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Kurzfassung

Mit der Entwicklung moderner Techniken zur Kühlung und zur Manipulation von Atomen in

den letzten Jahren und der Möglichkeit, Bose-Einstein-Kondensate und entartete Fermi-Gase

zu erzeugen und in regelmäßige optische Gitter oder in ungeordnete optische Potentiale zu

laden, ist das Interesse an der Lokalisierung von ultrakalten Atomen neu entfacht worden.

Die vorliegenden Arbeit untersucht die Transporteigenschaften von Materiewellen in unge-

ordneten Lichtpotentialen, die auch als Speckle-Interferenzmuster bekannt sind. Zunächst

haben wir die Auswirkung der korrelierten Unordnung auf die Lokalisierung im Rahmen

des Anderson-Modells numerisch untersucht. Mit Hilfe der diagrammatischen Störungs-

theorie können die relevanten Transportgrößen im Konfigurationsmittel über viele Speckle-

Realisierungen in zwei und in drei Dimensionen schließlich analytisch bestimmt und damit

Vorhersagen für eine mögliche experimentelle Umsetzung getroffen werden. Für die Beschrei-

bung der Transporteigenschaften kommt der räumlichen Korrelation der Speckle-Fluktuatio-

nen dabei eine besondere Bedeutung zu, da sie für den anisotropen Charakter der Streu-

prozesse im effektiven Medium verantwortlich ist. Durch kohärente Vielfachsteuung kommt

es zu Interferenzeffekten, die eine Korrektur der Diffusionskonstanten im Vergleich zur klas-

sischen Beschreibung bewirken. Diese sogenannte schwache Lokalisierung der Materiewellen

gilt als Ursache für den durch den Grad der Unordnung gesteuerten Übergang zur Anderson-

Lokalisierung und ist ebenfalls Gegenstand der vorliegenden Arbeit.
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Résumé

Le développement de techniques modernes pour le refroidissement et le piégeage d’atomes

et la possibilité de charger des réseaux optiques ou des potentiels désordonnés avec des con-

densats de Bose ou des gaz de Fermi dégénérés a déclenché un intérêt nouveau pour la local-

isation des atomes ultra-froids. Dans le présent travail théorique nous étudions le transport

cohérent des ondes de matière dans des potentiels lumineux désordonnés, ou échantillons

de tavelures (speckle). L’influence du désordre corrélé est d’abord étudié numériquement

dans le cadre du modèle d’Anderson. Un calcul auto-consistante diagrammatique permet

finalement de déterminer analytiquement les paramètres fondamentaux de transport dans

le régime de faible désordre. Une importance cruciale pour le calcul analytique revient à

la fonction de corrélation spatiale des fluctuations du potentiel désordonné qui détermine le

degré d’anisotropie d’un événément de collision. Nous considérons en particulier la transition

du régime de la localisation faible à celui de la localisation forte. Dans ce cas la constante

de diffusion des ondes de matière diminue et tend vers zéro au seuil de la localisation forte,

ce qui décrit la transition d’Anderson. Dans le présent travail on calcule la renormalisation

de la constante de diffusion due a l’interférence cohérente des ondes de matière en tenant

compte explicitement de la correlation des fluctuations du potentiel désordonné.
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Chapter 1

Introduction

In nature in general, disorder is much more common than order. Almost all natural media

vary randomly in time and space. These variations also enforce a random propagation of

particles or waves that are interacting with the disordered medium. Often the effect of

disorder is undesirable and ingenious methods have been devised to reduce disorder and to

create perfectly ordered systems. However, disorder itself can have interesting properties and

reveal surprising physical phenomena. Maybe the most prominent example is the fact that

waves, which usually extend to infinity, can become localized in a disordered environment.

Originally, this concept of localization has been devised to explain the metal-insulator tran-

sition in electronic systems [1, 2]. However, the fascinating idea that disorder can produce

localized structures has since then attracted attention in various fields of physics far from

its original domain. Quite naturally, its impact has spread for example to the field of radia-

tive transfer theory and atomic physics where it has developed new branches like coherent

backscattering, weak localization of waves, Bose or Anderson glasses and many more.

In this thesis we address the question of matter-wave transport in disordered optical po-

tentials, which are commonly referred to as speckle patterns. Speckle patterns are known

since the operation of the first Helium-Neon laser in 1960, when it was realized that objects,

which are illuminated by the coherent light of a laser acquire a peculiar granular appearance

[3]. The speckle pattern is created via the interference of many coherent partial waves with

random amplitudes and phases, that are reflected from the microscopically rough surface of

the object.

A speckle pattern can easily be generated in an experiment and probed by a cloud of

cold atoms, for which it constitutes a disordered potential landscape due to the atom-light

interaction. Atomic matter waves propagating in this disordered landscape are multiply

scattered by the random intensity fluctuations of the speckle pattern. Our aim is to describe

the transport properties of the atomic matter waves in the effective medium given by the

statistical average over many speckle configurations. This can be achieved in the framework

of the diagrammatic perturbation theory [4–7], which is well-known from electron transport

in condensed matter physics.

Our work has been motivated by several recent developments in the field of atom optics.

Since the first observation in 1995 of a gaseous Bose-Einstein condensate [8, 9] and a few

years later of the first ultra-cold Fermi gas [10], rapid progress has been made in this field.
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Current cooling and trapping techniques for ultra-cold atomic gases have reached a high

degree of control and are nowadays routinely used in experiments.

Loading ultra-cold atomic gases [11–14] into optical lattices [15, 16] has opened fascinating

new possibilities to probe condensed matter phenomena. The investigation of the influence

of disorder on optically confined atoms presents a natural evolution in this domain. Several

experiments have recently been performed for ultra-cold atoms and Bose-Einstein conden-

sates in disordered optical potentials [17–24]. However, these experiments have been carried

out for one-dimensional disordered optical potentials in the interaction-dominated regime,

where wave localization phenomena are difficult to observe.

In our work we focus on the influence of disorder in the independent-particle regime and

discard the atom-atom interactions. Experimentally, the interaction-free regime could be

achieved, if the ultra-cold atomic gas is given time to expand, such that its spatial density

decreases, before switching on the speckle potential. A more elaborate way would be to

tune the two-body interactions by using a Feshbach resonance [25, 26]. In this case, by

scanning a magnetic field, one can continuously go from the strongly interacting regime

to the independent-particle regime, where weak localization of atomic matter waves does

become important.

In this thesis we present a theoretical description of matter-wave transport in disordered

optical potentials, which allows to determine the relevant transport parameters in the weak

scattering regime. Special attention is drawn to the weak localization effect due to quantum

interference corrections. In particular we calculate the renormalized diffusion constant for

anisotropic multiple scattering. The anisotropy is a consequence of the spatial correlations

of the potential fluctuations and one of the main differences of the transport of matter-waves

in optical potentials in comparison with electron scattering due to uncorrelated impurities

in a solid. In addition we derive a general expression for the probability density and discuss

the influence of a finite initial Wigner distribution of the atoms. For the special case of a

separable Wigner function given by the product of two Gaussian wave packets, this approach

provides a criterion for the detectability of weak localization in the experiment. Some results

of this thesis have been published in [27] and [28].

1.1 Electron Transport and Localization in Disordered

Systems

Some of the most important results of localization theory have been obtained for electron

transport in solids [29–31]. Two milestones in this respect are the scaling theory of localiza-

tion [32] inspired by the renormalization theory of statistical physics, and the diagrammatic

perturbation theory [4–7] adopted from quantum field theory. Since the diagrammatic per-

turbation theory is indispensable for the most important results presented in this work, I

would like give a brief review of the theoretical predictions and the experimental evidence in
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(a) diffuson contribution (b) cooperon contribution

Figure 1.1:
Schematic transport diagrams: The solid line describes the scattering path for the partial wave

ψp, whereas the dotted line describe the scattering path for the conjugated wave ψ∗

p′ . (a) Classical
(diffuson) contribution (p′ = p). (b) Quantum interference (cooperon) contribution (p′ = prev).

the case of electron transport.

Disorder in solids can appear in the form of impurities, vacancies or dislocations in other-

wise ideal crystal lattices. Introducing disorder in a perfect crystal has striking implications

for its physical properties. Classically, the conductivity of a metal with impurities is given

by the Drude-Boltzmann formula [7, 33]

σB =
ne2τs
m

(1.1)

where e is the elementary charge of the electrons, n is the electron density and τs is the

elastic scattering time during which an electron of mass m and velocity v travels along the

elastic scattering mean free path ℓs = vτs. However, close to zero temperature, T = 0, the

wave nature of the electrons becomes important. The classical result is then reduced due to

wave interference effects; the actual conductivity becomes σ = σB − δσ. This reduction of

the conductivity is known as the weak-localization phenomenon.

1.1.1 Weak Localization

Weak localization arises from the constructive interference of multiply scattered counter-

propagating waves in a random medium. This interference survives the statistical average

over many configurations of disorder and has to be taken into account for a correct description

of the average conductivity.

To understand the origin of the weak-localization phenomenon, it might be helpful to

study the average probability of an electronic wave to return to a given point after it has

undergone a series of scattering events. The resulting wave at the point of origin is given by

the sum over all possible partial waves ψp, each associated to a different loop-like scattering

path. The return probability averaged over many realizations of disorder can be written as
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the sum of two terms [34]

P =
∣

∣

∑

p

ψp
∣

∣

2
=

∑

p

|ψp|2 +
∑

p, p′ 6=p

ψpψ∗
p′ (1.2)

where (. . . ) denotes the disorder (or configurational) average. The first term on the right

hand side counts all contributions where the partial wave ψp and the conjugated wave ψ∗
p

have encountered exactly the same series of scattering events in the same order. For classical

waves, this term is sometimes called the incoherent intensity. It is also known as the diffuson,

since it describes the classical diffusion of electrons in a disordered system.

The second term comprises all contributions where ψp and ψp′ each belong to a series

of different scattering events. One could expect that the interference term
∑

p, p′ 6=p ψpψ
∗
p′

vanishes with the configurational average. However, it does give a non-vanishing contribution,

which stems from the constructive interference of ψp and ψp′ , if p′ = prev is the reverse

scattering path of p
∑

p, p′ 6=p

ψpψ∗
p′ =

∑

p

ψpψ∗
prev +

∑

p, p′ /∈{p,prev}

ψpψ∗
p′ (1.3)

Only the last term on the right hand side averages to zero. If ψ∗
prev does not display a phase

difference compared to ψp, the first term on the right hand side in (1.3), also known as

the cooperon contribution, is identical to the diffuson term in (1.2). The importance of the

cooperon contribution was first realized by J. S. Langer and T. Neal [35]. For this reason,

the corresponding diagrams within the Kubo formalism have also been named Langer-Neal

graphs by G. Bergmann [30]. Including the cooperon contribution the average quantum

return probability thus reaches twice its classical value. This phenomenon is also responsible

for the coherent backscattering effect, which describes the enhancement by a factor of 2

of the average intensity of light that is reflected from a disordered medium in the exact

backscattering direction. A direct observation of this effect was first achieved for visible light

by P. Wolf and G. Maret [36] and M. P. van Albada and A. Lagendijk [37] in 1985.

The same phenomenon affects the conductivity of a solid, since an enhancement of the

return probability means that the conducting electrons have a tendency to rest at one point.

This contribution is not included in the Drude-Boltzmann formula (1.1), where the elec-

trons are regarded as classical particles. Alongside the described enhancement of the return

probability, the cooperon contribution thus slows down the classical diffusion and leads to a

reduced conductivity σ = σB − δσ. The diffuson contribution and the cooperon contribution

are depicted schematically in Fig. 1.1(a) and Fig. 1.1(b).

1.1.2 Metal-Insulator Transition

In principle, the conductivity can be zero, if the weak-localization correction δσ, which arises

from the cooperon contribution, reaches a value similar to the Drude-Boltzmann conductivity

σB itself. This corresponds to the regime of Anderson (or strong) localization, where the
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electronic states are exponentially localized. The creation of exponentially localized electronic

states is probably the most significant consequence of the presence of disorder in a solid.

The concept of localization has first been formulated by Anderson in 1958 [1]. Ten years

later, Mott [2] pointed out its relevance for the metal-insulator transition and introduced

the mobility edge as the energy that separates localized and extended states energetically

as shown in Fig. 1.2. The conductivity of a solid is influenced by the nature of the states

available to the conduction electrons at the Fermi level. If only localized states are available,

the solid is an insulator. On the other hand, if the Fermi level lies inside an energy region

that belongs to extended states, the conduction electrons can move freely inside the solid,

which then becomes a metal. The presence of disorder as the origin of exponentially localized

states thus triggers the transition between the insulating and the metallic states of matter.

1.1.3 Scaling Theory

As a fundamental prediction of the scaling theory [32], localized electronic states can in

principle be found in all one- and two-dimensional disordered quantum systems, whereas in

three-dimensional systems they only exist, if the amount of disorder is sufficiently strong. In

one or two dimensions the observation of localized states may not be possible, if the size of the

system or the typical distance for coherent transport is smaller than the localization length,

i. e. the characteristic length over which the electronic wavefunction decays. Even though

these electronic states are exponentially localized on a large scale, they appear extended on

the smaller length scale accessible to the observer. In two dimensions, where the localization

length grows exponentially with decreasing disorder, this effect may be very strong. In

this sense, two-dimensional systems establish a marginal case between systems with a true

Anderson transition and systems where such a transition does not exist.

The scaling theory is based on the idea that only one scaling variable is sufficient to describe

the critical behaviour of the conductivity in the metallic regime and the critical behaviour

extended states

states
localized localized

states

energy

Em−Em

density of states

Figure 1.2:
Schematic representation of the mobility edge (cf. [2]) for the Anderson model of a cubic solid.

Extended states at the band centre and localized states at the band edges are separated energetically
by the mobility edge |Em|. The density of states for higher disorder always has the described form,
and the localized states are concentrated at the band edges (cf. Fig. 3.3 and Fig. 3.4 in section 3.1).
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Figure 1.3:
The scaling function (1.6) for a d-dimensional sample under the influence of a homogeneous electric

field, from [38]. β(g) is positive in the metallic regime and negative in the localized regime. For d = 1
and d = 2 β(g) is always negative, i. e. there is no true metallic state in 1D and in 2D.

of the localization length in the insulating regime. The role of the scaling parameter for a

d-dimensional hypercube of length L is embodied by the dimensionless conductance [4]

g(L) = Ld−2σ(L)~/e2 (1.4)

where σ(L) is the conductivity of the system. The one-parameter scaling hypothesis [4]

states that if nd identical hypercubes are assembled to a larger hypercube of length nL, the

conductance for the larger hypercube is given as a function of the conductance of the building

block alone, and does not depend separately on the extension of the system or the amount

of disorder

g(nL) = f
(

n, g(L)
)

(1.5)

If the one parameter scaling hypothesis holds, the scaling function [4]

β(g(L)) =
d ln

(

g(L)
)

d lnL
=

L

g(L)

dg(L)

dL
=

L

g(L)

dg(nL)

d(nL)

∣

∣

∣

n=1
=

1

g(L)

df
(

n, g(L)
)

dn

∣

∣

∣

n=1
(1.6)

can also be written as a function of the conductance of the building block alone. Two limiting

cases may be distinguished:

Weak Disorder – Metallic Regime: In the metallic regime the conductance is large

(g ≫ 1) and can be described by Ohm’s law: gB(L) = Ld−2σB~/e2, where σB denotes the
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classical conductivity. In this case the scaling function must be

β(g) = d− 2 (1.7)

which can be directly obtained form (1.4). In particular, the scaling function in the metallic

regime depends only on the dimension of the system.

Strong Disorder – Insulating Regime: In the insulating regime (g ≪ 1), although this

is not directly obvious from (1.4), one expects the conductance to decrease exponentially,

g(L) ∝ exp[−L/ξloc], where ξloc is the localization length [4]. In this case, one finds a

logarithmic dependence of the scaling function on the conductance

β(g) = ln g + c (1.8)

where c is a constant. This asymptotic behaviour of the scaling function has been verified

by Vollhardt and Wölfle [38] for a d-dimensional sample of length L under the influence of a

homogeneous electric field. The two asymptotic limits (1.7) and (1.8) may be connected by

a continuous function.

Fig. 1.3 shows the result for the scaling function as obtained by Vollhardt and Wölfle [38]

for all three dimensions d = 1, 2, 3. In particular, Fig. 1.3 confirms the two limiting cases

(1.7) and (1.8).

The transition occurs at a critical value for the conductance where the scaling function is

zero (β(gc) = 0). The scaling function is positive in the metallic regime and negative in the

localized regime. For a three-dimensional sample with a conductance larger than the critical

value (g > gc, β > 0) the conductance increases further with the size of the system until

it reaches the state of a pure metal with a constant conductivity σB (1.7). In one and two

dimensions the scaling function is always negative, and hence the system never reaches the

metallic regime.

Vollhardt’s and Wölfle’s result [38] has been obtained through a quantitative extrapola-

tion from the weak-disorder limit using diagrammatic perturbation techniques. However,

it reproduces entirely the predictions made by Abrahams et al. [32] concerning the scaling

behaviour of the conductance. This remarkable result indicates the strength of the diagram-

matic perturbation theory even beyond the weak-localization regime.

The scaling theory predicts a continuous metal-insulator transition in 3D. In analogy to

second-order phase transitions the conductivity and the localization length at the mobility

edge exhibit the following critical behaviour (Em denotes the mobility edge) [29]

ξloc ∝ (Em − E)−ν (1.9a)

σ ∝ (E − Em)s (1.9b)
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with the predicted numerical values s = ν = 1 [38]. These values have been verified exper-

imentally for amorphous materials like AlxGa1−xAs and compensated semiconductors [29].

The critical exponents s and ν obey the scaling relation [29]

s = (d− 2) ν (1.10)

From the definition of the critical exponents (1.9) and the scaling relation (1.10) one can

directly obtain the relation ξloc ∝ σ−1/(d−2) between the localization length and the conduc-

tivity.

1.1.4 Electron Transport Experiments

Experimental evidence about localization phenomena can be gained indirectly through the

study of phase-breaking mechanisms. At this point a new length scale has to be considered,

which is known as the phase coherence length Lφ. It describes the average distance over which

coherent multiple scattering can occur, or in other words, the average distance after which

phase-breaking mechanisms become important. Changing for example the temperature or

the strength of an external magnetic field, allows a direct control of this characteristic length

scale. An increase of either of these external parameters entails a higher conductivity (or

a lower resistivity), since it alters the phase coherence of the interfering waves inside the

quantum loops in Fig. 1.1. This change in the conductivity can then be compared to the

phase-coherent measurement.

Phase-breaking mechanisms are always connected to the presence of additional degrees of

freedom. In general, the phase-breaking mechanism results in an exponential decay of the

probability density with time on a characteristic time scale τφ. If more than one phase-

breaking mechanism is present, each contributes a new time scale, and if the associated

degrees of freedom are not coupled to each other, these contributions can be treated indepen-

dently. According to Matthiessen’s rule [7], the sum of all inverse dephasing or decoherence

times then results in a new total inverse time scale.

Temperature Dependence

The finite conductivity of electrons in a metal is entirely due to deviations from the perfect

periodicity of the lattice. At room temperature the dominant deviation effect is given by

thermal vibrations of the ions. Above the Debye temperature ΘD the conductivity is inversely

proportional to the temperature (σ ∝ T−1 for T ≫ ΘD) [33]. For temperatures below the

Debye temperature one encounters Bloch’s T 5 law for the resistivity (i. e. σ ∝ T−5 for

T ≪ ΘD) [33]. As the temperature decreases further, the thermal motion of the ions freezes

out and eventually impurity and defect scattering dominates.

In two dimensions the diagrammatic perturbation theory predicts in this case a logarithmic
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(a) Temperature dependence of the resistance (b) Magnetic field dependence of the resistance

Figure 1.4:
Experimental evidence for weak localization. (a) Temperature dependence of the resistance of a

thin Cu-film, from [39]. (b) Magnetic field dependence of the resistance of a thin Mg-film for different
concentrations of Au-impurities, from [30]. A higher concentration of gold atoms increases the spin
orbit scattering such that the negative magneto-resistance becomes positive again.

correction g = gB − δg to the Drude-Boltzmann conductance gB with [7]

δg ∝ ln(Lφ/ℓs) (1.11)

The phase coherence length associated with the temperature is proportional to T−p, where

T denotes the temperature. In 2D, the exponent p is given by p = 3/2 for electron-phonon

interactions, and by p = 1/2 for electron-electron interactions [7].

One thus expects a logarithmic increase of the conductance (decrease of the resistance)

with increasing temperature. This is indeed what has been found in a series of experiments

with two-dimensional thin films as described in [30]. Fig. 1.4(a) shows the result of one of

these experiments by L. van den Dries [39] on two-dimensional Cu-films.

Magnetic Field Dependence

It turned out that a logarithmic temperature dependence of the conductance as expected for

weak localization (cf. (1.11)) can also be attributed to a different physical effect. Altshuler

et al. showed that in disordered systems a modification of the Coulomb interaction leads

to the same conductance anomaly [30]. For an unambiguous proof of the predictions of the

scaling theory and the diagrammatic perturbation theory one has to resort to a different

phase-breaking mechanism that is induced by the application of an external magnetic field

perpendicular to the two-dimensional film. In this case the classical conductivity, which takes
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into account the bending of the electron trajectories due to the Lorentz force, reads [7]

σ(B) =
σ(0)

1 + ω2
c (B)τ2

s

(1.12)

Here, ωc(B) = eB/m is the cyclotron frequency. For small enough magnetic fields ωτs ≪ 1,

(1.12) reduces to the Drude-Boltzmann conductivity (1.1).

Nevertheless, the magnetic field has a significant impact on the interference of electronic

waves in the loop-like interferometers of Fig. 1.1. Each of these loops can be seen as a little

Aharonov-Bohm ring. The magnetic flux φ = BA through a loop which encloses the area A

results in a phase shift 2πφ/φ0 for the associated wave. φ0 = h/e denotes the elementary flux

quantum. While Fig. 1.1(a) remains unaffected since the phase change is the same for both

waves, Fig. 1.1(b) acquires the phase difference e−i 4πBA/(h/e). If the magnetic field B is larger

than the characteristic field Bφ = φ0/(4πL
2
φ), the weak-localization correction disappears.

The application of a magnetic field thus increases the conductance and decreases the

resistance. This effect is known as negative magneto-resistance. It is shown in Fig. 1.4(b)

for a pure magnesium film without gold impurities. Since the Coulomb interaction gives

a positive magneto-resistance, magnetic field experiments on thin films, in contrast to the

temperature measurements, can be considered as an unambiguous proof of weak localization.

Most interestingly, the coupling to the magnetic field can result in another peculiar effect

known as weak anti-localization (cf. Fig. 1.4(b) for finite Au-concentrations). This increase

of the resistance with an increasing magnetic field at low temperature, is due to spin-orbit

coupling [30].

1.2 Ultra-cold Atoms in Disordered Systems

Even more than by the theoretical and experimental results on electron transport, which have

been reviewed in the preceding section, our work is motivated by the current ongoing research

in the field of atomic transport in the presence of disorder. In the following, I would like to

give an overview of present experimental and numerical studies of Bose-Einstein condensates

in disordered quantum systems. Special attention is given, on the one hand, to the Bose-

Hubbard model for interacting many-boson systems, and the occurrence of quantum phase

transitions within this model and, on the other hand, to recent experiments with ultra-cold

atoms subjected to different kinds of disordered and quasi-disordered optical potentials.

Disorder in condensed-matter systems is an intrinsic feature of the considered sample. The

study of different isolated kinds of disorder requires the preparation of different samples.

Moreover, several kinds of disorder might be present simultaneously, which makes it difficult

to study the effect of one single kind of disorder independently from the others. In electronic

systems one encounters the additional difficulty that electrons interact via the long-range

Coulomb interaction. It can therefore be desirable to study disordered atomic systems as a

model for the more complicated condensed matter systems [11]. In atomic systems, disorder
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can be introduced in a controlled way using optical potentials. Almost any kind of potential

can be realized in this way. Moreover, the method of superlattices allows to add different

optical lattices on top of each other. State of the art laser cooling and evaporative cooling

techniques allow to control the temperature of atomic systems reaching temperatures in the

nano-Kelvin range, far below the condensation temperature for bosonic systems.

Optical lattices are rigid structures with the particular advantage that one does not have

to deal with lattice phonons. A perfectly symmetric optical lattice provides an ideal optical

crystal without any lattice defects or dislocations. The single-particle energy spectrum in this

case consists of Bloch bands and the eigenstates are Bloch functions reflecting the periodicity

of the optical potential just like in solid state physics for an ideal crystal [33]. If the excitation

energy to the upper bands is high compared to the kinetic energy of the atoms, only the lowest

energy band needs to be considered, where the Bloch functions can be expanded into Wannier

functions that are localized at each lattice site.

1.2.1 Bose-Hubbard Model

A bosonic many-body system with an interaction range that is small compared to the lattice

spacing can be very accurately described by the Bose-Hubbard Hamiltonian [40] by taking

into account the on-site interaction and the hopping (or tunnelling) between neighbouring

sites. The Bose-Hubbard Hamiltonian reads [41]

H = −J
∑

〈i,j〉

a†iaj +
∑

i

(ǫi − µ)ni +
1
2 U

∑

i

ni(ni − 1) (1.13)

Here, a†i and ai are the creation and annihilation operators for a boson on the ith lattice

site and ni = a†iai is the occupation number operator. The index 〈i, j〉 indicates the sum

over nearest neighbours. The hopping energy is given by J = −
∫

dr w(r − ri)(−~
2∇2/2m+

Vlat(r))w(r − rj) with the single-particle Wannier function w(r − ri) at the ith site, and the

lattice potential Vlat(r). m is the atomic mass. The second term describes the energy offset

ǫi = Vext(ri) on the ith site due to an external confinement or a superimposed disordered po-

tential. µ is the chemical potential. The third term in (1.13) describes the on-site interaction.

The interaction energy is given by U = (4π~
2a/m)

∫

dr |w(r)|4 where a is the scattering

length. The on-site interactions can be controlled by a modification of the scattering length

under the influence of an external magnetic field close to a Feshbach resonance [25, 26].

Quantum Phases: One important feature of the Bose-Hubbard model is the fact that

it displays a quantum phase transition at zero temperature between three possible ground

states: the Mott-insulator state, the Bose-glass phase and the superfluid phase. The phase

transition between the Mott-insulator and the superfluid phase in the absence of disorder

was first observed experimentally by M. Greiner et al. [42]. The existence of a gap-less

Bose-glass phase with non-zero compressibility between the superfluid phase and the Mott-
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Figure 1.5:
Schematic phase plot for the Bose-Hubbard model at T = 0, depending on the ratio J/U and the

ratio µ/U with the hopping energy J , the interaction energy U and the chemical potential µ. For zero
disorder the phase transition occurs between the Mott-insulator phase (MI) and the superfluid phase
(SF). For increasing disorder the Bose glass phase (BG) appears in-between the Mott-insulator phase
and the superfluid phase, whereas for disorder strengths larger than the interaction energy, only the
Bose-glass phase and the superfluid phase are present (This plot is based on [45]).

insulating phase in the presence of a random external potential was predicted by M. P. A.

Fisher et al. [43]. Even long-range dipolar interactions [11] can be included in the Bose-

Hubbard Hamiltonian (1.13), which can lead to new quantum phases in addition to the ones

mentioned above like supersolid, checkerboard and collapse phases [44].

An exact numerical solution of the Bose-Hubbard model for a two-colour superlattice1 with

a sinusoidal modulation of the potential wells has been performed by R. Roth and K. Burnett

[46]. Such an exact diagonalization is only possible for very small systems as the dimension

of the Bose-Hubbard Hilbert space grows according to (M +N − 1)!/(M !(N − 1)!), where

N denotes the number of sites and M denotes the number of atoms in the lattice. For a

relatively small system of N = 8 sites and M = 8 atoms the solution of the eigenvalue

problem already requires the diagonalization of a 6435 × 6435 matrix [47].

A numerical analysis of the Bose-Hubbard model with a purely random potential has been

performed by B. Damski et al. [48] and compared to the quasi-disordered superlattice. For

both cases a dynamical phase transition from the Bose-glass phase to the superfluid phase was

found. In the same paper a direct diagonalization of the 1D Anderson Hamiltonian for both

potentials revealed a phase transition from the superfluid phase to the Anderson-glass phase

as a function of the strength of the potential. In the quasi-disordered case, the periodicity of

the superimposed lattice in the quasi-disordered case was reflected in a periodical structure

of the localized domains.

1Two-colour superlattices are formed by the superposition of two standing-wave lattices with comparable
amplitudes but different wavelengths. These superlattices, however, only provide a form of quasi disorder,
not a truly disordered potential like a speckle pattern.
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The first experimental evidence of the phase transition between the Mott-insulating phase

and the Bose-glass phase has been found by L. Fallani et al. [45] for a bichromatic optical

lattice superimposed on a perfect 1D lattice. The combination of time-of-flight measurements

for different heights of the quasi-disordered potential, and the excitation spectra were seen

as an indication that the system went from a Mott-insulator state over to a Bose-glass state

with vanishing long-range order and a flat density of excitations.

1.2.2 Experiments with Optical Quasicrystals, Superlattices and Speckle

Potentials

One possible realization of random optical potentials are optical quasicrystals [49]. Even

though these potentials display long-range order they are not translation invariant, similar

to the Penrose tiling [50]. The first experiment on atomic diffusion in an optical quasicrystal

with five-fold symmetry was performed by L. Guidoni et al. [51] in 1999. A special config-

uration of five laser beams with an angular distance of 72◦ between the beams was used to

create an optical quasicrystal with 5-fold symmetry (cf. Fig. 1.6) in order to cool and trap

the atoms. The time evolution of the variance was measured in the quasicrystal plane and

in the perpendicular plane, where the atoms evolved in a periodic potential. In both cases a

linear increase of the variance with time was observed as expected for a diffusive expansion of

the atomic cloud. In addition, the experiment by L. Guidoni et al. clearly revealed a slower

expansion in the quasicrystal plane with a reduced diffusion constant given by the slope

of the variance. Suppression of diffusion was also observed by L. Sanchez-Palencia and L.

Santos [17] in a numerical study of the Gross-Pitaevskii equation for the BEC wavefunction

in a similar quasicrystal configuration with 5-fold symmetry.

The first experiment with a quasi one-dimensional Bose-Einstein condensate in a harmonic

trap, subjected to a purely random speckle potential, was performed by J. E. Lye et al.

[18]. In this experiment a strong damping of dipole and quadrupole oscillations [12] of the

condensate in the presence of the optical potential was observed and analysed theoretically

(cf. also [52]). Later work by the same group included measurements of the spatial variance

and the centre-of-mass motion of the condensate, without the confining trapping potential, as

a function of time, which clearly revealed a reduced expansion due to the disordered potential

[19]. Recently J. E. Lye et al. [53] studied damped dipole oscillations of a Bose-Einstein

condensate in a 1D incommensurate bichromatic lattice. A numerical study of an effective

1D Gross-Pitaevskii equation for a condensate in a similar bichromatic lattice revealed a

strong destructive influence of the atom-atom interactions (controlled by a variation of the

number of atoms for a fixed disorder strength) on initially localized states [53].

The same screening of Anderson localization by interactions for a condensate in an optical

lattice with a superimposed disordered potential (both for a speckle and a pseudorandom

potential) had been observed beforehand by T. Schulte et al. [20] (cf. also [24]). The

experiment [20] also revealed a fragmentation of the initially immobile condensate in the
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Figure 1.6:
Two-dimensional optical quasicrystal as obtained by the interference of five laser beams with an

angular distance of 72◦ (from [51]).

presence of the disordered speckle potential. Similar observations of the fragmentation of the

condensate have been reported in [18]. The fragmentation was attributed to the distribution

of atoms in the wells of the disordered potential.

A detailed study of the suppression of transport of a quasi one-dimensional Bose-Einstein

condensate in a random potential was carried out by D. Clément et al. [21] and in later

experiments by the same group [22, 23]. These experiments showed a strong suppression

of the expansion of the Bose-Einstein condensate in the presence of disorder, which was

attributed to disorder-induced trapping of the Bose-Einstein condensate between two high

peaks of the random potential. The authors distinguished between two different regions,

namely the centre of the condensate, where interaction effects are very strong and the wings

of the condensate, which are populated by almost free particles. The relevant length scale

for this distinction is the healing length [12], ξh = (8πna)−1/2 (here, n is the density of atoms

and a is the scattering length). The healing length defines the typical distance, below which

spatial variations of the condensate wavefunction contribute significantly to the energy of

the Bose-Einstein condensate [54]. At the centre of the condensate the density is high and

ξh is small compared to the correlation length of speckle potential and the condensate can

be described in the Thomas-Fermi regime [21]. In the wings of the condensate, the atomic

density is low and ξh reaches the same order of magnitude as the correlation length [21].

