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Abstract
Selecting or adjusting attribute-levels (e.g. components, equipments, flavors, ingre-
dients, prices, tastes) for multiple new and/or status quo products is an important 
task for a focal firm in a dynamic market. Usually, the goal is to maximize expected 
overall buyers’ welfare based on consumers’ partworths or expected revenue, mar-
ket share, and profit under given assumptions. However, in general, these so-called 
product-line design problems cannot be solved exactly in acceptable computing 
time. Therefore, heuristics have been proposed: Two-stage heuristics select promis-
ing candidates for single products and evaluate sets of them as product-lines. One-
stage heuristics directly search for multiple attribute-level combinations. In this 
paper, Ant Colony Optimization, Genetic Algorithms, Particle Swarm Optimiza-
tion, Simulated Annealing and, firstly, Cluster-based Genetic Algorithm and Max-
Min Ant Systems are applied to 78 small- to large-size product-line design problem 
instances. In contrast to former comparisons, data is generated according to a large 
sample of commercial conjoint analysis applications (n = 2,089). The results are 
promising: The firstly applied heuristics outperform the established ones.
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1 Introduction

Since its origins in the 1960s, conjoint amalysis (see,e.g. Debreu 1960; Luce 
and Tuckey 1964; Green and Rao 1969) has developed to a wide-spread market-
ing research tool for estimating customers’ attribute-level partworths and choice 
models in dynamic markets. So, based on a survey among users of Sawtooth Soft-
ware (probably the leader in conjoint analysis software, see sawtoothsoftware.
com), each year more than 27,000 commercial conjoint analysis applications are 
performed world-wide, most of them in order to support firms with respect to 
product pricing, product redesign/repositioning, line extension, or new product 
introduction (see, e.g., Orme 2019; Baier and Kurz 2021). Roberts et  al (2014) 
support these findings with their citation analysis as well as their surveys among 
researchers, mediators, and practitioners. They state that articles on conjoint anal-
ysis (including discrete choice analysis) had highest impact on marketing practice 
and that, from a practitioner’s point of view, (new) product and brand manage-
ment benefited the most from marketing research tools.

In order to further support such tasks based on results from a conjoint analysis 
application, over the years, a large number of product and product-line design prob-
lems were formulated to find “best” sets of attribute-level combinations. The prob-
lems vary with respect to the number of products to be designed (single vs. multiple 
new products in the line), the objective function (e.g., buyers’ welfare or the focal 
firm’s revenue, market share, and profit) and the assumed transformation of individ-
ual attribute-level partworths to choices (e.g., first-choice or logit). However, since 
the number of feasible solutions combinatorially depends on the number of new 
products R, the number of attributes K, and the number of levels per attribute Lk , 
many problem instances cannot be solved exactly in acceptable computing time. So, 
for nine new products, nine attributes, each with five levels, Complete Enumeration 
would require the evaluation and comparison of ( 5

9

9
)=(1953125

9
)=1.14 ⋅ 1051 feasible 

solutions. Kohli and Krishnamurti (1989) showed in their paper, that a typical prob-
lem, the shares-of-choices product-line design problem based on a first-choice 
assumption as choice rule is NP-hard. Many alternative algorithms have been pro-
posed that vary with respect to the number of stages (one-stage vs. two-stage), the 
solution principle (exact vs. heuristic) and the solution method (e.g., Dynamic Pro-
gramming Heuristic, Genetic Algorithms, Simulated Annealing).

Baier and Gaul (1999) provided an overview on these developments. From this 
overview, it becomes clear, that—till 1996—two-stage and one-stage heuristics 
were almost equally often proposed for product-line design. Two-stage heuristics 
(e.g. Green and Krieger 1985, 1987; Dobson and Kalish 1988, 1993) select in 
a first stage a rather small set of promising attribute-level combinations as can-
didates. Then, in a second stage, they evaluate candidate sets to receive “best” 
product-lines. The first stage reduces the overall solution space and can lead to 
suboptimal multiple attribute-level combinations, however—on the other side—it 
reduces the computing time. A typical approach for this first stage consists in 
selecting all attribute-level combinations that maximize at least one customer’s 
utility (e.g. Green and Krieger 1987).
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One-stage heuristics (see, e.g. Zufryden 1977; Kohli and Krishnamurti 1987, 
1989; Kohli and Sukumar 1990) omit the reduction of the solution space by eval-
uating all feasible sets of attribute-level combinations as product-lines. Compari-
sons by Kohli and Sukumar (1990) as well as later by Belloni et al (2008a) empir-
ically showed that one-stage heuristics outperform two-stage heuristics for this 
reason, especially when the first-choice assumption holds. Consequently, from 
1995, one-stage heuristics have dominated the product-line design literature. In 
this paper, we, therefore, only discuss, apply, and compare one-stage heuristics 
and discuss related improvements.

However, it should be mentioned that recently great progress can be seen in 
assortment optimization (see, e.g., Rusmevichientong et al 2014; Sen et al 2018; 
Désir et al 2021), a research area that is closely related to two-stage product-line 
design: A retailer selects a number of shelf-space offers (a product-line) out of 
a large number of potential offers (candidates), so that her/his revenue is maxi-
mized under given shelf-space and/or cardinality constraints. The methodologi-
cal advances in this research field nowadays allow to deal with rather large num-
bers of potential offers (up to 20, 200, 1000 according to Rusmevichientong et al 
2014; Sen et  al 2018; Désir et  al 2021). However, still, the criticism of Kohli 
and Sukumar (1990) as well as Belloni et al (2008a) applies with respect to the 
reduction of the solution space to lines that consist of this still small number of 
candidates in contrast to the number of feasible candidates in a commercial prod-
uct-line design problem. So, e.g., Selka (2013) shows in his summary of 2,089 
commercial conjoint analysis applications, that 3 to 9 attributes with 2 to 7 levels 
are wide-spread, resulting in up to 79=40,353,607 feasible candidates. A reduc-
tion to a small number in a first stage (e.g. up to 1,000) is feasible, but according 
to Kohli and Sukumar (1990) as well as Belloni et al (2008a) may lead to subop-
timal solutions.

This paper contributes to the product-line design research area by providing an 
overview on established problems and a comparison of recently developed one-
stage heuristics to solve them. Moreover, three promising new heuristics (Cluster-
based Genetic Algorithm, Max-Min Ant System, Max-Min Ant System with Local 
Search) are described and—for the first time—applied to product-line design prob-
lems. In contrast to former comparisons of product-line design heuristics, the prob-
lem instances in our comparison are generated according to characteristics of a large 
sample of commercial conjoint analysis applications (see Selka 2013; Selka and 
Baier 2014; Selka et al 2014).

The structure of this paper is as follows: In Sect.  2, the overview on product-
line design problems is provided. Section 3 discusses one-stage heuristics to solve 
them, starting its overview from 1995 (as an update of Baier and Gaul 1999) and 
discussing results from former comparisons. Section 4 discusses selected promising 
one-stage heuristics based on these comparisons and introduces the new ones. For 
hyperparameter and parameter tuning, these heuristics are applied to 18 small- to 
large-size problem instances (with 5.1⋅109 to 1.6⋅10153 feasible solutions). Finally, in 
Sect. 5, the tuned heuristics are applied to 60 additional problem instances (with 7.0⋅
105 to 7.3⋅10200 feasible solutions). The paper closes in Sect. 6 with conclusions and 
an outlook.
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2  Product‑line design problems: an overview

Up to now, marketing research and practice agree that the selection or adjustment 
of attribute-levels (e.g. components, equipments, flavors, ingredients, prices, 
tastes) for a firm’s products based on conjoint analysis applications is an impor-
tant task for marketers (see, e.g. Green and Krieger 1989, Kohli and Krishna-
murti 1989, Nair et al. 1995, Balakrishnan and Jacob 1996, Chen and Hausman 
2000, Steiner and Hruschka 2003, Schön 2010) Usually, the goal is to maximize 
expected overall buyers’ welfare or firm’s revenue, market share, or profit. Given 
are estimated partworths as well as assumed choice rules and contribution mar-
gins of consumers together with assumed attribute-levels of the competitors’ cur-
rent and/or future products. Formalized problems can be distinguished according 
to their objective function (e.g., buyers’ welfare, revenue, market share, profit) 
and the choice rules assumed (e.g., deterministic and probabilistic choice). In the 
following, we shortly discuss the usual choice rule assumptions and—depending 
on their objective function—product-line design problems basing on them.

2.1  Choice rules

After performing a conjoint analysis application under the wide-spread linear-
additive utility assumption (Wittink and Cattin 1989; Orme 2019), the market-
ing researcher receives estimated partworths �ikl for a sample of I consumers 
(i=1,...,I) with respect to K attributes (k=1,...,K) and Lk levels (l=1,...,Lk ). The 
partworths reflect the consumers’ preferences for attribute-levels and can be 
used to evaluate J attribute-level combinations (products, candidates) from the 
consumers’ point of view. So, with xjkl as an indicator whether combination j 
(j=1,...,J) has level l of attribute k (=1) or not (=0), the utility uij of combination j 
for consumer i can be estimated as

The straightforward assumption is that the combination with highest utility is always 
preferred and bought (deterministic choice rule). However, according to Green and 
Krieger (1988, 1992), due to data collection and estimation errors as well as diverted 
or less interested consumers, it can alternatively be assumed that other combinations 
are bought also with positive probabilities (probabilistic choice rule assumption).

2.1.1  Deterministic choice rule assumption

Especially in the product-line design literature, the first-choice rule is a wide 
spread choice rule assumption (see, e.g., Green and Krieger 1988, 1992). Con-
sumer i is assumed to always select the combination that offers him the highest 

(1)uij =

K∑

k=1

Lk∑

l=1

�iklxjkl ∀i = 1,..., I; j = 1,..., J.
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utility. The probability pij that consumer i selects combination j among the avail-
able J combinations is

If two or more combinations have maximum utility (e.g., when having identical lev-
els across all attributes), it is usually assumed that one of them is bought randomly. 
Alternatively, it can be assumed that they are bought with equally distributed prob-
abilities (1 divided by the number of combinations with maximum utility). If we 
have stochastic partworths (e.g. as draws of a distribution, determined via Hierarchi-
cal Bayes estimation), the first-choice rule can also be applied to these draws. In this 
case, pij is estimated as the share of draws where j receives maximum utility (see, 
e.g., Baier and Polasek 2003; Hein et al 2022).

