
Lengths of divisible codes – the missing cases

Sascha Kurz

Mathematisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany,
sascha.kurz@uni-bayreuth.de

Abstract

A linear code C over Fq is called ∆-divisible if the Hamming weights wt(c) of all codewords c ∈ C are
divisible by ∆. The possible effective lengths of qr-divisible codes have been completely characterized
for each prime power q and each non-negative integer r in [KK20]. The study of ∆-divisible codes was
initiated by Harold Ward [War81]. If t divides ∆ but is coprime to q, then each ∆-divisible code C over
Fq is the t-fold repetition of a ∆/t-divisible code. Here we determine the possible effective lengths of
pr-divisible codes over finite fields of characteristic p, where r ∈ N but pr is not a power of the field size,
i.e., the missing cases.
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1 Introduction

A linear code C over Fq is called ∆-divisible if the Hamming weights wt(c) of all codewords c ∈ C are
divisible by ∆. The study of divisible codes was initiated by Harold Ward [War81]. Linear codes meeting
the Griesmer bound in many cases have to admit a relatively large divisibility constant ∆, see [War98].
In order to state a connection between divisible codes and Galois geometries we associate each subspace
U ∈ PG(v − 1, q) with its characteristic function χU mapping each point PG(v − 1, q) to a non-negative
integer multiplicity, i.e., χU (P ) = 1 iff P ≤ U and χU (P ) = 0 otherwise. We say that a mapping M from
the point set of PG(v − 1, q) to N is ∆-divisible if the corresponding linear code CM associated with the
multiset of points characterized by M is ∆-divisible. We call M(P ) the multiplicity of a point P and extend
this notion additively to arbitrary subspaces S by letting M(S) be the sum over all point multiplicities
M(P ) where P is contained in S. If S is the entire ambient space then we speak of the cardinality #M.
Using this notion, we can more directly state that a multiset of points M in PG(v − 1, q) is ∆-divisible iff
we have #M ≡ M(H) (mod ∆) for every hyperplane H. The effective length of CM equals the cardinality
#M. We say that a multiset M of points is spanning if the points with positive multiplicity span the entire
ambient space. Using the geometric language we will call 1-, 2-, 3-, and (v−1)-dimensional subspaces points,
lines, planes, and hyperplanes, respectively.

In e.g. [KK20, Lemma 11] it was shown that for each multiset of subspaces U in PG(v − 1, q) that have
dimensions at least k the multiset of points χU :=

∑
U∈U χU is qk−1-divisible. Since also the complementary

multiset of points is qk−1-divisible, non-existence results for qk−1-divisible codes imply upper bounds on the
maximum size of k-spreads, see e.g. [HKK18] for more details. Similarly, non-existence results for so-called
vector space partitions, i.e., set of subspaces partitioning the point set of PG(v− 1, q), can be deduced from
certain non-existence results for qr-divisible codes, see e.g. [Kur22]. Also in the situation where some points
can be contained in several subspaces non-existence results for qk−1-divisible codes can be applied to deduce
results for problems in Galois geometry. For constant-dimension codes, i.e., sets of k-dimensional subspaces
of PG(v − 1, q) such that the dimensions of the pairwise intersections are upper bounded by some integer,
they can be utilized for upper bounds on the cardinality, see e.g. [KK20, Theorem 12]. For similar bounds for

1



mixed-dimension subspace codes, where the codewords can have different dimensions, we refer to [HKK19].
Two surveys on applications of divisible codes are given by [Kur21, War01].

The possible (effective) lengths of qr-divisible codes have been completely characterized for each prime
power q and each non-negative integer r in [KK20, Theorem 1]. An important structure result for ∆-divisible
codes C over Fq was shown in [War81]: If t ∈ N divides ∆ and is coprime to ∆ then there exists a ∆/t-
divisible code C ′ over Fq such that C is the t-fold repetition of C ′. So, it suffices to study the possible
(effective) lengths of pe-divisible codes over Fq, where p is the characteristic of the field and e an integer.
When q is not a prime the characterization result from [KK20] does not give an answer for the cases when
the divisibility constant ∆ is not a power of the field size (but only its characteristic). Here we close this
gap and state a corresponding characterization of the possible (effective) lengths in Theorem 2.

A few general (and easy) constructions for ∆-divisible multisets of points M in PG(v − 1, q) are known,
see e.g. [KK20] for proofs:

(1) if a multiset of points M in PG(v − 1, q) is ∆-divisible, then there exists an embedding M′ of M in
PG(v′ − 1, q) for each v′ ≥ v that is also ∆-divisible;

(2) if multisets of points M,M′ in PG(v − 1, q) are ∆-divisible with cardinalities n, n′, then M +M′ is
∆-divisible with cardinality n+ n′ in PG(v − 1, q);

(3) if a multiset of points M in PG(v− 1, q) is ∆-divisible with cardinalities n, then c ·M is c ·∆-divisible
with cardinality cn for each positive integer c;

(4) for each integer u ≥ 1 and each u-dimensional subspace U in PG(v − 1, q) the corresponding charac-

teristic function χU is qu−1-divisible with cardinality qu−1
q−1 .

