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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der theoretischen physikalischen Beschreibung der gerich-
teten Bewegungen von biologischen Zellen, insbesondere Säugetierzellen und Modellbakterien.
Hierbei werden sowohl die autonomen als auch die durch Flüssigkeitsströmungen induzierten
und auf Symmetriebrüchen basierten Bewegungen untersucht. Die Erforschung dieser Szenarien
ist aus physiologischer, pathologischer und diagnostischer Sichtweise relevant. Beispielsweise
sind rote Blutzellen während ihres Transports durch den menschlichen Körper in engen Kapil-
laren einem Scherfluss ausgesetzt, durch den sie deformiert werden. Diese Deformation führt zu
Phänomenen wie der transversalen Migration von Blutzellen senkrecht zur Strömungsrichtung
in die Mitte des Blutgefäßes, wo der Fluss am stärksten ist. Mit Hilfe der Mikrofluidik können
Zellen gezielt gesteuerten Strömungen bei kleinen Reynoldszahlen ausgesetzt werden. In der
vorliegenden Arbeit wird gezeigt, dass ein oszillierender Fluss durch einen Mikrokanal, welcher
periodisch seine Strömungsrichtung ändert, zu einer gerichteten Nettobewegung von passiven
(Blut-) Zellen und deformierbaren Kapseln führt, obwohl der Fluss selbst keine mittlere Bewe-
gung aufweist. Die Nettobewegung ist hierbei eine Funktion des zellulären Härtegrads, da die
Deformation von Blutzellen von der Stärke des Flusses abhängt. Hierbei handelt es sich um ein
generisches Phänomen, welches nicht auf rote Blutzellen beschränkt ist, sondern für jedes be-
liebige deformierbare Teilchen in einem gewissen Größenbereich auftritt. Dieses Ergebnis ist von
Relevanz für die Diagnose von beispielsweise Krebs, Malaria, Diabetes oder Sichelzellenanämie,
denn diese Krankheiten bewirken einen veränderten Härtegrad bestimmter Körperzellen, welche
mit Hilfe des Mechanismus von gesunden Zellen sortiert und damit identifiziert werden können.

Viele Mikroorganismen wie zum Beispiel Bakterien bewegen sich autonom in einer Flüssigkeit
fort. Modelle für diese sogenannten Mikroschwimmer werden im Rahmen der vorliegenden Ar-
beit in äußeren Strömungen durch Mikrokanäle untersucht. Dies ist unter anderem von Relevanz
für das Verständnis bakterieller Kontaminationsprozesse in Röhren oder Kathetern, welche zu In-
fektionen führen können. Das Zusammenspiel der autonomen Fortbewegung der Schwimmer und
der ortsabhängigen Scherrate des Flusses führt zu vielseitigem Verhalten, welches nicht bei pas-
siven Zellen beobachtet wird. Ein Beispiel hierfür ist die sogenannte swinging-Bewegung, bei der
Schwimmer die Mittellinie eines geraden Kanals periodisch überqueren. Weiterhin beobachtet
man positive Rheotaxis, die Fähigkeit von schwimmenden Organismen sich entgegengesetzt zur
Strömung zu orientieren. In der vorliegenden Arbeit wird zunächst ein numerisches Modell für
einen deformierbaren Mikroschwimmer mit länglichem Körper entwickelt und validiert. An-
schließend wird damit die transversale Migration von Schwimmern untersucht, welche durch
deren Deformation im Scherfluss hervorgerufen wird und damit der Migration passiver Zellen
ähnelt. Abhängig von der Deformierbarkeit der Schwimmer, der Schwimmgeschwindigkeit, einer
inhomogenen viskosen Reibung und der Stärke der externen Strömung wird gezeigt, dass die
Schwimmer in Richtung der Kanalmitte, der Kanalwände, zu Attraktoren zwischen der Mitte
und den Wänden migrieren oder eine stabile swinging-Bewegung ausführen.

Basierend auf diesen Ergebnissen wird in der vorliegenden Arbeit aufgezeigt, wie ein Fluss durch
einen welligen Kanal die Migration der Schwimmer zur Mitte eliminieren kann zu Gunsten einer
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swinging-Bewegung. Die Amplitude dieser Oszillation kann gezielt durch die geometrischen
Größen der Kanalmodulation gesteuert werden und hängt außerdem von den Eigenschaften der
Schwimmer ab. Somit lassen sich Mikroschwimmer wie Bakterien anhand typischer Merkmale
wie ihrer Größe oder ihrer Schwimmgeschwindigkeit im Kanal (de-)fokussieren, was zum Beispiel
der Identifikation bestimmter Spezies in einer Population von Bakterien dienen kann. Außerdem
wird gezeigt, dass mit Hilfe des welligen Kanals die Ansammlung von Schwimmern an den
Rändern verringert werden kann, womit die stromaufwärts gerichtete Migration entlang der
Kanalwand und mögliche daraus resultierende bakterielle Kontaminationen unterdrückt werden
können.

Weiterhin wird in der vorliegenden Arbeit die autonome Bewegung von Säugetierzellen mit Zell-
kern, wie beispielsweise weiße Blutzellen, untersucht. Diese Zellen „krabbeln“ in verschieden-
sten Umgebungen, was essenziell für die Funktionsweise des Immunsystems, Embryogenese oder
Wundheilung ist. Aus diesem Grund ist das Verständnis der intrazellulären Mechanismen, die
zur Ausbildung von Zellpolarisation, eine Voraussetzung für die Fortbewegung, führen, von
großer Relevanz. Während sich Mikroschwimmer häufig mit Hilfe von externen Körpergliedern
wie Flagellen fortbewegen, nutzen diese komplexer aufgebauten Zellen ihr Zytoskelett, um die
für die Fortbewegung notwendigen Kräfte auf ihre Umgebung zu übertragen. Eine wichtige Rolle
hierbei spielt der Zellkortex, eine dünne Schicht aus filamentförmigen Aktinproteinen, welche
sich an der inneren Seite der Zellmembran befindet. Diese Filamente sind durch Myosin, moleku-
lare Motorproteine, verbunden, die chemische Energie in mechanische Arbeit umwandeln, was
zu einer Kontraktion des Kortex führt. In der vorliegenden Arbeit wird ein dreidimensionales
numerisches Modell für den viskosen Zellkortex validiert und weiterentwickelt. Dabei wird die
lokale Geschwindigkeit des Kortex aus den auf ihn wirkenden aktiven und passiven Kräften
berechnet. Die Validierung der Simulationsmethode umfasst die Konfrontation der numerischen
Ergebnisse mit einer entsprechenden analytischen Lösung sowie den Vergleich mit Literaturre-
sultaten.