2.1.2  Probabilistic choice rule assumptions

The assumption that consumers always buy the combination with maximum util-
ity has often been criticized in the conjoint analysis literature (see, e.g., Green and 
Krieger 1988; Louviere 1988). Even small differences among utilities lead to the 
prediction that the maximum utility combination is always bought, a contradiction 
to a complex data collection and estimation process with inaccurate and faulty part-
worths as results. Also, the focus on maximum utility could be wrong in a market 
where consumers buy combinations more or less randomly (e.g., when consumers 
have to choose among low involvement products or among more or less identical 
alternatives).

Probabilistic choice rules mitigate these problems by allocating probabilities to 
the combinations that (1) maintain the order of the utilities but (2) also allow to cali-
brate the choice rules according to market shares or past buying behavior. Two prob-
abilistic choice rules are wide-spread in the conjoint analysis literature. The Bradley-
Terry-Luce (BTL) choice rule (Bradley and Terry 1952; Luce 1959) assumes that 
probabilities pij are proportional to the utilities uij:

The logit rule (McFadden 1976; Punj and Staelin 1978) assumes proportionality to 
exponentiated utilities:

(2)pij =

{
1, if uij ≥ uij� ∀j� = 1,..., J,

0, else,
∀i = 1,..., I; j = 1,..., J.

(3)
pij =

u�
ij

J∑

j�=1

u�
ij�

∀i = 1,..., I; j = 1,..., J(� ≥ 0).

(4)
pij =

exp(�uij)

J∑

j�=1

exp(�uij� )

∀i = 1,..., I; j = 1,..., J(� ≥ 0).
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In both cases, the parameter � can be used to calibrate the choice rules. Values of 
� near or equal zero reflect an equal distribution of probabilities among available 
combinations, large values reflect the first-choice rule. Often, past purchase behavior 
of the consumers is used to estimate � as this is also done in pre-test market mod-
els (Silk and Urban 1978). It should be mentioned, that the BTL rule assumes non-
negative utilities which are usually received by normalizing estimated individual 
partworths so that the minimum utility among all feasible combinations receives a 
utility of 0 and the maximum utility among all feasible combinations receives a util-
ity of 1. Both rules can also be applied to stochastic partworths (e.g., determined via 
Hierarchical Bayes estimation). Then, pij is estimated as the mean probability across 
all draws (see, e.g., Hein et al 2022).

Moreover, in many conjoint analysis applications, a so-called no-choice option 
is offered to the responding consumers. The introduction of this additional choice 
alternative makes data collection more realistic in many markets (see, e.g., Vermeu-
len et al 2008). The estimated utility for this choice alternative allows to predict no-
choices of consumers via thresholds (in the deterministic choice rule assumption) or 
via choice shares (in the probabilistic choice rule assumption).

2.2  Product‑line design models

Basing on estimated partworths for attribute-levels and assumed choice rules, prod-
uct-line design models select attribute-levels of R new products of a focal firm for a 
status quo market with O own and F foreign established products. Again, xjkl is the 
indicator whether combination j (J=R+O+F; j=1,...,J) has level l of attribute k (=1) 
or not (=0). The xjkl values for the first R products are unknown. The case of modi-
fying own established products is included in this formulation by increasing R and 
decreasing O.

Green and Krieger (1985) distinguish the product-line design problems into buy-
ers’ welfare maximization and sellers’ welfare maximization depending whether the 
firm and the consumers “involve the same party” or play “a two-party game”: In the 
first case, the firm designs its new products in order to maximize consumers’ utility. 
In the second case, the consumers are allowed to choose among all available prod-
ucts according to their preferences but the firm designs the attribute-levels of the R 
new products according to an objective function (e.g., overall revenue, market share, 
profit) according to its requirements. In the following, we discuss three wide-spread 
sellers’ welfare maximization problems according to this distinction.

2.2.1  Deterministic market share maximization ( Mdet)

Market share maximization based on the first-choice rule has often been pro-
posed in product-line design, see, e.g., the approaches by Shocker and Srini-
vasan (1974); Albers and Brockhoff (1977); Kohli and Krishnamurti (1987); 
Kohli and Sukumar (1990); Shi et al (2001); Balakrishnan et al (2004); Camm 
et  al (2006); Albritton and McMullen (2007); Vökler et  al (2013), as well as 
many others. The main idea is to maximize the share of consumers that will 
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switch from formerly bought foreign products to one of the new products. Kohli 
and Krishnamurti (1989) showed that this so-called shares-of-choices problem is 
NP-hard.

The model formulation Mdet proposed by Balakrishnan et  al (2004) reflects 
this idea convincingly: Additionally to the R new products (with descriptions 
to be looked for), O own and F foreign status quo products (with pre-defined 
descriptions) are under consideration. Estimated partworths �ikl from I consum-
ers are available with respect to K attributes and Lk levels. They are standard-
ized at the individual level—as discussed in the previous section—so that the 
minimum utility among all feasible combinations receives a utility of 0 and the 
maximum utility among all feasible combinations receives a utility of 1. Bas-
ing on the attribute-level indicators xjkl of the O own and F foreign status prod-
ucts (J=R+O+F; j=R+1,...,J) it is feasible to determine consumers’ status quo 
product based on maximum utility and to concentrate in the following (by rear-
ranging the consumers) on the I′ consumers (i=1,...,I′ ) with a foreign status quo 
product. For those consumers relative partworths are estimated via �r

ikl
=�ikl − �0

ikl
 

where �0
ikl

 reflects the partworths of consumer i’s foreign status quo product 
(i=1,...,I′ , k=1,...,K, l=1,...,Lk ). We now define Mdet—according to Balakrishnan 
et al (2004)—as follows:

subject to

The objective function (5) maximizes the share of consumers that switch from a for-
eign product to a new product (j=1,...,R). Constraint (6) ensures that each attribute 
of a new product has exactly one level. Constraint (7) implies zij =1 if a new product 
j provides equal or lower utility to consumer i than its current status quo product and 
zij =0 otherwise. Constraint (8) ensures yi =0 if none of the new products provides 

(5)1

|I�|

|I�|∑

i=1

yi ⟶ max!

(6)
Lk∑

l=1

xjkl = 1 ∀ j = 1,..., R; k = 1,..., K,

(7)
K∑

k=1

Lk∑

l=1

𝛽r
ikl
xjkl + zij > 0 ∀ i = 1,..., I�; j = 1,..., R,

(8)yi ≤ R −

R∑

j=1

zij ∀ i = 1,..., I�,

(9)xjkl, yi, zij ∈ {0, 1} ∀
i = 1,..., I�; j = 1,..., R;

k = 1,..., K; l = 1,..., Lk.
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higher utility to consumer i than its foreign status quo product and yi =1 otherwise. 
Constraint (9) forces the decision variables to be binary.

2.2.2  Deterministic profit maximization ( Pdet)

Kohli and Sukumar (1990)’s well-known seller’s problem are used as an example for 
profit maximization based on the first-choice rule assumption. Consumer i (i=1,...,I) is 
assumed to buy the product that maximizes her/his utility among R new as well as O+F 
own or foreign status quo products. Consumer i buys new product j only if utility uij 
exceeds u0

i
 , the highest utility among the O+F status quo products. In this case, the rel-

ative contribution margin dr
ij
—the sum of level-specific relative contribution margins 

dr
ikl

—is generated,

Please note: dr
ikl

 is identical to the level-specific contribution margin ( dr
ikl

=dikl ) if 
consumer i’s status quo product is a foreign status quo product. If consumer i’s sta-
tus quo product is an own status quo product, the level-specific contribution margin 
of this product ( d0

ikl
 ) is subtracted ( dr

ikl
= dikl − d0

ikl
 , i=1,...,I, k=1,...,K, l=1,...,Lk ). 

Basing on these notations, our deterministic profit maximization problem can be 
formalized as follows:

subject to

(10)dr
ij
=

K∑

k=1

Lk∑

l=1

dr
ikl
xjkl ∀i = 1,..., I; j = 1,..., R.

(11)
I∑

i=1

yi

R∑

j=1

K∑

k=1

Lk∑

l=1

dr
ikl
xijkl ⟶ max!

(12)
R∑

j=1

Lk∑

l=1

xijkl = 1 ∀ i = 1,..., I; k = 1,..., K,

(13)
Lk∑

l=1

xijkl −

Lk�∑

l=1

xijk�l = 0 ∀
i = 1,..., I; j = 1,..., R;

k, k� = 1, ...,K; k� < k,

(14)xijkl + xi�jkl� ≤ 1 ∀
i, i� = 1,..., I; i < i�; j = 1,..., R;

k = 1,..., K; l, l� = 1,..., L; l < l�,

(15)
R∑

j=1

K∑

k=1

Lk∑

l=1

�ikl(xijkl − xi�jkl) ≥ 0 ∀ i, i� = 1,..., I; i ≠ i�,
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The objective function (11) maximizes the profit from R new products that exceeds 
the profit from O own status quo products in competition with F foreign status quo 
products. The binary decision variables xijkl (i=1,...,I; j=1,...,R; k=1,...,K; l=1,...,Lk ) 
and yi (i=1,...,I) have the following meaning: xijkl =1 (=0) indicates that new product 
j assigned to consumer i has (does not have) level l of attribute k. yi =1 (=0) indi-
cates that consumer i selects (does not select) a new product. For these variables, 
constraint (12) requires that each attribute has only one assigned level per consumer 
and new product. Constraint (13) requires that across attributes, the level assigned 
to a consumer corresponds to the same product. Constraint (14) requires that the 
same level of an attribute must be specified for all consumers assigned to a product. 
Together, the constraints (12) to (14) result in the requirement that each consumer is 
assigned one new product. The constraint (15) ensures that a consumer is assigned 
to the new product that generates her/him maximum utility. That a consumer only 
buys a new product if it generates higher utility than her/his status quo product is 
expressed by constraint (16). To ensure that a consumer switches from his status quo 
product only if the new product has a greater utility than her/his status product, a 
small constant � is introduced. Finally, the constraint (17) ensures the binary restric-
tions on the decision variables.

