 =





µx cosφ +µy sinφ
−(µx sinφ −µy cosφ)

µz



 . (3.30)

Like the dipole absorption, the emission we are about to calculate scales with the projection
µ
′·E of its dipole moment onto the local electric field. To obtain the dipole radiation pattern,

the electric field (Ex , Ey , Ez) calculated in the transfer matrix framework is substituted by
the projection (Exµ

′
x , Eyµ

′
y , Ezµ

′
z). Thus, the electric field radiated by the dipole is

�

Eθ ,dip
Eφ,dip

�

=

�

(µx cosφ +µy sinφ)Ex −µz Ez

−(µx sinφ −µy cosφ)Ey

�

. (3.31)

The time-averaged Poynting vector [47]

〈S〉= 1
2

Re(E×H
∗) =

1
2

√

√ ϵ0ϵr

µ0µr

|E|2nr =
1
2

nc0|E|2nr (3.32)

with radial unit vector nr determines the radiated power in the solid angle dΩ

p(Ω)dΩ = r2 〈S〉 · nr . (3.33)
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Fig. 3.5.: Validation of the dipole radiation pattern computation by comparison with the literature
(Figure 10.7 in Ref. [47]). (a) Sketch of the simulation geometry with a single dipole
above a planar waveguide. (b) The dipole radiation pattern p(θ ) at λ = 488 nm obtained
with the transfer matrix method (blue) agrees very well with the pattern retrieved from
the literature (red).

For example, Figure 3.5b shows the radiation pattern p(θ ) of a dipole above a planar
dielectric waveguide at a wavelength λ = 10nm. The dipole is embedded in air at a
distance of λ/10 to the waveguide, as sketched in Figure 3.5a. The 60◦ inclination to the
surface normal gives rise to the asymmetry of the radiation pattern. Most of the power is
radiated into the lower hemisphere with a higher refractive index. For comparison, the red
dashed line shows the radiation pattern from the literature [47]. The perfect agreement
proves the validity and accuracy of the presented calculations.

To calculate the polarization-resolved emission pattern of the collimated beam, we need to
consider the refraction by the microscope objective. We model the objective as an aplanatic
lens that follows geometrical optics [47]. In this approximation, a beam radiated from
the dipole at an angle θ is redirected parallel to the z-axis as it intersects the aplanatic
sphere (see Figure 3.4a). The radius R of the aplanatic sphere is the focal length of the
lens. The refraction is equivalent to switching from spherical to cylindrical coordinates.
Upon refraction, the p-polarized component of the electric field Eθ ,dip pointing along the
elevation unit vector êθ is redirected in the radial direction êr . The orientation of the
s-polarized component Eφ,dip is not affected by refraction. Furthermore, in air, energy
conservation adds an amplitude scaling factor 1/

p
cosθ to the refracted beam. This factor

originates from the different areas of the infinitesimal surface elements dA1 before and
dA2 after refraction, as depicted in the Figure. In total,

E= (Eθ ,dipêr + Eφ,dipêφ)
1p

cosθ
with êr =

�

cosφ
sinφ

�

and êφ =

�

− sinφ
cosφ

�

.

(3.34)
Projecting the refracted fields onto the cartesian coordinate system yields

�

Ex ,dip
Ey,dip

�

=

�

Eθ ,dip cosφ − Eφ,dip sinφ
Eθ ,dip sinφ + Eφ,dip cosφ

�

1p
cosθ

. (3.35)

To model a linear polarizer in the detection pathway along the x- and y-direction, we can
set the perpendicular components of the electric field to zero, respectively.

3.1 Numerical methods for the optics of layered media 31



The power emitted from the dipole is essential for comparison with experimental data.
Integration over the power per solid angle

∫

pdΩ yields the total power Ptot of the dipole
radiated into the far-field. Only a fraction of this power is collected by the microscope
objective. In the experiment, we use an objective with a numerical aperture (NA) of 0.9 in
air. Therefore, the radiation collected by the objective is calculated by integration over the
air hemisphere (called the upper hemisphere in the following) within the objective NA.

In the numerical implementation, the computation grid points are equidistantly spaced
along the normalized in-plane wavenumber q = n sinθ in the radial direction and along
the azimuthal direction. This corresponds to a grid with equidistant radial and azimuthal
spacing in real space, as shown in Figure 3.4b. The maximum radius rmax = R·NA/n is
determined by the numerical aperture and the radius R of the aplanatic sphere. In this
polar coordinate system, we can write

P =

∫

pdΩ =

∫∫

p(r,φ)rdrdφ =

∫∫

p(q,φ)(R/n)2qdqdφ , (3.36)

because q = n sinθ yields r = R sinθ = R · q/n and dr/dq = R/n. We define Ptot as the
integral of the Poynting vector in the upper and lower hemisphere and PNA as the integral
over the Poynting vector in the upper hemisphere within the objective NA. This result
enables us to calculate the total polarization-resolved intensity of a dipole for comparison
with measurements.

3.1.5 Radiative and non-radiative rates

Using the reciprocity of dipole absorption and emission, we could characterize the cou-
pling of the dipole to far-field radiation. However, the dipole can also emit evanescent
waves with normalized wavenumbers q > n, which do not propagate into the far-field.
The spontaneous decay rate is the sum of radiative and non-radiative rates γ= γr + γnr.
Although we only detect the radiative contributions in far-field experiments, calculat-
ing non-radiative contributions is, nevertheless, important. The coupling of dipoles to
evanescent waves depends on their orientation and position. Hence, we need to scale the
radiative contribution accordingly to compare the radiated power of dipoles at different
angles and distances from a substrate. Our calculations assume an intrinsic quantum
efficiency of 1 for the emitter.

Consider a dipole in medium 1 at a distance z0 to medium 2 (see Figure 3.6a). A general
expression for the dissipated power of the dipole is [47]

P =
ω

2
Im [µ∗ · E(r 0)] , (3.37)

where E is the electric field at the dipole position r 0. The electromagnetic waves radiated
from the dipole are partly reflected at the interface between the two materials. Hence, the
electric field at the dipole position has contributions from the primary field E0 and the
secondary field Es

E(r 0) = E0(r 0) + Es(r 0) . (3.38)
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in a 5-layer system. (c) Emission rate of a dipole at a distance z0 to a perfect conductor
in parallel and perpendicular orientation. The results from the model based on Ford
and Weber (blue) and the transfer matrix (orange) agree very well with the analytical
calculations.

The power radiated from a dipole in a homogeneous environment is given by Equa-
tion 2.18

P0 =
ω|µ|2

12πϵ0ϵ
k3 . (3.39)

Hence, the radiated power in the inhomogeneous environment can be written as [47]

P

P0
= 1+

6πϵ0ϵ

|µ|2
1
k3

Im [µ∗ · Es(r 0)] . (3.40)

We split the dipole moment µ into a component parallel to the substrate µ∥ =
q

µ2
x +µ

2
y

and a component perpendicular to the substrate µ⊥ = µz. The secondary field at the
position of the dipole originates from the reflection of its own radiation at the interface.
We define k∥ =

q

k2
x + k2

y , s = k∥/k1, and sz =
p

1− s2. The reflected wave, therefore,
collects a phase 2ik1z0sz for propagation to the interface and back which we include in
the reflection coefficients r

(s,p)
12 .

As we assumed an intrinsic quantum efficiency of 1, the radiated power is proportional to
the emission rate P/P0 = γ/γ0. Using the angular spectrum decomposition of the Green’s
function, the power radiated from the dipole is [47, 98]

P

P0
=1+

3
4

|µ∥|2

|µ|2 Re

∫ ∞

0

s

sz

�

r
(s)

12 − s2
z r
(p)

12

�

ds

+
3
2
|µ⊥|2
|µ|2 Re

∫ ∞

0

s3

sz

r
(p)

12 ds . (3.41)

Note that s > 1 describes an evanescent wave with in-plane wavenumber k∥ > k1. For a
general treatment of a dipole in a multilayer system, we summarize the theory developed
by Ford and Weber [100]. In this framework, the multilayer system is reduced to five
effective layers, as sketched in Figure 3.6b. Layers 1 and 5 need to be non-absorbing
materials with real-valued dielectric functions. Layers 2 and 4 can be absorbing materials
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with a given thickness. The dipole is located between these layers in material 3 at a certain
distance from the interface with layers 2 and 4, respectively. This structure generally acts
as a planar waveguide for the dipole radiation. Therefore, the scattered field at the dipole
position is an infinite sum of reflections.

Let a = r
(p)

d345 = r
(p)

345e−2ik1z3sz be the total amplitude change of a p-polarized wave propagat-

ing from the dipole to the interface (345) and back. Similarly, let b = r
(p)

d321 = r
(p)

321e2ik1z2sz

be the total amplitude change for the interface (321). Downward radiation from the dipole
will therefore generate a total amplitude of the form

a+ ab+ aba+ abab+ . . . (3.42)

at the position of the dipole. Analogously, upward radiation will generate an amplitude

b+ ba+ bab+ baba+ . . . (3.43)

at the position of the dipole. The sum of these geometric series is

A
(p)

⊥ =
(1+ a)(1+ b)

1− ab
− 1 . (3.44)

The result is the same for the parallel component of an s-polarized wave. For the ⊥
component of the s-polarized wave, however, we need to account for the sign change at
each reflection. This gives the same result but with opposite signs of a and b, respectively.
The final result is [100]

P

P0
=

3
4

|µ∥|2

|µ|2 Re

∫ ∞

0

s

sz

(1+ r
(s)

d345)(1+ r
(s)

d321)

1− r
(s)

d321r
(s)

d345

ds

+
3
4

|µ∥|2

|µ|2 Re

∫ ∞

0

s sz

(1− r
(p)

d345)(1− r
(p)

d321)

1− r
(p)

d321r
(p)

d345

ds

+
3
2
|µ⊥|2
|µ|2 Re

∫ ∞

0

s3

sz

(1+ r
(p)

d345)(1+ r
(p)

d321)

1− r
(p)

d321r
(p)

d345

ds . (3.45)

The integrals run from s = 0 . . .∞, capturing the total radiated and dissipated power. To
validate this model, we compare the spontaneous emission rate of a dipole in air (ϵ1 = 1) at
a distance z0 from an ideal conductor (ϵ2→∞) with the analytical results in Chapter 2.2.4
(see Figure 3.6c). As the dipole only radiates propagating waves in this geometry, we also
calculated the normalized integrated intensity with the transfer matrix calculation from
the last section. The results from both models are in perfect agreement with the analytical
solution.

Integrating Equation 3.45 over the interval s = 0 . . . 1 yields the far-field emission rate γr
γ0

of the dipole. The fraction of the total power radiated as photons into the far-field, i.e.,
the quantum efficiency, is then given by ηr =

γr
γ . This result can be used to correct the
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Fig. 3.7.: Radiative and non-radiative rates of a dipole in a 4 nm thin dielectric above a gold
substrate at λ = 600 nm. (a) Sketch of the geometry. (b) Comparison of the computed
emission rates from the Ford/Weber model (solid lines) and the transfer matrix method
(dotted lines) for a dipole oriented parallel (blue) and perpendicular (orange) to the
interface. A large part of the power is dissipated non-radiatively.

calculations from the transfer matrix method. Therefore, the far-field intensity we detect
in the experiment is the transfer matrix result PNA scaled by ηr

Pdetected = PNA
γr

γ
. (3.46)

Figure 3.7 illustrates the radiative and non-radiative contributions of a dipole in the center
of a 4 nm thin layer with a refractive index 1.5 above a gold substrate. This geometry
corresponds to a single dipole embedded in the hectorite double stacks. The refractive
index of gold at λ = 600 nm is interpolated from the literature [51]. Figure 3.7b shows the
power density as a function of the normalized in-plane wavevector, which is the integrand
of Equation 3.45. Compared are dipole orientations parallel and perpendicular to the
substrate shown as blue and orange solid lines. Hence, much of the total power is radiated
as evanescent waves with s = k∥/kair > 1. The associated power is either dissipated in
the metal or can propagate along the interface between gold and dielectric as surface
plasmons. Importantly, the radiative and non-radiative contributions vary with the dipole
orientation. We ensured that our results were consistent with a previous implementation
in the literature [101]. As a comparison, the dotted lines in Figure 3.7b represent the
power density per wave vector calculated with the transfer matrix framework. As it relies
on far-field radiation, this method only covers the interval s = 0 . . . 1. In this interval, the
functional shape of both models agrees very well up to a scaling factor of about 2.

3.2 Determination of dielectric functions in multilayer

systems with spatial resolution

The structure investigated in this work is a dye monolayer sandwiched between hectorite
nanosheets. As outlined in Chapter 2.2, the dielectric environment of emitters has a crucial
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influence on their radiation properties. Therefore, the refractive index of the hectorite
double stacks is an essential parameter in our numerical simulations. The refractive index
of hectorite as a bulk material is given in the literature [102]. Still, we must ensure it also
holds within the quasi-two dimensional structure investigated in this work. Furthermore,
the presence of the dye alters the refractive index because of its absorption.

Ellipsometry is an established technique for the experimental determination of layer heights
and refractive indices based on a model of the sample [103]. For this, the reflectivity of
the sample at different angles and polarizations is measured. Fitting a model function to
the experimental data allows the determination of all relevant parameters of the sample
simultaneously. However, the size of the excitation spot is typically on the order of tens to
hundreds of microns, averaging over smaller spatial features. Furthermore, the illumination
area becomes more and more elliptic as the illumination angle is decreased. Therefore,
conventional ellipsometry is typically applied to large-area homogeneous materials. In
contrast, the typical lateral size of hectorite double stacks is on the order of 20µm. An
accurate determination of the refractive index and its spatial homogeneity requires a more
sophisticated technique.

3.2.1 White light reflection spectroscopy

In this section, we present a general method to determine the refractive indices of planar
materials. The spatial resolution is determined by the optics and is, therefore, only limited
by diffraction. Our technique measures the interference of the reflected light from the
interfaces to air and the underlying substrate. This allows us to determine the length of
the optical beam path of the planar structure, which is the product of refractive index n

and thickness d. As in ellipsometry, illumination at different angles allows independent
determination of n and d. However, we decide for a separate thickness measurement by
atomic force microscopy (AFM, Dimension 3100, Bruker) with a silicon probe (AC160TS)
in tapping mode. The lateral resolution provided by the AFM topography measurements is
well below the optical diffraction limit and, therefore, allows to characterize the homo-
geneity of the sample on the nanoscale. In the second step, we use the thickness obtained
by AFM to determine the refractive index from white light reflection spectra using only a
single illumination angle.

Only a fraction of the sample surface is covered with the hectorite nanosheets. We compare
the reflection spectra on the hectorite R(λ) and the bare substrate next to it R0(λ) to
calculate the reflection contrast [R(λ)− R0(λ)]/R0(λ) = R(λ)/R0(λ)− 1. The reflection
contrast is generally small for weakly absorbing and very thin materials d ≪ λ like the
hectorite double stacks. For instance, transfer matrix calculations demonstrate that a layer
with thickness d = 4nm on a silicon wafer yields a reflection contrast of only ∼ 0.4%
(n = 1.4) and ∼ 0.5% (n = 1.5) at λ = 400nm. This low contrast hinders an accurate
determination of the refractive index. However, the contrast is greatly enhanced by adding
a 300nm SiO2 layer on the Si wafer. For example, this principle has been exploited in
the literature to determine the number of atomically thin graphene layers [104]. In our
example, the Si/SiO2 substrate features multiple reflections, which amplify the reflection
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Fig. 3.8.: Experimental setup for white light reflection spectroscopy to determine the refractive
index of thin layers with spatial resolution.

contrast to ∼ 10% (n = 1.4) and ∼ 12% (n = 1.5). This high sensitivity makes our
approach very suitable for precise refractive index determination.

The sample is illuminated with white light from a fiber-coupled halogen lamp (DH-2000,
Ocean Optics) at perpendicular incidence, as shown in Figure 3.8. We use a 100x/0.9NA
microscope objective (MPlanFL N BD P, Olympus) for high spatial resolution. Plane-wave
illumination of the sample is achieved by spatially filtering the white light with a pinhole
and focusing on the center of the back focal plane of the objective. The reflection spectrum
is measured with a sensitive camera (ProEM 1024BX3, Princeton Instruments) attached
to a monochromator (IsoPlane 160, Princeton Instruments, with 150 lines/mm grating
blazed at 500 nm). A magnified image of the sample is projected onto the entrance slit of
the monochromator. The spatial resolution in the horizontal direction is therefore given by
the entrance slit width. The resolution in the vertical direction is limited by the detector
pixel size relative to the magnification of the optics. In our experiment, we define a region
of interest for the camera readout and average over an area of about 1.6× 1.6µm2 per
measurement on the sample.

Similar to our technique, other ellipsometry imaging approaches use a camera to measure
monochromatic reflection images of the sample with high spatial resolution [103, 105].
However, our method determines the reflection contrast with both spatial and spectral
resolution using unpolarized white light. As outlined in the following, the additional
spectral resolution allows us to determine the refractive index with very high precision.

3.2.2 Hectorite monolayers and bilayers

We first investigate hectorite monolayers and bilayers without the intercalated dye mono-
layer. The diluted aqueous solution is dropcasted on a silicon wafer with a 300nm oxide
layer purchased from MicroChemicals. The AFM topography in Figure 3.9a shows that
monolayers and bilayers are present on the sample. The corresponding histogram of height
values in Figure 3.9b has three prominent peaks for substrate, monolayers, and bilayers.
Fitting the distribution with a sum of three Gaussian functions yields monolayer and bilayer
heights of 1.53nm and 3.06nm, respectively. This is slightly larger than the monolayer
thickness of 1 nm reported in the literature, which we attribute to water layers at ambient
conditions [93]. In the following, the retrieved values are used as input parameters for
the refractive index determination.

3.2 Determination of dielectric functions in multilayer systems with
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Fig. 3.9.: Thickness and refractive index determination of hectorite monolayers and bilayers on a
Si/SiO2 substrate. The AFM topography (a) has a discrete distribution of heights (b).
The reflection contrast spectra (c) of a line scan (number 1 in (a)) across the hectorite
monolayer are very homogeneous. The averaged contrast spectrum (d, blue dots) is
fitted to the transfer matrix calculation (orange line) to obtain the refractive index. The
same procedure is applied to a line scan (number 2 in (a)) across the hectorite bilayer
(e-f).
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The white light reflection spectra were measured at the same position as the AFM topog-
raphy. Figure 3.9c shows the reflection contrast spectra of a line scan across substrate
and hectorite monolayer along the first white line marked in the AFM topography image.
The averaged reflection spectra next to the monolayer, i.e., on the substrate, are used
for normalization (R0(λ)). We observe a significant reflection contrast on the hectorite
monolayer despite the layer height of only 1.5 nm. The reflection contrast oscillates as a
function of wavelength with a maximum value of ∼ 6 %. The oscillation period is defined
primarily by the SiO2 layer thickness. The reflection contrast spectra are very homogeneous
across the monolayer, as expected from the extremely smooth surface characterized by the
AFM topography measurement. Due to the spatial homogeneity, we take the average of
the reflection contrast spectra on the monolayer, as shown in Figure 3.9d. Similar results
are obtained for the line scan across the hectorite bilayer, as depicted in Figure 3.9e-f. The
second white line in Figure 3.9a marks the position of the line scan. On the bilayer, the
maximum reflection contrast increases to ∼ 10 %.

We use dielectric functions from the literature for Si and SiO2 [106, 107]. The hectorite
monolayer and bilayer are modeled as non-absorbing dielectrics with thickness determined
from the AFM topography. The transfer matrix formalism introduced in Chapter 3.1.2
allows us to calculate the reflectivity of this particular geometry. The fit to the experimental
data has two free parameters, the SiO2 layer thickness dSiO2

and the hectorite refractive
index n. The contrast values are weighted by the inverse local standard deviation. We
obtain the following results:

n dSiO2
/ nm

Hectorite monolayer 1.519± 0.005 288.8± 0.4
Hectorite bilayer 1.518± 0.003 287.9± 0.2

As expected, both measurements yield identical refractive indices of the hectorite monolayer
and bilayer. Note that the uncertainty of n is only 0.003 in the case of the bilayer, proving
the high sensitivity of the described method. The fitted height of the SiO2 slightly differs
from the specification of 300nm. We attribute this to uncertainties in the fabrication
or slight deviations from the perpendicular plane-wave illumination we assumed in the
calculations. The optical properties of the hectorite nanosheets are very similar to the
literature values of the bulk material, having refractive indices na = 1.49, nb = 1.50, and
nc = 1.52 of the three principal axes [102]. Polarized excitation would allow us to detect
the slight birefringence reported in the literature. However, the minor variations in the
refractive index are negligible for our applications. In the scope of this work, we treat the
material as isotropic.

3.2.3 Hectorite double stacks modeled as an effective medium

After determining the refractive index of the hectorite nanosheets, we are now able to
investigate the more complex system of the hectorite double stacks. These structures
consist of a dye monolayer sandwiched between two individual hectorite layers. We expect
similar refractive index values as our results in the last section. However, the absorbance
of the dye at blue wavelengths enters into the refractive index of the heterostructure.
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Fig. 3.10.: Thickness and refractive index determination of hectorite double stacks on a Si/SiO2
substrate. The AFM topography (a) has a sharp peak in the histogram (b) at 4.3nm.
The reflection contrast spectra of the line scan (marked by white line in (a)) average
over the sub-diffraction features in the topography. The reflection contrast spectrum
averaged over the double stack (d, blue dots) agrees very well with our effective
medium model with a single Lorentz oscillator (orange line). (e) Real and imaginary
parts of the dielectric function are retrieved from the fitted dielectric function. (f)
Normalized extinction of hectorite double stacks on a glass substrate, measured with
an independent spectrometer. The results qualitatively match the imaginary part of
the refractive index k(λ) from (e).
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Figure 3.10a-b shows the measured AFM topography of a representative hectorite double
stack on a Si/SiO2 substrate and the distribution of height values. Fitting the histogram
with two Gaussian functions yields a double stack height of 4.3 nm, averaging over small
patches with lower and higher topography. These inhomogeneities will be discussed in
more detail in Chapter 3.3. The patches can not be resolved optically due to their small
size. However, we expect them to have a minor influence on the computed refractive index.
Due to the optical averaging, the line scan of reflection contrast spectra in Figure 3.10c
shows only little variations within the double stack. Figure 3.10d shows the reflection
contrast spectrum averaged over the double stack, exhibiting a maximum of ∼ 15 %.

We model the hectorite double stack as an effective medium with a thickness of 4.3 nm
obtained from the AFM measurements. To take the energy-dependent absorption of the
dye into account, we use a single Lorentz oscillator term for the dielectric function

ϵ(E) = ϵ∞ +
A

E2
0 − E2 − iγE

. (3.47)

This dielectric function is assigned to the effective medium in the transfer matrix calculation.
To obtain the best fit to the experimental data, we optimize the free parameters amplitude
A, resonance energy E0, damping γ, offset ϵ∞, and SiO2 thickness dSiO2

. We obtain the fit
values

A= (0.7± 0.3)eV2 ,

E0 = (3.05± 0.11)eV ,

γ= (0.47± 0.08)eV ,

ϵ∞ = 2.35± 0.05 ,

dSiO2
= (286.5± 0.2)nm .

The fitted reflection contrast spectrum agrees very well with the experimental data (see
Figure 3.10d). As expected, the refractive index n∞ =

p
ϵ∞ = 1.53 far from the resonance

is very close to the values obtained for the hectorite monolayer and bilayer. The resonance
of the Lorentz oscillator peaks at approximately 400 nm, corresponding to the dye absorp-
tion in the blue spectral range. The uncertainties of the Lorentz oscillator parameters are
relatively large since our measured reflection contrast spectra do not cover wavelengths
below 400 nm. The retrieved dielectric function is converted to real and imaginary parts of
the refractive index ñ = n+ ik (see Figure 3.10e). The resonance of the Lorentz oscillator
translates to a peak of the absorption coefficient k at 400 nm. The real part of the refractive
index n has a dispersive lineshape with values decreasing from about 1.62 to 1.56 above
450 nm in the measured interval.

For comparison, we measured the transmission spectra of the hectorite double stacks
on a glass substrate T (λ) with a commercial spectrometer (Lambda 19, Perkin Elmer).
Here, the large-area illumination spatially averages over the sample. The transmission is
normalized to the bare glass substrate T0(λ) to obtain the normalized extinction spectra
T (λ)/T0(λ)− 1 (see Figure 3.10f). We observe a broad absorption of the encapsulated
dye between 350 and 480nm. The absorption parameter k(λ) obtained from the fit to
the reflection contrast spectra qualitatively agrees with this independent measurement.

3.2 Determination of dielectric functions in multilayer systems with
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However, the single Lorentzian oscillator in our model can not reproduce all contributions
to the absorption spectrum.

An important finding of our analysis is that the refractive index of the hectorite monolayer
matches the literature values for bulk hectorite [102]. Furthermore, the refractive index of
the hectorite double stacks with encapsulated dye monolayer is spectrally very flat above
wavelengths of 550 nm. This is the relevant spectral range for the fluorescence emission
of the dye and its coupling with plasmonic nanostructures. Based on these results, we use
a spectrally constant refractive index n= 1.5 in theoretical calculations throughout this
work, consistent with the literature.

The refractive index characterizes the macroscopic dielectric properties of the encapsulated
dye monolayer. In the next section, we focus on the microscopic properties of the dye
monolayer to accurately model its absorption and emission properties.

3.3 Disentangling the orientations of spectrally

overlapping transition dipoles in dense dye layers

The transition dipole orientation of emitters greatly influences their interaction with the
environment and the emission properties. An important example is fluorescence resonance
energy transfer (FRET), where both the distance between the molecules and the relative
transition dipole orientations enter [108]. Moreover, Chapter 3.1 already showed that the
spontaneous emission rate of a dipole at a metal interface strongly depends on the distance
and its orientation [61]. At small distances, the emission of a dipole oriented parallel to an
ideal conductor completely vanishes due to destructive interference with the image dipole.
This has, for instance, been exploited by the Enderlein group to localize single fluorescent
molecules in three dimensions [23, 24, 109]. Furthermore, the emitter orientation is
crucial for efficient interaction with plasmonic nanoresonators, which will be discussed
in detail in Chapter 5 [44, 110, 111]. The Baumberg group claims that single-molecule
strong coupling can be switched on and off when changing the emitter orientation [38].
It has also been shown that changing the orientation of molecule crystals in plasmonic
cavities allows tuning from weak to the onset of strong coupling [112].

Controlling the orientation of molecules on substrates remains challenging [113]. Many
parameters, such as steric and electrostatic effects, influence the orientation and packing
of molecules. Therefore, the actual orientation needs to be determined experimentally to
optimize the efficiency of novel devices. Several orientation determination techniques are
routinely applied to individual fluorescent molecules with a single transition. The most im-
portant methods are defocused imaging [114–119] and back focal plane imaging [120].

The emitters in the hectorite double stacks are very densely packed and have multiple
transitions. At the same time, the lateral size is tens of microns, requiring a fast orientation
determination technique for large-area screening. Similar heterostructures can be found in
novel optoelectronic devices such as light-emitting diodes and thin-film transistors. Also in
these applications, the device efficiency substantially depends on the molecule orientations
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[121–125]. In principle, the single-molecule orientation determination techniques men-
tioned above can be applied to emitter ensembles in dye films. However, time-consuming
2D scanning of the sample and spatial filtering is required for orientation determination
with spatial resolution [126–128]. Instead, we analyze the polarization-dependent fluo-
rescence emission of the dye monolayer, which only requires a single intensity value per
polarizer angle for orientation determination [129–131]. Polarized widefield fluorescence
allows direct imaging of spatial variations with a resolution only limited by the optics
and the camera for detection. In this section, we extend the spatial resolution by spectral
resolution provided by a powerful hyperspectral imaging setup. This allows disentangling
the transition dipole orientations of multiple chromophores with diffraction-limited spatial
resolution. Unlike other dye-specific methods such as Ref. [132], our fast and simple orien-
tation screening method works, in principle, for any dye layer down to the single-molecule
level.

In the following, we present the experimental setup, the data analysis, and the validation
of our technique with an isotropic incoherent dye ensemble. We then apply our method to
the dye monolayer in the hectorite double stacks on a glass substrate for simultaneous
orientation determination of both transition dipoles with spatial resolution.

3.3.1 Hyperspectral imaging setup

Figure 3.11a outlines the experimental setup for hyperspectral imaging. We use picosecond
laser pulses from a fiber-coupled supercontinuum laser (SuperK Extreme EXR-15, NKT
Photonics). A tunable filter (SuperK Varia, NKT Photonics) cuts out the 470-480 nm
interval from the white light spectrum. After collimation (RC04APC-P01, Thorlabs) and
bandpass filtering (470/22 BrightLine HC BP, AHF Analysentechnik), two cylindrical
lenses with 75 mm and 10 mm focal lengths compress the beam horizontally. A wire
grid polarizer (WP25M-VIS, Thorlabs) on a motorized rotation mount (PRM1/MZ8 with
TDC001 controller, Thorlabs) defines the linear excitation polarization angle α from the
horizontal direction. A third cylindric lens with 300 mm focal length focuses the vertical
dimension of the beam into the back focal plane of the microscope objective (MPlanFLN
100x/0.9 NA, Olympus) for plane wave illumination at perpendicular incidence. On the
sample, the resulting elliptical excitation spot has an FWHM width of ∼ 1.8µm and a
height of 10µm. The sample can be moved by a 3-axis piezo positioner (TRITOR 100SG
with NV40/3 CLE controller, Piezosystem Jena).