In this region, where the interaction energy between the atoms becomes less important,

Anderson localization effects are expected.
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1.2.3 Alternative Concepts

Alternative concepts for the study of Bose-Einstein condensates in disordered optical po-

tentials include evanescent wave mirrors, where the disordered potential for the condensate

is created by the evanescent wave above a rough dielectric surface [55–57], the scattering

of ultra-cold atoms on atomic impurities of a different atomic species in an optical lattice

[58, 59], effective potential variations due to fermionic impurities for bosonic atoms [60], ran-

dom magnetic potentials [61] on atom chips [62], and random on-site interactions on atom

chips close to a Feshbach resonance [63]. A very promising new field are Fermi-Bose mixtures

[11, 60, 64, 65]. A detailed numerical analysis of the transmission of a Bose-Einstein con-

densate through a one-dimensional random magnetic potential of an atom chip with a rough

surface was performed by T. Paul et al. [66]. For small interactions a stationary flow was ob-

served, displaying an exponential decay of the transmission, whereas for strong interactions

the system displayed a time-dependent flow with an algebraic decay of the time-averaged

transmission. The exponential decay of the transmission is a clear signature of localization,

which is destroyed for strong interactions.

Most of the presented results in this section have been obtained for 1D systems in the

interaction-dominated regime. Localization effects in this regime are screened by the inter-

actions. However, in the non-interacting case, Anderson localization effects are expected to

become important. In the following, we will consider non-interacting particles subjected to

a truly random speckle potential in two and in three dimensions.
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Chapter 2

Speckle Theory and Numerical Implementation

When an atom is exposed to electromagnetic radiation, it is polarized, and its energy levels

are shifted. In the dipolar approximation these light shifts are proportional to the field

intensity evaluated at the centre of mass of the atom [67]. If the field intensity is space

dependent, a moving atom experiences dipolar forces, due to the field-dependent light shifts,

which alter its trajectory.

In the case of a speckle potential, the intensity varies randomly in space and assumes a

different shape for each realization of the speckle potential. Generic transport properties

of the atomic matter wave inside the speckle potential can only be obtained via statistical

averages over different realizations. We will therefore need to take a closer look at the

statistical properties of speckle potentials. The present chapter gives an introduction into

the basic theory of speckle statistics following the review by J. W. Goodman [3].

A typical example of the granular intensity pattern, which is generally known as a speckle

interference pattern, is shown in Fig. 2.1. This speckle pattern has been created numerically
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Figure 2.1: Contour plot of a numerically generated two-dimensional speckle pattern.
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Figure 2.2:
Schematic representation of different coherent components to the speckle intensity pattern at the

observation point, arising from different scattering regions on a surface that is rough on the scale
of the optical wavelength λ. This plot is based on the description in [3]. Due to the large surface
roughness, the phase difference between the different coherent components can be very large. For this
reason a uniform phase distribution over the interval [0, 2π] can be assumed.

on a 256 × 256 lattice as described in section (2.2). A real speckle pattern is obtained by

the interference of many coherent partial waves with uniformly distributed random phases,

originating from different regions of a disordered surface, which is illuminated by the coherent

light of a laser. A schematic view of these coherent partial waves is shown in Fig. 2.2.

2.1 Speckle Statistics

For polarized monochromatic light, scattered at a surface that is rough on the scale of the

optical wavelength (cf. Fig. 2.2), the amplitude E(r) of the electric field at the observation

point r is given by a linear superposition of the amplitudes and phases from N completely

uncorrelated elementary scatterers

E(r) =
1√
N

N
∑

k=1

|ak| eiϕk (2.1)

The sum in equation (2.1) can be regarded as a random walk in the complex plane, which

finally leads to the electric field amplitude E(r) = Re[E(r)] + iIm[E(r)]. The phases of the

elementary scatterers are uniformly distributed over the interval [0, 2π]. This implies that

the real and the imaginary part of the resultant field have zero means and identical variances

and are uncorrelated.
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2.1.1 Probability Distribution

According to the central limit theorem Re[E ], Im[E ] and E itself eventually follow a Gaussian

probability distribution, if the number of elementary scattering regions N grows to infinity

P (Re[E ], Im[E ]) =
1

2πσ2
exp

[

−Re2[E ] + Im2[E ]

2σ2

]

=
1

2πσ2
e−|E|2/2σ2

(2.2)

The joint intensity phase probability distribution function for the intensity1 I(r) = |E(r)|2 =

Re2[E(r)]+ Im2[E(r)] and the phase φ(r) = arctan(Im[E(r)]/Re[E(r)]) is given by the trans-

formation

P (I, φ) = P (
√
I cosφ,

√
I sinφ) |det(J)| =

1

4πσ2
e−I/2σ

2

(2.3)

where det(J) = 1
2 is the determinant of the corresponding Jacobi matrix. From the joint

probability density, the probability density for the intensity or the phase alone is obtained

by integrating over I or φ, respectively

P (I) =

∫ 2π

0
dφ P (I, φ) =

1

2σ2
e−I/2σ

2

(2.4a)

P (φ) =

∫ ∞

0
dI P (I, φ) =

1

2π
(2.4b)

One finds again a uniform distribution for the phase. The intensity follows a negative expo-

nential or Rayleigh distribution. The nth moment of the intensity is given by

In =

∫ ∞

0
dI P (I) In = n! I n (2.5)

In particular, the mean value of the intensity is given by I = 2σ2, and the standard deviation

∆I =
√

I2 − I 2 = I is equal to the mean intensity itself. The probability that the intensity

exceeds a certain value I0 amounts to the negative exponential function

P0(I0) =

∫ ∞

I0

dI P (I) = e−I0/I (2.6)

2.1.2 Correlation Functions

Random Gaussian variables have the remarkable property that all higher-order correlations

among them are expressible in terms of second-order correlations between pairs. This is

known as the Gaussian moment theorem [68]. For the intensity-intensity correlation function

1The actual intensity is given by I(r) = 1

2
c ǫ0 |E(r)|2, where c is the speed of light and ǫ0 is the permittivity

of free space. In this chapter, we only consider the reduced intensity for 1

2
c ǫ0 = 1.
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I(r)I(r′) = |E(r)|2 |E(r′)|2 we find

I(r)I(r′) = |E(r)|2 |E(r′)|2 + E∗(r)E(r′) E∗(r′)E(r)

= I 2
(

1 +
∣

∣γ(r − r′)
∣

∣

2 )

(2.7)

since the mean value of the intensity I = I(r) = |E(r)|2 is constant. The function γ(r)

defines the complex degree of coherence

γ(r) =
E∗(r + r′)E(r′)

|E(r)|2
(2.8)

Second-order correlations between fluctuations of the intensity are calculated in the same way.

If we write I(r) = I + J(r), where J(r) are fluctuations with zero mean J(r) = 0 around

the constant mean value I , the two-point intensity correlation function can be expressed as

I(r)I(r′) = I 2 + J(r)J(r′) (2.9)

The correlation function of the intensity fluctuations is then given by

J(r)J(r′) = I 2
∣

∣γ(r − r′)
∣

∣

2
(2.10)

For an infinite medium, the spatial correlation function of the fluctuations J(r) is transla-

tion invariant. It only depends on the relative distance vector ρ = r − r′. According to the

Wiener-Khintchine theorem [68], the correlation function PJ(ρ) = J(r)J(r′) of a stationary

random process and the spectral density (or the power spectrum) of the process PJ(q) form

a Fourier transform pair: PJ(q) = Fd[PJ(ρ)]. The d-dimensional Fourier transform Fd[f(ρ)]

is defined in appendix C. PJ(q) and PJ(ρ) are given by2

PJ(q) =

∫

dρ PJ(ρ) e−iq·ρ PJ(ρ) =

∫

dq

(2π)d
PJ(q) eiq·ρ (2.11)

Equivalently, the Fourier transform of J(r) can be defined as

J(q) =

∫

dr J(r) e−iq·r J(r) =

∫

dq

(2π)d
J(q) eiq·r (2.12)

With (2.11) and (2.12) the correlation function for the intensity fluctuation in Fourier space

2Throughout this work the Fourier transform is defined in this way. The factor (2π)−d is always attributed to
the integral over dk. The Fourier transform and the function itself are denoted by the same symbol although
they are of course different functions. Both functions are distinguished by their respective argument. The
d-dimensional integration element ddρ is written as dρ.
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can be expressed as

J(q)J(q′) =

∫∫

dr dr′ J(r)J(r′) e−iq
′·r′

e−iq·r

=

∫

dr′ e−i(q
′+q)·r′

∫

dρ PJ(ρ) e−iq·ρ = (2π)dδ(q + q′)PJ(q) (2.13)

In order to calculate higher-order correlation functions, one can resort to the Gaussian mo-

ment theorem. Each correlation function of order n can be expressed as a sum of n! pair

correlation functions. In terms of the average intensity I = Ii = E∗(ri)E(ri) and the com-

plex degree of coherence γij = E∗(ri)E(rj)/I (cf. (2.8)), the third-order correlation function

reads

I1I2I3 = I 3
(

γ11γ22γ33 + γ11γ23γ32 + γ22γ13γ31 + γ33γ12γ21 + γ12γ23γ31 + γ13γ21γ32

)

= I 3
(

1 + |γ12|2 + |γ23|2 + |γ31|2 + 2 Re[γ12γ23γ31]
)

(2.14)

On the other hand, the third-order correlation function can be expressed in terms of the

fluctuations Ji. Since Ii = I + Ji and Ji = 0, we have

I1I2I3 = I 3 + I
(

J1J2 + J2J3 + J3J1

)

+ J1J2J3 (2.15)

The comparison between (2.15) and (2.14) yields the third-order correlation function of the

intensity fluctuations

J(r)J(r′)J(r′′) = 2I 3 Re
[

γ(r − r′) γ(r′ − r′′) γ(r − r′′)
]

(2.16)

2.1.3 2D Speckle

A two-dimensional speckle can be produced by reflection of a laser from a rough surface (cf.

Fig. 2.2) or by transmission through a random phase mask (diffusor) as shown schematically

in Fig. 2.3.

In the far field from the diffusor the speckle interference pattern can be regarded as quasi

two-dimensional, since the speckle grains are very elongated in the z-direction, orthogonal

to the optical axis. According to the Huygens-Fresnel principle [69], the electric field at the

far field observation plane (x, y) is uniquely determined by the impulse response function

h(x, y, η, ξ) and the aperture function A(η, ξ)

E(x, y) =

∫

∞
∫

−∞

dη dξ h(x, y, η, ξ)A(η, ξ) (2.17)

where A(η, ξ) decreases to zero outside the aperture region in accordance with the Kirchhoff

boundary conditions. The Huygens-Fresnel principle states that the field at the observation

plane originates from the superposition of an infinitely large number of fictitious point sources
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Figure 2.3:
Two-dimensional speckle geometry. The speckle pattern is produced by transmission of a coherent

monochromatic laser beam through a circular diffusor of radius R in the (η, ξ)-plane. The speckle
interference pattern is observed in the (x, y)-plane located at the distance z from the diffusor.

inside the aperture region. If the distance between the aperture and the observation plane is

larger than the extension of the aperture itself (z ≫ R), the impulse response function can

be approximated by

h(x, y, η, ξ) ≈ 1

iλz
exp

[

ikL

√

z2 + (x− η)2 + (y − ξ)2
]

(2.18)

As a further simplification, for z ≫ {(x− η), (y− ξ)}, one may resort to the Fresnel approx-

imation, which consists in a binomial expansion of the exponent

h(x, y, η, ξ) ≈ eikLz

iλz
exp

[

ikL

2z

(

(x− η)2 + (y − ξ)2
)

]

(2.19)

or, for even larger distances z, to the stronger Fraunhofer approximation, which in addition

allows to neglect the quadratic exponents η2 and ξ2 resulting in

h(x, y, η, ξ) ≈ eikLz

iλz
exp

[

ikL

2z

(

(x2 + y2) − 2(xη + yξ)
)

]

(2.20)

Reinserting the Fraunhofer approximation for the impulse response function into (2.17), the

electric field can be expressed as

E(x, y) =
eikLz

iλz
exp

[

ikL

2z
(x2 + y2)

] ∫

∞
∫

−∞

dη dξ exp

[

− ikL

z
(xη + yξ)

]

A(η, ξ) (2.21)
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Apart from the multiplicative amplitude and phase factor the electric field is thus found

as a Fourier transform of the aperture function A(η, ξ). Inserting equation (2.21) into the

second-order field correlation function E∗(x, y) E(x′, y′), one obtains

E∗(x, y) E(x′, y′) =
1

λ2z2
exp

[−ikL

2z

(

(x2 − x′2) + (y2 − y′2)
)

]

∫∫∫

∞
∫

−∞

dη dη′ dξ dξ′ A∗(η, ξ)A(η′, ξ′) exp

[

ikL

z
(xη + yξ − x′η′ − y′ξ′)

]

(2.22)

Furthermore, if one assumes that the microstructure of the surface or the diffusor is so fine

as to be unresolvable by a lens of the size of the observation region, the electric field at the

diffusor appears uncorrelated [3], i. e.

A∗(η, ξ)A(η′, ξ′) ∝ I(η, ξ) δ(η − η′) δ(ξ − ξ′) (2.23)

where I(η, ξ) is the intensity right at the aperture. Making use of (2.22) and (2.23) the

previously defined expression for the complex degree of coherence (2.8) reads

γ(x− x′, y − y′) =

e−ikLψ
∫

∞
∫

−∞

dη dξ I(η, ξ) exp

[

ikL

z

(

(x− x′)η + (y − y′)ξ
)

]

∫

∞
∫

−∞

dη dξ I(η, ξ)

(2.24)

with ψ =
(

(x2 − x′2) + (y2 − y′2)
)

/2z. The phase factor exp[−ikLψ] becomes obsolete if only

the modulus of the complex degree of coherence is required.

Complex Degree of Coherence

Let us assume a circular diffusor of radius R that is uniformly illuminated by coherent light

from a laser such that the intensity I(η, ξ) can be regarded as constant over the whole range

of the diffusor and zero otherwise. Up to the phase factor the complex degree of coherence

is then given by

γ(x− x′, y − y′) =
1

πR2

∫ 2π

0
dϕ

∫ R

0
dω ω exp

[

iωkLρ

z
cosϕ

]

=
2

R2

∫ R

0
dω ω J0(kLωρ/z) (2.25)
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with ρ =
√

(x− x′)2 + (y − y′)2 and ω =
√

η2 + ξ2. At this stage one can make use of the

following recurrence relation for Bessel functions

d

dx

(

xn+1Jn+1(x)
)

= xn+1Jn(x) (2.26)

which for n = 0 upon integration gives

∫ x

0
dx′ x′J0(x

′) = xJ1(x) (2.27)

Omitting the phase factor, the complex degree of coherence for the circular diffusor is thus

given by [3]

γ(ρ) = 2
J1(ρ/ζ)

ρ/ζ
(2.28)

with ζ = z/(kLR) and ρ = r − r′. This result obtained by Goodman corresponds to the van

Cittert-Zernike theorem [70], which states that the complex degree of coherence for scattered

light can be compared to the diffraction pattern of a spherical wave by an aperture of the

same size and shape as the diffusor. For a circular diffusor the complex degree of coherence

is identical to the Airy diffraction pattern.

The complex degree of coherence defines the characteristic length scale ζ = 1/(αkL), where

the coefficient α = R/z denotes the numerical aperture. This characteristic length can be

identified with the correlation length of the intensity fluctuations in the observation plane.

In principle, the definition of the correlation length is not unique. A possible alternative

definition is given by the first zero of the complex degree of coherence γ(ζ0) = 0 leading to

ζ0 = 3.83 ζ.

The Bessel function J1(x) in (2.28) for |x| → ∞ decreases asymptotically with the envelope

function f(x) =
√

2/(πx) [71]. For large arguments, i. e. x = ρ/ζ ≫ 1, the complex degree of

coherence, γ(x) thus decreases algebraically with the envelope function g(x) =
√

8/π x−3/2,

while the correlation function of the intensity fluctuations (2.10) PJ(x) ∝ |γ(x)|2 is asymp-

totically bound by g2(x) = (8/π)x−3.

Power Spectrum

The power spectrum can be obtained via the two-dimensional Fourier transform (C.1) of the

complex degree of coherence γ(k) = F2[γ(ρ)] by means of the convolution

PJ(q) = I 2

∫

dk

(2π)d
γ(k)γ(q − k) (2.29)

As we have seen, the complex degree of coherence resembles the diffraction pattern of a

circular aperture. Since γ(ρ) is in fact an isotropic function, its Fourier transform given by
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(C.1) is also isotropic. It has the form of a disk

γ(k) = 2π

∫ ∞

0
dρ ρ γ(ρ) J0(kρ) =

4π

k2
ζ

Θ(kζ − k) (2.30)

Here, kζ denotes the characteristic wavenumber of the correlation defined as kζ = 1/ζ. Θ(x)

is the Heaviside function. The power spectrum can thus be obtained as the intersection area

of two identical disks of the form (2.30)

PJ(q) =
8I 2

k2
ζ

[

arccos
q

2kζ
− q

2kζ

√

1 −
( q

2kζ

)2
]

Θ
(

1 − q

2kζ

)

(2.31)

2.1.4 3D Speckle

To produce a three-dimensional disordered configuration, the speckle grains are obtained as

the interference pattern of many wavevectors spanning the largest possible angular aperture.

Ideally, this situation corresponds to the interference pattern obtained inside an optical cavity,

for example an integrating sphere. The complex degree of coherence is then given by [72]

γ(ρ) =
sin(kLρ)

kLρ
(2.32)

where the correlation length is now ζ = 1/kL, corresponding to a numerical aperture α→ 1.

The three-dimensional Fourier transform (C.3) of (2.32), γ(k) = F3[γ(ρ)], yields a spherical

shell with radius kL

γ(k) =
2π2

k2
L

δ(k − kL) (2.33)

Since the Fourier transform of the product of two functions can be expressed as the convo-

lution of their individual Fourier transforms, the power spectrum of (2.32) can be described

as a convolution of two identical spherical shells

PJ(q) =
I 2π

2k4
L

∫ 2π

0
dϕ

∫ π

0
dϑ

∫ ∞

0
dk k2 sinϑ δ(

∣

∣k − q
2

∣

∣ − kL) δ(
∣

∣k + q
2

∣

∣ − kL) (2.34)

Evaluating this integral, the power spectrum takes the form

PJ(q) =
I 2π2

k2
Lq

Θ(2kL − q) (2.35)

2.2 Numerical Implementation of a Speckle Pattern

As demonstrated by J. M. Huntley [73] and P. Horak et al. [74], a 2D speckle potential can be

implemented numerically in the following way. First, since the real part and the imaginary

part of the electric field are Gaussian random variables according to the general speckle

property (2.2), two arrays of L× L elements are filled with random numbers, drawn from a
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Gaussian probability distribution with a standard deviation of 1. This creates a completely

uncorrelated spatially random electric field E ′(u1, u2), where the indices u1 and u2 indicate

the sites of the L×L lattice. In a real setup, the spatial correlation of the intensity is obtained

as the result of the finite extension of the diffusor. This can be reproduced numerically in a

second step by multiplying the Fourier transform of the electric field with a cut-off function

X (m1,m2) reflecting the size and the shape of the diffusor. The indices mi (i = 1, 2) run

from 0 to L− 1 indicating the lattice sites of the respective L× L lattice in Fourier space.

For a circular diffusor the numerical aperture function can be described by the two-

dimensional Fourier transform

A(m1,m2) ∝
1

L2

L−1
∑

u1=0

L−1
∑

u2=0

E ′(u1, u2) exp

[

2πi

L
(u1m1 + u2m2)

]

X (m1,m2) (2.36)

with the cut-off function

X (m1,m2) = Θ
(

M −
√

(

(L− 1)/2 −m1

)2
+

(

(L− 1)/2 −m2

)2
)

(2.37)

Here, M is the radius of the circular aperture. The distance between the centre of the lattice

and the lattice site (m1,m2) is given by ρ =
√

x2 + y2 with x = ((L − 1)/2 − m1) and

y = ((L − 1)/2 − m2). If this distance is smaller than the aperture radius M , the cut-off

function is 1, otherwise it is 0.
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Figure 2.4:
Two-dimensional speckle pattern on a lattice with N = 256× 256 created with an aperture radius

of M = 16 sites. The same speckle pattern is given as a contour plot in Fig. 2.1. Obviously the
average height of the speckle peaks is larger than the average depth of the speckle valleys. This
characteristic feature of the speckle potential is a consequence of the Rayleigh intensity distribution
(2.6). The characteristic length ζ, defined by the 2D speckle correlation function, corresponds to
ζ/a =

√
N/(2πM) ≈ 2.55 where a is the lattice constant (cf. Fig. 2.6(a)).
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Figure 2.5:
(a) Histogram of the intensity of the numerically generated speckle pattern in Fig. 2.4. The solid

curve is given by the function f(x) = e−x with x = I0/I as predicted by (2.6). (b) One-dimensional
cut of the numerical speckle pattern in Fig. 2.4 as a function of n1 for L = 256, M = 16, and
n2 ∈ {1, 0, L, L− 1} (green, light blue, blue, grey). The speckle pattern is periodic in both directions
n1 and n2.

The final speckle pattern E(n1, n2) is obtained as the inverse Fourier transform of the

aperture function (2.36)

E(n1, n2) ∝
L−1
∑

m1=0

L−1
∑

m2=0

A(m1,m2) exp

[

−2πi

L
(n1m1 + n2m2)

]

(2.38)

Intensity Distribution

The speckle intensity I(n1, n2) at the observation plane (n1, n2) is calculated as I(n1, n2) =

|E(n1, n2)|2. An example for a numerical speckle pattern generated in this way is plotted in

Fig. 2.4. In this example the aperture radius covers M = 16 sites. The full speckle pattern

is shown as a contour plot in Fig. 2.1. The numerical speckle nicely confirms the expected

Rayleigh distribution (2.6). Indeed one finds a negative exponential decay of the probability

P0(I0) as a function of I0/I as shown in Fig. 2.5(a).

The numerical speckle pattern obtained in the described way is periodic. This can be seen

by looking at a one-dimensional cut through the speckle pattern as displayed in Fig. 2.5(b),

where the first two lines and the last two lines of the lattice are plotted together. The

transition from one end of the lattice to the other remains continuous. Any cut through the

two-dimensional speckle pattern provides a one-dimensional speckle pattern with the same

correlation function.

Correlation Function

In our current numerical implementation we calculate the square of the complex degree of

coherence according to (2.7)

|γ(n1, n2)|2 = I0 I(n1, n2)/I 0 − 1 (2.39)
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Figure 2.6:
(a) Plot of the numerical correlation function |γ(n1, n2)|2 for a speckle pattern with N = 512 ×

512 sites, 10000 realizations of disorder, and an aperture radius of M = 4 sites. (b) Comparison
between the numerical and the analytical correlation function for the parameter pairs (M,L) ∈
{(4, 512), (8, 512), (8, 256)} and 10000 realizations of disorder. The numerical correlation function
has been averaged over annuli of the width of one lattice site. The correlation length is given by
ζ = L/(2πM). The dotted curves represent the numerical result for the correlation function on a
lattice with L × L sites for an aperture of M sites. The solid curves represent the analytical result
(2.40).

where I0 is the speckle intensity at the centre of the lattice, I(n1, n2) is the intensity at each

lattice point, and I 0 is the average intensity of the speckle pattern at the center. The average

in this case is done over a large number of realizations of the speckle potential. The result

of (2.39) is stored in a new array of L × L sites. A three-dimensional plot of this array for

L = 512 sites, 10000 realizations of the speckle potential, and the aperture radius M = 4 is

shown in Fig. 2.6(a). The resulting correlation function corresponds closely to the analytical

result (cf. (2.28))

|γ(ρ)|2 =
∣

∣

∣2
J1(ρ/ζ)

ρ/ζ

∣

∣

∣

2
(2.40)

Here, the distance to the centre is given by ρ =
√

x2 + y2. The position x = ((L−1)/2−m1)

and y = ((L − 1)/2 − m2) relative to the centre, as well as the correlation length ζ, are

measured in units of the lattice constant a = 1. In order to determine the exact correlation

length, the resulting array for |γ(n1, n2)|2 is averaged further over annuli of the width of

one lattice site. The result can be compared to the function (2.40) as shown in Fig. 2.6(b)

for different lattices and different apertures. The characteristic length ζ in (2.40) can be

identified with the correlation length ζ = L/(2πM). Apart from minor deviations due to

finite size effects the numerical correlation function corresponds closely to the analytical

result. The best result is obtained for the smallest ratio M/L.

2.3 Summary

In this chapter, we have introduced some of the basic aspects of speckle statistics. As a

fundamental result we have determined the correlation functions for the intensity fluctuations
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of a speckle pattern in two and three dimensions (cf. (2.28) and (2.32)). In addition, we

have determined the corresponding power spectra (cf. (2.31) and (2.35)), which are going to

be a main ingredient for the calculation of the average transport parameters in chapters 4 to

6. Furthermore, we have verified the correlation function and the intensity distribution for

a numerically created two-dimensional speckle potential. Following the work of B. Damski

et al. [48] on the numerical solution of the one-dimensional Anderson model in the presence

of a speckle potential, our numerical implementation of the speckle pattern can be used as

an example for correlated disordered on-site energies in the 1D and the 2D Anderson model.

This is described in the following chapter.
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Chapter 3

Numerical Study of the Anderson Model

The current chapter is focussed on the Anderson or tight-binding model, which constitutes

a simple model for electron transport in disordered systems, and is one of the best ways

to illustrate the localization phenomenon. The Anderson model can provide immediate

numerical evidence for localization and allows to calculate numerically the localization length

in discrete multidimensional systems. Since the first seminal paper by P. W. Anderson [1] to

whom the Anderson model owes its name, it has been the basis of one of the most intensively

studied fields in condensed matter physics (cf. for example [6, 29, 75–77]).

The one-dimensional Anderson model can be reformulated in terms of a transfer matrix

equation, a technique that was originally introduced by F. J. Dyson [78] and H. Schmidt

[79] for the vibrations of a disordered harmonic chain. Only for a limited number of cases,

for example for the Lloyd model or in the case of a binary disorder distribution [80], this

transfer matrix description allows for an exact analytical solution of the Anderson model.

For weak disorder, within the one-dimensional transfer matrix description, it is possible to

obtain approximative expressions [80] for the integrated density of states and indirectly,

via the Lyapunov exponent, for the localization length. In most cases, however, and in

particular for higher dimensions, the Anderson model can only be solved numerically. With

the development of modern computational resources rapid progress has been made regarding

the numerical solution of the underlying eigenvalue problem [81, 82].

This chapter is intended to give a short introduction on the numerical solution of the

tight-binding model. In contrast to most studies concerned with localization phenomena in

the framework of the Anderson model, which rely on an uncorrelated uniform distribution of

the on-site energies (cf. for example [75]), we are also going to use the numerically generated

speckle potential introduced in the previous chapter as an example for correlated on-site

energies. First results on the numerical solution of the one-dimensional tight-binding model

making use of a speckle potential have been published recently by B. Damski et al. [48]. In

this case, the tight-binding model can be regarded as the special case of an interaction-free

Bose-Hubbard model for atoms in a disordered optical potential.
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3.1 The Tight-Binding Model

The one-dimensional tight-binding model is described by the Hamiltonian [80]

(Hψ)n = tn,n+1 ψn+1 + tn,n−1 ψn−1 + vnψn = εψn (3.1)

with nearest neighbour hopping (or tunnelling) rates t and on-site energies vn. The index

runs over all lattice sites, i. e. n = 1, . . . , N , for a lattice of N sites.

Disorder can be introduced in (3.1) either through the on-site energies or through the

hopping rate. One speaks also of diagonal and non-diagonal disorder referring to the matrix

representation of the Hamiltonian, where the on-site energies are the diagonal entries, whereas

the hopping elements appear as non-diagonal elements. Of course, both kinds of disorder

may also coexist. The physical effect, however, of both kinds of disorder is very similar. For

this reason, it is sufficient to consider only diagonal disorder with a constant hopping rate

t = −1 and random on-site energies vn.

The tight-binding model can then be seen as a discrete one-dimensional Schrödinger equa-

tion, where the lattice site number n replaces the continuum variable x. The discrete Laplace

operator is given by

∇2ψn =
1

a2
[ψn+1 − 2ψn + ψn−1] (3.2)

where a denotes the lattice constant. The potential and the energy in (3.1) are given in units

of the characteristic energy Ea = ~
2/2ma2 and the hopping rate is t = −1. The middle term

in (3.2) and the average value U of the potential Un = U + Vn are absorbed in the energy

such that ε = E/Ea−U/Ea− 2, if E is the actual energy of the system. The fluctuations of

the potential vn = Vn/Ea then yield the on-site energies in (3.1).

Alternatively, the wavefunction of a particle |ψ〉 =
∑N

n ψn |n〉 can be written as a su-

perposition of the on-site states |n〉 with the coefficients ψn, in which case the Schrödinger

equation H |ψ〉 = ε |ψ〉 emerges as the matrix equation
∑N

n=1 ψn 〈n|H |n〉 = εψn. The on-site

energies are then given by 〈n|H |n〉 = vn and the hopping elements by 〈n|H |n± 1〉 = t. The

resulting matrix equation can be written as

























v1 1 0 · · · b

t v2 t
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(3.3)

Boundary conditions can be implemented through the variation of the matrix element b.

Free boundary conditions correspond to b = 0, periodic boundary conditions to b = t and
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(a) 1D (b) 2D (c) 3D

Figure 3.1:
Anderson matrix in 1D, 2D and 3D for periodic boundary conditions. The white pixels represent

the random on-site energies, which are always found on the diagonal. The grey pixels represent the
hopping matrix elements. The number of pixels in each line corresponds to the number of nearest
neighbours of each site, i. e. two nearest neighbours in 1D (a), four nearest neighbours in 2D (b), and
six nearest neighbours in 3D (c).

antiperiodic boundary conditions to b = −t.
For d-dimensional systems the discrete Laplace operator can be generalized to

∇2ψ(n) =
1

a2

[

− 2dψ(n) +
∑

m

ψ(n + m)
]

(3.4)

The sum in (3.4) runs over all nearest neighbours m = (ae1,−ae1, . . . ,±aed), where the

eα are unit vectors in orthogonal directions. The lattice vector n has the components n =

(n1, . . . , nd) with nα = 0, . . . , Nα − 1, α = 1, . . . , d and Nα = Lα for a hypercube of length

L. The eigenfunctions of the discrete Laplace operator have the same form as the continuum

eigenfunctions ψ(n) = exp[ik · n] . Since
∑

mψ(n + m) =
∑

α 2 cos(kαa)ψ(n), the discrete

dispersion relation for the free particle can be defined as

e(k) =
~

2

ma2

d
∑

α=1

(

1 − cos(kαa)
)

(3.5)

As the cosine in (3.5) is restricted to the range between −1 and 1, the discrete spectrum is

confined between emin = 0 and emax = 2d~2/ma2. In the long-wavelength limit, i. e. kαa→ 0

and (1 − cos(kαa)) → k2
αa

2/2, the discrete dispersion relation tends towards the continuous

dispersion relation of the free particle

lim
kα→0

e(k) =
d

∑

α=1

~
2k2
α

2m
=

~
2k2

2m
(3.6)

The discrete Schrödinger equation for a hypercube of length L in more than one dimension

can still be written in the form of a matrix equation Aψ = εψ, where the index j runs from

1 to N , i. e. over the total number of lattice points. The energy ε in this matrix equation is
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related to the original energy E in the Schrödinger equation through ε = E/Ea−U/Ea−2d.

The matrix M is an N ×N -matrix of the form depicted in Fig. 3.1, which corresponds to a

lexicographic order of the indices j [83].

3.1.1 Exact Diagonalization

Since the Anderson matrix for diagonal disorder is symmetric, it can be diagonalized using

the similarity transform Ã = T TAT , where the columns of the orthogonal matrix T are

constructed from the eigenvectors ψi, and the diagonal elements of the diagonalized matrix

Ã are the eigenvalues εi. The index i runs from 1 to N since the Anderson Hamiltonian has

exactly N eigenvalues and N eigenvectors.

An exact diagonalization of the Anderson matrix thus provides the energy spectrum and

the eigenvectors for any realization of disorder on a finite number of sites. In our numerical

implementation we first fill an array of N × N sites with the hopping matrix elements

according to Fig. 3.1. The diagonal elements are then filled by random on site energies

from a uniform distribution of width w. The resulting matrix can be diagonalized using a

standard LAPACK diagonalization routine. For small systems (N ≈ 1000) all eigenvalues

and eigenvectors of the Anderson matrix can be calculated in this way.

In the presence of disorder, the eigenvectors in 1D and 2D form localized states as displayed

in Fig. 3.2(a) and Fig. 3.2(b). In the absence of disorder, i. e. for zero on-site energies vn = 0,

Bloch’s theory applies. The energy spectrum for the eigenvalues εi in this case is restricted

to the interval [−2d,+2d ].

The eigenvalue distribution of the Anderson Hamiltonian can be calculated indirectly via

the average density of states per unit volume or directly by dividing the total spectrum into

several subintervals, and adding up the number of eigenvalues for each interval.

A second quantity of interest apart form the average density of states per unit volume is

the inverse participation number, which indicates the order of magnitude of the localization

length. If all eigenvectors are known, the inverse participation number can be obtained for

the full spectrum.