Die durch Myosin getriebene Kontraktion des Zellkortex zusammen mit der Polymerisation und
Depolymerisation von Aktinfilamenten wird in der Literatur häufig als Ursache für den retrograde
flow genannt, einen im Bezugssystem der Zelle tangential zur Membran verlaufenden viskosen
Fluss des Kortex vom vorderen zum hinteren Ende der Zelle. Dieser rückwärts gerichtete Fluss
ist bei sogenannten abmöboidalen Zellen für deren Fortbewegung verantwortlich. Die Ergebnisse
der vorliegenden Arbeit brechen mit diesem Bild und zeigen, dass die Aktivität von molekularen
Motoren nicht zwingend notwendig für die Entstehung des retrograde flow ist. Es wird analytisch
und numerisch gezeigt, dass alleine die Polymerisation von Aktin hinreichend ist, um einen sich
selbst verstärkenden tangentialen Fluss des Kortex zu generieren. Die numerischen Ergebnisse
basieren hierbei auf der zuvor getesteten Simulationsmethode für den Zellkortex, welche zu
diesem Zweck im Rahmen der vorliegenden Arbeit um die Polymerisation von Aktinfilamen-
ten erweitert wird. Diese theoretischen Vorhersagen sind in Übereinstimmung mit aktuellen
experimentellen Messungen, welche das Szenario von Zellmotilität auch ohne Myosin-Motoren
aufzeigen.
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Abstract

The present thesis focuses on the theoretical physical description of the directed motions of
biological cells, in particular of mammalian cells and model bacteria. In this context, both
their autonomous and flow-induced motions based on symmetry breakings are investigated.
The exploration of these scenarios is relevant from a physiological, pathological, and diagnostic
perspective. For example, during their transport through the human body, red blood cells in
narrow capillaries are subject to a shear flow that deforms them. This deformation leads to
phenomena such as the transverse migration of red blood cells perpendicular to the direction
of flow towards the center of the vessel where the flow is strongest. The field of microfluidics
provides techniques to expose cells to precisely controlled flows at small Reynolds numbers. In
the present work it is shown how an oscillatory flow through a microchannel which changes
direction periodically induces a directional motion of passive (blood) cells and deformable cap-
sules, despite a vanishing net motion of the flow itself. This net displacement is a function of the
stiffness of cells, since the deformation of blood cells depends on the strength of the flow. This
phenomenon is generic as it is not limited to red blood cells, but occurs for any suitably-sized,
deformable particle. This result is of relevance for the diagnosis of, for example, cancer, malaria,
diabetes, or sickle cell anemia, because these diseases cause an altered degree of deformability
of certain body cells. Malignant cells can thus be sorted from their healthy counterparts using
the presented mechanism.

Many microorganisms, such as motile bacteria, move autonomously in a fluid. Models for these
so-called microswimmers are studied in the context of the present work in external flows through
microchannels. Among others, this is of relevance for the understanding of bacterial contam-
ination processes in tubes or catheters, which can lead to infections. The interplay between
the autonomous locomotion of swimmers and the spatially varying shear rate of the flow leads
to diverse behavior which is not observed for passive cells. An example of this is the so-called
swinging motion, in which swimmers periodically cross the centerline of a straight channel. Fur-
thermore, positive rheotaxis, the ability of swimming organisms to reorient themselves opposite
to the incident flow, is observed. In the present work, a numerical model for a deformable mi-
croswimmer with an elongated body is first developed and validated. The model is then used
to study the transverse migration of swimmers, which is caused by their deformation in shear
flow and thus is related to the migration of passive cells. Depending on the deformability of
swimmers, the swimming speed, an inhomogeneous viscous friction, and the strength of the
external flow, swimmers are shown to migrate towards the channel center, the channel walls, to
attractors located between the center and the walls, or perform a stable swinging motion.

Based on these results, it is demonstrated in the present thesis how a flow through a wavy
microchannel can eliminate the migration of the swimmers to the center in favor of a swinging
motion. The amplitude of this oscillation can be selectively controlled by the geometric param-
eters of the channel modulation and also depends on the characteristics of the swimmers. Thus,
microswimmers such as bacteria can be (de)focused in the channel based on typical character-
istics such as their size or swimming speed, which can be used, for example, to identify specific
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species in a population of bacteria. It is also shown that the wavy channel can be used to reduce
the accumulation of swimmers at the boundaries, thereby suppressing upstream migration along
the channel wall and the possible resulting bacterial contamination.

Furthermore, the autonomous motility of nucleated mammalian cells, such as white blood cells,
is investigated in the present work. These cells are able to crawl in a variety of environments,
which is essential for the function of the immune system, embryogenesis, or wound healing.
For this reason, understanding the intracellular mechanisms that lead to the formation of cell
polarity, a prerequisite for locomotion, is of great relevance. While microswimmers often use
external appendages such as flagella for self-propulsion, these more complex cells utilize their
cytoskeleton to transmit the forces necessary for locomotion to their environment. An important
role in this plays the cell cortex, a thin layer of filamentous actin proteins situated on the inner
face of the cell membrane. These filaments are cross-linked by myosin, molecular motor proteins,
which convert chemical energy into mechanical work, resulting in contraction of the cortex. In
the present work, a three-dimensional numerical model for the viscous cell cortex is validated
and further developed. Herein, the local velocity of the cortex is calculated from the active and
passive forces acting on it. The validation of the simulation method includes confrontation of
the numerical results with a corresponding analytical solution and comparison with literature
data.

Myosin-driven contraction of the cell cortex together with polymerization and depolymerization
of actin filaments is often reported in the literature as the origin of the retrograde flow, a
viscous flow of the cortex which, in the cell frame, is directed tangentially to the membrane
from the cell front to the rear. This retrograde flow is responsible for the motility of so-called
amoeboidal cells. The results of the present work break with this picture and show that the
activity of molecular motors is not necessary for the emergence of the retrograde flow. It is
shown analytically and numerically that actin polymerization alone is sufficient to generate
a self-sustaining tangential flow of the cortex. Here, the numerical results are based on the
previously validated simulation method for the cell cortex, which is, for this purpose, extended
in the present work to include actin filament polymerization. These theoretical predictions are in
agreement with recent experimental measurements which demonstrate a scenario of cell motility
without myosin motors.
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1. Motivation and aims of the present thesis

Many body functions of living organisms rely on the continuous and orchestrated directed move-
ment of cells. An example are red blood cells (RBCs), also termed erythrocytes, which are with
a volume fraction of up to 45% the primary constituent of blood flow [1]. They are transported
by the blood stream through the vascular system in order to fulfill their task of delivering oxygen
from the lungs to the rest of the human body. Despite their relatively simple structure without
a nucleus, RBCs show a rich panel of morphologies when exposed to external shear flow, such
as capillary flow, which is a consequence of their high deformability and non-trivial shape [2].
The rheology of blood flow is complex and has been subject to intense research efforts within
the last decades [1–3].

Red blood cells are passive and rely on advection by the blood stream for their directed relo-
cation. By contrast, nucleated white blood cells (leukocytes) only use the vascular system as
a means of transport and perform their function in other parts of the body [4], which requires
autonomous movement. Leukocytes form an essential part of the immune system. For instance,
neutrophiles, a type of leukocytes that primarily works by phagocytosing pathogens, adhere to
the endothelium (the cell layer forming the inner wall of vessels) and, upon activation, pass
through the vessel wall into the tissue where they move to the site of infection [5]. Cells achieve
this autonomous, directed migration by actively remodeling their cytoskeleton. An important
role in this process plays the cell cortex, a thin layer of filamentous actin proteins on the inner
face of the cell membrane. The motion of the cortex transmits the forces necessary for migra-
tion to the extracellular environment [6]. Besides its crucial role in the immune system, the
autonomous motion of mammalian cells is essential for embryogenesis, would healing, but also
pathological processes such as cancer migration [7].

Aside from cortex-facilitated crawling, many cells are specialized to swim in fluids in order to
relocate. This often involves appendages such as flagella which allow microorganisms to move
autonomously in fluids where viscous friction dominates over inertia [8,9]. Swimming organisms
are often subject to external flow [10,11] which impacts their trajectory. This motion is controlled
by rheotaxis, as observed for bacteria, which is the ability of motile organisms to reorient their
bodies due to incident shear flow [12,13]. The exploration of the behavior of swimmers in flows
is crucial for the understanding of the mechanisms which lead to the contamination of, e.g.,
ducts and catheters, which can cause bacterial infections [14,15]. Based on these investigations,
it is of relevance to develop new methods to manipulate and control the swimming behavior
swimmers such as motile bacteria.