Assume a single absorbing dipole moment µa with in-plane angle φa to the horizontal
direction and out-of-plane angle θa to the sample plane, as sketched in Figure 3.11b. The
absorption scales with the projection of the linearly polarized incident electric field Eexc
onto the dipole moment as η(α)∝ |µ · Eexc|2∝ cos2 θa cos2(α−φa). The fluorescence
emitted from the dipole is reflected by a 50:50 cube beamsplitter (BS016, Thorlabs). A
spatial filter built from two achromatic 100 mm lenses (AC254-100A, Thorlabs) with an iris
limits the field of view on the sample to∼ 25µm. A Wollaston prism (PWQ 60.15 ARES350-
900, B. Halle) separates horizontal (h) and vertical (v) polarizations by 1◦ in the vertical
direction. After passing a 488 nm longpass filter (488 LP Edge Basic, AHF Analysentechnik),
a 300 mm achromatic lens (AC508-300A, Thorlabs) images the fluorescence onto the
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Fig. 3.11.: (a) Hyperspectral imaging setup for dipole orientation determination. The green dipole
is excited by an elliptical spot profile for widefield imaging in the vertical direction.
(b) Sketch of the dipole with out-of-plane angle θ and in-plane angle φ with respect
to the substrate.

entrance slit of the spectrometer (IsoPlane 160 with 150 lines/mm grating blazed at
500 nm, Princeton Instruments). The width of the entrance slit projected onto the sample
defines the width of the detection window and, thus, the horizontal spatial resolution.
The 1.2µm wide detection window matches the width of the elliptical excitation spot.
The detector is an EMCCD camera with 1024×1024 pixels (ProEM 1024BX3, Princeton
Instruments) with a pixel size corresponding to 75 nm on the sample. The sub-diffraction
sampling allows us to estimate measurement uncertainties. All measured intensities are
corrected by the polarization-dependent excitation power.

Due to the spatial separation of the detection polarizations (h,v) by the Wollaston prism,
we can measure fluorescence spectra with both polarizations simultaneously in one cam-
era image. Technically, the fluorescence is radiated by a dipole with angles φe and θe.
Therefore, the v- and h-polarized intensity on the detector is

�

Ih(α)

Iv(α)

�

∝ η(α) cos2 θe

�

cos2φe

sin2φe

�

, (3.48)

assuming that the dipole is embedded in a homogeneous medium and using a low-NA
objective. Transfer matrix calculations enable us to generalize for dipoles in layered media
using high-NA objectives [133]. Based on the optical properties of the investigated dyes in
this work, we assume that at least a fraction of the detected fluorescence originates from
the absorbing dipole, i.e., φa = φe and θa = θe. This general assumption will be discussed
in more detail later in the text.

The elliptical excitation area minimizes the exposure of dyes outside the detection area to
reduce photobleaching. At the same time, the 10µm FWHM of the excitation spot in the
vertical direction allows widefield fluorescence spectroscopy. Combined with the 75 nm
projected pixel size, our setup yields fluorescence intensities of 133 points on the sample
simultaneously in one camera image for h- and v-polarized detection. We measure spectra
at multiple polarizer angles α to determine the dipole orientations. Horizontal scanning of
the sample in steps of the half slit width provides a two-dimensional image of the sample.
Hence, our technique generates a five-dimensional data set covering the spectrally resolved
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fluorescence at discrete polarizer and analyzer directions at each two-dimensional position
on the sample.

The presented method provides a significant speed-up with respect to conventional tech-
niques based on two-dimensional confocal scanning:

• Defocused imaging: This technique uses the diffraction pattern of single molecules
for orientation determination [114–119]. If an ensemble of dipoles below the optical
diffraction limit emits incoherently, as in the dye layers discussed here, an additional
polarization resolution is required for orientation determination. One would then
need to scan an excitation spot in two dimensions. In contrast, our method only
requires scanning in the horizontal direction due to its intrinsic spatial resolution in
the vertical direction.

• Back focal plane (BFP) spectroscopy: Here, the dipole orientation is reconstructed
from angle-resolved emission patterns [120, 126–128]. The monochromator slit
needs to be closed to provide spectral resolution. Consequently, the majority of
emitted photons are discarded. Obtaining a similar signal-to-noise ratio requires
an approximately ten times longer exposure time. As in defocused imaging, the
BFP spectra only yield an averaged dipole orientation over one sample position per
measurement. Considering both the factor of 10 in integration time and the 133
simultaneously detected points, we estimate a speed-up of about 1330 using our
hyperspectral imaging approach.

We did not consider the time to rotate the polarizer between the measurements since electro-
optic modulators [134] and liquid-crystal waveplates [135] could rotate polarizations in
fractions of a second. Furthermore, a larger excitation area and a camera with more pixels
could increase this significant speed-up even further.

3.3.2 Raw data processing

The wavelength axis of the spectra is calibrated with a Neon-Argon lamp (IntelliCal,
Princeton Instruments) for each camera pixel row. This calibration procedure accounts
for the imaging distortions of the spectrometer to be able to compare spectra at different
positions on the camera sensor.

The Wollaston prism spatially separates the h- and v-polarized fluorescence on the camera.
However, the deflection angle is wavelength-dependent, producing curved spectra on
the camera, as sketched in the left part of Figure 3.12. To correct this deformation in
the post-processing, we probe the curvature of the spectrum of a point-like scatterer at
various positions within the field of view (FOV). We spin-coat individual polystyrene
beads with 200 nm diameter (FluoSpheres, Thermo Fischer Scientific) onto a glass cover
slip. We center an isolated bead in the entrance slit and move the sample step-wise
vertically across the field of view while measuring the white light scattering spectra. At
each position, the scattering spectrum appears as a curved line on the camera image,
sketched as black lines in Figure 3.12. To quantify the deviation from a horizontal line,
we fit a 4th-order polynomial to the scattering intensity maxima in each frame for both
h- and v-polarizations. Repeating this fit at every scan position and interpolating the
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Fig. 3.12.: Post-processing of the camera frames acquired with the hyperspectral imaging setup.
Each frame (left) contains v- and h-polarized spectra which are deformed by the
wavelength-dependent deflection of the Wollaston prism. After applying the deforma-
tion correction described in the text, the h- and v-polarized spectra cover the identical
spatial area (right) in the entire field of view (FOV).

points in between allows us to determine a deformation matrix for the entire field of
view. Furthermore, we can spatially overlay the spectra of both detection polarizations.
The inverse of this deformation matrix is applied to any measured image along with the
wavelength calibration. As shown in Figure 3.12, the procedure separates both detection
polarizations for individual analysis. Our implementation ensures energy conservation by
scaling the intensity values appropriately.

3.3.3 Validation with an isotropic and incoherent molecule ensemble

We validate our setup with an ensemble of fluorophores embedded in a polymer matrix. As
there is no preferential direction, the dyes are randomly oriented. We use the Atto-532 dyes
(ATTO-TEC, Germany), which absorb well at our laser wavelength and have an emission
maximum at 552 nm, as shown in Figure 3.13a. The dye powder is dissolved in a 1:1
mixture of ethanol and poly-methyl-methacrylate (PMMA) resist (ARP671.015, Allresist)
and then diluted to the desired concentration. This homogeneous solution is spin-coated
onto a cleaned glass substrate at 4,000 rotations per minute. The calculated average
molecule distance is 5.5 nm. Hence, energy transfer between the molecules is negligible
(see discussion later in this section), and the sample can be modeled as an isotropic and
incoherent emitter ensemble [136]. Using the transfer matrix formalism, we determine the
emission of a single dipole with orientation (θ ,φ) in the center of a 20 nm thick dielectric
layer above a glass substrate. We use a refractive index of n = 1.5 for the PMMA layer and
substrate and calculate the polarization-dependent emission intensity Pθ ,φ collected by
the objective with a numerical aperture of 0.9 in air. The excitation efficiency of the dipole
ηexc ∝ |µ · E|2 scales with the projection of the dipole orientation µ onto the incident
electric field direction E. Due to the plane-wave illumination at perpendicular incidence,
the incident electric field is always polarized in the sample plane. The power detected
in the experiment is the product of excitation probability and emission from the dipole.
The simulation is repeated for various dipole orientations (θ ,φ) to sample the isotropic
dipole distribution in the experiment numerically. We sum up the emission intensities at
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dependent fluorescence of Atto 532 dyes embedded in a polymer thin film at an
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polarized detection, respectively. The measured data (dots) are fitted to the theory
(solid lines). (c) The sum of h- and v-polarized fluorescence intensity demonstrates
that the absorption dipoles have no preferential direction. (d) The measurement at a
much smaller molecule distance of 1.2 nm shows the effect of depolarization on the
polarization-dependent fluorescence. The measurements are fitted to cos2 and sin2

model functions (solid lines).

all dipole orientations to obtain the theoretical expectation for the polarization-dependent
emission of the incoherent dipole ensemble.

Figure 3.13b shows the polarization-resolved spectrally integrated fluorescence measure-
ment of the Atto dyes in the PMMA thin film. The measurement was repeated at five
positions to quantify the uncertainties. The excitation polarization angle α is increased
step-wise from α = −20◦ to α = 160◦. The intensity modulation of linear polarizers is
180◦ periodic; hence, the first and last data points must have the same intensity. These
two data points are used for a linear intensity correction to account for the inevitable
photobleaching. The measured data points show a cos2 and sin2 modulation for h- and v-
polarized detection, respectively. A single dipole absorbs most efficiently if in-plane dipole
orientation φ and excitation polarizer angle α are collinear. In contrast, the absorption is
zero if α and φ are perpendicular to each other. The emitted fluorescence has a maximum
if also the Wollaston analyzer axes (h, v) coincide with α and φ. Consequently, Iv(α) and
Ih(α) oscillate with opposite phases. Since all dipole orientations are present on the sample
and we measure the average over the isotropic emitter ensemble, we detect a non-zero
fluorescence intensity at any excitation polarization angle. The numerical simulations
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predict a minimum value of 0.36, as shown by the dashed line in Figure 3.13b. The solid
lines in the Figure represent the results from the transfer matrix calculations. The overall
scaling factor between measurement and simulation is determined by least-squares fitting.
The numerical simulations agree very well with the measurements, proving the validity of
our experimental setup. Furthermore, the cos2 shape of the measured intensity proves
that our first-order photobleaching correction is justified.

In our calculations, we required absorption and emission dipoles to be collinear, i.e.,
φe = φa and θe = θa. The in-plane orientation of the absorption dipole is encoded in
the excitation efficiency η(α). We assume that every dye excitation produces a detected
fluorescence photon with a fixed probability. Summing up the fluorescence intensities of
both detection polarizations Ih(α) + Iv(α) then renders the fluorescence measurements
independent of the in-plane emission dipole direction. Figure 3.13c shows that the result
is independent of the excitation polarization. This finding demonstrates that the absorp-
tion dipole has no preferential direction, proving our assumption of isotropic molecule
orientations.

Generally, the assumption of collinear absorption and emission dipoles breaks down if
energy transfer happens between the randomly oriented dyes. As a consequence, the
intensity modulation in polarization-dependent fluorescence would decrease. This depo-
larization effect can be observed in a second Atto dye sample with 100 times higher dye
concentration, corresponding to an average molecule distance of only 1.2 nm. The mea-
sured fluorescence intensities are shown in Figure 3.13d. The cos2 fit to the experimental
data illustrates that the offset of the intensity modulation has increased significantly. In
the limiting case where the absorbed energy is always transferred to another molecule,
the modulation as a function of α would disappear completely. In contrast, the measured
data from the more diluted sample discussed above agree very well with the theory. This
proves our assumption for the previous experiment to neglect energy transfer.

After validating the measurement principle with an unoriented dye ensemble, we now
focus on the pyrene derivative dye monolayer embedded in ultrathin hectorite nanosheets.
Although we concentrate on this specific system, the general principle for orientation
determination is universally applicable to any dye layer with multiple transitions.

3.3.4 Fluorescence imaging of encapsulated dye monolayers

Determining the transition dipole orientations in the dye monolayer is essential to model
the interaction with the plasmonic nanoresonators (see Chapter 5). We prepare samples
with hectorite double stacks on a glass substrate to characterize the dye monolayer. The
aqueous hectorite double stack solution is centrifuged at 3,000 rpm for 2 minutes. Only the
central part of this solution is used for the sample, as it mainly contains individual hectorite
double stacks with large aspect ratios. The solution is diluted with deionized water to the
desired concentration. Glass cover slides are thoroughly cleaned and heated to 400 ◦C for
about one minute to make the surface hydrophilic. About 100µl of the hectorite solution
is then dropcasted onto the glass substrate and dried at room temperature. Finally, the
samples are baked at 100 ◦C for 12 hours to remove residual water.
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Figure 3.14a shows a fluorescence intensity map of the hectorite double stacks on a
glass substrate at an excitation power of 1µW. As a result of the widefield excitation
and detection, each vertical slice originates from a single measurement. The spectrally
integrated fluorescence intensities are corrected for the non-uniform excitation. To obtain
the two-dimensional image, the sample is scanned horizontally in steps of the half projected
entrance slit width. The intensity histogram reveals that the fluorescence is emitted at
discrete intensities where the lowest intensity corresponds to dye monolayers (1L). The
dye monolayers have lateral sizes on the order of 10µm. The discrete intensities allow us
to reliably distinguish monolayers from multilayers (2L, 3L, . . . ).

As a complementary method to the optical experiment, we investigate the sample by
atomic force microscopy in peak force mode2 (Dimension Icon, Bruker). Figure 3.14b
shows the AFM topography of an exemplary hectorite double stack on a glass substrate. A
second double stack partially covers the layer. The histogram indicates that an individual
double stack on a glass substrate is 4.3 nm thick. Small islands have discrete topography
levels around 1.2 nm above and below the average value, matching the height of single
hectorite nanosheets [93]. The optical measurements average over these islands spatially.
However, we expect that small intensity variations within the double stack correlate with
topography changes.

We characterize the optical resolution of our setup by the decay of the fluorescence intensity
at monolayer edges. Figure 3.14c-d shows the intensity decay across an approximately
vertical and horizontal monolayer edge. Assuming a Gaussian shape of the point spread
function, we use a Gaussian error function to fit the data [138]. The optical resolution in
the vertical direction is around 600 nm (FWHM). The resolution in the horizontal direction
is determined by the spectrometer entrance slit width projected onto the sample, which is
1.2µm. Consequently, the 1µm (FWHM) optical resolution obtained from the Gaussian
error function fit must be considered an estimate.

Up to now, we have only analyzed the spectrally integrated fluorescence intensities of
dye ensembles as a function of position and polarization. On the one hand, the observed
discrete intensities allowed us to identify dye monolayers and their spatial extent. On the
other hand, we used the polarization-dependent fluorescence of the isotropic Atto dye
layer to validate the experimental setup. The fluorescence of the Atto molecule is emitted
by a single electronic transition. In general, molecules can have multiple chromophores
contributing to the fluorescence. These transitions can, for example, originate from
different parts of the molecule after energy transfer or a mixture of different dye species.
The chromophores typically have different transition dipole orientations. The additional
spectral information provided by our hyperspectral imaging setup allows us to disentangle
these contributions and calculate the dipole orientations of all transitions individually.

The pyrene derivative dyes incorporated into the hectorite nanosheets are known to have
two transitions, as discussed in the literature [139, 140]. Each molecule is described
as a three-level system where absorption happens from the ground to the excited state.
Fluorescence is emitted from this excited state or from an energetically lower state after
molecule planarization. Based on this model, we assume that the orientations of absorption

2Paul Markus from Prof. Papastavrou’s group (Physical Chemistry II, University of Bayreuth) took all AFM
measurements in peak force mode.
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Fig. 3.14.: (a) The spectrally integrated fluorescence map of hectorite double stacks on a glass
substrate has discrete intensity levels originating from different number of layers. (b)
AFM topography measurement of a hectorite double stack. The 4.3 nm thickness of
the monolayer is obtained from the histogram. (c-d) The optical resolution of the
hyperspectral imaging setup is determined from the decay of the fluorescence intensity
across approximately vertical and horizontal monolayer edges. The measured data
are fitted with a Gaussian error function.

and emission dipoles are identical for the high-energy transition. Note that rotational
diffusion between absorption and emission can be excluded in our solid-state sample.
Our technique is not sensitive to the out-of-plane orientation of the absorption dipole,
as the plane-wave illumination perpendicular to the substrate only probes its projection
onto the sample plane. Consequently, our polarization-dependent method measures the
out-of-plane orientation of the emission dipole. In particular, we assume that the in-plane
orientations of absorption and emission dipoles coincide. This assumption could only
be relaxed if microscopic information about the relative orientations of absorption and
emission dipoles for the molecule is known, e.g., from density functional calculations.

3.3.5 Disentangling spectrally overlapping transitions by singular

value decomposition (SVD)

Using our hyperspectral imaging technique, we measured the polarization-dependent
fluorescence spectra at every point in the two-dimensional map in Figure 3.14a. The black
curve in Figure 3.15a shows an exemplary fluorescence spectrum of the dye monolayer.
The fluorescence covers a broad spectral range from 500 to 700 nm. This broadband
emission will allow us to investigate the coupling with different modes of the plasmonic
nanoresonators in Chapter 5. We observe that the shape of the fluorescence spectrum
varies at different positions and polarizations. To analyze these variations, we decompose
the spectra into their fundamental contributions using singular value decomposition (SVD).
This method finds the dominating contributions in our large measurement dataset. Using
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Fig. 3.15.: (a) Measured fluorescence spectrum of a dye monolayer on glass at an exemplary
position. Using SVD of the entire dataset, the spectrum is decomposed into the two
dominating components c1 · f1 (green) and c2 · f2 (orange). The sum of both contribu-
tions (red) agrees very well with the measured spectrum. (b) As the singular values
Σii drop off very fast, the first two contributions are sufficient to describe the dataset.
(c) The basis functions u1,2 contain negative values due to their orthonormality. (d)
To obtain physically meaningful basis function fi , the SVD functions u iΣii are rotated
by angles ψi . (e) The optimum rotation angles ψi are determined by minimizing the
percentage of negative expansion coefficients ci j . The angle interval with negative
basis functions fi is marked grey.

SVD, the lineshapes of the individual contributions are a result and not an input parameter.
This is a particular advantage of SVD over least-squares fitting of all spectra, which would
require assuming certain lineshapes for each spectral contribution.

SVD is a matrix factorization method used for principal component analysis (PCA). PCA is
an established multivariate analysis technique, e.g., in Raman spectroscopy, where each
spectrum comprises individual spectral features originating from different molecules. In
this framework, PCA is used to reduce the dimensionality of the dataset and to decompose
the spectra into their uncorrelated contributions [141, 142]. Similarly, we use SVD to
determine the dominant spectral contributions in our large data set. The result is an
optimal low-rank approximation of the measured spectra. We can then describe each
spectrum by a small number of expansion coefficients instead of the intensity values of all
m camera pixels. We fill the columns of the measurement matrix M with the fluorescence
spectra x j , j = 1 . . . n, of all positions in the two-dimensional scan area with non-vanishing
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singular values on the main diagonal, and V T contains the expansion coefficients. We
approximate the measurement matrix M using only the first two basis functions, as
shown by the dark grey area in the matrices.

fluorescence intensity. We include each individual polarizer angle α and both analyzer
directions; thus, n≫ m. The SVD of our real-valued measurement matrix M ∈ Rm×n reads
[143]

M = UΣVT (3.49)

with U ∈ Rm×m, Σ ∈ Rm×n, and V ∈ Rn×n, as visualized in Figure 3.16. The SVD can be
understood as a generalization of eigendecomposition for non-square matrices m ̸= n.
Σ has non-zero values with descending magnitude only on the main diagonal, called
the singular values. The columns of U provide orthonormal basis functions u1 . . . um of
our measured spectra. The very fast drop-off of the singular values (see Figure 3.15b)
demonstrates that the first two contributions u1,2 dominate our data set, matching the
two transitions of the investigated dyes. This allows us to approximate M by the truncated
SVD

M ≈ ŨΣ̃Ṽ
T (3.50)

with Ũ ∈ Rm×2, Σ̃ ∈ R2×2, and Ṽ ∈ Rn×2. Due to the orthonormality of the basis functions
per definition, at least one of the two basis functions inevitably contains negative values
(see Figure 3.15c). This contradicts the requirement of optical spectra to have non-negative
intensities. To lift the orthonormality claim, we rotate the product of the basis function
and the singular value u1Σ11 and u2Σ22 by the angles ψ1 and ψ2 in the two-dimensional
plane, as sketched in Figure 3.15d. The corresponding rotation matrix

R =

�

− cosψ1 − cosψ2
sinψ1 − sinψ2

�

(3.51)

fulfills the identity RR−1 = 1. Thus, we can write

M ≈
�

ŨΣ̃R
�

�

R−1Ṽ
T
�

. (3.52)

Each measured spectrum x j can then be approximated as

x j =

2
∑

i=1

ci j f i . (3.53)
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The rotated basis functions f i are the columns in in ŨΣ̃R. The expansion coefficients
ci j are the entries of R−1Ṽ

T . The non-negativity requirement for spectra imposes two
constraints on the choice of ψ1 and ψ2. First, the basis functions fi must be non-negative.
Second, the expansion coefficients ci j of all input spectra must be positive since the spectral
contributions can not cancel each other. Due to inevitable noise, the second requirement
can not be fulfilled for all data points. Figure 3.15e demonstrates that there is an optimum
at ψ1 = −85◦ and ψ2 = −80◦ where our requirements are met by the vast majority of
99.97% of all data points. Note that the two basis functions have maximum spectral
separation at this optimum [144].

In principle, our method can be generalized to more than two transitions. In contrast to
conventional least-squares fitting, we did not need to assume a certain spectral lineshape.
Our universal approach can be applied to any spectrally overlapping resonances with
complex lineshapes.

3.3.6 Transition-dependent orientation anisotropy imaging

According to Equation 3.53, each spectrum can be written as a weighted sum of the basis
functions f 1,2. Thus, each individual spectrum measured at a specific position, polarizer
angle α, and analyzer direction (h,v) is fully described by its expansion coefficients c1 and
c2. The exemplary measured spectrum in Figure 3.15a is decomposed into the contributions
c1 · f 1 (green) and c2 · f 2 (orange). The sum of both (red) is an optimal approximation of
the measured spectrum.

In the following, we analyze the polarization dependence of the coefficients c1,2 to de-
termine the dipole orientations for each transition individually. Note that we can not
determine the orientations of individual molecules within densely packed monolayers
due to the enormous number of degrees of freedom. Instead, we develop a statistical
model for the orientation distribution of the dipole ensemble in our particular sample.
Fitting this model to our data then allows us to obtain statistical information about the
dipole orientations within a diffraction-limited area. Furthermore, we characterize spatial
variations of the dipole orientations across the sample.

During synthesis, the sodium ions in the hectorite are exchanged with the cationic dye. A
chemical composition analysis proves that after the ion exchange, almost 100% of the for-
mer sodium positions inside the double stack are occupied by individual dye molecules [97].
We conclude from the hectorite crystal structure that the available area per dye is about
1nm2 [145, 146]. As the area of the chromophoric part of the dye (about 1.5nm2) is
larger than the available area, the dyes are very densely packed in the hectorite double
stack. Previous experiments have shown that the electrostatic interaction and the steric
pressure produce a uniform inclination of [Ru(bpy)3]

2+ complexes incorporated into the
hectorite [96]. As the surface of the hectorite double stacks is very flat (see Figure 3.14b),
we expect a uniform inclination of the dye molecules with a particular out-of-plane angle
θ and an initially unknown in-plane angle φ. Initially, we assume a statistical distribution
of in-plane angles. This is equivalent to a homogeneous distribution of dipoles on the
surface of a cone with an opening angle θ . In the literature, cone-shaped dipole orientation
distributions are frequently encountered in modeling biological membranes [147–149].
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Figure 3.17 shows the measured polarization-dependent fluorescence at an exemplary
position on a dye monolayer for the (a) high-energy and (b) low-energy transition. The
colored dots correspond to the respective SVD expansion coefficients c1 and c2. The
modulation depth M = (Imax−Imin)/Imax of the low-energy transition is significantly smaller
than the high-energy transition. M is inherently linked to the out-of-plane angle of a cone-
shaped dipole distribution. If the dipoles lie flat on the substrate, i.e., θ = 0◦, the linearly
polarized incident light excites only a fraction of the dipoles proportional to the geometric
projection. This subset of dipoles then emits polarized fluorescence corresponding to a
modulation M > 0. In contrast, a strictly out-of-plane oriented dipole ensemble (θ = 90◦)
yields zero modulation, as the polarization directions are indistinguishable. Quantitative
calculations show that the modulation depth monotonically decreases from M(θ = 0◦) =
2/3 to M(θ = 90◦) = 0. We can, therefore, conclude that the out-of-plane angle of the
high-energy transition dipole is smaller than that of the low-energy transition dipole. We
point out that the interval of possible values for M(θ ) significantly differs from that of an
isotropic dipole ensemble, where we found Miso = 0.64 for the Atto thin film.

A symmetric distribution of dipoles requires the v- and h-polarized fluorescence to oscillate
with opposite phases since the detection polarizations are perpendicular to each other.
However, the measured data does not meet this requirement as there is a phase shift
2∆α between both analyzer directions (see Figure 3.17). In addition, the minimum
intensities I

(v,h)
min and maximum intensities I (v,h)

max of both detection polarizations do not
coincide. Based on this asymmetry, we conclude that the in-plane distribution of dipoles
has a preferential direction, while the out-of-plane orientation of the dipoles is constant.
This concept is further supported by a microscopic understanding of the molecule layer,
as π−π stacking allows the molecules to be packed more tightly [67]. For instance, a
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dipole ensemble that is preferentially oriented in h-direction has a stronger absorption
and emission at h-polarization; thus, I (h)max > I (v)max. Suppose the preferential orientation
does not coincide with h- and v-polarization. In that case, an additional phase shift ∆α
is introduced, as absorption and emission scale with the projection onto the respective
polarization direction. This consideration demonstrates that the intensity levels and the
phase shift encode information about the out-of-plane orientation as well as the direction
and strength of the in-plane preferential orientation.

Let f (φ)dφ be the probability of a dipole to have an in-plane orientation between φ
and φ + dφ, such that

∫ 2π
0 f (φ)dφ = 1. We can generally decompose the real-valued

probability density f (φ) in a Fourier series

f (φ) =

∞
∑

k=0

Ak cos(kθ ) + Bk sin(kθ ) (3.54)

with coefficients Ak and Bk. As shown in Appendix A, only two angle-dependent compo-
nents can be detected with a linear polarizer while the others average out [150]. Therefore,
we define the angular distribution

f (φ) =
1

2π
(1+ a cos (2(φ −φ0))) , (3.55)

where the anisotropy parameter a ∈ [0, 1] quantifies the deviation from a homogeneous
distribution with constant value f (φ) = 1/(2π). The angle φ0 represents the in-plane
preferential direction, where linear polarizers can not distinguish φ0 from φ0 +π. This
ambiguity could be resolved with an angle-resolved fluorescence detection setup such as
the dual-view design in Ref. [151]. Nevertheless, we expect the molecules in hectorite to
have a single preferred orientation φ0 rather than zigzag orientation with molecules also
pointing in the opposite direction φ0 +π.

Using the transfer matrix method, we calculate the polarization-dependent absorption and
emission of individual dipoles following the angular distribution function in Equation 3.55.
The incoherent dipole ensemble is simulated by summing up the intensities emitted from
all dipoles. In the simulations, the dipoles are embedded into the center of the 4 nm thick
hectorite double stacks with n = 1.5 on the glass substrate with the same refractive index.
We use a wavelength of λ = 600 nm. The solid lines in Figure 3.17 show the least-squares
fit of the model function to the measured data for both transitions individually. The data
from both detection polarizations are fitted simultaneously using the four free parameters
a, θ , φ0, and an overall intensity scaling factor. The fit agrees very well with the measured
data. The sub-diffraction sampling of the experimental setup allows us to quantify the
measurement uncertainties. Specifically, we use the standard deviation of the neighboring
three pixels above and below the evaluated point (shown in grey in Figure 3.17) to quantify
the uncertainty of the fit parameters. At the particular position in the Figure, the out-of-
plane angle of the high-energy transition θ1 = 59± 1◦ is significantly smaller than the
low-energy transition θ2 = 74± 1◦. The in-plane preferential directions φ0,1 = 57± 3◦

and φ0,2 = 41± 4◦ and the anisotropy values a1 = 0.13± 0.01 and a2 = 0.16± 0.01 of
both transitions are very similar. In particular, the non-vanishing anisotropy proves the
existence of a well-defined preferential orientation.
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Fig. 3.18.: Two-dimensional map of fit results for (a) out-of-plane angle θ , (b) in-plane preferen-
tial direction φ0, and (c) anisotropy a for both transitions individually. The monolayer
boundaries are depicted as solid lines. The histograms show the color-coded distri-
bution of fit parameters of the right monolayer. The scatter plots below visualize
correlations in the fit results of both transitions, where the colors match the monolayer
boundaries.

To model the interaction with plasmonic nanoresonators, we need to characterize the
spatial homogeneity of the orientational order within the monolayers. Repeating the fit at
every position in the fluorescence map in Figure 3.14a enables us to image the orientations
of the two transition dipoles with high spatial resolution on large areas. Figure 3.18
shows two-dimensional maps of (a) out-of-plane angle, (b) in-plane preferential direction,
and (c) anisotropy for both transitions individually. For a separate investigation of each
monolayer, we threshold the discrete fluorescence intensity and cluster the connected
areas. The color-coded contours in the Figure denote the monolayer boundaries obtained
from shrinking the connected regions by the optical resolution of our experimental setup
(see Chapter 3.3.4). Below the orientation images in the Figure, histograms depict the
distribution of fit parameters of the right monolayer. An analysis of the fit residues proves
that our model describes the measured data very well at any monolayer position.