Density of States

For the unperturbed system with vn = 0 the density of states per unit volume is given by

ρ(ε) =

∫

dκ

(2π)d
δ
(

ε− 2
d

∑

α=1

cosκα

)

(3.7)

where the integral over κ extends over the first Brillouin zone, i. e. from −π to π. Here,

κ = ka and ε = E/Ea − U/Ea − 2d are dimensionless. Using the representation

δ(x) =

∫

dy

2π
eixy (3.8)
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Figure 3.2:
(a) Snapshot of a localized state in 1D plotted together with the corresponding disordered potential

(vn-axis on the right) for a system with N = 100 sites. The localized state corresponds to the
eigenvalue ε = −1.55. The random potential is distributed uniformly between −0.5 and 0.5. The full
width of the disorder distribution is w = 1. (b) Snapshot of a localized state in 2D for a system with
N = 30× 30 = 900 sites. The localized state corresponds to the eigenvalue ε = −0.95. The full width
of the disorder distribution is w = 12.

and the integral representation of the Bessel function [71]

J0(z) =
1

π

∫ π

0
dκ e−iz cosκ =

1

π

∫ π

0
dκ eiz cosκ (3.9)

the density of states per unit volume is evaluated as

ρ(ε) =
1

π

∫ ∞

0
dy

[

J0(2y)
]d

cos(εy) (3.10)

In one dimension ρ(ε) can be obtained directly by integrating (3.7) [80]

ρ(ε) =
1

π
√

4 − ε2
Θ(2 − |ε|) (3.11)

The same result is obtained using (3.10) and the integral (6.671.8) from [84]. This means

that the density of states diverges at the band edge for ε = ±2. These divergences are known

as van Hove singularities [80]. In two dimensions, making use of (3.10) and the integral

(6.672.2) from [84] we obtain

ρ(ε) =
1

4π
P−1/2

(ε2

8
− 1

)

Θ(4 − |ε|) =
1

2π2
K

(

1 − ε2

16

)

Θ(4 − |ε|) (3.12)

where Pℓ(x) is the Legendre polynomial and K(m) denotes the complete elliptic integral of

the first kind as defined in [71]

K(m) =

∫ π/2

0
dθ

1
√

1 −m sin2 θ
(3.13)
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(a) 1D: Average density of states

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-6 -4 -2  0  2  4  6

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-6 -4 -2  0  2  4  6

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-6 -4 -2  0  2  4  6

6

4

2

0

εεε

ρ
(ε

)
ρ
(ε

)
ρ
(ε

)

w

(b) 2D: Average density of states

Figure 3.3:
Average density of states per unit volume as a function of the energy in 1D and 2D for different

widths of the disorder distribution, i. e. different magnitudes of disorder. The on-site energies are
chosen at random from a uniform distribution of full width w. The solid black curve is given by the
analytical results (3.11) and (3.12) respectively. The dotted curves are obtained using the eigenvalues
obtained via an exact numerical diagonalization of the Anderson Hamiltonian. (a) 1D (1000 sites,
100 realizations): The spectrum for the ordered crystal lives on the interval [−2,+2]. The density of
states diverges at the band edge and is zero outside. (b) 2D (30 × 30 sites, 100 realizations): The
ordered spectrum is confined to [−4,+4]. The density of states diverges at the band centre. As for
the 1D case this effect is smoothed out in the presence of disorder.

Using the expressions of the Legendre polynomial (8.820.1 from [84]) and the complete elliptic

integral K(m) (8.113.1 from [84]1) in terms of the hypergeometric function, it can be shown

that both expressions in (3.12) are identical.

The density of states for the ordered and the average density of stages for the disordered

lattice in d dimensions are plotted in Fig. 3.3. While for small disorder the density of states

approaches the exact solution for the perfect lattice ((3.10), (3.11) and (3.12) respectively)

it acquires a different shape for higher disorder, similar to the one displayed in the schematic

picture in Fig. 1.2 and extends beyond the boundaries of the ordered spectrum. The van

Hove singularities are smoothed out. Alongside this behaviour of the density of states, the

localization length ξloc inside the spectrum, which is infinite for the perfect crystal, acquires

a finite value in the presence of disorder. To see this we need to study the so-called inverse

participation number.

Inverse Participation Number

The energy dependence of the localization length can be observed indirectly by looking at

the participation number p(ε) defined as [85]

p−1(ε) =

N
∑

j

|ψj(ε)|4 ∝
(ξloc(ε)

a

)−d
(3.14)

1[84] uses a different notation for the complete elliptic integral, where m = k2.
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(b) 2D: Inverse participation number

Figure 3.4:
Logarithmic plot of the inverse participation number (3.14) as a function of the energy for a uniform

distribution of the on-site energies with different total widths w. The inverse participation number
is higher (and hence localization is stronger) at the band edges than at the centre of the band. Even
for a very small amount of disorder the participation number is smaller than the number of sites in
one lattice direction. (a) 1D (1000 sites, 100 realizations). (b) 2D (30 × 30 sites, 100 realizations).
The participation number decreases (localization increases) for higher disorder. The curves have been
obtained from an exact diagonalization of the Anderson Hamiltonian using a standard LAPACK
diagonalization routine. The IPN values have been averaged over intervals of the size (|εmin| +
|εmax|)/100, where εmin = −2.0 − (0.5w) and εmax = 2.0 + (0.5w) in 1D and εmin = −5.0 − (0.3w)
and εmax = 5.0 + (0.3w) in 2D.

The index j runs over all components of the eigenvector ψ. The participation number is

accessible once the eigenvalue spectrum and the corresponding eigenvectors of the Anderson

Hamiltonian are known. It measures the average number of sites covered by the wavefunction

ψ. In this sense it gives a measure of the dimensionless localization length ξloc(ε)/a at the

energy ε.

The inverse participation number (IPN) is plotted in Fig. 3.4 for a disordered 1D and 2D

Anderson lattice. The solid curves have been obtained using a standard LAPACK diago-

nalization routine for the Anderson Hamiltonian, where the on-site energies are drawn at

random from a uniform distribution of the full width w. The final IPN values have been

averaged over energy intervals of the size (|εmin| + |εmax|)/100, where εmin and εmax vary

with the strength of the disorder. All curves have been checked for consistency with the

un-averaged inverse participation number taking into account all sites. The inverse partici-

pation number is higher at the band edges than at the centre of the band. This is equivalent

to the statement that the states at the band edges are confined to a smaller region (they

cover a smaller amount of sites). Hence, localization at the band edges is stronger than at

the centre.

When looking at the states in Fig. 3.2(a) and Fig. 3.2(b), it is a priori not clear whether

these states remain truly localized, when the size of the system is increased. To be able

to identify truly localized states, we need to study the inverse participation number as a

function of the size of the system. Only if the IPN value stays constant, i. e. if the localized
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state does not change its shape with an increasing system size, the state is truly localized.

For this purpose however, larger Anderson matrices have to be considered. This is possible

using a refined Lanczos Algorithm, which is briefly discussed in the next section.

3.1.2 The Lanczos Algorithm

For the small systems studied in Fig. 3.3 and Fig. 3.4 an exact diagonalization is still possible,

but one soon reaches the limits of standard computers as far as storage and processing speed

for large-scale matrices are concerned. One possible way that allows to obtain the eigenvalues

and eigenvectors of large-scale matrices is the Lanczos recursion method, which has been

originally introduced by C. Lanczos in 1950 [86].

The basic idea of the Lanczos algorithm is to transform the matrix A to a tridiagonal

Lanczos matrix, where the elements are only found on the diagonal and the neighbouring

sub- and superdiagonals. The Lanczos recursion method can be seen as a modified Gram

Schmidt orthonormalization method generating orthonormal basis vectors for the Krylov

subspace Kj = {r0, Ar0, A
2r0, . . . , A

j−1r0}. Here, A is a N ×N real symmetric matrix and

r0 is a randomly chosen starting vector. One possible Lanczos recursion for j ≥ 1 starting

from β0 = |r0| and q0 = 0 is given by [87]2

qj = rj−1/βj−1

uj = Aqj − βj−1 qj−1

αj = qTj uj

rj = uj − αjqj

βj = |rj |

(3.15)

The normalized orthogonal vectors qj are called Lanczos vectors. Assembling the Lanczos

vectors in the columns of the N × j matrix Qj = (q1, . . . , qj) and defining the tridiagonal

Lanczos matrix

Tj =

























α1 β1 0 · · · 0

β1 α2 β2
...

0 β2
. . .

. . . 0
...

. . . αj−1 βj−1

0 · · · 0 βj−1 αj

























= QTj AQj (3.16)

it can be shown [87] that for each j, Tj is the projection of the matrix A onto the Krylov

subspace Kj spanned by the orthonormal Lanczos vectors {q1, . . . , qj}. The eigenvalues of

the Lanczos matrix Tj are the eigenvalues of the matrix A restricted to the Krylov subspace

2There are three alternative implementations of the Lanczos algorithm which use slightly different definitions
for the coefficients αj and βj−1 [87].
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(a) 1D: Size dependence of the IPN
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(b) 2D: Size dependence of the IPN

Figure 3.5:
Plot of the inverse participation number at the energy ε = −1 as a function of the system size

N for different widths w of the uniform disorder distribution. The IPN value has been averaged
over an interval of the width ∆ε = 0.1 and over 100 realizations of disorder. (a) In 1D, the inverse
participation number for different system sizes remains constant over the whole range of the plot. (b)
In 2D, the IPN values, as a function of N = L× L, where L is the linear size of the 2D system, have
been fitted with the function f(N) = a+b/N . For small system sizes and small widths of the disorder
distribution the inverse participation number decreases with 1/N , whereas for larger systems it soon
approaches a constant asymptotic value.

Kj . For j = N the eigenvalues of Tj are the eigenvalues of the matrix A.

The basic Lanczos algorithm works as follows: After m ≪ N steps of the Lanczos recur-

sion, the first eigenvalues of the Lanczos matrix Tm, which have converged to the largest

eigenvalues of the original matrix A are selected. In order to obtain the corresponding origi-

nal eigenvectors of the matrix A one first computes the corresponding eigenvector ϕi of Tm.

The original eigenvector ψi is then obtained as the Ritz vector ψi = Qmϕi.

The main advantage of the Lanczos algorithm compared to a direct diagonalization of

the matrix A is the minimum amount of storage required for large sparse matrices. This

makes the algorithm particularly attractive for the eigenvalue problem associated with the

tight-binding model. The matrix A enters the Lanczos recursion only through the product

Aqj and is not modified during the whole process. Therefore, if a subroutine is provided

that computes the product Aqj , no extra storage is required for the matrix A itself. The

Lanczos algorithm is particularly powerful, if only a small number of eigenvalues and the

corresponding eigenvectors are needed, since the tridiagonal Lanczos matrix can then be much

smaller than the tridiagonal matrix, which appears in a standard diagonalization routine.

In general, the described Lanczos recursion converges first to the largest eigenvalues of the

matrix A. To be able to access any part of the eigenvalue spectrum we used a refined Lanczos

algorithm written by D. Delande [88], which maps the eigenvalue spectrum onto Chebyshev-

type polynomials (cf. appendix A), similar to the ones used for the polynomial convergence

acceleration method described in [81]. The modified Lanczos algorithm converges first to the

energy eigenvalues close to the maximum of the respective polynomial.

As an example, in order to verify the dependence of the inverse participation number on
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(a) 1D: Speckle eigenvalue histogram
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(b) 2D: Speckle eigenvalue histogram

Figure 3.6:
Histogram of the number of energy eigenvalues in subintervals of the size (|εmin|+|εmax|)/100 for the

Anderson Hamiltonian with correlated on-site potential energies. (a) 1D: 1024 sites, 100 realizations,
correlation length ζ/a = 40.74, εmin = −2.0− (0.5 z), and εmax = 2.0 + (0.5 z). (b) 2D: 32× 32 sites,
100 realizations, correlation length ζ/a = 1.27, εmin = −5.0 − (0.3 z), and εmax = 5.0 + (0.3 z). The
on-site energies for each realization are centred around zero. They are scaled by a constant factor z,
i. e. vj = z(Ij − I ). For the histograms in (a) and (b) the scaling factor is z = 12.

the size of the system, we choose a Chebyshev-type polynomial, which reaches its maximum

within the energy range ε ∈ [−1.1,−0.9]. Making use of the Lanczos algorithm we can then

calculate either all eigenvalues or a given subset of eigenvalues inside this interval. A subset

of eigenvalues is obtained, if the Lanczos algorithm is stopped after m ≪ N steps before

all Lanczos eigenvalues have converged. For each converged eigenvalue we can calculate the

corresponding eigenvector, which is then used to determine the inverse participation number.

The program is optimized to yield a given number of eigenvalues inside the predefined interval

for the lowest degree n of the polynomial Dn(ε) (cf. appendix A) and the lowest number of

Lanczos steps m. The final IPN value is obtained as an average over the whole interval and

over a given number of realizations of the random on-site energies. The result for different

system sizes is plotted in Fig. 3.5(a) for a 1D system and in Fig. 3.5(b) for a 2D system.

In 1D, the inverse participation number remains indeed constant as expected, even for

relatively small systems of N = 1000 sites, while in 2D the behaviour for small systems still

depends on the width of the disorder distribution. For small disorder w ≤ 10 the inverse

participation number decreases like 1/N for small N , whereas for large disorder w ≥ 12, the

inverse participation number remains constant whatever the size of the system. Therefore,

the 2D localized state in Fig. 3.2(b) for w = 12 is indeed a truly localized state, just like the

1D localized state in Fig. 3.2(a).

3.1.3 Correlated On-Site Energies

Instead of a uniform distribution of the on-site energies vj , we can also use the numerically

generated speckle pattern from the previous chapter to obtain an Anderson Hamiltonian
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(a) 1D: Rayleigh eigenvalue histogram
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(b) 2D: Rayleigh eigenvalue histogram

Figure 3.7:
Histogram of the number of eigenvalues in subintervals of the size (|εmin| + |εmax|)/100 for the

on-site energies vj = z(Ij − w), where the Ij are drawn from the negative exponential distribution
(3.17) of width w. z is a constant scaling factor, which has been set to z = 0.1 for both histograms.
(a) 1D: 1024 sites, 100 realizations, εmin = −2.0 − (0.5w), and εmax = 2.0 + (0.5w). (b) 2D: 32 × 32
sites, 100 realizations, εmin = −5.0 − (0.3w), and εmax = 5.0 + (0.3w).

with correlated on-site energies. In our program, the on-site energies are chosen according to

vj = z(Ij − I ), where Ij is the intensity of the speckle pattern (in lexicographic order), I is

the spatially averaged intensity of the speckle pattern and z is a scaling factor. The speckle

pattern is correlated over the average correlation length ζ = L/(2πM), where L is the linear

size of the speckle pattern and M is the radius of the aperture, which appears in the cut-off

function (2.37). In 1D, the on-site energies are given by a one-dimensional cut through the

2D speckle pattern with the same periodicity and the same correlation length.

A histogram of the corresponding spectrum in 1D and in 2D is plotted in Fig. 3.6(a) and

a

ζ

(a) Correlated potential

a

ζ

(b) Effectively uncorrelated potential

Figure 3.8:
Schematic view of a correlated random potential on a one-dimensional lattice. In (a) the correlation

length ζ is larger than the lattice spacing, whereas in (b) the lattice spacing is larger than the
correlation length ζ. In this case, although the potential fluctuations follow the same distribution as
in (a), the correlation of the potential fluctuations cannot be resolved by the lattice and the potential
appears uncorrelated.
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(c) 1D: Inverse participation number
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(d) 2D: Inverse participation number

Figure 3.9:
Above: Average density of states as a function of the energy for different scaling factors z. (a) 1D:

1024 sites, 100 realizations, correlation length ζ/a = 40.74. (b) 2D: 32 × 32 sites, 100 realizations,
correlation length ζ/a = 1.27. Below: Inverse participation number for different scaling factors z. (c)
1D: 1024 sites, 100 realizations, correlation length ζ/a = 40.74. (d) 2D: 32×32 sites, 100 realizations,
correlation length ζ/a = 1.27.

Fig. 3.6(b). Since we have subtracted the mean intensity, the spectrum is centred around zero.

It is asymmetric and displays a long high-energy tail. This feature is a direct consequence of

the Rayleigh distribution of the speckle intensities (2.6) as displayed in Fig. 2.5(a). Indeed

the spectrum of the Anderson Hamiltonian for uncorrelated on-site energies drawn from a

negative exponential distribution of width w

P (Ij) =
1

w
exp[−Ij/w] (3.17)

reveals the same high-energy tail. This is shown in Fig. 3.7(a) and Fig. 3.7(b). For these plots

the on-site energies are chosen according to vj = z(Ij − w) with a constant scaling factor z.

We have subtracted the width w, such that the spectrum is centred around zero to allow for

a better comparison with Fig. 3.6(a) and Fig. 3.6(b).

The case of the correlated speckle potential applies to the situation depicted schematically

in Fig. 3.8(a), where the lattice constant a is smaller than the speckle correlation length ζ,
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Figure 3.10:
Above: Average density of states for different correlation lengths ζ = L/(2πM) of the speckle

pattern. (a) 1D: L = 1024 sites, 100 realizations, scaling factor z = 10. (b) 2D: L = 32 sites,
100 realizations, scaling factor z = 60. Below: Inverse participation number for different correlation
lengths ζ = L/(2πM) of the speckle pattern. (c) 1D: L = 1024 sites, 100 realizations, scaling factor
z = 10. (d) 2D: L = 32 sites, 100 realizations, scaling factor z = 60.

whereas the second case of uncorrelated on-site energies drawn from a Rayleigh distribution

applies to the inverse situation where ζ < a as shown in Fig. 3.8(b).

As in the case of uniform on-site energies (cf. Fig. 3.3) the shape of the spectrum essentially

depends on the width w of the distribution and on the scaling factor z. Rather than plotting a

histogram for different z for the correlated on-site energies, we can compare the corresponding

shape of the density of states per unit-volume as shown in Fig. 3.9(a) and Fig. 3.9(b). For

small scaling factors one can still distinguish the remnants of the van Hove singularities

in 1D and in 2D (cf. Fig. 3.3(a) and Fig. 3.3(b)). For larger values of z the singularities

are suppressed, while the spectrum clearly reveals its anisotropic nature with a long high-

energy tail. This anisotropy for high energies is also observed when looking at the inverse

participation number as shown in Fig. 3.10(c) and Fig. 3.10(d).

On the other hand, the average density of states per unit volume and the inverse participa-

tion number may be studied for a fixed scaling factor and for different correlation lengths ζ,
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i. e. for different radii M of the aperture function (2.37). In Fig. 3.10 we have chosen the scal-

ing factor z = 10 in 1D and z = 60 in 2D. Qualitatively, an increase of the aperture radius,

i. e. a decreasing correlation length, has the same effect as an increasing scaling factor: The

van Hove singularities in Fig. 3.10(a) and Fig. 3.10(b) are smoothed out and the spectrum

develops a long high-energy tail. This is accompanied by an increase of the inverse participa-

tion number, i. e. a reduced localization length as shown in Fig. 3.10(c) and Fig. 3.10(d). In

other words, reducing the spatial correlations of the random potential amplifies localization

and vice versa. Hence, the spatial correlations favour delocalization.

3.2 Summary

This chapter was devoted to the Anderson or tight-binding model, as one of the most fun-

damental models where localization can be observed. We have performed an exact diagonal-

ization of the 1D and the 2D Anderson matrix for standard uncorrelated uniform random

on-site energies as well as for the numerically generated speckle pattern from section 2.2 as

an example for correlated potential fluctuations. In both cases we have studied the average

density of states per unit volume, and the inverse participation number, which can be related

to the localization length. We have compared our results for the average density of states of

the standard Anderson model to the analytical result ((3.10), (3.11) and (3.12) respectively)

in the absence of disorder to check the accuracy of our program and we have studied the

dependence of the inverse participation number on the size of the system, using a refined

Lanczos algorithm. New results have been presented in the form of the spectrum and the

IPN, as a function of the energy, for the correlated two-dimensional speckle potential. In

both cases we have studied the impact of a change of the scaling factor, i. e. the magnitude

of disorder, and a change of the characteristic correlation length of the speckle potential. In

particular, we have seen that the eigenvalue spectrum reflects the intensity distribution of

the speckle and that the introduction of spatial correlations in the Anderson model entails

delocalization in the form of an increasing participation number of sites, which contribute to

a localized state.
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Chapter 4

Matter Waves in Disordered Optical Potentials

In the present chapter the basic model for the description of matter-wave transport in disor-

dered optical potentials is introduced. This model relies on a few important simplifications.

Most importantly we are going to neglect the atom-atom interaction such that the behaviour

of the system is essentially captured by a single-particle description. We consider a two-level

atom in the dipole approximation interacting with the spatially disordered electric field of a

speckle potential. The saturation parameter is assumed small enough to allow for an inde-

pendent treatment of the interaction of the atom with the vacuum fluctuation reservoir. The

coupling between the polarization of the light field and the internal degrees of freedom of the

atoms does not play a role, if transitions between different Zeeman sublevels can be ruled

out by an appropriate choice of the atoms, or via the application of an external magnetic

field. In this case the light field can be regarded as a scalar electric field.

Under these assumptions the atomic evolution is purely Hamiltonian on a time scale de-

termined by the inverse inelastic scattering rate Γφ before dissipation sets in. In our case

the inelastic scattering rate Γφ defines the phase-breaking time τφ, which has already been

mentioned in section 1.1.

4.1 Atomic Hamiltonian Dynamics

As a model for the internal atomic structure we consider a two-level atom with the ground

state |g〉 and the excited state |e〉. The excited state is a metastable state with a finite lifetime

τe = 1/Γe, where Γe denotes the natural linewidth of the excited state. The characteristic

energy of the transition |e〉 → |g〉 is given by ~ωA.

This two-level description applies to atoms like Strontium [89] with a non-degenerate

electronic ground state or atoms like Rubidium, whose ground-state degeneracy is lifted by a

strong magnetic field [90]. The Hamiltonian for such a two-level atom of mass m interacting

with the electric field of a monochromatic laser beam with wavenumber kL, wavelength

λL = 2π/kL and angular frequency ωL = c kL can be written as [67]

H = Hkin +HA − D · E(r, t) +HR − D · ER(r) (4.1)

where Hkin = p2/2m describes the kinetic energy of the centre-of-mass motion and HA =

~ωA |e〉〈e| takes account of the internal energy of the atom.
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The term −D ·E(r, t) describes the interaction energy between the atom and the external

electric field of the laser

E(r, t) =
1

2

[

u(r)E(r) e−iωLt + u∗(r)E∗(r) eiωLt
]

(4.2)

E(r) denotes the amplitude of the electric field and u(r) its unit polarization vector. We

assume that the external electric field E(r, t) is not modified by the interaction with the

atom.

The description of the incident light by a classical external field can be achieved by a

unitary transformation, if the initial state |Ψ(0)〉 = |{αj}〉 is a coherent state [67]. This

unitary transformation is given by T (t) = Πj exp
[

α∗
je
iωjtaj − αje

−iωjta†j

]

, where a†j and

aj are the creation and annihilation operators and αj is the eigenvalue to the eigenstate

|αj〉 of the annihilation operator. For t = 0, T †(0) creates the coherent state |{αj}〉 =

T †(0) |0〉 from the vacuum. The same unitary transformation T (t) transforms the original

Hamiltonian, H1 = 1
2m [p − qA(r)]2 + HR, where HR is given by HR =

∑

j ~ωj(a
†
jaj + 1

2),

into the new Hamiltonian H ′
1 = T (t)H1T

†(t) = 1
2m [p − qA(r) − qAcl.(r)]2 + HR. This

new Hamiltonian describes a particle interacting with the quantum vector potential A(r)

and the classical vector potential Acl.(r), which only depends on the eigenvalues αj of the

annihilation operator. The transformed initial state Ψ′(0) = T (0) |{αj}〉 = |0〉 is then the

vacuum state.

The electric dipole operator D is a vector operator with odd parity. It only contains

non-diagonal contributions in the basis {|g〉 , |e〉}

D = d |e〉〈g| + d∗ |g〉〈e| (4.3)

The electric dipole moment d = 〈e|D |g〉 is a characteristic quantity of the atom used in the

experiment. The coupling strength between the atom and the electric field is described by

the Rabi frequency

~Ω(r) = −(d · u(r)) E(r) (4.4)

The remaining terms in equation (4.1) incorporate the interaction between the atom and

the vacuum fluctuation reservoir −D · ER(r) and the internal energy of the reservoir HR.

They can be neglected compared to the first part of the Hamiltonian, if the detuning is

large compared to the Rabi frequency (|δL| ≫ |Ω|), and large compared to the spontaneous

emission rate (|δL| ≫ Γe). In this case the saturation parameter (cf. (B.5))

s =
|Ω|2/2

δ2L + Γ2
e /4

(4.5)

is small (s≪ 1) and the system can be regarded as quasi non-dissipative.

The treatment of the atomic Hamiltonian H0 = Hkin + HA − D · E(r, t) simplifies in

the rotating wave approximation, where non-resonant terms of the form |e〉〈g| exp[iωLt] and
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|g〉〈e| exp[−iωLt] can be neglected. H0 then takes the form

H0 =
p2

2m
(|e〉〈e| + |g〉〈g|) + ~ωA |e〉〈e| + ~Ω(r)

2
e−iωLt |e〉〈g| + ~Ω∗(r)

2
eiωLt |g〉〈e| (4.6)

The time-dependent Schrödinger equation i~ ∂t |Ψ〉 = H0 |Ψ〉 for the total atomic state

|Ψ〉, which can be expanded as |Ψ〉 = ψg |g〉+ψe exp[−iωLt] |e〉, provides us with a system of

coupled amplitude equations [91]

i~ ∂t ψg = − ~
2

2m
∇2ψg +

~Ω∗(r)

2
ψe (4.7a)

i~ ∂t ψe = − ~
2

2m
∇2ψe +

~Ω(r)

2
ψg − ~δLψe (4.7b)

Far off resonance, i. e. for a large detuning |δL| ≫ |Ω|, one can furthermore assume that

the atoms, which are initially prepared in their ground state, mostly remain in their ground

state during the time evolution. In this case, the spatial and temporal derivatives of the

excited state amplitude in equation (4.7b) can be neglected, and ψe can be approximated as

ψe ≈ Ω(r)/(2δL)ψg.

Under the previously described approximations, inserting (4.7b) into (4.7a), the ground-

state amplitude obeys an effective Schrödinger equation with the Hamiltonian

Hg =
p2

2m
+

~ |Ω(r)|2
4δL

(4.8)

which describes the atomic motion in an effective optical potential U(r). Reinserting the

definition of the Rabi frequency (4.4), the optical dipole potential reads

U(r) =
~ |Ω(r)|2

4δL
=

~Γe
8

Γe
δL

I(r)

Is
(4.9)

where the intensity of the laser field is given by

I(r) =
1

2
c ǫ0 |E(r)|2 (4.10)

and the saturation intensity Is is defined as

Is =
c ǫ0~

2 Γ 2
e

4 |u · d|2
(4.11)

Due to the coupling to the vacuum fluctuation reservoir, the atomic evolution is purely

Hamiltonian only up to the inelastic scattering time τφ when spontaneous emission occurs.

The average inelastic scattering rate for such a dissipative process can be derived from the
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optical Bloch equations [67]. It is given by (cf. (B.6))

Γφ =
1

τφ
≈ Γe
δL

U

~
(4.12)

where U = U(r) is the average value of the optical dipole potential (4.9).

4.2 Effective Medium

The scattered waves in a disordered medium are different from one realization of disorder to

another. Therefore, only expectation values obtained by averaging over many realizations

may provide a useful characterization of the transport processes. In the language of atom

optics, averaging over many speckle realizations introduces an effective medium for the ex-

panding matter wave. The main concern of the present chapter will be to determine the

scattering mean free path ℓs in the effective medium. To this aim, the average retarded

and the average advanced propagators are introduced. They are shown to verify the Dyson

equation, which defines the self-energy operator. In the weak-scattering regime, which is

determined by the small perturbation parameter that governs the series expansion of the

self-energy, the elastic scattering rate γs can be calculated exactly in terms of the imaginary

part of the self-energy. This defines the elastic scattering time τs and the scattering mean

free path ℓs, which is studied in detail for the 2D and the 3D speckle pattern.

4.2.1 Retarded and Advanced Propagator

The single-particle dynamics for an atom inside the disordered optical potential can be

described by the effective Hamiltonian (4.8). Writing the optical potential (4.9) as U(r) =

U + V (r) with the mean value U and the potential fluctuations V (r), and incorporating the

constant mean value into the energy, allows to write the stationary Schrödinger equation for

the atomic matter wave as1

[

− ~
2

2m
∇2 + V (r)

]

ψ(r) = Eψ(r) (4.13)

With the free-particle wavevector k2 = 2mE/~2 the Fourier transform of (4.13) naturally

reads
[

∇2 + k2 − 2m
~2 V (r)

]

ψ(r) = 0, which differs only slightly from the Helmholtz equation

for classical waves, where the potential term is replaced by fluctuations of the dielectric

constant [7]. However, due to the fact that the fluctuations of the optical potential do not

depend on the energy, the treatment for matter waves is simpler than for classical waves,

where this energy dependence results in significant corrections to the transport speed of

light [92].

1It is also possible to introduce a dimensionless Schrödinger equation, defining all quantities in terms of the
speckle correlation length ζ. This approach has been chosen in [28].
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Feynman Propagators

In the following, we denote the Hamiltonian for the effective Schrödinger equation (4.13)

by H and the free-particle Hamiltonian in the absence of any potential fluctuations by

H0. The time evolution of the atom inside the disordered potential is determined through

the time-evolution operator U(t, t′) = exp
[

− i
~
H(t− t′)

]

, which follows the time-dependent

Schrödinger equation i~ ∂t U(t, t′) = (H0 + V )U(t, t′) with the integral solution

U(t, t′) = U0(t, t
′) − i

~

∫ t

t′
dt1 U0(t, t1)V U(t1, t

′) (4.14)

where U0(t, t
′) = exp

[

− i
~
H0(t− t′)

]

is the time-evolution operator of the unperturbed Hamil-

tonian H0. It is possible to define the time-dependent retarded and advanced Feynman

propagators as [67]

KR(t, t′) = U(t, t′)Θ(t− t′)

KR
0 (t, t′) = U0(t, t

′)Θ(t− t′)

KA(t, t′) = −U(t, t′)Θ(t′ − t)

KA
0 (t, t′) = −U0(t, t

′)Θ(t′ − t)
(4.15)

KR(t, t′) is called the retarded propagator, because it is zero for t < t′. KA is called the

advanced propagator since it is zero for t > t′. Both propagators are Green functions in the

time domain. As such they both solve the equation

(i~ ∂t −H)KR,A(t, t′) = i~ δ(t− t′) (4.16)

Here, KR,A(t, t′) represents either the retarded or the advanced Feynman propagator. Mul-

tiplying equation (4.14) by Θ(t− t′) leads to an equivalent integral equation for the retarded

Feynman propagator

KR(t, t′) = KR
0 (t, t′) − i

~

∫ ∞

−∞
dt1 K

R
0 (t, t1)V K

R(t1, t
′) (4.17)

Born Series

Taking the Fourier transform of equation (4.17) and applying the convolution theorem reveals

upon iteration the usual Born series for the retarded Green operator (or resolvent) in the

energy domain

GR(E) = GR0 (E) +GR0 (E)V GR(E) (4.18)

Here, GR(E) is defined as the Fourier transform of the retarded Feynman propagator [67]

GR(E) = − i

~

∫ ∞

−∞
dτ ei Eτ/~KR(τ) (4.19a)

KR(τ) =
i

2π

∫ ∞

−∞
dE e−i Eτ/~GR(E) (4.19b)
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where τ = t− t′. Using the definition (4.15), GR(E) can be written as

GR(E) = − i

~
lim
η→0+

∫ ∞

0
dτ ei (E−H+iη)τ/~ = lim

η→0+

1

E −H + iη
(4.20)

The same calculation for the advanced Green function leads to the propagator

GA(E) = lim
η→0+

1

E −H − iη
(4.21)

For zero potential fluctuations equations (4.20) and (4.21) yield the free-particle propagators

GR0 (E) and GA0 (E).

The definition of the Fourier transform adopted for this work (cf. (2.11), (2.12) and

appendix C) implies that the identity is resolved by 1 =
∫

dr |r〉〈r| and 1 =
∫

dk/(2π)d |k〉〈k|,
while the wavefunctions ψk(r) = 〈r|k〉 and ψr(k) = 〈k|r〉 are given by 〈r|k〉 = eik·r and

〈k|r〉 = e−ik·r, for the wavevector |k〉 = ~
−1 |p〉. The wavevector matrix elements of the

free-particle propagators are then determined as

〈k′|GR,A0 (E) |k〉 = (2π)dδ(k − k′)GR,A0 (k,E) = lim
η→0+

(2π)d δ(k − k′)

E − ~2k2/2m± iη
(4.22)

Due to the isotropy of space, the free-particle Green function GR,A(k,E) only depends on

the modulus k = |k|. With z = E + iη, A = z −H and B = z −H0 and expression (4.20)

for the retarded and (4.21) for the advanced propagator, the operator identity [67]

A−1 = B−1 +B−1(B −A)A−1 (4.23)

recovers the Born series (4.18).

Configuration Average

Taking the configuration average of the Born series for the retarded and advanced propagators

(4.20) and (4.21), one obtains2

G = G0 +G0 V G0V G0 +G0 V G0V G0V G0 + . . . (4.24)

where G = GR,A(E) and G0 = GR,A0 (E) represent either the retarded or the advanced

propagator. The linear term vanishes since we have chosen the origin of the energy such that

V = 0.