External flows can also be employed to control the motion of passive cells which can be utilized
for, e.g., the diagnostics of diseases. This is done in microfluidics, a broad field in science and
technology with many biological and medical applications which deals with the manipulation of
fluids confined to submillimeter length scales [16–19]. The distinct physical properties of flows
through such microchannels are exploited by many microfluidic techniques [17,20]. Microfluidic
devices allow efficient and accurate sorting of individual diseased cells from a population of
suspended cells [21,22]. By this, cells can be separated according to their mechanical properties
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1. Motivation and aims of the present thesis

such as their stiffness. Since the deformability of cells is often an indicator of their health
status as, for instance, in the case of RBCs [23–25], microfluidics provides a useful tool for the
diagnostics of diseases. The application of microfluidic devices is however not limited to the
sorting of passive cells, but also swimming agents such as bacteria can be separated [26,27].

These examples illustrate the high relevance of investigating the driven, directed motion of
biological cells for both physiological and pathological processes as well as for the development
of diagnostic tools. The ability of individual cells to actively self-propel and the role of external
flows are of varying importance depending on the situation. The aim of the present thesis is
threefold, as shown in Fig. 1, and described in the following.

AIM 1:
Understand cell motion in
modulated external flows

AIM 2:
Investigate
swimming
in planar
external

flows

AIM 3:
Elucidate intracellular
mechnisms of mam-
malian cell motility

chapter 3 chapter 5 chapter 4 chapter 6 chapter 7

part III, [Pub1]part II, [Pub2]part I, [Pub3]

role of cellular activity

role of flow environment

Figure 1. Within the scope of the present thesis, three main questions are addressed with regards to the motion
of biological cells, as shown in the gray boxes. Their horizontal arrangement reflects the increasing role of cellular
activity from the left to the right (green arrow at the top) and the growing importance of the external flow from
the right to the left (blue arrow at the bottom). The chapters of the present thesis are grouped into three parts
(light-orange boxes) according to the considered cell types. In addition, the publications which correspond to the
parts are listed.

AIM 1 is the understanding of the motion of passive cells (e.g., RBCs) and swimming mi-
croorganisms (e.g., bacteria) in modulated microfluidic flows. Such flows are characterized by
a more complex spatial or time-dependence than steady pressure-driven flows through planar
microchannels. The present thesis focuses on two types of modulated flows: Time-dependent
flows with oscillatory reversing flow direction and steady flows through microchannels with a
wavy geometry. In such modulated flows, cells experience a varying shear rate over time which
leads to non-trivial entrainment and deformation, resulting in complex trajectories. This aim
is approached using numerical simulations of various cell models in combination with analyt-
ical considerations. This analysis aims to understand the physical principles of how the flow
modulation can be utilized to manipulate and control the motion of passive cells and swimming
microorganisms according to different properties, such as their size or deformability. This yields
new microfluidic strategies for the separation and sorting of cells and the diagnosis of diseases.
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These investigations are based on the knowledge about the behavior of cells in non-modulated
Poiseuille flows. This leads to AIM 2, the characterization of the behavior of actively swimming
microorganisms in such steady, planar Poiseuille flows. Here, the dynamical interplay between
the external flow, the swimmers’ deformation, and their activity leads to rich behavior which
is not observed for passive cells, such as swinging and tumbling motion. This task furthermore
calls for the development of a suitable numerical model for a swimming microorganism, e.g.,
a bacterium, which accounts for the relevant physical properties of self-propulsion, elongated
shape, and deformability.

In contrast to anucleated RBCs and bacteria, the motion of nucleated mammalian cells such
as leukocytes is driven by the cytoskeleton. For amoeboid cells, locomotion is driven by the
retrograde flow of the cortex. AIM 3 is to elucidate the underlying intracellular processes
responsible for such cortex-driven migration with a focus on the role of actin polymerization.
The onset of motion requires a spatial symmetry breaking which causes an initially unpolarized
cell to transition to a polarized, motile state. The numerical description of the viscous cortex
necessitates an efficient and accurate three-dimensional (3D) model, which is validated and
further developed in the present thesis. This simulation method is then applied to investigate
the role of actin polymerization in the onset of cell motility. These numerical considerations are
complemented with analytical calculations and a molecular explanation for the onset of motility.
This aim focuses only on the intracellular dynamics of the cortex, whereas external flows are
not taken into account.

The present thesis is structured as follows. At first, chapter 2 provides an introductory overview
over the biological fundamentals of the considered cells, the relevant physics, and the employed
methods. The findings of the present work are then divided into three major parts according to
the considered cell types (see also Fig. 1):

• Part I focuses on passive deformable cells, such as RBCs, in oscillating flows through
microchannels which are described in chapter 3, addressing AIM 1. These findings are
published in [Pub3].

• Part II deals with the description of microswimmers, such as bacteria, in Poiseuille flows.
Herein, chapter 4 addresses AIM 2. It comprises the development and validation of a
numerical model for a deformable microswimmer. This model is then used to investigate
the behavior of swimmers in a steady, planar Poiseuille flow. Based on these findings, the
effect of a wavy flow on the swimmer is investigated in chapter 5, addressing AIM 1.
Portions of the findings of part II are published in [Pub2].

• Part III focuses on the motility of nucleated mammalian cells which exhibit a cortex, which
is associated with AIM 3. Chapter 6 is dedicated to the validation of a numerical model
for the 3D cell cortex. This model is then extended and applied to the investigation of
cell motility driven by the polymerization of cortical actin in chapter 7. Portions of the
findings of part III entered [Pub1].

Finally, concluding remarks and an outlook are given in chapter 8.
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2. Theoretical background and methods

This chapter aims to give an overview over the theoretical background and the methods which
are employed in the present thesis. At first, in section 2.1 some biological fundamentals are
given for the relevant cells and their considered compartments. A significant part of this theses
deals with cells which are suspended in fluids. The flow solvers used in the present thesis are
described in section 2.2. Finally, the physical description and numerical implementation of the
considered cells are detailed in section 2.3.

2.1. Biological fundamentals

Here, an introduction to the biological features of the considered cells is given. This comprises
the description of the plasma membrane in section 2.1.1, the cell cortex in section 2.1.2, and the
red blood cell in section 2.1.3.

2.1.1. Plasma membrane

The boundary of a cell is defined by the cell membrane, also referred to as plasma membrane.
Its primary component is an approximately 5 nm thin double layer of phospholipids. It encloses
the cell completely and separates the cytosol (the fluid occupying the cell interior) from the
extracellular environment. The formation of the double layer is a direct consequence of the
amphiphilic nature of lipid molecules which have a hydrophilic head and a hydrophobic tail. In
the aqueous environment surrounding the membrane, tails align so that they face each other,
while heads are oriented towards the outside (see upper part of Fig. 2) [4]. From a physical
point of view, the membrane can be described as a two-dimensional (2D) fluid [28], since the
lipids can freely diffuse within in the plane of the membrane [4]. Furthermore, the membrane
affects the mechanical properties of the cell. The preferred curvature of the membrane may vary
and is affected by the type of lipid molecules [29]. Within the frame of this thesis, a preferred
curvature of zero, i.e., a flat membrane, is assumed.

2.1.2. Cell cortex

A crucial role in the motility of nucleated mammalian cells plays the cytoskeleton. It consists
of actin, microtubules, and intermediate filaments. Microtubules control the position of cell
organelles and intermediate filaments are responsible for mechanical strength for the cell [4].
The third component of the cytoskeleton, actin, is a protein that exists in two forms in the cell:
Actin monomers, called G-actin, are able to freely diffuse inside the bulk of the cytoplasm. They
can polymerize into linear elastic filaments termed F-actin [30]. F-actin can form a thin layer
on the inner face of the membrane, the cell cortex.
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2. Theoretical background and methods

Figure 2. Simplified sketch of the surface of a eukaryotic cell. Its two primary constituents are the membrane
(black) at the outer face of the surface and the cortex, located right underneath the membrane. The cortex
consists of actin filaments (red) which are cross-linked by myosin motors (green).