The out-of-plane angle θ is very homogeneous within each monolayer and among all
monolayers. As expected, the high packing density and confinement of the dye within the
hectorite double stacks cause a uniform inclination of the molecules. The well-defined
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Fig. 3.19.: Comparison of (a) independent and (b) dependent orientations of both transition
dipoles.

peaks in the histogram indicate that the peak width is an estimate of the overall uncertainty
of our orientation determination method. The mean fit values θ1 = 58±2◦ and θ2 = 72±1◦

reveal that the out-of-plane orientations of both transitions differ by 14◦. This result is
consistent among all color-coded monolayers, as shown by the correlation plots of θ1 and
θ2 at the bottom of Figure 3.18. The in-plane preferential directions φ0,1 = 72± 7◦ and
φ0,2 = 75 ± 8◦ of both transitions are equal within the error, supported by the strong
correlation found in the scatter plot for all monolayers. The in-plane orientation is uniform
within each monolayer but significantly varies across different monolayers. We conclude
that each monolayer has an intrinsic preferential direction imposed during chemical
synthesis. Due to our random deposition method, each monolayer orientation on the
substrate is equally probable. Hence, the point clouds for all monolayers are well separated
in the correlation plot. Finally, the anisotropy values a1 = 0.11±0.04 and a2 = 0.13±0.04
are uniform among all monolayers and both transitions. All monolayers display a strong
correlation between a1 and a2.

Our analysis demonstrates that our cone-shaped dipole distribution model with preferential
direction can explain the measured data well. However, we did not make an assumption
about how the cones of both transitions are related. Figure 3.19 compares two possible
scenarios. In sketch (a), the two cones sit on top of each other, meaning that the in-plane
orientations of both transition dipoles are independent. However, this is not consistent
with our fit results, which demonstrate that the in-plane orientations and anisotropy values
of both transitions are identical within the error. This strong correlation indicates that the
direction of one transition dipole determines the orientation of the other, as visualized
by the two interconnected cone surfaces in sketch (b). We conclude that both transition
dipoles lie in the plane defined by the aromatic system of each molecule (compare the
structural formula in Figure 3.1). Knowing the orientation of a single transition dipole is
not enough to specify the three-dimensional orientation of the emitting molecule, as the
molecule can rotate around the dipole direction. However, the independent orientation
determination of two transition dipoles can provide this third degree of freedom. Hence,
our method for independent orientation determination of multiple transition dipoles paves
the way to determine the three-dimensional orientations of entire molecules and not only
their transition dipole orientations. This requires additional information about the relative
orientation of the transition dipoles with respect to the molecule backbone, which could
be obtained, e.g., by density functional calculations [152].

The constant in-plane preferential direction across the ∼ 10µm large monolayers reveals a
long-range orientational order of the dye. We expect this orientation to form spontaneously
during synthesis in solution. However, the intermediate values of the anisotropy a ≈ 0.1
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show that not all molecules are oriented in the same direction. We expect the aliphatic
C16 chain attached to the dye (see Figure 3.1) to prevent a macroscopic ordering of the
molecules. Instead, we believe that the molecules cluster in strictly ordered domains which
almost average out within our optical resolution. The domains interact with each other by
steric and electrostatic effects and therefore maintain a single preferential direction over
long distances. The broad fluorescence spectra suggest that the molecules do not form J-
or H-aggregates [67].

At some small areas inside the monolayers, the in-plane angles and anisotropy values
slightly differ from the uniform distribution discussed up to now. A comparison with
the fluorescence map in Figure 3.14a shows that the areas correlate with brighter or
darker fluorescence intensities. The AFM topography of an exemplary monolayer and
bilayer on the sample (see Figure 3.14b) also reveals patches with lower and higher
topography matching the height of single hectorite nanosheets. Our optical measurements
mainly average over these small areas due to the diffraction limit. We expect that these
topography features correlate with the observed variations in fluorescence intensity and
dipole orientation, suggesting slight variations in dye packing density at these positions.
Note that the strong electrostatic bonding of the dye molecules to the clay surface does
not allow the dye to detach. Furthermore, powder x-ray diffraction (PXRD) measurements
as an independent method prove that the height of the dye layer is uniform on the scale of
the PXRD focus volume with about 50 nm edge length.

In conclusion, we presented a powerful technique to disentangle the transition dipole
orientations with diffraction-limited spatial resolution. Despite the simplicity of the ex-
perimental setup, a thorough analysis of the polarization-resolved fluorescence spectra
allowed us to gain detailed information about the local structure. Based on a fundamental
microscopic understanding, we developed a comprehensible dipole orientation model for
the molecules embedded in the hectorite nanosheets. Our method revealed previously
unattainable insights about the long-range orientational order and the strong correlation
between both transition dipole orientations. The presented method can, in principle, be
universally applied to all emitters down to the single-molecule limit.

3.4 Increased orientation anisotropy of the dye

monolayer on gold substrates

Up to now, we have presented the orientation anisotropy of the dye monolayer on a
dielectric substrate. For coupling with plasmonic nanoresonators in Chapter 5, the dye
monolayer is dropcasted onto a gold substrate. Precise knowledge of the dipole orientations
is crucial to understand the interaction with the nanostructures. As electrostatic interactions
can alter the molecule orientation, we apply the orientation imaging technique to the
dye monolayer on gold substrates. We use the template-stripping method to prepare
smooth gold substrates [15]. A silicon wafer with a 300 nm oxide layer purchased from
MicroChemicals is thoroughly cleaned by sonication in acetone and isopropanol. Then, a
50 nm thick gold film is thermally evaporated onto the wafer at a slow rate of 0.12 nm/s.
Afterwards, glass slides are glued onto the gold film with UV-curable adhesive (NOA 81,
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Fig. 3.20.: (a) The spectrally integrated fluorescence map of hectorite double stacks on a gold
substrate reveals a discrete monolayer emission intensity. The correlation of the (b)
out-of-plane orientation, (c) in-plane preferential direction, and (d) anisotropy of both
transitions are shown in the scatter plot. Every data point represents a single position
in the color-coded monolayer in (a).

Norland). The slides are peeled off on demand and made hydrophilic using low-pressure
oxygen plasma (Zepto Q Spezial, Diener electronic) at 0.7 mbar using 50 W power for 1
minute. With the same procedure as for the glass substrate, the hectorite double stacks are
then dropcasted onto the gold substrate, dried at room temperature, and baked at 100 ◦C
for 12 hours to remove residual water. More information about gold substrate fabrication
can be found in Chapter 4.1.2.

For the optical experiments, we use an excitation power of about 1µW and an integration
time of 8 s per camera frame. The singular value decomposition of the entire dataset
again yields two dominant spectral contributions. Compared to the results on the glass
substrate, the low-energy transition is slightly blue-shifted. We attribute this to the
quenching on gold, which competes with the planarization of the dye upon excitation.
This competition will be discussed in more detail in Chapter 3.5. Figure 3.20a shows the
spectrally integrated fluorescence intensity map. The intensity histogram confirms that the
monolayer fluorescence intensity is again very discrete and allows precise localization of
the monolayers. The colored lines visualize their boundaries. The brighter areas indicate
multiple stacked dye layers which are not further investigated.

The molecule orientation of the dye monolayer is primarily defined by the hectorite
nanosheets during synthesis. Therefore, we apply the same cone-shaped orientation model
with preferential direction as on the glass substrate. In the transfer matrix calculations,
we embed the dipoles in the center of a 4 nm thick hectorite layer with n= 1.5 on a gold
substrate using the dielectric function from Johnson and Christy [51] at λ = 600 nm. The
transfer matrix calculations are fitted to the measured data at every point on the sample
to obtain the orientation parameters for both transitions individually. In the following,
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we exclude points within the monolayers where the least-squares fitting encounters a
singular matrix. Figure 3.20b-d shows the respective correlations of the out-of-plane angle
θ , in-plane angle φ0, and anisotropy a of both transition dipoles.

Similar to our previous results on the glass substrate, the anisotropy values and in-plane
angles strongly correlate. Each monolayer has an individual in-plane orientation given
by the random deposition on the substrate. Hence, the preferential directions of each
monolayer are localized as individual point clouds along the identity φ0,1 = φ0,2 in the
scatter plot. In contrast to the previous findings, however, the out-of-plane angle varies
among the investigated monolayers while θ1 and θ2 are still correlated. Generally, the
out-of-plane angles θ1 ∼ 40◦ and θ2 ∼ 60◦ are significantly smaller than on the glass
substrate, suggesting that the dye layer is squeezed on the gold substrate. At the same time,
the mean anisotropy is about 0.5, much larger than a ≈ 0.1 on the glass substrate. For
comparison, imagine a bunch of flowers that is squeezed from the top. In this example, the
out-of-plane angle of the flowers would decrease, but the anisotropy would be conserved.
This suggests that besides squeezing, the molecules in the hectorite perform additional
rearrangements after being deposited on the substrate. Nevertheless, the area density of
the dye molecules is determined by the hectorite during synthesis and is independent of
the substrate. Hence, we conclude that the densely packed molecules in the dye monolayer
can only be compressed further if the molecules get more aligned with each other.

Figure 3.21 compares the fit parameters of the glass and gold substrate for both transitions
in a histogram. The results from all individual monolayers are added up for better visibility.
To compare the in-plane preferential directions, we subtracted the median in-plane angles of
the respective monolayers from each fit value φ0. Generally, the fit parameter distributions
of a and θ are broader on gold than on glass. We attribute this to the lower signal-to-
noise ratio of the measurements on gold due to the significant fluorescence quenching.
Furthermore, the compression of the dye monolayer might introduce more variations
within each monolayer as local inhomogeneities are amplified. In contrast, the in-plane
angle distribution φ0,1 is narrower than on glass, as the larger anisotropy allows a more
precise determination of the preferential orientation.

Our hypothesis that the dye layer is squeezed on the gold substrate can be verified by
AFM topography measurements in peak-force mode. Figure 3.22 shows the topography
of hectorite double stacks on different substrates and baking conditions. Specifically,
we compare glass, gold, and indium tin oxide (ITO) coated glass cover slips (VisionTek,
70− 100Ω/sq with a nominal thickness of 30 nm). Gold and ITO substrates were plasma-
treated before the hectorite deposition. AFM measurements at different positions on the
glass and gold substrates prove the repeatability of the measurements and the homogeneity
of the samples. Furthermore, all AFM measurements were conducted at the same ambient
conditions to rule out temperature- and humidity-dependent swelling and water layer
formations.

As shown by the AFM topography scans and corresponding histograms in Figure 3.22, the
thickness of the hectorite double stacks at a baking temperature of 100 ◦C on the gold
substrate (3.3 nm) is significantly smaller than on the glass substrate (4.3 nm). To obtain
the height of the dye monolayer, we need to subtract the 2×1 nm height of the two hectorite
nanosheets and the ∼ 0.2 nm height of the water monolayer [153] on top of the hectorite
double stacks at ambient conditions (see sketches in Figure 3.21). We find that the height
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Fig. 3.21.: Fit result histograms of all investigated hectorite monolayers on glass (top) and gold
substrates (bottom), comparing out-of-plane angle (left), in-plane angle (center), and
anisotropy (right) of both color-coded transitions. We subtracted the median in-plane
angle of the respective monolayer from each individual in-plane angle. We conclude
that the dye layer on gold is more compressed, as shown by the sketch in the insets
and the black arrows, leading to a decrease in θ and an increase in a.

of the dye monolayer shrinks by a factor of 2, from (4.3− 2.2)nm = 2.1nm on glass to
(3.3− 2.2)nm= 1.1 nm on gold. At the same time, the optical measurements reveal that
the average out-of-plane angle of the first transition decreases from 59◦ on glass to 34◦ on
gold. Assuming rigid rod-shaped molecules, the height of the dye monolayer is determined
by the projection sinθ onto the vertical axis. The height ratio on both substrates is, thus,
sin(58◦)/ sin(35◦)≈ 1.5. Hence, the optical measurements suggest that the height of the
dye monolayer shrinks by a factor of 1.5 between glass and gold substrates, while the
AFM measurements predict a factor of 2.1/1.1 = 1.9. However, we must consider that the
alkyl chain attached to the chromophore is flexible and not rigid as we assumed in the
simple comparison. Hence, the AFM and optical measurements yield very similar results,
supporting our claim of substrate-dependent molecule rearrangements.

As already discussed, the dye layer is densely packed within the hectorite nanosheets.
Nevertheless, the aliphatic chain attached to the chromophoric part of the dye might allow
further compression after reorientation and ordering of the molecules. The image charges
provided by the gold substrate might provide a sufficient electrostatic force to rearrange
the molecules. Comparative measurements on an ITO substrate suggest an even smaller
thickness of the hectorite double stack on this substrate, around 3 nm (see Figure 3.22d).
Since the ITO layer is conductive, this finding might prove that electrostatic interactions
contribute to molecule rearrangements.

As a second comparative measurement, we lowered the baking temperature on the gold
substrate to 60◦C (see Figure 3.22b). To reduce the surface roughness of the gold film,
we evaporated a 100 nm thick gold film on a silicon wafer. Then, we used a different
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Fig. 3.22.: AFM topography scans of hectorite double stacks on a glass substrate, template-
stripped gold substrates, and an ITO substrate after different baking temperatures.
The histograms prove that the height of the structures is impacted by both temperature
and substrate type. The arrows indicate the respective monolayer heights retrieved
from Gaussian fits. Samples (a) and (c) were investigated by the optical orientation
determination method.
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UV-curable glue (Norland NOA63 instead of NOA81) for the template stripping and air
plasma instead of oxygen plasma in the sample preparation. Consequently, the peaks
in the histograms are more narrow, while the general properties of the gold substrate
remain unchanged. At the lower baking temperature, the hectorite double stack thickness
of 4.2 nm matches our results on glass. We conclude that the molecule reorientation
might require a specific activation energy which can be overcome by the thermal energy
provided by the baking step. In addition, our results indicate that the conductivity of
the substrate facilitates the molecule rearrangement. This claim is further supported by
PXRD measurements showing that solely a temperature change in the interval 60 . . . 220◦C
on a dielectric substrate does not impact the double stack height. To gain a deeper
understanding, we propose future AFM measurements on an individual hectorite double
stack while increasing the baking temperature step-wise. We expect a decrease in the
double stack thickness after exceeding a certain transition temperature. It has also been
demonstrated in the literature that electric fields can induce phase transitions in molecule
monolayers [154]. Furthermore, molecular dynamics simulations could complement the
experimental findings [155].

3.5 Orientation- and distance-dependent fluorescence

quenching of dye layers on gold

The photophysics of emitters significantly changes as a function of the dipole orientation
and its distance to a conductive interface. In contrast to a perfect mirror, the gold substrate
features non-radiative decay pathways, such as the generation of surface plasmons propa-
gating along the interface and dissipation as heat. Consequently, the spontaneous emission
rate can be orders of magnitude larger than in free space. The fluorescence lifetime of
typical dyes in free space is some nanoseconds and decreases to a few picoseconds at
metal interfaces [24]. The excited state planarization of the pyrene derivative dye used in
this work also happens on the picosecond timescale, as reported for the dye in different
solvents [140]. Hence, we expect to observe a competition between spontaneous emission
and molecule rearrangements in the experiment.

The investigated dye layers feature two transitions, where the high-energy fluorescence is
emitted from the excited state. The low-energy fluorescence is only emitted after molecule
planarization. Hence, the fluorescence intensity ratios of both transitions serve as a probe
for the spontaneous emission rate with respect to the planarization rate. The intensity
ratios are obtained from the ratio of SVD expansion coefficients c1/c2. We multiply the
coefficients by the integral over their resonance spectra f 1 and f 2 to compare the total
power radiated from both transitions. Figure 3.23b shows the spatial variations of the ratio
in the investigated area on the gold substrate. A comparison with the fluorescence intensity
map in (a) demonstrates that the intensity ratio is significantly larger on monolayers
(c1/c2 ≈ 2.5) than on multilayers (c1/c2 ≈ 1). Monolayers and multilayers have distinct
peaks in the histogram.

Furthermore, Figure 3.24a shows a scatter plot of c1/c2 as a function of the out-of-plane
angle θ1, color-coded for all investigated monolayers. The variations within each monolayer
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Fig. 3.23.: The fluorescence intensity map in (a) strongly correlates with the map of the c1/c2
ratio in (b). Monolayers have significantly larger c1/c2 ratios than multilayers. Non-
fluorescent areas are colored dark blue on the map and are excluded from the histogram
on the right.

are relatively large. Nevertheless, the mean values of each monolayer indicate that the
intensity ratio increases with the out-of-plane orientation of the molecules. To compare
these findings with the theory, we calculated the spontaneous emission rate of a single
dipole in the center of a 4nm thick dielectric (n = 1.5) above a gold substrate in the transfer
matrix formalism (see Chapter 3.1.5). Figure 3.24b plots the computed γ/γ0 against the
out-of-plane angle θ of the dipole. The spontaneous emission rate enhancement increases
from about 1,200 to 2,000, comparing in-plane and out-of-plane dipoles. The in-plane
dipole radiates less efficiently as it couples with the antiparallel image dipole in the gold
substrate.

The larger the spontaneous emission rate, the smaller the timescale between absorption
and emission. Consequently, there is less time for the molecule to planarize before emitting
a fluorescence photon. Most of the emission will then originate from the high-energy
transition, corresponding to a larger ratio c1/c2. This theoretical consideration qualitatively
explains our experimental finding that the intensity ratio c1/c2 increases with the out-of-
plane angle θ1. A quantitative comparison would require detailed information about the
excited state dynamics in the confined environment. Femtosecond transient absorption
spectroscopy measurements of the pyrene-derivative dye in solution have demonstrated
that the timescale of the molecule excited state planarization combined with the solvation
is a few picoseconds, depending on the polarity of the solvent [140]. These results in
solution are not directly applicable to the dyes encapsulated in the hectorite nanosheets, as
the confinement might suppress conformational changes. Nevertheless, our results indicate
that the molecule planarization competes with the enhanced spontaneous emission rate of
the dyes on the gold substrate.

Our argumentation is supported by the drastically reduced c1/c2 ratio of multiple stacked
dye layers, as shown in Figure 3.23 and the associated histogram. Transfer matrix calcula-
tions suggest that the spontaneous emission rate of a dipole in the center of the second
layer has a more than 20 times lower spontaneous emission rate than in the monolayer
(see Figure 3.24b). Note that this curve has been amplified by a factor of 20 for easier
comparison with the monolayer. At the same time, the quantum efficiency of a dipole
in the second layer is more than 20 times higher than in the first layer due to the larger
distance from the dissipative gold substrate. Hence, most of the measured fluorescence
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glass. (b) The computed spontaneous emission rate of a single dipole above a gold
substrate increases with the out-of-plane angle. As sketched on the right, we compare
a dipole in a monolayer (1L) and in a double layer (2L, amplified by a factor of 20).

from a double-layer structure (2L) comes from the top layer. The reduced spontaneous
emission rate and the higher quantum efficiency of multilayers explain the smaller ratio
c1/c2 ≈ 1 in the measurements. In comparison, the spontaneous emission enhancement
of dyes on a glass substrate is close to unity. Consequently, the ratio c1/c2 ≈ 0.5 is even
smaller, as shown in Figure 3.24a.

In conclusion, we qualitatively demonstrated that the fluorescence intensity ratio of both
transitions c1/c2 acts as a clock for the spontaneous emission rate relative to the molecule
planarization dynamics. Numerical simulations on the excited state dynamics of the
confined dye monolayer are required for quantitative comparisons. In principle, the
knowledge of the planarization time constant allows probing the spontaneous emission
rate on the picosecond scale by measuring time-averaged intensity ratios only.
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Plasmonic nanoresonators:

Nanoparticles on mirror 4

The previous chapter discussed the orientation- and position-dependent radiation from
emitter layers in planar environments. We found that the dielectric environment sig-
nificantly impacts the photophysics of emitters. Hence, clever engineering of the local
environment of emitters introduces many setscrews to tune the radiation in the spatial,
spectral, and temporal domains.

The localized surface plasmon resonances in metallic nanostructures provide large electric
field enhancements on a sub-wavelength scale. Therefore, the field of plasmonics has
gained a lot of interest in the past decades [10, 11, 156]. The commercialization of
electron-beam lithography (EBL) and focused ion-beam milling (FIB) paved the way for
the accurate fabrication of plasmonic nanostructures with high resolution on large areas.
The size and shape of individual disks, rods, triangles, etc., offer tunability of the plasmon
resonance over a wide spectral range [4]. In particular, dimers and multimers formed
from multiple interacting nanostructures introduce many degrees of freedom to control
the resonance energy and the coupling to far-field radiation. Modes of the individual
particles hybridize to create bonding and anti-bonding modes [157, 158]. Furthermore, it
was found that the interference of spectrally broad and narrow modes gives rise to Fano
resonances which provide, for example, spectrally very narrow transmission features for
sensing applications [159, 160].

Most interestingly, nanosphere dimers and bowtie nanoantennas possess superior con-
finement of the electromagnetic energy with enhancements of the near-field intensity of
more than 103 [9]. The gap size is, however, limited by the resolution of the fabrication
method, which is between 10 and 20 nm for EBL or gallium ion beam milling and about
5 nm for helium ion beam milling [6, 7]. Fabrication methods based on the self-assembly of
gold nanoparticles facilitate sub-nanometer gap widths but typically lack control over the
exact gap size and the incorporation of emitters into the cavity [85]. As an alternative to
these complex and limited approaches, the nanoparticle-on-mirror (NPoM) geometry has
been extensively studied in recent years [10–13]. Here, colloidal metal nanoparticles are
placed on top of an ultrasmooth metal substrate. In contrast to lithographically fabricated
nanostructures, the crystallinity and size of chemically grown metallic nanoparticles can
be accurately controlled [8]. Furthermore, metallic substrates with low surface roughness
can be fabricated by template stripping [15]. The bottom-up approach enables a simple
and step-wise fabrication of the NPoM samples. The gap size between particle and film can
be precisely determined by the deposition of ultrathin materials onto the metal film [16,
161]. For example, sub-nanometer gaps provided by single graphene layers allow entering
the quantum tunneling regime [20]. Ultimately, the nonlocality of the metal dielectric
function limits the field enhancement [19]. Furthermore, individual atomic features can
form tiny cavities with picometer separation [17, 18].
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In this chapter, we study the optical properties of nanoparticle-on-mirror systems. The
resonances of the NPoMs strongly depend on the morphology, size, and dielectric properties
of the nano-sized gap. Thus, accurate theoretical modeling is required to understand the
resonances in the experiment and their variations. We decompose the optical response
of NPoMs into their fundamental modes using finite element numerical simulations. We
classify the modes based on the symmetry of their electric near-field. Using the inherent
relation between optical near-field and far-field, we calculate the radiation patterns and the
corresponding polarization-dependent point-spread functions of each mode. The computed
resonances and point spread functions are compared with a large number NPoMs in the
experiment as a function of the gap size. A fundamental understanding of the optical
response will be required in Chapter 5 to characterize the coupling of a dye monolayer
with the NPoM.

4.1 Sample fabrication

The reproducible fabrication of high-quality nanoparticle-on-mirror structures with dielec-
tric spacers requires a high level of control over all fabrication steps. In this section, we
characterize the colloidal gold nanoparticles. Furthermore, we discuss the fabrication of ul-
trasmooth gold substrates and the subsequent deposition of thin dielectric spacers. Finally,
we introduce the polarization-dependent scattering of the prepared NPoM structures.

4.1.1 Characterization of the colloidal gold nanoparticles

Colloidal gold nanoparticles with 80 nm diameter are purchased from two manufacturers
(Accurate Spherical Gold Nanoparticles, Nanopartz, and gold colloids, BBI Solutions). The
nanoparticles are surrounded by capping agents to increase the stability of the solution. Due
to the absorption in the visible range, the concentrated aqueous solution has a dark red color
in transmission. The morphology of the nanoparticles is determined by scanning electron
microscopy (Leo 1530, Zeiss) located in the KeyLab Electron and Optical Microscopy at
the BPI Bayreuth. The nanoparticle solutions are dropcasted onto a cleaned glass cover
slip and dried at room temperature for SEM analysis. Due to the high concentration, the
nanoparticles form aggregates, allowing imaging of many nanoparticles in a single scan.
The sample is sputtered with a thin conductive platinum layer. SEM images were acquired
with an acceleration voltage of 3 kV using the SE2 detector.

Figure 4.1 compares the morphology of the 80 nm nanoparticles obtained from (a) BBI
Solutions and (b) Nanopartz. Most noble metals, including gold, have a face-centered
cubic crystalline lattice. Growth of the nanoparticles from single-crystal seeds yields
faceted crystals with different macroscopic shapes. Typically shapes are cuboctahedrons,
rhombicuboctahedrons, and pentagonal bipyramids [162]. Truncation during growth
may produce different nanoparticle shapes [163]. Different crystal facets can be observed
in the SEM image of the BBI nanoparticles, indicating a high degree of crystallinity. In
comparison, the nanoparticles obtained from Nanopartz are very monodisperse and have a
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Fig. 4.1.: Scanning electron microscope (SEM) image of 80 nm gold nanoparticle aggregates
obtained from (a) BBI Solutions and (b) Nanopartz on glass cover slips. The crystal
faces are clearly observable.

more spherical shape. Nevertheless, crystal facets are still apparent from the nanoparticle
contour.

X-ray scattering methods could provide quantitative information about the crystallinity
of the gold nanoparticles [164]. Furthermore, transmission electron microscopy would
allow determining the shape and size of the gold nanoparticles with high resolution.
In the context of this work, however, it is sufficient to know that the morphology of
the nanoparticles varies. As we show later by numerical calculations, variations in the
nanoparticle shape give rise to spectral shifts of the NPoM resonances. The literature
indicates that more spherical nanoparticles reduce these spectral variations between
different NPoMs [165]. Therefore, we use the gold nanoparticles from Nanopartz with
more rounded facet edges in the following to fabricate NPoM systems.

4.1.2 Ultrasmooth gold substrates obtained from template stripping

The surface roughness of the underlying gold substrate also impacts the performance
of NPoM resonators. First, surface roughness generates unwanted scattering from the
substrate, which increases the background signal and might even interfere with the optical
response of the investigated NPoM [166]. Second, the surface roughness alters the
morphology of the gap in a non-deterministic way, making the optical response of the
NPoM less reproducible. Specifically, the spectral positions of the resonances can shift
significantly [167].

Thermally evaporated gold films have a rough surface with typical 5-10 nm peak-to-
valley variations on a lateral scale of only tens of nanometers. These variations are large
compared with the desired distances of only few nanometers between the gold substrate
and gold nanoparticle. Ultrasmooth gold substrates can be routinely prepared by template
stripping [15]. Here, the gold film is thermally evaporated1 at a low rate of 0.12 nm/s
onto an atomically flat template (silicon wafer with 300 nm oxide layer, MicroChemicals

1Thermal evaporation by Jonas Mayer and Adrian Hochgesang from Prof. Thelakkat’s group (Macromolecular
Chemistry I, University of Bayreuth).
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Fig. 4.2.: AFM characterization of the fabricated template-stripped gold film at an exemplary
position. (a) 2× 2µm AFM topography scan. The line profile at the position indicated
by the blue arrow reveals height variations on the order of only 1 nm. (b) The height
distribution is fitted by a Gaussian distribution (black line), revealing an RMS surface
roughness of σ = 333pm.

GmbH) which has been thoroughly cleaned with water and isopropanol in the ultrasonic
bath. As a result, the bottom of the evaporated gold film is very smooth. A transparent
substrate is glued onto the gold film in the second step. We use UV-curable glue (NOA
81, Norland) and a cleaned 1 mm thick glass slide that is transparent for ultraviolet light.
After curing, the adhesion of the gold film to the silicon template is much smaller than to
the glued glass substrate. Therefore, mechanical cleaving of the substrate with a scalpel
exposes an ultrasmooth gold film which we use as a substrate for the NPoMs.

Figure 4.2a shows a 2×2µm AFM topography scan of the gold surface obtained by template
stripping at an exemplary position. The raw data were flattened line-by-line with a linear
function. The surface is exceptionally smooth on a lateral scale of micrometers. As shown
by the line profile, the height variations are on the order of 1 nm peak-to-valley. The fit of
the height histogram to a Gaussian function reveals a root-mean-square (RMS) roughness
of only σ = 333pm (see Figure 4.2b). The measurement at two other positions on the
sample yields RMS values of 351 pm and 436 pm. These results are comparable to the
200 pm roughness reported in the literature, which was determined in a much smaller
area of only 500× 500nm [15]. For comparison, gold has a face-centered cubic crystal
lattice with lattice constant a = 4.08 Å [49]. Notably, our measured surface roughness is
similar to the atom separation of a/

p
2= 289pm in the gold crystal.
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Fig. 4.3.: Simplified sketch of Al2O3 thin film formation by atomic layer deposition from the
precursors TMA and water. In each cycle, the two chemicals are introduced into the
reaction chamber one after another. The surface reaction is self-terminating.

4.1.3 Controlled growth of ultrathin dielectric layers by atomic layer

deposition (ALD)

Atomic layer deposition (ALD) is an established technique to deposit a wide range of
materials with sub-nanometer thickness control. The process is based on chemical reactions
between precursor chemicals, thus enabling a complete surface coverage of the desired
sample [168]. We use ALD to deposit thin alumina layers (Al2O3) onto the template-
stripped gold substrates. The oxide layer then acts as a dielectric spacer to tune the
gap thickness of the NPoM with high precision. The precursor materials for alumina are
trimethylaluminium (TMA) and water. We use a commercial device for ALD (Savannah,
Ultratech/Cambridge NanoTech) at the KeyLab Device Engineering at the University of
Bayreuth.

The process is conducted in a reaction chamber at 80 ◦C and a base pressure of 0.5 Torr. At
first, TMA is introduced into the chamber in a short 15 ms pulse and reacts with hydroxyl
groups on the surface of the substrate (see Figure 4.3). The reaction terminates when
all reaction sites on the surface are occupied. After purging the reaction chamber with
gaseous argon for 10 s, the second precursor, water, is introduced. The water molecules
react with the TMA, leaving free hydroxyl groups on the surface. Therefore, ALD is a cyclic
process where the thickness of the deposited surface linearly scales with the number of
cycles. The calibrated thickness of deposited alumina per cycle is 0.75Å.