Due to (1) we are only interested in the possible cardinalities of ∆-divisible multisets of points and not in
their dimensions (while they may play a role in some applications). Assume q = pe for a prime p and an
integer e. With this we will use the parameterization ∆ = pae−b where a, b ∈ N with a ≥ 1 and b ≤ e − 1.
By (4) an (a + 1)-dimensional subspace is qa-divisible. Since ae ≥ ae − b it is also pae−b-divisible. For
1 ≤ i ≤ a we can consider an pie−b-fold (a− i+ 1)-dimensional subspace which is pae−b-divisible using (3).
Let us denote the corresponding cardinalities by sq(a, b, i), where 1 ≤ i ≤ a, and write sq(a, b, 0) for the
cardinality of an (a + 1)-dimensional subspace. Using (2) we conclude that for each c0, . . . , ca ∈ N there
exists a pae−b-divisible multiset of points of cardinality

n =

a∑
i=0

ci · sq(a, b, i)

in PG(v − 1, q) for sufficiently large dimension v of the ambient space. Our main theorem, see Theorem 2,
will state that for other cardinalities there is no pae−b-divisible multiset of points and we will give a direct
characterization of the attainable cardinalities, i.e., we solve the so-called Frobenius coin problem for the
“coin values” sq(a, b, 0), . . . , sq(a, b, a). For a solution of the Frobenius coin problem for geometric sequences
we refer to [OP08].

The remaining part of this paper is structured as follows. In Section 2 we prove our main theorem and
in Section 3 we consider the possible cardinalities of ∆-divisible sets of points. In the latter section we can
only state a few numerical results and leave the general problem widely open. We especially study 2-divisible
sets of points and obtain a few preliminary results. Related results can be found in the literature under the
terms of sets of odd and of even type, see e.g. [Adr23, HH80, KdR98, Lim10, She83, TM13, WS14].

2 The generalized theorem

For each integer i ≥ 1 we define [i]q := qi−1
q−1 , i.e., the number of points of an i-dimensional subspace. For

each prime power q we write q = pe, where p is the characteristic of Fq. When we consider ∆-divisible codes
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over Fq we assume that ∆ is a power of p. More concretely, we will use the parameterization ∆ = pae−b

where a, b ∈ N with a ≥ 1 and b ≤ e − 1. Sometimes we will also use f := ae − b, i.e., the exponent in
∆ = pf . For a fixed prime power q = pe, non-negative integers a, b with a ≥ 1, b ≤ e− 1, and i ∈ {0, . . . , a}
we define

sq(a, b, i) := [a+ 1]q (1)

if i = 0 and

sq(a, b, i) := qi · [a− i+ 1]q/p
b = pie−b · [a− i+ 1]q = pe−b ·

(
qi−1 + qi + · · ·+ qa−1

)
(2)

for 1 ≤ i ≤ a. Note that for i ≥ 1 the number sq(a, b, i) is divisible by pie−b but not by pie−b+1, where
ie− b ≥ 1, and sq(a, b, 0) is coprime to p. This property allows us to create kind of a positional system upon
the sequence of base numbers

Sq(a, b) :=
(
sq(a, b, 0), sq(a, b, 1), . . . , sq(a, b, a)

)
.

As it can be easily shown, each integer n has a unique Sq(a, b)-adic expansion

n =

a∑
i=0

ci · sq(a, b, i) (3)

with c0 ∈
{
0, . . . , pe−b − 1

}
, c1, . . . , ca − 1 ∈ {0 . . . , q − 1} and leading coefficient ca ∈ Z. The sum pbc0 +

c1 + c2 + · · ·+ ca will be called the cross sum of the Sq(a, b)-adic expansion of n.

Example 1. For q = 8 and ∆ = 32 we have p = 2, e = 3, a = 2, b = 1, and

S8(2, 1) =
(
s8(2, 1, 0), s8(2, 1, 1), s8(2, 1, 2)

)
=

(
73, 36, 32

)
.

The characteristic function χE of a plane in PG(v − 1, 8) is 64-divisible with cardinality s8(2, 1, 0) = 73.
Since the characteristic function χL of a line over F8 is 8-divisible 4 · χL is 32-divisible with cardinality
s8(2, 1, 1) = 36. A 32-fold point corresponds to a 32-divisible multiset of points in PG(v−1, 8) with cardinality
s8(2, 1, 2) = 32. As an example, the S8(2, 1)-adic expansion of 1049 is given by

1049 = 1 · 73 + 4 · 36 + 26 · 32

and the S8(2, 1)-adic expansion of 195 is given by

195 = 3 · 73 + 2 · 36− 3 · 32.