Actin filaments exhibit a polarity: They have two structurally different ends, called barbed and
pointed end which both assemble and disassemble monomers. Under the presence of Adenosine
triphosphate (ATP) hydrolysis, net polymerization of monomers takes place on the barbed end,
while there is net depolymerization with the same rate at the pointed end. The result is that
material points move along the filament, while the total filament length remains unchanged,
a process called actin treadmilling [30]. Actin filaments are bound by myosin, motor proteins
which use energy provided by ATP hydrolysis in order to “walk” along F-actin (see lower part
of Fig. 2) [31]. By this, filaments are shifted relatively to each other and the actin network is
contracted [32]. This continuous conversion of chemical into mechanical energy on the molecular
scale makes the cortex a non-equilibrium system [31, 33]. This actomyosin dynamics can lead
to a plethora of phenomena, e.g. patterns [34–36], spontaneous flows [37], or rings which are
responsible for cell constriction during cytokinesis [36,38–41]. Besides regulating the cell shape,
the cortex can also facilitate cell motility [42–46]. For this reason, in the present thesis, the
physical description of nucleated mammalian cells focuses on the modeling of the cortex, while
other components of the cytoskeleton are neglected.

2.1.3. Red blood cell

RBCs, also known as erythrocytes, are one of the main constituents of blood. Their primary
purpose is to carry oxygen, which is bound by hemoglobin in the cytoplasm, from the lungs to
the rest of the body. This task is aided by their remarkable deformability which enables RBCs
to squeeze through narrow capillaries in the microvasculature with cross-sections of down to
one third of the RBC diameter [47]. Such large deformations are enabled by the RBC’s specific
surface area to volume ratio of its undeformed biconcave shape, also called discocyte [48]. The
discocyte typically has a diameter of 8 µm, a volume of 90 fL, and a surface area of 140 µm2 [49].

Lacking a nucleus, the only structural component of the RBC is the membrane which encapsu-
lates the cytoplasm. It consists of a plasma membrane on the outer face and a 2D cytoskeletal
network of spectrin proteins forming the inner face [47]. The layer of spectrin is anchored to
the plasma membrane via transmembrane proteins and endows the membrane with additional
shear-elasticity [47].
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2.2. Flow solvers

2.2. Flow solvers

This section deals with the numerical treatment of the flow environment. After a physical
background on the basic equations of motion for fluids in section 2.2.1, the Stokesian dynamics
method is introduced in section 2.2.2. The Lattice-Boltzmannn method is then described in
section 2.2.3.

2.2.1. Equation of motion for fluids

The local momentum conservation of a fluid with density ϱ and dynamic viscosity η is generally
described by the Navier-Stokes equation [50],

ϱ

(
∂

∂t
+ u · ∇

)
u = −∇p+ η∆u. (1)

Here, u(r, t) and p(r, t) are the fluid velocity and pressure at position r and time t. For
incompressible fluids, that is, fluids with a constant density, the local mass conservation yields

∇ · u = 0. (2)

It is helpful to introduce a characteristic length scale L, a characteristic velocity U , and a
characteristic pressure P . With this the rescaled quantities

r′ := r

L
, u′ := u

U
, t′ := Ut

L
, ∇′ := L∇, and p′ := p

P
(3)

can be defined. Upon substitution into Eq. (1) one obtains

Re
(
∂

∂t′
+ u′ · ∇′

)
u′ = −Eu Re∇′p′ + ∆′u′. (4)

Here, two dimensionless numbers have been introduced: The Reynolds number, Re, and the
Euler number, Eu, which are defined as

Re := ϱUL

η
= inertial forces

viscous forces
and Eu := P

ϱU2 = pressure forces
inertial forces

. (5)

The length scales considered in the present thesis, e.g., the size of a cell, are in the micrometer
range. Consider, for instance, a bacterium with swimming speed 22 µm s−1 and a size of 3 µm [51]
which is swimming in water (ϱ ≈ 103kg/m3, η ≈ 10−3Pas). One obtains Re ≈ 7 × 10−5 which
is much smaller than unity. As a consequence, viscous forces dominate over inertial forces and
the left-hand side in Eq. (4) can be neglected. The result is the Stokes equation

− ∇p+ η∆u = 0. (6)

Depending on the problem, an external force density b(r, t) can be added, accounting for, e.g.,
gravity. Together with the incompressibility condition (2), the dynamics of the fluid is fully
described by

− ∇p+ η∆u = b, ∇ · u = 0. (7)

Eqs. (7) do not explicitly depend on time anymore. This means that the solution for the flow is
instantaneous, i.e., it does not depend on the flow at any other time.
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2.2.2. Low Reynolds number flows and Stokesian dynamics method

The linear Eqs. (7) can be solved for an arbitrary inhomogeneity b(r). The solutions are given
by

u(r) =
∫
d3r′ O(r − r′) · b(r′), (8)

p(r) =
∫
d3r′ g(r − r′) · b(r′). (9)

Here, the Oseen tensor O(r−r′) and the pressure vector g(r−r′) are the Green’s functions of the
Stokes equations. In the following, a point force b(r) = F δ(r − r0), that is, a force monopole,
is considered which acts on the fluid at position r0 where δ(•) is the Dirac δ-function. The
solution for the velocity field and the pressure are then given by [52]

u(r) = O(r − r0) · F , (10)
p(r) = g(r − r0) · F , (11)

with

O(r − r0) = 1
8πη|r − r0|

[
1 + (r − r0) ⊗ (r − r0)

|r − r0|2
]
, (12)

g(r − r0) = r − r0
4π|r − r0|3

. (13)

Since b(r) has been assumed to be a point force, Eq. (12) can be used to calculate the flow around
an object provided that the radius of the object is much smaller than the distance between its
position and the point where the flow is evaluated. Let us consider two spherical objects i and
j, also referred to as “beads” in the following, with radius a which hydrodynamically interact
with each other via the fluid. A better approximation than the Oseen tensor which includes
corrections in the radius is given by the Rotne-Prager matrix [53–55]

µij =


1

8πηrij

[(
1 + 2a2

3r2
ij

)
1 +

(
1 − 2a2

r2
ij

)
rij⊗rij

r2
ij

]
for rij > 2a

1
6πηa

[(
1 − 9rij

32a

)
1 +

(
1 − 3rij

32a

)
rij⊗rij

r2
ij

]
for rij ≤ 2a

, (14)

where rij := ri −rj . For a = 0 the Rotne Prager matrix reduces to the Oseen tensor in Eq. (12),
with O(ri − rj). In addition to its corrections in the radius, Eq. (14) provides the advantage
that it does not diverge for rij → 0 due to a regularization for the case of overlapping beads.
The hydrodynamic interaction matrices considered here are based on the approximation of only
pairwise interaction, even if more than two beads are considered.

In this thesis, so-called bead-spring models are employed in order to simulate various objects,
as described in more detail in section 2.3.1. The models consist of a number of beads N which
represent, e.g., the body of a swimmer or the surface of a cell. The forces acting on the beads,
such as Hookean springs connecting the beads, depend on the position of the beads relatively
to each other. Let F i be the force acting on bead i and ai its radius. The velocity of bead i is
then given by [52]

ṙi = u(ri, t) + F i

6πηai
+

N∑
j,j ̸=i

H ij · F j . (15)
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Here, u(ri, t) refers to the undisturbed background flow which depends on the considered prob-
lem. The second addend in Eq. (15) is the Stokes friction of a sphere. The last addend in Eq.
(15) is the flow disturbance which is caused by all beads interacting with each other. H ij is the
mobility matrix which, depending on the problem, may be the Oseen or Rotne-Prager tensor.