4.1.4 Polarization-dependent scattering from NPoMs

After depositing oxide layers onto the template-stripped gold substrate, we dropcast the
aqueous gold nanoparticle solution onto the sample. The nanoparticles which are close to
the substrate will adhere to the surface. After some minutes, the residual droplet is blown
off the substrate with nitrogen. The time between dropcast and blow-off determines the
average spatial separation between the nanoparticles. Good surface coverage is achieved
when the separation between neighboring nanoparticles is a few micrometers, well above
the diffraction limit.

As an introduction to the optical properties of NPoMs, we briefly discuss their polarization-
dependent scattering on a phenomenological level. The optical setup will be presented
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Fig. 4.4.: Scattering images of NPoMs with 2 nm dielectric spacer, obtained by white light illu-
mination at almost grazing incidence and detection with a microscope objective and
a color camera. Compared are (a) unpolarized, (b) s-polarized, and (c) p-polarized
excitation.

in more detail in Chapter 4.4.1. For now, we illuminate the sample at an almost grazing
incidence with white light, as sketched in the insets of Figure 4.4. We collect the scattered
light from the top using a microscope objective with a high numerical aperture, while
the excitation light misses the objective aperture. The light is imaged with a color CMOS
camera. The colored spots in the images show individual 70 nm gold nanoparticles
(Nanopartz) on a gold substrate with a 2 nm alumina spacer. The images demonstrate
that the excitation polarization allows switching between green and red scattering, where
the red scattering is only observed at p-polarized excitation. Furthermore, the point-
spread function of the red mode does not resemble the familiar Airy pattern. We conclude
that the NPoM features a set of modes with different dipole orientations. To understand
the emergence of these modes, their near- and far-field properties, and the dependence
on the gap morphology, we introduce numerical simulations of NPoMs in the following
section. This will allow comparing the theoretical expectations with experimental data in
Chapter 4.4.

4.2 Numerical methods

Analytical solutions to Maxwell’s equations can often be obtained in simple geometries. For
example, the transfer matrix formalism presented in Chapter 3.1 is an analytic treatment
of multilayered structures. Furthermore, the scattering theory developed by Gustav Mie
provides an analytical solution to Maxwell’s equations for spherical particles in homoge-
neous environments [55]. More complex geometries often require numerical solutions of
Maxwell’s equations. Common solvers operate in the time domain (e.g., finite-difference
time domain, FDTD) or frequency domain (e.g., finite-element method, FEM) to calculate
the optical response to incident electromagnetic waves [169]. These computations are very
time-consuming since multiple calculations must be combined at different pulse lengths,
frequencies, and polarization directions to obtain meaningful connections with experimen-
tal data like scattering spectra. Furthermore, the calculated spectra and electromagnetic
field distributions might be challenging to interpret due to the interference of multiple
fundamental modes of the investigated structure [66, 170]. Finally, simulations can never
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match the measured data quantitatively due to uncertainties in sample fabrication. In-
stead, numerical simulations often aim to develop a deep physical understanding of the
investigated structure and for parameter optimization.

A low-level physical picture of any structure can be obtained by decomposing the ma-
terial response into its natural modes with indices m. Each electromagnetic mode of
the investigated plasmonic nanoresonators has an eigenfrequency ω̃m = Ωm − iΓm/2 and
features a certain electric field distribution Em(r ). Note that the eigenfrequencies are
complex-valued in dissipative systems. The modes are calculated without an external
electric field and are, therefore, independent of the experimental details. The modes
form a complete orthonormal basis set for the specific geometry. After the computation,
the optical response to a particular external impulse can be written as a sum over all
modes with individual excitation coefficients Am(t) [170]. Using the e−iωt convention, the
measurable electric field in time and space reads

E(r , t) = Re

�

∑

m

Am(t)Ẽm(r )e
−iΩm t e−Γm t/2

�

(4.1)

with the spatial mode profile Ẽm(r ). The mode-specific damping constant Γm enforces an
exponential temporal decay of the electric field.

4.2.1 Quasi-normal modes (QNM) of open cavities

The decomposition into normal modes has widespread applications in physics. The most
prominent example is the motion of coupled oscillators. The coupling of two harmonic
oscillators gives rise to a symmetric and an antisymmetric mode with oscillators moving
in the same and opposite directions, respectively. In optics, normal modes are frequently
encountered in resonators like laser cavities, Fabry-Pérot etalons, dielectric microresonators,
and plasmonic nanoresonators. The simplest example is a planar cavity with refractive
index n and length L bounded by ideal conductors (see Figure 4.5). The boundary
conditions imposed by Maxwell’s equations require zero electric field strength at the cavity
walls, corresponding to unity reflection coefficients. The normal modes are superpositions
of waves traveling to the left and right. The resulting standing waves have equidistant
real-valued frequencies

ωm =
2πmc0

nL
(4.2)

with m= 1,2, . . .∞. The electric fields of the two lowest-energy modes are sketched in
Figure 4.5.
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In real-world systems, the refractive index inside and outside the cavity is finite, lowering
the reflection coefficient r of the electric field at the cavity walls. The amplitude of the
waves decreases at every reflection as part of the wave is absorbed or transmitted to the
outside. The presence of a stationary state requires that the amplitude A of a traveling
wave inside the cavity is recovered in each round trip [170]

A
!
= Ar2e2iknL ⇔ 1− r2(ω̃n)e

2i ω̃m
c n(ω̃m)L = 0 . (4.3)

If the cavity is leaky, i.e., |r|2 < 1, and/or the cavity medium absorbs energy, i.e.,
Im[n(ω̃m)] > 0, the steady state requirement can only be fulfilled with complex fre-
quencies

ω̃m = Ωm − iΓm/2 . (4.4)

Hence, the imaginary part of the complex eigenfrequency amplifies the waves in the cavity
to counteract the damping [170]. Notably, the electric field of a spherical wave radiated
from a cavity mode has the form ei(kr−ω̃m t) · r−1 = eiω̃m(r/c−t) · r−1 and therefore diverges
in space as eΓmr/2c · r−1. This divergence has implications for the normalization of the
QNMs discussed later in the text.

4.2.2 Auxiliary-field eigenvalue approach for QNM computation

The source-free Maxwell’s equations for non-magnetic media in the frequency domain
take the form of an eigenvalue problem [66]

�

0 −iµ−1
0 ∇×

iϵ−1(r , ω̃m))∇× 0

��

H̃m(r )

Ẽm(r )

�

= ω̃m

�

H̃m(r )

Ẽm(r )

�

(4.5)

with dielectric function ϵ = ϵ0ϵr , eigenvalues ω̃m, and eigenvectors
�

H̃m(r ), Ẽm(r )
�

. In
the case of non-dispersive media, the permeability and permittivity are independent of
the frequency, and the eigenvalue problem is linear. Robust and efficient solvers are
implemented, for example, in the commercial software Comsol Multiphysics.

However, the NPoMs consist of gold nanostructures with a frequency-dependent dielec-
tric function, introducing nonlinearities into the eigenvalue problem. A linearization is
possible when decomposing the dielectric function into multiple Lorentzian poles. For
demonstration, we limit ourselves to the single-pole Lorentzian function introduced in
Chapter 2.1.1 and abbreviate ϵ∞ϵ0 as ϵ∞ to obtain

ϵ(ω) = ϵ∞

�

1+
ω2

p

ω2
0 −ω2 − iγω

�

. (4.6)

For linearization, we define two auxiliary fields, the polarization

P = ϵ∞
ω2

p

ω2
0 −ω2 − iγω

E , (4.7)
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and the current density
J = −iωP . (4.8)

These definitions allow us to reformulate Equation 4.5 as the linear eigenvalue prob-
lem [66]








0 −iµ−1
0 ∇× 0 0
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∞
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 = ω̃m







H̃m(r )

Ẽm(r )

P̃m(r )

J̃m(r )





 . (4.9)

This formulation can be generalized to n-pole Lorentzian dielectric functions by introducing
n polarization Pn and current density vectors Jn and expanding the matrices accordingly.
Consistent with the literature [45], we use the two-pole Lorentzian function with the
parameters shown in Chapter 2.1.2 to model gold.

4.2.3 QNM computation in Comsol

We use the software package Comsol Multiphysics to solve Maxwell’s equations with
predefined boundary conditions. The software implements the finite element method
(FEM), suitable for general time-harmonic systems with linear media described by partial
differential equations. In our case, the spatial distribution of the electric and magnetic
fields Ẽm(r ) and H̃m(r ) are computed as solutions to the general source-free Maxwell’s
equations 4.5. The computation of the QNMs furthermore requires the determination of
the complex-valued eigenfrequencies ω̃m.

In FEM simulations, the three-dimensional geometry is segmented into a mesh of small
volume elements such as tetrahedra. The tetrahedras’ size, shape, and orientation are
optimized to represent curved objects and narrow structures precisely. The size of each
element must always be much smaller than the wavelength. Each element represents
the solution as a superposition of differentiable base functions that fulfill the boundary
conditions. The solver optimizes the coefficients of these base functions in all volume
elements to minimize the residues of Maxwell’s equations [169].

As indicated above, the QNM fields diverge in space, preventing the normalization of
the modes by conventional energy considerations [66, 170]. Nevertheless, a consistent
normalization is essential for the computation of mode excitation coefficients for near-
field coupling with emitters in Chapter 5. Fortunately, introducing perfectly matched
layers (PMLs) around the finite simulation domain facilitates exponential damping of the
QNM fields, rendering the modes square-integrable. Per definition, the boundary between
simulation and PMLs does not reflect outgoing waves from the investigated nanostructures.
The orthonormality condition of the QNMs can then be written as a volume integral over
the entire model, including the finite simulation domain and the PMLs [66]

∫∫∫

Ω

�

ϵ∞Ẽ i · Ẽ j −µ0H̃ i · H̃ j +
ω2

0

ϵ∞ω2
p

P̃ i · P̃ j −
1

ϵ∞ω2
p

J̃ i J̃ j

�

d3
r = δi j . (4.10)
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Consequently, determining electric and magnetic fields in the entire domain, including
the PMLs, is required for QNM normalization. The introduction of PMLs generates a
subset of quasi-normal modes, which are typically denoted as PML modes. These modes
can represent standing waves within the PML or actual QNMs, which are not sufficiently
damped in the PML. The PML modes are relevant for the completeness of the QNM basis
set and can be identified by the spatial field profile and the mode dispersions [66].

Equation 4.10 requires an integration over the entire simulation geometry Ω. In the
numerical simulations, the integral of an arbitrary function f (r ) is translated into a sum
over the function values f (r n) at all mesh element positions. The infinitesimal volume
element in the integral is replaced by the product of the mesh element volume V (r n)

and the associated Jacobian determinant det(J(r n)). The Jacobian differs from 1 in the
perfectly matched layer environment due to the complex coordinate stretching [171].
Hence, the numerical integration over the simulation domain is approximated as

∫∫∫

Ω

f (r )d3
r ≈

N
∑

n=1

f (r n)V (r n)det(J(r n)) . (4.11)

The quasi-normal mode theory had its roots in the derivation of scattering cross sections of
nuclear reactions more than 80 years ago [172]. The progress in the past years has made
the QNM expansion an established method in electrodynamics to simulate cavities. In this
work, we use the freeware “QNMEig” developed by the Lalanne group to compute the QNMs
using Comsol Multiphysics [173]. The corresponding publication by Yan et al. summarizes
the implementation details of the auxiliary fields in the weak formulation [66].

Besides the QNM framework, other numerical expansions exist, which all have particular
advantages and disadvantages. The generalized normal mode expansion (GENOME) was
developed to decompose the Green’s tensor in the cavity eigenmodes [174]. Similar to
the QNM approach, GENOME solves an eigenvalue problem. The complex eigenvalues
are, however, the permittivities of the nanostructure ϵ̃m and not the eigenfrequencies ω̃m.
Therefore, the GENOME solutions do not diverge in space and allow a more intuitive
normalization. In contrast to the QNM framework, GENOME enables an expansion in a
small number of modes also outside the resonator. Furthermore, GENOME can provide
an advantage in computational speed for the simulation of nanoparticle clusters [175].
A different approach introduced by Lin et al. can determine and tailor the lineshape of
arbitrary coupled nanostructures from the computation of the individual structures only
[176]. This method could help optimize the lineshapes of nanoparticle dimers on metallic
mirrors [63]. Nevertheless, we use the more established quasi-normal mode decomposition
in this work to simulate the optical response of individual NPoMs [45, 177]. Determining
resonance frequencies provides a very intuitive connection to the experimental spectra.

4.2.4 Modes of gold nanoparticles in homogeneous environments

We start with the QNM computation of a spherical gold nanoparticle in a homogeneous
dielectric environment. This problem has an analytical solution that enables us to demon-
strate the validity of the numerical calculations by direct comparison. We use a cylindrical
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simulation geometry in Comsol based on the “cube on mirror” model retrieved from Ref.
[173]. This will allow adding a substrate below the nanoparticle for NPoM simulations in
Chapter 4.3. We exploit the symmetry of this structure by computing the solution only in a
quarter of the cylinder, as sketched in Figure 4.6a. We assign perfect magnetic conductor
(PMC) boundary conditions to the cut sides of the cylinder, enforcing zero electric field com-
ponents perpendicular to the boundary planes (xz- and x y-plane, respectively). Besides
significantly reducing computation time, symmetry considerations also improve numerical
accuracy. Nevertheless, more care must be taken to evaluate the simulation results correctly.
For example, a spherical particle has three energetically degenerate transverse electric
dipolar modes with orthogonal orientations. The computation with PMC boundary condi-
tions only allows a single dipolar mode oriented along the z-direction. The electric field
distributions in the other three parts of the cylindrical geometry and the field distributions
of the other two degenerate modes can be reconstructed using symmetry operations. The
300 nm radius of the dielectric environment is chosen significantly larger than the radius
of the gold sphere, which is varied in the interval rsphere = 20 . . . 120 nm. The dielectric is
surrounded by a PML shell with 150 nm thickness and perfect electric conductor (PEC)
boundary conditions on the outside. We assign a refractive index of nmed = 1.33 to the
effective medium surrounding the nanoparticle. This matches the refractive index of water,
a common solvent in commercially available nanoparticle solutions.

Figure 4.6b shows the real part of the first two quasi-normal mode frequencies ω̃m as
a function of the nanoparticle radius. Here, m = 1 denotes the dipolar and m = 2 the
quadrupolar mode, as shown by the exemplary distribution of the electric field norm
|Em| for the rsphere = 80nm sphere in the insets. Generally, Re(ω̃m) red-shifts with
increasing radius, as the size of the plasmonic resonator determines the eigenfrequencies.
Furthermore, the marker diameters in the plot are proportional to the imaginary part
of ω̃m, quantifying radiation and absorption losses. Intuitively, the losses increase with
particle radius. Furthermore, the losses of the quadrupolar mode are smaller than the
dipolar modes due to their weak coupling to free space radiation.

Fortunately, the optical response of spherical scatterers with radius a in a homogeneous
environment has an analytical solution originally published by Gustav Mie [55]. A direct
comparison with our simulation results allows us to validate our implementation of the
quasi-normal mode decomposition. Important results of the analytical solution are the
scattering cross section σsca, the extinction cross section σext, and the absorption cross
section σabs of the spherical particle. These three quantities are the ratio of the power
scattered, extinct, and absorbed by the nanoparticle to the incident energy flux density.
Note that σext = σsca +σabs. The analytical result is an infinite series [178]

σsca =
2π
k2

∞
∑

m=1

(2m+ 1)
�

|am|2 + |bm|2
�

, (4.12)

σext =
2π
k2

∞
∑

m=1

Re [am + bm] , (4.13)
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Fig. 4.6.: QNM calculations of a gold sphere in a dielectric environment with nmed = 1.33. (a) The
simulation domain in Comsol is a quarter cylinder, using the symmetry of the problem.
The outer shell is a perfectly matched layer (PML). The cut faces of the cylinder are
assigned perfect magnetic conductor (PMC) boundary conditions. (b) Dispersion of the
real QNM frequencies of the first two modes as a function of the nanoparticle radius.
The marker diameter is proportional to the imaginary part of the frequency. The results
of numerical (Comsol QNM) and analytical calculations (Mie poles) agree very well. The
quadrupolar QNMs for the two smallest particle radii are not shown, as they could not be
stably computed with the chosen mesh size. The insets show the calculated electric field
distributions |Em| for the 80 nm particle radius. The blue dashed segment is simulated
in Comsol, and the rest has been calculated by applying symmetry considerations.
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where k = 2πnmed/λ is the wavenumber of the incident wave in the homogeneous medium
with refractive index nmed. The help functions am and bm can be expressed as [178]

am =
nrψm(nr x)ψ′m(x)−ψm(x)ψ

′
m(nr x)

nrψm(nr x)ζ′m(x)− ζm(x)ψ
′
m(nr x)

, (4.14)

bm =
ψm(nr x)ψ′m(x)− nrψm(x)ψ

′
m(nr x)

ψm(nr x)ζ′m(x)− nrζm(x)ψ
′
m(nr x)

, (4.15)

in non-magnetic media (µr = 1), where nr = nparticle/nmed is the refractive index ratio
between the particle and surrounding medium, and x = krsphere is the dimensionless
sphere size. ψm and ζm are the Riccati-Bessel functions of m-th kind. The index m

determines the order in the multipole expansion with m= 1 describing the dipolar and
m= 2 the quadrupolar mode. We restrict ourselves to the electric multipoles described
by the coefficients am [178]. The Padé approximation of the coefficients am allows us to
investigate the resonance behavior using a power series expansion for both the numerator
and denominator. A third-order expansion of the first coefficient is given by [179]

aP
1 = −i

2
3
·

n2
r − 1

n2
r + 2

x

1− 3
5

n2
r−2

n2
r+2 x2 − i2

3
n2

r−1
n2

r+2 x3
. (4.16)

The three resonant parts represent static polarizability, dynamic depolarization, and radia-
tive damping. The coefficient has a pole for values of x where the denominator is zero.
Generally, this resonance condition is met for discrete complex frequencies which enter
into the dimensionless parameter x . The resonance frequencies of the coefficients am are
the complex-valued quasi-normal mode frequencies ω̃m of the sphere, also called natural
frequencies in the literature [180].

For comparison with the numerical solutions, we search for poles of the exact Mie scattering
coefficients a1 and a2 in the complex frequency plane in a 20% frequency interval around
the Comsol results [66]. The obtained complex frequencies are plotted as grey markers in
Figure 4.6b. Real and imaginary parts agree very well with the numerical results, proving
the validity of our simulations.

4.2.5 Polarized far-field imaging computation

Up to now, we have discussed the fundamental properties of the QNMs in terms of
their complex frequencies and near-field distributions. The electromagnetic near-field
distributions are essential to model the interaction of plasmonic nanostructures with
emitters (see Chapter 5). However, in the present chapter, we will investigate the far-field
response of individual plasmonic nanoresonators by scattering spectroscopy. Therefore,
we present a framework to calculate the far-field radiation of the QNMs imaged into the
detector plane by a two-lens system. This method will enable a direct comparison with
the experimental results in Chapter 4.4.

The far-field radiation can be obtained by decomposing the electric and magnetic field in a
single plane, e.g., the object plane, into propagating plane waves [47, 181]. However, this
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at an angle θ with respect to the optical axis is refracted at the aplanatic sphere. A
linear polarizer projects the electric field onto the direction êpol. Upon refraction at the
second aplanatic sphere, the beam is redirected to the focus at an angle θ ′.

approach requires knowledge of the fields in an infinitely extended plane. This requirement
is incompatible with the limited computing power and storage in numerical simulations.
Fortunately, applying the Lorentz reciprocity theorem enables far-field computations from
the knowledge of electromagnetic near-fields on a rectangular box surrounding the inhomo-
geneities [182]. This approach is generally applicable to inhomogeneities like scatterers or
emitting dipoles in planar stratified media. Technically, the far-field radiation into a partic-
ular direction is calculated from an overlap integral of the electromagnetic near-field on the
box with a plane traveling in the opposite direction. This near-to-far-field transformation
has been implemented by Yang et al. in the open-source software package RETOP [183].
Hence, we post-process the computed near-fields with RETOP using the Comsol-Matlab
Livelink. In the following, we analytically derive the polarization-dependent imaging of
the electric far-field into the detector plane by a two-lens system, as sketched in Figure 4.7.
The first lens represents the infinity-corrected microscope objective, and the second lens
provides the imaging into the detector plane.

Let E∞ = (E∞,x , E∞,y , E∞,z) be the electric far-field evaluated in a sphere with radius
R≥ λ. Due to its transverse nature, the electric field has components in the directions of
the elevation êθ and azimuth êφ . The unit vectors in spherical coordinates are related to
their cartesian counterparts ê x , ê y , and êz as

êφ = − sinφê x + cosφê y , (4.17)

êθ = cosθ cosφê x + cosθ sinφê y − sinθ êz . (4.18)

Upon refraction at the aplanatic sphere, the optical ray propagates in z-direction, i.e.,
parallel to the optical axis. Therefore, the electric field component in direction êθ now
points along the cylindrical unit vector êρ defined as

êρ = cosφê x + sinφê y . (4.19)

Furthermore, energy conservation requires a scaling factor
p

n1/n2 (cosθ )−1/2 in the
electric field caused by the distortion of the infinitesimal cross sections dA1 and dA2 upon
refraction, as sketched in Figure 4.7 [47]. At this point, the electric far-field reads
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E∞,cyl =
��

E∞ · êφ
�

êφ + (E∞ · êθ ) êρ
�

√

√ n1

n2 cosθ
. (4.20)

For comparison with the polarization-dependent experiments in the following sections, we
account for a linear polarizer oriented along the unit vector êpol. The transmitted electric
field is the projection onto the polarizer direction

E∞,pol =
�

E∞,cyl · êpol

�

êpol . (4.21)

Upon refraction at the aplanatic tube lens, the beam propagates towards the optical axis
at an angle θ ′ which is determined by the ratio of focal lengths f and f ′ of the first and
second lens

sinθ
sinθ ′

=
f ′

f
. (4.22)

Energy conservation again requires a scaling factor. Hence the electric field in spherical
coordinates reads

E∞,tube =
��

E∞,pol · êφ
�

êφ +
�

E∞,pol · êρ
�

êθ ′
�

√

√n2 cosθ ′

n3
. (4.23)

We express the electric field in the cartesian spatial frequencies given by

kx = k sinθ ′ cosφ , (4.24)

ky = k sinθ ′ sinφ , (4.25)

kz = k cosθ ′ , (4.26)

omitting the primes in the following for better readability. It can be shown that the electric
field in the focal plane at the detector is given by [47, 181]

Edetector(x , y) = − i f ′e−ik f ′

2π

∫∫

k2
x+k2

y≤k2
max

E∞,tube

�

kx

k
,

ky

k

�

ei(kx x+ky y) 1
kz

dkxdky .

(4.27)
The integral runs over all spatial frequencies covered by the numerical aperture NA =
n sinθmax of the objective. The objective used in the experiments has a numerical aperture
of 0.9 corresponding to an acceptance angle of θmax ≈ 64◦ in air. Note that the lens
naturally performs a Fourier transform in the paraxial limit kz ≈ k. This property is used
in the field of Fourier optics, e.g., for optical image processing [47, 99].

To demonstrate the far-field imaging computation routine, we return to the example of
a spherical gold nanoparticle with 80 nm radius embedded in an effective medium. We
use the near-field distributions obtained from Comsol QNM computations to analyze the
far-field radiation of electric dipole modes with two orthogonal orientations. Specifically,
we compare the in-plane dipolar mode oriented in x-direction and the out-of-plane dipolar
mode in z-direction. The near-field distributions of both modes are identical upon rotation
of the coordinate system. The near-to-far-field transform employed by the RETOP software
requires the electric and magnetic field distribution on a rectangular box surrounding the
nanoparticle. We choose a cube with 250 nm edge length centered on the nanoparticle.
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Fig. 4.8.: Polarized far-field imaging computation of the QNMs of gold nanoparticles (rsphere =

80 nm) embedded an effective medium (neff = 1.33). Compared are the in-plane (upper
row) and out-of-plane (lower row) dipolar modes. The RETOP software is used for
near-to-far-field-transformation of the QNMs. The imaging computation reveals the
shape of the diffraction spots for x-polarized, y-polarized and unpolarized detection.
The out-of-plane mode gives rise to a donut-shaped pattern on the detector.

This box is already introduced as a dedicated surface in the QNM computation for the
highest numerical accuracy. The far-field computation provides the radiation pattern into
the +z-hemisphere shown in Figure 4.8. The radiation pattern visualizes the power emitted
into the far-field along the direction (kx , ky). No radiation is emitted along (kx , ky) = (k, 0)
for the x-dipole and along (0,0) for the z-dipole. The maximum radiation is observed
perpendicular to the dipole axis, i.e., at kx = 0 for the x-dipole and along k2

x + k2
y = k2 for

the z-dipole, consistent with the expectations for a point dipole.

Using the polarized imaging computation method described above, we determine the
point-spread functions (PSF) Idetector = |Edetector|2 of the dipolar modes in the detector
plane. The right column of Figure 4.8 compares the PSFs of both modes for x- and y-
polarized detection. The intensity sum of both polarizations yields the unpolarized PSF. As
expected for an in-plane dipole oriented in the x-direction, an emission is only observable
with a linear polarizer pointing along x . The shape of the PSF matches the Airy diffraction
pattern. Importantly, the out-of-plane dipolar mode generates a donut-shaped PSF with
zero intensity in the center. Linear polarization along x and y yields dumbbell-shaped
PSFs oriented in the respective polarization directions. The sum of the x- and y-polarized
images is a PSF with radial symmetry due to the symmetry imposed by the z-dipole. The
comparison shows that the polarization-resolved PSF in real space carries information
about the dipole orientation of the modes excited in the sample plane. This information
will be used in the experiment to separate different modes of the NPoMs based on their
PSF shape.
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4.2.6 FEM simulations of scattered fields and near-field distributions

The quasi-normal mode decomposition yields a fundamental understanding of the reso-
nance frequencies, line widths, electromagnetic field distributions, and far-field radiation
of nanostructures. In particular, the near-field coupling of emitters can be written very
intuitively as an expansion in QNMs, which will be discussed in Chapter 5. In scattering
experiments, however, the excitation amplitude and phase of each mode are determined
by external parameters of the excitation field, such as wavelength and polarization [184].
The accurate representation of the scattering spectra over a broad spectral range requires
computing a large number of contributing modes. Therefore, we introduce a complemen-
tary approach for the simulation of scattering spectra which does not depend on a mode
decomposition. Instead, the electric field around the plasmonic nanostructure is calculated
at monochromatic plane-wave illumination from a fixed angle. The total electric field at
frequency ω is separated into a background field Eback and a scattered field Esca

E(r ,ω) = Eback(r ,ω) + Esca(r ,ω) . (4.28)

The background field represents the electric field in the simulation domain without the scat-
terer and can often be determined analytically. The scatterer acts as a small perturbation to
this background field, so we calculate only Esca by the numerical simulation. The dome-like
simulation domain consists of planar layers denoting the substrate, a thin dielectric spacer
layer, and air, as sketched in Figure 4.9. The background field is obtained analytically for s-
and p-polarized incident waves at an angle θ , using the transfer matrix method for planar
multilayer systems (see Chapter 3.1). Each layer is assigned a downward and upward
propagating wave satisfying the boundary conditions imposed by the interfaces. The
downward propagating excitation wave in air is normalized to |E| = 1. The scattered field
is computed by numerical Comsol simulations. Considering the symmetry of this structure
and the asymmetry imposed by the excitation wave, it is sufficient to simulate only half of
the dome, as sketched in the Figure. The xz-plane is assigned PEC boundary conditions
for s-polarized excitation and PMC boundary conditions for p-polarized excitation. We use
the dielectric function from Johnson and Christy for gold [51].

Up to now, we have used a spherical gold nanoparticle to calculate the optical response
in a homogeneous environment. However, the NPoM geometry breaks the symmetry of
the previous effective medium description in z-direction, as the nanoparticle is coupled
to a gold substrate. As we will discuss in Chapter 4.3, the optical response of the NPoM
significantly depends on the morphology of the gap region. After deposition onto the gold
substrate, the gold nanoparticles lie flat on their facets. We model the gold nanoparticle
as a truncated sphere with a circular facet pointing to the gold substrate. Consistent with
the literature [45, 162], we use a facet diameter w= 20 nm (see Figure 4.9b).

The scattered electric field Esca in the simulation domain is obtained from numerical Comsol
simulations at a particular frequencyω. The simulation is repeated for multiple frequencies
of the incident plane wave to obtain the wavelength-dependent optical response. The
scattering spectra can be calculated by integrating the Poynting vector of the scattered field
over the solid angle covered by the numerical aperture of the microscope objective. The
integration area needs to be outside of the optical near-field and, thus, requires increasing
the simulation domain size. Instead, we again use the RETOP software for near-to-far-field
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Fig. 4.9.: (a) The dome-like simulation domain for scattered field calculations has three layers and
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the half dome, applying PEC boundary conditions to the cut plane for s-polarized and
PMC boundary conditions for p-polarized excitation. The cube surface for the far-field
transform via RETOP is depicted by the dotted white line. (b) Sketch of the truncated
nanosphere in the three-layer system and the incident plane wave.

transformation. RETOP evaluates the electric and magnetic field on the cube’s surface
sketched by the dotted white line in Figure 4.9a. This procedure allows us to compute the
wavelength-dependent scattering intensity and point-spread function for comparison with
experiments.