The calculation of the average resolvent thus requires the calculation of all higher-order

correlation functions of the potential fluctuations V . It is possible, however, to reorganize

2The energy dependence has been omitted for clarity.
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the Born series in the following form, known as the Dyson equation [93]

G = G0 +G0 ΣG (4.25)

where the retarded or advanced self-energy operator Σ = ΣR,A(E) contains all irreducible

correlation functions, i. e. correlations that cannot be split into products of independent

factors by suppressing a single propagator G0 [93]. Upon iteration the Dyson equation (4.25)

reveals a geometric series that is formally solved as

G = G0 +G0 Σ [G0 +G0 Σ [G0 +G0 Σ [. . .]]]

= G0

∞
∑

n=0

[ΣG0]
n =

1

G0
−1 − Σ

= lim
η→0+

1

E −H0 − Σ ± iη
(4.26)

Taking the average over many realizations of disorder restores the translational invariance.

Consequently, just like the free-space propagator (4.22), GR,A(E) is diagonal in wavevector

space. Its matrix elements are given by

〈k′|GR,A(E) |k〉 = (2π)dδ(k − k′)GR,A(k,E)

= lim
η→0+

(2π)d δ(k − k′)

E − ~2k2/2m− ΣR,A(k,E) ± iη
(4.27)

Since the disordered potential preserves space isotropy on average, the function GR,A(k,E)

again only depends on the modulus k = |k|. The same conclusion holds for the self-energy

ΣR,A(k,E). As we will see in the following section, the imaginary part of the average Green

function GR,A is of special importance.

4.3 Spectral Function and Density of States

All information about the relative weight, the energy, and the lifetime of excitations dressed

by the disordered medium is contained in the spectral function [94]

A(k,E) = −2 Im[GR(k,E)] = i
[

GR(k,E) −GA(k,E)
]

=
−2 Im[ΣR(k,E)]

(E − ~2k2/2m− Re[ΣR(k,E)])2 + Im2[ΣR(k,E)]
(4.28)

The spectral function is positive (A(k,E) ≥ 0) because the retarded self-energy has a negative

imaginary part, and it is normalized to unity:
∫

dE/(2π)A(k,E) = 1. It can thus be

regarded as the probability density for excitations with wavenumbers k to have an energy

E. The normalization condition follows directly from the Fourier transform of the average

propagator. Since

Θ(t)U(t) = ±i
∫ ∞

−∞

dE

2π
e∓iEt/~GR,A(E) (4.29)



52 Chapter 4 Matter Waves in Disordered Optical Potentials

one can replace the average propagator in the normalization integral by the average time-

evolution operator at time t = 0. Then

∫ ∞

−∞

dE

2π
A(k,E) = i

∫ ∞

−∞

dE

2π

[

GR(k,E) −GA(k,E)
]

=
U(0)

2
+
U(0)

2
= 1 (4.30)

as U(0) = 1 and Θ(0) = 1
2 . The integration over dk of the spectral function (4.28) yields the

average density of states N(E)

∫

dk

(2π)d
A(k,E) = −2

∫

dk

(2π)d
Im[GR(k,E)] = 2πN(E) (4.31)

On-shell Approximation for Weak Disorder

The wavevector kE , corresponding to a given energy E, can be determined as the solution to

the complex dispersion relation E−~
2k2
E/2m−ΣR(kE , E) = 0. This is the standard approach

in atom optics [95]. The wavenumber inside the effective medium is then characterized by

kE = n(E)
√

2mE/~ with the complex refractive index

n(E) =

√

1 − ΣR(kE , E)

E
(4.32)

For weak disorder (
∣

∣ΣR(kE , E)
∣

∣ ≪ E), the potential fluctuations modify only slightly the free

dispersion relation. The refractive index of the effective medium can then be approximated

by

n(E) ≈ 1 − Re[ΣR(kE , E)]

2E
− i

Im[ΣR(kE , E)]

2E
(4.33)

where the imaginary part Im[n(E)] accounts for the depletion of the initial modes due to

scattering. Unlike for true absorption, where one encounters energy dissipation, the energy

in our case is only distributed over scattering modes, and remains conserved during the

scattering process. In analogy to real absorption the elastic scattering rate for weak disorder

can be defined as

~γs(kE) = 4EIm[n(E)] = −2Im[ΣR(kE)] (4.34)

where ΣR(kE) = ΣR(kE , E) denotes the projection of the self-energy onto the energy shell,

and kE =
√

2mE/~ describes the free-particle dispersion relation. For weak disorder, since

Re[ΣR(kE)] = Re[ΣR(kE , E)] ≪ E, the real part of the self-energy in the denominator of the

spectral function (4.28) can be neglected compared to the Energy E, such that the spectral

function may be written in the form

A(k,E) ≈ ~γs(kE)

(E − ~2k2/2m)2 + ~2γ2
s (kE)/4

(4.35)
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In the same way as for the spectral function, the retarded and the advanced Green functions

for weak disorder can be written as [7]

GR,A(k,E) ≈ 1

E − ~2k2/2m± i~γs(kE)/2
(4.36)

Within the weak disorder approximation, the average density of states to zeroth order in the

small disorder parameter ~γs(kE)/(2E) ≪ 1, is given by

N(E) = N0(E)
(

1 + O
(

~γs(kE)

2E

))

(4.37)

where N0(E) denotes the free particle density of states

N0(E) =

∫

dk

(2π)d
δ
(

~
2k2

2m − E
)

=
Ωd

(2π)d
md/2

~d
(2E)d/2−1 (4.38)

Here, Ωd =
∫

dΩd = 2πd/2/Γ(d/2) denotes the surface of the unit sphere. Γ(x) is the Euler

gamma function. This corresponds to the replacement of the spectral function A(k,E) in

(4.31) by the on-shell projector A0(k,E) = 2πδ(E − ~
2k2/2m).

Short-Range Correlation Function

The real-space matrix elements of the average propagator GR,A(E) are given by the Fourier

transform

〈r′|GR,A(E) |r〉 = GR,A(r, r′, E) =

∫

dk

(2π)d
GR,A(k,E) eik·(r−r′) (4.39)

where GR,A(r, r′, E) has the following form in 2D and in 3D [7]

2D: GR,A(r, r′, E) = −iπN0 H(1)
0

(

± kE
∣

∣r − r′
∣

∣

)

e−|r−r′|/2ℓs(kE) (4.40a)

3D: GR,A(r, r′, E) = −πN0
e±ikE |r−r′|

kE |r − r′| e
−|r−r′|/2ℓs(kE) (4.40b)

H(1)
0 (±x) = ±J0(x)+iY0(x) is the Hankel function. J0(x) is the zeroth-order Bessel function

and Y0(x) is the zeroth-order von Neumann function.

With the help of the spatial representation of the spectral function it is possible to define

the non-local density of states N(r, r′, E) according to

2πN(r, r′, E) = A(r, r′, E) = −2Im[GR(r, r′, E)] = 2πN0 g
(∣

∣r − r′
∣

∣ , E
)

(4.41)

The square of the newly defined function g(R,E) is known as the short-range correlation

function aA(R,E) = g2(R,E). In 2D and in 3D one encounters the following expressions for
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g(R,E) [7]

2D: g(R,E) = J0(kER) e−R/2ℓs(kE) (4.42a)

3D: g(R,E) =
sin(kER)

kER
e−R/2ℓs(kE) (4.42b)

In principle, if the wavevector matrix elements of the self-energy operator can be determined,

we now have all necessary information about the average propagators and the average density

of states in the effective medium.

4.4 Diagrammatic Representation of the Self-Energy

The self-energy operator in the Dyson equation (4.25) embodies an asymptotic series [96]

that is constructed out of an infinite number of terms like V G0V , V G0V G0V , etc. Each

term of order n in the fluctuation strength U consists of the product of n − 1 propagators

G0 and 1 correlation function of order n of the potential fluctuations V . Up to the factor

(U/I )n these correlation functions are exactly identical to the correlation functions of the

speckle-intensity fluctuations. The real-space matrix element of the second-order correlation

function is given by

V (r)V (r′) = U2
∣

∣γ(r − r′)
∣

∣

2
(4.43)

just like in (2.10). U = U(r) denotes the average height of the optical potential and γ(r) is

the complex degree of coherence. The real-space matrix element of the third-order correlation

function is given by (cf. (2.16))

V (r)V (r′)V (r′′) = 2U3 Re[γ(r − r′) γ(r′ − r′′) γ(r − r′′)] (4.44)

The self-energy terms can be assembled according to powers of the average speckle fluctu-

ation strength Un, such that

Σ =
∑

n≥2

Σn (4.45)

where the first terms can be represented in diagrammatic form as

Σ2 = ⊗ ⊗ (4.46a)

Σ3 = • • • (4.46b)

Σ4 = ⊗ ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ ⊗

+ • • • • + • • • • + • • • • (4.46c)

Σ5 = ⊗ • • • ⊗ + • • • • • + . . . (4.46d)
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In these diagrams, every straight line represents the free propagator G0. The diagrams are

irreducible in the sense that by cutting any such single propagator line, they do not split into

independent parts. A dotted line connecting two black dots like • • = Uγ represents a field

correlation function, whereas a dotted line connecting two potential fluctuation operators

⊗ = V , like ⊗ ⊗ = U2γ2, represents a potential correlation function (4.43). The appearance

of odd terms Σ2q+1 in the formal series (4.45) reflects the non-Gaussian character of the

potential fluctuations.

To evaluate a diagram, its expression in terms of correlation functions and propagators

has to be integrated over all free internal variables. Since the potential fluctuation operator

⊗ = V is diagonal in real space and therefore translation invariant in Fourier space, the

wavevector representation of Σ2 is given by

〈k′| ⊗ ⊗ |k〉 =

∫

dk1

(2π)d
V (k1 − k′)V (k − k1)G

R,A
0 (k1, E) (4.47)

Inserting the correlation function of the potential fluctuations

V (k)V (k′) = (2π)d δ(k + k′) PV (k) (4.48)

where PV (k) is the Fourier transform of PV (r − r′) = V (r)V (r′), we find

〈k′| ⊗ ⊗ |k〉 = (2π)d δ(k − k′)ΣR,A
2 (k,E) (4.49)

Here, the subscript for the correlation function PV indicates that we are dealing with potential

fluctuations V instead of intensity fluctuations J as in (2.11). However, the difference only

lies in the prefactor U . As expected, the self-energy operator is diagonal in wavevector space

and isotropic. The matrix elements of the self-energy operator Σ2 are thus given by the

convolution of the power spectrum PV with the free Green function G0

ΣR,A
2 (k,E) =

∫

dk1

(2π)d
PV (k − k1)G

R,A
0 (k1, E) (4.50)

In principle, all diagrams in the self-energy series have to be calculated in this way and

summed up to give the self-energy contribution in (4.27).

4.5 Identification of the Perturbation Parameter

The identification of the perturbation parameter is best achieved in dimensionless units as

described in [28]. We therefore define the dimensionless wavenumber κ = k/kζ and the

dimensionless energy ε = E/Eζ in units of the inverse correlation length kζ = 1/ζ and the

correlation energy Eζ = ~
2k2
ζ/m. The high-energy case κ =

√
2ε ≫ 1 and the low-energy

case κ≪ 1 are discussed separately.
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High-Energy Limit (κ ≫ 1)

In the high-energy limit, it is possible to determine the dependence of Σn on the ultraviolet

wavevector κ ≫ 1 by simple power counting. Each irreducible diagram contributing to Σn

contains n−1 internal propagators G0, p field correlation functions (0 ≤ p ≤ n), and (n−p)/2
potential correlation functions. Taking into account all momentum conservation laws, this

leaves exactly (n+p)/2 independent variables κi, which can be chosen to be the arguments of

the correlation functions. Because of the strict momentum cut-off, these correlation functions

constrain the norms κi = |κi| to remain of order unity or smaller. The only dependence on

κ comes from the Green functions that are evaluated at momenta κj = κ − ∑

i αiκi with

topology-dependent coefficients αi ∈ {0,±1}.
Linearizing around the on-shell value ε = κ2/2 for κ≫ κi, each Green function contributes

a power κ−1. Additionally, each field correlation function is weighted by a factor U , and

each potential correlation function contributes a factor U2. The on-shell self-energy matrix

element of order n has the form

ΣR,A
n (k) ∝ Unκ1−nE1−n

ζ an (4.51)

where an is related to the number of n-point irreducible diagrams. If we further define the

dimensionless disorder parameter

η =
U

Eζ
(4.52)

the ratio ΣR,A(k)/E for κ ≫ 1 can be rewritten as ΣR,A(k)/E ∝
∑

n≥2 (an/κ) g
n. This

reveals the effective expansion parameter

g =
η

κ
=

U
√

2EEζ
(4.53)

Low-Energy Limit (κ ≪ 1)

2D: The low-energy limit κ ≪ 1 in the 2D geometry allows for a similar analysis. Each

of the (n + p)/2 correlation functions in Σn tends towards its isotropic limit and becomes

a constant. Together with the contribution κn+p from the (n + p)/2 integration measures,

and κ2−2n from the n− 1 Green functions, this yields a scaling κ2−n+p for Σn. If n is even,

Σn is therefore dominated by the diagrams with p = 0, containing only potential correlation

functions and diverging like κ2−n.

If n is odd, the dominant contribution comes from the diagrams with the smallest number

of field correlations, p = 3, that appear first in Σ3 and reappear subsequently in higher non-

Gaussian terms Σ2q+1. One can then rewrite the dominant contributions to (4.45) for κ≪ 1
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in a 2D system in the form

ΣR,A(k)/E ∝
∑

q≥1

(

a2q g
2q + κ3a2q+1 g

2q+1
)

(4.54)

Remarkably, g as defined in (4.53) is still the expansion parameter, and remains small, if

U/Eζ ≪ κ≪ 1.

Terms that are negligible compared to both their neighbours in the series can be omitted.

This applies to all odd terms when κ3g2q+1 ≪ g2q+2, i. e. κ3 ≪ g at fixed g. In this regime, the

self-energy does no longer depend on the field correlation functions, and only the Gaussian

terms without explicit κ dependence survive

ΣR,A(k)/E =
∑

q≥1

a2q g
2q (4.55)

We thus recover an effective δ-correlated Gaussian-distributed potential with the same small

perturbation parameter as before. This result is quite natural: because of its large coherence

length, the matter wave is not sensitive to phenomena occurring at the scale of ζ.

3D: The 3D case requires a separate discussion. As far as the pure intensity correlations

(p = 0) are concerned, actually the same reasoning as for 2D holds, because the low-κ

divergence of the potential correlation ∝ κ−1 is compensated by a supplementary factor

from the integration measure.

However, the pure 3D field correlation functions γ(κ) ∝ δ(1−κ) cannot tend to a constant

as κ→ 0, but project all integration momenta onto the modulus unit sphere. Consequently,

a small-κ contribution of the integration measure and the correlation functions can only come

from the (n − p)/2 variables in the potential correlation functions: it is of the form κn−p.

The contribution of a propagator is either κ−2 (as in the 2D case), if it does not depend on a

field-correlation momentum, or independent of κ in the limit κ→ 0, because field-correlation

momenta of order unity remain present. Thus, the diagrams depending only on the field

correlations (n = p) behave like κ0. At fixed n and p, the dominant diagrams, mixing field

correlation functions and potential correlation functions, are those with the largest number

of propagator lines independent of the p field-correlation variables. This happens when field

correlations can be written as products of the largest number of independent field-correlation

subdiagrams that never cross the potential correlation lines.

An example for such a diagram is the first contribution to Σ5 shown in (4.46d), which

displays a Σ3-type field correlation inside a Σ2 potential correlation. In all dominant cases,

the field sub-diagrams contain at most 3, 4 or 5 vertices (as those shown in Σ3, Σ4, and

Σ5), because higher-order field correlations can be factorized into these elementary ones,

thus yielding an additional independent propagator. Writing p = 3n1 + 4n2 + 5n3, where

the ni are non-negative integers, the largest possible number of subdiagrams is obtained by
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maximizing the sum n1 +n2 +n3. The number of propagator lines giving a κ−2 contribution

to the diagram is then n− p+ n1 + n2 + n3 − 1, and the total contribution of the diagram is

κ2−n+n1+2n2+3n3 .

It turns out that, when n is even, the dominant contribution κ2−n to Σn comes from the

potential-correlation diagrams (p = 0). When n is odd, the main contribution κ3−n is due

to the diagrams with n1 = 1, i. e. p = 3. Similarly to the 2D case, the dominant contribution

to the self-energy (4.45) is

ΣR,A(k)/E =
∑

q≥1

(

a2q g
2q + κa2q+1 g

2q+1) (4.56)

As in the 2D case, g as defined in (4.53) is the expansion parameter. Again, terms which are

negligible compared to both their neighbours can be omitted. This applies to the odd terms

when κ2 ≪ η ≪ κ≪ 1 at fixed g, i. e. in the quantum regime discussed at the end of section

4.6. In this regime, an effective δ-correlated Gaussian potential is recovered.

4.6 Weak-Scattering Approximation

The ratio of two consecutive terms Σn and Σn+1 in the momentum representation of the self-

energy series is proportional to the effective scattering parameter g = η/κ, where κ = k/kζ

is the reduced incident wave vector and η = U/Eζ is the reduced disorder parameter. Since

the number of diagrams an grows factorially with n, we face the well-known troublesome fact

that, even if the global weak-scattering condition, g ≪ 1, covering both the high-energy and

low-energy regime, is fulfilled, the series (4.45) formally diverges.

However, the self-energy series can be understood as an asymptotic series [96], which can

be accurately approximated by just the first few terms. When the effective coupling constant

g is sufficiently small, a truncation to the first term already gives a good approximation of

the self-energy. For g ≪ 1, or equivalently for η ≪ κ, the self-energy operator can then be

approximated by

ΣR,A(k) ≈ ΣR,A
2 (k), g ≪ 1 (4.57)

This is known as the weak-scattering or Born approximation.

4.6.1 Weak-Scattering Parameter

In terms of the atomic kinetic energy, the weak-scattering condition reads ε = E/Eζ =

κ2/2 ≫ η2 or

∆ =
η2

ε
=

U2

EEζ
≪ 1 (4.58)

This condition determines the range of validity for the diagrammatic perturbation theory.
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Random Phase Kicks

The correlation length ζ of the potential fluctuations defines the characteristic time τζ = ζ/v,

which is the time during which an atom, propagating with the velocity v = ~k/m, experiences

correlations of the potential fluctuations. In a semiclassical picture the multiple scattering

process in the effective medium can be described as a series of scattering events of time τζ

during which the atom receives a random phase-kick. In-between two consecutive scattering

events the atom travels on a straight path of length ℓs, which is the decay length of the average

amplitude in the effective medium. Along a path with length ζ, the typical accumulated phase

is Uτζ/~, which is equivalent to the small parameter g defined in 4.53. The weak-scattering

condition g ≪ 1 or ∆ ≪ 1 (cf. (4.57) and (4.58)) is thus equivalent to the fact that the

accumulated phase is small. This is the condition of applicability of the thin phase grating

approximation [97]. If the effect of the potential fluctuations is weak, the atomic wave is

only slightly distorted and scattered after travelling a distance ζ.

Quantum Reflection Probability

The same condition (4.58) is obtained if we consider the quantum reflection probability for

a particle that is scattered by a 1D potential barrier with height U and linear size ζ (cf.

Fig. 4.1).

Classical Regime (E > U): In this case the atom flies well above the potential fluctua-

tions, which corresponds to the regime of classical atomic motion. For E > U or ε > η the

standard quantum reflection coefficient in the reduced units ε = E/Eζ and η = U/Eζ can

be written as [98]

R−1 = 1 +
x2

∆ sin2 x
(4.59)

with x =
√

2(ε− η). Since the oscillating term sinx/x ≤ 1 is always bounded by 1, a small

quantum reflection coefficient is achieved for ∆ ≪ 1, which corresponds precisely to the

weak-scattering condition (4.58). If the fluctuation strength is smaller than the correlation

energy U < Eζ , the weak-scattering condition requires an atom with an energy that is larger

than the correlation energy E > Eζ . If on the other hand U > Eζ , the weak-scattering

condition can still be fulfilled with a sufficiently high atomic energy E ≫ Eζ .

Quantum Regime (E < U): In the quantum regime, where E < U or ε < η the quantum

reflection coefficient becomes

R−1 = 1 +
x2

∆ sinh2 x
(4.60)

with x =
√

2(η − ε). In this case, the weak-scattering regime is realized if E < U ≪
Eζ , i. e. for a correlation energy that is much larger than the potential fluctuations. This

corresponds to a Taylor expansion for small x in (4.60). Hence R−1 ≈ 1 + 1/∆ ≫ 1 for
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Figure 4.1:
Classical Regime (a) vs. Quantum Regime (b) for a particle scattered at a potential barrier with

height U and linear size ζ.

∆ ≪ 1, which again corresponds to the weak-scattering condition (4.58).

4.6.2 Weak-Scattering Energy

Equivalently, the weak-scattering condition (4.57) can be written as E ≫ E∆ with the weak-

scattering energy

E∆ = U2/Eζ (4.61)

In the 3D case (for kζ < 1), this energy scale coincides up to a numerical factor with

the mobility edge Em, which separates extended states with E > Em from localized states

with E < Em. When U < Eζ , the energy of a localized state would be E < Em < U ,

which means that such an atom is simply trapped in deep local potential wells. When

U > Eζ , then Em > U , which means that strong localization can in principle be achieved for

E > U . Classically, the atoms would fly above the potential fluctuations and could diffuse

to arbitrarily remote spatial regions. However, because of interference, the corresponding

atomic state is in fact localized. In both cases, however, the mobility edge is very close to

the validity limit of the perturbation theory.

4.7 Scattering Mean Free Path

Using the expression (4.34) for the elastic scattering rate for weak disorder, together with

the imaginary part of the self-energy in the Born approximation (4.50), the average elastic

scattering time τs(k) = 1/γs(k) is obtained as

τ−1
s (k) =

2πN0

~

∫

dΩd

Ωd
PV (kk̂ − kk̂′) =

2πN0

~
〈PV (k, θ)〉 (4.62)

where k̂ and k̂′ are unit vectors pointing in the direction of k and k′ and θ is the angle

between k and k′.
〈

. . .
〉

denotes the angular average and PV (kk̂ − kk̂′) = PV (k, θ) is the

power spectrum.
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Figure 4.2:
2D: Polar plot of the phase function f2(k, θ)

in (4.68) for different atomic wavenumbers kζ =
0.4, 1.0, 1.4, 1.8 (from left to right: blue, green, or-
ange, red) in units of the inverse speckle correlation
length ζ−1 = αkL. The phase function represents
the differential single-scattering cross-section. It is
nearly isotropic for slow atoms kζ ≪ 1, whereas
for fast atoms, kζ ≫ 1, it is strongly peaked in the
forward direction with a maximal scattering angle:
θmax ≈ 2/kζ.

The elastic scattering rate defines the elastic scattering mean free path ℓs = ~k/(mγs)

for a quasi-monochromatic wave packet centred around the wavevector k. Under the Born

approximation this simplifies to

1

kℓs(k)
= − Im[ΣR

2 (k)]

E
(4.63)

The scattering mean free path describes the distance over which a particle travels on average

without being scattered. Consistently with the weak-disorder condition Im[ΣR
2 (k)] ≪ E, we

have ~γs/2 ≪ E and equivalently

kℓs ≫ 1 (4.64)

Taking the imaginary part of equation (4.50) with the help of

Im[GR0 (k,E)] = −π δ
(

~
2k2

2m − E
)

(4.65)

gives the inverse scattering mean free path (4.63) in the form

1

kℓs(k)
= − 2m Im[ΣR

2 (k)]

~2k2
=
m2

~4

kd−4

(2π)d−1

∫

dΩd PV (k, θ) (4.66)

Here, PV (k, θ) denotes the angular correlation function as a function of the scattering angle θ

between k and k1 at fixed on-shell momenta k = k1. The d-dimensional angular integration

measure dΩd is given by dΩ2 = dθ (integration range from 0 to 2π) and dΩ3 = 2π sin θ dθ

(integration range from 0 to π).

Since PV (k, θ) is proportional to the square of the optical potential U2 (cf. (4.43)), and

hence proportional to δ2L, the scattering mean free path does not depend on the sign of the

laser detuning.
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Figure 4.3:
2D: Plot of kℓs as a function of the reduced

atomic wavenumber kζ for different values of the
disorder strength (thin curves from left to right)
η = 0.2, 0.4, 0.8, 1.2, 1.6. The thick red line con-
nects all points of kℓs where ∆ = 1, i. e. kζ =

√
2 η,

indicates the weak-scattering limit. The pertur-
bative approach clearly is only valid in the weak-
scattering regime, where ∆ < 1 (solid curves). The
dotted curves only indicate an extrapolation into
the strong scattering regime, which is not covered
by the perturbative theory.

4.7.1 2D Speckle

The 2D angular correlation function of the potential fluctuations for 0 < θ < 2π reads (cf.

(2.31))

PV (k, θ) =
8U2

k2
ζ

[

arccos(κ sin θ
2) − (κ sin θ

2)
√

1 − (κ sin θ
2)2

]

Θ(1 − κ sin θ
2) (4.67)

with κ = k/kζ = kζ. The Heaviside function Θ(1 − κ sin θ
2) restricts the scattering angle to

sin θ
2 < 1/κ. When κ ≤ 1, this condition is always fulfilled, and all angles are accessible.

When κ > 1, the scattering direction is restricted to a maximum scattering angle |θ| ≤
θmax = 2 arcsin(1/κ). This is illustrated in Fig. 4.2 by a polar plot of the 2D phase function3

f2(k, θ) =
PV (k, θ)

∫

dΩ2 PV (k, θ)

(4.68)

For fast atoms, κ ≫ 1, the differential scattering cross-section is strongly peaked in the

forward direction, which clearly reveals the anisotropic nature of the scattering process. In

this case, θmax ≈ 2/κ ≪ 1. For slow atoms, κ ≪ 1, the differential scattering cross-section

becomes isotropic. In this case, the correlation function PV (ρ) can be approximated by a

delta function such that its Fourier transform is constant: PV (q) ≈ 4π. Hence, the angular

dependence is lost for κ ≪ 1. Already the first scattering event randomizes the direction

of scattering. Inserting the angular correlation function (4.67) into (4.66), it is possible to

calculate the scattering mean free path. For κ = 1 the integral can be solved exactly

kℓs =
π

2(π2 − 4)η2
kζ = 1 (4.69)

3The name “phase function” has its origins in astronomy, where it refers to lunar phases [99]
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Figure 4.4:
3D: Polar plot of the effective phase function

f ′3(k, θ), (4.72), for different atomic wavenumbers
kζ = 1.0, 2.0, 4.0, 6.0 (from left to right). All plots
with kζ ≤ 1 are identical. If kζ ≫ 1, the phase
function is strongly anisotropic and displays the
maximum scattering angle θmax ≈ 2/kζ.
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Figure 4.5:
3D: Plot of kℓs as a function of the reduced

atomic wavenumber kζ for different values of the
disorder strength (thin curves from left to right)
η = 0.2, 0.4, 0.8, 1.2, 1.6. The thick red line con-
nects all points of kℓs where ∆ = 1, i. e. kζ =

√
2 η,

indicating the weak-scattering limit.

It is also possible to obtain analytic results in the limiting cases κ ≫ 1 and κ ≪ 1, where

the respective approximations sinx ≈ x and arccosx− x
√

1 − x2 ≈ π
2 can be used

kℓs ≈
(kζ)2

4πη2
kζ ≪ 1 (4.70a)

kℓs ≈
3π(kζ)3

32η2
kζ ≫ 1 (4.70b)

The condition ∆ ≤ 1 implies the boundary kℓs ≥ 1
2π , such that weak scattering ∆ ≪ 1

indeed describes weak disorder kℓs ≫ 1, even at very low momenta. At higher momenta

(cf. (4.70b)), weak scattering ∆ ≤ 1 implies the boundary ℓs ≥ 3π
16 ζ, which agrees with

the intuitive expectation that the scattering mean free path cannot be considerably shorter

than the 2D speckle correlation length ζ itself. Fig. 4.3 shows a plot of kℓs as a function of

kζ obtained by numerical integration of (4.66). The boundary ∆ = 1 indicates the limit of

validity of the weak-scattering approximation.

4.7.2 3D Speckle

In three dimensions the angular correlation function of the potential fluctuations for 0 < θ <

π is given by (cf. (2.35))

PV (k, θ) =
U2π2

k3
ζ

Θ(1 − κ sin θ
2)

2κ sin θ
2

(4.71)
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with κ = k/kζ = kζ and kζ = kL. Since in 3D PV (k, θ) = PV (2k sin θ
2) diverges in the

forward direction θ → 0, we plot in Fig. 4.4 the effective phase function including the angular

Jacobian

f ′3(k, θ) = sin θf3(k, θ) =
sin θ PV (k, θ)

∫

dΩ3 P3(k, θ)

(4.72)

As for the 2D case, the plot shows bounded scattering |θ| ≤ θmax for fast atoms κ > 1 and

unrestricted scattering for slow atoms κ ≤ 1. Exact backscattering θ = π appears suppressed

due to the angular Jacobian. The inverse elastic scattering mean free path (4.66) is given by

1

kℓs
= πη2

[

Θ(kζ − 1)

(kζ)3
+

Θ(1 − kζ)

(kζ)2

]

(4.73)

in terms of the correlation length ζ = k−1
L and the speckle strength η = U/Eζ .

The condition ∆ ≤ 1 implies the boundary kℓs ≥ 2
π , such that weak scattering ∆ ≪ 1

indeed describes weak disorder kℓs ≫ 1, even at low momenta. At high momenta, weak

scattering ∆ ≤ 1 implies that kℓs ≥ 2
π kζ, i. e. the lowest achievable scattering mean free

path is of the order of the 3D speckle correlation length ζ itself. Fig. 4.5 shows a plot of kℓs

as a function of kζ as obtained by (4.73).

4.8 Summary

In this chapter we have studied the physical model, which, in the following, is going to

be the basis for the theoretical description of matter-wave transport in disordered optical

potentials. We have derived the spatially varying optical dipole potential (4.9) that plays

the role of the disordered potential for our atoms and we have identified the phase-breaking

time τφ, during which a Hamiltonian evolution of the atomic matter waves is expected (cf.

(4.12)). In the remaining part of the current chapter we have derived the elastic scattering

mean free path in the effective medium for the 2D and the 3D speckle pattern (cf. (4.66)).

In contrast to isotropic scattering, where the scatterers are assumed to be uncorrelated

singularities, the speckle potential exhibits non-local correlations. This is the reason for

the anisotropic nature of the differential single-scattering cross-section, which is revealed in

the polar plots of the effective 2D and 3D phase functions. Moreover, due to the fact that

only the electric field but not the intensity is a true Gaussian random variable, additional

field-correlation diagrams appear in the self-energy representation. These field-correlation

diagrams have to be considered in addition to the common potential fluctuation diagrams,

in order to determine the small perturbation parameter g (cf. (4.53)). We have seen that

the self-energy embodies an asymptotic series governed by the small perturbation parameter,

which can be approximated by the first diagram in the series for g ≪ 1. This determines

the weak-scattering regime and gives the limit of validity of the diagrammatic perturbation

theory.
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Chapter 5

Diffusive Transport

In the present chapter we derive a general expression for the average probability density to

find an atom at the point r inside the disordered optical potential at the time t for any initial

phase-space configuration of the atoms. We also establish the general continuity equation

between the average probability density and the average current density. Both quantities

can be determined in terms of the intensity kernel that combines the average retarded and

advanced propagator. The intensity kernel is shown to verify a Bethe-Salpeter equation. In

the wavevector representation, this Bethe-Salpeter equation results in the quantum kinetic

equation, which can be solved in the long-time, large-distance limit following mainly the

original derivation by Vollhardt and Wölfle. This provides a closed expression for the intensity

kernel, which is shown to obey a diffusion equation. In the remaining part of this chapter

we calculate the diffusion constant in the Boltzmann approximation, which characterizes the

classical contribution to the diffusive matter-wave transport. This approximation is shown

to be consistent with the weak-scattering approximation introduced in the previous chapter,

via the Ward identity. The Boltzmann diffusion constant defines the Boltzmann transport

mean free path as the typical length scale over which the matter wave loses all memory of

its initial direction. This quantity is calculated for the 2D and the 3D speckle pattern and

compared to the scattering mean free path.

5.1 Probability Transport

In the course of its propagation in a disordered potential, an initial matter wave is rapidly

turned into a diffuse matter wave invading the entire scattering region. The dynamics of

this process is described by the disorder-averaged probability density p(r, t), which can be

obtained as the expectation value of the projection operator n̂(r) = |r〉〈r| for the time t > 0

p(r, t) = Θ(t)Tr[̺(t)n̂(r)] = 〈r|Θ(t)̺(t) |r〉

=

∫

dk

(2π)d

∫

dq

(2π)d
eiq·r 〈k + q

2 |Θ(t)̺(t) |k − q
2 〉 =

∫

dk

(2π)d
W (k, r, t) (5.1)
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where ̺(t) is the average atomic density operator and W (k, r, t) is the Wigner function at

t ≥ 0 defined as

W (k, r, t) =

∫

dq

(2π)d
eiq·r 〈k+|Θ(t)̺(t) |k−〉 =

∫

dR e−ik·R 〈r+|Θ(t)̺(t) |r−〉 (5.2a)

̺(k, q, t) = 〈k+|Θ(t)̺(t) |k−〉 =

∫

dr e−iq·rW (k, r, t) (5.2b)

with r± = r ± R/2 and k± = k ± q/2. p(r, t) is normalized such that
∫

dr p(r, t) = 1.