In some cases considered in this thesis, the hydrodynamic interaction of beads with different
radii may be considered. For this, an extension of the Rotne-Prager tensor has been derived,
given by [56]

µtt
ij =



1
8πηrij

[(
1 + a2

i +a2
j

3r2
ij

)
1 +

(
1 − a2

i +a2
j

r2
ij

)
rij⊗rij

r2
ij

]
for rij > ai + aj

1
6πηaiaj

[
16r3

ij(ai+aj)−((ai−aj)2+3r2
ij)

2

32r3
ij

1 + 3((ai−aj)2−r2
ij)

2

32r3
ij

rij⊗rij

r2
ij

]
for ai + aj ≥ rij > a> − a< ,

1
6πηa>

1 for rij ≤ a> − a<

(16)

Here, ai and aj are the radii of bead i and j, respectively. Eq. (16) further distinguishes between
the radius of the larger bead, denoted as a>, and the radius of the smaller bead which is indicated
as a<.

Up to this point, the beads were assumed to possess only translational degrees of freedom. If also
rotational degrees of freedom are considered, additional expressions for the angular velocities of
each bead are obtained. Let Ωi be the angular velocity of bead i and T i the torque acting on
it. The equations of motion including both translational and rotational degrees of freedom of
the beads are then given by

ṙi = u(ri, t) +
N∑
j

µtt
ij · F j +

N∑
j

µtr
ij · T j , (17)

Ωi = 1
2

∇ × u(ri, t) +
N∑
j

µrt
ij · F j +

N∑
j

µrr
ij · T j . (18)

Here, µrr
ij mediates the hydrodynamic interaction between the torques and the angular velocities

of the beads, whereas the matrix µrt
ij accounts for the influence of the torques on the translational

velocities and µtr
ij for the influence of the forces on the angular velocities. The tensors are given

by [56]

µrr
ij =


− 1

16πηr3
ij

(
1 − 3rij⊗rij

r2
ij

)
for rij > ai + aj

1
8πηa3

i a3
j

(
α1 + β

rij⊗rij

r2
ij

)
for ai + aj ≥ rij > a> − a<

1
8πηa3

>
1 for rij ≤ a> − a<

, (19)

with coefficients

α =
5r6

ij − 27r4
ij

(
a2

i + a2
j

)
+ 32r3

ij

(
a3

i + a3
j

)
− 9r2

ij

(
a2

i − a2
j

)2
− (ai − aj)4

(
a2

i + 4aiaj + a2
j

)
64r3

ij

β =
3
(
(ai − aj)2 − r2

ij

)2 (
a2

i + 4aiaj + a2
j − r2

ij

)
64r3

ij

(20)
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as well as

µrt
ij =


1

8πηr2
ij

ϵ
rij

rij
for rij > ai + aj

1
16πηa3

i aj

(ai−aj+rij)2(a2
j +2aj(ai+rij)−3(ai−rij)2)

8r2
ij

ϵ
rij

rij
for ai + aj ≥ rij > a> − a<

θ(ai − aj) rij

8πηa3
i
ϵ

rij

rij
for rij ≤ a> − a<

, (21)

with (ϵrij)αβ = ϵαβγrij,γ and the Heaviside function θ(•). µtr
ij is obtained by interchanging bead

i and j in Eq. (21).

2.2.3. Lattice Boltzmann method

A second method to simulate fluids is the Lattice Boltzmann method (LBM). In the following,
first the physical background of the LBM is described in section 2.2.3.1. Details on the numerical
implementation of the LBM are then given in section 2.2.3.2. Finally, the advantages and
disadvantages of the LBM when compared with the Stokesian dynamics method are discussed
in section 2.2.3.3. The considerations given in this section are largely based on Ref. [57].

2.2.3.1. Kinetic theory of gases

The LBM is a mesoscopic method. This means that in contrast to microscopic methods (e.g.,
molecular dynamics), it does not track individual molecules, but rather distributions which
describe collections of molecules. These collections are however considered to be small com-
pared to the size of the system which distinguishes the LBM from macroscopic methods (e.g.,
computational fluid dynamics) where continuous quantities such as the fluid velocity, density, or
temperature are considered. Besides the Reynolds number as defined above, the Mach number

Ma = U

cs
(22)

represents another important dimensionless number. Here, cs is the speed of sound, i.e., the
speed of compression waves in the fluid. The Mach number measures the compressibility of a
fluid, where Ma ≪ 1 (incompressible fluid) is the case considered in this thesis.

The LBM is derived from the kinetic theory of gases where atoms are assumed to collide with
each other. Central variable is the fluid particle distribution function f(x, ξ, t) which is defined
as the density of fluid particles at position r and with velocity ξ at time t. The macroscopic
variables are obtained via the first three moments of the distribution function by integrating
over the velocity space,

ϱ(r, t) =
∫
f(r, ξ, t)d3ξ, (23)

ϱ(r, t)u(r, t) =
∫

ξf(r, ξ, t)d3ξ, (24)

ϱ(r, t)E(r, t) =
∫

|ξ|2 f(r, ξ, t)d3ξ, (25)

where besides the mass density ϱ(r, t) also the momentum density ϱ(r, t)u(r, t) and energy
density ϱ(r, t)E(r, t) are introduced. Note that ξ(r, t) is the microscopic fluid particle velocity
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which in general differs from the macroscopic local fluid velocity u(r, t). The relative velocity
is defined as v(r, t) = ξ(r, t) − u(r, t).

After many collisions of the fluid particles with each other, they are assumed to reach an equi-
librium distribution f eq(r, |v| , t) which is isotropic in velocity space. If in addition f eq(|v|2) =
f eq

1D(v2
x)f eq

1D(v2
y)f eq

1D(v2
z) is assumed, the equilibrium distribution function is described by the

Maxwell-Boltzmann distribution

f eq(r, |v| , t) = ϱ

(
ϱ

2πp

) 3
2
e

−p|v|2
2ϱ . (26)

The time evolution of the distribution function is given by the Boltzmann equation

∂f

∂t
+ ξβ

∂f

∂rβ
+ Fβ

ϱ

∂f

∂ξβ
= Ω(f), (27)

where β = {1, 2, 3} is the coordinate index. Herein, ξβ = drβ/dt is the fluid particle velocity,
Fβ/ϱ = dξβ/dt the specific body force, and Ω = df/dt the collision operator. The latter plays the
role of a source term in Eq. (27) since colliding fluid particles change the distribution function.
Ω has to obey mass, momentum, and energy conservation. The simplest possible form is the
Bhatnager-Gross-Krook (BGK) collision operator [58]

Ω(f) = −f − f eq

τ
. (28)

Here, τ is the relaxation time which measures the speed at which the distribution function
relaxes to the equilibrium distribution.