4.3 Near- and far-field response of NPoMs

Spherical plasmonic nanoparticles feature dipolar, quadrupolar, and higher-order modes
with resonance frequencies and linewidths depending on the particle size. In comparison,
the mode structure of coupled nanostructures is much more diverse. An intuitive plasmon
hybridization model describes the optical response by plasmons interacting between the
individual nanoparticles, in analogy to the molecular orbital theory in molecular physics
[157]. The energy level diagram of two coupled identical spherical nanoparticle dimers is
shown in Figure 4.10a. The dipolar modes of the individual particles hybridize, forming
transverse and longitudinal resonances. The charge distributions determine the energetic
order of the four coupled modes [185]. Two modes are “dark” as the dipoles cancel each
other. The other two modes (highlighted in the sketch) couple to the far-field, yielding a
high-energy transverse and a low-energy longitudinal mode. The excitation of the modes
depends on the excitation polarization, as the dipole orientations of the two bright modes
are orthogonal to each other.

An NPoM can be seen as a nanoparticle dimer with an infinite radius of one of the
nanoparticles. In contrast to the spherical nanoparticle, the infinitely extended nanoparticle
does not have a localized plasmon resonance, as the plasmon resonance shifts to zero
energy. Here, the hybrid plasmon emerges from the coupling of the dipolar nanoparticle
resonance with its image dipole in the metal in the quasistatic limit [10, 186]. Again, the
symmetry of the NPoM features two distinct modes sketched in Figure 4.4b-c. First, the
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Fig. 4.10.: (a) The energy level diagram shows the hybridization of dipolar modes supported by
two identical nanoparticles, similar to Ref. [185]. Only two of the modes are radiative,
highlighted by the blue and red outlines. In the NPoM, the (b) horizontal and (c)
vertical dipole in the nanoparticle couples with the image dipole in the metal substrate.

excitation of a horizontal dipole in the nanoparticle generates an image dipole in the metal
substrate pointing in the opposite direction. Since the dipoles partly cancel each other, the
coupling to the optical far-field is small. Therefore, this mode is often denoted as “dark”.
Second, a vertical dipole excited in the nanoparticle adds up constructively with its image
dipole and efficiently couples to the far-field [187]. The dipole orientations suggest that
the optical response of the NPoM is strongly polarization-dependent, which has already
been shown by darkfield images in Figure 4.4. Our qualitative model can, however, not
describe the spectral positions of the respective modes. Furthermore, higher-order modes
beyond the dipole approximation might interfere in the far-field. Therefore, we employ
numerical simulations in the following to characterize NPoM systems in terms of the near-
and far-field properties of their quasi-normal modes.

4.3.1 QNM characterization based on spherical harmonics

Figure 4.11a shows a sketch of the cylindric simulation geometry. We extended the
simulation model for the QNM calculations of a gold sphere in a homogeneous environment
by a 100 nm optically thick gold film and a dielectric Al2O3 spacer with d = 1 nm thickness.
We use the tabulated refractive index n(Al2O3) = 1.6764 of amorphous alumina at a
wavelength of 650 nm [188]. The gold nanoparticle is modeled as a truncated sphere
with facet diameter w = 20 nm, qualitatively matching the SEM images in Figure 4.1. The
symmetry of the problem allows us to simulate only a quarter of the cylinder, as shown in
Figure 4.11a, applying appropriate boundary conditions at the two cut faces.

We obtain modes with different symmetries depending on the boundary conditions of the
cut faces. The perfect electric conductor (PEC) boundary condition prohibits electric field
components parallel to the interface. The electric field distributions on both sides of the
boundary are symmetric to each other in terms of their absolute value. However, the sign
of the electric field can flip depending on the relative orientation to the boundary. As
sketched in Figure 4.11c, the electric field parallel to the boundary has a zero-crossing at
the boundary and swaps signs. In contrast, electric field components perpendicular to the
boundary maintain their sign. The magnetic field vectors behave opposite to the electric
field. Furthermore, the signs of the electric and magnetic field vectors at perfect magnetic
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Fig. 4.11.: (a) Simulation domain for QNM calculations of NPoMs in Comsol. The nanoparticle
is modeled as a truncated sphere with an 80 nm diameter on an alumina layer. (b)
Sketch of the PEC and PMC boundary conditions for xz- and yz-plane viewed along
the z-axis. (c) Symmetry of the electric field components parallel and perpendicular
to PEC (top) and PMC (bottom) boundaries.

conductor (PMC) boundaries behave opposite to the PEC boundary. Based on symmetry
considerations, these sign rules allow us to reconstruct electric and magnetic fields in
the entire cylindrical domain. To obtain the complete set of all QNMs, the computations
need to be repeated for the four combinations of boundary conditions for the two cut
sides. Some QNMs are energetically degenerate with equivalent electromagnetic field
profiles upon discrete rotation in the x y-plane. We, therefore, restrict ourselves to two
combinations of boundary conditions, as sketched in Figure 4.11b, namely PMC/PMC and
PMC/PEC.

Figure 4.12 shows the near-and far-field distributions of the five energetically lowest
quasi-normal modes of the NPoM. In the near-field distributions, we only show the vertical
component of the electric field Ez, as it dominates over the in-plane components. The
real part of Ez is largest in the gap region between the facet and the gold substrate. The
electric field distributions in the x y-plane are evaluated in the center of the dielectric gap.
Following the spherical harmonic nomenclature introduced by Kongsuwan et al. [45], we
assign each QNM a label (l, m) with l = 1,2,3, . . . and −l ≤ m≤ l. The label indices are
determined by the symmetry of the respective mode. The integer l quantifies the number
of radial nodes and antinodes of Ez in the gap. Similarly, the integer m denotes the number
of antinode pairs in the angular direction φ = arctan y/x . As we restrict ourselves to
the QNMs for two of the four possible boundary conditions, we discuss only QNMs with
m≥ 0. The energetically degenerate equivalents with index −m are obtained by rotating
the electric field distribution around the z-axis by angles π/(2m).

The energetically lowest QNM has a radially symmetric Ez distribution and is, thus, labeled
as (l, m) = (1,0). This mode originates from the longitudinal dipole coupling of the
nanoparticle plasmon with its image dipole. The vertical orientation of the resulting dipole
moment gives rise to a radially symmetric far-field emission pattern, where most radiation
is emitted at large angles from the substrate normal. In contrast to a vertical dipole in
free space, the maximum emission is not observed at θ = 90◦ but at an optimum angle
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of about 60◦. To collect the far-field emission with high efficiency, we use a microscope
objective with 0.9 NA corresponding to an acceptance angle of 64◦ in air. After imaging
the far-field radiation in the detector plane, the diffraction spot has a donut shape with
zero intensity in the center. This result finally explains the low-energy (red-colored) donut
in the color scattering image, which can only be observed at p-polarized excitation (see
Figure 4.4) [12, 45, 187].

The index of the mode with the second lowest energy is (l, m) = (1,1). Corresponding
to the odd value of m, the Ez distribution in the y = 0 plane is antisymmetric. This
mode resembles the transverse dipole coupling of the dipolar nanoparticle mode with the
image dipole. Due to the in-plane dipole orientation, the far-field radiation is most intense
for directions perpendicular to the substrate. Moreover, the far-field radiation pattern
is slightly elliptical as the dipole is oriented in y-direction. The real-space diffraction
pattern in the detector plane is point-shaped, which renders the (10) and (11)modes easily
discernible in far-field images. Based on the PSF shape and the observed polarization
dependence, we assign the green Airy diffraction spots in the color scattering image in
Figure 4.4 to the (11) mode [12, 45, 187].

The modes with l ≥ 2 denote quadrupolar and higher-order plasmonic modes of the
nanoparticle coupled with its image multipoles. Higher-order modes radiate less efficiently
into the far-field. Furthermore, the higher-order modes typically have a large spectral
overlap, making their separate observation difficult [45]. Nevertheless, nanostructures such
as emitters in the gap can couple to all available modes depending on their local density
of states. Therefore, higher-order modes must also be considered in mode expansions
[45, 64, 66, 184]. The calculated point-spread functions suggest that modes with even m

generate donut-shaped patterns and can be excited with out-of-plane polarization from
the far-field. In contrast, odd modes generate point-shaped patterns and can be excited
with in-plane polarization.

Our analysis mainly focuses on the two energetically lowest QNMs that emerge from the
dipolar coupling. Figure 4.13 shows a more detailed comparison of their electric field
distribution. In the gap region, the in-plane components Ex and Ey of the real electric
field are more than one order of magnitude smaller than the out-of-plane component Ez .
Furthermore, the in-plane components only have significant contributions at the facet
edge and outside the facet region. Generally, the absolute value of the electric field |E| is
strongly localized in the gap, as shown in the side-view field plots.

4.3.2 Mode dispersion of truncated nanoparticles and waveguide

modes

The SEM images in Figure 4.1 revealed that the facet size varies among the investigated
gold nanoparticles. Up to now, we assumed a facet width of w = 20nm. Variations in
the gap morphology can lead to significant spectral shifts of the QNM [162, 165, 167,
189–191]. In this section, we study the dependence of the QNM properties on geometric
parameters, which will allow us to compare the numerical simulations with experimental
data in Chapter 4.4. Our discussion is based on Ref. [45].
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Figure 4.14a shows the variation of the QNM energies as a function of the facet width
between 0 and 40 nm. Most of the modes continuously red-shift with increasing w. This
behavior can be qualitatively understood by viewing the truncated sphere-on-mirror as a
finite metal-insulator-metal (MIM) resonator. It can be shown that the dispersion of MIM
modes in the limit of gap thickness d → 0 reads [18, 25, 192]

�

k

k0

�2

= ϵd +
ζ

2

�

1+

√

√

1+
4(ϵd − ϵm)

ζ

�

(4.29)

with vacuum wave number k0 = 2π/λ, wave number k in the MIM, ϵd and ϵm the
permittivities of dielectric and metal, and a constant ζ = [2ϵd/(k0dϵm)]

2. From this
equation, the effective refractive index can be deduced as neff = Re(k)/k0. The calculation
is based on an infinitely extended planar MIM cavity. The NPoM structure made from a
planar mirror and dielectric is capped with a truncated nanosphere, introducing a discrete
one-dimensional standing-wave resonance condition with integer m [192]

2π
λ

wneff = mπ+φ . (4.30)

Here,φ denotes a mode-specific reflection phase. Note that a Bessel function enters into the
resonance condition in circular resonators [25, 193], which is beyond the scope of this work.
Generally, the resonance condition shows that the truncated MIM resonance wavelength
linearly increases with the facet width w for a given mode m. This proportionality explains
the asymptotic behavior of the QNM energies for increasing facet widths.

The interaction between the transverse MIM modes and the nanoparticle antenna modes
gives rise to the apparent mode dispersion in Figure 4.14a. As only modes with matching
symmetry can interact, the dispersions of the (10) and (11) modes cross unperturbed.
Generally, the dispersion of the (10) mode is not linear with the facet width, originating
from avoided crossings with radially symmetric waveguide modes [25]. The unique
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behavior of the (l0) modes also becomes apparent in Figure 4.14b. Here, all modes except
the (l0) lie on a convex curve relating the energy and FWHM linewidth Γ = 2Im(ω̃m) of
the respective QNM. Again, this curve can be modeled in the limiting case of MIM theory
[45]. The dispersion of the (l0) modes always lies above the other modes corresponding
to a larger damping than expected from the MIM theory. The larger damping is connected
to the radiative nature of these modes, allowing an efficient coupling to the far-field.

Generally, this discussion has demonstrated that variations in the gap morphology sig-
nificantly influence the QNM energy and damping. This has to be taken into account
when comparing simulated and experimental spectra. Irregularities in the shape of the
nanoparticles and their impact on the NPoM properties have been investigated in both
simulation and experiment [162, 165, 190, 191, 194]. Notably, it has been demonstrated
that the resonance of the nanoresonator can even be tuned by intense illumination with
blue light [189]. The authors concluded that gold surface atoms continuously move into
the cavity, increasing the facet width. Despite the strong dependency of QNM energies and
spatial field distributions on the exact geometry, it has been shown that the nomenclature
based on spherical harmonics (l,m) is universally applicable [195].

Besides the NPoMs discussed in this work, film-coupled nanocubes, termed nanocube-
on-mirror systems (NCoM), have attracted interest in the nano-optics community. For
example, NCoMs have been demonstrated to facilitate ultrafast single photon emission
from individual quantum dots [28]. In the NCoM, the electric field hot spots are located
at the edges of the nanocube. As the cube faces lie flat on the substrate, NCoMs feature
waveguide modes that interact with radiative antenna modes, similar to the faceted NPoMs
[196]. The larger Q-factor of the NCoM resonances comes along with larger mode volumes.
As a comparison of silver nanocubes and nanoparticles on gold substrates shows, the NPoM
geometry allows for considerably larger Purcell enhancements at small gap sizes [14].
Therefore, we decided on the NPoM geometry in this work for efficient coupling with the
dye monolayer.

4.3.3 Dependency on gap size and refractive index

Apart from the morphology of the gold nanoparticle, also the gap thickness influences the
QNM frequencies and spatial field distributions. We will experimentally study the shift
of the NPoM resonances as a function of the spacer thickness in Chapter 4.4. For later
comparison with experiments, Figure 4.15a shows the numerically calculated evolution of
QNM energy and linewidth Γ = 2Im(ω̃m) when increasing the thickness d of the dielectric
alumina spacer from 1 to 10 nm. We concentrate on the (10) and (11) modes, which are
representative of all other QNMs. Both real and imaginary parts of the QNM frequencies
increase monotonically with d. The strong sensitivity of the resonance position at small
particle-to-film separations has, for instance, been used to demonstrate a plasmonic ruler
with sub-nanometer resolution [16]. The susceptibility of the QNM energy to gap thickness
variations decreases for larger gaps. In general, the blue-shift of the modes is bounded by
the interband transition of gold [47], which explains the accumulation of modes at around
530 nm. In the limiting case of infinite gap separation, the influence of the gold mirror is
negligible, and the optical response of an isolated nanoparticle is recovered.
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As the gap thickness increases, the electric field distribution becomes less confined in the
gap. This is illustrated by the near-field plots evaluated in the gap center (see Figure 4.15b).
The weaker confinement increases the energy loss, consistent with our observed increase of
the QNM damping parameter. The near-field interaction with emitters in the gap generally
gets weaker as the electric field confinement decreases. To observe strong coupling with
emitters, the ratio of gap thickness and oscillator strength of the emitter should be as small
as possible [36, 38, 44].

Similar behavior is observed for the evolution of the QNM frequencies with the refractive
index of the spacer material ngap at a constant gap thickness d = 1nm. The (10) and
(11) modes red-shift with increasing ngap, as shown in Figure 4.16. In a first-order
approximation, the optical response is determined by the optical path length ngap · d.
Hence, the spectral shift when increasing ngap is opposite to the shift when increasing d.

We only investigate NPoMs with a nominal 80 nm nanoparticle diameter in the experiments.
Nevertheless, the actual diameter varies slightly between the nanoparticles, as the SEM
images in Figure 4.1 illustrate. Figure 4.15a compares the simulation results for NPoMs
with 80 nm and 60 nm nanoparticle diameter at a constant 20 nm facet width. The (10)
mode is susceptible to the nanoparticle size in resonance energy and width. The smaller
particle can radiate less efficiently into the far-field and, thus, experiences less radiative
damping. The waveguide-like (11) mode is much less sensitive to the nanoparticle diameter
as the resonance mainly depends on the facet width, gap size, and refractive index [25].

4.4 Polarization-resolved scattering spectroscopy of

NPoMs

In the last sections, we motivated the fundamental modes of NPoMs and their dependency
on geometrical parameters in numerical simulations. This general understanding will
allow us to investigate the scattering spectra of individual NPoMs in the experiment. In the
following, we present a method for widefield polarization-resolved scattering spectroscopy
of the NPoMs. We model the experimental spectra with multiple Lorentz-shaped functions
and investigate the properties for different gap sizes. The polarization resolution lets us
separate the modes emerging from in-plane and out-of-plane dipole coupling between the
nanoparticle and the mirror.

4.4.1 Experimental setup

Figure 4.17 shows a sketch of the experimental setup for polarized scattering spectroscopy.
The setup shares the core components with the hyperspectral imaging setup presented in
Chapter 3.3.1. The incoherent broadband light from a 100 W halogen lamp (U-LH100L-
3, Olympus, IR filter removed) is focused into a multimode fiber with a 50µm core
diameter (M42L02, Thorlabs) using a 25 mm plan-convex lens. After propagation in the
fiber, the unpolarized white light is collimated by a 30 mm achromatic lens and linearly
polarized. The wire-grid polarizer is attached to a motorized rotation mount for automated
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Fig. 4.17.: Experimental setup for polarized scattering spectroscopy. The sample is illuminated
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light is imaged onto a spectrometer with an entrance slit width matching the size of
the donut-shaped NPoM point-spread function (see sketch on the right). The spectrum
shows the scattering of the lamp from a diffusely scattering sample.

measurements to switch between horizontal (h) and vertical (v) excitation polarizations.
The white light is loosely focused onto the sample at an almost grazing angle of incidence
(84◦) with a 100 mm achromatic lens. This provides an elliptical illumination area on the
sample with approximate dimensions of 170× 1, 700µm. The total white light excitation
power is 50µW. The scattered light from the sample is collected by a 100x/0.9NA
microscope objective. The high numerical aperture and relatively small 1 mm working
distance of the microscope objective impose strict geometrical boundaries on the white
light illumination. These considerations explain our specific choice of angle of incidence
and numerical aperture for the white light illumination.

As for the excitation polarizer, the linear polarizer in the detection pathway is motorized
for automated experiments. The scattered light is focused onto the spectrometer entrance
slit. The slit width matches the size of the donut-shaped diffraction pattern, as sketched
in the Figure. As in the previous chapter on transition dipole orientation imaging, the
experimental setup provides spectral and spatial resolution in a single camera frame. At
each position, the scattering spectra are measured at all four combinations of excitation
(h,v) and detection polarization (h,v). The sample is scanned horizontally in 600 nm steps,
matching the half slit width projected onto the sample. Our technique, thus, provides
polarization-dependent scattering spectra in a two-dimensional region of interest.

The halogen lamp covers the spectral range between 500 and 800 nm to observe all NPoM
modes in the experiment. We measured the white light scattering from a certified diffuse
reflectance standard (USRS-99-010, Labsphere), as shown in the inset of Figure 4.17.
The lamp spectrum includes the spectral transmission of all optical components in the
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experimental setup. Therefore, we use it as the reference spectrum Ilamp to normalize the
measured scattering spectra of the nanoparticle samples according to

Isca(λ) =
Iparticle(λ)− Ibg(λ)

Ilamp(λ)− Idark(λ)
. (4.31)

Here, the measured lamp spectrum Ilamp(λ) is corrected by the counts in the dark frame
Idark(λ) acquired with the halogen lamp switched off. In the numerator, the scattering
of the nanoparticle Iparticle(λ) is corrected by the background intensity Ibg(λ) next to the
particle.

4.4.2 In-plane and out-of-plane resonances of gold nanoparticles on

glass substrates

To validate the experimental setup, we investigate the polarization-dependent scatter-
ing spectra of individual gold nanoparticles on a glass cover slip with spatial resolution.
The sample is fabricated by dropcasting colloidal gold nanoparticles with 80 nm nominal
diameter onto an activated glass substrate. A representative individual nanoparticle is
moved to the center of the spectrometer entrance slit. Camera images of the nanoparticle
scattering with spectral and spatial resolution are acquired for all four excitation and
detection polarization combinations. The measurements are shown in Figure 4.18, with
each quadrant representing a particular polarization combination (see pictograms). At
each polarization, the measurement (top part of each quadrant) is compared with sim-
ulations (bottom part). In the following, we abbreviate the polarization combinations
as (excitation)/(detection), i.e., v/h stands for vertically (v) polarized excitation and
horizontally (h) polarized detection.

We begin our analysis with images of the nanoparticle scattering recorded in the zeroth
diffraction order of the spectrometer (quadratic images in the Figure). Each image is
normalized to the respective maximum value. The shape of the diffraction spot changes
significantly with polarization. Vertically polarized excitation induces an in-plane dipole
moment in the nanoparticle. The scattered light from the in-plane dipole maintains
this polarization direction. Consequently, scattering is only observed at v-polarized and
none at h-polarized detection up to background noise. As the results of the v/v measure-
ment demonstrate, the in-plane dipole orientation generates an Airy-shaped diffraction
pattern.

In contrast, due to the grazing incidence, the horizontally polarized excitation induces a
superposition of in-plane and out-of-plane dipoles. V-polarized detection only selects the
out-of-plane mode, which explains the prominent dumbbell-shaped diffraction pattern
in the vertical direction. This becomes even more apparent looking at the profile of the
horizontally integrated image, approaching almost zero in the center. H-polarized detection
supports both in-plane and out-of-plane dipole orientations, generating the superposition
of a dumbbell shape in the horizontal direction and an Airy-shaped diffraction pattern. In
general, the high magnification of the experimental setup enables us to observe the dipole
orientation and structural asymmetries based on the diffraction pattern.
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simulations. As shown in the pictograms, the four quadrants stand for the excitation
and detection polarization combinations. In each quadrant, from left to right: real-
space profile and real-space image of the diffraction spot, scattering spectrum with
spatial resolution normalized to the maximum in the v/v measurement. On top, the
spatially integrated measured scattering spectrum is depicted.
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Figure 4.18 compares the experimentally obtained diffraction patterns with scattered
field FEM simulations. We model the sample as an 80 nm spherical nanoparticle with
a 20 nm facet size lying on a dielectric with a refractive index n = 1.5. The far-field
imaging calculation is repeated for wavelengths at 500. . . 700 nm. The real-space images
of all computed wavelengths are summed up for comparison with the experiment. The
normalized simulated images are shown in Figure 4.18 below the measurements at the
respective polarization combination. The simulated diffraction patterns at v/v and h/v
agree very well with the experiment. In the h/v experiment, the lower part of the dumbbell
pattern is slightly brighter than the upper part. We attribute this asymmetry in the
diffraction pattern to structural asymmetries in the gold nanoparticle, tilting the dipole
orientation somewhat to the positive y-direction. Due to the grazing incidence, the
simulated diffraction pattern at h/h polarization has an asymmetric horizontally oriented
dumbbell shape. Similarly, the center of mass in the measurement is slightly shifted to
the right. At v/h polarization, the simulation predicts a four-spot diffraction pattern.
This results from a coupling between horizontal and vertical polarization directions in
an imaging system with a high numerical aperture. However, the integrated power of
the computed diffraction spot is more than 100 times lower than at v/v polarization.
Observing this pattern in the experiment would require significantly longer integration
times.

In the previous analysis, we focused on the far-field scattering images of the nanoparticle.
In the first diffraction order of the monochromator grating, our experimental setup provides
combined information about the spatial and spectral characteristics of the scattered light.
Figure 4.18 shows the measured scattering spectra of the individual nanoparticle with spa-
tial resolution in the y-direction. As the optical diffraction limit scales with the wavelength,
the diffraction pattern becomes larger at smaller energies. Besides this, the diffraction
pattern does not significantly change shape across the spectrum. This suggests that the
dipolar modes of the gold nanoparticle dominate the scattering spectra. For comparison
with the experiment, the simulated spectra with spatial resolution are obtained by stitching
the simulated far-field images together at their respective wavelengths. Again, simulation
and measurement show an excellent qualitative agreement. As mentioned above, the
measured signal at v/h polarization is too low for comparison with the simulation. The
spatially resolved spectra in measurement and simulation are normalized to the respective
maximum values at v/v polarization. The measured intensities at h-polarized excitation
are generally smaller than the simulations. Quantitatively, the peak values in the spectra
differ by a factor of about 10 (h/v) and about 4 (h/h). First, this might be caused by
asymmetries of the nanoparticle in the experiment compared with a perfectly symmetric
nanoparticle in the simulation. Second, Fresnel’s equations determine the local intensity
of the excitation field at the nanoparticle position. This local intensity determines the
excitation strength of the charge oscillations inside the nanoparticle. In the simulation, the
intensity of the background field at the nanoparticle position is much higher at h-polarized
than at v-polarized excitation due to the grazing incidence. In the experiment, however,
small irregularities in the glass substrate might alter the local electric field.

Finally, Figure 4.18 shows the spatially integrated scattering spectra of the measured
nanoparticle. The peak position and width do not significantly change with polarization.
This finding indicates that the particle is approximately spherical, which qualitatively
matches the results from the SEM image in Figure 4.1b. The measured peak is slightly
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red-shifted to the simulation, which we attribute to differences in the dielectric function of
gold between the experiment and simulation. Furthermore, the investigated nanoparticle
might be slightly larger than assumed in the simulation.

4.4.3 Experimental observation and modeling of NPoM resonances

After introducing and validating the measurement principle, we can now investigate the
scattering of NPoMs in the experiment. As a representative example, we focus on an
80 nm gold nanoparticle separated from the gold substrate by a 2 nm dielectric alumina
spacer. Capping agents enclose the colloidal nanoparticles in the experiment, increasing
the effective spacer thickness. Specifically, the nanoparticles from BBI have citrate, while
those from Nanopartz used in the experiments have an unspecified carboxylic acid with
similar molecular weight as capping agents. To account for this, we generally add 1 nm to
the spacer thickness in the simulations. Figure 4.19 compares the measured and simulated
scattering from an individual NPoM at the four combinations of excitation and detection
polarization (see pictograms). All spectra are normalized to the maximum intensity in
the h/h measurement and simulation to compare relative intensities easily. Qualitative
analysis of the measured spectra reveals two dominating modes, as expected from our
previous theoretical considerations.

At v-polarized excitation, we only excite the in-plane (l, m) = (1, 1)mode at around 2.05 eV.
This attribution is supported by the spatially resolved spectra exhibiting an Airy-shaped
profile in the y-direction. As the dipole orientation is pre-determined by the excitation
polarization direction, we only observe a strong signal at v-polarized detection. This
behavior matches the simulation results where the (11) mode peaks at around 1.95 eV.
The intensity contrast between v/v and v/h is more than 100 in the simulation. This value
is more than a factor of 10 smaller in the experiment. We attribute this to the asymmetry
of the nanoparticle, which is not considered in the simulation [194]. Briefly, we expect
the facet of the gold nanoparticle to be elliptical, where the semi-axes are not necessarily
aligned with the experimental polarization directions due to the random deposition of the
nanoparticles on the substrate. We will discuss the ellipticity in more detail in Chapter
4.4.4. Both measurement and simulation show a spectrally broad and intense scattering
at energies above 2.2 eV. This property results from higher-order modes that accumulate
towards the interband transition energy of gold (compare Figure 4.14a). Although the
higher-order modes are less radiative, the combined scattering of all modes can generate
significant scattering intensity. Our following analysis demonstrates that we can assign
the intense scattering peaks below 2.2 eV to the energetically lowest modes (1,0) and
(1,±1).

At h-polarized excitation, the dominating scattering originates from the out-of-plane mode
(l, m) = (1,0), peaking at around 1.9 eV in the experiment. Consistent with the out-of-
plane orientation of the dipole, the scattering intensity at v- and h-polarized detection
is almost identical. The resonance peak width is broader than the in-plane mode due to
larger radiation losses. The out-of-plane orientation is eminent from the spatially resolved
h/v spectrum exhibiting two peaks in y-direction corresponding to a dumbbell shape.
These findings qualitatively agree very well with the simulation results. The simulation
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Fig. 4.19.: Comparison of the measured (left) and simulated (right) scattering from an 80 nm
gold nanoparticle on a gold substrate with an Al2O3 spacer layer. Due to ligands in
the experiment, we compare a 2 nm spacer in the measurement with a 3 nm spacer
in the simulation (w= 20nm). The scattering spectra are shown above the spatially
resolved scattering spectra for each excitation and detection polarization combination
sketched on the left. The spectra are normalized to the maximum intensities in the
h/h measurement and simulation.
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predicts a peak energy of around 1.7 eV, significantly red-shifted to the experiment. We
attribute the spectral shift to differences in the dielectric function of gold in the experiment
and simulation. Furthermore, modeling the gold nanoparticle as a truncated sphere in the
simulations is only an approximation of the actual geometry.

Due to the grazing incidence, the h-polarized illumination has a non-vanishing projection
in the sample plane and, therefore, also excites an in-plane mode. This mode is oriented
perpendicular to the (11) mode discussed above and is, thus, labeled as (l, m) = (1,−1).
Due to the dipole orientation matching the h-polarization in detection, this mode is
efficiently detected in the h/h measurement. The in-plane modes (1,±1) are energetically
degenerate for radially symmetric NPoMs. First, we attribute the small shoulder of the
(10) peak at the (11) frequency to the perpendicular in-plane mode. Second, the spatially
resolved spectra reveal an altered diffraction profile at the (11) frequency, similar to the
superposition of a dumbbell-shaped (10) and a single-peaked (11) spot profile. Hence,
the combined analysis of spatial and spectral emission properties of the NPoMs allows
the assignment of the fundamental modes to the measured spectra. As mentioned above,
an asymmetry of the nanoparticle allows observing the in-plane mode also in the h/v
measurement.

Finally, the simulations predict an intensity ratio of (10) and (11) modes on the order
of 10. In the measurements, however, the contrast ratio is much smaller. This discrep-
ancy is evident in comparing the relative intensities of (10) and (11) modes in the h/h
configuration and the relative intensity of the (11) mode in the v/v measurement. The
in-plane modes are less often considered in publications because the symmetry of the
near-field distribution suppresses efficient radiation into the far-field [25]. We believe
that asymmetries in the nanoparticle shape, especially in the gap region, significantly
enhance the radiation of the (11) mode. Furthermore, rounded nanoparticle edges and
the asymmetric white-light illumination at almost grazing incidence contribute to our
intense observation of the in-plane modes in the experiment [194]. The characterization
of in-plane and out-of-plane modes is crucial to understand the coupling of broadband
emitters with plasmonic nanoresonators in Chapter 5. In this context, the in-plane modes
will play an essential role.