The current density operator is defined as [4] ĵ(r) = ~/(2m) {n̂(r), k̂} with the anti-

commutator {Â, B̂} = ÂB̂ + B̂Â. The current density at time t ≥ 0 at the point r is then

given by the expectation value

j(r, t) = Θ(t)Tr[̺(t)ĵ(r)] =
~

2m
〈r|

{

Θ(t)̺(t), k̂
}

|r〉

=
~

m

∫

dk

(2π)d

∫

dq

(2π)d
eiq·r k ̺(k, q, t) =

~

m

∫

dk

(2π)d
k W (k, r, t) (5.3)

The probability density (5.1) at t ≥ 0 and the current density (5.3) at t ≥ 0 are coupled

through the continuity equation

∂t p(r, t) + ∇ · j(r, t) = δ(t)p(r, 0) (5.4)

The source term on the right-hand side is given by the initial probability density p(r, 0) at

the time t = 0.

Time Evolution

The time evolution of the density operator is given by ̺(t) = U(t) ̺0 U †(t), where ̺0 denotes

the initial atomic density operator and U(t) is the time-evolution operator. Making use of

the retarded Green operator (4.19a) and its hermitian conjugate, together with the definition

(4.15), the density matrix element ̺(k, q, t) at t ≥ 0 can be written as

̺(k, q, t) =

∫

dE

2π

∫

dǫ

2π

∫

dk′

(2π)d
e−iǫt/~ ̺0(k

′, q)Φ(k,k′, q, E, ǫ) (5.5)

The matrix element of the intensity kernel operator Φ = GA ⊗GR is given by

Φ(k,k′, q, E, ǫ) = 〈k′
−|GA(E+) |k−〉 〈k+|GR(E−) |k′

+〉 (5.6)

with the energy entries E+ = E + ǫ/2 and E− = E − ǫ/2 and the wavevector entries

k± = k ± q/2 and k′
± = k′ ± q′/2. Due to the conservation of the total momentum (i. e. the

sum of the incoming wavevectors equals the sum of the outgoing wavevectors), the transfer

vectors are equal, q = q′. The ensemble average is done after taking the product of the Green

functions, which means that all correlations between different amplitudes are included. In
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the diagrammatic representation this corresponds to the four-point diagram

k+q/2 k′+q/2

k−q/2

Φ

k′−q/2

=

k+ k′
+

k−

Φ

k′

−

(5.7)

where the upper entries refer to the retarded Green function and the lower entries refer to

the advanced Green function. The incoming vectors are k′+q/2 for the retarded and k−q/2

for the advanced Green function.

Replacing the initial density matrix ̺0(k
′, q) in (5.5) by the Fourier transform of the initial

Wigner function W0(k
′, r′)

̺0(k
′, q) =

∫

dr′ e−iq·r
′

W0(k
′, r′) (5.8)

the probability density (5.1) can be written as

p(r, t) =

∫

dk′

(2π)d

∫

dr′ F(k′, r − r′, t)W0(k
′, r′) (5.9)

Here, F(k′, r−r′, t) is the intensity relaxation kernel, which will be specified in the following

subsection.

Intensity Relaxation Kernel

The intensity relaxation kernel F(k′, r − r′, t) in (5.9) describes the evolution of the Wigner

function W0(k
′, r′) in phase space. It is given by the Fourier transform

F(k′,R, t) =

∫

dǫ

2π

∫

dq

(2π)d
eiq·R e−iǫt/~F(k′, q, ǫ) (5.10)

where R = r − r′. The new kernel function F(k′, q, ǫ) itself is given by

F(k′, q, ǫ) =

∫

dE

2π

∫

dk

(2π)d
Φ(k,k′, q, E, ǫ) (5.11)

The Fourier transform of the probability density and the Fourier transform of the current

density then read

p(q, ǫ) =

∫

dk′

(2π)d
̺0(k

′, q)F(k′, q, ǫ) (5.12a)

j(q, ǫ) =

∫

dk′

(2π)d
̺0(k

′, q)J(k′, q, ǫ) (5.12b)
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with F(k′, q, ǫ) as defined in (5.11) and

J(k′, q, ǫ) =
~

m

∫

dE

2π

∫

dk

(2π)d
k Φ(k,k′, q, E, ǫ) (5.13)

The continuity equation (5.4) then leads to an additional continuity equation for the newly

defined kernel functions (5.11) and (5.13) of the form

−iǫF(k′, q, ǫ) + i~ q · J(k′, q, ǫ) = 1 (5.14)

Bethe-Salpeter Equation

The dynamics of the atomic probability density is essentially governed by the intensity kernel

operator Φ(E−, E+) = GA(E−) ⊗GR(E+), a four-point operator, whose matrix elements in

wavevector representation are the integrand of (5.11). In its operator form, the intensity

kernel Φ(E−, E+) obeys a Bethe-Salpeter equation1

Φ = [GA ⊗GR] + [GA ⊗GR]U Φ (5.15)

The first term on the right-hand side represents the ballistic propagation in the effective

medium with uncorrelated average propagators (4.26). All correlated scattering events are

described by the irreducible scattering vertex U . In fact, the Bethe-Salpeter equation actually

defines U , in the same way as the Dyson equation (4.25) defines the self-energy Σ.

5.2 Quantum Kinetic Equation

The Bethe-Salpeter equation (5.15) for the intensity propagation kernel Φ(E−, E+) can be

reformulated in wavevector space as a quantum kinetic equation [4]. The matrix elements of

the scattering operator U and the operator [GA ⊗GR] are given by

〈k′
−,k+|U(E−, E+) |k−,k

′
+〉 = U(k,k′, q, E, ǫ) (5.16a)

〈k′
−,k+|GA(E−) ⊗GR(E+) |k−,k

′
+〉 = (2π)dδ(k − k′)GA(k, q, E, ǫ)GR(k, q, E, ǫ) (5.16b)

with the wavevector entries k± = k ± q/2 and k′
± = k′ ± q/2 and the energy entries

E = (E+ + E−)/2 and ǫ = E+ − E− as before. In this notation, the incoming wavevector

entries appear on the right-hand side in the |. . .〉 vectors.

Using the identity ab = [a− b]/[b−1 − a−1], for the numbers a and b, the product GA GR

in (5.16b) can be written as

GA(k, q, E, ǫ)GR(k, q, E, ǫ) =
−∆G(k, q, E, ǫ)

ǫ− ~2

mk · q − ∆Σ(k, q, E, ǫ)
(5.17)

1The energy arguments have been suppressed for clarity.
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where the functions ∆G(k, q, E, ǫ) and ∆Σ(k, q, E, ǫ) denote the differences of the retarded

and advanced Green functions and self energies, respectively, according to

∆G(k, q, E, ǫ) = GR(k+, E+) −GA(k−, E−) (5.18a)

∆Σ(k, q, E, ǫ) = ΣR(k+, E+) − ΣA(k−, E−) (5.18b)

Multiplying by the denominator of (5.17) and integrating over the free variables, the quantum

kinetic equation then reads

[

ǫ− ~
2

m
k · q − ∆Σ(k, q, E, ǫ)

]

Φ(k,k′, q, E, ǫ) = −∆G(k, q, E, ǫ)

×
[

(2π)dδ(k − k′) +

∫

dk′′

(2π)d
U(k,k′′, q, E, ǫ)Φ(k′′,k′, q, E, ǫ)

]

(5.19)

Ward Identity

As shown by Vollhardt and Wölfle [5], the irreducible vertex function U(k,k′′, q, E, ǫ) is

linked to the self-energy Σ(k, q, E, ǫ) through the Ward identity2

∆Σ(k, q, E, ǫ) =

∫

dk′′

(2π)d
∆G(k′′, q, E, ǫ)U(k′′,k, q, E, ǫ) (5.20)

This identity is valid for all q and ǫ [5]. It can be shown that each diagram (also the non-

Gaussian diagrams) in the series expansion of the self-energy (4.45) independently verifies

(5.20). The Ward identity thus applies to the whole self-energy series, even if the potential

is not δ-correlated.

Bringing the self-energy term to the right-hand side of (5.19) and making use of the Ward

identity (5.20), the quantum kinetic equation (5.19) can also be written as

[

ǫ− ~
2

m
k · q

]

Φ(k,k′, q, E, ǫ) = −(2π)dδ(k − k′)∆G(k, q, E, ǫ) + C[Φ] (5.21)

Here, C[Φ] denotes the linear collision functional given by

C[Φ] =

∫

dk′′

(2π)d
U(k′′,k, q, E, ǫ)

[

∆G(k′′, q, E, ǫ)Φ(k,k′, q, E, ǫ)−

∆G(k, q, E, ǫ)Φ(k′′,k′, q, E, ǫ)
]

(5.22)

where we have used the fact that U(k′′,k, q, E, ǫ) = U(k,k′′, q, E, ǫ) since the scattering

vertex depends only on the absolute value |k − k′′|.
If (5.21) is integrated over dk, the collision functional disappears. Integrating again over

2The Ward identity is a generalization of the optical theorem, which establishes a relation between the
total scattering cross-section and the imaginary part of the scattering amplitude in the forward direction and
essentially expresses the conservation of energy.
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dE and making use of the normalization of the spectral function

∫

dE

2π
A(k, q, E, ǫ) = i

∫

dE

2π
∆G(k, q, E, ǫ) = 1 (5.23)

one recovers the continuity equation (5.4). The Ward identity (5.20) and the continuity

equation (5.4) encode the conservation of the probability density.

Approximation of the Collision Functional

The quantum kinetic equation can be solved in the long-time and large-distance (or Kubo)

limit, i. e. for ǫ → 0 and q → 0 along the lines given in [4–6]3. In the Kubo limit the ver-

tex function U(k,k′′, q, E, ǫ) and the spectral functions i∆G(k′′, q, E, ǫ) and i∆G(k, q, E, ǫ)

inside the linear collision functional can approximated by the leading order of a Taylor ex-

pansion in q and in ǫ.

For the average retarded and advanced Green functions a Taylor expansion to zeroth

order in ǫ and to first order in q but for a constant, i. e. q- and ǫ-independent self-energy

Σ(k, q, E, ǫ) ≈ Σ(k,E) yields

GR,A(k, q, E) ≈ GR,A(k,E) + q · ∇qGR,A(k, q, E)
∣

∣

∣

q=0

= GR,A(k,E) ± ~
2

2m
[GR,A(k,E)]2 k · q (5.24)

while the difference and the product of Green functions can be approximated by

∆G(k, q, E) ≈ ∆G(k,E) +
~

2

2m

[

[GR(k,E)]2 + [GA(k,E)]2
]

k · q (5.25a)

GR(k, q, E)GA(k, q, E) ≈ GR(k,E)GA(k,E)
[

1 +
~

2

2m
∆G(k,E)k · q

]

(5.25b)

5.2.1 Diffusion Approximation

The dependence of Φ(k,k′, q, E, ǫ) on k (or on k′ since Φ(k,k′, q, E, ǫ) is totally symmetric

in k and k′) is dominated by the peaked structure of ∆G(k, q, E, ǫ) = −iA(k, q, E, ǫ) (cf.

(4.28)) as a function of k for a fixed energy E around the absolute value k = kE . We can

therefore expand Φ(k,k′, q, E, ǫ) as [4–6]

Φ(k,k′, q, E, ǫ) ≈ A(k,E)

2πN(E)

[

Φ0 + Φ1 k · q
]

(5.26)

The effect of disorder is expected to eventually level all angular dependences. The angular

expansion of Φ(k,k′, q, E, ǫ) on k is therefore truncated after the first two moments. This is

3In [28] we present a different way to solve the quantum kinetic equation, which involves the kernel functions
defined in (5.11) and (5.13).
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known as the diffusion approximation. Applying the definitions

K(k′, q, E, ǫ) =

∫

dk

(2π)d
Φ(k,k′, q, E, ǫ) (5.27a)

J (k′, q, E, ǫ) =
~

m

∫

dk

(2π)d
k Φ(k,k′, q, E, ǫ) (5.27b)

we find Φ0 = K(k′, q, E, ǫ) and Φ1 = md/(~q2〈k2〉E) q · J (k′, q, E, ǫ) where 〈. . .〉E denotes

the average with respect to the normalized spectral function

〈k2〉E =

∫

dk

(2π)d
A(k,E)

2πN(E)
k2 (5.28)

and d is the dimension of the system. The diffusion approximation now reads

Φ(k,k′, q, E, ǫ) ≈ A(k,E)

2πN(E)

[

K(k′, q, E, ǫ) +
md

~〈k2〉E
(k · q̂) q̂ · J (k′, q, E, ǫ)

]

(5.29)

where q̂ is the unit vector pointing in the direction of q.

Inserting the diffusion approximation (5.29) into (5.21), multiplying by the scalar product

q · k and integrating over dk, leaves us with

q ·J (k′, q, E, ǫ)
[

1 − iτ̃
ǫ

~

]

= −i ~
2 〈k2〉E τ̃ q2
m2 d

K(k′, q, E, ǫ)+ iτ̃
k′ · q
m

∆G(k′, q, E, ǫ) (5.30)

where we have defined the transport time τ̃(E) as

~

τ̃(E)
=

∫∫

dk

(2π)d
dk′′

(2π)d
d
[

(k · q̂)2 − (k · q̂)(k′′ · q̂)
]

〈k2〉E
A(k,E)A(k′′, E)

2πN(E)
U(k,k′′, E) (5.31)

Since the vertex function U(k,k′′, E) is only a function of k̂ · k̂′′, the transport time must

be independent of q̂. Relabelling k′′ → k′, one can also write (5.31) as

~

τ̃(E)
=

~

τ̃s(E)
−

∫∫

dk

(2π)d
dk′

(2π)d
(k · k′)

〈k2〉E
A(k,E)A(k′, E)

2πN(E)
U(k,k′, E) (5.32)

where the average scattering time τ̃s(E) has been extracted according to the Ward identity

~

τ̃s(E)
=

1

2πN(E)

∫∫

dk

(2π)d
dk′

(2π)d
A(k,E)A(k′, E)U(k,k′, E) (5.33)

This scattering time generally contains the full scattering vertex U . It is therefore applicable

to all scattering processes. The same is true for the average transport time (5.31) and (5.32).

In particular, any approximation on the average scattering time τ̃s(E) requires via the Ward

identity (5.33) a consistent approximation on the vertex function U(k,k′, E) and vice versa.

On the other hand, inserting the diffusion approximation (5.29) into (5.21) and integrating
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over dk yields

−iǫK(k′, q, E, ǫ) + i~ q · J (k′, q, E, ǫ) = i∆G(k′, q, E, ǫ) (5.34)

which resembles a continuity equation with an energy-dependent source term on the right-

hand side. Integrating this equation over dE recovers the continuity equation (5.4) for the

probability density (5.1) and the current density (5.3) as before. The continuity equation

(5.34) and equation (5.30), which corresponds to Fick’s law, provide a closed set of equations

for the intensity kernel K(k′, q, E, ǫ) and the current kernel J (k′, q, E, ǫ) which is solved by

K(k′, q, E, ǫ) =
i∆G(k′, q, E, ǫ)

−iǫ[1 − iτ̃(E) ǫ/~] + ~D̃(E)q2

(

1 − iτ̃(E) ǫ/~ − iτ̃(E)
~ k′ · q
m

)

(5.35a)

q · J (k′, q, E, ǫ) =
i∆G(k′, q, E, ǫ)

−iǫ[1 − iτ̃(E) ǫ/~] + ~D̃(E)q2

(

− iD̃(E)q2 − iτ̃(E)
ǫk′ · q
m

)

(5.35b)

where we have introduced the diffusion constant

D̃(E) =
~

2〈k2〉E
m2d

τ̃(E) (5.36)

Here, τ̃(E) is the average transport time (5.31). This solution of the quantum kinetic equation

is valid for all kinds of disorder. In particular, it is valid independently of the Boltzmann

approximation to transport because it still contains the general scattering vertex function

U(k,k′, E).

5.2.2 Solution in the Kubo Limit and for Weak Disorder

We now study the previous results in the Kubo limit and for weak disorder. In the Kubo

limit i∆G(k′, q, E, ǫ) can be replaced by the spectral function A(k′, E). For weak disorder

the spectral function simplifies further to A(k′, E) ≈ A0(k
′, E) = 2πδ(E−~

2k′2/2m) and the

density of states can be developed to zeroth order in the small disorder parameter ~/(2Eτs)

(cf. (4.37)). N(E) can therefore be replaced by the free-particle density of states N0(E).

The average with respect to the normalized spectral function (5.28) then reduces to

〈k2〉E ≈
∫

dk

(2π)d
A0(k,E)

2πN0
k2 = k2

E (5.37)

In this case, we can redefine the transport time as a function of the on-shell wavenumber kE

~

τ(kE)
=

1

2πN(E)

∫∫

dk

(2π)d
dk′

(2π)d
(1 − k̂ · k̂′)A(k,E)A(k′, E)U(k,k′, E) (5.38)

Furthermore, in the Kubo limit, we have ǫτ/~ ≪ 1. Therefore, the second term on the

right-hand side in (5.35a) and the second term on the right-hand side in (5.35b) as well

as the term iǫτ/~ in the denominator in (5.35a) and (5.35b) can be neglected. Under this
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approximation, (5.29) can be written as

Φ(k,k′, q, E, ǫ) ≈ A0(k,E)

2πN0

A0(k
′, E)

2πN0

×
[

K0(q, E, ǫ) + K1(q, E, ǫ)k · q + K2(q, E, ǫ)k′ · q
]

(5.39)

with |k| = |k′| = kE , D(kE) = (~2k2
E/m

2d) τ(kE) and

K0(q, E, ǫ) =
2πN0

−iǫ+ ~D(kE)q2
(5.40a)

K1(q, E, ǫ) = K2(q, E, ǫ) = − i~τ(kE)

m
K0(q, E, ǫ) (5.40b)

This expression is needed in section 5.4 in order to calculate the diffuson.

Diffusive Intensity Relaxation Kernel

Our final goal is to determine the probability density (5.9) or its Fourier transform (5.12a).

Therefore, we need to calculate the function (5.11), which can be obtained as the integral

over dE of the intensity kernel K(k′, q, E, ǫ) derived in (5.35a). In the long-time limit, for

ǫτ/~ ≪ 1, the second term on the right-hand side and in the denominator of (5.35a) can be

neglected as before. Furthermore, in the large-distance limit, for ~τ(k)kq/m = ℓ(k)q ≪ 1, it

is possible to neglect also the third term on the right-hand side in (5.35a) (here ℓ(k) denotes

the general transport mean free path ℓ(k) = ~kτ(k)/m), which results in

K(k′, q, E, ǫ) ≈ A0(k
′, E)

−iǫ+ ~D(kE)q2
(5.41)

Integrating over dE, one finally obtains the intensity kernel

F(k′, q, ǫ) =

∫

dE

2π
K(k′, q, E, ǫ) =

1

−iǫ+ ~D(k′)q2
(5.42)

with the diffusion constant D(k) = (~2k2/m2d) τ(k) = (~k/md) ℓ(k) = ℓ2(k)/(τ(k)d) and the

transport time τ(k) defined by (5.38). Equation (5.42) provides the required kernel function,

which allows to calculate the average probability density (5.9) or (5.12a). The importance of

this result lies in the diffusive pole of (5.42). The Fourier transform back to the time domain

for t ≥ 0

F(k′, q, t) =

∫

dǫ

2π
Φ(k′, q, ǫ) e−iǫt/~ = exp

[

−q2D(k′)t
]

(5.43)

and further into position space reveals that the intensity relaxation kernel

F(k′,R, t) =
1

(4πD(k′)t)d/2
exp

[

− |R|2
4D(k′)t

]

(5.44)
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obeys the diffusion equation: ∂tF(k′,R, t) − D(k′)∆F(k′,R, t) = δ(R)δ(t), where R =

r − r′.

Essentially, we have found diffusive dynamics, as expected for particles in a conservative

random potential. It is, however, not the average probability density p(r, t) itself that obeys

a diffusion equation, but the intensity relaxation kernel F(k′,R, t). The average proba-

bility density p(r, t) is finally obtained according to (5.9) by a further convolution of the

kernel function with the initial Wigner function W0(k
′, r′) and by integrating over all initial

wavevectors k′.

5.3 Diagrammatic Representation of the Scattering Vertex

The irreducible vertex operator U introduced in (5.15) describes the average scattering of the

local probability density. Just like the self-energy, the scattering vertex U can be expanded

in a power series

U =
∑

n≥2

Un (5.45)

where Un contains the speckle strength η = U/Eζ (cf. (4.52)) to the power n, and all

irreducible contributions with n field correlations. The first terms of the power series U =
∑

n≥2 Un for the irreducible intensity vertex can be represented by the following diagrams:

U2 =
⊗

⊗
(5.46a)

U3 =
•

• •
+
• •
•

(5.46b)

U4 =
⊗ ⊗

⊗ ⊗
+
⊗ ⊗ ⊗

⊗
+

⊗

⊗ ⊗ ⊗
+

• • •

•
+

•

• • •
+ . . . (5.46c)

As before, “irreducible” means that these diagrams do not fall apart into independent

sub-diagrams, if a single propagator line is removed. In these diagrams the thick lines

represent the averaged propagators GR (upper entries) and GA (lower entries). Dotted lines

connecting two ⊗ (or •) represent an intensity (or field) correlation function. In addition to

the familiar potential correlations as in U2 and in the displayed contributions to U4, we find

field-correlation diagrams as in U3 and all higher orders. This stems from the fact that the

potential fluctuations do not obey Gaussian statistics.

Through the Ward identity (5.20) every self-consistent diagram in the expansion of the self-

energy corresponds to a set of diagrams in the expansion of U . For example, the diagram

(5.46a) is linked to the self-consistent diagram ⊗ ⊗. The next two diagrams (5.46b) are

linked to the field-correlation • • •, defining Σ3, and the first three diagrams in (5.46c)

correspond to ⊗ ⊗ ⊗ ⊗.
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5.4 Boltzmann Transport

Generally, the irreducible vertex function U(k,k′, E), which enters (5.38) cannot be calcu-

lated exactly, since correlations of arbitrarily high order are involved, and one has to resort to

an approximation. In the Boltzmann approximation (also known as the independent scatter-

ing approximation) the infinite series is truncated after the lowest-order contribution, similar

to the weak-scattering approximation for the self-energy series

U ≈ UB =
⊗

⊗
(5.47)

The irreducible vertex function is then given by

UB(k,k′, E) = PV (k − k′) (5.48)

The irreducible vertex in the Boltzmann approximation does not depend on the transfer

vector q. As it consists only of one single correlation function, it neither depends explicitly

on the energy E nor on the energy transfer ǫ.

The Bethe-Salpeter equation (5.15) can be formally recast into the form

Φ = [GA ⊗GR] + [GA ⊗GR]R [GA ⊗GR] (5.49)

where the reducible vertex R is related to the irreducible vertex U according to

R = U + U [GA ⊗GR]R (5.50)

In the Boltzmann approximation, the reducible vertex is obtained as

R ≈ RB =
⊗

⊗
+ L (5.51)

Here, L denotes the so-called diffuson. The letter L refers to the ladder structure of the

diagrams

L =
⊗ ⊗

⊗ ⊗
+

⊗ ⊗ ⊗

⊗ ⊗ ⊗
+ · · · =:

⊗ ⊗

⊗ ⊗
(5.52)

The diffuson describes multiple scattering as a sequence of average intensity propagation

between scattering events, where both the retarded and the advanced amplitude travel along

the same path. In other words, the Boltzmann approximation retains only the propagation

of the intensity, a classical quantity, and discards all interference corrections. While in

this picture there are no correlations between successive scattering events, the local speckle

correlations are fully taken into account. Equation (5.52) provides a microscopic justification

of the Boltzmann-Lorentz transport theory for non-interacting particles in the presence of

quenched disorder, which has been successfully applied to a large number of physical systems,
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ranging from the Drude transport theory of electrons in metals [33] to the radiative transfer

equation in optics [99, 100].

5.4.1 The Diffuson

To find an analytical expression in the diffusive regime, the idea is to start from the geometric

series for ΦB in the Boltzmann approximation. Going to the wavevector representation, we

can then compare the expansion for ΦB(k,k′, q, E, ǫ), which we have obtained in the diffusive

and weak-scattering regime in section 5.2, with the corresponding expansion for the diffuson

vertex L(k,k′, q, E, ǫ). The full series for ΦB reads

ΦB = +
⊗

⊗
+

⊗ ⊗

⊗ ⊗
(5.53)

The first term in (5.53) describes ballistic propagation, whereas the second term describes

single scattering in the effective medium. The third term finally contains the sum of all mul-

tiple scattering terms. The diagrammatic representation of the diffuson vertex is analogous

to the representation of Φ (cf. (5.7))

k+q/2 k′+q/2

k−q/2

L

k′−q/2

=
⊗k+q/2 ⊗k′+q/2

⊗
k−q/2

⊗
k′−q/2

(5.54)

Its wavevector-space matrix element is defined as

L(k,k′, q, E, ǫ) = 〈k′
−,k+|L(E−, E+) |k−,k

′
+〉 (5.55)

In order to evaluate (5.53), we recall the diffusion approximation (5.39) for Φ(k,k′, q, E, ǫ)

in the Kubo limit for which we already know the result. In order to obtain ΦB(k,k′, q, E, ǫ)

instead of Φ(k,k′, q, E, ǫ) we have to replace the diffusion constant D(k) by the Boltzmann

diffusion constant DB(k). A similar expansion in moments of k · q and k′ · q as in (5.39) can

be performed for the diffuson vertex

L(k,k′, q, E, ǫ) = L0(q, E, ǫ) + L1(q, E, ǫ)k · q + L2(q, E, ǫ)k′ · q (5.56)

Inserting (5.39) and (5.56) into the wavevector representation of (5.53), expressing the

propagator product in the Kubo limit as GA(k,E)GR(k,E) = τs/~A(k,E) according to

(5.17), and replacing the spectral function A(k,E) by the on-shell projector A(k,E) ≈
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A0(k,E), one obtains the equation

A0(k,E)A0(k
′, E)

[

K0(q, E, ǫ) + K1(q, E, ǫ)k · q + K2(q, E, ǫ)k′ · q
]

= A0(k,E)(2π)dδ(k − k′)
(2πN0)

2τs
~

+A0(k,E)A0(k
′, E)

(2πN0τs)
2

~2
PV (k − k′)

+A0(k,E)A0(k
′, E)

(2πN0τs)
2

~2

[

L0(q, E, ǫ) + L1(q, E, ǫ)k · q + L2(q, E, ǫ)k′ · q
]

(5.57)

The coefficients L0(q, E, ǫ), L1(q, E, ǫ) and L2(q, E, ǫ) can then be obtained by integrating

(5.57) over dk and dk′ in the case of L0(q, E, ǫ) or by multiplying first by k · q or k′ · q and

then integrating over dk and dk′ in the case of L1(q, E, ǫ) and L2(q, E, ǫ). The equation for

L0(q, E, ǫ) is given by

K0(q, E, ǫ) =
4πN0τs

~
+

(2πN0τs)
2

~2
L0(q, E, ǫ) (5.58)

The first term 4πN0τs/~ on the right-hand side in (5.58) originates from the first and the

second term on the right-hand side in (5.57), which both yield the same contribution. This

can be shown using equation (4.62). In the Kubo limit, this contribution can be neglected

compared to K0(q, E, ǫ). Altogether, replacing K0(q, E, ǫ) from (5.40a), and K1(q, E, ǫ) and

K2(q, E, ǫ) from (5.40b) one finally obtains

L0(q, E, ǫ) =
~

2

2πN0τ2
s (kE)

1

−iǫ+ ~DB(kE)q2
(5.59a)

L1(q, E, ǫ) = L2(q, E, ǫ) = − i~τs(kE)

m
L0(q, E, ǫ) (5.59b)

The fact that the coefficients L1 and L2 are identical reflects the symmetric nature of the

quantum kinetic equation. This result is needed for the calculation of the cooperon vertex in

section 6.1, where weak-localization corrections to the Boltzmann approximation are taken

into account.

5.5 Comparison to Isotropic Scattering

The main complication with regard to the solution of the diffuson series (5.52) arises from

the fact that the scattering of matter waves in the speckle potential is not isotropic. In our

case the correlations of the potential fluctuations prevent a simple solution without going to

the Kubo limit. For isotropic scattering, however, the diffuson can be solved exactly. To this

aim, the diffuson (5.52) can be formally rewritten as a geometric series

L =
⊗

⊗

[

1 +
⊗

⊗
+

( ⊗

⊗

)2

+ . . .

]

=
⊗

⊗
1

1 − Υ
(5.60)



78 Chapter 5 Diffusive Transport

The wavevector matrix elements of the ladder insertion operator Υ are defined as

Υ(k,k′, q, E, ǫ) = 〈k′
−,k+|Υ(E−, E+) |k−,k

′
+〉 (5.61)

The main difference for isotropic scattering, as compared to the previous derivation of the

diffuson for anisotropic scattering, is that the single-scattering vertex function does not

depend on the angle between the wavevectors k and k′. For this reason, the isotropic ladder

insertion function and the diffuson also remain independent of the direction of k and k′. The

isotropic ladder insertion function can then be calculated as the integral

Υiso(q, E, ǫ) =
~

2πN0τs

∫

dk

(2π)d
GR(k + q

2 , E + ǫ
2)GA(k − q

2 , E − ǫ
2) (5.62)

where the single-scattering vertex function only contributes the constant prefactor UB =

~/(2πN0τs). In 3D (5.62) yields [4]

Υiso(q, E, ǫ) =
i

2qℓs
ln

( i+ ǫτs/~ + qℓs
i+ ǫτs/~ − qℓs

)

(5.63)

In the stationary case (ǫ = 0), we find the well-known expression Υiso = arctan(qℓs)/(qℓs).

In 2D a similar calculation leads to

Υiso(q, E, ǫ) =
1

√

(1 − iǫτs/~)2 + q2ℓ2s
(5.64)

In the Kubo limit, where ǫτs/~ ≪ 1 and qℓs ≪ 1, (5.63) and (5.64) a Taylor expansion to

leading order in ǫτs/~ and in qℓs yields

Υiso(q, E, ǫ) ≈ 1 +
iǫτs
~

− 1

d
q2ℓ2s (5.65)

with d = 2 in 2D and d = 3 in 3D. This approximation for the isotropic ladder insertion func-

tion is equivalent to the diffusion approximation. Inserting (5.65) and the single-scattering

vertex UB = ~/(2πN0τs) into (5.60) in the wavevector representation, finally recovers the

diffuson

Liso(q, E, ǫ) =
~

2

2πN0τ2
s (kE)

1

−iǫ+ ~D(kE)q2
(5.66)

where the diffusion constant is defined as D(k) = ℓ2s(k)/(τs(k)d) = (~k/md)ℓs(k), since for

isotropic scattering ℓs = ℓB. Hence, in the isotropic case, the diffuson Liso(q, E, ǫ) in the

Kubo limit is identical with the first moment L0(q, E, ǫ) (cf. (5.59a)) in the expansion (5.56)

of the anisotropic diffuson vertex L(k,k′, q, E, ǫ).
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5.6 Transport Mean Free Path

The respective approximations for the self-energy Σ and for the scattering vertex U are

not independent from each other. If probability conservation is imposed as a fundamental

constraint, both approximations (4.57) and (5.47) must verify the Ward identity (5.20). In

the diffusive regime and under the Boltzmann approximation, the Ward identity reduces to

(cf. (4.62))

~

τs(kE)
=

∫

dk

(2π)d
A0(k,E)PV (k − k′) = 2πN0

∫

dΩd

Ωd
PV (kE , θ) (5.67)

where PV (kE , θ) = PV (kEk̂ − kEk̂′) = PV (2kE sin θ
2) is the angular potential correlation

function, θ ∈ [0, 2π] being the angle between k and k′ at the on-shell momenta kE = |k| =

|k′|. The Boltzmann transport time is then given by

~

τB(kE)
=

~

τs(kE)
− 1

2πN0

∫∫

dk

(2π)d
dk′

(2π)d
A0(k,E)A0(k

′, E)PV (k − k′) k̂ · k̂′

= 2πN0

∫

dΩd

Ωd
(1 − k̂ · k̂′) PV (kE , θ) (5.68)

This transport time also defines the Boltzmann diffusion constant DB(k) and the Boltzmann

transport mean free path ℓB(k) according to

DB(k) =
1

d

~
2k2

m2
τB(k) =

1

d

~k

m
ℓB(k) (5.69)

The transport mean free path is the average distance required to completely erase the memory

of the initial direction of propagation. It is related to the scattering mean free path (4.66)

through
ℓs
ℓB

= 1 − 〈cos θ〉f = 1 −
∫

dΩd cos θ fd(k, θ) (5.70)

where the cosine of the scattering angle is averaged over the phase function (4.68) in 2D or

(4.72) in 3D. The term 〈cos θ〉f is known as the anisotropy function of the scattering process.