2.2.3.2. Numerical implementation

In the LBM as used in this thesis, the fluid is discretized by a regular 3D lattice, the Eulerian
mesh, with lattice constant ∆xl. As commonly done in LBM simulations, ∆xl = 1 and ∆t = 1
is chosen where ∆t is the time step. fi(r, t) is the probability distribution at lattice node r.
Furthermore, the velocity space is discretized, where the so-called D3Q19 scheme is used. Hereby,
a discrete set of 19 velocity vectors ci (with i = 0, 1, ..., 18) is employed where ci = (cix, ciy, ciz)
is the velocity at lattice point i [57, 59]. Discretizing Eq. (27) yields the Lattice Boltzmann
equation [57,60]

fi(r + ci∆t, t+ ∆t) = fi(r, t) + Ωi(r, t) + Fi∆t. (29)

The discretized version of the BGK collision operator from Eq. (28) is given by

Ωi(r, t) = −∆t
τ

[fi(r, t) − f eq
i (r, t)] . (30)

The equilibrium distribution

f eq
i (r, t) = wiϱ

[
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u · u

2c2
s

]
, (31)

can be viewed as the discretized version of an expansion of Eq. (26) for low Mach numbers up
to second order in u [61]. Here, wi are the lattice weights specified by the D3Q19 scheme as,
e.g., given in Refs. [57, 62]. The speed of sound is given by

cs = 1√
3

∆xl

∆t
. (32)
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External body force densities F ext are included in Eq. (29) via an additional source term [60]

Fi =
(

1 − 1
2τ

)
wi

(
ci − u

c2
s

+ ci · u

c4
s

ci

)
· F ext. (33)

The macroscopic fluid density and velocity which enter in Eqs. (31) and (33), are obtained from
the microscopic distribution function via

ϱ(r, t) =
∑

i

fi, (34)

u(r, t) = 1
ϱ

∑
i

cifi + ∆t
2ϱ

F ext. (35)

Finally, the fluid viscosity is obtained via

η = ϱc2
s ∆t

(
τ − 1

2

)
. (36)

Eq. (29) describes fluid particles moving with velocity ci from point r to a neighboring point
r + ci∆t within the time interval ∆t. This movement is influenced by collisions (Ω) and forces
(Fi). The LBM algorithm can be viewed as a two-step procedure in each time step, comprising
the collision step and the streaming step. During collision, the local macroscopic variables are
calculated according to Eqs. (34) and (35) and subsequently the equilibrium distribution with
Eq. (31). With this, the post-collision distribution f∗(r, t) is calculated which is defined as
the right-hand side of Eq. (29). In the streaming step, f∗(r, t) is streamed to the neighboring
nodes,

fi(r + ci∆t, t+ ∆t) = f∗(r, t), (37)

which completes the time step. This cycle is repeated periodically.

In this thesis, the LBM is used to simulate pressure-driven flows through microchannels. The
pressure gradient is realized in the LBM as an external body force F ext. This is a difference to
the Stokesian dynamics method described in section 2.2.2 where the channel flow is prescribed
directly. For simulations of a channel flow, the no-slip boundary conditions at the walls have to
be included in the LBM. Implementation of a solid surface is achieved during the streaming step
where populations which would hit a lattice node that is part of the wall are streamed back to
the node they came from (bounce-back method). The opposite velocity is then assigned to this
distribution. During the streaming step also periodic boundary conditions can be implemented
by assigning the populations that would stream outside of the simulation box to the nodes at
the opposite side of the box. Periodic boundaries are employed in this thesis to simulate an
infinite channel along a certain coordinate axis.

In parts of the present thesis, cells, modeled as soft particles, are considered which are suspended
in a fluid. For the coupling of the particle to the fluid the immersed boundary method (IBM)
is used [57, 59, 63]. The surface of the particle is described by a set of nodes rp

j (t) which are
referred to as the Lagrangian nodes. Whereas the Eulerian system, represents the regular and
stationary LBM lattice nodes where the Navier-Stokes equation is solved on, the Lagrangian set
of nodes is allowed to move in space. The Lagrangian nodes are subjected to forces fp

j (t) that
influence their position and thus the deformation of the particle. The position of the Lagrangian
nodes are generally not the same as the ones of the Eulerian grid which makes interpolation of
the velocity necessary.
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2.2. Flow solvers

The IBM assumes no-slip condition at the boundary of the particle, that is, the velocity of the
boundary and the fluid velocity at the particle boundary have to be equal. The velocity at the
Eulerian nodes is interpolated in order to obtain the velocity at the boundary according to

ṙp
j (t) =

∑
r

∆x3
l u(r, t)ϕ(rp

j (t), r). (38)

Here, the sum runs over all Eulerian lattice nodes. The force density experienced by the fluid
due to the presence of the boundary is obtained by spreading the Lagrangian force to the fluid
nodes,

F (r, t) =
∑

j

fp
j (t)ϕ(rp

j (t), r), (39)

where the sum runs over all Lagrangian nodes forming the boundary. Interpolation and spreading
are done using the kernel function ϕ(rp

j (t), r), also referred to as stencil. It is chosen as a
continuous function to preclude jumps in the forces and velocities when the particle moves over
the Eulerian grid. Furthermore, it has to be normalized,∑

r

∆x3
l ϕ(r) = 1. (40)

For simplicity, ϕ is assumed to be the product of 1D kernel functions,

ϕ(r) = φ(x)φ(y)φ(z)
∆x3

l

. (41)

For performance reasons, a short-ranged stencil is advantageous,

φ(x) = 0 for x ≥ 2∆xl. (42)

A good approximation for a function which fulfills these criteria is

φ(x) =
{

1
4
[
1 + cos

(
πx
2
)]

for 0 ≤ |x| ≤ 2∆xl

0 for 2∆xl ≤ |x| . (43)

Eq. (43) is used in this thesis. However, other stencils exist as described, e.g., in Ref. [57].

2.2.3.3. Comparison of the LBM to the Stokesian dynamics method

Two fluid solvers are used in this thesis, namely the LBM in combination with the IBM and the
Stokesian dynamics method, as described in section 2.2.2. Both methods have strengths and
weaknesses depending on the considered problem, which are discussed in the following.

The LBM provides the advantage that it solves the full Navier-Stokes equation and thus simu-
lations of systems with non-zero Reynolds numbers are possible. However, for simulations with
very low Reynolds numbers, the fluid velocity has to be chosen extremely small which can result
in excessive simulation run times. By contrast, for the derivation of the Stokesian dynamics
method the assumption of Re = 0 is made a priori, and therefore it is generally better suited
for problems where inertial effects are negligible.

Since the LBM solves the full Navier-Stokes equation, hydrodynamic interactions between the
particle and the geometry (e.g., channel walls) are intrinsically included. By contrast, the
Oseen tensor is derived with the boundary condition of vanishing fluid velocity at infinity. The
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Stokesian dynamics method thus cannot account for hydrodynamic interactions with the channel
geometry, where no-slip boundary conditions require zero velocity at the solid boundaries of the
channel. An exception is the special case of a single, planar wall where the Blake tensor [64] can
be used to account for hydrodynamic particle-wall interactions. By contrast, a strong advantage
of the LBM is that arbitrary channel geometries can be realized.

In the Stokesian dynamics method, only the particle is discretized but not the fluid which can
make it a computationally inexpensive method. This is especially advantageous for large systems,
for example for large channel diameters compared to the size of the considered cell, where run
times for LBM simulations can become large. This assessment changes if simulations with more
than one particle are considered (e.g., for blood flow). Multi-particle simulations are straight-
forward to implement with the LBM where hydrodynamic interactions between particles are
inherently taken into account. Since only the immediate neighborhood of Lagrangian/Eulerian
nodes is needed in order to calculate particle-fluid interactions in the IBM, the computational
overhead of simulating an additional particle is marginal. The locality of all computations en-
ables furthermore a very efficient parallelization of the LBM. By contrast, the computational
effort for calculating the hydrodynamic interaction with the Stokesian dynamics method scales
quadratically with the number of discretization points. Thus program run times increase signif-
icantly for each additional particle.

2.3. Cell models

The present section is dedicated to the description of the cells models. The present thesis
comprises passive cells with purely elastic properties, given in section 2.3.1, as well as the
description of the active viscous cell cortex, as described in section 2.3.2.