In the first case the leading coefficient is 26 and a 32-divisible multiset of points of cardinality 1049 is given
e.g. by χE1

+
∑4

i=1 4 · χLi
+
∑26

i=1 32 · χPi
or by

∑5
i=1 χEi

+
∑11

i=1 4 · χLi
+
∑9

i=1 32 · χPi
, where the Ei are

arbitrary planes, the Li are arbitrary lines, and the Pi are arbitrary points. In the second case the leading
coefficient is −3 and the subsequent theorem tells us that no 32-divisible multiset of points of cardinality
195 exists in PG(v − 1, 8), which also implies that 195 = 73c0 + 36c1 + 32c2 does not have a solution
(c0, c1, c2) ∈ N3.

Based on the Sq(a, b)-adic expansion we can state our main theorem.

Theorem 2. Let q = pe, n ∈ Z,and a, b ∈ N with a ≥ 1, b ≤ e− 1. The following statements are equivalent:

(i) There exists a pae−b-divisible linear code of effective length n over Fq.

(ii) The leading coefficient ca of the Sq(a, b)-adic expansion of n is non-negative.

First we will show the implication (ii) ⇒ (i):
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Lemma 3. Let q = pe, n ∈ Z,and a, b ∈ N with a ≥ 1, b ≤ e − 1. If the leading coefficient ca of the
Sq(a, b)-adic expansion of n is non-negative, then there exists a pae−b-divisible linear code of effective length
n over Fq.

Proof. Let n =
∑a

i=0 ci · sq(a, b, i) be the Sq(a, b)-adic expansion of n and ∆ := pae−b. By assumption on
the non-negativity of the leading coefficient ca and the definition of the Sq(a, b)-adic expansion of n we have
ci ∈ N for all 0 ≤ i ≤ a. Next we will construct a ∆-divisible multiset M of points in PG(v − 1, q) of
cardinality n. To this end, let Ui be i-dimensional subspaces for 1 ≤ i ≤ a+ 1 (assuming that the ambient
dimension v is sufficiently large). With this M0 := χUa+1

is a qa-divisible multiset of points with cardinality
sq(a, b, 0) = [a+1]q. Since ∆ divides qa, M0 is also ∆-divisible. For 1 ≤ i ≤ a we set Mi := pie−b ·χUa−i+1

,
so that Mi is ∆-divisible with cardinality sq(a, b, i). With this, we set M :=

∑a
i=0 ci · Mi, so that M

is ∆-divisible with cardinality n. The corresponding linear code CM over Fq has effective length n and is
∆-divisible.

Lemma 4. ([Syl82]) Let a1, a2 be two positive coprime integers. The largest integer that cannot be written as
a non-negative integer linear combination c1a1+c2a2, where c1, c2 ∈ N, is given by g(a1, a2) := a1a2−a1−a2.

Lemma 5. Let q = pe and 0 ≤ b ≤ e − 1 be an integer. If M is a pe−b-divisible multiset of points in
PG(v− 1, q) of cardinality n, then there exist non-negative integers s, t such that n = s · (q+1)+ t ·∆, where
∆ := pe−b.

Proof. W.l.o.g. we assume n ≥ 1. Let k be the dimension of the span of M, i.e. the span of the points with
positive multiplicity, and w.l.o.g. we assume v = k. If k = 1, then we have M(P ) ≡ 0 (mod ∆) for the
unique point in PG(0, q) and there exists a non-negative integer t such that n = t ·∆. If k = 2, then PG(1, q)
consists of q+1 pairwise different points P0, . . . , Pq and we have M(Pi) ≡ n (mod ∆) for all 0 ≤ i ≤ q. Now
let M′ arise from M by decreasing the points multiplicities by ∆ till we have M(Pi) = s for all 0 ≤ i ≤ q
for some integer 0 ≤ s < ∆. Here t is given by

(
n− s · (q + 1)

)
/∆.

Since q + 1 and ∆ are coprime, the largest integer that cannot be written as s = s(q + 1) + t∆ for
non-negative integers s, t is given by

(q + 1)∆− (q + 1)−∆ ≤ q2 + q − (q + 1)−∆ < q2,

see Lemma 4. So, we can assume n < q2 and k ≥ 3 in the following. Since k ≥ 3 there are at least
[3]q = q2+ q+1 > q2 points and there exists a point P with multiplicity zero. Let S be a subspace attaining
the maximum possible dimension l satisfying M(S) = 0. Clearly we have l ≥ 1. If l < k − 2 then consider
the [k− l]q ≥ [3]q = q2+ q+1 > q2 (l+1) dimensional subspaces S′ ≥ S. Since M(S′) > 0 and these spaces
pairwise intersect in S we have n = #M ≥ q2+q+1 > q2 – contradiction. So, let S be a (k−2)-dimensional
subspace with M(S) = 0 and consider the q + 1 hyperplanes H0, . . . ,Hq that contain S. Since M(Hi) ≡ n
(mod ∆) for all 0 ≤ i ≤ q, there exists an integer 0 ≤ s < ∆ such that M(Hi) ≡ s (mod ∆). Since the
hyperplanes Hi pairwise intersect in S and M(S) = 0, we have n =

∑q
i=0 M(Hi), so that n ≥ s · (q+1) and

n ≡ s (mod ∆) (using the fact that ∆ divides q). Thus, we can set t = (n− (q + 1)s)/∆.