4.4.4 Influence of nanoparticle asymmetries on the NPoM scattering

Modeling the gold nanoparticles as truncated spheres provides valuable information about
the near- and far-field properties of the NPoMs. Our simulations demonstrate that the
morphology of the gap significantly influences the NPoM resonance frequencies. For
example, doubling the facet width from 10 to 20 nm gives rise to a red-shift of more than
300 meV for the (11) mode (see Figure 4.14a).

The nanoparticles inevitably have small asymmetries in the experiment, which we could
consider in the numerical simulations. However, every nanoparticle has a slightly different
shape, and the reproduction of a real particle in the simulation would never be exact.
Instead, we use a simple yet realistic approach to model the facet as elliptical instead
of circular. Consequently, the energetical degeneracy of the orthogonal in-plane modes
(l, m) = (1,1) and (1,−1) is lifted [194]. The degree of energy splitting is a measure
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of facet ellipticity. In general, the semi-axes of the ellipse do not necessarily coincide
with the experimental coordinate system given by the (h) and (v) directions. The gold
nanoparticles are randomly deposited on the substrate, so every rotation angle is equally
probable. The excitation and detection efficiency of the respective modes then scales with
the projection of the semi-axes onto the experimental coordinate system. The in-plane
modes of elliptical NPoMs can, thus, be imagined as nanoscale linear polarizers.

Figure 4.20a shows the variations of the scattering spectra with the detection polarizer
angle after vertically (left) and horizontally (right) polarized excitation. The scattering
maxima at v-polarized excitation continuously shift with the rotation of the detection
polarizer on a scale of around 100 meV. This shift proves the existence of two superimposed
in-plane modes where the relative amplitudes vary with the detection polarizer angle.
At h-polarized excitation, the total amplitude of the in-plane modes oscillates with the
detection polarization. In contrast, the out-of-plane mode centered at around 1.9 eV is
barely sensitive to the detection polarization.

Based on our simple model of elliptical facets, we describe all experimental scattering
spectra as a superposition of three Lorentzian contributions of (1,0), (1,1) and (1,−1)
modes

Isca(E) =
∑

(l,m)={(1,0),(1,1),(1,−1)}

A(l,m)

2π
· γ(l,m)

�

E − E
(l,m)
0

�2
+
�

γ(l,m)/2
�2

. (4.32)

The contribution from each mode is normalized to its energy content based on the amplitude
A(l,m), the resonance energy E

(l,m)
0 , and the damping γ(l,m). By definition, the damping

parameter γ is identical to the peak FWHM. Figure 4.20b shows the results of a single fit to
the spectra at all polarizations simultaneously. For increased accuracy, we set the amplitude
of the (10) Lorentzian mode to zero at v-polarized excitation. The fit function describes
the measured spectra very well. The computation reveals two in-plane resonances at
2.01 and 2.07 eV with similar damping parameters 160 and 150 meV, consistent with our
expectations. For a better visibility, the maxima of the fit functions are marked as red
crosses in the two-dimensional plot. The out-of-plane resonance of the NPoM is centered
at 1.87 eV according to the fit. Consistent with the simulations, the damping parameter is
significantly larger (280 meV) than the in-plane resonances.

4.4.5 Statistical analysis and gap size dependence

Our analysis in the last sections demonstrated that the gap morphology ultimately impacts
the NPoM scattering spectra. Therefore, the statistical investigation of many NPoMs is
required to determine the average mode energies and damping parameters and quantify
particle variations. To accomplish this, we scan the sample in steps of the half projected
monochromator slit width in the horizontal direction, similar to the transition dipole
orientation determination procedure in Chapter 3.3. The spatially resolved scattering
spectra are measured at all four combinations of excitation and detection polarization
successively at every position on the sample. The entire measurement over a scan area of
around 30× 30µm2 is automated in Labview. By spectral integration over all frames, we
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Fig. 4.20.: (a) Variations of the NPoM scattering spectra (80 nm gold nanoparticle, dgap = 2 nm)
after vertically (left) and horizontally (right) polarized excitation as a function of the
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the sample. (c-d) Raw scattering spectra of all investigated NPoMs at (c) v-polarized
and (d) h-polarized excitation. The gap widths are color-coded. The spectra are
normalized by the average scattering maximum at each gap width.

reconstruct the two-dimensional spatial map of scattering intensities. The measured map
is shown in Figure 4.21a for the h/h measurement. A peak-finding algorithm automatically
detects the maxima (red circles in the Figure). Due to the automated horizontal sample
scanning in discrete 600 nm steps, the nanoparticles are not necessarily positioned in the
center of the spectrometer entrance slit. As visualized in Figure 4.21b, we can recover the
complete information about the scattering from a single NPoM by averaging the spectra
over three neighboring frames. After subtracting the scattering background signal and
normalization by the lamp spectrum, we retrieve four spectra for each individual NPoM.
The measurement is repeated at Al2O3 gap sizes of 1 nm, 2 nm, and 4 nm.

We first qualitatively analyze the spectral variations as a function of the gap thickness. To
visualize the raw data, we sum up the measured spectra of both detection polarizations.
Figure 4.21 shows the spectra at (c) v-polarized and (d) h-polarized detection for the color-
coded gap sizes. At each gap size, we measured 40-60 individual NPoMs and manually
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excluded outliers with irregular spectral shapes (between 4 and 7 measurements per
gap thickness). The spectra are normalized to the average peak heights for each gap
size. The resonance positions of the in-plane modes at v-polarized excitation (c) vary
considerably from particle to particle, as the spectral position is very sensitive to the facet
width. Qualitatively, we observe a blue-shift of the in-plane resonances for increasing gap
size. The spectra measured at h-polarized excitation exhibit fewer variations within each
gap thickness value. This finding is consistent with our expectations, as the out-of-plane
mode is more sensitive to the gap size than the particle shape. As for the in-plane mode,
the peak energy of the h-polarized scattering spectra increases with the gap size.

For quantitative analysis, we return to the measured spectra at all four excitation and
detection polarization combinations. For each NPoM, the four spectra are simultaneously
fitted by three Lorentzian distributions according to Equation 4.32. The free parameters
are the spectral positions, widths, polarization-dependent amplitudes of the Lorentzian
resonances, and global offsets. The fit results for all investigated NPoMs look similar
to those in Figure 4.20b. Some spectra can be well described by only two Lorentzian
contributions, corresponding to radially symmetric nanoparticles. In this case, the fit
parameters of the third contribution are manually set to zero to prevent over-fitting of
the spectra. Figure 4.22a summarizes the fit results of peak energy and peak widths for
the three different gap sizes 1 nm (left), 2 nm (center), and 4 nm (right). Each data point
originates from the fit of a single NPoM. The three modes are color-coded as blue (1, 0), red
(1, 1), and orange (1,−1). The average resonance positions and widths of all investigated
particles at each gap thickness are shown as larger points with black error bars.

We begin the discussion with the out-of-plane mode (1, 0). The mean energy gradually in-
creases with gap size from 1.78 eV (1 nm) to 1.86 eV (4 nm). Compared with the simulated
QNM frequencies shown in Figure 4.15a, the experimentally obtained peak positions are
significantly blue-shifted. For example, the simulation predicts an energy of about 1.6 eV
at a gap size of 2 nm. However, the (1, 0) QNM energy is very sensitive to the nanoparti-
cle size, as shown by the simulations in Figure 4.15a and experimentally demonstrated
in Ref. [162]. Quantitatively, a reduction in nanoparticle diameter by only 25% from
80 nm to 60 nm yields a blue-shift of 150 meV. Besides that, the simulations revealed that
the (10) QNM energy varies on a scale of 100 meV with the facet size. In general, the
actual shape of the nanoparticle inevitably differs from the simple simulation geometry.
These considerations can explain the observed spectral shift between measurement and
simulation.

Increasing the gap thickness from 1 nm to 4 nm gives rise to a line broadening from
220 meV to 350 meV (FWHM). The damping parameter is larger than in the simulation,
predicting an increase from only 140 meV to 240 meV. We attribute this to additional
radiative and non-radiative loss channels introduced by the surface roughness of the
Al2O3 spacer layers, the gold substrate, or the capping agents and solvent residues on the
nanoparticle. Nevertheless, the general trend of the blue-shifting QNM frequencies and
increased damping with the gap size agrees with the simulations.

The out-of-plane mode can only be excited at horizontal polarization. Besides the energy
and damping parameters, we also analyze the amplitudes of the Lorentzian contribution.
The out-of-plane orientation of the dipole moment suggests that the scattering amplitude
is independent of the detection polarization. To verify this theoretic expectation with
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the experimental data, we plot the fitted amplitude correlations between h/h and h/v
measurements for the (10)mode in Figure 4.22b. The values obtained from the experiment
match the theory curve (1:1 correlation, shown in black) very well at each investigated
gap thickness.

As for the out-of-plane mode, Figure 4.22a shows the evolution of resonance energy and
damping of the two in-plane modes (1,1) and (1,−1) with the gap size. We expect that
the two modes are energetically degenerate if the NPoM has a perfect cylindrical symmetry.
The degeneracy is lifted if the nanoparticle is elliptical. However, the direction of the
semi-axes remains unknown in the first place. Therefore, we sort the two modes of each
NPoM by their energy such that (1, 1) is the energetically lowest mode. If a single in-plane
resonance frequency can describe the NPoM, the energy and damping are only assigned to
the (1, 1) group. The energy sorting yields two point clouds in the plot with different energy
but similar damping parameters. The energetic separation is a measure of the ellipticity of
the nanoparticle facets. For instance, the average energies at a gap size of 2 nm are about
1.93 eV and 2.03 eV, corresponding to an energy difference of 100 meV. Comparing this
result with the simulated facet-dependent QNM energies in Figure 4.14a, the difference
in facet widths must be on the order of 5 nm between the semi-axes of the ellipse. This
demonstrates that the facet width is a sensitive parameter for the experimentally obtained
spectral positions of in-plane NPoM resonances.

The in-plane modes blue-shift with increasing gap size from approximately 1.9 eV (1 nm
gap) to 2.05 eV (4 nm gap). Furthermore, the linewidth increases from about 100 meV to
180 meV, which is about half the value of the out-of-plane mode. This behavior is consistent
with the simulations (compare Figure 4.15a), predicting a red-shift from 1.8 eV (2 nm gap)
to 2.1 eV (5 nm gap) and a linewidth increase from about 80 meV to 150 meV. As for the
out-of-plane mode, the experimentally obtained line widths are systematically larger than
the simulated values.

In general, monitoring the in-plane resonance positions has applications in plasmonic
sensing [194]. Extending one facet axis by only a single atom can increase the wavelength
splitting of the two in-plane modes by approximately 3 nm. Furthermore, evaluating the
polarization-dependent amplitudes of both in-plane modes allows the determination of the
relative orientation of the ellipse semi-axes to the experimental (h,v) coordinate system.
To obtain this information, Kleemann et al. [194] developed an experimental method to
rotate the illumination direction 360◦ around the nanoparticle. Analyzing angle-dependent
spectral shifts allows a very sensitive characterization of the nanoparticle facet. However,
extracting quantitative information about the facet geometry requires extensive parameter
sweeps in numerical simulations.

In conclusion, the asymmetric illumination in our experiment enabled us to analyze the
fundamental in-plane and out-of-plane resonances of the NPoM. We modeled the measured
scattering spectra as a sum of three Lorentzian resonances. By analyzing the resonance
energies and widths, the fits revealed that the NPoM shape varies across the investigated
particles. Despite these variations, we could demonstrate that the dependence of the NPoM
scattering on the gap thickness agrees well with the numerical simulations. Decomposing
the experimental spectra into the fundamental NPoM modes will be required in Chapter 5
to determine the coupling efficiency of an emitter monolayer to the NPoM modes.
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Fluorescence enhancement of dye

monolayers in plasmonic

nanoresonators

5

Due to their strong confinement of electric fields, plasmonic nanoresonators provide a
versatile framework for the local enhancement of linear and nonlinear optical processes in
adjacent emitters [27, 197]. The increased local density of states inside resonators strongly
impacts the spontaneous emission rate. As outlined in Chapter 2.2.4, the spontaneous
emission enhancement in dielectric resonators is quantified by the Purcell enhancement

FP =
3

4π2

Q

V

�

λ

n

�3

, (5.1)

proportional to the ratio of the quality factor Q and mode volume V . The equation can be
generalized to FP ∼ Re(Q/V ) in dissipative resonators. Plasmonic nanoparticle-on-mirror
resonators have rather moderate quality factors Q ∼ 20 but exceptionally small mode
volumes down to V ∼ 10−7(λ/n)3. This corresponds to large Purcell enhancement factors
of FP ∼ 107 at room temperature [63]. At the same time, the relatively broad resonances
of plasmonic nanostructures allow an efficient spectral overlap with emitters, rendering
the devices more tolerant to fabrication inaccuracies [10].

The nanocavity generally affects both radiative as well as non-radiative rates. Quenching
is associated with increased non-radiative rates by dissipation in the metal. The decrease
in fluorescence intensity lowers the internal quantum efficiency of the emitter. Therefore,
an enhancement of radiative rates is desired to speed up the photon emission. The balance
of non-radiative and radiative rates ultimately determines the quantum efficiency of the
emitter, which is aimed to maintain or even exceed the value in free space. For instance,
Russell et al. demonstrated an enhancement of the radiative rate by a factor of 1,000
for Alq3 emitters sandwiched between a silver nanowire and a silver substrate [26]. At
the same time, a high internal quantum efficiency of 0.5 could be maintained. Replacing
the nanowire with a plasmonic nanoparticle like a silver nanocube further enhances the
quantum efficiency by exploiting the optical nanoantenna effect. For example, Hoang et al.
reported an increase in quantum efficiency of a single quantum dot from 20% (QD on glass)
to 50% (QD in silver nanocube-on-mirror resonator) [28]. The radiative rate enhancement,
thus, enables efficient and bright single photon sources at room temperature.

As demonstrated in Chapter 4, nanoparticle-on-mirror structures feature many fundamental
modes. The spectral position of individual resonances can be controlled at least in the
statistical average of many NPoMs. For instance, the out-of-plane mode is sensitive to the
gap thickness, while the resonance frequency of the in-plane mode scales with the facet size.
At the same time, the detected fluorescence intensity enhancement depends on both the
excitation and emission enhancement. Therefore, the tunability of the NPoM modes enables
the optimization of the spectral overlap of one NPoM mode with the molecule absorption
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and another NPoM mode with the molecule emission. This spectral mode-matching has
been demonstrated in 2D materials to maximize fluorescence enhancement [35, 198].

Plasmonic nanoresonators do not only alter the total power radiated by the emitter but also
the spectral shape. This allows, for example, a selective enhancement of the emission from
higher vibrational levels [31, 32]. Furthermore, it has been shown that the available modes
of an NPoM shape the emission from broadband silicon quantum dots [33]. The resulting
emission spectrum follows the scattering spectrum of the NPoM. Similar experiments with
an asymmetric nanorod-on-mirror (NRoM) geometry showed that the emission spectrum
follows the polarization dependence of the available modes [34].

Besides the spectral overlap of the NPoM modes with the emitter spectrum, the near-
field distribution of the NPoM modes enormously influences the excitation and emission
enhancement of emitters in the gap. Depending on its spatial position, an emitter couples
to the ensemble of NPoM modes with different efficiencies. Horton et al. demonstrated that
the near-field coupling translates into a distinct far-field radiation pattern of fluorescence
emission [177]. Analysis of the point spread function allowed them to calculate the
position of the individual emitter in the gap with sub-diffraction resolution.

However, modeling the fluorescence enhancement of emitter ensembles inside plasmonic
nanoresonators remains challenging. Previous publications mainly discuss that the shape
of the observed fluorescence enhancement spectra follows the scattering spectra from the
nanoresonator [33, 34]. These findings prove that the emitters can radiate efficiently into
the far-field via the modes provided by the nanoresonators. Quantitative comparisons
have focused on the enhanced emission from individual or multiple transitions by a single
plasmonic mode [27, 35, 110]. Generally, plasmonic nanoresonators feature many modes
which can also spectrally overlap. Therefore, numerical simulations are required to obtain
fluorescence enhancement factors for comparison with the experiment [26, 31].

In this chapter, we present a comprehensive model for the interaction between emitter
ensembles and NPoMs based on a quasi-normal mode expansion in the weak coupling
limit. This model extends the work of Kongsuwan et al. for a single emitter with a
sharp transition [45] to an incoherent ensemble of broadband emitters. Specifically, we
compute the spectral dependence of the fluorescence enhancement, giving access to the
coupling coefficients of broadband emitters to particular NPoM modes. We particularly
focus on the ratio of coupling coefficients between the lowest-energy out-of-plane and
in-plane modes for direct comparison with experiments. In the experiment, the spectrally
broad fluorescence allows us to monitor the Purcell enhancement over a wide wavelength
interval. To consider variations between the nanoresonators, we analyze the polarization-
dependent fluorescence enhancement of many different NPoMs. Furthermore, we study
the competition of photobleaching and spontaneous emission rates, comparing the coupled
and uncoupled dye monolayers. Finally, we discuss future experiments to observe strong
coupling in dye monolayers. Furthermore, we present our first results on nanostructured
ultrathin spacers, which are promising building blocks to enable long-range dipole-dipole
interactions in the future.

108 Chapter 5 Fluorescence enhancement of dye monolayers in plasmonic

nanoresonators



5.1 Numerical model

This section presents a universal model for the fluorescence enhancement of an oriented
incoherent emitter ensemble in a plasmonic nanoresonator. The procedure is divided into
three steps. First, we compute the near-field coupling of a single dipole to the radiating
modes of an NPoM based on Ref. [45]. Second, we calculate the excitation strength of this
dipole based on the electric near-field at the excitation wavelength. In the third step, we
combine the excitation and emission enhancement to derive the fluorescence enhancement
of an oriented incoherent emitter ensemble.

In the experiment, we incorporate the encapsulated dye monolayers into the NPoM cavity.
To directly compare experiment and simulation, we model the NPoM gap as a homogeneous
dielectric layer with 4 nm thickness and a refractive index of n = 1.5. The gold nanoparticle
is simulated as an 80 nm truncated sphere with w = 20nm facet width, as sketched in
Figure 5.1a.

Figure 5.1b shows the spectral positions of the computed QNMs. The resonance frequencies
Re(ω̃i) and FWHM linewidths Γ = 2 · Im(ω̃i) determine the Lorentzian resonances. The
contributions are normalized by their energy content. The out-of-plane mode (l, m) = (1, 0)
at around 1.84 eV and the two energetically degenerate in-plane modes (1,±1) at around
2.1eV are well separated in the spectrum. Higher-order modes have significant spectral
overlap and accumulate at the interband transition of gold. Only QNMs with l ≤ 2 are
shown in the spectrum for better visibility. Also in the experiment, we will exclude higher-
order modes from the analysis. The grey area sketches the average fluorescence emission
spectrum of the dye monolayer on a gold substrate. The dye used in this work is well suited
to investigate the mode-dependent coupling to the NPoM, as the broadband emission
spectrally overlaps with all computed QNMs.

5.1.1 Near-field coupling of a single dipole to the NPoM modes

We model the single emitter at position r em as a dipole moment µ(r em) with real-valued
emission frequency ωem. Mediated by near-field coupling with the NPoM, the dipole can
radiate into the far-field via the modes of the NPoM. Specifically, we write the emitted
electric field as a superposition of M quasi-normal modes Ẽ i with associated complex
frequencies ω̃i [64]

E(r ) =

M
∑

i=1

αi(r em,ωem) Ẽ i(r ) , (5.2)

where αi(r em,ωem) are the excitation coefficients of the i-th QNM. Equation 5.2 is exact
if we consider all QNMs, i.e., M →∞. However, a small number of QNMs is typically
sufficient for a dipole inside the cavity. For example, Kongsuwan et al. used the first M = 20
QNMs of the NPoM with a 1 nm dielectric gap [45]. The mode excitation coefficients αi

depend on the position and frequency of the emitter, as both the local electric field of the
QNMs and the spectral overlap with the QNMs enter. Application of the unconjugated
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Fig. 5.1.: (a) Sketch of the simulation geometry with a 4 nm dielectric spacer between the gold
nanoparticle and the gold mirror. (b) Lorentzian resonances of the computed QNMs
labeled as spherical harmonics (l, m). The QNMs overlap with the broad fluorescence
spectrum of the dye monolayer on a gold substrate (shaded grey). Two energies are
marked in the spectrum, corresponding to the emitter wavelengths λem = 560nm and
620 nm.

form of the Lorentz reciprocity theorem allows us to obtain a linear equation system for
the mode excitation coefficients

M
∑

j=1

Bi, j(ωem)α j(r em,ωem) = −ωemµ(r em) · Ẽ i(r em) , (5.3)

using the definition of a frequency-dependent coupling matrix [45, 64]

Bi, j(ω) =

∫∫∫

Ω

�

Ẽ j · (ωϵ(r ,ω)− ω̃iϵ(r , ω̃i)) Ẽ i −µ0H̃ j · (ω− ω̃i) H̃ i

�

d3
r . (5.4)

Note that this matrix is diagonal only if all materials in the simulation domain are dispersion-
less. In our case of dispersive gold nanostructures, the coupling matrix generally has non-
zero off-diagonal values. Bi, j depends on the frequency, as the spectral overlap between
the emitter and the QNMs determines the selective coupling to particular modes. The
equation system is solved by matrix inversion [45]

αi(r em,ωem) = −ωem

M
∑

j=1

B−1
i, j (ωem)µ(r em) · Ẽ j(r em) . (5.5)

The mode excitation coefficients are proportional to the projection of the dipole moment
µ onto the local electric field of each QNM. The internal coupling between different QNMs
furthermore requires to sum over all QNMs weighted by the inverse coupling matrix B−1

i, j .

In the experiment, the dye monolayer is sandwiched between two hectorite nanosheets.
Hence, we assume that the dipole is located in the center of the dielectric spacer, 2 nm
above the gold substrate. We use the M = 43 lowest energy QNMs in the mode expansion
that the Comsol solver can stably compute. Figure 5.2a shows the two-dimensional map
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(xem, yem) in the gap. Compared are the emitter wavelengths λem = 620 nm (first row)
and 560 nm (second row). (b) Mode excitation coefficients as a function of the lateral
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the results at λem = 620 nm are similar. The computed coefficients for the x-dipole are
significantly smaller than for the z-dipole in (a). The values of |αi | are amplified by a
factor of 5 for visibility.
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of the mode excitation coefficients for a dipole located at the lateral position (xem, yem).
Compared are the coupling coefficients for the four relevant energetically lowest QNMs
at two emission wavelengths of the dipole, λem = 620nm and 560 nm. For the moment,
we only consider dipoles oriented in z-direction. The plots show the absolute values of
the mode excitation coefficients |αi | normalized to the dipole moment |µ|. The spatial
distribution of α matches the electric field profile of the respective QNM, as the coupling
scales with the projection of the dipole moment onto the local electric field. For example,
a dipole placed in the lateral center of the NPoM (xem, yem) = (0,0) can not couple to
modes with odd values of m, such as (l, m) = (1,±1), since the electric field has a zero
crossing in the origin. A zero-crossing of the electric field corresponds to a phase flip of α.
The interference between modes gives rise to significant variations in the radiated electric
field depending on the dipole position in the gap [45].

Besides variations of the αi with the dipole position, the coupling coefficients depend
on the spectral position of the emitter. At an emission wavelength of 620 nm, the mode
excitation coefficients have the highest values for the (1,0) and the (1,±1) modes. This
can be explained by the significant spectral overlap with both modes, which boosts the
respective contributions in B−1

i, j (compare Figure 5.1b). In contrast, the spectral overlap
with the (1,0) mode is much weaker at an emitter wavelength of λem = 560nm. As
a consequence, α has the most dominant contributions at the (1,±1) and higher-order
modes.

Until now, we assumed that the dipoles are oriented along the z-direction. For comparison,
Figure 5.2b shows the spatial distribution of the αi for a dipole at a lateral position
(xem, yem) oriented along the x-direction. The mode excitation coefficients are amplified
by a factor of 5 for better visibility. Obviously, the near-field coupling of an in-plane
dipole is much weaker than that of an out-of-plane dipole. The Figure only shows the
computation at λem = 560 nm, as the results at 620 nm are very similar. The poor coupling
of the x-oriented dipole is caused by the small in-plane electric field in the gap. Our
comparison of Ex , Ey , and Ez for a 1 nm gap in Figure 4.13 also applies to the larger 4 nm
gap discussed here.

5.1.2 Dye excitation enhancement by NPoMs

The theoretical framework introduced in the last section allows a quantitative description of
the near-field coupling between a single dipole and the NPoM. We found that the coupling
scales with the position, orientation, and emission wavelength of the dipole. Furthermore,
the magnitude of the dipole moment enters into the coupling coefficient in Equation 5.5.
If we consider a single dipole, the dipole strength is only a global scaling factor. However,
our goal is to model the excitation and subsequent emission of an incoherent ensemble of
spatially distributed emitters. This requires quantitative information about the excitation
strength of a dipole as a function of its lateral position in the gap.

The excitation probability of a dipole in the gap of an NPoM at a position r em is determined
by the local electric field at the excitation frequency ωexc. Specifically, the induced dipole
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moment µ scales with the projection of the local electric field E onto the dipole direction
(unit vector êd) as

µ(rem,ωexc) = A(ωexc) [êd · E(r em,ωexc)] êd . (5.6)

The absolute value of the induced dipole moment depends on the amplitude of the electric
field as well as a (complex-valued) scalar absorption parameter A(ωexc). The absorption
probability is related to the transition dipole moment of the molecule absorption. The
excitation frequency is constant in all measurements. Hence, the absorption parameter is
only a global scaling factor for the overall efficiency of the excitation and emission process.
In contrast, the electric field amplitude E(r em,ωexc) is a local quantity which needs to be
calculated using numerical simulations.

As sketched in Figure 5.3a, the NPoM is illuminated with a plane wave traveling perpendic-
ular to the substrate at a wavelength λ = 485 nm. The incident electric field is polarized in
x-direction. The electric field distribution is computed in Comsol using the scattered field
formulation. As discussed in Chapter 4.2.6, the background field is analytically calculated
to fulfill the boundary conditions. The amplitude of the electric field traveling towards
the nanostructure is normalized to |Eexc| = 1. Figure 5.3b shows the computed electric
field distribution in the xz-plane. Notably, the electric field has the largest amplitude
next to the nanoparticle, with a maximum electric field enhancement of |E|/|Eexc| ≈ 5. In
comparison, the enhancement in the gap region is about 3. The weak localization of the
electric field in the gap originates from the spectral detuning of the excitation frequency
from the fundamental NPoM modes. Therefore, only less confined higher-order modes are
excited, which match the symmetry of the incident electric field. Note that the electric
field distribution could be represented as a superposition of QNMs similar to the approach
in the last section. However, the significant spectral overlap of the blue illumination laser
with higher-order QNMs hinders the expansion by a small number of quasi-normal modes.
In this case, the scattered field simulation is more precise in calculating the excitation field
distribution.

For our application, we are interested in the electric field distribution in the center of
the spacer layer where the dye molecules between the hectorite nanosheets are located.
Figure 5.3c-e shows the spatial distribution of the real part of the electric field components
Ex , Ey , and Ez . The electric field profile suggests that the (l, m) = (2, 1) mode is efficiently
excited, as Ez has one node in radial and angular directions, respectively. The x-polarized
excitation generates intense vertical electric field components in the facet region with
maximum Re(Ez) ≈ 1, while the in-plane contributions are considerably smaller. Out-
side the facet area are distinct regions with significant contributions of all electric field
components.

We aim to calculate the fluorescence enhancement spectra of emitters in the NPoM gap
for comparison with the experiments. Therefore, we need to consider the excitation and
emission enhancement. First, the magnitude of the induced dipole moment in Equation 5.6
scales with the projection of the electric field onto the dipole direction. Knowledge of
the dipole orientation, thus, allows us to determine the excitation enhancement of a
particular dipole. Second, the molecule relaxes to an energetically lower level quickly
after absorbing a photon. Depending on the local coupling coefficients, the molecule then
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Fig. 5.3.: Simulated electric near-field distribution of the NPoM at perpendicular illumination with
λ = 485 nm polarized in x-direction. (a) Sketch of the geometry, where the embedded
dye monolayer is modeled as a dielectric with 4 nm thickness. (b) Calculated distribution
of |E|/|Eexc| in the xz-plane. (c-e) Spatial distribution of the real part of the electric
field components Ex , Ey , and Ez in the center of the gap (x y-plane).
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radiates fluorescence via the NPoM modes. The near-field coupling coefficients to the
NPoM modes at a particular emission frequency ωem can be calculated with Equation
5.5.

Assuming a dipole oriented in z-direction, Figure 5.4a depicts the resulting mode excitation
coefficients as a function of the dipole position. The excitation field profile shown on the
left is imprinted onto the spatial distribution of the mode excitation coefficient |αi | in the
gap shown on the right. For example, the product of the axially symmetric excitation
field profile with the radially symmetric field profile of the (1,0) mode yields an axially
symmetric spatial pattern of the respective mode excitation coefficients. Hence, the
symmetry of the excitation field distribution is passed on to the spatial distribution of
the αi. Consequently, the αi maps of energetically degenerate modes (l,±|m|) are not
equivalent anymore upon rotation. This is demonstrated in Figure 5.4a for the modes
(1,±1) and (2,±1). As the excitation field is x-polarized, the dipole emission prefers
the (1,1) over the (1,−1) mode. The same holds for the (2,±1) modes. As the dipole
excitation strength is zero in the gap center, a dipole does not emit into any mode at this
position.