2.3.1. Elastic cells

Four different models for cells lacking a cortex are employed in the present thesis, as described
in the following. As shown below in chapter 3, the models do not necessarily behave the same
when exposed to a shear flow. The center of each particle is given by

rc = 1
N

N∑
i=1

ri, (44)

where N is the number of beads/nodes. In the following, the cell models are introduced in
ascending complexity.

2.3.1.1. Minimal model

The minimal model serves as the simplest model for a soft particle which has the major merit
of analytical tractability. It is represented by N = 3 beads with equal radius a. The initial
bead positions are given by r1 = 0, r2 = bey, and r3 = −bey, where ey is the unit vector
in y-direction. The beads are connected by three Hookean springs with spring constant k and
equilibrium lengths b and 2b, so that the initial bead constellation corresponds to the equilibrium
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configuration of the particle. The forces in the equations of motion (15) are given by Hookean
spring forces acting on bead i,

F h
i = k

N∑
j=1,j ̸=i

(|ri − rj | − b)eij , (45)

where eij = (ri − rj)/|ri − rj | is the unit vector pointing from bead j to bead i.

2.3.1.2. Ring polymer

The second model for a cell employed in the present thesis is the 2D ring polymer. It is modeled
by a closed chain ofN beads, whereN = 10 is chosen in the following. In the initial configuration,
the beads are arranged circularly with equal distance b between neighboring beads. The total
potential is given by

E = Eh + Eb, (46)

where EH is the energy due to harmonic springs which act between neighboring beads, where
F h

i = −∇iEh is the harmonic spring force as in Eq. (45). In order to maintain a stable shape
under flow conditions, a bending energy Eb is introduced [65],

Eb = −κb
2

ln(1 − cosαi), (47)

where κb is the bending rigidity and αi the angle between the connection lines from bead i to
its two neighboring beads.

2.3.1.3. Capsule and red blood cell

The third class of elastic cell models employed in the present thesis are 3D models for a capsule
and a RBC. A capsule is a fluid that is enclosed by an elastic membrane. The principle of
encapsulation is found in nature for cells. For example, the hemoglobin in the cytoplasm of red
blood cells (RBCs) would be lethal if not encapsulated by the cell membrane [66]. Therefore,
capsules have been used as models for cells [67]. Artificial capsules are commonly used in the
pharmaceutical and food industry [66]. For modeling purposes, the membrane of the capsule
is treated as an impermeable 2D surface, since its thickness is much smaller than the capsule
itself [66]. Numerically, the capsule’s surface is discretized by a 3D mesh which consists of N
vertices (nodes) that form flat triangles (nodes) [59, 68]. In the following, if not mentioned
otherwise, 1280 triangles and N = 642 nodes are chosen.

In its reference/initial state the capsule is assumed to be spherical. The impermeability of the
membrane leads to a conservation of the volume of the capsule which is numerically realized by
a volume energy [69]

Ev = κv
V0

(V − V0)2 , (48)

where κv is the volume modulus, V the instantaneous volume of the capsule and V0 the reference
volume. One has V0 = 4

3πR
3
0, where R0 is the radius of the spherical reference shape. The

membrane exhibits a resistance against bending which is implemented by a bending energy [70]

Eb = κb
2
∑
i,j

(1 − cosβi,j) , (49)
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with the bending elasticity κb. Here, the sum runs over all pairs of neighboring faces and βi,j is
the angle between by the normal vectors of two neighboring faces. Membrane resistance against
strain is implemented by the in-plane strain energy

Es =
∑

f

A
(0)
f εs

f , (50)

where the sum runs over all faces f and A(0)
f the area of the undeformed face. For the derivation

of the strain energy density εs
f , one can define the surface displacement gradient tensor D

which describes the local deformation state of the membrane. It is given by dx = D · dx(0),
where dx and dx(0) are the in-plane line elements of the deformed and undeformed surface,
respectively [66]. With this the strain invariants I1 and I2 can be computed as

I1 = tr(DT · D) − 2 = λ2
1 + λ2

2 − 2, (51)
I2 = det(DT · D) − 1 = λ2

1λ
2
2 − 1, (52)

where λ1 and λ2 are the eigenvalues of D, also known as the principal extension ratios. The
strain forces of capsules can be modeled by the neo-Hookean law which assumes the membrane
to be a strain-softening rubber-like material. It is given by [66,71]

εs
f (I1, I2) = κs

2

(
I1 − 1 + 1

I2 + 1

)
, (53)

where κs is the shear-elastic modulus. The derivation of the New-Hookean law is based on the
assumption of a thin membrane which compensates stretching by a thinning of its thickness.
Thus, the surface area of a capsule modeled with Eq. (53) is not constant. The total potential
of the capsule is given by

E = Ev + Es + Eb. (54)

The volume, bending, and strain forces are computed by taking the gradients of the respective
energies in Eqs. (48), (49), and (50). They can be calculated analytically as a function of the
node positions on the mesh, as described in detail in Ref. [68].

For the RBC model in this thesis, the cytoplasm is assumed to be a Newtonian fluid with the
same viscosity as the surrounding fluid. The volume of the RBC is determined by osmotic
balance [48]. Since the surrounding fluid does not change, V is assumed to be constant and Eq.
(48) is used as for the capsule, where V0 is the reference volume of the biconcave initial shape
which is further described below. The total potential E of the RBC is given as for the capsule
by Eq. (54). The strain-hardening behavior of the elastic RBC membrane is modeled by the
Skalak law [69,72]

εs
f (I1, I2) = κs

12
(I2

1 + 2I1 − 2I2) + κα

12
I2

2 , (55)

where κs is the strain modulus, and κα the area dilation modulus. The bending energy and the
resulting bending forces are discussed below in section 3.2.2.

2.3.2. Viscous cell cortex

This section aims to give the physical background and numerical methods for the description
of the viscous cell cortex, employed below in chapters 6 and 7 of the present thesis. After an
introduction to the employed thin shell approach in section 2.3.2.1, the physical equations which
determine the dynamics of the cortex are described in section 2.3.2.2. Finally, the numerical
procudure of the algorithm is outlined in section 2.3.2.3.
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2.3. Cell models

2.3.2.1. Thin shell approach

The small thickness of the cortex compared to the diameter of the cell justifies its description as
a thin shell, a closed 2D manifold in 3D space. Together with the membrane, the cortex forms
the cell surface. This assumption implies that cortex and membrane are always attached to each
other which precludes the description of blebbing [73]. Furthermore, any friction between the
cortex and the membrane is neglected, as actin filaments are assumed to being able to freely
slide along the membrane. Since the number of filaments per unit surface area is not conserved,
the cortex is described as a 2D compressible fluid. Its velocity, that is, the locally averaged
velocity of cortical filaments, is denoted as vc(r), a 3D vector field defined along the surface of
the cell. The cell surface itself is parameterized by a 3D vector r(s1, s2), where the center of the
cell is assumed to be the origin of coordinates. s1 and s2 are surface coordinates which define
the two local tangential vectors

e1 = ∂r

∂s1 and e2 = ∂r

∂s2 . (56)

With this, the local outwards-directed normal vector on the thin shell can be defined as

n = e1 × e2
|e1 × e2|

. (57)

Within the frame of differential geometry [74], the covariant metric tensor is defined as

gαβ = eα · eβ, (58)

where α, β ∈ {1, 2}. The inverse (contravariant) metric tensor is given by

gαβ = g−1
αβ = 1

det(g)

(
g22 −g12

−g12 g11

)
. (59)

For the time-derivative of the metric tensor one has

ġαβ = ėα · eβ + eα · ėβ = ∂vc

∂sα
· ∂r

∂sβ
+ ∂r

∂sα
· ∂vc

∂sβ
. (60)

2.3.2.2. Fixed area constraint and cortex force and mass balance

While the number of cortical filaments per unit area is not necessarily conserved, the lipid
bilayer which forms the membrane is an inextensible fluid membrane. As a consequence, the
total surface area AS of the cell is conserved,

dAS

dt
= 0. (61)

This constraint has consequences for the force balance in the cortex, as described in the follow-
ing.