Lemma 6. Theorem 2 is true for a = 1.

Proof. Due to Lemma 3, it suffices to show the implication (i) ⇒ (ii). From Lemma 5 we conclude the
existence of s′, t′ ∈ N with n = s′(q + 1) + t′∆. Write s′ = s + x∆ for s, x ∈ N with s < ∆ and set
t := t′ + x(q + 1) ≥ 0.

Lemma 7. (E,g, [KK20, Lemma 5]) Let M be a non-empty multiset of points in PG(v − 1, q), then there
exists a hyperplane H with M(H) < #M

q .

Lemma 8. ([KK20, Lemma 4]) Let M be a ∆-divisible multiset of points in PG(v − 1, q) and H be an
arbitrary hyperplane. If q divides ∆, then the restriction M|H of M to H is ∆/q-divisible.
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Proof of Theorem 2. Due to Lemma 3, it suffices to show the implication (i) ⇒ (ii). Using Lemma 6 we can
assume a > 1 and prove by induction on a.

So, let n =
∑a

i=0 cisq(a, b, i) be the Sq(a, b)-adic expansion of n and σ = pbc0 +
∑a

i=1 ci be its cross
sum. Let H be a hyperplane and set m := M(H). Since M is ∆-divisible for ∆ := pae−b there exists a
non-negative integer τ with n−m = τ∆. We compute

m = n− τ∆ = c0sq(a, b, 0) +

a−1∑
i=1

cisq(a, b, i) + casq(a, b, a)− τ∆

= c0sq(a− 1, b, 0) + c0 · qa +
a−1∑
i=1

ci (sq(a− 1, b, i) + ∆) + ca∆− τ∆

=

a−1∑
i=0

cisq(a− 1, b, i) +
(
σ − τ

)
∆ (4)

=

a−1∑
i=0

cisq(a− 1, b, i) +
(
ca−1 + q(σ − τ)

)
∆/q (5)

By construction, M|H is ∆/q-divisible, see Lemma 8, with cardinality m and Equation (5) gives the Sq(a−
1, b)-adic expansion of m. Hence, by induction we get ca−1 + q(σ − τ) ≥ 0. So q(σ − τ) ≥ −ca−1 > −q,
implying σ − τ > −1 and thus σ ≥ τ .

By Lemma 7 we may choose H such that m < n
q . Thus using the expression in Equation (4) for m we

compute

0 < n− qm =

a∑
i=0

cisq(a, b, i)−
a−1∑
i=0

cisq(a− 1, b, i)q −
(
σ − τ

)
∆q

= c0 +

a−1∑
i=1

pe−bqi−1ci + ca∆−
(
σ − τ

)
∆q

≤ pe−b − 1 + pe−b(q − 1)

a−2∑
i=0

qi + ca∆

< pe−b + pe−b
(
qa−1 − 1

)
+ ca∆

= (1 + ca)∆,

which implies ca ≥ 0. □

Example 9. For each positive integer n that is either even or at least 5 a 2-divisible code of effective length
n exists over F4. For the constructive part we can consider a 2-fold point, a line, and combinations thereof.
For the other direction we can easily check that the leading coefficient of the S4(1, 1)-adic expansion of 1 as
well as of 3 is negative, so that we can apply Theorem 2.

Example 10. For each positive integer n that is not contained in

{2, 4, 6, 12, 14, 22} ∪ {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 33, 35, 43}

an 8-divisible linear code of effective length n exists over F4. Note that an 8-fold point, a 2-fold line and a
plane are 8-divisible of cardinalities 8, 10, and 21. The mentioned positive integers are the only ones that
cannot be expressed as non-negative integer linear combinations of 8, 10, and 21.

Example 11. For each positive integer n that is either even or at least 9 a 2-divisible code of effective
length n exists over F8. For the constructive part we can consider a 2-fold point, a line, and combinations
thereof. For the other direction we can easily check that the leading coefficient of the S8(1, 2)-adic expansion
of n ∈ {1, 3, 5, 7} is negative, so that we can apply Theorem 2.
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We can also consider the dimension k of the span of a ∆-divisible multiset of points M. If k = 1, then
M clearly is a λ-fold point where ∆ divides λ. Also the case k = 2 can be easily classified.

Lemma 12. Let M be a ∆-divisible multiset of points in PG(1, q). Then, there exist l, possibly equal,

points P1, . . . , Pl such that M =
∑l

i=1 ∆χPi
+ sχL, where L is the line forming the ambient space and

s = (#M− l∆) /(q + 1) ∈ N. Moreover, ∆ divides qs.