2.2.3  Probabilistic profit maximization ( Pprob)

In this section, we present a profit maximizing model that applies a probabilistic 
choice rule. Among the proposals by, e.g., Green et al. (1981); Green and Krieger 
(1992); Choi and DeSarbo (1993, 1994); Gaul et al (1995); Steiner and Hruschka 
(2000); Chen and Hausman (2000); Steiner and Hruschka (2003); Gaul and Baier 
(2021), we selected the Gaul et al (1995) model, since it is a flexible model with 
fixed costs per period at an attribute-level. Again, besides the R new products, 
O pre-defined own and F foreign status quo products are under consideration. 
Consumer i’s attribute-level contribution margins dikl and partworths �ikl as well 
as a weight �i (number of products per period bought by consumer i) are used. 
The periodical fixed costs are estimated by summing up the relevant attribute-
level specific periodical fixed costs fkl (k=1,...,K; l=1,...,Lk ). This approach also 
allows to block certain attribute-levels for the new products by defining large fkl 
values for specific (k,l) combinations. The Gaul et al (1995) model makes use of 
the BTL choice rule discussed in the last subsection. Due to assumed superiority 
over the deterministic choice rule and wide spread in test market simulation (Silk 
and Urban 1978), this flexible alternative to the logit choice rule was and is used 
for product-line design by many authors (see, e.g., Gaul et al 1995; Schön 2010; 

(16)yi

R∑

j=1

K∑

k=1

Lk∑

l=1

�iklxijkl ≥ yi(ui0 + �) ∀ i = 1,..., I,

(17)yi, xijkl ∈ {0, 1} ∀
i = 1,..., I, j = 1,..., R,

k = 1,..., K; l = 1,..., Lk.
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Tsafarakis et al 2011; Vökler and Baier 2020; Gaul and Baier 2021). The model is 
formulated as follows (see Gaul et al 1995; Gaul and Baier 2021):

subject to

The objective function (18) maximizes the weighted contribution margins from the 
new and the own status quo products minus the fixed costs for the new products. 
Constraint (19) ensures that a new product has at most one level per attribute. Con-
straint (20) specifies the BTL choice rule with pij as the choice/buying probability 
of consumer i among the new and all status quo products. Constraint (21) ensures 
that products are offered complete with all attributes. Finally, constraints (22) and 
(23) reflect the restrictions on the decision variables. Please note that only xjkl values 
for j=1,...,R are looked for, i.e. descriptions for the new products. The xjkl values for 
j=R+1,...,J=R+O+F are given, i.e. the description of the own and foreign status quo 
products.

It should be mentioned that this formulation of a profit maximization problem 
differs from the one in the last subsection not only with respect to the choice 
rule and the additional fixed costs but also by allowing identical new products 
(with respect to the attribute-levels defined) to be introduced. Since—when 
applying a probabilistic choice rule—these new products (that may be different 
among each other by attributes not included in the data collection) can generate 
additional choice probabilities and additional profit, this formulation could have 
an advantage.

(18)
I∑

i=1

R+O∑

j=1

K∑

k=1

Lk∑

l=1

�idiklxjklpij −

R∑

j=1

K∑

k=1

Lk∑

l=1

xjklfkl ⟶ max!

(19)
Lk∑

l=1

xjkl ≤ 1 ∀ j = 1,..., R; k = 1,..., K,

(20)pij =

(
K∑

k=1

Lk∑

l=1

�iklxjkl

)�

J∑

j�=1

(
K∑

k=1

Lk∑

l=1

�iklxj�kl

)� ∀ i = 1,..., I; j = 1,..., R+ O,

(21)
Lk∑

l=1

xjkl =

Lk+1∑

l=1

xj(k+1)l ∀ j = 1,..., R; k = 1,..., K- 1,

(22)xjkl ∈ {0, 1} ∀ j = 1,..., R; k = 1,..., K; l = 1,..., Lk,

(23)pij ∈ [0, 1] ∀ i = 1,..., I; j = 1,..., R+ O.
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3  One‑stage heuristics to solve product‑line design problems: 
an overview

In commercial conjoint analysis applications, the number of attributes and lev-
els (e.g. 3 to 9 attributes, each with 2 to 7 levels according to Selka 2013, see 
Sect. 1) as well as the derived number of attribute-level combinations (here: up to 
79=40,353,607) is rather high. Consequently, often, the number of feasible solu-
tions for product-line design problems (the number of feasible sets of, say, 3 to 9 
combinations) prevents the application of exact methods for solving in acceptable 
computing time. Instead, from the introduction of conjoint analysis to marketing 
(Green and Rao 1969), heuristics have been proposed. Well-known first proposals 
were developed by Shugan and Balachandran (1977) as well as Zufryden (1977), 
many others followed. Table 1 gives an overview on recently proposed ones and 
empirical comparisons.

The overview starts in 1995, since this year reflects the important introduction 
of Genetic Algorithms (Balakrishnan and Jacob 1995, 1996) to the product-line 
design literature. Up to now, the proposed method in these references is the only 
one in Sawtooth Software’s Lighthouse system (Orme 2019), the market leader 
for conjoint analysis software. Another reason for selecting this starting year 
was a similarly structured former overview on product-line design problems and 
methods till 1995 by Baier and Gaul (1999).

A closer look at Table 1 reveals that (with few exceptions and in contrast to 
the proposals in the former overview) mainly one-stage heuristics were proposed 
and applied since 1995. One-stage heuristics directly search for best sets of attrib-
ute-level combinations and omit a foregoing additional stage where promising 
attribute-level combinations are selected as candidates and the solution space is 
reduced to sets of these candidates. One exception that refers to two-stage heu-
ristics (especially Green and Krieger’s Divide &Conquer, Greedy, and Product 
Swapping Heuristics from the 1980 s and 1990 s) is Belloni et al (2008a). How-
ever, these authors only applied them for comparisons and to small product-line 
design problems. Also, it can be seen in Table 1, that most proposals contained a 
comparison with results derived from already known heuristics and/or—in case 
of smaller problem instances—Complete Enumeration or other methods that 
guarantee global optimality (e.g. Branch and Bound, Branch and Bound with 
Lagrange Relaxation). Criteria for the comparisons were accuracy (e.g. “How 
close was the solution’s objective function to the global maximum on average?”) 
and speed (computing time on average). For the comparisons, partworths and sta-
tus quo products from real-world conjoint analysis applications were used, or—
more often—randomly generated. Depending on the number of attributes, levels, 
and new products to be designed, the number of feasible solutions varies, ranging 
from 16 to more than 10100 . Also, different objective functions, choice rules, and 
heuristics have been used to define and solve the problems. Moreover, it should 
be mentioned that the heuristics use different hyperparameters (e.g., selection, 
crossover, and population maintenance mechanisms in Genetic Algorithms) and 
parameters (e.g., population percentages and size in Genetic Algorithms) that 
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have an influence on accuracy and speed, making conclusions across comparisons 
and the selection of best heuristics difficult.

We try to overcome these difficulties by extensively comparing four well-known 
and according to Table 1 advantageous heuristics to our three problems ( Mdet , Pdet , 
and Pprob ) in Sect.  4 (hyperparameter and parameter tuning) and 5 (comparison): 
Genetic Algorithms ( according to Balakrishnan and Jacob 1995, 1996; Steiner and 
Hruschka 2003), Ant Colony Optimization (Albritton and McMullen 2007), Particle 
Swarm Optimization (Tsafarakis et al 2011), and Simulated Annealing (Belloni et al 
2008a).

4  Selected heuristics and their hyperparameters

In the following, we discuss the four selected one-stage heuristics and apply them 
to 18 product-line design problem instances. During hyperparameter and param-
eter tuning, recent improvements from the operations research literature are dis-
cussed and tested. Three modifications among these improvements—a new variant 
of Genetic Algorithms: Cluster-based Genetic Algorithms, and two new variants of 
Ant Colony Optimization: Max-Min Ant System as well as Max-Min Ant System 
with Local Search—are later (in Sect. 5) also used in the comparison based on 60 
small- to large-size problem instances.

4.1  Problem instances for hyperparameter and parameter tuning

Data for product-line design problems as discussed in the previous sections mainly 
consist of attribute-level partworths and contribution margins from a sample of con-
sumers as well as attribute-levels of status quo products. In order to develop or com-
pare new solution methods, usually such data is taken from real applications or is 
generated according to some pre-specified characteristics. So, e.g., Belloni et  al 
(2008a) generated partworths and three status quo products with the number of 
attributes being 3, 5, or 7, and the number of levels per attribute being 2, 3, 5, or 8. 
partworths were drawn from iid uniform [0,  1] distributions, status quo products 
randomly selected. For 3 or 4 new products to be designed, the number of feasible 
solutions (identical new products not allowed) varied from ( 2

3

3
)=56 to ( 8

7

4
)=8.1 ⋅ 1023 

but was further restricted to problem instances with at most 5 ⋅ 1015 feasible solu-
tions. Belloni et  al (2008a) argue that they limited themselves to these small-size 
problem instances (see Table 1 to compare) since they wanted to check accuracy by 
calculating the global maximum of the objective functions. They applied an 
improved variant of Branch and Bound with Lagrange Relaxation that is much faster 
than Complete Enumeration but is not applicable to problem instances analyzed by 
Shi et al (2001) and Balakrishnan et al (2004) with up to 5.04 ⋅ 10102 feasible solu-
tions. As a result of their comparison, they found out that—across their rather small 
problem instances—the Genetic Algorithm almost always (in 99.9% of the cases) 
and Simulated Annealing always found the global maximum. The computing time 
of Branch and Bound with Lagrangian Relaxation was on average 659.4  s, of the 
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Genetic Algorithm 11.8 s, and of Simulated Annealing 131.8 s. The examined two-
stage heuristics found the global maximum less frequently but finished much faster, 
similar quickly to other examined one-stage heuristics (e.g. Beam Search and Nested 
Partitions Algorithm) with better accuracy but still worse compared to the one-stage 
heuristics Genetic Algorithm and Simulated Annealing.