For fully isotropic scattering it is zero, and ℓB = ℓs. For strongly anisotropic scattering,

however, 〈cos θ〉f can take a value close to 1. In this case the transport mean free path is

much larger than the scattering mean free path (ℓB ≫ ℓs).

5.6.1 2D Speckle

In general, the 2D transport mean free path has to be calculated numerically. Only for

κ = kζ = 1 (cf. (4.69)) and in the asymptotic cases κ≪ 1 and κ≫ 1 analytical expressions

can be found. For κ≪ 1, making use of (5.70), the transport mean free path is given by

ℓB =
π2 − 4

π2 − 8
ℓs kζ = 1 (5.71)
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Figure 5.1:
Plot of ℓs and ℓB as a function of the reduced atomic wavenumber kζ for η = U/Eζ = 0.2 in 2D (a)

and in 3D (b). The dashed lines indicate the weak-scattering limit. The insets show the respective
anisotropy function 〈cos θ〉f as a function of the reduced atomic wavenumber kζ.

whereas the asymptotic expressions for ℓB are given by

ℓB ≈ ℓs kζ ≪ 1 (5.72a)

ℓB ≈ 15

4
(kζ)2 ℓs kζ ≫ 1 (5.72b)

A comparison between the 2D transport mean free path and the 2D scattering mean free

path is shown in Fig. 5.1(a) for η = U/Eζ = 0.2. The inset shows a plot of the 2D anisotropy

function 〈cos θ〉f as a function of kζ. For small wavenumbers kζ → 0 one has 〈cos θ〉f → 0

and ℓB → ℓs. In this limit the scattering is isotropic. When kζ ≫ 1, the ratio ℓB/ℓs

scales as (kζ)2. This can be easily understood because the phase function limits the angular

integration to |θ| ≤ θmax ∼ 1/kζ such that 1 − 〈cos θ〉f ≈ 1
2 〈θ〉f ∝ θ2

max. Thus, roughly (kζ)2

independent scattering events are needed to fully erase the memory of the initial direction.

In other words, the correlated speckle potential can only weakly deviate atoms with large

wavenumbers k ≫ αkL.

5.6.2 3D Speckle

In the 3D case (5.70) yields the exact result

1

kℓB
=

2π

3
η2

[

Θ(kζ − 1)

(kζ)5
+

Θ(1 − kζ)

(kζ)2

]

(5.73)

In terms of the scattering mean free path (4.73) we have

ℓB =
3ℓs
2

[(kζ)2 Θ(kζ − 1) + Θ(1 − kζ)] (5.74)

As one can see in Fig. 5.1(b), a slight anisotropy ℓB = 3
2ℓs remains for all kζ ≤ 1, implying

〈cos θ〉f = 1
3 . This feature has already been evidenced by the anisotropic phase function
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plotted in Fig. 4.4. The residual anisotropy in 3D is due to the divergence of PV (κ) (cf.

(2.35)) near κ = 0. At higher momenta, kζ ≥ 1, the ratio ℓB/ℓs scales as (kζ)2 for the same

reason as in 2D.

5.7 Summary

In the present chapter we have set the foundations for the calculation of intensity (or prob-

ability) transport in the effective medium. A detailed discussion of the quantum kinetic

equation has been presented making use of a slightly modified approach to the one used

by Vollhardt and Wölfle. An approximation in the long-time, large-distance limit (Kubo

limit) of the collision functional in (5.22) together with the diffusion approximation allows

to derive a general expression for the average transport time (5.31) that is valid even beyond

the Boltzmann approximation to transport. In the Kubo limit and for weak disorder the

quantum kinetic equation can be solved for the intensity relaxation kernel, which is needed

to calculate the average probability density (5.9).

Using the Boltzmann approximation for the scattering vertex we have determined the

diffuson vertex, which describes the classical diffusive propagation of matter waves in the

presence of a disordered potential. As a net result we have seen that a correlated disordered

potential generally leads to anisotropic multiple scattering with a Boltzmann transport mean

free path that is larger than the scattering mean free path. This relation is encoded in the

anisotropy function for the 2D and the 3D speckle pattern. Nearly isotropic scattering is

only encountered for very cold atoms with a de Broglie wavelength that is much larger than

the correlation length of the speckle fluctuations. In this case, the matter wave cannot

resolve the local correlation of the speckle pattern and the disordered potential appears

to be δ-correlated white noise. For larger wavenumbers, however, one encounters strongly

anisotropic scattering. Nevertheless, we have seen that in the long-time and large-distance

limit one still encounters a diffusive process just like for isotropic scattering.

Among others, three results of the present chapter are of particular importance in the

following. The general expression (5.9) for the average probability density, which has formed

the point of origin of the present chapter is used in section 6.6 to calculate the variance of

an expanding cloud of cold atoms as one of the most important experimental observables to

determine the diffusion constant and possible localization effects in the disordered potential.

In the following chapter, the general expression for the transport time (5.38) is evaluated

beyond the Boltzmann approximation. And finally, in the same context, the diffuson vertex

(5.52), which has presently been identified with Boltzmann transport, reappears under time

reversal symmetry as the cooperon vertex describing quantum corrections to the classical

diffusion process.
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Chapter 6

Coherent Multiple Scattering

This chapter contains the theoretical description of the coherent interference effects that can

occur when a matter wave is multiply scattered by a random potential. One of the basic

questions we were interested in, was whether localization of matter waves could be observed

experimentally, and, if this is the case, whether it could be described by the diagrammatic

perturbation theory, within the range of validity that we have established in chapter 4.

It turned out that the answer to both questions can indeed be affirmative under certain

conditions, most importantly, if the initial momentum and the initial momentum dispersion

of the atoms is sufficiently small.

The experimental observability of localization of course depends on a number of factors

that are not treated in the present work. By setting up a simple model for non-interacting

atoms in a scalar electric field, we have made several simplifications compared to the situation

in a real experiment. We have also only regarded a bulk system and not particular geometries.

However, some of these restrictions can be overcome. For example the atom-atom interaction

can be tuned via Feshbach resonances [25, 26] making use of the magnetic field dependence

of the scattering length. In the absence of other phase-breaking mechanisms apart from the

interaction of the atoms with the vacuum fluctuation reservoir, the phase coherence length

is only determined by the spontaneous emission rate, which can be controlled through the

variation of the detuning and the intensity of the laser light, that creates the optical potential.

This guarantees phase-coherent elastic multiple scattering as one of the main prerequisites

for the observation of localization effects.

A crucial question that is addressed in the present chapter is the effect of the finite spatial

distribution and the finite momentum distribution of the atoms. As in some of the recent

experimental investigations of matter waves in disordered potentials (cf. for example [19, 51]),

we consider the temporal evaluation of the position variance of an atomic cloud.

As in the previous chapters, the basis for the presented results is Vollhardt’s and Wölfle’s

self-consistent diagrammatic perturbation theory [5, 6, 38]. To be able to adapt this theory

to matter-wave transport, a few important modifications were necessary, mainly due to the

fact that the disordered optical potential exhibits spatial correlations in contrast to the gen-

eral picture of Gaussian white noise, which is used for the description of coherent multiple

scattering of electrons. We derive in detail the weak-localization correction to the diffusion

constant and comment on the self-consistent approach by Vollhardt and Wölfle, which al-
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lows to obtain some insight about what happens when the strong-localization threshold is

approached. Within the self-consistent theory it is possible to obtain an expression for the

localization length and to derive the critical exponents for the localization length and the

diffusion constant.

With regard to the anisotropic nature of matter-wave scattering in disordered optical po-

tentials, the basic picture of two-wave interference within quantum loops has to be extended,

including scattering effects of the same order in the weak-disorder parameter, which can

be described by additional vertex functions known as Hikami boxes [101]. By reason of

fundamental arguments based on Einstein’s relation and the Ward identity these additional

contributions cannot be discarded contrary to the case of isotropic scattering.

6.1 Weak-Localization Correction

Within the Boltzmann approximation to transport discussed in section 5.4, all quantum

interference effects are discarded. At first sight this may seem reasonable because any such

effects are expected to be suppressed by the ensemble average over all possible realizations

of the random potential. This means that the effect of the disorder average is to single

out products of amplitudes and conjugate amplitudes travelling along the same paths in the

same direction, where no phase differences are present. As they are insensitive to dephasing

processes these contributions describe classical propagation.

It was realized, however, that this argument is too simplistic [35] for well isolated systems,

where phase-coherent interference between different scattering paths can occur. This can be

understood by considering the return probability to a given point. In this case the scattering

paths are closed loops. Two waves propagating in opposite directions around any such loop

interfere constructively as they do not pick up any phase difference (unless a magnetic field

for charged particles is applied, or dephasing processes are at work). This constructive two-

wave interference enhances the return probability to twice the classically expected value.

The enhancement of the return probability in turn decreases the diffusion constant for the

onward propagation.

6.1.1 The Cooperon

In diagrammatic terms, the quantum corrections, which have to be introduced in (5.15), in

addition to the Boltzmann scattering vertex defined in (5.47), are described by wavevector

diagrams with counter-propagating amplitudes. The simplest replacement of the irreducible

scattering vertex U in (5.15) that can account for the described interference effect is [75]

U → UB + CA (6.1)
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Here, CA is the sum of all maximally crossed diagrams

CA =
⊗ ⊗

⊗ ⊗
+

⊗ ⊗ ⊗

⊗ ⊗ ⊗
+ · · · =:

⊗ ⊗

⊗ ⊗
(6.2)

This series is also known as the cooperon.

The sum of all maximally crossed diagrams CA can be calculated making use of time

reversal symmetry. This allows to flip the cooperon diagram according to

⊗k+q/2 ⊗k′+q/2

⊗
k−q/2

⊗
k′−q/2

→
⊗k+q/2 ⊗k′+q/2

⊗
−k′+q/2

⊗
−k+q/2

→
⊗K+Q/2 ⊗K′+Q/2

⊗
K−Q/2

⊗
K′−Q/2

(6.3)

The entry vectors have been relabelled by a change of variables according to

K =
k − k′

2
+

q

2
K ′ =

k′ − k

2
+

q

2
Q = k + k′ (6.4)

Hence, under time reversal symmetry, we obtain

CA(k,k′, q, E, ǫ) = L(K,K ′,Q, E, ǫ) (6.5)

It is therefore possible to express the cooperon in terms of the diffuson which we have already

studied in section 5.4 (cf. (5.56)). Performing the replacement U → UB +CA, the transport

time (5.38) becomes

τB
τ∗A

= 1 +
τB

2πN(E)~

∫∫

dk

(2π)d
dk′

(2π)d
A(k,E)A(k′, E) (1 − k̂ · k̂′)L(K0,−K0,Q, E, ǫ) (6.6)

In the Kubo limit, q → 0, we have K0 = (k − k′)/2 and K ′
0 = −K0. In this special

case the second and the third term in the expansion (5.56) of L(K0,−K0,Q, E, ǫ) can-

cel out each other, since L1(Q, E, ǫ) = L2(Q, E, ǫ). Therefore, we can directly replace

L(K0,−K0,Q, E, ǫ) by L0(Q, E, ǫ).

In (6.6) appears the factor (1 − k̂ · k̂′) instead of −k · k′, which is often found in the

literature (cf. for example [4]). This factor (1 − k̂ · k̂′) stems from the fact that, beyond the

Boltzmann approximation for the scattering vertex U , the scattering time τs in (5.68) has to

be corrected as well. According to the Ward identity (5.20) we have (cf. (5.33))

τs
τAs

= 1 +
τs

2πN(E)~

∫∫

dk

(2π)d
dk′

(2π)d
A(k,E)A(k′, E)L0(Q, E, ǫ) (6.7)

Due to the diffusive pole of L0(Q, E, ǫ) (cf. (5.59a)) the dominant contribution to this integral

arises from the neighbourhood of Q = 0, i. e. around k = −k′. Changing the integration

variables from k and k′ to k and Q = k+k′, we can then set Q = 0 in the spectral functions.
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Using A(−k,E) = A(k,E), one obtains

τs
τAs

= 1 +
τs

2πN(E)~

∫

dk

(2π)d
A2(k,E)

∫

dQ

(2π)d
L0(Q, E, ǫ) (6.8)

The replacement U → UB + CA that leads to (6.8) is not entirely consistent with the Ward

identity. I will come back to this point in section 6.2, where I will discuss an alternative but

consistent approximation on the scattering vertex.

The integral for the transport time (6.6) can be solved along the same lines, except that

the factor (1 − k̂ · k̂′) for k = −k′ introduces an additional factor 2 to the correction term

τB
τ∗A

= 1 +
τB

πN(E)~

∫

dk

(2π)d
A2(k,E)

∫

dQ

(2π)d
L0(Q, E, ǫ) (6.9)

One way to treat the integral over dk in (6.8) and (6.9) is to replace the square of the spectral

function by

A2(k,E) = [i (GR(k,E) −GA(k,E))]2 = 2GR(k,E)GA(k,E)

− ([GR(k,E)]2 + [GA(k,E)]2) (6.10)

where we have used the definition of the spectral function A(k,E) = −2Im[GR(k,E)] =

i∆G(k,E) (cf. (4.28)). Performing the integral over dk of the square of the Green func-

tions −([GR(k,E)]2 + [GA(k,E)]2) yields a contribution of the order O(N0/E), both in 2D

and in 3D. For weak disorder, where ~/(2τsE) ≪ 1, this contribution can be neglected

compared to the contribution of the product of the retarded and the advanced propagator

2GR(k,E)GA(k,E), which amounts to 4πN0τs/~. Furthermore, we can make use of (5.17)

to re-express the product GR(k,E)GA(k,E) in terms of the spectral function

GR(k,E)GA(k,E) = − iA(k,E)

∆Σ(k,E)
≈ τs

~
A(k,E) (6.11)

The last approximation holds for weak scattering, where the self-energy can be taken on-shell

such that, using (4.63), ∆Σ(k,E) can be expressed by ∆Σ(k) = 2iIm[ΣR(k)] = −i~/τs. Up

to the factor 2τs/~, the integral over dk of A2(k,E) in (6.9) thus reduces to the integral

over dk of the spectral function alone, which yields the average density of states (cf. (4.31))
∫

dk/(2π)d A(k,E) = 2πN(E). One finally obtains the following approximation for the

transport time corrected by the cooperon contribution to the scattering vertex (6.9)

τB
τ∗A

= 1 +
4τBτs

~2

∫

dQ

(2π)d
L0(Q, E, ǫ) = 1 +

[

2τB
τs

]

Ωd

πN0~

∫

dQ

(2π)d
Qd−1

−iω +DBQ2
(6.12)

where we have replaced L0(Q, E, ǫ) from (5.59a) and ǫ by ~ω. The integral over dQ in (6.12)

in 2D and in 3D diverges. However, this divergence only stems from the fact that we have

set Q = 0 in the spectral functions in (6.6). Before I am going to discuss the result (6.12)
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further, I would like to present two different approaches to calculate the integral over the

spectral functions in (6.6).

Generalization for Arbitrary Exponents

The integral over the spectral functions can be generalized for arbitrary exponents. For this

purpose let us consider the general integral

I =

∫

dk

(2π)d
[GR(k,E)]m[GA(k,E)]n g(k, k̂) (6.13)

with some function g(k, k̂), which may depend on the direction k̂. We then have to solve

I =

∫ ∞

0
dη N0(η) (E − η + i~/2τs)

−m(E − η − i~/2τs)
−n

∫

dΩd

Ωd
g(kη, k̂) (6.14)

Since the Green functions are peaked around η = E, the density of states and the function

g(kη, k̂) can be evaluated at N0(η) = N0(E) and g(kE , k̂), respectively, if they are smoothly

varying functions of η at this point. Furthermore, the lower integration range can be extended

to −∞. This procedure introduces an error of the order O(~/2τsE), which can be neglected

for weak disorder. For consistency, the average density of states N(E) in (6.9) has to be

replaced by the free-particle density of sates N0(E) in this case. The integral can then be

solved by the residue theorem

I =

∫

dk

(2π)d
[GR(k,E)]m[GA(k,E)]n g(k, k̂) ≈ fn,m(τs)

∫

dΩd

Ωd
g(kE , k̂) (6.15)

where we have defined the function [7]

fn,m(τs) =
2πiN0

(m− 1)!
lim

η→(E+i~/2τs)

[

d

dη

]m−1[ (−1)m(−1)n

(η − E + i~/2τs)n

]

= 2πN0 i
n−m (n+m− 2)!

(m− 1)!(n− 1)!

(τs
~

)n+m−1
(6.16)

Using (6.11) together with (6.13) and (6.16) for m = n = 2 one finds

∫

dk

(2π)d
A2(k,E) =

~
2

τ2
s

∫

dk

(2π)d
[GR(k,E)]2[GA(k,E)]2 =

~
2

τ2
s

f2,2(τs) (6.17)

with f2,2(τs) = 4πN0τ
3
s /~

3. Making use of (6.17) to calculate the integral over the spectral

functions in (6.9) yields again the result (6.12).

Hikami Function

Alternatively, (6.6) can be solved without putting Q → 0 in the spectral functions. Keeping

the approximation k = −k′ in (6.6), but leaving the spectral functions unchanged, the
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transport time can then be specified more accurately as

τB
τ∗A

= 1 +
4πN0τB

~

∫∫

dR dR′

∫∫

dk

(2π)d
dQ

(2π)d
e−ik·R e−i(Q−k)·R′

× g(R,E)g(R′, E)L0(Q, E, ǫ) (6.18)

Here, we have used the real-space representation of the spectral function (4.41): A(R,E) =

−2Im[GR(R,E)] = 2πN0g(R,E), where R = r−r′, and we have replaced the average density

of states N(E) in (6.6) by the free-particle density of states N0(E), which is possible for weak

scattering. Performing the integration over dk and dR′, (6.18) simplifies further to

τB
τ∗A

= 1 +
4πN0τB

~

∫

dR

∫

dQ

(2π)d
e−iQ·R g2(R,E)

~
2/2πN0τ

2
s

−iǫ+ ~DBQ2

= 1 +

[

2τB
τs

] ∫

dQ

(2π)d
aA(Q,E)

~/τs
−iǫ+ ~DBQ2

(6.19)

Here, we have defined the Hikami function aA(Q,E) as the Fourier transform of the short-

range correlation function aA(R,E) = g2(R,E)

aA(Q,E) =

∫

dR e−iQ·R g2(R,E) (6.20)

The function g(R,E) is given explicitly in 2D and in 3D in (4.42). The comparison of (6.19)

with (6.12) shows that the previous approximations on the spectral functions correspond to

the following approximation on the Hikami function

aA(Q,E) ≈ aA(0, E) =

∫

dR g2(R,E) =
τs

πN0~
(6.21)

aA(0, E) is proportional to the volume λd−1ℓs. This volume can be interpreted as the tube

of length ℓs and surface λd−1, which describes the volume of the crossing region of the

cooperon [7]. The Hikami function (6.20) can also be obtained directly from the Hikami

vertex associated to this crossing region. For this reason, the Hikami vertex is discussed

briefly in the following section.

6.1.2 Discussion of the Cooperon and the Hikami Function

The wavevector diagram (6.2) for the maximally crossed series corresponds to the sum over

all possible real-space diagrams of the form described in Fig. 6.1(a) (cf. Fig. 1.1(a)). To see

this equivalence, it is helpful to assume uncorrelated isotropic scatterers. Having at hand the

general formalism of Green functions and the diagrammatic representation of the scattering

vertex derived in sections 4.2.1 and 5.4, we can identify the solid line in Fig. 6.1(a) as a series

of averaged retarded Green functions and the dotted line as a series of averaged advanced

Green functions.
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(a) cooperon diagram (b) 1st Hikami box HA

Figure 6.1:
Cooperon vs. Hikami diagram in position space. The Hikami diagram (b) is topologically identical

with the corresponding real-space diagram (a). The notion Hikami box refers to the actual vertex
confined by the two highlighted retarded and advanced propagators.

At every wriggle in the diffusive path a scattering event takes place, which is described

by the single-scattering vertex (5.46a). If the scattering events inside the loop are numbered

in the same order in which they occur (the order is different for the conjugated amplitude,

which travels around the loop in the opposite direction) and neighbouring scattering events

are connected by an average retarded propagator for the upper elements in the wavevector

diagram and by an average advanced propagator for the lower part, the wavevector diagram

corresponding to the loop in Fig. 6.1(a) is obtained, if all scattering events with the same

number are connected by a correlation line. The full cooperon is then obtained by the sum

over all possible loops.

The real-space diagram in Fig. 6.1(a) consists of three long-range contributions and one

short-range contribution. The short-range contribution arises from the crossing region. Be-

fore and after the crossing as well as during the loop we encounter a diffusive behaviour of

the matter wave, which is essentially a long-range phenomenon. While the characteristic

length scale of the short-range contribution is ℓs, the long-range contribution determines the

length scale ℓB.

The crossing region can be regarded as a vertex of its own. This becomes obvious, if the

diagram is written in a slightly different way, shown in Fig. 6.1(b). The only difference is

that the crossing in Fig. 6.1(a) has been disentangled. The crossing region now defines a box

confined by two retarded and two advanced Green functions. The linear size of this so-called

Hikami box is determined by the decay length ℓs of the Green functions.

The Hikami box is a real function of the four corner points H({ri}) = H(r1, r2, r3, r4) [7].

Integrating over two of its arguments, one obtains the function

H(r − r′) =

∫∫

dr2 dr4 H(r, r2, r
′, r4) (6.22)
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The first Hikami box shown in Fig. 6.1(b) is given by

HA(Q) =

∫

dk

(2π)d
GR(k)GA(k) GR(k − Q)GA(k − Q) =

(2πN0τs)
2

~2
aA(Q,E) (6.23a)

HA(R) =

∫

dQ

(2π)d
eiQ·RHA(Q) =

(2πN0τs)
2

~2
g2(R,E) (6.23b)

The Hikami function aA(Q,E) in three dimensions is given by

aA(Q,E) =
π

k2
EQ

[

arctan
(

(2kE −Q)ℓs
)

+ 2 arctan
(

Qℓs
)

− arctan
(

(2kE +Q)ℓs
)

]

(6.24)

For weak disorder (kEℓs(kE) ≫ 1) and for small Q (Q ≪ kE), only the term in the middle

survives, such that

aA(Q,E) ≈ 2π

k2
EQ

arctan
(

Qℓs
)

=
τs

πN0~

arctan
(

Qℓs
)

Qℓs
(6.25)

Here, we have used the 3D density of states N0(kE) = mkE/(2π
2
~

2). Furthermore, in the

large-distance limit (Qℓs ≪ 1), one recovers the approximation (6.21). In two dimensions,

there seems to be no simple analytical expression for aA(Q,E). However, the same approxi-

mation for Qℓs ≪ 1 holds in 2D and in 3D such that

aA(Q,E) ≈ τs
πN0~

(

1 − Q2ℓ2s
d

)

= aA(0, E) + O(Q2) (6.26)

for d = 2, 3. This result for the Hikami function can also be directly obtained from (6.23a)

using a Taylor expansion for small Q similar to (5.24).

6.1.3 Comparison to the Kubo Theory

From the Kubo theory for electron scattering in disordered semiconductors we know that the

classical conductivity σB is reduced by the coherent contribution [7]

δσ =
se2DB

π~

∫

dQ

(2π)d
Re

[

1

−iω +DBQ2

]

(6.27)

where s is the spin degeneracy factor and e is the elementary charge of the electrons. The

classical conductivity satisfies Einstein’s relation. In terms of the transport time, Einstein’s

relation reads

σB = se2N0DB =
se2N0

d

~
2k2

m2
τB (6.28)

In the stationary case, where ω = 0, this relation exists not only between DB and σB,

but also between δσ and δD and hence between σ = σB − δσ and D∗ = DB − δD. The
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weak-localization correction to the transport time should therefore be given by

τB
τ∗

=

[

1 − 1

πN0~

∫

dQ

(2π)d
1

DBQ2

]−1

≈ 1 +
1

πN0~

∫

dQ

(2π)d
1

DBQ2
(6.29)

for δτ ≪ τB. The weak-localization correction to the conductivity (6.27) is derived using

similar diagrammatic techniques to the ones used in chapter 5 and in the current chapter.

Therefore, (6.29) should be equal to our result (6.12). However, a direct comparison reveals

that (6.12) differs from (6.29) by the factor [2τB/τs]. The reason for this discrepancy is

twofold:

The factor [τB/τs] in (6.12) is a signature of anisotropic scattering. For isotropic scattering,

as in the case of (6.27) and (6.29), this factor is equal to 1, since τB = τs.

The additional factor 2 in (6.12) originates from the required renormalization of the scat-

tering time as a result of the Ward identity (cf. (6.8)). It does not appear, if τs is directly

assumed to be constant, as it is sometimes done in the literature. In our previous descrip-

tion in section 6.1.1, where only the CA diagram is incorporated in the scattering vertex U ,

this factor 2 does not disappear even for isotropic scattering. In order to obtain the correct

result (6.29) we therefore have to perform a different approximation of the scattering vertex

including other diagrams in addition to the CA diagram.

This alleged discrepancy between the diagrammatic perturbation theory for τ∗ and the

diagrammatic perturbation theory for the conductivity σ∗, which becomes manifest via Ein-

stein’s relation, deserves a special investigation in the next section.

6.2 Anisotropic Hikami Contributions

The simple substitution U → UB+CA introduced in (6.1) is not compatible with probability

density conservation in the strict sense that only a small fraction of all intensity diagrams

required by the Ward identity (5.20) is included in the irreducible scattering vertex.

For electron transport in highly anisotropic systems P. Wölfle and R. N. Bhatt [102] have

performed the calculation for the conductivity tensor. In this calculation two additional

conductivity diagrams corresponding to dressed Hikami boxes [7] are taken into account.

The calculation for the anisotropic conductivity tensor is similar to the calculation of the

weak-localization correction to the diffusion constant that we wish to perform. We therefore

need to include the same additional Hikami diagrams CB and CC adapted to our case. We

will see in (6.37) and (6.40) that these diagrams yield a contribution of the same order as

the cooperon CA to the general general scattering time (cf. (5.33)) and the general transport

time (cf. (5.38)). The complete vertex to be added to the Boltzmann term is

C = CA + CB + CC (6.30)
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6.2.1 Correlated Hikami Diagrams

The wavevector diagrams corresponding to (6.30) are given by

C =
⊗ ⊗

⊗ ⊗
+

⊗ ⊗ ⊗ ⊗

⊗ ⊗
+

⊗ ⊗

⊗ ⊗ ⊗ ⊗
=:

⊗ ⊗

⊗ ⊗
(6.31)

The matrix elements of the two additional diagrams in (6.31) are

〈k′
−,k+|CB,C(E−, E+) |k−,k+〉 = CB,C(k,k′, q, E, ǫ) (6.32)

with the wavevector entries k± = k±q/2 and k± = k±q/2 and the energy entries E± = E±ǫ.
The function CB,C(k,k′, q, E, ǫ) is explicitly calculated as (cf. [102])

CB,C(k,k′, q, E, ǫ) =

∫

dQ

(2π)d
PV (k + k′ − Q)L0(Q, E, ǫ)

×GR,A(k ∓ q
2 − Q, E)GR,A(k′ ∓ q

2 − Q, E) (6.33)

The total weak-localization correction (5.38) with the new replacement U → UB + C, the

vertex C = CA +CB +CC , and the matrix elements (6.5) and (6.33), respectively, takes the

form

τB
τ∗

= 1 +
~τB

2πN(E)τ2
s

∫∫

dk

(2π)d
dk′

(2π)d
GR(k,E)GA(k,E)GR(k′, E)GA(k′, E)

×
[

CA(k,k′, q, E, ǫ) + CB(k,k′, q, E, ǫ) + CC(k,k′, q, E, ǫ)
]

(1 − k̂ · k̂′) (6.34)

Here we have used the identity (6.11) in order to express the spectral functions A(k,E)

and A(k′, E) in (5.38) in terms of the averaged retarded and advanced Green functions.

Counting only contributions with Q → 0 due to the divergence of the diffuson L0(Q, E, ǫ),

which appears in all three matrix elements, and performing the replacement k′ → −k′ for

the contribution CB and CC , which are both evaluated to zeroth order in q, (6.34) simplifies

to1

τB
τ∗

=
τB
τ∗A

+
~τB

2πN(E)τ2
s

∫∫

dk

(2π)d
dk′

(2π)d

[

[GR(k)]2GA(k) [GR(k′)]2GA(k′)

+GR(k)[GA(k)]2 GR(k′)[GA(k′)]2
]

(1 + k̂ · k̂′)PV (k − k′)

∫

dQ

(2π)d
L0(Q, E, ǫ) (6.35)

Making use of our previous result (6.15), the total weak-localization correction can then be

1The energy dependence of the Green function has been left out for better visibility.
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written in the form

τB
τ∗

= 1 +
~τB

2πN0τ2
s

[

2 [f2,2] +

∫

dΩd

Ωd
(1 + k̂ · k̂′)PV (kE , θ)

[

[f2,1]2 + [f1,2]2
]

]

×
∫

dQ

(2π)d
L0(Q, E, ǫ) (6.36)

For consistency with the result (6.15), the average density of states N(E) in (6.35) has been

replaced by the free-particle density of states N0(E) in (6.36). The function fn,m(τs) is

defined by (6.16).

Hikami Correction for the Scattering Mean Free Path

At this stage it is instructive to look at the scattering mean free path τs. Under the Ward

identity (5.20) it is renormalized according to (cf. (5.33))

τs
τ∗s

= 1 +
~

2πN0τs

[

[f2,2] +

∫

dΩd

Ωd
PV (kE , θ)

[

[f2,1]2 + [f1,2]2
]

] ∫

dQ

(2π)d
L0(Q, E, ǫ) (6.37)

as compared to (6.7) without the additional Hikami contributions. The form of this equation

is very similar to (6.36) except for the absence of the factor (1 + k̂ · k̂′). A very interesting

consequence of this fact becomes obvious when the functions fn,m(τs) are replaced by their

actual values according to the definition (6.16)

f2,2(τs) =
4πN0τ

3
s

~3
(6.38a)

f2,1(τs) = −f1,2 =
2πiN0τ

2
s

~2
(6.38b)

Hence, [f2,1]2 + [f1,2]2 = −2πN0τs/~ [f2,2]. Making use of (4.62), we have

[f2,1]2 + [f1,2]2 = −[f2,2]

[∫

dΩd

Ωd
PV (kE , θ)

]−1

(6.39)

Thus, for the scattering time τ∗s the contribution of the Hikami diagrams CB and CC cancels

out completely the contribution of the first cooperon diagram CA in (6.37) This means that,

to zeroth order in the small disorder parameter ~/(2Eτs) = 1/(kℓs), the scattering time is

not influenced by interference effects and can safely be replaced by the scattering time in the

Boltzmann approximation τ∗s = τs.

Hikami Correction for the Transport Mean Free Path

Equivalently, the renormalized transport time (6.36) can be written as

τB
τ∗

= 1 +
τ2
s

~2

[

2τB
τs

]

(1 − 〈cos θ〉f )
∫

dQ

(2π)d
L0(Q, E, ǫ) (6.40)
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where

(1 − 〈cos θ〉f ) = 1 −

∫

dΩd

Ωd
PV (kE , θ)(k̂ · k̂′)

∫

dΩd

Ωd
PV (kE , θ)

=

[

ℓs
ℓB

]

=

[

τs
τB

]

(6.41)

The replacement U → UB +C, taking into consideration the additional Hikami diagrams CB

and CC in (5.38), thus corresponds to the replacement

U → UB +
1 − 〈cos θ〉f

2
CA (6.42)

The additional factor (1−〈cos θ〉f ) = [τs/τB] cancels out the factor [τB/τs], which appeared

as a signature of anisotropic scattering in our first result (6.12) in section 6.1, where only

the simple substitution U → UB + CA (6.1) was used. The additional factor 1
2 cancels out

the factor 2 which had to be introduced in (6.12) to account for the renormalization of the

elastic scattering time, if only CA is considered.

With the present approximation for the scattering vertex U → UB + CA + CB + CC ,

i. e. when all Hikami diagrams are included, both Einstein’s relation (6.28) and the Ward

identity (5.20) are always fulfilled, for isotropic as well as for anisotropic scattering.

As in section 6.1.2, the diagrams CA, CB and CC in (6.31) can be compared to the

corresponding real-space diagrams and to the respective Hikami loops. CA is represented

by the real-space diagram in Fig. 6.1(a) as before, whereas CB and CC are represented by

the diagrams in Fig. 6.2(a) and Fig. 6.2(c) or by the dressed Hikami boxes in Fig. 6.2(b) and

Fig. 6.2(d) respectively.