Proof. Let M′ arise from M by recursively removing points of multiplicity ∆ and let l be the number of
removed points. So, we have #M′ = #M− l∆, the maximum point multiplicity of M′ is at most ∆−1, and
M′ is also ∆-divisible. From ∆-divisibility we conclude M′(P ) ≡ #M′ (mod ∆) for every point P ≤ L.
Since the maximum point multiplicity of M′ is at most ∆ − 1 there exists a non-negative integer s with
M′(P ) = s for all points P , i.e., M′ = sχL. Counting points gives s = #M′/(q+1) = (#M− l∆) /(q+1).
Since M′ is ∆-divisible and χL is q-divisible we conclude that ∆ divides qs (including the case s = 0).

As we have mentioned the Frobenius coin problem the formulate the result for the largest possible effective
length n such that no pae−b-divisible linear code over Fpe exists in this vein:

Proposition 13. Let q = pe and a, b ∈ N with a ≥ 1, b ≤ e− 1. The largest integer that cannot be written
as a non-negative integer linear combination

∑a
i=0 cisq(a, b, i), where c0, c1, . . . , ca ∈ N, is given by

g
(
sq(a, b, 0), . . . , sq(a, b, 0)

)
:= a · p(a+1)e−b − qa+1 − 1

q − 1
.

Proof. Given the definition of the Sq(a, b)-adic expansion of an integer n we conclude that the largest integer
with a negative leading coefficient is given by

(
pe−b − 1

)
· sq(a, b, 0) +

a−1∑
i=1

(q − 1) · sq(a, b, i) + (−1) · sq(a, b, a)

=
(
pe−b − 1

)
· q

a+1 − 1

q − 1
+

a−1∑
1=1

pie−b ·
(
qa−i+1 − 1

)
− pae−b

=
(
pe−b − 1

)
· q

a+1 − 1

q − 1
+ (a− 1) · p(a+1)e−b − pe−b ·

a−2∑
i=0

qi − pae−b

=
(
pe−b − 1

)
· q

a+1 − 1

q − 1
− pe−b · q

a−1 − 1

q − 1
+ (a− 1) · p(a+1)e−b − pae−b

= pe−b · qa−1 · (q + 1)− qa+1 − 1

q − 1
+ (a− 1) · p(a+1)e−b − pae−b

= a · p(a+1)e−b − qa+1 − 1

q − 1
.

With this, the stated result is implied by Theorem 2.

In Examples (9)-(11) the corresponding numbers g
(
sq(a, b, 0), . . . , sq(a, b, 0)

)
are given by 3, 43, and 7.

3 Projective divisible codes

In some applications, e.g. for upper bounds for partial spreads, see e.g. [HKK18], the maximum point
multiplicity of the multisets of points has to be 1, i.e., we indeed have sets of points and the corresponding
linear codes have to be projective. The possible effective lengths of qr-divisible projective codes are very far
from being characterized and only partial results are known. Here there a papers treating just one length,
see [Kur20]. The characterization problem is again finite since for every (u + 1)-dimensional space U and
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every (u + 2)-dimensional space U ′ ≥ U we have that χU is a qu-divisible set of cardinality [u + 1]q and
χU ′ −χU (i.e., the characteristic function of an affine subspace) is a qu-divisible set of cardinality qu, so that
we can apply Lemma 4 since gcd([u+ 1]q, q

u) = 1. For a recent survey on the possible lengths of qr-divisible
projective codes for integers r we refer to [Kur21, Section 7]. First few preliminary results for the case of
restricted column multiplicities larger than 1 can be found in [KK23].

For non-prime field sizes q Baer subspaces and the like give another construction of ∆-divisible point
sets:

Lemma 14. Let q = pe and 1 ≤ f < e. Then the set of points of an u-space U over GF(pe) that is also

contained in the subfield GF(pf ) is puf−e divisible with cardinality pfu−1
pf−1

for all u ∈ N≥3.

Note that the assumption u ≥ 3 is necessary since the hyperplanes of Baer lines are points and there is
nothing like a “Baer point”, i.e., multiplicities 1 and 0 both occur. Hyperplanes of Baer planes are of course
Baer lines and so on.

Example 15. Over F4 a line gives a 2-divisible projective code of effective length 5 and a Baer plane gives
a 2-divisible projective code of effective length 7. The largest integer that cannot be written as a sum of 5s
and 7s is 5 · 7− 5− 7 = 23, see Lemma 4. The linear code corresponding to an affine plane is 4-divisible and
has effective length 25.

In order to get the full picture of the possible effective lengths of 2-divisible projective codes over F4

we may simply enumerate all such codes using a computer program. To this end we have used LinCode

[BBK21]. For field sizes q = pe we represent the field elements by polynomials over Fp modulo an irreducible
polynomial f of degree e. Here we use the Conway polynomials f(α) = α2 + α+ 1, f(α) = α3 + α+ 1, and
f(α) = α2 + 2α+ 2 for q = 4, q = 8, and q = 27, respectively. For an even more compact representation we

replace
∑e−1

i=0 ciα
i by the integer

∑e−1
i=0 cip

i.

Proposition 16. A 2-divisible projective code of effective lengths n ≥ 1 over F4 exists iff n ≥ 5.