5.1.3 Enhanced far-field emission from an incoherent dipole

ensemble

Due to the near-field coupling, the emitter radiates into the far-field via the NPoM modes.
Computing the far-field response is essential to compare the fluorescence enhancement with
the experiment. The near-to-far-field transform provided by the software package RETOP
allows us to calculate the electromagnetic far-fields Ẽ

ff
i (θ ,φ,ωem) and H̃

ff
i (θ ,φ,ωem) of

the i-th QNM at the emission frequency ωem of the emitter radiated into the direction
given by the angles (θ ,φ). For a single dipole at position r em in the gap, the coherent
superposition of the first M quasi-normal modes weighted by the position-dependent mode
excitation coefficients then yields a total electromagnetic far-field [45]

Ẽ
ff
(θ ,φ, r em,ωem) =

M
∑

i=1

αi(r em,ωem)Ẽ
ff
i (θ ,φ,ωem) , (5.7)

H̃
ff
(θ ,φ, r em,ωem) =

M
∑

i=1

αi(r em,ωem)H̃
ff
i (θ ,φ,ωem) . (5.8)

We obtain the power radiation pattern by evaluating the time-averaged Poynting flux

〈S〉= 1
2Re
��

Ẽ
ff
�∗
× H̃

ff
�

. Figure 5.4b compares radiation plots of a single dipole at three
exemplary positions in the gap at an emission wavelength of λem = 620 nm. In agreement
with the spatial distribution of the mode excitation coefficients in Figure 5.4a, the radiation
of a dipole at (xem, yem) = (5, 0)nm is dominated by the ring-shaped emission from the out-
of-plane NPoM mode. The off-center position of the dipole breaks the cylindrical symmetry,
giving rise to an asymmetric far-field radiation pattern. At (xem, yem) = (10,0)nm and
(15,0)nm, however, the emission from the in-plane NPoM mode takes over. It has been
shown in the literature that the shape of the radiation pattern is a fingerprint of the
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dipole position in the gap. An NPoM can therefore be used as plasmonic nanolens with
sub-diffraction resolution [177].

In the experiment, we investigate the fluorescence enhancement of the broadband-emitting
dye monolayer by the NPoM modes. Therefore, we extend the established model for a
single narrowband dipole to describe an incoherent ensemble of broadband emitters in
the gap [45]. To accomplish this, we calculate the far-field emission of a single dipole
at every lateral position (xem, yem) in the gap using our polarized imaging computation
method. Our theoretical predictions and experimental observations in Chapter 3.3 prove
a homogeneous distribution of the dye molecules sandwiched between the hectorite
nanosheets. The molecules in the gap emit incoherently into the far-field via the NPoM
modes. Each dipole yields an intensity pattern Ixem,yem

(x , y) at the position (x , y) on the
detector. To model the homogeneous distribution of incoherent emitters, we sum up the
intensities at the detector originating from all dipole positions (xem, yem) in the gap at a
defined emission wavelength λem according to

Idet(x , y,λem) =

∫∫

dxemdyem Ixem,yem,λem
(x , y) . (5.9)

Specifically, we integrate over a 60× 60nm2 area in the NPoM gap. We assume that all
molecules outside this area mainly emit into free space independent of the NPoM and,
hence, do not contribute to the fluorescence enhancement. The calculation is repeated at
different emission wavelengths between λem = 500nm and 800 nm, covering the broad-
band emission from the encapsulated dye monolayer. The calculated spectra represent
the fluorescence enhancement provided by the NPoM, assuming that the emission of the
uncoupled dipole is spectrally flat. This calculation does not consider other photophysical
processes in the molecules competing with the emission via the NPoM. In the following,
we analyze the spatially integrated intensity values on the detector

Idet(λem) =

∫∫

dxdy Idet(x , y,λem) . (5.10)

Figure 5.4c compares the fluorescence enhancement spectra Idet(λem) of an incoherent
ensemble of dipoles oriented in x-direction (left), y-direction (center), and z-direction
(right) after x-polarized excitation. The spectra are normalized to the maximum intensity
of the z-dipoles, which is almost three orders of magnitude larger than that of the x-dipoles
and nearly four orders of magnitude larger than that of the y-dipoles. As we know from
the orientation determination in Chapter 3.3, both transition dipoles of the dye have
significant out-of-plane orientations θ1 = 34◦ and θ2 = 54◦ on a gold substrate. Hence,
we can neglect the projected in-plane dipole component of the molecules embedded in
the gap, as the NPoM modes only efficiently couple to the out-of-plane components of the
dipoles.

The fluorescence enhancement of the z-oriented incoherent dipole ensemble has two
prominent peaks matching the spectral positions of the out-of-plane mode (1, 0) and the
in-plane modes (1,±1). Furthermore, higher-order modes contribute at an energy of
about 2.3 eV, giving rise to the slightly asymmetric lineshape of the in-plane mode peak.
We will directly compare this simulated fluorescence enhancement spectrum with the
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Fig. 5.4.: Fluorescence of an incoherent dye ensemble via NPoM modes. (a) The excitation field
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marked in (a). (c) Comparison of the far-field emission spectra of an incoherent emitter
ensemble in the NPoM oriented along x (left), y (center), and z (right). The spectra
depend on the detection polarization. The spectral positions of the (10), (11) and
higher order modes are marked above the right plot.
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measurements in Chapter 5.2. Our calculations show that the peak enhancement of the
in-plane mode is stronger than the out-of-plane mode at the respective resonance positions.
Lorentzian fits reveal that the energy radiated via the in-plane modes is about a 75%
greater than the out-of-plane mode. In the first place, this result is surprising, as the
simulated scattering spectra showed that the in-plane mode radiates much less efficiently
into the far-field than the out-of-plane mode (see Figure 4.19). However, the perpendicular
excitation direction and the off-resonant excitation at λexc = 485 nm attenuate the coupling
to the out-of-plane mode. This is evident from the different symmetries of the (10) mode
and the excitation field distribution. We conclude that the choice of excitation parameters
has a paramount influence on the coupling of dye layers to nanoresonators. Hence, the
excitation process provides a variety of setscrews to optimize the dipole emission via a
particular set of modes.

Figure 5.4c compares the fluorescence enhancement spectra for x- (blue) and y-polarized
detection (orange). The sum of both intensities yields the unpolarized spectrum (solid black
line). The emission from the (10) mode does not depend on the detection polarization,
consistent with the associated out-of-plane dipole direction of the mode. The emission from
the in-plane modes is sensitive to the detection-polarization, having an intensity contrast
ratio of about Ix-det./I y-det. = 2.6. Hence, the emission enhancement of the dye monolayer
memorizes the polarization direction of the excitation light, although the emission is
incoherent. This “memory” results from imprinting the polarization-dependent excitation
field profile on the dye layer, which is an important result of our theoretical modeling.

5.2 Experimental determination of the fluorescence

enhancement

The broadband emission of the encapsulated dye monolayer allows us to investigate the
fluorescence enhancement spectra in the experiment. For this, we prepare samples where
the dye monolayer is incorporated into the NPoMs. Polarization-resolved scattering and
fluorescence spectroscopy provide complementary information about the NPoM modes
and their interaction with the dye monolayer. We investigate many NPoMs to provide
statistical information about the coupling efficiencies for comparison with the simulation
results.

5.2.1 Sample preparation

The samples are fabricated in a two-step procedure by depositing the hectorite nanosheets
(compare Section 3.3.4) on a gold substrate and then dropcasting the gold nanoparticles
(compare Section 4.1). Specifically, gold substrates are prepared by template-stripping
from a silicon wafer using the Norland NOA63 optical adhesive. The gold substrate is
made hydrophilic by air plasma treatment for 1 minute. The centrifuged and diluted
aqueous hectorite nanosheet solution is dropcasted onto the substrate, dried at room
temperature, and baked at 60◦C for 1 hour. Then, 50µl of the aqueous 80 nm colloidal
gold nanoparticle solution is dropcasted onto the sample. The sample is covered by a
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Fig. 5.5.: Experimental setup for darkfield (DF) scattering and fluorescence spectroscopy with
spatial and polarization resolution. Using electronically controlled shutters, we switch
between perpendicular illumination for fluorescence and side illumination for scattering
measurements.

plastic hood to prevent the water droplet from evaporating. After around 20 minutes,
a sufficient density of gold nanoparticles adhering to the hectorite is reached, and the
residue is blown off with nitrogen.

5.2.2 Experimental setup

An independent measurement of scattering and fluorescence spectra allows us to determine
the NPoM resonances and the relative coupling strengths of the dye monolayer to the NPoM
modes. We combine the experimental methods for polarization-resolved fluorescence
spectroscopy (see Chapter 3.3) and scattering spectroscopy (see Chapter 4.4), as shown in
Figure 5.5. As in the previous experiments, we scan a large area for statistical analysis
of many coupled systems. The spatial resolution lets us determine the fluorescence
enhancement by comparing coupled and uncoupled dye monolayers. Furthermore, we
can separate the different modes by analyzing the diffraction pattern of the NPoMs.

The fluorescence intensities are corrected by the inhomogeneous excitation intensity
profile resulting from the elliptical spot profile. Furthermore, we correct the intensities
by the polarization-dependent laser excitation power. Separate mechanical shutters for
the fluorescence and white light excitation beam paths are electronically controlled to
alternate between scattering and fluorescence measurements. The linear polarization
of both excitation beams is adjusted by wire grid polarizers in electronically controlled
rotation mounts. In the detection path, the horizontal and vertical polarization is spatially
separated on the spectrometer camera chip by a Wollaston prism. As in the previous
experiments, we choose a slit width of 1.2µm projected onto the sample. Each frame
acquired with the spectrometer camera provides spatial and spectral information. The
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fluorescence spectra of the NPoM and the background.

sample is scanned horizontally in steps of the half projected slit width to retrieve complete
2D spatial data of the sample.

The experiment aims to measure the fluorescence enhancement spectra of the dye mono-
layer coupled to the NPoM and to correlate it with the NPoM modes. Therefore, we first
need to find relevant positions on the sample where a dye monolayer spatially overlaps
with an individual NPoM. In the first step, we scan the sample over a large area to obtain
fluorescence and scattering intensities at a low integration time of 1 s per frame and a laser
excitation power of about 1µW. Based on the results of the screening measurement, we
choose a smaller scan area to measure a particular dye monolayer. At each scan position,
fluorescence and scattering spectra are subsequently acquired. The scattering intensity
map provides distinct maxima corresponding to the spatial positions of NPoMs. Figure 5.6a
shows the fluorescence intensity map of a dye monolayer, integrated over all combinations
of excitation and detection polarization. The red markers indicate the manually extracted
positions of NPoMs retrieved from the scattering intensity map. We identify multiple spatial
coincidences of dye monolayer and NPoM. Each of these relevant NPoMs is investigated in
more detail, exemplarily shown for the highlighted NPoM (red circle) in the following.

The NPoM is horizontally centered in the spectrometer entrance slit, as sketched by the
yellow frame in the fluorescence intensity map in Figure 5.6a. We perform a series
of measurements to retrieve as much information as possible about the NPoM and the
dye monolayer next to it. First, we measure the scattering spectra at both excitation
polarizations. Second, we measure the fluorescence spectra in 15+ 15= 30 acquisitions,
alternating between vertically and horizontally polarized excitation in each successive
frame. We integrate 20 s per frame, corresponding to a 10 min total integration time
per NPoM. The laser excitation power is 2.3µW. This measurement scheme has distinct
advantages over two acquisitions with long integration times, as we limit the impact of
the inevitable photobleaching at one excitation polarization onto the second measurement
with orthogonal polarization. Furthermore, we can monitor the photobleaching of the
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coupled and uncoupled dye monolayer as a function of the discrete time steps provided by
the successive acquisitions. Before analyzing the photobleaching (see Chapter 5.3), we add
up the 15 raw spectra at each excitation polarization to determine the total fluorescence
enhancement spectra. After measuring the fluorescence spectra, we repeat the scattering
measurements. Sample drifts can be detected by comparing the scattering spectra before
and after the fluorescence measurements. We found that sample drifts are negligible on
the experiment timescale. Hence, we sum up the early and late scattering measurements
at each position to increase the signal-to-noise ratio.

Figure 5.6b shows the spatially resolved fluorescence spectrum at the NPoM position
marked in (a) at h/v polarization. The vertical axis represents a spatial interval of 1.6µm
on the sample. We observe an increased fluorescence intensity at the NPoM position
with respect to the uncoupled dye monolayer above and below the NPoM. Furthermore,
the spectral shape of the enhanced fluorescence clearly differs from the uncoupled dyes.
We spatially average over the NPoM and the background fluorescence, as indicated by
the intervals next to the image, to obtain the spectra of the coupled and uncoupled dye
monolayer shown below the raw image. In total, the NPoM fluorescence is averaged
over a sample area of 1.2µm× 1.2µm= 1.44µm2, which is the product of the projected
spectrometer entrance slit width and the vertical averaging interval in the image. We
compare the fluorescence averaging area with the area of the field confinement area in the
NPoM, approximated by the facet area π(w/2)2 ≈ 300nm2. Assuming a homogeneous
molecule distribution, we conclude that only about 2/10,000 of the molecules in the
averaged area are located in the NPoM gap and contribute to the observed fluorescence
enhancement. This small fraction of coupled molecules explains the relatively small
difference of the spectra at the NPoM position and next to it. However, the shape of
the difference spectra contains all relevant information about the coupling of the dye
monolayer to the different NPoM modes. For quantitative analysis, we fit the scattering
and fluorescence spectra by Lorentzian resonances.

5.2.3 Fitting procedure

We first focus on the polarization-dependent scattering spectra of the NPoMs to determine
the fundamental cavity resonances. The spatially resolved scattering spectra at the four
combinations of excitation and detection polarization are shown in Figure 5.7a. We
identify the out-of-plane mode by the dumbbell-shaped spatial profile of the h/v scattering.
The spectra are processed like in Chapter 4.4, i.e., spatial integration, subtraction of the
background scattering, and normalization by the lamp spectrum. To model the NPoM
scattering, we fit the complete set of four measured spectra to three Lorentzian resonance
functions L(l,m)(ω) with polarization-dependent amplitudes according to Equation 4.32.
The Lorentzian contributions are normalized by their energy content. The fit results are
plotted with the measured spectra in Figure 5.7. According to the fit, the v/v and v/h
spectra can be well described by two individual Lorentzian functions with similar spectral
positions of 2.07 eV and 2.09 eV but different peak widths. The out-of-plane resonance
peaks at around 1.86 eV. The spectral positions are consistent with the results from the last
chapter, where the dependence of the resonance positions and linewidths on the gap size

5.2 Experimental determination of the fluorescence enhancement 121



was investigated. We excluded energies above 2.2 eV from the fit, which correspond to
higher-order modes.

Fitting the scattering spectra with Lorentzian functions allows us to determine the spectral
positions and widths of the fundamental resonances of each NPoM. We now correlate
this information with the fluorescence enhancement of the dye monolayer in the NPoM
resonator. The background fluorescence spectra of the uncouped dyes are obtained by linear
interpolation between spectra above and below the NPoM at each wavelength (compare
the raw spectra in Figure 5.6b). For better visibility of the NPoM contribution, we subtract
the background fluorescence spectra from the NPoM-enhanced fluorescence. The resulting
spatially resolved fluorescence enhancement spectra are shown in Figure 5.7b. The
comparison with the scattering spectra demonstrates that the fluorescence enhancement
peaks at the in-plane NPoM resonance energy. Furthermore, the spatial resolution of the
measured spectra reveals that the dyes also couple with the out-of-plane resonance at about
1.86 eV. In the h/v measurement, the spatial profile of the fluorescence enhancement has a
single-lobed pattern at the in-plane resonance, which transitions to a double-lobed pattern
at the out-of-plane resonance energy. To some extent, we also observe this transition in the
spatial profile of the v/v measurement, where the fluorescence pattern bends downwards
with decreasing energy. We only see the lower part of the double-peak structure in this
case. We conclude that the NPoM modes shape the fluorescence of the dye monolayer in
the spectral and spatial dimensions, both of which are accessible with our hyperspectral
imaging approach.

Visualizing the fluorescence enhancement spectra with spatial resolution is susceptible
to slight variations in the fluorescence spectra above and below the NPoM (compare
raw data in Figure 5.6b). The linear interpolation of the background spectra is a first-
order approximation for qualitative discussions. Furthermore, the signal-to-noise ratio
is relatively small at higher energies. In most investigated NPoMs, this prevents us from
observing the coupling to the out-of-plane mode by the shape of the emission pattern.
Therefore, we spatially integrate the measured fluorescence spectra to analyze the mode-
dependent coupling coefficients quantitatively.

Based on the following considerations, we employ a comprehensive model to describe the
measured fluorescence enhancement spectra. Our transition dipole orientation method in
Chapter 3.3 revealed that the molecules have a defined preferential orientation within the
hectorite nanosheets. We expect the molecules to form small oriented domains below the
optical diffraction limit that do not average out on a macroscopic scale. Hence, each emitter
and each domain experiences a different dielectric environment which can even fluctuate
on ultrashort timescales due to molecule reorientations. We conclude that the spectrally
broad fluorescence of the dye monolayer originates from inhomogeneous line broadening.
Therefore, as in the numerical simulations, we assume that the emitted fluorescence of
each dye molecule in the resonator at a particular frequency is enhanced by the available
NPoM modes. We model the fluorescence enhancement as the product of uncoupled
dye fluorescence Fbg(ω) and the fitted Lorentzian far-field resonances L(l,m)(ω) of the
NPoM modes with indices (l, m). Other authors expect a peak shift between the near-field
and the far-field response [199]. However, our fits agree very well with the measured
fluorescence enhancement spectra using the far-field response, as described below. The
fluorescence spectrum of the uncoupled dye monolayer is given by the background signal
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Fig. 5.7.: Scattering (left) and fluorescence enhancement spectra (right) of the NPoM on the dye
monolayer (marked in Figure 5.6). For all four polarization combinations sketched in
the respective pictograms, we show the spatially resolved spectra above the spatially
integrated spectra (blue dots). The scattering spectra are normalized to the maximum
intensity at h/v polarization. We obtain the NPoM resonances by fitting three Lorentzian
functions to all scattering spectra (black line). The fitted resonances are used to model
the fluorescence enhancement spectra F(ω)− a · Fbg(ω). The fit curve is not smooth
due to noise in the background spectrum Fbg.
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Fbg(ω) obtained from the average fluorescence spectrum above and below the NPoM. The
model function for the measured fluorescence at the NPoM position for a given excitation
and detection polarization reads

F(ω) = a · Fbg(ω) ·



1+
∑

(l,m)={(1,0),(1,1),(1,−1)}
c(l,m)L(l,m)(ω)



 . (5.11)

Here, the amplitude parameter a ≈ 1 is a scaling factor to account for spatial variations of
the dye density.

The fluorescence enhancement spectra and the corresponding fits are shown in Figure 5.7.
We subtract the scaled background spectra to present the signal F(ω) − a · Fbg(ω) for
better visibility. The fits agree very well with the measured spectra at all four polarization
combinations. This result underlines the validity of our model to quantify the mode-
specific enhancement of the fluorescence with respect to uncoupled molecules. Our model
scales the noisy background spectrum a · Fbg by the mode-dependent coupling coefficients
c(l,m). Hence, the plotted fit function is not smooth. As the Lorentzian functions L(l,m)(ω)

are normalized by the energy content, the fitted coupling coefficients c(l,m) quantify the
amount of energy radiated via the NPoM modes at a specific combination of excitation
and detection polarization. The evaluation of the c(l,m), hence, allows us to investigate
the relative coupling strengths to the three NPoM modes. Furthermore, we can quantify
variations between different resonators by a statistical analysis of the coupling coefficients
for many NPoMs. In the following, we only consider NPoMs on dye monolayers where the
set of Lorentz functions can visually well describe the scattering spectra.

5.2.4 Quantitative analysis of the mode-dependent fluorescence

enhancement

We present the results from 25 NPoMs on dye monolayers. Figure 5.8a shows the NPoM
resonance positions and widths obtained from the Lorentzian fits to the scattering spectra.
The average out-of-plane resonance energy is about 1.8eV. Consistent with previous
results from NPoMs on dielectric spacers, the in-plane resonances are mostly red-shifted
to around 2 eV. Furthermore, the in-plane resonances are spectrally more narrow than the
out-of-plane resonances.

As Figure 5.6b shows, the fluorescence of the uncoupled dyes increases with energy up to
2.2 eV. Consequently, the fluorescence at the out-of-plane resonance energies (1.8 eV) is
about a factor of 3 weaker than at the in-plane resonance energies (2.0 eV). Therefore, the
determination of coupling coefficients is less accurate for the out-of-plane mode due to its
lower energy, which needs to be considered in the quantitative analysis of the coupling
coefficients. Nevertheless, the fits to the fluorescence spectra generally agree very well
with the measurements.

Initially, we sum up the fitted coupling coefficients at the four measured polarization com-
binations. This allows us to assign each evaluated NPoM three polarization-independent
coupling coefficients. The histograms of the fitted coupling strengths c(l,m) to the three
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Fig. 5.8.: (a) Energy and linewidth of the Lorentzian fits to the scattering spectra of all investigated
NPoMs on dye monolayers. Each dot corresponds to an individual NPoM with color-
coded modes (l, m). (b) Histogram of the fluorescence coupling coefficients
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obtained from all investigated NPoMs, summed over all polarizations in arbitrary units.
Compared are the coupling coefficients for the out-of-plane and in-plane modes. The
median values of the respective distributions are marked in black.

modes are shown in Figure 5.8b. The coupling coefficients vary significantly among the
investigated NPoMs. We expect that the local field enhancement provided by the NPoM
and its spatial distribution is very sensitive to the nanogap morphology. Furthermore, our
analysis only considers radiative enhancements of the dye fluorescence. Dissipation in the
metal, such as propagating surface plasmons launched by structural imperfections, intro-
duces additional non-radiative decay channels, which again depend on the gap morphology.
As demonstrated in the literature, the excitation of surface plasmons by nanostructures
can even mediate the remote excitation and detection of dye fluorescence [200].

The black lines in Figure 5.8b denote the median values of the coupling coefficient distri-
butions. The median values for the (1, 1) and (1,−1) modes are approximately 20 and 18,
respectively, which is only slightly larger than the median value of 15 for the out-of-plane
mode (1,0). The median values can only be seen as an estimate, as the coupling coeffi-
cients vary considerably among the NPoMs. Nevertheless, we observe that the coupling
of the dye monolayer to the in-plane modes is about 27% larger than to the out-of-plane
mode on average. Notably, this result qualitatively agrees with our numerical simulations
presented in Figure 5.4, predicting even a 75% larger fluorescence enhancement by the
in-plane modes compared to the out-of-plane mode. The dominating contribution from
the in-plane modes is remarkable, as their simulated scattering intensity is much weaker
than the out-of-plane mode (see Figure 4.19).
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Polarization-dependent coupling by nanoparticle ellipticity

The nanoparticles are not perfectly spherical, lifting the energy degeneracy of the in-
plane modes (1,±1). The two semi-axes of an elliptical nanoparticle are rotated by a
certain angle with respect to the experimental coordinate system, causing a polarization-
dependent fluorescence enhancement by the in-plane NPoM modes. We normalize the
fitted coupling coefficients by the total fluorescence enhancement, i.e., the sum over
the coupling coefficients of both in-plane modes and all four polarization combinations.
This normalization is required to divide out the particle-dependent magnitude of the
fluorescence enhancement. Figure 5.9 shows the correlation of the normalized coupling
coefficients of both in-plane modes. We compare the coupling coefficients of excitation
and detection polarizations pointing in the same direction, i.e., v/v and h/h measurements.
The data points are anti-correlated in both polarization combinations, as the black dashed
line indicates.

First, we assume an elliptical nanoparticle where the semi-axes coincide with the exper-
imental coordinate system. If the (1,1) mode points in the v-direction, the measured
coupling coefficient to this mode is most intense if excitation and detection polarization
are oriented in the same direction. As the electric field profile of the polarized excitation
is imprinted onto the dye layer (compare Chapter 5.1.2), the coupling to the orthogonal
(1,−1) mode is much weaker. If the semi-axes differ from the experimental coordinate
system, the coupling to both in-plane modes can be equally efficient. Hence, we can
explain the experimentally observed anti-correlation of the coupling coefficients by the
statistical orientation of the nanoparticle semi-axes. This result proves that the NPoM ellip-
ticity influences not only the scattering but also the polarization-dependent fluorescence
emission of the molecules.

Our transition dipole orientation determination in Chapter 3.3 revealed that the dye
monolayer has a preferential in-plane orientation. In general, the relative orientation
of the molecules and the NPoM semi-axes needs to be considered in the analysis of the
polarization-dependent coupling coefficients. However, the numerical simulations demon-
strated that the out-of-plane component of the transition dipole dominates the coupling.
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Furthermore, the investigated NPoMs are located on different hectorite double stacks where
each in-plane preferential direction of the dye monolayer is equally probable. Hence, we
do not account for the in-plane orientation of the dye monolayer in the experimental data
analysis.

Polarization-dependent coupling to out-of-plane and in-plane modes

The out-of-plane NPoM mode has a vertical dipole orientation. Hence, the numerical
simulations predicted that the (10) coupling coefficient is independent of excitation and
detection polarization. We compare this expectation with our experimental observations
by correlating the fitted coupling coefficients at different polarizations. The top row of
Figure 5.10 exemplarily shows the correlation of the v/v coupling coefficient c(1,0) with
the three other polarization combinations, corresponding to the horizontal axes of the
three plots. We decide on a specific “reference” polarization v/v as the vertical axis in all
plots to reduce the complexity of the data set. The ratio of the coupling coefficients varies
significantly among the investigated NPoMs (blue dots). We attribute this to uncertainties
in the fit and deviations from the out-of-plane orientation of the (10) mode because of
nanoparticle asymmetries. On average, the experimental correlations are well described
by an identity relation (black dashed line), as expected from the theoretical predictions.

We sum up the in-plane coupling coefficients c(1,1)+c(1,−1) to average over the nanoparticle
ellipticity. This allows direct comparison with our numerical simulations, where we
assumed a cylindrically symmetric NPoM gap. The correlation of the “reference” v/v
coupling coefficients with the other three polarization combinations is shown in the
bottom row of Figure 5.10. We expect that the coupling is independent of the excitation
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polarization if excitation and detection polarization are identical. This corresponds to an
identity relation of the v/v and h/h coupling coefficients (black dashed line), which agrees
well with our experimental findings (orange dots).

The polarization-dependent excitation field distribution is imprinted on the dipoles in
the gap. Hence, the detected fluorescence is most intense if excitation and detection
polarization match. The numerical simulations predict that the coupling coefficient is a
factor of 2.6 larger for parallel than for perpendicular excitation and detection polarizations.
This corresponds to a line with slope 2.6 in the correlation plots of v/v with v/h and h/v in
Figure 5.10. However, the measured polarization dependence is much less than expected,
as the deviation from the black dashed line indicates. For comparison, the yellow line with
slope 1 shows the expectation without the theoretically predicted “memory” effect of the
excitation polarization.

Various reasons could explain the difference between measurement and simulation. First,
we used an idealized geometry in the simulation with a spherical truncated nanoparticle
on a flat substrate. In the experiment, however, structural irregularities in the gap can give
rise to electric field hotspots which break the symmetry of the excitation field distribution
and the fields associated with the quasi-normal modes. Consequently, the excitation field
distribution may not have a zero-crossing in the center of the facet, which plays a central
role in our predicted “memory” effect. In the limiting case of a cylindrically symmetric
excitation field distribution, we expect the fluorescence enhancement to be independent
of the excitation polarization.

Second, the measured fluorescence and the computed far-field radiation resemble only the
radiative decay to the ground state of the molecule. However, radiative and non-radiative
decay pathways of the dye need to be considered in quantitative statements. The QNM
decomposition includes radiation losses and dissipation in the imaginary part of the QNM
frequencies ω̃m [64, 170]. Hence, radiative and non-radiative rates are accessible from
QNM calculations. Nevertheless, the intrinsic quantum efficiency of the dye monolayer
is an unknown quantity that enters into the computation of the overall decay rate. The
quantum yield of the dye monolayer could be determined from experiments similar to
the Drexhage measurements [61], where the quantum efficiency is a fit parameter for the
distance-dependent decay rates. Furthermore, the decay rate is correlated with the relative
emission intensities from the two transitions of the dye, as we discussed in Chapter 3.5.

Third, the molecules in the dye monolayer are very densely packed, enabling a significant
out-of-plane orientation of the transition dipoles. This allowed us to neglect the in-plane
components of the transition dipoles in the coupling coefficient calculation. Nevertheless,
the presence of the gold nanoparticle might compress the dye monolayer because of the
electrostatic attraction from the gold substrate by induced image charges. To determine
if the metallic nanoparticle impacts the molecule orientation, one could exchange the
gold nanoparticles with off-resonant metal colloids with higher plasma frequency such
as aluminum [181]. Our dipole orientation determination technique (see Chapter 3.3)
could then detect spatial variations caused by the nanoparticles. Furthermore, a gold
nanotip with three-dimensional position control could replace the gold nanoparticle to
avoid direct contact with the dye monolayer. Gold nanotips are used for tip-enhanced
photoluminescence (TEPL) [37, 83], an established technique discussed in more detail in
Chapter 5.4.
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5.3 Reduced photobleaching rate of dyes inside the

NPoM gap

The coupling strengths are determined from the total detected number of photons emitted
from dyes in the NPoM gap region in a particular time interval. However, each molecule can
only emit a finite number of photons before photobleaching. The oxygen pathway is typi-
cally the essential photodegradation mechanism [201]. The dye performs an inter-system
crossing from the excited singlet to the excited triplet state. The energy is transferred to
ambient oxygen, inducing a transition from the oxygen triplet ground state 3O2 to the sin-
glet excited state 1O∗2. The singlet oxygen is very reactive and can destroy the chromophore
irreversibly. Also other photochemical reactions without oxygen are possible. For example,
photoionization upon dye excitation might generate reactive radical intermediates. In
our experiments, we can exclude thermal effects due to the low laser power of < 3µW at
widefield illumination.