Discussion of the Weak-Localization Correction

As a net result the total weak-localization correction is given by

τ∗

τB
=
D∗

DB
=

1

1 + δD/DB
(6.43)

where we have defined the weak-localization parameter

δτ

τB
=
δD

DB
=

1

πN0

∫

dQ

(2π)d
1

−iǫ+ ~DBQ2
(6.44)

In general, this integral is divergent. This divergence results from the replacement Q = 0 in

the spectral functions in (6.33) that was performed to obtain (6.35). Because of this artificial

divergence, meaningful results can only be obtained by introducing an ultra-violet cut-off to

the Q-integral in (6.44). In the stationary case where ǫ = 0, the integral also displays an

infra-red divergence, which can be circumvented by a suitable infra-red cut-off. The choice of

the ultra-violet and the infra-red cut-off is not unique. The natural choice for the ultra-violet

cut-off is 1/ℓc = 1/ℓs, since ℓs describes the extension of the crossing region (cf. (6.21)) and
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(a) CB diagram (b) 2nd Hikami box HB

(c) CC diagram (d) 3rd Hikami box HC

Figure 6.2:
Cooperon vs. Hikami diagrams. (a) cooperon diagram with an additional correlation line con-

necting the first and the last scattering event (highlighted by the symbol ⊗) of the matter wave in
the quantum loop. It turns out that this diagram yields a contribution of the same order as CA in
Fig. 6.1(a). (b) Hikami loop that corresponds to the real-space diagram in (a). The Hikami box
HB is the Hikami box HA from Fig. 6.1(b) dressed by one correlation line connecting the retarded
propagators. (c) cooperon diagram with an additional correlation line connecting the first and the
last scattering event of the conjugated wave. (d) Hikami loop that corresponds to the real-space
diagram in (c). The Hikami box HC is the Hikami box HA dressed by one correlation line connecting
the advanced propagators.

as such defines the smallest possible length scale on which interferences effects can take place.

This cut-off has been chosen in [27].

For anisotropic scattering, however, ℓc = ℓB > ℓs provides a more severe constraint. Since

equation (6.43) has been obtained in the diffusion approximation, the Q-integral strictly is

only meaningful for Q ≤ 1/ℓB. This feature does not persist for isotropic scattering where

ℓs = ℓB.

The inverse infra-red cut-off is generally identified with the overall size of the system L,

or, in the presence of strong phase-breaking mechanisms, with the phase coherence length

Lφ, beyond which phase-breaking mechanisms are bound to destroy the coherence of the

counter-propagating amplitudes. This distance is given by Lφ =
√

DBτφ, where τφ is the

characteristic time between two such phase-breaking events. Choosing ℓc = ℓB as UV cut-off
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and L0 = min[L,Lφ] as IR cut-off, (6.44) for ǫ = 0 becomes

δD

DB
=

d

πkd−1ℓB

∫ 1/ℓc

1/L0

dQ
Qd−1

Q2
(6.45)

which is solved by

2D:
δD

DB
=

2

πkℓB
ln
L0

ℓc
(6.46a)

3D:
δD

DB
=

3

πk2ℓBℓc

[

1 − ℓc
L0

]

(6.46b)

Alternatively, the weak-localization parameter in the presence of phase-breaking mechanisms

can be calculated as the integral

δD

DB
=

d

πkd−1ℓB

∫ 1/ℓc

0
dQ

Qd−1

Q2 + 1/L2
0

(6.47)

where the IR regularization of the divergent integral is performed through the additional

term 1/L2
0 in the denominator. This leads to

2D:
δD

DB
=

1

πkℓB
ln

[

1 +
L2

0

ℓ2c

]

(6.48a)

3D:
δD

DB
=

3

πk2ℓBL0

[L0

ℓc
− arctan

L0

ℓc

]

(6.48b)

As outlined above, ℓc can be identified with the Boltzmann transport mean free path. For

L0 ≫ ℓc (6.48) merges with (6.46). In this limit, both regularization methods for the IR

divergence are identical.

The weak-localization parameter (6.44) is always positive. In the weak-disorder regime,

kℓB ≥ kℓs ≫ 1, δD/DB is small compared to one. The corrected transport time τ∗ in

(6.43) as obtained by the diagrammatic perturbation theory so far always remains finite

(the lowest possible value for τ∗/τB is 1
2) and therefore cannot describe the transition to the

strong-localization regime. However, as we will see in the following, it is possible to reach

the strong-localization threshold via a self-consistent treatment of the diffusion constant in

the denominator of (6.43).

6.3 Self-Consistent Renormalization of the Scattering Vertex

The physical picture described by the replacement U → UB + C becomes obvious when the

reducible vertex R (cf. (5.50)) is examined, this time taking into account also the additional

Hikami contributions

R =
⊗

⊗
+

⊗ ⊗

⊗ ⊗
+

⊗ ⊗

⊗ ⊗
+ . . .+

⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗
+ . . . (6.49)



6.3 Self-Consistent Renormalization of the Scattering Vertex 97

Figure 6.3: Nested loop diagram

As before, the first term describes single scattering, the second term describes classical dif-

fusion, and all subsequent terms account for quantum corrections to the classical diffusion

process. These terms actually correspond to a series of loops in the diffusive path of the

particle in the effective medium. However, in expanding the reducible vertex in this way, an

important contribution is left out.

Obviously, each diagram in the series (6.49) has its time reversal counterpart. Therefore,

we also have to include all flipped diagrams corresponding to the intermediate quantum

correction diagrams in (6.49)

R =
⊗

⊗
+

⊗ ⊗

⊗ ⊗
+

⊗ ⊗

⊗ ⊗
+ . . .+

⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗
+

⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗
+ . . . (6.50)

The additional flipped diagrams in (6.50) correspond to nested loop diagrams in real space

of the form depicted in Fig. 6.3.

For isotropic scattering and without taking into account the Hikami contributions CB and

CC , Vollhardt and Wölfle have shown [4, 6] that the full self-consistent picture is obtained,

if the Boltzmann diffusion constant DB in (6.44) is replaced by the fully weak-localization

corrected diffusion constant D∗. In our case this corresponds to the following replacement

for the irreducible scattering vertex in (5.38)

U(k,k′, q, E, ǫ) → UB(k,k′, E) +
(1 − 〈cos θ〉f )

2

~
2

(2πN0τs)2
K0(Q, E, ǫ) (6.51)

The factor 1
2(1− 〈cos θ〉f ) = [τs/2τB] is the same as in (6.42). It has to be included, in order

to account for anisotropic scattering and the renormalization of the scattering time.
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Along the same lines as before, one then obtains the self-consistent transport time as

τB
τ∗(ω)

=
DB

D∗(ω)
= 1 +

Ωd

πN0~

∫

dQ

(2π)d
Qd−1

−iω +D∗(ω)Q2
(6.52)

where the diffusion constant in the denominator of the integrant is now given by the full

renormalized diffusion constant instead of its Boltzmann approximation. Apart form the

replacement of DB by D∗, (6.52) is identical with (6.44). Solving (6.52) for D∗ yields

D∗

DB
= 1 − δD

DB
(6.53)

where the weak-localization parameter for ω → 0 is now redefined as

δτ

τB
=
δD

DB
=

1

πN0~DB

∫

dQ

(2π)d
1

1/L2
∗ +Q2

(6.54)

with the diffusion constant DB(k) = ~kℓB(k)/md, the free-particle density of states N0 =

(m/~2) (Ωd/(2π)d) kd−2 and L∗ = limω→0

√

iD∗(ω)/ω. The characteristic limit L∗ for ω → 0

is a real quantity with the dimension of a length. It ensures the infra-red convergence of the

integral over dQ in (6.54). In general, the characteristic limit encapsulates three different

lengths, each of which determines the weak-localization correction in a certain regime: the

linear system size L, the phase coherence length Lφ and the localization length ξloc. All

three effects can be included in the following discussion on a general ground, if we define the

characteristic length L∗ as
1

L2
∗

=
1

L2
+

1

L2
φ

+
1

ξ2loc

(6.55)

This length has been found to monitor correctly the behaviour of the diffusion constant in

bulk media (L → ∞) in the presence of phase-breaking mechanisms close to the strong-

localization threshold [103]. Two asymptotic regimes may be distinguished: In the weak-

localization regime all states sill extend to infinity such that ξloc → ∞. The characteristic

IR regularization length is then determined by the interplay of the system size and the

phase coherence length : 1
L2
∗

= 1
L2 + 1

L2
φ

. The interference of the counterpropagating waves

is essentially limited by the smaller of the two quantities. In the bulk this is the phase

coherence length Lφ, whereas in a completely phase coherent sample the interference is only

destroyed for quantum loops, which extend beyond the size of the system. Equivalently,

in the weak-localization regime the IR cut-off could also be determined by the minimum

L0 = min[L,Lφ]. On the other hand, in the strong-localization regime, the localization

length ξloc, which describes the average extension of the localized states, remains finite. For

ξloc ≪ L and ξloc ≪ Lφ, the characteristic IR regularization length L∗ is then given by the

localization length alone: L∗ = ξloc.

Furthermore, we have to introduce an ultra-violet cut-off 1/ℓc to the Q-integral to prevent

its divergence in 2D and in 3D. The weak-localization parameter takes the same form as in
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(6.48) where L0 is replaced by L∗. Together with (6.53) this leads to the following weak-

localization correction for the diffusion constant

2D: D∗ = DB

[

1 − 1

πkℓB
ln

[

1 +
L2
∗

ℓ2c

]

]

(6.56a)

3D: D∗ = DB

[

1 − 3

πk2ℓBL∗

[L∗

ℓc
− arctan

L∗

ℓc

]

]

(6.56b)

The self-consistent theory thus provides an explanation for the occurrence of a phase transi-

tion between the weakly localized regime, where D∗ remains finite, and the strongly localized

regime, where D∗ is zero. Definitely, the weak-localization interference effect contributes to

the strong-localization phenomenon. However, different physical processes, which might be

described by other than the cooperon diagram and the dressed Hikami boxes, could also

yield a contribution for strong disorder. With the current theory this possibility cannot be

ruled out completely. However, in the following, we assume that the dominant contribu-

tion to strong localization of matter waves stems from the same interference effect that is

responsible for the weak-localization phenomenon.

6.4 Localization Length and Critical Exponents

The self-consistent theory allows to calculate the localization length in 2D and the critical

exponents for the localization length and the diffusion constant at the mobility edge in 3D

(cf. (1.9) in section 1.1). The idea is to solve the conditional equation D∗ = 0 for the

characteristic length L∗. The localization length can then be obtained making use of the

definition (6.55).

Localization Length

2D: In 2D the strong-localization condition D∗ = 0 in (6.56a) yields

L∗

ℓc
= (exp[πkℓB] − 1)1/2 ≈ exp

[π

2
kℓB

]

(6.57)

where the last approximation is valid for kℓB ≥ kℓs ≫ 1. Together with the definition of the

characteristic length (6.55), (6.57) determines the 2D localization length.

3D: In 3D we obtain the transcendental equation

L∗

ℓc

[

1 −
(γ0

γ

)2
]

= arctan
L∗

ℓc
(6.58)

where we have defined the critical disorder parameter γ and the constant γ0 according to

γ =
1

kℓc

( ℓc
ℓB

)1/2
γ0 =

(π

3

)1/2
(6.59)
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Three cases can be distinguished: (1) In the metallic regime, where γ < γ0, i. e. when

k2ℓcℓB > 3/π, (6.58) has no solution apart from L∗ = 0. (2) Precisely at the threshold,

γ is equal to the critical disorder parameter γ0. This equality determines the Ioffe-Regel

criterion. (3) In the localized regime γ > γ0, but close to the threshold, L∗ still tends to

infinity. Therefore, we can solve (6.58) for L∗ in the limit limL∗→∞ arctan(L∗/ℓc) = π/2.

This can be seen by a graphical analysis of (6.58), if the function f(z) = arctan(z) is plotted

together with the function g(z) = az, where z = L∗/ℓc and a = [1 − (γ0/γ)
2] is the slope of

the linear function g(z). For γ < γ0 the slope is negative and the two curves cross only at

the origin. For γ > γ0 the two curves cross at infinity where f(z) = π/2.

Critical Exponent: The critical exponent that determines the behaviour of L∗ close to

the transition can be directly derived from the conditional equation (6.58) in the localized

regime, where limL∗→∞ arctan(L∗/ℓc) = π/2, if (6.58) is rewritten as

L∗

ℓc
=
π

2
C

( γ

γ0

) [( γ

γ0

)

− 1
]−1

(6.60)

with C(x) = x2/(1 + x). For γ → γ0, L∗/ℓc diverges like |(γ/γ0) − 1|−ν with the critical

exponent ν = 1. The prefactor C(γ/γ0) remains always finite and tends towards 1 for

γ → γ0. Therefore, it does not contribute to the critical exponent ν. The critical exponent

is independent of the cut-off ℓc. This result is expected since usually the critical exponents

are universal in the sense that they do not depend on the detailed form and magnitude of

the interactions or in our case on the strength of disorder. This universality of the critical

exponent stands in contrast to the disorder parameter itself (6.59), which does depend on

the choice of the cut-off.

Cut-off: The parameter γ simplifies considerably, if we identify the cut-off length ℓc with

the Boltzmann transport mean free path. In this case γ is independent of the dimension of

the system and has the simple form γ = 1/(kℓB). For isotropic scattering, where kℓB = kℓs,

γ becomes identical to the well-known disorder parameter 1/(kℓs). Replacing γ and γ0 in

(6.58) and ℓc by ℓB yields
L∗

ℓB
=

3/2

3/π − k2ℓ2B
(6.61)

This expression determines L∗ in the localized regime close to the Anderson threshold in

terms of the Boltzmann transport mean free path. If ℓc is identified with the Boltzmann

transport mean free path, the Ioffe-Regel criterion reads

kℓB =

√

3

π
(6.62)

Mobility Edge: Often the critical behaviour of L∗ is stated as a function of the energy. For

kζ ≥ 1, and ℓc = ℓB, the Ioffe-Regel criterion γ = γ0 leads to the expression ∆ =
√

3/π (kζ)3
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for the weak-scattering parameter ∆ defined in (4.58). However, for kζ ≫ 1 one finds ∆ ≫ 1,

which lies out of the range of validity of the diagrammatic perturbation theory. In 3D, for

large wavenumbers kζ ≫ 1, we therefore cannot describe the Anderson transition within the

limit of the diagrammatic perturbation theory.

On the other hand, for small wavenumbers kζ ≤ 1, making use of (4.61) and (5.73), the

disorder parameter can be expressed in terms of the energy according to

γ

γ0
=

√

π

3
∆ =

√

π

3

E∆

E
=
Em
E

(6.63)

where Em denotes the mobility edge, i. e. the critical energy for the Anderson transition

(cf. (1.9)). Here, E∆ denotes the weak-scattering energy defined in (4.61) and ∆ is the

weak-scattering parameter defined in (4.58). Making use of (6.60) one thus finds the critical

behaviour

L∗ ∝ (Em − E)−1 (6.64)

This general behaviour has already been highlighted in the introductory section 1.1 as one

of the main predictions of the scaling theory. In (1.9a) the critical behaviour has been stated

for the localization length ξloc instead of the characteristic length L∗. According to the

definition (6.55), the case L∗ = ξloc corresponds to a bulk system (L → ∞) in the absence

of phase-breaking mechanisms (Lφ → ∞).

Diffusion Constant

In just the same way as for L∗ we can also calculate the critical exponent of the diffusion

constant itself. Close to the Anderson threshold where L∗ → ∞, the 3D diffusion constant

(6.56b) in terms of the critical disorder parameter (6.59) reads

D∗

DB
= 1 −

( γ

γ0

)2
= H

( γ

γ0

) [

1 −
( γ

γ0

)]

(6.65)

with H(x) = 1 + x. We thus find the critical behaviour

D∗ ∝ (γ0 − γ)s ∝ (E − Em)s (6.66)

with the critical exponent s = 1. Em denotes the mobility edge (cf. (6.63)).

Again, this result corresponds to the critical exponent predicted by the scaling theory (cf.

(1.9b)). This is particularly remarkable since the diagrammatic perturbation theory is in

principle only valid for weak disorder and a priori cannot describe the strong-localization

onset. The accurate description of the critical exponents within this theory, however, can

be seen as a strong hint that the quantum interference corrections, which are responsible for

weak localization, also remain the dominant contribution for strong localization.
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6.5 Possible Experimental Observation of Localization

For the observation of weak localization it is necessary that a coherent diffusive process is

established inside a large enough scattering region. The absence of quantum corrections can

be due to two reasons: (1) The total size of the scattering medium may be too small (L < ℓB),

such that the propagation inside the medium can only be ballistic. (2) Or phase-breaking

events may occur at a too rapid rate Γφ = 1/τφ. In this case the phase coherence length

Lφ =
√

DBτφ comes into play, which measures the average distance over which the matter

wave can travel before the coherence of counterpropagating waves inside a quantum loop is

destroyed. If Lφ < ℓB, the propagation remains entirely classical.

For atoms experiencing the light shift (4.9) inside the speckle field, one possible phase-

breaking mechanism is inelastic photon scattering, i. e. the spontaneous reemission of a pho-

ton into a different field mode, accompanied by a recoil momentum kick for the scattering

atom. The average inelastic scattering rate associated to this process is given by Γφ ∝ U/δL

(cf. (4.12)). Its inverse gives the phase coherence time τφ = ~δL/(UΓe). The phase coherence

length is given by Lφ =
√

DBτφ or in dimensions of the correlation length ζ

Lφ
ζ

=

√

kℓB
d

δL
Γe

1

η
(6.67)

The phase coherence effect can be controlled by changing the detuning δL at a fixed potential

strength U ∝ I /δL, i. e. keeping η = U/Eζ constant.

To ensure that interference corrections can be observed experimentally, one has to satisfy

both the diffusive transport condition L≫ ℓB and the coherent transport condition Lφ ≫ ℓB.

Both L and Lφ appear in our final expression (6.56) for the weak-localization correction via

the IR regularization length L∗ defined in (6.55).

Table 6.1: Rubidium 87Rb data (52S1/2 → 52P3/2) transition [104]

atomic mass m 1.44 × 10−25 kg

atomic frequency ωA 2.42 × 1015 s−1

speckle wavelength (vacuum) λL 780.24 nm

speckle wavenumber (vacuum) kL 8.05 × 106 m−1

lifetime τe 26.24 ns

linewidth Γe 3.81 × 107 s−1

saturation intensity Is 1.67 mW/cm2

recoil frequency ωR 2π · 3.77 kHz

recoil temperature TR 361.96 nK
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Figure 6.4:
2D: Weak-localization correction δD relative to

the Boltzmann diffusion constant DB as a func-
tion of the reduced intensity I /Is (Is is the sat-
uration intensity of the atom). The curves cor-
respond to different atomic wavenumbers kζ ∈
{0.8, 1.0, 1.2, 1.5, 2.0} (from left to right). The
speckle field size is L = 2 cm. The laser detuning
is δL = 106 Γe. For each value of kζ, the weak-
scattering condition ∆ < 1 is valid to the left of
the thick red line (solid curves).

6.5.1 2D Speckle

Weak localization: The 2D weak-localization correction relative to the Boltzmann diffu-

sion constant reads
δD

DB
=

2

πkℓB
ln
L∗

ℓB
(6.68)

Here we have used (6.56a) with ℓc = ℓB in the limit L∗ ≫ ℓB. The characteristic length L∗

in the weak-localization regime where ξloc → ∞ is given by 1
L2
∗

= 1
L2 + 1

L2
φ

.

The interference correction to the diffusion constant diverges for L∗ → ∞, which indicates

that a perfectly phase-coherent wave in an infinite disordered 2D system is in fact always

localized, as predicted by the single-parameter scaling theory [32]. In the weak-localization

regime, (6.68) predicts noticeable corrections especially for strongly disordered realizations,

where kℓB is close to one.

Three parameters are of particular interest, i. e. the average intensity of the speckle pat-

tern I , the detuning δL and the atomic momentum ~k. In order to estimate whether the

weak-localization threshold can be reached with current experimental techniques, the per-

turbative results for weak localization can be used to calculate the order of magnitude for

these parameters, as long as the fundamental condition ∆ < 1 remains fulfilled.

Fig. 6.4 shows the relative weak-localization correction δD/DB as a function of the speckle

intensity I for different initial atomic velocities. The laser detuning for this plot is fixed

at δL = 106 Γe and the speckle size is L = 2 cm. At the weak-scattering limit ∆ = 1,

for kζ = 2.0, the weak-localization correction δD reaches already 20% of the Boltzmann

diffusion constant DB itself. For a smaller wave number kζ = 1.5, the value of δD/DB rises

to 55%. As a general rule, the colder the atoms, the larger are the interference corrections.

Since ζ = 1/αkL ≫ 1/kL, experimental evidence of weak localization in 2D requires initial

temperatures for the atomic sample well below the recoil temperature. In turn, this means

that a Bose-Einstein condensate could be a promising candidate for the initial atomic matter

wave.

Towards strong localization: The strong-localization threshold is reached for δD/DB =

1. At this point the interference corrections are so strong on large scales that the corrected
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Figure 6.5:
(a) 2D: Critical wavenumber kc (in units of kζ = αkL) at the strong-localization onset as a function

of η = U/Eζ , separating the weak-localization regime above from the strong-localization regime below
the blue line. The speckle field size for this plot has been fixed at L = 2 cm and the laser detuning is
δL = 106 Γe. The laser detuning enters via the phase breaking length Lφ defined in (6.67). The red line
indicates the limit ∆ = 1. (b) 2D: Strong-localization onset in (δL, I ) phase space for different atomic
wavenumbers kζ ∈ {0.8, 1.0, 1.2, 1.5, 2.0} (from right to left). The onset is defined by δD = DB .
The speckle field size is L = 2 cm. The strong-localization regime lies above and to the left of each
curve kζ = const. The thick red line corresponds to the criterion ∆ = 1. All solid curves below can
reach the strong-localization onset within the weak-scattering regime. The dotted curves only give
extrapolated values for the strong-localization onset.

diffusion constant vanishes: D∗ = 0. Diffusion is only possible as long as the corrected

diffusion constant remains positive. This introduces a critical wavenumber kc defined by the

equation δD(kc) = DB(kc). Below this value, diffusion is completely suppressed, and all

modes are localized. The critical wavenumber κc = kcζ = kc/αkL is shown in Fig. 6.5(a)

as a function of η = U/Eζ . The highlighted point in Fig. 6.5(a) at the critical wavenumber

kc = 1.2 corresponds to the point in Fig. 6.4 where the blue curve crosses the upper boundary

at δD/DB = 1. In the following, we choose this point to calculate the order of magnitude of

the transport parameters at the Anderson threshold for 87Rb atoms (cf. Tab. 6.1).

From Fig. 6.4 we can directly obtain the average intensity of the speckle field I = 77 Is at

the strong-localization onset, whereas Fig. 6.5(a) provides the value of η at this point. Going

to smaller wavenumbers kζ the Anderson threshold is reached for lower speckle intensities

and for lower values of η at the same detuning δL. To monitor also the effect of the detuning

we have plotted in Fig. 6.5(b) the strong-localization onset in the (δL, I ) parameter plane

for different atomic wavenumbers. The curves are very close to straight lines, which is due

to the fact that the transport mean free path in the denominator of (6.68) for δD/DB

scales as η2 ∝ U2. As a consequence, δD/DB scales as (I /δL)2, and we expect a linear

dependence in the (δL, I ) plane, where the slope is a function of the initial atomic velocity.

Small corrections to this behaviour are due to the logarithmic dependence of δD/DB on

L∗/ℓB. For each point on the curves in Fig. 6.5(b), one can obtain the corresponding values

for the multiple scattering parameters. Starting from any such point one reaches the strong-

localization regime when either the detuning δL is decreased or the intensity I is increased.
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Figure 6.6:
2D: Logarithmic plot of the 2D localization

length ξloc and of the phase coherence length Lφ as
a function of the speckle intensity I in units of the
saturation intensity Is. The atomic wavenumber
is fixed at kζ = 1.2, the detuning at δL = 106 Γe,
and the system size at L = 2 cm. ξloc diverges at
the strong-localization threshold, which is reached
for I = 77 Is, where the corrected transport mean
free path ℓ∗ = 2mD∗/~k vanishes. The strong-
localization regime is reached for I > 77 Is where
ξloc ≪ Lφ.
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When crossing the thick red curve where ∆ = 1, one enters the strong scattering regime

where the diagrammatic perturbation cannot make safe predictions. The point (δL = 106 Γe,

I = 77 Is) lies on the blue curve for kζ = 1.2 on the right border of Fig. 6.5(b). For this

point one obtains the following transport parameter values for 87Rb atoms (cf. Tab. 6.1), for

L = 2 cm, and α = 0.1:

ℓs ℓB L∗ kℓs ζ η ∆ E/U

0.8µm 4.1µm 2.0 mm 0.81 1.2µm 0.77 0.83 0.93

Although the value for ℓs is very small, it still lies within the boundary ℓs ≥ 3π
16 ζ stated

in section 4.7.1. The strong-localization threshold is found at kℓs ≈ 0.81. The atoms have

an energy of the same order of magnitude as the speckle fluctuations, E ≈ 0.9U . These

numbers are meant to give an idea of the order of magnitude of the relevant transport

parameters. They are obtained by applying the weak-scattering approximation quite close

to its limit of validity (at the transition point ∆ ≈ 0.83), and as such they can only be

taken as qualitative results. However, they can give some idea of the parameter range where

the transition point could be found. Although we cannot make safe predictions about the

strong-localization onset in the regime above the thick red curve in Fig. 6.5(b), this does not

mean that localization cannot occur in this regime.

Localization Length In the strong-localization regime, the previously extended atomic

wavefunctions become exponentially localized as a function of the distance, and the corre-

sponding localization length ξloc enters as a new length scale. In a bulk system L → ∞ the

characteristic length (6.55) then reads 1
L2
∗

= 1
L2

φ

+ 1
ξ2
loc

[103]. Together with equation (6.57),

this determines the 2D localization length ξloc.

Fig. 6.6 shows the characteristic length scales on both sides of the strong-localization

threshold as a function of the speckle intensity I for kζ = 1.2, L = 2 cm, α = 0.1, and

the detuning δL = 106 Γe. With increasing speckle intensity, the phase coherence length

Lφ (blue dashed curve) decreases since the probability of spontaneous photon scattering in-

creases. The Boltzmann transport mean free path ℓB (turquoise dashed curve), a purely
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local quantity, shows no particular singularity, while the corrected mean-free path ℓ∗ (violet

dashed line) drops to zero at the threshold value I = 77 Is. The same applies to the corrected

diffusion constant D∗ = ~kℓ∗/2m. This threshold value corresponds precisely to the transi-

tion point (δL = 106 Γe, I = 77 Is) on the phase boundary for kζ = 1.2 in Fig. 6.5(b) and to

the corresponding point where δD/DB = 1 in Fig. 6.4. The localization length itself diverges

at the threshold and tends towards ξloc = ℓB exp[(π/2)kℓB] for increasing intensities, where

Lφ ≫ ξloc. In the strong-localization regime a further increase of the speckle intensity leads

to localized wavefunctions which cover an increasingly narrow region in space.

6.5.2 3D Speckle

Weak localization: In 3D, the weak-localization correction relative to the Boltzmann

diffusion constant for ℓc = ℓB and L∗ ≫ ℓB is given by (cf. (6.56b))

δD

DB
=

3

π(kℓB)2
(6.69)

Contrary to the 2D case, the 3D correction remains finite for L∗ → ∞. Therefore, the

transition to the strongly localized regime cannot be driven by L∗ as in 2D. Instead, the

onset of strong localization is determined by the Ioffe-Regel criterion [85]. In the context of

isotropic scattering this criterion is given by kℓs . 1. In our case the Ioffe-Regel criterion is

given by (6.62).

The relative weak-localization correction δD/DB for a given detuning δL = 104 Γe is shown

in Fig. 6.7. As expected, the largest interference corrections are obtained when kζ ≤ 1, which

means that sub-recoil temperatures are needed to observe a strong effect. This indicates that

a Bose-Einstein condensate might be required as a source in a possible experiment.

Towards strong localization Extrapolating the self-consistent 3D weak-localization cor-

rection (6.69) to the strong-disorder regime, we locate the onset δD/DB = 1 at kℓB =
√

3/π ≈ 0.95 (cf. (6.62)). In terms of the atomic energy, the corresponding 3D mobility

edge for kζ ≤ 1 lies at Ec =
√

π/3E∆ (cf. (6.63)). As illustrated in Fig. 6.8(a), the condition

δD(kc) = DB(kc) defines the critical wavenumber kc, where diffusive transport is suppressed
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Figure 6.7:
3D: Weak-localization correction δD/DB (for

L∗ → ∞) as a function of the reduced speckle
intensity I /Is. The curves correspond to differ-
ent atomic wavenumbers (from left to right: kζ =
0.6, 0.9, 1.2, 1.5, 1.8). The detuning is fixed at
δL = 104 Γe. For each value of kζ, the weak-
scattering condition ∆ < 1 is valid to the left of
the thick red line (solid curves).
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Figure 6.8:
(a) 3D: Critical wavenumber kc (in units of kζ = 1/ζ = kL) at the strong-localization onset as

a function of η = U/Eζ (blue line). The red line corresponds to the limit ∆ = 1. For kcζ < 1

both curves are very close, which corresponds to the fact that the mobility edge Em =
√

π/3E∆

is almost identical to the weak scattering energy. For kcζ > 1 the strong-localization threshold no
longer lies within the boundary ∆ = 1. (b) 3D: Phase diagram of the strong-localization onset defined
by δD/DB = 1 for different atomic wavenumbers (right to left) kζ ∈ {0.6, 0.9, 1.2, 1.5, 1.8}. The
speckle field size is L = 2 cm. For each value of kζ, the strong-localization regime lies on the left side
of the corresponding curve. The red line corresponds to the criterion ∆ = 1. All solid curves below
can reach the strong-localization onset within the weak-scattering regime. The dotted curves only
give extrapolated values of (6.69).

by interference. In 3D, for L∗ → ∞, we obtain for the critical wavenumber κc = kcζ = kc/αkL

kcζ =
(4π

3

)1/4
ηΘ(1 − kζ) +

(4π

3

)1/10
η2/5 Θ(kζ − 1) (6.70)

For a sufficiently large characteristic length L∗ ≫ ℓB, we have δD/DB ∝ (I /δL)4. In the

(δL, I ) parameter plane, the strong-localization threshold δD/DB = 1 is thus characterized

by the simple linear scaling I ∝ δL. This is illustrated in a phase diagram of the 3D strong-

localization onset for different initial atomic velocities in Fig. 6.8(b).

For the highlighted point kζ = 0.9 and η = 0.63 in Fig. 6.8(a), at the realistic detuning

δL = 104Γe, we locate the strong-localization threshold for Rubidium atoms (cf. Tab. 6.1)

and α = 1 at the speckle intensity value I = 63 Is. At this point one finds the following

transport parameter values:

ℓs ℓB L∗ kℓs ζ η ∆ E/U

0.09µm 0.13µm 9µm 0.65 0.12µm 0.63 0.99 0.64

The calculated transport parameters are obtained close to the upper bound ℓs ≥ 2
π ζ =

0.08µm, given in section 4.7.2 and close to the limit of validity ∆ = 1 of the perturbative

transport theory. Therefore, they can only give a qualitative prediction of the expected

parameter values close to the transition point.
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Figure 6.9:
3D: Logarithmic plot of the 3D localization

length ξloc and of the phase coherence length Lφ as
a function of the speckle intensity I in units of the
saturation intensity Is. The atomic wavenumber is
fixed at kζ = 0.9, and the detuning at δL = 104 Γe.
This corresponds to the dark green curve in Fig.6.7
and Fig. 6.8(b). At the strong-localization thresh-
old, which is reached for I = 63 Is, the corrected
transport mean free path ℓ∗ = 3m(DB − δD)/~k
coming from the weak-localization regime drops to
zero, whereas the localization length ξloc diverges.
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Localization Length In the localized regime, close to the threshold, the characteristic

length L∗ is determined by (cf. (6.61)) L∗/ℓB = 3/2 (3/π − k2ℓ2B)−1. Together with (6.55)

this expression determines the 3D localization length ξloc. A logarithmic plot of the 3D

localization length as a function of the intensity I /Is, for Rubidium atoms (cf. Tab. 6.1) at

kζ = 0.9 and δL = 104 Γe, as a function of the intensity I /Is, is shown in Fig. 6.9 together

with the phase coherence length Lφ and the classical as well as the corrected transport mean

free path. The situation is similar to the 2D scenario. Precisely at the transition point, which

is reached for I = 63 Is, the corrected transport mean-free path vanishes, ℓ∗ = 0, whereas

the localization length ξloc diverges. For increasing intensities from this point onwards, one

enters the strong-localization regime, where ξloc ≪ {L,Lφ}. In the 3D case, the plot of

ξloc is nearly indistinguishable from the characteristic length L∗, which also diverges at the

threshold, whereas it only grows exponentially in 2D. This is a signature of the fact that the

Anderson transition in 3D is indeed a true phase transition.

6.6 Influence of the Initial Wigner Distribution

Having at hand the general expressions for the average probability density distribution (5.9)

together with the expression of the diffusion constant in the presence of weak localization

(6.52), we can specify our results to particular initial phase-space distributions subjected to

a disordered optical potential. This allows to define criteria for the unambiguous observation

of localization effects in real experiments.

One possible experimental observable is the variance of the expanding cloud of cold atoms.

The variance is defined as: ∆r2 = 〈(r−〈r〉)2〉 = 〈r2〉− 〈r〉2, where 〈f(r)〉 =
∫

dr f(r) p(r, t)

denotes the average with respect to the probability density distribution (5.9). Inserting the

intensity relaxation kernel in the diffusive regime (5.44), we have

p(r, t) =

∫

dk′

(2π)d

∫

dr′ (4πD(k′)t)−d/2 exp
[

− |r − r′|2
4D(k′)t

]

W0(k
′, r′) (6.71)

The atoms are initially prepared in a state characterized by the Wigner function W0(k, r).