Proof. As mentioned in Example 15 n = 5 and n = 7 can be attained. Further examples are given by

• length n = 6, weight enumerator 1z0 + 45z4 + 18z6, |Aut| = 2160, generator matrix1 1 1 1 0 0
1 2 3 0 1 0
2 1 3 0 0 1

;

• length n = 8, weight enumerator 1z0 + 6z4 + 48z6 + 9z8, |Aut| = 1728, generator matrix1 1 1 1 1 1 0 0
0 0 1 2 3 0 1 0
1 2 3 3 3 0 0 1

;

• length n = 9, weight enumerator 1z0 + 36z6 + 27z8, |Aut| = 1296, generator matrix1 1 1 1 1 0 1 0 0
0 1 1 3 3 1 0 1 0
3 2 3 0 2 2 0 0 1

.

It can be easily checked that all n ≥ 5 can be written as a non-negative integer linear combination of the
numbers 5, 6, 7, 8, and 9. The non-existence for n ∈ {1, 2, 3, 4} can e.g. be checked by exhaustive enumeration
(since the maximum possible dimension is 4 for these lengths).
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We remark that it is also not too hard to give purely theoretical non-existence proofs for n ∈ {1, 2, 3, 4}.
As observed in Example 9 we can use Theorem 2 to exclude n ∈ {1, 3}. The non-existence for n = 2 follows
e.g. from the classification result in Lemma 12. Profitable sources for projective divisible codes are projective
two-weight codes, i.e. linear codes with just two non-zero weights, that very often come with relatively large
divisibility constants. E.g. the codes of lengths 6 and 9 mentioned in the proof of Proposition 16 contain
to the families TF1 and RT3, respectively, see [CK86]. Family TF1 from [CK86] spelled out in geometrical
terms:

Lemma 17. For each integer e ≥ 1 let q := 2e and M by a hyperoval in PG(3 − 1, q). Then, we have
#M = q + 2, M is 2-divisible, and all points have multiplicity at most 1.

Also our example for n = 8 generalizes to an infinite family by taking lines through a common point
without the intersection point:

Lemma 18. Let q = pf and 1 < e < f be an integer. With this let P be a point and L1, . . . , Lpe be pairwise
different lines through P in PG(2, q). The point set M is defined by M(Q) = 1 iff Q ̸= P and there exists an
index 1 ≤ i ≤ pe with Q ≤ Li and M(Q) = 0 otherwise. Then, we have #M = peq and M is pe-divisible.

n 9 10 12 13 14 15 16 17 18 19 20
# 1 1 1 1 1 3 7 8 20 35 91

Table 1: Number of non-isomorphic 2-divisible projective [n, 3]8-codes.

Whenever we have a construction for a ∆-divisible projective code over Fq of length n such that we do
not know such codes with smaller lengths n1, n2 satisfying n = n1 + n2, we speak of a “base example”. So,
for ∆ = 2 and q = 4 we have stated base examples for n ∈ {5, 6, 7, 8, 9}. For ∆ = 2 and q = 8 base examples
are given by a line for n = 9, a hyperoval for n = 10, and one example for n = 16 constructed via Lemma 18.
Besides that we have computationally found the following base examples:

• n = 12: 111111111100
001234567010
136547277001


• n = 13: 1111111110100

0225555661010
3370237236001


• n = 14: 11111111111100

00111234567010
26124752344001


• n = 15: 111111111110100

011223366771010
656675667061001


• n = 17: 11111111111110100

00022335566771010
23737032634461001
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The number of non-isomorphic 3-dimensional 2-divisible projective codes over F8 of length n are given in
Table 1 for n ≤ 20. For the underlying exhaustive enumeration we have again used LinCode [BBK21].
We also found 4-dimensional 2-divisible points over F8 of cardinalities 14, 16, 17, and 18. In principle we
may computationally determine the possible lengths of 2-divisible projective codes over F8 by exhaustive
enumeration. However, we will state a purely theoretical argument in Proposition 24 anyway, so that we
refrain from stating the details.

In the following we state partial results for further divisibility constants ∆ and field sizes q. “Base
examples” for 4-divisible projective codes over F8:

• n = 9: line

• n = 28: TF2 [CK86]

• n = 32: Lemma 18

“Base examples” for 2-divisible projective codes over F16:

• n = 17: line

• n = 18: hyperoval

• n = 32: Lemma 18

• n = 65: [ACG23, Section 4]

“Base examples” for 4-divisible projective codes over F16:

• n = 17: line

• n = 21: RT1 [CK86]

• n = 52: TF2 [CK86]

• n = 64: Lemma 18

• n = 65: RT3 [CK86]

• n = 221: TF2d [CK86]

“base examples” for 8-divisible projective codes over F16:

• n = 17: line

• n = 120: TF2 [CK86]

• n = 128: Lemma 18

• n = 153: TF2d [CK86]

• n = 257: TF3, RT2, CY1 [CK86]

“base examples” for 3-divisible projective codes over F9:

• n = 10: line

• n = 13: Baer plane

• n = 24:

111111111111111111110100
000011223344556677881010
467801122523265824372001
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• n = 27:

111111111111111111111110100
000011223344556666677881010
125628242438071345624474001


• n = 28: RT3 [CK86]; quasicyclic degree 4 linear code over F9 attaining the Griesmer bound

• n = 31:

1111111111111111111111111100100
0000011122233344455577788811010
2467802514724612605827812514001


Note that there are no 3-divisible multisets of points over F9 with a cardinality in {1, 2, 4, 5, 7, 8, 11}.