In our examination, we want to investigate the performance of our heuristics 
when confronted to realistic (e.g., larger) product-line design problem instances, 
where Complete Enumeration and Branch and Bound with Lagrangian Relaxation 
cannot be applied. Here, in order to deal with realistic problem instances, published 
characteristics of commercial conjoint analysis applications are helpful. So, e.g., 
Selka (2013) discusses a sample of all 2,089 conjoint analysis applications per-
formed by a leading market research institute within recent years. Each application 
is described by its purpose, the branch, the number and types of respondents, the 
applied conjoint analysis methodology, the number of attributes, the number of lev-
els for each attribute, as well as additional information with respect to reliability and 
validity of the estimated partworths. On average, the number of attributes was 9.595, 
ranging from 2 to 51 with a standard deviation of 6.912 and a median of 7. The 
mean number of levels per attribute was 4.824, ranging from 2 to 47 with a standard 
deviation of 2.506 and a median of 4. The number of respondents ranged from 23 to 
9,801 with a mean of 574.88 and a standard deviation of 469.06. The number of fea-
sible attribute-level combinations ranged from 15 to 9.281⋅1031 with a median of 
2,880 and a mean of 4.448⋅1028 . If 3 to 9 new products are looked for, the number of 
feasible product-lines ranges from ( 15

3
)=455 to ( 9.281 ⋅ 10

31

9
)=1.41⋅10282 (if identical 

new products not allowed).
As many of the described product-line design problem instances are rather time 

consuming to solve, we concentrate in a first step of our investigation—hyperparam-
eter and parameter tuning—on a small set of problem instances with the number of 
attributes and the number of levels per attribute being 5, 10, or 15 and the number of 
respondents being 200. If 3 or 9 new products are looked for, ( 5

5

3
)=5.1⋅109 up to 

( 15
15

9
)=1.63⋅10153 new product-lines are feasible (if identical new products not 

allowed). These problem instances are much larger (more realistic) than the problem 
instances analyzed in many former comparisons. Consequently, many of them can-
not be solved by Complete Enumeration or Lagrangian Relaxation in acceptable 
computing time. Instead, they still allow comparisons of many methodological vari-
ants with best solutions across all heuristics in reasonable time. We refer in the fol-
lowing to these best solutions across all heuristics for comparisons. Later—in 
Sect. 5—we extend these comparison to more small- to large-size problem instances, 
applying fewer but now tuned methodological variants.

The partworths of the 200 respondents as well as the attribute-level contribution 
margins were generated based on iid uniform distributions and the status quo prod-
ucts were selected randomly, both as proposed by Kohli and Sukumar (1990) as well 
as Belloni et al (2008a). In contrast to their propositions, however, the partworths 
were superimposed by multivariate normally distributed dispersion that better 
reflects today’s wide-spread Hierarchical Bayes partworth estimation (see Allenby 
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and Rossi 1998) based on normally distributed a priori and posterior distributional 
assumptions.

4.2  Genetic algorithms (GA01,...,GA18, CGA)

GAs were introduced to optimization by Holland (1975) and to product-line design 
by Balakrishnan and Jacob (1995, 1996). They mimic biological evolution by natu-
ral selection. Starting point often is a first population with random solutions. A sub-
sequent population emerges by preserving, recombining, and/or mutating selected 
“best” solutions from the previous one. This generational transition is repeated until 
a stopping criterion is met. GAs differ in their selection, recombination, and muta-
tion mechanisms during these transitions as well as their initialization and mainte-
nance of the populations. Table 2 gives an overview of GA applications to product-
line design. There, the encoding of feasible solutions (the attribute-levels for each 
new product), the mechanisms used as well as the comparison results are discussed.

It can be seen that especially the hyperparameters selection (truncation or tourna-
ment), crossover (1-point or uniform crossover), as well as population maintenance 
(emigration, Malthusian, modified Malthusian) vary across applications. We will 
use our problem instances for deciding which mechanisms lead to best solutions 
and use the following specifications: Selection by truncation was introduced by Hol-
land (1975) and applied to solve product-line design problems by, e.g., Balakrishnan 
and Jacob (1995, 1996), Belloni et  al (2008a), or Tsafarakis et  al (2011). A pre-
determined proportion of “best” solutions is used for preservation, crossover, and/
or mutation. Selection by tournament (Goldberg and Deb 1991) is an alternative to 
truncation. This mechanism was applied by Steiner and Hruschka (2002, 2003) as 
well as Fruchter et al (2006). Repeatedly, pairs of solutions are randomly selected 
and the “better” solution of each pair is kept. A third promising alternative for selec-
tion, up-to-now not used in product-line design, is stochastic universal sampling 
(Baker 1987; Goldberg and Deb 1991; Reeves 2003). It selects solutions proportion-
ally to their values of the objective function.

With respect to crossover, 1-point and uniform crossover seem to be wide-spread. 
Other alternatives, such as the 2- up to 5-point crossover (see, e.g. Balakrishnan and 
Jacob 1995) were seldomly applied according to Table 2. With 1-point crossover, 
two solutions swap their attribute-levels starting from a randomly specified attribute. 
With uniform crossover, the swap is performed across all attributes but only with 
a defined probability (e.g., 50%). As mechanisms for mutation, the attributewise 
approach seems to dominate. Each level of a solution is randomly modified with a 
predefined small probability (the mutation rate). In product-line design, the mutation 
rate is typically set to 1 divided by the number of attributes and the number of new 
products (see, e.g., Reeves 2003). Finally, for population maintenance three alterna-
tives to define a new generation with M solutions are used: Emigration preserves 
M-S solutions from the last generation and allows S new solutions to come from 
crossover or mutation. Malthusian allows to eliminate preserved solutions when 
new solutions show higher values of the objective function. Modified Malthusian 
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additionally allows preserved solutions to mutate before their final evaluation (Bel-
loni et al 2008b).

For these hyperparameters under investigation, some additional parameter set-
tings were specified according to recommendations in the literature: (Belloni et al 
2008b) proposed for emigration to preserve M/2 solutions from one generation to 
the next. For Malthusian and modified Malthusian, they proposed to use the M/2 
best product-lines to produce offspring (Belloni et  al 2008b). Their M/2 parents 
are carried over into the following generation only if they have a correspondingly 
higher objective function value after the population is reduced to M. We also follow 
their proposition to set the population size M to 500 as well as Steiner and Hruschka 
(2002) to set the discussed crossover probability to 1, since the latter allows better 
objective function values to be obtained than with a lower crossover probability.

With these specifications of three selection, two crossover, and three population 
maintenance alternatives and the discussed parameter settings, 3 ⋅2⋅3=18 GA vari-
ants (GA01,...,GA18) can be applied to our 18 problem instances, each with 10 runs, 
with results given in Table 3.

There, for each GA heuristic and each of the three investigated objective func-
tions ( Mdet , Pdet , and Pprob from Sect. 2), the achieved results are reflected by mean 
values and standard deviations across problem instances and runs. The values of the 
objective functions are normalized to [0,1] by dividing them by the assumed global 
maximum (the best value achieved across all four heuristics and their variants in this 
section). So, from Table 3, it is clear that most heuristics were—on average—able 
to achieve a Pprob solution with a value larger than 99.9% of the assumed global 
maximum. However, for the other two objective functions and the mean across the 
three objective functions the results are worse. Only the best performing GA vari-
ants (GA05 and GA04) achieve mean maximum (across the runs) values larger than 
87% of the assumed global maximum. Moreover, the differences among the mean 
maximum values are statistically significant according to a non-parametric Fried-
man test (see, e.g., Carrasco et al 2020) with �=0.05. An additional non-parametric 
Friedman test with multiple comparisons demonstrates that especially GA variants 
with truncation for selection or with Malthusian or modified Malthusian for popula-
tion maintenance significantly outperform GA variants with other mechanisms.

Moreover, since the overall performance of the GA variant with largest mean 
values across the objective functions (GA05) still was low, the GA and prod-
uct-line design literature was checked for additional alternatives. So, e.g., some 
authors tried to improve GA performance by including “best” product-lines 
from applications of other heuristics into the starting population. However, this 
approach is known often to lead to local optima. So, e.g., Balakrishnan et  al 
(2004) report no performance improvements by connecting GA and beam search 
in this so-called “hybrid” manner. Here, we propose an alternative way to aug-
ment the initial starting population that relates to Green and Krieger (1987)’s 
well-known Best-in heuristic that was used by the authors as first stage of a two-
stage heuristic. The Best-in heuristic selects respondent-specific utility maxi-
mizing attribute-level combinations as candidates. However, in order to restrict 
the number of candidates, Green and Krieger (1987) propose an iteration across 
respondents. Individual utility maximizing attribute-level combinations only 
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Table 3  Mean values (standard deviations) of the objective functions Mdet , Pdet , and Pprob achieved by 
applying 18 Genetic Algorithms to 18 problem instances (Largest mean values are in bold)

Heur PLD Z
max Z

max

Z
mean Z

mean

�
Z

t
mean

(in s)

GA01
(trun,u
emigr)

Mdet .6310(.3945) .8176(.2965) .5217(.3576) .7047(.3411) .0586 2.70(1.32)
Pdet .8218(.2155) .5933(.3074) .1465 5.59(.65)
Pprob .9998(.0004) .9991(.0015) .0007 8.37(10.26)

GA02
(trun,u
Malth)

Mdet .6158(.3910) .8223(.2962) .5243(.3608) .7105(.3396) .0669 3.91(2.00)
Pdet .8512(.2029) .6080(.3052) .1534 8.71(6.58)
Pprob .9999(.0002) .9993(.0010) .0005 11.98(14.44)

GA03
(trun,u
mMalth)

Mdet .7412(.2412) .8550(.1893) .6356(.2728) .7914(.2353) .0756 9.50(7.07)
Pdet .8239(.1286) .7390(.1540) .0568 29.66(39.39)
Pprob .9999(.0001) .9996(.0004) .0004 14.86(19.81)

GA04
(trun,1
emigr)

Mdet .7825(.2014) .8817(.1577) .7008(.2174) .8267(.1921) .0654 5.81(5.08)
Pdet .8625(.1064) .7798(.1306) .0529 14.99(21.63)
Pprob .9999(.0002) .9994(.0008) .0008 15.78(23.23)