6.6 Influence of the Initial Wigner Distribution 109

From this Wigner distribution one can extract the marginals p0(r) (initial spatial distribu-

tion) and π0(k) (initial wavevector distribution) according to

p0(r) =

∫

dk

(2π)d
W0(k, r) π0(k) =

∫

dr W0(k, r) (6.72)

The normalization of these marginals is set by
∫

dk/(2π)d π0(k) =
∫

dr p0(r) = 1.

The variance is given by

∆r2(t) = ∆r2
0 + 2dDt (6.73)

It depends linearly on time with a modified diffusion coefficient D given by the convolution

of the diffusion constant and the marginal π0(k) of the initial Wigner function

D =

∫

dk

(2π)d
D(k)π0(k) (6.74)

The constant term ∆r2
0 describes the initial variance ∆r2

0 = 〈r2〉0 − 〈r〉20, where 〈f(r)〉0
denotes the average with respect to the initial distribution p0(r) in position space.

If the weak-localization correction to the diffusion constant is taken into account, special

attention has to be given to the integration range of the integral over dk′. To account for

the fact that the diffusion constant is zero for k < kc in the strong-localization regime it has

to be replaced by

D(k) = D∗(k) Θ(k − kc) = (DB − δD) Θ(k − kc) (6.75)

in (6.71) and (6.74) with δD(k)/DB(k) from (6.68) in 2D and (6.69) in 3D. On the other hand,

for classical diffusion, D(k) is merely given by the Boltzmann diffusion constant DB(k) =

~kℓB(k)/(md).

Inserting (6.75) into (6.71) splits the wavevector integral into two parts describing the

localized and the diffusive fraction of the average probability density: p(r, t) = ploc(r) +

pdiff(r, t), where

ploc =

∫

dk′

(2π)d
π0(k

′) Θ(kc − k′) (6.76a)

pdiff(r, t) =

∫

dk′

(2π)d

∫

dr′ (4πD∗(k′)t)−d/2 exp
[

− |r − r′|2
4D∗(k′)t

]

W0(k
′, r′) Θ(k′ − kc) (6.76b)

Separable Initial Wigner Function

In the following, we consider a separable initial Wigner function given by a product of

two independent functions in r and k, i. e. without any position momentum correlations:

W (k, r) = π0(k) p0(r). The simplest possible example is a product of two Gaussian wave
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packets

W (k, r) = π0(k) p0(r) π0(k) = (2π)dG(k, σk) p0(r) = G(r, σx) (6.77a)

G(u, σu) = (2πσ2
u)

−d/2 exp
[−|u − u0|2

2σ2
u

]

(6.77b)

A Wigner function of this kind may serve as an approximation for several physical real-

izations. For example, it can accurately describe the phase-space distribution of an atomic

cloud in a magneto-optical trap (MOT). Only the values for σx and σk have to be adjusted

to match with the experimental data. Generally for a MOT, σxσk ≫ 1.

The same initial Wigner function is also found for a single particle in a harmonic oscillator

with the oscillator frequency ωho and the characteristic oscillator length aho =
√

~/mωho. In

this case one obtains [105]

σx =
aho√
2γ

σk =
1

aho
√

2γ
γ = tanh

~ωho

2kBT
(6.78)

In the high-temperature limit (T → ∞), this amounts to σx =
√

kBT/mω2
ho and σk =

√

mkBT/~2. The product of the standard deviations is then given by σkσx = kBT/~ωho.

The Wigner function (6.77) for T → 0 accurately describes the initial Wigner function of

the condensate fraction of an ideal Bose gas in a harmonic trapping potential. For T → 0

one finds σx = aho/
√

2 and σxσk = 1
2 , which corresponds to the ground state ϕ0(r) =

(2πσ2
x)

−d/4 exp
[

|r − r0|2/4σ2
x

]

of the harmonic potential.

The thermal fraction of an ultra-cold Bose gas below the critical temperature is described

by a similar separable Wigner function, except that the function G(u, σu) is now replaced

by G = (2πσ2
u)

−d/2ζR(d)−1 gd/2(exp[−|u − u0|2/2σ2
u]). Here, gα(z) is defined as gα(z) =

∑∞
n=1 z

n/nα, and ζR(d) = gd(1) is the Riemann ζ-function which has the numerical value

ζR(2) = π2/6 ≈ 1.645 in 2D and ζR(3) ≈ 1.202 in 3D. However, qualitatively, the thermal

fraction is equally well approximated by the initial Wigner function (6.77) in the high-

temperature limit.

Visibility of the Weak-Localization Effect

Without specifying σx and σk, we can thus treat the previous examples on the same footing.

Making use of (6.75) and the marginal π(k) of a separable Gaussian Wigner function, the dif-

fusion coefficient (6.74) for the initial Wigner function (6.77) including the weak-localization

correction to the Boltzmann diffusion constant is then given by

D∗ =

∫

dk

(2πσ2
k)
d/2

D∗(k) exp
[

− |k − k0|2
2σ2

k

]

Θ(k − kc) (6.79)
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Figure 6.10:
Ratio of the diffusion coefficient D∗ including the weak-localization correction and the diffusion

coefficient DB in the Boltzmann approximation as a function of the central wavenumber k0ζ =
k0/(αkL) and the width of the wavevector distribution σkζ = σk/(αkL). (a) 2D: α = 0.1, η = 0.3,
kcζ ≈ 0.85. (b) 3D: α = 1.0, η = 0.5, kcζ ≈ 0.72.

In the absence of weak localization the diffusion coefficient DB(k) is given by (6.74), where

D(k) is replaced by the Boltzmann diffusion constant.

A plot of the ratio D∗/DB as a function of k0/αkL and σk/αkL for a fixed value of η = U/Eζ

is shown in Fig. 6.10(a) for the 2D case and in Fig. 6.10(b) for the 3D case. The integrals have

been evaluated numerically. A value of D∗/DB close to 1 means that the weak-localization

effect is invisible, whereas weak localization becomes more and more pronounced as this

value approaches zero. This is the case for an ultra-cold atomic cloud with vanishing initial

momentum ~k0 → 0 and a narrow initial wavevector distribution σk → 0. When D∗/DB = 0,

these atoms are localized and the variance (6.73) remains unchanged over time.

There are two special cases of interest, which are depicted in Fig. 6.12, namely the case

where σk = 0 and the case where k0 = 0.

The first case, D∗/DB for σk = 0, is depicted in Fig. 6.11(a) for the 2D scenario and in

Fig. 6.11(b) for the 3D scenario for different values of η = U/Eζ . A zero standard deviation

σk = 0, selects the value of the diffusion constant D∗(k′) at the central wavenumber k0 in

(6.79). Since the diffusion coefficient (6.79) is zero for k < kc, one only gets a contribution

for k0 > kc. Therefore, the curves touch the k0-axis exactly at the critical value kc.

The second case, D∗/DB for k0 = 0, is shown in Fig. 6.12(a) in 2D and Fig. 6.12(b) in

3D again for different values of η = U/Eζ . In this case non-zero values for D∗/DB are also

observed for σk < kc, since the wings of the Gaussian wave packet centred at the origin

extend beyond the critical value kc.

In view of the desired observation of weak localization for cold atoms in speckle potentials,

it is important to create samples with a temperature that is low enough to satisfy the criterion

σk . kc. Likewise, we need to satisfy k0 . kc in order to be able to observe a visible effect.

The criterion for the central wavenumber can be easily fulfilled by looking at an initially

immobile atomic cloud. However, the criterion for σk remains out of reach for a thermal
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Figure 6.11:
Ratio of the diffusion coefficient D∗, including the weak-localization correction, and the diffusion

coefficient DB in the Boltzmann approximation, as a function of the central wavenumber k0/(αkL),
for different values of η = U/Eζ and for σk = 0. (a) 2D, α = 0.1 and (b) 3D, α = 1.
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Figure 6.12:
Ratio D∗/DB as a function of the width of the initial Gaussian wavevector distribution σk/(αkL)

for k0 = 0 and for different values of η = U/Eζ . (a) 2D, α = 0.1 and (b) 3D, α = 1.

cloud of cold atoms in a MOT, where σk =
√

mkBT/~2. Let us assume kc ∼ αkL, then

σk . kc means that the atoms would have to be as cold as

T .
~

2k2
c

mkB
∼ α2TR (6.80)

where TR = ~
2k2
L/(mkB) is the recoil temperature. For Rubidium (cf. Tab. 6.1) we have

TR = 361 nK. For a thermal cloud in a MOT the recoil temperature determines the lowest

possible temperature value. T . α2TR is therefore only just reachable, if α = 1 as in 3D,

and remains out of reach, if kc < αkL. If the atoms are not initially immobile, the same

argument applies. However, if the atoms are cooled below the recoil temperature TR, weak

localization does become observable.

The best possible choice for our sample is a Bose-Einstein condensate. Here, σk does no

longer depend on the temperature. Instead, we have σk =
√

mωho/2~, which only depends

on ωho. Thus, the criterion σk . kc actually imposes a condition on the trapping frequency
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Figure 6.13:
Diffusion coefficient D∗ in units ~/m as a function of the width of the initial Gaussian wavevector

distribution σk/(αkL) for k0 = 0 and for different values of η = U/Eζ . (a) 2D, α = 0.1 and (b) 3D,
α = 1.

of the harmonic potential. If we assume kc ∼ αkL, then

ωho .
2~k2

c

m
∼ 4α2ωR (6.81)

For Rubidium the recoil frequency is ωR = ~k2
L/(2m) = 2π 3.77 kHz. According to the

criterion (6.81) this requires a trapping frequency of ωho . 2πα2 15.08 kHz, which is indeed

accessible. Thus, for the propagation of a Bose-Einstein condensate that is initially prepared

in a suitable harmonic trapping potential, it should be possible to observe a considerable

reduced diffusion coefficient due to weak localization.

Typical trapping frequencies are of the order of 10 to 100 Hz [12]. In 2D, for a trapping

frequency of 2π 10 Hz and α = 0.1 one finds σkζ = 0.26 and σx = 1.94 ζ for Rubidium

atoms (cf. Tab. 6.1). The initial variance ∆r2
0 for t = 0 for the Gaussian Wigner function

in our example is given by ∆r2
0 = dσ2

x where d is the dimension of the system. In 2D,

∆r0 = 2.75 ζ = 3.4µm. For a smaller trapping frequency, the condensate would initially

extend over a larger area of the speckle pattern.

For any value σkζ, corresponding to an initial trapping frequency ωho, and for any dis-

order strength η, we can then obtain the ratio D∗/DB from Fig. 6.12(a) and the reduced

diffusion coefficient from Fig. 6.13(a). For the trapping frequency given above and the dis-

order strength η = 0.5, the reduced diffusion coefficient D∗ only reaches 1% of the classical

diffusion coefficient DB. This suggests a visible localization effect even for a relatively weak

speckle potential. For higher values of η the ratio D∗/DB decreases even further. After an

expansion of t = 100 ms, the rms radius ∆r (cf. (6.73)) of the condensate in our example

classically would have reached ∆r = 7.3µm. Quantum interference limits this expansion to

∆r = 3.8µm.

In 3D, the criterion for the trapping frequency is less stringent since α = 1. Even for a

larger trapping frequency of 2π 500 Hz, i. e. σkζ = 0.18, one finds a small ratio D∗/DB =

0.002 for the same fixed potential strength η = 0.5. This corresponds to an initial rms size
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∆r0 = 4.8 ζ = 0.6µm. After an expansion of 100 ms the 3D condensate classically would

inflate to the rms radius ∆r = 17µm. Quantum interference due to disorder could reduce

this expansion to the much lower value ∆r = 1.3µm during the same expansion time.

Again these values are meant to give an idea of the order of magnitude of the relevant

parameters. They only apply to an ideal Bose-Einstein condensate with zero central momen-

tum in a harmonic trapping potential. However, our values give a strong hint that a visible

suppression of the variance as compared to the classical behaviour can be expected, if the

expansion of an almost ideal Bose-Einstein condensate is studied, where the phase-breaking

effect of the interactions can be suppressed.

6.7 Summary

This chapter was concerned with the weak-localization correction to transport. In the first

part of the chapter the theoretical foundations for the analytical description of coherent mul-

tiple scattering have been reviewed and modified for the description of anisotropic scatter-

ing. In particular, we have seen that the simple approximation to the Boltzmann scattering

vertex, where just the cooperon diagram is considered, is incomplete, and two additional

diagrams have to be considered in order to obtain the full picture for anisotropic scattering.

Using a Ward-consistent approximation for the general scattering vertex, we have derived

the renormalization of the diffusion constant in (6.52). The self-consistent theory then allows

to calculate the 2D and 3D localization length and the critical exponents for the localization

length and the diffusion constant close to the strong-localization threshold in 3D.

We have seen that the quantum corrections originate from the constructive interference

between matter waves that are propagating in normal and reverse order on loop-like scat-

tering paths in the effective medium. As all interference phenomena they are sensitive to

phase-breaking mechanisms such as the spontaneous emission of a photon. However, these

spontaneous dissipative processes can be maintained at a very low rate for conveniently

chosen values of the experimental parameters. We have shown that in this case the weak-

localization correction δD can reach a considerable fraction of the Boltzmann diffusion con-

stant DB within the weak-scattering regime for atoms at recoil or sub-recoil temperatures.

The magnitude of the weak-localization correction δD, within the limit of validity of the

diagrammatic perturbation theory determined in chapter 4, has been compared to the explicit

values of DB derived in chapter 5. We have also given estimates for the parameter range, in

which the onset of strong localization could be expected in the experiment, and determined

the critical wavenumber attributed to this transition.

The general expression for the probability density derived in the framework of the diagram-

matic perturbation theory allows to calculate the variance for any initial phase-space distri-

bution in a disordered environment. This model can be used to describe the configuration-

averaged propagation of the condensate fraction of an ideal Bose gas that is released from a

harmonic trap into a disordered optical potential, or the configuration-averaged propagation
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of a thermal cloud of cold atoms. As a direct application of this model, we have calculated

the effect of weak localization for different momentum distributions. Clearly, a significant

weak-localization effect is observable for initially slow atoms with a small initial momentum

uncertainty.
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Chapter 7

Conclusions and Outlook

Only very recently transport experiments with ultra-cold atoms in disordered optical po-

tentials have been performed, which have opened the door to a whole new field of atomic

physics. Our aim was to provide a theoretical description of the physical processes relevant

to the transport of matter-waves in a disordered optical potential, which could encourage

future experiments in this new field.

The basic characteristics of the disordered optical potential have been reviewed in chapter

2. We have calculated the spatial correlation functions of the speckle fluctuations in 2D

and in 3D, as well as the corresponding power spectra (cf. (2.31) and (2.35)), and we have

verified the intensity distribution and the correlation function for a numerically generated

two-dimensional speckle potential. This numerical speckle potential has been used as an

example for a correlated potential for the Anderson model in chapter 3. We have studied the

density of states per unit volume and the inverse participation number, as a measure for the

average extension of localized states, for different strengths of disorder and different degrees

of the speckle correlations.

In the remaining part of the thesis we have presented the basic framework for an analyt-

ical study of coherent transport of matter waves in a disordered optical potential. To this

aim, we have introduced a simple model, which can be solved using standard diagrammatic

perturbation techniques, and which allows for a comprehensive study of the physical effects

that are linked to the presence of disorder.

One important difference of our model, compared to the standard theory for electrons,

stems from the fact that the disordered optical potential exhibits spatial correlations, in con-

trast to the multiple scattering environment for electrons in condensed matter physics, which

generally consists of δ-correlated point-scatterers. This has several important implications

for the application of the diagrammatic perturbation theory to our case. A further difference

in our model, compared to most model systems, where the diagrammatic perturbation the-

ory is used, is the non-Gaussian character of the speckle potential. Again this constitutes a

major difference to the δ-correlated potential, which might be seen as the simplest example

of a Gaussian potential (Gaussian white noise).

The optical potential is proportional to the intensity of the generating laser beam at the

point where it is probed by an expanding matter wave of cold atoms. The spatial variations

of the potential result in a ground state light-shift for the atoms. While the electric field
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of the speckle potential is a Gaussian random variable and follows Gaussian statistics, the

intensity itself is not a Gaussian random variable. This property of the speckle potential

leads to the emergence of field correlation functions, which would be zero for a potential

with Gaussian statistics.

These field correlation functions, as well as the usual potential correlation functions, reap-

pear in the series expansion of the self-energy operator, which has been introduced in chapter

4. In principle, the knowledge of the self-energy operator allows to calculate the disorder-

averaged amplitude and the elastic scattering mean free path ℓs for the multiple scattering

process in the effective medium. However, an analytic expression can only be obtained, if the

self-energy series is truncated after the first diagram. This is possible in the Born approxima-

tion for weak scattering. This approximation essentially leads to a semiclassical description

of matter-wave transport in the effective medium.

We have shown, that the weak scattering parameter, which governs the self-energy ex-

pansion, in our case differs from the usual weak-disorder parameter 1/kℓs. It is given by

g = U/
√

2EEζ (cf. (4.53)). If g is small, a scattered particle receives only a small random

phase kick, while it experiences the correlation range of the potential fluctuations. Essen-

tially, the new weak-scattering condition g ≪ 1 contains the weak-disorder condition, but it

furthermore implies that the scattering mean free path is larger than the correlation length

ζ. The appearance of the new parameter is thus directly linked to the fact that we have a

correlated potential.

Another feature of the correlated potential is that it usually entails anisotropic scattering.

This can be demonstrated by a polar plot of the effective phase function of the potential

fluctuations, which represents the differential single-scattering cross-section. An important

distinction can be made between fast atoms with kζ ≫ 1, for which the scattering is highly

anisotropic, and slow atoms with kζ ≪ 1, which are scattered almost isotropically.

In chapter 5 we have derived a general expression for the time dependent average proba-

bility density (5.9), which provides the necessary framework for the study of matter waves

with a finite initial phase-space distribution as outlined in chapter 6. The calculation of

the probability density amounts to the calculation of the intensity relaxation kernel, which

requires the solution of a quantum kinetic equation. In particular we have seen that the

intensity relaxation kernel follows a diffusion equation, in contrast to the probability density

itself. As a result of the standard diagrammatic perturbation theory one obtains a general

expression for the transport time τ∗ (cf. (5.31)), and thus for the diffusion constant D∗, as

a function of the scattering vertex.

In the remaining part of chapter 5 we have studied the Boltzmann approximation for the

scattering vertex, corresponding to the Born approximation for the self-energy. This approx-

imation allows to calculate the diffuson, which describes the classical probability transport,

and the classical transport mean free path ℓB, the average distance over which a scattered

particle loses the memory of its initial orientation. The difference between ℓB and the scat-

tering mean free path ℓs from chapter 4 is again a characteristic of the correlated potential.
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For a δ-correlated potential the diffuson can be obtained directly within the Boltzmann ap-

proximation. For correlated potentials however, it can only be calculated in the long-time

and large-distance limit.

The diffuson is used in chapter 6 to calculate the weak-localization correction of the scat-

tering vertex, which also includes quantum interference effects beyond the Boltzmann ap-

proximation. We have shown that the simple substitution U → UB + CA, which only takes

into account the cooperon diagrams, does not hold for anisotropic scattering. As before, this

is a feature of the correlated potential.

Based on previous studies by P. Wölfle and R. N. Bhatt [102] and E. Akkermanns and G.

Montambaux [7], who have calculated anisotropic corrections to the conductivity for electron

transport, using an additional subset of diagrams, which was first taken into account by S.

Hikami [101], we have derived the contribution of the corresponding anisotropic Hikami

diagrams CB and CC to the diffusion constant (cf. (6.40)). In addition, we have seen

that these diagrams are also relevant for the correction of the scattering mean free path

(cf. (6.37)) since any correction of the scattering vertex requires, via the Ward identity, a

consistent correction of the self-energy. Our final result for the diffusion constant (cf. (6.43)),

obtained within the self-consistent theory of Vollhardt and Wölfle [4–6], including the correct

weak-localization substitution U → UB + CA + CB + CC verifies Einstein’s relation. It is

valid for isotropic, as well as for anisotropic scattering.

Using this result, we have calculated, within the limit of validity of the perturbative the-

ory, the experimentally relevant transport parameters in the effective medium. In addition,

starting form the general definition of the probability density as a function of the initial

phase-space distribution, we have calculated the variance of an expanding Gaussian wave

packet. This allows to determine criteria for the possible experimental observation of weak-

localization for a thermal cloud of cold atoms (cf. (6.80)) and a Bose-Einstein condensate,

initially prepared in the ground state of a harmonic trapping potential (cf (6.81)). In conclu-

sion, our model predicts a considerable weak-localization effect for atoms that are initially

cooled to very low temperatures, and for the expansion of a Bose-Einstein condensate, which

is released from a harmonic trap with a small enough trapping frequency.

The weak-localization effect is susceptible to phase-breaking mechanisms. As an example

we have studied the effect of spontaneous emission of a photon by the atom in the disordered

optical potential. This effect can be controlled by adjusting the detuning from the atomic

resonance frequency of the laser beam, which generates the speckle potential, and at the

same time the intensity of the speckle potential, while keeping the ratio between these two

quantities fixed.

Further studies of the coherent transport of matter waves in disordered potentials could

include atom-atom interactions and the interaction between the optical potential and internal

spin degrees of freedom of the atoms. This is expected to introduce additional phase-breaking

effects, which would reduce the weak-localization effect (cf. for example [106] for the effect

of interactions and [107] for the effect of the internal degeneracy of the atoms, acting as
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scatterers for photons, on the coherent backscattering cone). An important extension would

be the study of coherent backscattering from a speckle pattern, or the transmission through

a speckle pattern of a finite size, where the geometry of the scattering region becomes im-

portant.

It could also be very interesting to study the propagation of matter waves in disordered

potentials, which exhibit different correlation functions. A promising candidate could be

the disordered magnetic potential, which exists above atom chips with a rough surface (cf.

[61, 62, 66]). A further extension of this work based on our results presented in chapter

3 could include a quantitative analysis of the localization length as obtained by a direct

diagonalization of the Anderson Hamiltonian for the tight-binding model for correlated on-

site energies. This would be especially interesting for three-dimensional systems where a true

Anderson transition is expected.
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Appendix A

Chebyshev Polynomials

Chebyshev polynomials can be defined via the identity

Tn(x) = cos(n arccos(x)) (A.1)

They satisfy the following recurrence relation for n ≥ 1

Tn+1(x) = 2xTn(x) − Tn−1(x) (A.2)

with T0(x) = 1 and T1(x) = x. The first Chebyshev polynomials, which are plotted in

Fig.A.1(a) are given by

T0(x) = 1

T1(x) = x

T2(x) = −1 + 2x2

T3(x) = −3x+ 4x3

T4(x) = 1 − 8x2 + 8x4

T5(x) = 5x− 20x3 + 16x5

(A.3)

As described in [81], a slightly modified recursion relation

P0(x) = 1

P1(x) = a+ bx2

Pn+1(x) = 2(a+ bx2)Pn − Pn−1

(A.4)

with a = (x2
1 + x2

2)/(x
2
1 − x2

2) and b = 2/(x2
2 − x2

1) creates a polynomial Pn(x) with a local

maximum at zero, |Pn(x)| > 1 for |x| < x1. In the intervals [x1, x2] and [−x2,−x1] the

polynomial is bound between −1 and 1, whereas it grows rapidly for |x| > x2.
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Figure A.1:
(a) Chebyshev polynomials Tn(x) with n = 1, 2, 3, 4, 5 (dark green, green, blue, purple, red). (b)

Modified Chebyshev polynomials D12(x) (green) and D14(x) (purple) with xmin = −10, xmax = 10,
x1 = 1, x2 = 3. The height of the maximum depends on the degree of the polynomial and on the size
of the intervals [x1, x2] and [xmin, xmax].

A polynomial, which acquires the local maximum not at zero but inside a given interval

[x1, x2], can be created via the recursion relation [88]

D0(x) = 1

D1(x) = ax2 + bx+ c

Dn+1(x) = 2(ax2 + bx+ c)Dn −Dn−1

(A.5)

The conditional equations D1(x1) = D1(x2) = −1 and D1(x3) = 1 for the parabola then

yield the coefficients

a = 2/n

b = (−2(x1 + x2))/n

c = (x1x2 + x3(x1 + x2) − x2
3)/n

n = (x3 − x1)(x3 − x2)

(A.6)

Setting the outer limit x3, beyond which the polynomials Dn(x) cease to be bound between

−1 and 1, to x3 = max[xmax, xmin+x1+x2] ensures that the polynomial oscillates between −1

and 1 everywhere in the interval [xmin, x1] and [x2, xmax]. Between x1 and x2 the polynomial

reaches a maximum as shown in Fig.A.1(b).
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Appendix B

Optical Bloch Equations

The time evolution of the internal atomic density matrix for a two-level atom with the ground

state |g〉 and the excited state |e〉, in the dipole approximation, interacting with an external

electric field of a laser (cf. (4.2) and (4.3)), is described by the Optical Bloch equations

[67]. With regard to their different rates of variation, the contribution σ̇ = i
~

[σ,HA − D ·
E(r, t)] due to the coupling to the external field E(r, t), and the relaxation terms describing

spontaneous emission due to the coupling with the vacuum fluctuation reservoir, may be

added independently from each other, as though each coupling acted alone [67].

In the basis {|e〉 , |g〉}, where HA = ~ωA |e〉〈e|, one then finds the following equations for

the density matrix elements (in the following, a real Rabi frequency Ω(r) is assumed)

σ̇ee =
iΩ(r)

2

[

σeg e
iωLt − σge e

−iωLt
]

− Γeσee (B.1a)

σ̇eg =
iΩ(r)

2

[

(σee − σgg) e
−iωLt

]

− i(ωA + ∆A)σeg −
Γe
2
σeg (B.1b)

∆A is the difference of the level-shifts of the two energy levels due to the interaction with

the radiation field. It can be incorporated in ωA by a redefinition of the atomic resonance

frequency [67]. The equations for σ̇gg and σ̇ge are given by σgg = 1 − σee and σge = σ∗eg.

Using the abbreviations

u =
1

2

[

σge e
−iωLt + σeg e

iωLt
]

v =
1

2i

[

σge e
−iωLt − σeg e

iωLt
]

w =
1

2
(σee − σgg)

(B.2)

the Optical Bloch equations can be written in the form

u̇ = −Γe
2
u+ δL v

v̇ = −δL u− Γe
2
v − Ω(r)w

ẇ = Ω(r) v − Γew − Γe
2

(B.3)
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These equations have the stationary solution

u =
δL

Ω(r)

s(r)

1 + s(r)
v =

Γe
2Ω(r)

s(r)

1 + s(r)
w = −1

2

1

1 + s(r)
(B.4)

where s(r) denotes the saturation parameter

s(r) =
Ω2(r)/2

δ2L + Γ2
e /4

(B.5)

The number of photons spontaneously emitted by the atom per unit time is given by Γφ =

Γeσee (cf. (B.1a)). Using the definition (B.2) for w and σee + σgg = 1 we have w = 1
2(σee −

σgg) = σee − 1
2 and hence

Γφ = Γeσee = Γe(w + 1
2) =

Γe
2

s(r)

1 + s(r)
(B.6)

This gives the inelastic scattering rate associated to the spontaneous emission of photons in

terms of the saturation parameter (B.5). For weak saturation, s ≪ 1, the approximation

Γφ ≈ s(r)Γe/2 holds, which is used in (4.12).
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Appendix C

Multidimensional Fourier Transform

C.1 2D Fourier Bessel Transform

The Fourier transform of a radially symmetric function in two dimensions is given by

F2[f(r)] = g(k) =

∫

dr f(r) e−ik·r

=

∫ 2π

0
dϕ

∫ ∞

0
dr r f(r) e−ikr cosϕ

= 2π

∫ ∞

0
dr r f(r)J0(kr) (C.1)

F−1
2 [g(k)] = f(r) =

∫

dk

(2π)2
g(k) eik·r

= (2π)−1

∫ ∞

0
dk k g(k)J0(kr) (C.2)

C.2 3D Fourier Transform

The Fourier transform of a radially symmetric function in three dimensions is given by

F3[f(r)] = g(k) =

∫

dr f(r) e−ik·r

=

∫ 2π

0
dϕ

∫ π

0
dϑ

∫ ∞

0
dr r2 sinϑ f(r) e−ikr cosϑ

= 2π

∫ ∞

0
dr

∫ 1

−1
dx r2 f(r) e−ikrx

= 2π

∫ ∞

0
dr r2 f(r)

eikr − e−ikr

ikr

= 4π

∫ ∞

0
dr r2 f(r)

sin(kr)

kr
(C.3)

F−1
3 [g(k)] = f(r) =

∫

dk

(2π)3
g(k) eik·r

= (2π2)−1

∫ ∞

0
dk k2 g(k)

sin(kr)

kr
(C.4)
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[6] D. Vollhardt and P. Wölfle, Self-consistent theory of Anderson localization in W. Hanke
and Y. V. Kopaev (editors) Electronic phase transitions, Elsevir Science B. V., Ams-
terdam (1992).

[7] E. Akkermans and G. Montambaux, Physique mésoscopique des électrons et des pho-
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[102] P. Wölfle and R. N. Bhatt, Electron localization in anisotropic systems, Phys. Rev. B
30 (1984) p. 3542.

[103] G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sherstobitov, and B. N. Zvonkov.
Giant suppression of the Drude conductivity due to quantum interference in disordered

two-dimensional systems (2006). http://arXiv.org/abs/cond-mat/0606566.

[104] D. A. Steck. Rubidium 87 D line data (2001). http://steck.us/alkalidata.

[105] B.-G. Englert, On the operator bases underlying Wigner’s, Kirkwood’s and Glauber’s

phase space functions, J. Phys. A: Math. Gen. 22 (1989) p. 625.

[106] B. L. Altshuler and A. G. Aronov, Electron-electron interaction in disordered conduc-

tors in A. L. Efros and M. Pollak (editors) Electron-electron interaction in disordered

systems, North-Holland, Amsterdam (1985).

[107] C. A. Müller, T. Jonckheere, C. Miniatura, and D. Delande, Weak localization of light

by cold atoms: The impact of quantum internal structure, Phys. Rev. A 64 (2001)
p. 053804.





IX

Acknowledgements – Danksagung – Remerciements

A very special thanks to my Doktorvater Prof. Dr. Cord Müller and my French supervisor,

Dr. Christian Miniatura, for their continuous guidance and support during my PhD years.

I would like to thank Prof. Dr. Müller for all his help with my work, for having me as his

first PhD student and for going through all the trouble so that I could do a binational PhD

with the university of Nice and spend part of my PhD abroad in France and in Singapore.

I would like to thank Dr. Miniatura for welcoming me in Nice, where I could be part of

the cold atoms group at the INLN. In Nice I spent ten fabulous months of my life. I will

never forget this time. Nor will I forget my unique time in Singapore. I definitely will miss

our discussions at the Spinelli Cafe which provided the fuel for tackling new problems.

I am particularly indebted to Dr. Dominique Delande at the LKB in Paris who provided

me with the Lanczos algorithm and with lots of valuable advise and help on the numerics and

on the general concepts of multiple scattering theory. I would like to thank Dr. Delande for

making me feel at home at the LKB and for finding me such nice accommodation in Paris.

I really enjoyed working at the LKB.

I am also particularly indebted to Prof. Dr. Berthold-Georg Englert for welcoming me at

the Quantum Information Technology Group at the National University of Singapore where

I spent six very nice months of my PhD. And I would like to thank Dr. Bart van Tiggelen

for accepting to become cocorrector for my thesis and for coming to Bayreuth especially for

my thesis defense, and Dr. Gilles Montambeaux for very helpful discussions in Aussois and

in Paris on technical issues of the diagrammatic perturbation theory.

I would like to thank all members of the Theoretical Physics chair in Bayreuth and espe-

cially all members of the QTLM group in Bayreuth: Cord Müller, Olivier Sigwarth, Christo-

pher Gaul, Christian Wickles, Tobias Kerscher and Torsten Scholak. I won’t forget our

legendary trips to the wine cellars of Alsace and the icy heights of mount Schneekoppe. I

guess no other group has those nice Bambergers for their group sessions. “This is a damn

fine Bamberger” as special agent Dale Bartholomew Cooper would say ;-).

A very special thanks to my roommates, Juan Pablo Zagorodny, Olivier Sigwarth and

Torsten Scholak. Without Olivier’s help and his contributions to our publications a large

part of my thesis would not have been possible. Merci beaucoup, Olivier. And I would

like to thank Juan Pablo for sharing with me such good times and Torsten Scholak for our

entanglement discussions and especially for making such a fabulous hat for me! Muchas

Gracias Juan. Vielen Dank Torsten.

I would like to thank all members of the INLN in Nice and especially all members of



X Acknowledgements – Danksagung – Remerciements

the cold atoms group: Guillaume Labeyrie, David Wilkowski, Robin Kaiser and Gian-Luca

Gattobigio, for their interest in my work and for making me feel at home at the INLN. And

I would like to thank all members of the LKB in Paris, in particular Riccardo Sapienza,

Martino Trassinelli, Julien Le Bars, Sylvain Gigan, Francesco Intravaia, Benôıt Grémaud
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