In the remaining part of this section we consider 2-divisible (multi-)sets of points over Fq.

Lemma 19. Let M be a 2-divisible multiset of points in PG(v − 1, q). If q ≡ 1 (mod 2), then there exists
a multiset of points M′ in PG(v − 1, q) such that M = 2M′, so that especially #M ≡ 0 (mod 2).

Proof. Since 2 does not divide q for q ≡ 1 (mod 2) the stated result is implied by [War81].

Lemma 20. Let M be a 2-divisible multiset of points in PG(v − 1, q). Then there exist s points P1, . . . , Ps

and t 2-divisible sets of points B1, . . . , Bt such that M =
∑s

i=1 2 · χPi
+

∑t
i=1 χBi

.

Proof. If Q is a point with multiplicity M(Q) ≥ 2, then M−2 ·χQ is also 2-divisible, so that we can assume
that M is a 2-divisible set of points after some points with multiplicity 2 have been removed.

A direct specialization of Lemma 12 is:

Lemma 21. Let M be a 2-divisible multiset of points in PG(1, q) where q is even, then we have M =∑s
i=1 2 · χPi

+ t · χL for some points P1, . . . , Ps (which may coincide) and the line L forming the ambient
space.

We call a multiset M in PG(v − 1, q) spanning if the points with strictly positive multiplicity span the
entire ambient space PG(v − 1, q). For a multiset M in V and a point Q in V the projection MQ is the
multiset of points in V/Q with MQ(L/Q) = M(L) − M(Q) for each line L ≥ Q in V . It can be easily
verified that if M is ∆-divisible, then MQ is ∆-divisible with cardinality #M − M(Q). The maximum
point multiplicity may increase up to a factor of q. If M is spanning, so is MQ.

Proposition 22. Let S be a 2-divisible set of points in PG(v − 1, q) for even field size q. Then we have
#S ≥ q + 1. Moreover, if #S = q + 1, then S is the characteristic function of a line and if #S = q + 2,
then S is the characteristic function of a hyperoval.

Proof. First we consider the case #S ≡ 1 (mod 2) and denote by Q an arbitrary point with multiplicity 0.
(If there is no point of multiplicity zero then we have #S = (qv − 1) /(q − 1) ≥ q + 1 and in the case of
equality S is the characteristic function of a line.) Since χ(Q) ̸≡ 1 ≡ #S we have v ≥ 3. If v = 3 then each
of the q+1 lines through Q has multiplicity at least 1, so that #S ≥ q+1. In the case of equality each line
L′ that contains a point of multiplicity zero satisfies M(L′) = 1, so that the line L spanned by 2 ≤ q + 1
points of multiplicity 1 contains q + 1 points of multiplicity 1, i.e., S = χL. In the following we assume that
S is spanning, v ≥ 4, and #S ≤ q + 1. Let L be a line with at least two points of multiplicity one and a
point Q with multiplicity 0. Then, SQ is a 2-divisible multiset with cardinality q + 1 and at least one point
P of multiplicity at least two. By iteratively projecting through points of multiplicity zero we can assume
that the ambient space of SQ is three-dimensional. Setting M = SQ − 2 · χP gives a 2-divisible multiset of
points with cardinality ≤ q − 1 in PG(2, q). Iteratively removing double points yields a 2-divisible set S ′ of
points with #S ′ ≤ q − 1 and #S ′ ≡ 1 (mod 2), which is impossible as we have seen before.

Next we consider the case #S ≡ 0 (mod 2). Since v = 2 would imply S(P ) ≡ #S ≡ 0 (mod 2) and
#S = 0, we can assume v ≥ 3. If v = 3, then let P be a point of multiplicity 1. 2-divisibility implies that
the q+1 points through P have multiplicity at least 2, so that #S ≥ q+2. In the case of equality each line
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through P has multiplicity 2, i.e., the line multiplicities are contained in {0, 2} and S is the characteristic
function of a hyperoval. If v ≥ 4 and S is spanning, then we consider a point Q of multiplicity 1, so that the
projection SQ through Q is a 2-divisible multiset of odd cardinality #S − 1. Thus, the previous part implies
#S ≥ q + 2. In the case of equality we have #SQ = q + 1 and SQ has to be the characteristic function of a
line, which contradicts v ≥ 4 for S spanning.

The 2-divisible sets over F2 with cardinality at most 14 have been computationally classified in [HHK+17].
A purely theoretical argumentation for cardinalities up to seven can e.g. be found in [KK23]. For q = 4 a
2-divisible set of q+3 = 7 points exists in PG(2, 4), see family RT1 in [CK86]. With a little bit of effort one
can show that this is the unique possibility of a 2-divisible set with cardinality 7.