GA05
(trun,1
Malth)

Mdet .7987(.2161) .8828(.1630) .7160(.2222) .8305(.1914) .0555 8.37(5.94)
Pdet .8498(.1140) .7759(.1325) .0479 22.94(31.68)
Pprob .9999(.0001) .9996(.0005) .0004 24.64(36.69)

GA06
(trun,1
mMalth)

Mdet .7680(.2333) .8642(.1802) .6673(.2371) .8041(.2116) .0642 9.01(6.78)
Pdet .8247(.1260) .7457(.1398) .0511 27.53(40.36)
Pprob .9999(.0002) .9993(.0008) .0006 27.27(39.63)

GA07
(tour,u
emigr)

Mdet .6758(.3333) .8187(.2569) .4929(.3136) .6987(.3154) .1138 2.92(.96)
Pdet .7806(.1922) .6053(.2509) .1535 7.18(4.93)
Pprob .9996(.0007) .9980(.0018) .0018 12.28(17.35)

GA08
(tour,u
Malth)

Mdet .6168(.3907) .7828(.3216) .4968(.3445) .6803(.3540) .0872 3.95(1.89)
Pdet .7318(.2968) .5453(.3312) .1119 6.41(3.78)
Pprob .9998(.0004) .9988(.0019) .0008 13.79(17.30)

GA09
(tour,u
mMalth)

Mdet .7245(.2530) .8521(.1982) .6193(.2801) .7857(.2404) .0684 9.08(5.10)
Pdet .8319(.1329) .7383(.1471) .0634 30.85(42.83)
Pprob .9999(.0001) .9995(.0006) .0004 18.02(25.20)

GA10
(tour,1
emigr)

Mdet .6982(.2303) .8170(.2098) .5966(.2346) .7480(.2508) .0694 5.30(3.37)
Pdet .7534(.1725) .6515(.2046) .0688 10.69(10.01)
Pprob .9993(.0012) .9957(.0046) .0043 20.44(26.28)

GA11
(tour,1
Malth)

Mdet .7743(.1937) .8708(.1602) .6860(.2261) .8158(.2005) .0607 8.65(6.63)
Pdet .8383(.1177) .7623(.1334) .0545 22.66(28.65)
Pprob .9999(.0002) .9990(.0009) .0013 25.79(37.15)

GA12
(tour,1
mMalth)

Mdet .7381(.2169) .8525(.1792) .6430(.2278) .7906(.2156) .0635 8.75(6.49)
Pdet .8196(.1228) .7295(.1409) .0594 27.72(38.73)
Pprob .9999(.0002) .9994(.0006) .0006 28.61(41.45)
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become candidates when they provide the current respondent an � 0 utility sur-
plus over the up-to-now selected candidates. In the second stage, candidate sets 
are evaluated to find “best” profit or market share maximizing product-lines. Even 
with two-stage heuristics nowadays assumed to be inferior to one-stage heuristics 
(see, e.g., or the discussion in the previous section Belloni et al 2008a), we use a 
modified Best-in heuristic to augment our GA starting population. However, we 
don’t rely on individual utility maximizing attribute-level combinations but on 
segment-specific ones and call the GA heuristic Cluster-based GA (CGA). Also 
we select more than one candidate per cluster to support variation.

CGA can be easily described in the following way: When searching for R new 
products, the respondents are clustered via kmeans into R segments based on 
their partworths. For each of the derived R segments, the Jbest utility maximizing 
attribute-level combinations are selected (based on the segment-specific mean part-
worths). Across the R segments/new products, these Jbest combinations form Jbest 

Trun truncation, tour tournament, stoch stochastic universal sampling, u uniform crossover, 1 1-point 
crossover, emigr emigration, Malth Malthusian, mMalth modified Malthusian; PLD product-line design 
problem (Note: Z is the objective function value achieved divided by the objective function value of 
the best solution found for this problem instance); Z

max
 : maximum Z value across 10 runs; Z

max
 : mean 

Z
max

 valus across three objective functions; Z
mean

 : mean Z value across 10 runs; Z
mean

 : mean Z
mean

 value 
across the three objective functions; �

Z
 : standard deviation of Z across 10 runs; t

mean
 : mean computing 

time across 10 runs

Table 3  (continued)

Heur PLD Z
max Z

max

Z
mean Z

mean

�
Z

t
mean

(in s)

GA13
(stoch,u
emigr)

Mdet .5661(.2632) .6402(.2422) .4627(.2458) .5507(.2500) .0669 2.82(1.42)
Pdet .5595(.2545) .4332(.2397) .0762 3.46(2.05)
Pprob .7950(.1033) .7562(.0971) .0247 2.24(1.37)

GA14
(stoch,u
Malth)

Mdet .5335(.3494) .7286(.3207) .4462(.3032) .6400(.3439) .0628 3.11(1.31)

Pdet .6529(.2733) .4762(.2706) .1110 5.59(3.89)

Pprob .9992(.0013) .9976(.0031) .0019 14.22(16.45)

GA15
(stoch,u
mMalth)

Mdet .7316(.2531) .8509(.2007) .6067(.2624) .7672(.2489) .0848 9.51(6.29)
Pdet .8213(.1485) .6954(.1853) .0954 23.37(27.71)
Pprob 1.000(.0001) .9996(.0006) .0004 17.56(21.59)

GA16
(stoch,1
emigr)

Mdet .6240(.2425) .6669(.2214) .5140(.2336) .5819(.2242) .0688 3.41(1.99)
Pdet .5952(.2469) .4900(.2269) .0607 4.25(3.11)
Pprob .7813(.1082) .7419(.0984) .0241 2.11(1.19)

GA17
(stoch,1
Malth)

Mdet .7341(.2393) .8512(.1963) .6341(.2516) .7782(.2393) .0744 7.15(4.39)
Pdet .8198(.1547) .7052(.1941) .0779 13.95(11.79)
Pprob .9997(.0006) .9953(.0036) .0069 27.53(36.34)

GA18
(stoch,1
mMalth)

Mdet .7325(.0230) .8470(.1892) .6411(.2319) .7855(.2248) .0633 9.29(6.80)
Pdet .8087(.0136) .7161(.1676) .0614 20.12(20.89)
Pprob .9999(.0002) .9993(.0006) .0007 33.75(48.91)
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initial product-lines that are integrated into the GA starting population (together 
with random starting solutions). CGA has the advantage that “best” (in a segment-
specific utility maximizing manner) and rather diverse starting solutions are used, 
but within GA they can—in comparison to Green and Krieger (1987)’s two-stage 
heuristic—be improved. Table 4 compares the new CGA heuristic (with Jbest=50) to 
the up-to-now best GA variant (GA05) and demonstrates superiority. The advantage 
with respect to Zmax and Zmean is significant according to a non-parametric Friedman 
test (see, e.g., Carrasco et al 2020) with �=0.05.

4.3  Particle swarm optimization (PSO)

PSO was originally conceived by Kennedy and Eberhart (1995) for optimizing 
real-valued functions of real-valued variables. PSO has its roots in artificial life 
in general and in analyzing the behavior of animal swarms in particular. Algorith-
mic basis is a population of particles (e.g., artificial birds, fishes) that iteratively 
adjust their positions in space according to their own past positions and evalu-
ations as well as the past positions and evaluations of other particles (Shi and 
Eberhart 1998). When it comes to solve optimization problems, the positions in 
space represents admissible solutions that can be evaluated and improved accord-
ing to an objective function.

Tsafarakis et al (2011) were the first to apply PSO to product-line design prob-
lems. Their objective function was market share based on the BTL choice rule. 
Positions are defined as vectors of (real) values that reflect whether a specific new 
product has a specific level of an attribute or not. Since new products only are 
allowed to be assigned to one level per attribute, the positions must be mapped 
to adequate indicators before evaluation. Here, e.g., the SPV (Smallest Position 
Value) mapping implies that for each new product and attribute the level with the 
lowest value receives a coding of 1 and the others receive a coding of 0.

Table 4  Mean values (standard deviations) of the objective functions Mdet , Pdet , and Pprob achieved by 
applying Genetic Algorithm  5 (GA05 with truncated for selection, 1-point for crossover, and Malthu-
sian for population maintenance) and Cluster-based Genetic Algorithm (CGA) to 18 problem instances 
(Larger mean values according to a Friedman test with �=0.05 are in bold)

PLD product-line design problem (Note: Z is the objective function value achieved divided by the objec-
tive function value of the best solution found for this problem instance); Z

max
 : maximum Z value across 

10 runs; Z
max

 : mean Z
max

 valus across three objective functions; Z
mean

 : mean Z value across 10 runs; 
Z
mean

 : mean Z
mean

 value across the three objective functions; �
Z
 : standard deviation of Z across 10 runs; 

t
mean

 : mean computing time across 10 runs

Heur PLD Z
max Z

max

Z
mean Z

mean

�
Z

t
mean

(in s)

GA05
(trun,1
Malth)

Mdet .7987(.2161) .8828(.1630) .7160(.2222) .8305(.1914) .0555 8.37(5.94)
Pdet .8498(.1140) .7759(.1325) .0479 22.94(31.68)
Pprob .9999(.0001) .9996(.0005) .0004 24.64(36.69)

CGA 
(trun,1
Malth)

Mdet .9148(.0750) .9395(.0678) .8497(.0855) .8979(.0949) .0441 9.50(10.75)
Pdet .9037(.0532) .8445(.0664) .0411 13.26(15.78)
Pprob .9999(.0002) .9994(.0007) .0006 19.19(26.51)
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Tsafarakis et al (2011) showed that this SPV mapping performs best with their 
product-line design problem instances. Vökler and Baier (2020) supported this 
hyperparameter selection also for other objective functions with a further sam-
ple of product-line design problem instances. Other parameters specified in the 
literature (e.g., population size: 50, number of iterations: 1,000) also proved in 
these comparisons to be transferable from general PSO recommendations (Ken-
nedy and Eberhart 1995; Shi and Eberhart 1998).