The dye is susceptible to photodegradation only in the excited state. We can assign this
statistical process a photobleaching rate kbleach which competes with the radiative rate
kr of the dye. The average number 〈N〉 of emitted photons before photobleaching is
[202, 203]

〈N〉= kr

kbleach
. (5.12)

The fluorescence intensity of the dye ensemble in a diffraction-limited area decreases
exponentially with time. The presence of gold nanostructures can significantly enhance
radiative and non-radiative rates of the molecules while the photobleaching rate remains
constant. Hence, the number of emitted photons before photobleaching can increase
considerably for molecules in the NPoM gap. To investigate the photobleaching in the
experiment, we evaluate the time series of fluorescence spectra for coupled and uncoupled
molecules.

We average over all measured polarization combinations to investigate the evolution
of fluorescence spectra in 15 time steps with 40 s integration time each. Figure 5.11a
compares the time series of the dye fluorescence spectra (blue to yellow color) at an
exemplary NPoM position and next to it, called background. Within 10 minutes, the
fluorescence intensity decreases by about 40 % on average. The background signal needs
to be subtracted from the NPoM very accurately to determine the fluorescence enhancement
spectra. Based on our previous findings, the enhancement is mainly provided by the NPoM
modes with resonance energies well below 2.4 eV. Therefore, we use the off-resonant
narrow spectral interval at 2.4 eV (shown as a grey area in the spectra) to determine the
scaling factor between NPoM and background intensity. For best accuracy, the spectra are
smoothed in this interval and integrated over all time steps to obtain a single scaling factor
for all measured frames.

The time evolution of the fluorescence enhancement spectra after background subtraction is
shown in Figure 5.11b. In the first time interval, the fluorescence difference spectrum peaks
at an energy of 1.9 eV with 5,000 counts. The maximum counts decrease to around 3,500
in the last measured frame, while the spectral shape remains unchanged. For comparison,
Figure 5.11c shows the photoluminescence (PL) of an exemplary NPoM without the dye
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monolayer, i.e., the nanoparticle directly attached to the gold substrate without a spacer
layer. The PL increases with energy, qualitatively matching the findings in the literature
for bare gold PL [204]. We expect that the excitation power is too small to observe an
enhancement of the gold PL by the NPoM modes. Notably, the gold PL only yields about
50 counts per frame at an energy of 1.9 eV, compared to 3,500 to 5,000 counts retrieved
from the enhanced fluorescence of the dye monolayer. Hence, we can neglect the gold
PL in our analysis, as it is about two orders of magnitude weaker than the fluorescence
enhancement of the dye monolayer.

To investigate the photobleaching rates of the dyes inside the NPoM and next to it, we
integrate the fluorescence spectra from Figure 5.11a (background) and 5.11b (fluorescence
enhancement by NPoM). The temporal evolution of the fluorescence intensity is shown
in Figure 5.11d on a logarithmic scale. For better visibility, the fluorescence intensity of
the dyes inside the NPoM is enhanced by a factor of 8. An exponential curve is fitted to
the first five measurement points in both data sets. The fitted 1/e time constant for the
NPoM-enhanced fluorescence is 39 frame intervals, compared to 17 for the background
fluorescence. We conclude that the NPoM increases the average time until photobleaching
of dyes in the gap by more than a factor of two. This factor is an average over all molecules
in the gap contributing to the fluorescence enhancement and, therefore, might be larger
for molecules most efficiently coupled to the NPoM modes.

The photobleaching time constants vary significantly across all investigated NPoMs, which
we attribute to variations in the gap morphology. Some of the investigated NPoMs do
not enhance the photobleaching time constant. In our experiments, the actual excitation
enhancement of the dye monolayer in the gap is unknown. Saturating the molecule
absorption would allow us to divide out the excitation enhancement. Generally, the spa-
tially varying excitation intensity needs to be considered to model the photobleaching
dynamics [205]. Furthermore, a quantitative correlation between enhanced fluorescence
and reduced photobleaching requires precise knowledge of radiative and non-radiative
rates. The fluorescence lifetime could be determined from time-correlated single photon
counting experiments. We demonstrated in Chapter 3.5 that the relative intensities of the
two transitions of the dye monolayer act as a clock for molecule planarization. The spectral
variations of the fluorescence lifetime could be determined from streak camera measure-
ments. The proposed experiments would allow us to investigate the transition-dependent
photophysics of the dye monolayer in nanoresonators. Our present measurements demon-
strate that the photobleaching timescale and the total number of emitted photons before
photobleaching can be significantly increased with plasmonic nanoresonators. Based
on this work, future experiments will help to optimize the interaction of emitters with
nanostructures for enhanced photostability and high photon emission rates.

5.4 Towards strong coupling with dye monolayers

In the previous sections, we employed a weak-coupling description for the cavity-emitter
coupling. We considered a unidirectional interaction, where the emitter radiates via the
NPoM modes. Our experimental data proved the applicability of this model, as the spectra
could be well described by a sum over the fundamental NPoM modes. Due to the Purcell
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Fig. 5.11.: Increased number of emitted photons before photobleaching for the dye monolayer in
the NPoM gap. (a) Color-coded time series of the fluorescence spectra at an exemplary
NPoM position (top) and next to it (bottom). The intensity in the grey area is used to
calculate a scaling factor between NPoM and background. (b) The difference spectra
of NPoM and background yield the enhanced fluorescence of the dyes in the gap
area and its temporal evolution. (c) The photoluminescence of an exemplary NPoM
on the gold substrate without the dye monolayer is significantly weaker than the
enhanced dye fluorescence in (b) and can therefore be neglected. (d) Decay of the
spectrally integrated fluorescence of the dye monolayer in the NPoM (from (b)) and
the background (from (a)), fitted by an exponential function (solid lines). The NPoM
signal is enhanced by a factor of 8.
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enhancement, the fluorescence spectrum of the coupled dye monolayer was shaped by the
NPoM resonances.

It has been demonstrated that the small mode volume of NPoMs can allow entering the
cavity-emitter strong coupling regime at room temperature [36]. In the strong coupling
regime, energy can cycle back and forth between emitter and gap plasmon, generating
hybrid light-matter states called polaritons. According to the literature [47, 69, 70], the
atom-field coupling constant is estimated as

g =
|µi j |
ħh

√

√

√
ħhωi j

2ϵ0ϵV
= 2π|µi j |
√

√ c0

2ϵ0ϵVhλi j

(5.13)

with transition dipole moment µi j, frequency ωi j of the transition j → i, and mode
volume V . In the following, we estimate the coupling constant of the emitters investigated
in the experiment and compare it with the threshold for strong coupling.

The mode volume is estimated as the volume spanned by the area of the spherical facet
π(w/2)2 and the 4 nm gap thickness

V ≈ π · (10 nm)2 · 4 nm= 1260nm3 . (5.14)

In the literature, we find typical oscillator strengths of f ≈ 1 for structurally similar pyrene
derivative molecules obtained from density functional calculations [206]. The relation
between oscillator strength and transition dipole moment [207]

f =
2me∆E

3ħh2e2
|µ|2 (5.15)

yields the transition dipole moment |µ| ≈ 11.5 Debye at an emission wavelength λi j =

620 nm. In this equation, me is the electron mass, e is the unit charge, and∆E = hc0/λi j is
the energy difference between excited and ground states. Thus, we estimate the atom-field
coupling constant for an emitter embedded in a dielectric with refractive index n= 1.5
as

gsingle = 2.9 · 1013 rad s−1 ≈ 19 meV . (5.16)

Compared with the dye fluorescence FWHM of γem ≈ 450meV, the coupling constant is
about a factor of 24 smaller than the emitter losses. Furthermore, the coupling constant
is significantly smaller than the NPoM resonance linewidths of γpl ≈ 150meV (in-plane
mode) and about 250 meV (out-of-plane mode). Hence, single molecule strong coupling
with the NPoM is not feasible with this particular dye. Even with smaller NPoM gap sizes
on the order of 1 nm and spectrally narrow emitters, it is experimentally very difficult to
achieve strong coupling with single emitters, as discussed by Kewes et al. [208].

However, in our sample, an ensemble of N = 315 molecules of the dye monolayer is
present in the cavity formed by the facet area, based on an area of 1nm2 per molecule.
According to strong coupling theory [74], the coupling constant scales with the square
root of the emitter number

p
N = 17.7. The coupling strength of the ensemble

gensemble =
p

N · gsingle ≈ 335 meV (5.17)
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needs to be compared with the damping γem of the emitter and the average plasmon
resonance γpl = 200 meV

1
4
(γpl + γem)≈ 163meV . (5.18)

As gensemble >
1
4(γpl + γem), the ensemble of emitters theoretically exceeds the strong

coupling threshold (see Equation 2.56) by a factor of two. This estimation assumed that
all N molecules are located at the electric field hotspot in the gap and are aligned with the
local electric field. Hence, our estimate is an upper limit for the coupling strength of the
dye monolayer with the NPoM. In the experiment, we could not observe peak splittings in
the scattering and fluorescence spectra. This allowed us to expand the dye fluorescence by
a series of quasi-normal modes in the weak coupling limit. In the following, we briefly
discuss the feasibility of strong coupling with the dye monolayer and outline possible
future experiments.

In the literature, strong coupling with dye ensembles focuses on molecule layers forming or-
dered J-aggregates. Due to their large oscillator strength, methylene blue and cyanine dyes
such as TDBC are used frequently [39–43]. J-aggregates exhibit very narrow linewidths
on the order of 100 meV for TDBC at room temperature. Coupling strengths of up to
280 meV for TDBC aggregates with silver nano-prisms [40] and 170 meV for methylene
blue molecule aggregates inside a silver nanocube-on-mirror resonator [43] have been
reported. The transition dipole moment of TDBC is about 20Debye, almost twice as
large as the estimate for the pyrene derivative used in the work presented here. Despite
this significant dipole moment, the reported coupling strengths are relatively moderate
yet sufficient for strong coupling due to the narrow emitter linewidths. In contrast, the
450 meV linewidth of the pyrene derivative dyes significantly increases the required cou-
pling strength to enter the strong coupling regime. Based on the broad emission spectrum
of the pyrene derivatives sandwiched between the hectorite nanosheets, we conclude that
the dyes do not form J-aggregates. The present work explicitly required the broadband
emission spectrum to determine the coupling coefficients to the NPoM modes.

Furthermore, it has been shown in the literature that photodegradation of TDBC can
diminish the observable peak splitting in the emission spectra with increasing exposure
time [40]. At the same time, strong coupling has been demonstrated to suppress the
photo-oxidation of molecules, as it inhibits the population of triplet states and reduces the
time of the molecules in the excited state [209]. Similarly, we found in the experiments
that molecules inside the NPoM gap bleach more slowly due to the Purcell enhancement
in the weak coupling limit.

Finally, the strong coupling might be inhibited in the present work by spatial variations
of the molecule orientations in the gap. Based on our orientation determination results,
we expect the molecules in the dye monolayer to form nanoscale domains. There may be
multiple domains with different in-plane orientations in the gap area. This inhomogeneous
distribution might impact the emergence of coherent Rabi oscillations.

The influence of molecule domains could be investigated by tip-enhanced photolumi-
nescence (TEPL) and tip-enhanced strong coupling (TESC) experiments [37]. Here, a
gold nanotip is approached stepwise to the sample with complete three-dimensional po-
sition control using shear-force feedback. As with the nanoparticle-on-mirror system,
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coupling a plasmonic gold nanotip to a gold substrate gives rise to localized gap plasmons
with strong field confinement. The tip apex radius on the order of 10 nm determines
the optical resolution. In addition, the optical response is again polarization dependent.
Hence, the nanoscale domains in the dye monolayer could be imaged, and islands with
homogeneous in-plane orientation could be selected for strong coupling experiments. In
principle, the approach of the tip to the substrate allows tuning of the coupling strength
between the nanocavity and the dye monolayer. Hence, the emergence of hybrid modes
could be monitored at a particular position on the dye monolayer [37, 81]. Similarly,
Groß et al. demonstrated that a plasmonic slit resonator as a scanning probe provides
deterministic strong coupling with colloidal quantum dots [210]. In the weak coupling
limit, the TEPL method has revealed extensive photophysical properties of heterostructures
[83]. The distance-dependent quenching and Purcell enhancement could provide essential
information about radiative and non-radiative decay rates of both transitions in the dye
monolayer.

However, the continuous photobleaching of the dyes needs to be considered in the data
analysis. The encapsulation of the dye monolayer might provide an oxygen barrier to
decelerate the photobleaching. Our experiments revealed that the dye fluorescence inten-
sity decreases with time, so encapsulation by hectorite nanosheets can not fully prevent
photobleaching. AFM topography images (see Figure 3.14b) showed that the hectorite top
layer is not entirely continuous. Hence, optimizing the sample preparation might enhance
the protection of the dye monolayer from photobleaching. Comparative experiments of the
dye monolayers in oxygen-free environments could eliminate oxygen-related photobleach-
ing pathways. The idea of molecule encapsulation can possibly be transferred to quasi-zero
dimensional systems where single emitters are embedded into an ultrathin protective
shell. For example, Chikkaraddy et al. used host-to-guest chemistry to incorporate single
methylene blue molecules into a host skeleton [38].

5.5 Towards controlled interaction of emitters with

nanoresonators

Ultimate control of the cavity-emitter interaction requires the precise tunability of the
emitter density and positions in the nanoresonator. The encapsulated dye monolayers
investigated in this work provide a large-area coverage with known emitter density, orien-
tation, and layer thickness. The introduction of non-fluorescent “dummy” molecules in
the interlayer space of the hectorite nanosheets could allow the adjustment of the emitter
density. By keeping the overall molecule density in the interlayer space constant, the
out-of-plane orientation of the fluorescent molecules could be preserved. This approach,
however, lacks control over the spatial position of the emitters. A precise lateral positioning
can be achieved by patterning the spacer layer between the nanoparticle and mirror. In
this section, we present our first steps towards controlled patterning of ultrathin dielectric
layers based on nanosphere lithography (NSL) [211].

The principle is sketched in Figure 5.12. Non-functionalized polystyrene (PS) beads with
a nominal diameter of 100 nm are purchased from Bangs Laboratories. The surface of a
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template-stripped gold substrate is made hydrophilic by oxygen plasma treatment. The
diluted aqueous PS bead suspension is spin-coated onto the gold substrate. We then
deposit a nominal 2 nm Al2O3 layer using ALD (see Chapter 4.1). The reactants and
process temperature are compatible with polystyrene. The left image in Figure 5.12
shows the topography measured with an AFM in tapping mode. The PS beads form dense
monolayers with macroscopic order. The ALD process covers all exposed surfaces with
the alumina layer. Consequently, the contact area of the PS beads with the gold substrate
is excluded. Therefore, lifting off the PS beads yields a nanostructured ultrathin Al2O3
layer, as shown in the sketch. We found that the PS beads can be removed most efficiently
with tape (Scotch Magic Tape, 3M). The AFM scan in the right column of Figure 5.12
demonstrates that the fabrication procedure works as expected on large areas. Below the
AFM image, the line profile reveals periodic holes roughly matching the nominal thickness
of the deposited alumina film. The bead size determines the periodicity of the nano-holes,
which is 100 nm in our experiment. Also the shape of the hole is determined by the PS
bead, as the sketch illustrates. It has been shown that plasma treatment of the PS beads
decreases their size after deposition on the substrate [212]. This enables independent
tuning of hole periodicity and hole diameter.

Our process exposes small areas of the gold surface in the center of the holes. Therefore,
fluorescent molecules with thiol side groups can only bind to the surface in these tiny
predefined regions [16]. We envision that this approach allows the deposition of small
molecule ensembles in regular patterns. The average number of dyes per unit cell could be
controlled by diluting the emitters with non-fluorescent molecules of the same size. The
Al2O3 layer allows us to accurately define the gap thickness between the gold substrate
and gold nanoparticles dropcasted on top of the structure. Furthermore, the alumina
provides structural stability to preserve the out-of-plane orientation of the transition dipole
of the fluorophores.

The controlled deposition of emitters opens up new possibilities in quantum information
technology. Periodic arrays of metallic nanoparticles support collective delocalized modes
called surface lattice resonances (SLRs), which arise from the hybridization of LSPRs
with lattice diffraction orders [213]. It has been demonstrated that the SLRs can mediate
an energy transfer between donor and acceptor molecules at a distance of 800 nm with
significantly higher efficiency than in free space [214]. The collective nature of the SLR
introduces spatial coherence, as shown by a double-slit experiment of molecule layers
strongly coupled to the SLR [215]. Transferring nanoparticle arrays to metal substrates
gives rise to hybrid modes from spatially confined gap plasmon resonances and delocalized
lattice modes [216]. Therefore, nanoparticle-on-mirror arrays may pave the way toward
long-range coherent energy transfer.
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Fig. 5.12.: Nanosphere lithography for patterned ultrathin dielectric layers. The sketches in the
top row illustrate the fabrication procedure of PS bead deposition, ALD, and lift-off
with a scotch tape. The AFM images show the topography of the sample at exemplary
positions before (left) and after (right) lift-off. The profile across the line marked in
the right AFM scan reveals periodic holes. The measured hole thickness of about 3 nm
roughly matches the nominal 2 nm thickness of the Al2O3 layer.
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Conclusion 6
Metal nanoparticles feature localized surface plasmon resonances, allowing the confine-
ment of electromagnetic fields below the optical diffraction limit [4]. In the past decades,
the nanoparticle-on-mirror (NPoM) geometry attracted increasing interest in the scientific
community [10–13]. The bottom-up fabrication gives precise control over each fabrication
step, starting from the preparation of ultrasmooth metal substrates, the introduction of
active or passive spacer layers, to the deposition of crystalline metal nanoparticles. A
major advantage to horizontal structures, such as bowtie antennas, is the superior control
over the gap thickness between the nanoparticle and the underlying mirror [12]. This
enables the fabrication of plasmonic nanoresonators with ultrasmall mode volumes to
control and manipulate the light-matter interaction on a deeply sub-wavelength scale [63].
The interaction of emitters with plasmonic nanoresonators has allowed extending our
microscopic understanding of molecules by surface-enhanced Raman scattering [111].
Moreover, the radiation from quantum emitters can be tailored in the spatial, spectral, and
temporal domains. Specifically, the Purcell effect can enhance the spontaneous emission
rate of emitters by orders of magnitude in the weak coupling limit [28, 29]. In the strong
coupling limit, the energy coherently oscillates between the emitter and cavity, modifying
the energy levels [36–44].

This work investigated the interaction of oriented emitter layers with plasmonic nanores-
onators. We demonstrated in experiment and simulation that multiple modes contribute to
the fluorescence enhancement. The individual modes could be separated by polarization-
resolved scattering and fluorescence spectroscopy and the spatial diffraction pattern on
the detector. The broadband emission of the investigated dye monolayer allowed us
to determine the coupling to the different NPoM modes. Moreover, applying our novel
orientation determination technique to the dye monolayer, we could prove a significant
and spatially uniform out-of-plane orientation of both transition dipoles. Characterizing
the orientational order was essential to model the interaction with the nanoresonators, as
only dipoles aligned with the local electric field can couple efficiently.

We started with a brief theoretical review of light-matter interaction and quantum emitters
in Chapter 2. The dielectric function of metals could be described by two Lorentzian oscilla-
tors, representing the contributions from the free electron gas and the interband transition.
We then introduced the field of plasmonics, where surface plasmon resonances supported
by metal nanostructures confine electromagnetic fields below the optical diffraction limit.
Our example of a dipole above an ideal conductor illustrated that the spontaneous emis-
sion significantly depends on the local environment, namely the partial local density of
states (PLDOS). The Purcell enhancement of the spontaneous emission rate described
the interaction with resonant cavities in the weak coupling limit. We also discussed the
transition from weak to strong coupling, where the cavity-emitter interaction could be
modeled as two coupled harmonic oscillators.
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We aimed to investigate the interaction between broadband-emitting dye monolayers
and plasmonic nanoresonators. Hence, we initially studied both systems independently.
Chapter 3 characterized the optical properties of the dye monolayer sandwiched between
two hectorite nanosheets. First, we presented a universal method to determine the
refractive index of ultrathin planar structures based on white light reflection spectroscopy.
Compared to conventional ellipsometry methods, our approach allowed a diffraction-
limited spatial resolution. We pre-characterized the layer thickness by AFM measurements,
which we then used as input parameters to fit the measured reflection spectra with transfer
matrix calculations. Although the 4 nm thickness of the encapsulated dye monolayer is
much smaller than the optical wavelength, we obtained a remarkable maximum reflection
contrast of up to 15% using a Si/SiO2 substrate. We modeled the dye monolayer as an
effective medium with a single Lorentzian oscillator to account for the absorption in the
blue spectral range. We found that the refractive index is very flat in the relevant spectral
range, enabling us to describe the dye monolayer by a constant refractive index throughout
this work.

Second, we presented a novel and intuitive method to determine the transition dipole
orientations in dense dye layers from polarization-dependent fluorescence spectra. With
our widefield imaging and simultaneous detection of both polarization directions, we
achieved a significant speed-up for large-area screening with respect to established methods.
The singular value decomposition allowed us to disentangle the contributions of the two
transitions without assuming specific lineshapes. We found that only an asymmetric dipole
distribution can explain our experimental data. Based on our microscopic understanding
of the encapsulated dye monolayer, we developed a cone-shaped orientation distribution
model of the incoherent dipole ensemble with out-of-plane angle, in-plane preferential
direction, anisotropy, and a global scaling factor as only free parameters. Fits of the
transfer matrix calculations to the experimental data allowed us to generate maps of the
dipole orientations with diffraction-limited spatial resolution. We revealed a long-range
orientational order and a strong correlation between both transitions.

Third, we demonstrated that the intensity ratio of both transitions in the dye monolayer
could act as a picosecond clock for two competing processes: molecule planarization
and spontaneous emission. The comparison of the dye monolayer on glass and gold
substrates showed that the fluorescence emission depends substantially on the dielectric
environment and the orientation of the dipoles relative to it. Furthermore, we found
that the orientational order of the encapsulated dye monolayer depends on the substrate
and the baking temperature. The considerable out-of-plane orientation of both transition
dipoles on glass and gold substrates proved that our particular dye monolayer is well
suited for efficient coupling to NPoMs.

Chapter 4 characterized gold nanoparticle-on-mirror structures in experiment and simu-
lation. In NPoMs, an induced dipole moment in the nanoparticle couples with its image
dipole in the metal substrate. To establish a low-level understanding of the fundamental
modes, we computed the quasi-normal modes of the nanoresonator (QNM) and assigned
indices (l, m), following a nomenclature based on spherical harmonics. The (1, 0)mode cor-
responds to out-of-plane dipoles in the particle and substrate. The energetically degenerate
(1,±1) modes emerge from in-plane dipole coupling. Higher-order modes with l ≥ 2 were
excluded from the further analysis due to their significant spectral overlap. To compare the
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calculated modes with far-field experiments, we introduced a near-to-far-field transform
with subsequent imaging into the detector plane. In the experiment, we deposited ultrathin
1 nm, 2 nm, and 4 nm alumina spacer layers between the nanoparticle and mirror. The size
and shape of the colloidal nanoparticles slightly varied between the investigated nanopar-
ticles, impacting the observed NPoM resonances. Therefore, we studied many NPoMs by
polarization-resolved scattering spectroscopy. We found that the nanoparticle ellipticity
lifts the energetical degeneracy of both in-plane modes. Therefore, we modeled the spectra
of each NPoM by three Lorentzian contributions, corresponding to the (1,0) and (1,±1)
modes. Notably, the spatial resolution of our experimental method allowed us to discern
in-plane and out-of-plane modes by the Airy- and donut-shaped diffraction patterns. Our
statistical analysis proved that the resonance energies and linewidths increase with the
gap thickness, consistent with the simulations.

After characterizing the dye monolayers and NPoMs individually, Chapter 5 focused on the
interaction of both systems. Both excitation and emission enhancement of each dipole in
the monolayer contributed to the fluorescence enhancement by the NPoMs. The excitation
enhancement was determined from the simulated near-field distribution after linearly
polarized excitation at a wavelength of 485 nm. To calculate the emission enhancement,
we decomposed the electric field radiated by the dipole into the quasi-normal modes
supported by the NPoM. Consequently, the mode excitation coefficients varied with the
dipole position and orientation, where we found that the z-component of the dipole
moment dominates. Our simulations of the incoherent dye monolayer revealed that the
in-plane mode generates an even more significant fluorescence enhancement than the
out-of-plane mode. This result was remarkable, as the simulations of the scattering spectra
in Chapter 4 showed that the in-plane mode of the NPoM only weakly radiates into the
far-field. Furthermore, we theoretically predicted that the fluorescence enhancement
memorizes the excitation polarization even though the emission is incoherent. Due to its
broadband emission, the dye monolayer was well suited to determine the mode-dependent
coupling in the experiment. As expected, we observed that the NPoM modes shape the
fluorescence spectrum of the dye monolayer. For quantitative analysis, we first determined
the resonance frequencies of the NPoMs by fitting the scattering spectra of each NPoM. In
the second step, we fitted the fluorescence enhancement spectra by a sum of the three
energetically lowest NPoM modes to obtain the coupling coefficients for each mode. In
the statistical average over many NPoMs, we confirmed our theoretical expectation that
the coupling to the in-plane modes is more significant than to the out-of-plane modes.
Furthermore, our polarization-dependent measurements showed that the ellipticity of the
nanoparticles also enters into the fluorescence enhancement spectra. However, the present
experiment could not confirm the predicted “memory” effect. Generally, we employed a
weak coupling description of our measurement data, where the Purcell effect enhances
the spontaneous emission. We outlined how future experiments using a nanotip-on-mirror
system with full three-dimensional position control could enable us to observe the transition
from weak to strong coupling in dye monolayers despite the broad emission spectrum.
Finally, we showed our promising first results on ultrathin nanostructured spacer layers
using nanosphere lithography. Based on this, we discussed how the density and position
of emitters in the nanocavity could be controlled in future experiments. Coupling emitters
to plasmonic lattices might pave the way toward long-range coherent energy transfer.
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In conclusion, we investigated the coupling of dye monolayers with gold nanoparticle-on-
mirror systems. The efficient interaction requires a significant and uniform out-of-plane
orientation of the transition dipoles, which we could reveal with our novel orientation
determination method. The decomposition of the optical response of NPoMs into their fun-
damental modes allowed us to compare the scattering from individual NPoMs in experiment
and simulation, taking into account nanoparticle size and shape variations. Considering
excitation and emission enhancement, we computed the fluorescence enhancement spec-
tra for an incoherent dipole ensemble for comparison with the experiments. Due to the
broadband emission spectrum of the dye monolayer, we could characterize the spectral
shaping of the fluorescence emission by the modes of the nanoparticle-on-mirror.

This thesis provided a comprehensive and intuitive insight into the interaction of oriented
emitter ensembles with plasmonic nanoresonators in the weak coupling limit. We envision
that our extensive numerical simulation methods will contribute to the modeling and
optimization of coupled cavity-emitter systems in the future. In addition, we expect that
future experiments will benefit from our spatially resolved scattering and fluorescence
spectroscopy techniques and data analysis.
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Resolving dipole distributions with

linear polarizers A

We assume an ensemble of in-plane transition dipole moments with an angle distribution
f (φ). The real-valued distribution is 2π periodic, i.e., f (φ) = f (φ + 2π) and is written
as a Fourier series

f (θ ) =

∞
∑

k=0

(Ak cos(kφ) + Bk sin(kφ)) (A.1)

with

A0 =
1

2π

∫ 2π

0

f (φ)dφ , (A.2)

Ak =
1
π

∫ 2π

0

f (φ) cos(kφ)dφ, k ≥ 1 , (A.3)

Bk =
1
π

∫ 2π

0

f (φ) sin(kφ)dφ, k ≥ 1 . (A.4)

In detection, the radiation of a dipole with angle β with respect to the x-axis transmitted
through a linear polarizer with angle α is

T = cos(α− β)2 . (A.5)

The ensemble of dipoles thus leads to a detected intensity of

I(α) =

∫ 2π

0

f (φ) cos(α−φ)2dφ =
∞
∑

k=0

�

Ak Ãk(α) + Bk B̃k(α)
�

(A.6)

with

Ãk(α) =

∫ 2π

0

cos(kφ) cos(α−φ)2dφ , (A.7)

B̃k(α) =

∫ 2π

0

sin(kφ) cos(α−φ)2dφ . (A.8)

Only three functions do not vanish:

Ã0(α) =π , (A.9)

Ã2(α) =
π

2
cos(2α) , (A.10)

B̃2(α) =π sin(α) cos(α) . (A.11)
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Hence, the rotation of a polarizer only allows to detect the constant offset and the k = 2
Fourier components of the angular distribution. All other Fourier components are averaged
out [150]. For a probability density we require f (φ)≥ 0 for all angles φ and

∫ 2π

0

f (φ)dφ = 1 . (A.12)

It is thus sufficient to describe the angular distribution as

f (θ ) =
1

2π

�

1+ ã cos(2φ) + b̃ sin(2φ)
�

(A.13)

with |ã|, |b̃| ≤ 1. For ã > 0 we use the trigonometric identity

ã cos(2φ) + b̃ sin(2φ) =
Æ

ã2 + b̃2 cos(2(φ −φ0)) (A.14)

and see that the preferred angle is the shift of the cosine

φ0 =
1
2

arctan
b̃

ã
. (A.15)

As the cosine is 2π periodic, we can not distinguish φ0 from φ0 + π. We use the fit
function

f (φ) =
1

2π
(1+ a cos(2(φ −φ0))) (A.16)

with anisotropy a ∈ [0, 1] and in-plane preferential direction φ0.
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