Proposition 23. For even q > 4 no 2-divisible set S in PG(v − 1, q) of cardinality q + 3 exists.

Proof. Clearly we have v ≥ 3. First we assume the case v = 3, so that all lines have odd multiplicity. If the
support of S contains a line L, then S − χL would be a 2-divisible set of cardinality 2, which is impossible.
If there is a line L with multiplicity at least 5, then L contains a point Q with multiplicity S(Q) = 0 and
the projection SQ would be 2-divisible and contains a point of multiplicity at least 4. Iteratively removing
double points would yield a 2-divisible set of cardinality at most q − 1 which is impossible. Thus, all lines
have multiplicity 1 or 3, so that the standard equations yield a contradiction if q ̸= 4.

Proposition 22, Proposition 23, Lemma 20, and our stated base examples yield:

Proposition 24. A 2-divisible set S ≠ ∅ of cardinality n over F8 exists iff and only if n ∈ {9, 10} ∪ N≥12.

A (q+ t, t)-arc of type (0, 2, t) in PG(2, q), also called KM-arc, see [KM90], is a set S of q+ t points such
that every line meets S in either 0, 2 or t points.

Proposition 25. Let S be a 2-divisible set in PG(v − 1, q) of cardinality q + 4. If q > 4 is even, then S is
a KM-arc of type (0, 2, 4).

Proof. W.l.o.g. we assume that S is spanning. For an arbitrary point Q of multiplicity S(Q) = 1 consider
the projection SQ through Q, which is a 2-divisible multiset M of cardinality q + 3. From Lemma 20,
Proposition 22, and Proposition 23 we conclude M = χL + 2 · χP for some line L and some point P . If
P ≤ L, then we have v = 3, so that we are in this situation for all points Q with multiplicity S(Q) = 1.
Moreover the line multiplicities are contained in {0, 2, 4}, so that the statement holds.

Otherwise we have P ̸≤ L and this is the case for all points Q with multiplicity S(Q) = 1. Thus, we have
v = 4 and the line multiplicities are contained in {0, 1, 2, 3}. Moreover, the preimage of L is a hyperplane
H of cardinality q + 2 and the other two points outside of H form a line L meeting Q. (Actually, L is the
unique 3-line for Q.) Now choose a 2-line L′ in H that does not contain Q and a point P ′ ̸= Q on L with
multiplicity S(P ′) = 1. Then, the hyperplane H ′ := ⟨P ′, L′⟩ has multiplicity 3, since all points with positive
multiplicity are contained in either H or L – contradiction.
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[KM90] Gábor Korchmáros and Francesco Mazzocca. On (q + t)-arcs of type (0, 2, t) in a Desarguesian
plane of order q. In Mathematical Proceedings of the Cambridge Philosophical Society, volume
108, pages 445–459. Cambridge University Press, 1990.

[Kur20] Sascha Kurz. No projective 16-divisible binary linear code of length 131 exists. IEEE Commu-
nications Letters, 25(1):38–40, 2020.

[Kur21] Sascha Kurz. Divisible codes. arXiv preprint 2112.11763, 2021.

[Kur22] Sascha Kurz. Vector space partitions of GF(2)8. Serdica Journal of Computing, 16(2):71–100,
2022.

[Lim10] Jirapha Limbupasiriporn. Small sets of even type in finite projective planes of even order. Journal
of Geometry, 98:139–149, 2010.

[OP08] Darren C. Ong and Vadim Ponomarenko. The Frobenius number of geometric sequences. Integers:
Electronic Journal of Combinatorial Number Theory, 8(1):A33, 2008.

[She83] Brian Sherman. On sets with only odd secants in geometries over GF(4). Journal of the London
Mathematical Society, 2(3):539–551, 1983.

[Syl82] James J. Sylvester. On subvariants, ie semi-invariants to binary quantics of an unlimited order.
American Journal of Mathematics, 5(1):79–136, 1882.

[TM13] Taichiro Tanaka and Tatsuya Maruta. Classification of the odd sets in PG(4, 4) and its application
to coding theory. Applicable Algebra in Engineering, Communication and Computing, 24(3-
4):179–196, 2013.

[War81] Harold N. Ward. Divisible codes. Archiv der Mathematik, 36(1):485–494, 1981.

[War98] Harold N. Ward. Divisibility of codes meeting the Griesmer bound. Journal of Combinatorial
Theory, Series A, 83(1):79–93, 1998.

[War01] Harold Ward. Divisible codes – a survey. Serdica Mathematical Journal, 27(4):263–278, 2001.

[WS14] Zsuzsa Weiner and Tamás Szőnyi. On the stability of sets of even type. Advances in Mathematics,
267:381–394, 2014.

12

https://eref.uni-bayreuth.de/40887/

	Introduction
	The generalized theorem
	Projective divisible codes