4.4  Ant colony optimization (ACO, MM, MML)

Solving combinatorial optimization problems using colonies of artificial ants pri-
marily goes back to Dorigo (1992)’s dissertation and reflects the foraging behav-
ior of real ants. Artificial (real) ants repeatedly construct a valid solution (a path 
to the food) via components (sections) and mark the components with phero-
mones that reflect the overall solution quality (the shortness of the path). The 
amount of pheromones at the single components helps other ants to select good 
components in a probabilistic manner and to construct better solutions (shorter 
paths). Since its introduction to combinatorial optimization, many extensions 
and improvements of this algorithmic idea were developed and applied to many 
NP-hard combinatorial problems, e.g. traveling salesman problems, scheduling 
problems, and subset problems (see, e.g., Gambardella and Dorigo 1995, 1996; 
Dorigo et al 1999; Dorigo and Stützle 2003).

Albritton and McMullen (2007) introduced Ant Colony Optimization (ACO) 
to the product-line design literature. In their approach, similar to PSO, the com-
ponents are alternative levels for all new products and attributes. They demon-
strated that ACO can successfully be applied to small-size problem instances 
(up to 109 feasible solutions). On average, in more than 99.9% of their generated 
problem instances, ACO was able to find the global maximum of the objective 
function. Moreover, Vökler et al (2013) applied ACO to even larger product-line 
design problem instances (up to 1020 feasible solutions) and demonstrated superi-
ority over other one-stage heuristics.

Recently, in the ant system literature, Stützle and Hoos (1997)’s modification 
of the ACO heuristic, the so-called Max-Min Ant System (MM), received remark-
able attention. So, e.g., Skinderowicz (2020) describes in his literature review 
that this heuristic is one of the best-performing ACO variants for solving opti-
mization problem instances. MM differs from standard ACO insofar that (1) only 
the best ant in each iteration is used for the pheromone update and (2) amounts 
of pheromone are restricted to maximum and minimum values. These modifica-
tions help to avoid early stagnation of the algorithm but still take advantage of the 
implemented elite strategy. The maximum and minimum amounts of pheromone 
are defined for each attribute-level so that across all iterations all of them have 
a chance to be part of the solution. For ACO and MM, the parameter settings of 
Albritton and McMullen (2007) can be used. Moreover, we introduce a new ACO 
variant: We combine MM and Green et al. (1989)’s Coordinate Ascent heuristic 
as a third ACO heuristic. In this MM with Local Search (MML), we additionally 
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improve the “best” solution by an ant in each iteration (if feasible), by testing all 
alternative levels of single attributes. Table 5 reflects the results of an application 
of ACO, MM, and MML to the 18 problem instances within 10 runs.

It is clear that MM and MML outperform ACO. The differences between the 
mean maximum values and the differences between the mean values are statisti-
cally significant according to a non-parametric Friedman test (see, e.g., Carrasco 
et al 2020) with �=0.05. An additional non-parametric Friedman test with mul-
tiple comparisons demonstrates that the pairwise differences are also significant 
with �=0.05. MML performs best with respect to accuracy. However, this accu-
racy is achieved by longer computing time.

4.5  Simulated annealing (SAE, SAA)

Simulated Annealing is a popular approach for solving difficult combinatorial opti-
mization problems (Aarts and Korst 1989; Belloni et al 2008a). The method mimics 
annealing in metallurgy where heating and controlled cooling is used to improve 
material quality. The approach received its name in the publication by Kirkpatrick 
et al (1983) who—for the first time—applied this approach to the NP-hard traveling 
salesman problem. The main idea is to iteratively modify components of an existing 
solutions in the search for best ones, but to accept during this search with a certain 
probability deteriorations. The reduction of this probability over time (the cooling 
process) makes it more and more difficult for worse solutions to be selected and 

Table 5  Mean values (standard deviations) of the objective functions Mdet , Pdet , and Pprob achieved by 
applying Ant Colony Optimization (ACO), Max-Mix Ant System (MM), and Max-Mix Ant System with 
Local Search (MMS) to 18 problem instances (Groupwise largest mean values according to a Friedman 
test with multiple comparisons and �=0.05 are in bold)

PLD product-line design problem (Note: Z is the objective function value achieved divided by the objec-
tive function value of the best solution found for this problem instance); Z

max
 : maximum Z value across 

10 runs; Z
max

 : mean Z
max

 valus across three objective functions; Z
mean

 : mean Z value across 10 runs; 
Z
mean

 : mean Z
mean

 value across the three objective functions; �
Z
 : standard deviation of Z across 10 runs; 

t
mean

 : mean computing time across 10 runs

Heur PLD Z
max Z

max

Z
mean Z

mean

�
Z

t
mean

(in s)

ACO Mdet .3386(.2372) .5162(.3195) .2872(.2202) .4704(.3151) .0290 6.46(6.62)
Pdet .3552(.2539) .2989(.2256) .0332 8.96(9.27)
Pprob .8595(.1001) .8250(.1022) .0231 11.32(13.95)

MM Mdet .9171(.1043) .9314(.0984) .8640(.1108) .8904(.1206) .0373 26.13(26.18)
Pdet .8773(.1052) .8079(.1121) .0428 27.56(26.40)
Pprob .9997(.0009) .9992(.0016) .0004 26.65(29.57)

MML Mdet .9569(.0702) .9645(.0700) .8834(.0846) .9185(.1011) .0459 102.55(109.76)
Pdet .9367(.0902) .8723(.1189) .0457 109.32(108.74)
Pprob .9999(.0003) .9997(.0005) .0002 97.52(101.27)
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ends without early stagnation—hopefully—at the global maximum instead of local 
ones.

Belloni et al (2008a) were the first to apply this approach to product-line design. 
Their so-called Simulated Annealing with Exponential Cooling (SAE) uses fixed 
exponents in the cooling formula. In their comparison, SAE performed best in 
terms of accuracy. However, Aarts and Korst (1989) criticized that SAE cannot be 
applied to large-size problem instances. They proposed an approach with a quan-
tum mechanical cooling formula, the so-called Simulated Annealing with Adaptive 
Cooling (SAA). Additional parameter settings were used according to Aarts and 
Korst (1989) and Belloni et al (2008a).

Table 6 reflects the results of applying SAE and SAA to our 18 problem instances. 
Whereas SAA outperforms SAE by higher mean values when averaging the values 
of three objective functions, this superiority is not significant according to a Fried-
man test with �=0.05. The superiority comes especially from the Pprob product-line 
design problem (with significant differences) whereas SAE was found significantly 
superior with respect to the other two problems. Nevertheless we selcted SAA for 
our comparison in Sect. 5.

5  Empirical comparison

In this section we discuss the application of the six selected one-stage heuris-
tics—Genetic Algorithm (GA05), Cluster-based Genetic Algorithm (CGA), Parti-
cle Swarm Optimization (PSO), Max-Min Ant System (MM), Max-Min Ant Sys-
tem with Local Search (MML), and Simulated Annealing with Adaptive Cooling 
(SAA)—to 60 small- to large-size problem instances across our three objective 
functions ( Mdet , Pdet , and Pprob ) and 10 runs. The hyperparameters and parameters 

Table 6  Mean values (standard deviations) of the objective functions Mdet , Pdet , and Pprob achieved by 
applying Simulated Annealing with Exponential Cooling (SAE) and Simulated Annealing with Adaptive 
Cooling (SAA) to 18 problem instances (Larger mean values according to a Friedman test with �=0.05 
are in bold)

PLD product-line design problem (Note: Z is the objective function value achieved divided by the objec-
tive function value of the best solution found for this problem instance); Z

max
 : maximum Z value across 

10 runs; Z
max

 : mean Z
max

 valus across three objective functions; Z
mean

 : mean Z value across 10 runs; 
Z
mean

 : mean Z
mean

 value across the three objective functions; �
Z
 : standard deviation of Z across 10 runs; 

t
mean

 : mean computing time across 10 runs

Heur PLD Z
max Z

max

Z
mean Z

mean

�
Z

t
mean

(in s)

SAE Mdet .9824(.0267) .9551(.0835) .9346(.0444) .9198(.0845) .03259 229.60( 17.14)
Pdet .9887(.0172) .9413(.0344) .03256 234.15( 19.12)
Pprob .8943(.1219) .8835(.1304) .00642 230.44( 20.01)

SAA Mdet .9821(.0257) .9859(.0235) .9207(.0437) .9422(.0534) .03642 231.34( 17.09)
Pdet .9759(.0270) .9062(.0404) .04836 235.99( 19.01)
Pprob .9999(.0003) .9997(.0006) .00014 231.55( 19.68)
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were selected according to the previous section. All calculations were performed on 
conventional notebooks (Lenovo ThinkPad P53s with an 8th Generation Intel Core 
i7). All heuristics are implemented in R.

5.1  Problem instances for the empirical comparison

Again (as in the previous section), the sample of 2,089 commercial conjoint analysis 
applications from Selka (2013) serves as a source. However, in this section, we omit 
the restriction to few problem instances and use the characteristics of this sample 
(empirical distribution of the number of respondents, of the number of attributes, of 
the number of attributes per level) more explicitely. For each investigated problem, 
we randomly draw the number of attributes K and the number of levels per attribute 
Lk (k=1,...,K) from the corresponding empirical distributions. Moreover, since the 
number of respondents I in the sample depends on the number of attribute-levels 
(the number of individual partworths), a linear model between I and 

∑K

k=1
Lk is esti-

mated ( R2 = 0.129 ) and used to define an adequate number of respondents,

The partworths as well as the attribute-level contribution margins are generated as 
discussed in the previous section using iid uniform and normal distributions.

As the available commercial conjoint analysis, applications do not provide infor-
mation on the number of new products looked for, the maximum reported number 
nine in empirical comparisons was used (Tsafarakis et  al 2011, R=9, see, e.g.,][) 
as a randomly selectable alternative to three new products (R=3). Our comparison 
assumes no own status products of the focal firm (O=0) but F randomly generated 
foreign status quo products with F depending on the number of feasible attribute-
level combinations defined as:

So, e.g., for nine attributes (K=9), with four or five levels (e.g., L1=...=L4=4, L5
=...=L9=5) and nine new products (R=9) we generate randomly eight foreign status 
quo products (F=8). The dependence of F from the numbers of feasible attribute-
level combinations and the number of new products increases coverage and variabil-
ity of the competition.

Basing on the above discussed empirical distributions and assumptions, 10,000 
problem instances were generated with feasible attribute-level combinations ranging 
from 6 to 7.05⋅1034 and a median of 6.05⋅104 as well as numbers of feasible solutions 
(product-lines with R new products) ranging from 56 to 6.15⋅10300 and a median of 
1.95⋅1023 . The number of respondents ranges from 514 to 1,194, the number of for-
eign status quo products from 1 to 300. If we denote problem instances with less 
than 1041 feasible solutions as small-size problem instances with more than 1081 
solutions as large-size, and the others as medium-size, we see that the distribution is 

(24)I = ⌊502.0188 + 2.3968 ⋅

K�

k=1

Lk⌋.

(25)F =

�
log10

��∏K

k=1
Lk

R

���
.
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concentrated on small-size problem instances: Among the 10,000 problem instances 
we have 73.45% small-size, 19.04% medium-size, and 7.51% large-size problem 
instances. The thresholds between small-, medium- and large-size problem instances 
were selected according to Table 1 and to Vökler and Baier (2020) who compared 
product-line design problem instances from 104 up to 1041 feasible solutions. As a 
result of their comparison, they found an overall superior performance (in terms of 
finding the best solutions across all heuristics) of Genetic Algorithms and Simulated 
Annealing compared to Particle Swarm Optimization and Ant Colony Optimization, 
but also that this superiority increased with the problem size across three blocks.

The smallest problem across the three blocks in our comparison looks for a prod-
uct-line with three new products described by four attributes, of whom three have 
three and one has six levels. The number of feasible solutions is ( 3

3
⋅ 6

3
)=6.96 ⋅ 105 . 

Table 7  Mean values (standard deviations) of the objective functions Mdet , Pdet , and Pprob achieved by 
applying Genetic Algorithms (GA), Cluster-based Genetic Algorithms (CGA), Particle Swarm Optimiza-
tion (PSO), Max-Min Ant System (MM), Max-Min Ant System with Local Search (MMS), and Simu-
lated Annealing (SA) to 60 problem instances (Groupwise largest mean values according to a Friedman 
test with multiple comparisons and �=0.05 are in bold)

PLD product-line design problem (Note: Z is the objective function value achieved divided by the objec-
tive function value of the best solution found for this problem instance); Z

max
 : maximum Z value across 

10 runs; Z
max

 : mean Z
max

 valus across three objective functions; Z
mean

 : mean Z value across 10 runs; 
Z
mean

 : mean Z
mean

 value across the three objective functions; �
Z
 : standard deviation of Z across 10 runs; 

t
mean

 : mean computing time across 10 runs

Heur PLD Z
max Z

max

Z
mean Z

mean

�
Z

t
mean

(in s)

GA05 Mdet .9529(.0927) .9257(.1065) .9448(.1029) .0193 382.36(202.89)
Pdet .9405(.1177) .9638(.0897) .9115(.1281) .0189 394.23(197.45)
Pprob .9980(.0086) .9973(.0100) .0005 397.80(193.79)

CGA Mdet .9881(.0169) .9855(.0276) .9673(.0269) .9698(.0392) .0138 395.75(189.93)
Pdet .9727(.0395) .9484(.0513) .0164 404.84(186.17)
Pprob .9957(.0135) .9940(.0156) .0012 408.33(185.77)

PSO Mdet .6151(.2586) .6975(.2570) .5637(.2694) .6541(.2706) .0303 245.53(158.89)
Pdet .5843(.2613) .5300(.2666) .0317 277.59(168.34)
Pprob .8930(.0797) .8685(.0885) .0161 290.09(175.87)

MM Mdet .9765(.0247) .9683(.0563) .9438(.0328) .9417(.0763) .0227 304.03(223.42)
Pdet .9284(.0794) .8814(.0973) .0311 326.90(226.51)
Pprob 1.000(.0001) .9998(.0004) .0002 312.57(223.63)

MML Mdet .9925(.0120) .9968(.0081) .9590(.0307) .9765(.0282) .0233 418.74(172.96)
Pdet .9980(.0052) .9708(.0243) .0197 424.03(166.04)
Pprob .9998(.0002) .9996(.0006) .0002 420.65(171.45)

SAA Mdet .9698(.0357) .9753(.0418) .9334(.0535) .9505(.0616) .0249 242.43(197.62)
Pdet .9567(.0553) .9192(.0706) .0283 251.77(199.13)
Pprob .9994(.0028) .9987(.0041) .0006 350.02(205.53)
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The largest problem looks for nine new products described by 36 attributes and has 

( 2 ⋅ 3
8
⋅ 414 ⋅ 53 ⋅ 64 ⋅ 75 ⋅ 9

9
)=7.33 ⋅ 10200 feasible solutions. The corresponding num-

ber of respondents ranges from 562 to 1,110.

5.2  Results of the empirical comparison

Table  7 reflects the results of the six one-stage heuristics across the three objec-
tive functions and the 60 problem instances. All heuristics used hyperparameters 
and parameters as selected in the previous section. Each combination of heuris-
tic, objective function, and problem was run 10 times. Within each run, additional 
time restrictions were included. Problem instances of block 1 (small-size problem 
instances) were terminated after 300 s, problem instances of block 2 (medium-size 
problem instances) after 450 s, and problem instances of block 3 (large-size prob-
lem instances) after 600 s. Best solutions up to this termination were recorded and 
included in the comparison.

Table 7 clearly shows that across nearly all heuristics (with the exception of PSO), 
solving profit maximization under a probabilistic choice rule assumption ( Pprob ) 
leads to similar maximum and mean values across all runs and problem instances. A 
Friedman test with multiple comparisons and �=0.05 supports this equivalence: The 
five best heuristics show insignificantly different mean values, but all mean values 
are significantly different from PSO. Most heuristics need about 400 s per run to find 
these solutions. If we focus on profit maximization under a deterministic choice rule 
( Pdet ), MML is significantly superior to the other heuristics, if we focus on market 
share maximization under a deterministic choice rule ( Mdet ), MML and CGA are 
significantly superior to the other heuristics. Across all three objective functions, the 
significant superiority of MML also holds.

Table 8 details these differences across the three blocks of problem instances: It 
can be easily seen, that the Genetic Algorithms GA05 and CGA significantly out-
perform the other heuristics across small-size problem instances whereas MML sig-
nificantly outperforms the other heuristics across medium- and large-size problem 
instances. Striking is the fact, that across the blocks the increase of computing time 
is acceptable: MML needs on average for small-size problem instances 212.80  s, 
for medium-size problem instances 450.15 s, and for large-size problem instances 
600.46 s. Of course, the time restriction in the three blocks (350, 450, 600 s) limits 
the computing time considerably, but the overall good performance of the three new 
heuristics (CGA, MM, MML) is convincing.

Again, we have to mention that the values of the objective functions in Tables 7 
and 8 are divided by the objective function value of the best solution found for this 
problem instance), not the global maximum. So, accuracy can only be judged as a 
relative accuracy. However, in the first block, we were able to check the solutions of 
the 15 smallest problem instances by Complete Enumeration on our High Perfor-
mance Computing Cluster and found that the derived best solutions by our heuristics 
were indeed—as expected according to former comparisons—global maxima. For 
the larger problem instances, Complete Enumeration didn’t finish within seven days 
of computing time. For the larger problem instances, currently, we try to implement 
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Table 8  Mean values (standard deviations) of the objective functions of Mdet , Pdet , and Pprob achieved by 
applying Genetic Algorithms (GA), Cluster-based Genetic Algorithms (CGA), Particle Swarm Optimiza-
tion (PSO), Max-Min Ant System (MM), Max-Min Ant System with Local Search (MMS), and Simu-
lated Annealing (SA) to 60 problem instances (Groupwise largest mean values according to a Friedman 
test with multiple comparisons and �=0.05 are in bold)

Heur PLD Z
max Z

max

Z
mean Z

mean

�
Z

t
mean

(in s)

Block 1 (n=20 small-size problem instances, <1041feasible solutions):
GA05 Mdet .9994(.0029) .9998(.0017) .9952(.0076) .9972(.0061) .0040 135.07(82.89)

Pdet 1.000(.0000) .9964(.0068) .0029 155.18(97.27)
Pprob 1.000(.0000) 1.000(.0000) .0000 175.85(117.93)

CGA Mdet .9994(.0028) .9997(.0017) .9947(.0084) .9964(.0085) .0042 167.27(99.03)
Pdet .9999(.00045) .9945(.0116) .0046 179.82(106.60)
Pprob 1.000(.0000) 1.000(.0000) .0000 187.41(116.73)

PSO Mdet .9356(.0746) .9447(.0838) .9021(.0871) .9163(.1021) .0206 93.89(43.19)
Pdet .9088(.1112) .8668(.1299) .0277 112.74(61.99)
Pprob .9896(.0174) .9799(.0289) .0072 112.70(59.34)

MM Mdet .9895(.0172) .9920(.0158) .9655(.0223) .9737(.0296) .0172 59.34(38.81)
Pdet .9864(.0193) .9561(.0336) .0215 67.77(46.40)
Pprob .9999(.0000) .9996(.0005) .0000 62.68(41.80)

MML Mdet .9947(.0105) .9975(.0075) .9819(.0188) .9895(.0183) .0109 205.61(96.34)
Pdet .9978(.0072) .9868(.0225) .0108 221.46(94.51)
Pprob .9999(.0000) .9996(.0006) .0002 211.32(101.00)

SAA Mdet .9880(.0194) .9927(.0151) .9674(.0271) .9778(.0270) .0146 70.95(26.32)
Pdet .9901(.0158) .9661(.0275) .0199 75.36(26.66)
Pprob 1.000(.0000) .9999(.0001) .0000 110.66(69.24)

Block 2 (n=20 medium-size problem instances, 1041 to 1081 feasible solutions):

GA05 Mdet .9830(.0232) .9890(.0184) .9536(.0248) .9663(.0326) .0209 404.76(53.13)
Pdet .9839(.0179) .9455(.0293) .0233 419.88(53.06)
Pprob 1.000(.0000) 1.000(.0001) .0000 410.36(67.39)

CGA Mdet .9863(.0120) .9885(.0145) .9565(.0149) .9673(.0278) .0197 417.32(41.31)
Pdet .9791(.0164) .9455(.0212) .0228 431.23(26.60)
Pprob 1.000(.0002) .9998(.0005) .0002 433.91(36.25)

PSO Mdet .5637(.0867) .6548(.1751) .5026(.0868) .5978(.1888) .0362 213.13(46.73)
Pdet .5179(.0616) .4442(.0533) .0390 254.71(77.27)
Pprob .8827(.0284) .8465(.0285) .0226 254.49(43.61)

MM Mdet .9646(.0271) .9648(.0402) .9286(.0316) .9348(.0607) .0245 283.29(107.08)
Pdet .9300(.0413) .8761(.0484) .0344 327.57(114.97)
Pprob 1.000(.0001) .9998(.0003) .0002 298.74(100.92)
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other exact methods in Gurobi. However, up to now, there are no convincing results 
with respect to objective values in acceptable computing time.

6  Conclusion and outlook

We presented a comprehensive investigation of selected product-line problem 
instances and selected one-stage heuristics to solve them. In a first step, four well-
known heuristics with alternative hyperparamter and paramter settings—Genetic 

PLD product-line design problem (Note: Z is the objective function value achieved divided by the objec-
tive function value of the best solution found for this problem instance); Z

max
 : maximum Z value across 

10 runs; Z
max

 : mean Z
max

 valus across three objective functions; Z
mean

 : mean Z value across 10 runs; 
Z
mean

 : mean Z
mean

 value across the three objective functions; �
Z
 : standard deviation of Z across 10 runs; 

t
mean

 : mean computing time across 10 runs

Table 8  (continued)

Heur PLD Z
max Z

max

Z
mean Z

mean

�
Z

t
mean

(in s)

MML Mdet .9917(.0114) .9961(.0079) .9523(.0153) .9719(.0235) .0263 450.15(.06)
Pdet .9967(.0053) .9637(.0140) .0218 450.16(.07)
Pprob .9998(.0004) .9996(.0007) .0002 450.15(.06)

SAA Mdet .9595(.0324) .9704(.0382) .9179(.0462) .9428(.0569) .0263 196.21(96.54)
Pdet .9517(.0454) .9105(.0520) .0280 203.55(101.34)
Pprob 1.000(.0000) .9999(.0001) .0001 354.38(79.19)

Block 3 (n=20 large-size problem instances, >1081 feasible solutions):
GA05 Mdet .8764(.1295) .9027(.1352) .8282(.1365) .8709(.1490) .0329 607.24(1.95)

Pdet .8377(.1608) .7925(.1620) .0305 607.64(1.90)
Pprob .9941(.0144) .9920(.0163) .0014 607.20(1.40)

CGA Mdet .9789(.0224) .9684(.0397) .9502(.0271) .9458(.0501) .0174 602.66(2.23)
Pdet .9390(.0506) .9051(.0580) .0218 603.46(1.21)
Pprob .9872(.0213) .9821(.0231) .0035 603.65(.98)

PSO Mdet .3461(.0864) .4930(.2368) .2864(.0700) .4482(.2448) .0341 429.58(115.68)
Pdet .3261(.1012) .2790(.0865) .0285 465.33(109.21)
Pprob .8068(.0292) .7792(.0266) .0186 503.07(91.69)

MM Mdet .9754(.0232) .9481(.0822) .9374(.0326) .9165(.1066) .0264 569.46(66.24)
Pdet .8689(.1012) .8121(.1224) .0375 585.36(54.29)
Pprob 1.000(.0000) 1.000(.0001) .0001 576.29(64.97)

MML Mdet .9910(.0139) .9967(.0090) .9428(.0383) .9681(.0356) .0325 600.46(.18)
Pdet .9994(.0015) .9620 (.0269) .0266 600.46(.19)
Pprob .9998(.0003) .9995(.0005) .0002 600.48(.16)

SAA Mdet .9619(.0446) .9627(.0560) .9151(.0648) .9308(.0797) .0338 460.15(167.80)
Pdet .9282(.0716) .8809(.0899) .0370 476.39(154.38)
Pprob .9982(.0047) .9964(.0066) .0016 585.02(40.57)
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Algorithms (GA01,...,GA18), Particle Swarm Optimization (PSO), Ant Colony 
Optimization (ACO) and Simulated Annealing (SAA,SAE)—were applied to 
a small sample of problem instances. Also, three new variants were developed 
and firstly applied to product-line design problems: Cluster-based Genetic Algo-
rithm (CGA), Max-Min Ant System (MM), and Max-Min Ant System with Local 
Search (MML). The six best algorithms among these variants (GA05, CGA, PSO, 
MM, MML, SAA) then were applied to an additional sample of 60 product-line 
design problem instances.

Overall, the new algorithms (especially CGA and MML) showed a convincing 
performance: They found—on average across all problem instances and objec-
tive functions—the best maximum and the best mean solutions across 10 runs. 
Especially MML outperformed all other algorithms significantly based on a 
Friedman’s test with multiple comparisons. However, also G05, MM, and SAA 
performed quite well, especially when the profit maximization problem with a 
probabilistic choice rule had to be solved. The weakest algorithm was—again as 
in Vökler and Baier (2020)—PSO. The superiority of MML is even more strik-
ing when it comes to medium- or large-size problem instances (with 1041 or more 
solutions). Here, MML clearly outperforms the other algorithms.

The derived results are important, also since in this paper—for the first time 
when analyzing product-line design problems—a large (n=2,089) sample of 
commercial conjoint analysis applications formed the basis for deriving results. 
The number of attributes, the number of levels per attribute, and the number of 
respondents were selected from their empirical distributions in the sample. This 
allows to discuss the performance of the algorithms in a real-world setting. Con-
sequently, the generated problem instances in our comparison are much larger 
than the ones used in former comparisons (up to 7.33 ⋅ 10200 feasible solutions). 
Against this background, also the results with respect to computing time are 
promising: In at most 600 s, conventional laptops are nowadays able to provide 
solutions for such large problem instances.

Our study has limitations. So, e.g., the four (in Sect.  4) respectively six (in 
Sect. 5) selected heuristics do not include all recently published proposals of one-
stage heuristics with promising results. Table 1 already contains interesting alterna-
tives that should be further developed and investigated: Bertsimas and Misic (2019) 
proposed an interesting exact mixed integer optimization algorithm for product-line 
design, applied up to now to at most 3,584 feasible attribute-level combinations 
(computing time: 606.22  s). Tsafarakis et  al (2020, 2022) and Pantourakis et  al 
(2022) introduced new promising one-stage heuristics to the product-line problem: 
The so-called Fuzzy Self-Tuning Differential Evolution, Tabu Search, and the Clonal 
Selection Algorithm. All of them demonstrated (slight) superiority over Genetic 
Algorithms and Simulated Annealing. However, their applications seem currently 
restricted to small-size problem instances similar to Belloni et al (2008a) with up to 
87=2,097,152 feasible attribute-level combinations and 8.06⋅1023 feasible solutions. 
Other developments are also promising, e.g., in assortment planning (see Sect.  1) 
and could be applied to product-line design problems in the future. However, up to 
now, the restriction to small-size problem instances in assortment planning is even 
stronger, only allowing up to 1,000 candidates instead of the needed large number 
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of attribute-level combinations. Moreover, the hyperparameter and parameter tuning 
in Sect. 4 could—of course—be much more elaborated, even though it was already 
performed with a considerable amount of work and coverage.

Another shortcoming of this paper is the restriction in accuracy checking to the 
best solutions across all heuristics. This limitation is again connected to the real-
world problem instance sizes where Complete Enumeration or Lagrangian Relaxa-
tion is not feasible in acceptable computing time (for us: less than seven days per run 
on a conventional notebook). The objective function value of the best solution found 
for this problem instance was also used by many other authors for these reasons 
see, e.g., Shi et al (2001); Balakrishnan et al (2004), but is—of course—not com-
pletely convincing. However, former comparisons with small-size problem instances 
showed that many one-stage heuristics are able to find the global maximum and—as 
we use a large set of diverse heuristics—we assume that the probability of detecting 
the global maxima by at least one heuristic is high. Moreover, from a practical point 
of view, a manager must and will be satisfied with a best solution among all avail-
able applications of algorithms.

Also, the concentration on the three discussed objective functions is a limi-
tation, even so they were selected according to their usage in other comparisons. 
They assume linear-additive utilities (wide-spread according to Wittink and Cattin 
1989; Orme 2019). However, in many commercial conjoint analysis applications, 
interaction effects (e.g., between a price attribute and a brand attribute) are of high 
importance and must be considered. The discussed problems and heuristics can be 
adapted, but—of course—effects of these adaptation to the results of our compari-
son are not discussed here. Moreover, many commercial conjoint analysis applica-
tions have real-valued attributes (e.g. prices, weights, costs). These attributes can 
be converted to nominal attributes before solving the product-line design problem. 
However, some product-line design problems exlicitely allow to deal with real-val-
ued attributes (e.g. Dobson and Kalish 1988, 1993). Our comparison cannot answer 
the question which heuristics are better suited to solve such problems.

The managerial implications of this study are manifold: We could show that one-
stage heuristics are able to solve large product-line problem instances and that some 
heuristics significantly perform better than others. The new one-stage heuristics—
CGA, ML, and MML—outperform the wide-spread standard one in this field: the 
Genetic Algorithm proposed by Balakrishnan and Jacob (1995, 1996) that is imple-
mented in Sawtooth Software’s Lighthouse system (Orme 2019). The underlying R 
code of our heuristics is available for interested researchers but is—of course—also 
easy to be implemented based on this paper and related references. Moreover, since 
the heuristics are so fast with a convincing accuracy, they can also be used to flexi-
bly predict performance in a dynamic market comparable to a real options approach: 
In a first step, a product-line could be designed based on the estimated partworths 
and established status quo products. Then, in a second step, expected changes of 
partworths and of status quo products could be specified and the robustness of the 
product-line against these changes could be checked. Since conjoint analysis appli-
cations are wide-spread and highly accepted for product and brand management (see 
Sect. 2), such additional evaluations in dynamic markets could be of high relevance.
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