Due to viscous friction, gradients in the cortex velocity result in a viscous force fvisc(vc). It can
be written as the surface divergence of the surface stress tensor,

fvisc = ∇S · σS . (62)
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Here, ∇S = IS · ∇ is the surface gradient operator and

IS = 1 − n(r) ⊗ n(r) (63)

the surface projection operator. The surface stress tensor is given by [42]

σS = ηb(∇S · vc)IS + ηs[∇S ⊗ vc · IS + IS · (∇S ⊗ vc)T ], (64)

where ηb and ηs are the 2D bulk and shear viscosities of the cortex. Note that Eq. (64) represents
the passive viscous stresses in the cortex. It can be extended by an active contribution accounting
for the actomyosin activity (see below).

Besides the viscous force, the cortex is subject to a mechanical force due to the membrane
tension. This tension force is given by the Young-Laplace equation [42,75,76]

f tens = −ζ0H(r)n(r), (65)

where ζ0 is the surface tension and H(r) the local mean curvature of the membrane. Eq. (65)
models the local membrane inextensibility which arises from the structure of the membrane as
a lipid bilayer.

The viscous and the tension force are balanced by a hydrostatic force due to the osmotic pressure
difference ∆P between the cytoplasm and the extracellular environment. This leads to the force
balance equation

fvisc(vc) + f tens + ∆Pn = 0. (66)

Besides the force balance in Eq. (66), the model employed in the present thesis also accounts
for the mass balance of the active species. For this, one introduces the local actin concentration
ca(r), the locally averaged number of cortical filaments per unit surface area. Furthermore, the
concentration of molecular myosin motors in the cortex is denoted as cµ(r). Their mass balance
is described by the advection-diffusion equations on the surface of the cell [42, 77,78],

ċa + ∇S · (cavc) = Da∆Sca + β(ca
0 − ca), (67)

ċµ + ∇S · (cµvc) = Dµ∆Scµ. (68)

Here, ∆S = ∇S · ∇S the Laplace-Beltrami operator. According to Eqs. (67) and (68), the
time evolution of both actin and myosin, ċa,µ, is determined by the advection of both proteins
along the surface with the local cortex velocity. The mass balance furthermore accounts for
diffusion along the surface with diffusion coefficients Da,µ for actin and myosin, respectively.
A typical value for the diffusion coefficient of myosin is Dµ ≈ 0.8 µm2 s−1 [79]. Generally,
cortical F-actin does not diffuse [80]. However, the branching of filaments during polymerization
causes an effective diffusion along the surface, with a small but finite diffusion coefficient of
Da ≈ 0.03 µm2 s−1 [81]. In the numerical simulations as described below, a small non-zero
diffusion coefficient of actin is considered to increase the numerical stability. Eq. (67) has an
additional source term which accounts for the restoration of the actin concentration to the
homeostatic concentration ca

0 with turnover rate β.

The actomyosin activity can be incorporated into the surface stress as an active stress [42]

σS
act = IS (χcµ − αca) , (69)
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where χ is the myosin-induced cortex contractility and α the stiffness of the actin meshwork.
The first addend in Eq. (69) describes positive stresses due to the active contraction of filaments
by myosin motors. The second addend in Eq. (69) accounts for negative stresses caused by the
pushing of actin filaments. The active stress causes an active force

fact = ∇S · σS
act (70)

which enters in the cortex force balance. Thus, Eq. (66) has to be extended, yielding

fvisc(vc) + f tens + ∆Pn + fact = 0. (71)

2.3.2.3. Numerical procedure

In the following, the numerical procedure for simulations of the viscous cell cortex is briefly
sketched. The cell surface which is formed together by the cortex and the membrane is discretized
into points (nodes) which form triangles (faces) on a 3D mesh [59,82,83]. As in the case of the
capsule and the RBC described above in section 2.3.1.3, the mesh is created from an initial
icosahedron which is refined by dividing each triangular face into four smaller triangles where
the midpoints of the edges serve as the vertices of the new triangles. This refinement is applied
recursively until the desired mesh accuracy is obtained. The number of nodes of the mesh is
given by

N = 10n2
sp + 2, (72)

and the number of faces by
Nf = 2N − 4 = 20n2

sp. (73)

Here, nsp is the refinement parameter which quantifies the number of subdivisions along each
edge length of the mesh compared to the initial icosahedron. The position of node i is denoted by
ri. Similarly, vc

i , fi, ca
i , and cµ

i refer to the local cortex velocity, force, actin concentration, and
myosin concentration at the boundary of the cell. Several numerical procedures described below
are performed triangle-wise. The associated nodes thus have to be known for each triangle. The
initial cell shape is set to a sphere with radius R0. The corresponding reference surface area is
given by A0 = 4πR2

0.

The non-viscous forces in Eq. (71) can be grouped into the conservative forces f e, yielding

fvisc(vc) + f e = 0 (74)

for the force balance. This equation is solved numerically in each iteration for each node i of
the mesh using the weak formulation [84]. The conservative forces are obtained by variation of
the energy function upon the virtual displacement δr,

δE = −
∮

AS

δr · f e d2r, (75)

where the integral runs over to closed instantaneous surface AS of the cell. The energy function
is given by

E = ζ0

∮
AS

d2r + ∆P
∮

AS

r · n d2r +
∮

AS

r · fact d2r. (76)
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Figure 3. Flow chart of the numerical algorithm. Gray boxed symbolize sets of data, arrows indicate the order
of data processing, and pink ellipses show the employed methods and procedures.
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The three addends in Eq. (76) refer to the energy due to membrane tension, osmotic pressure,
and actomyosin activity, respectively. Here, the viscous force is obtained from a minimization
of the dissipation function

D =
∮

AS

[
ηb

8

(
ġαβg

αβ
)2

+ ηs

4

(
gβγ ġαβ ġγδg

αδ
)]
d2r. (77)

The viscous force is then obtained by a variation of the dissipation function upon a virtual
velocity,

δD = −
∮

AS

δvc · fvisc(vc) d2r. (78)

The functions D and E are expressed in terms of the positions and cortex velocities of the mesh
nodes. For this, the metric tensor has to be computed on each mesh triangle which is discussed,
e.g., in Ref. [83]. In its Lagrangian form [85], the discretized force balance equation (74) then
reads

∂D
∂vc

i

+ ∂E
∂ri

= 0 (79)

for each node i = 1, 2, ..., N . Eqs. (79) is a system of linear equations which can be solved for the
cortex velocities vc

i at all mesh nodes as a function of the node positions and concentrations and
the values of ζ0, ∆P , ηs, ηb, χ, α. The latter parameters serve as input for the simulation, with
the exception of the surface tension ζ0 which is computed during the simulation. This is done
by imposing the condition of a fixed surface area AS = A0, see Eq. (61), which translates into
a linear constraint on the cortex velocities vc

i [83]. Eqs. (79) together with the linear constraint
of surface area conservation is solved using a conjugate gradient method [84].

The numerical procedure of the algorithm is shown in Fig. 3. Initially, the input parameters are
set and the mesh with a given refinement is initialized. At the beginning of each time-loop, a set
of instantaneous geometric data is computed from the node positions, including the local normal
vectors and areas of the faces and the global values of cell surface area and volume V [83]. Based
on this, the variations of D and E are computed and summed up to a preliminary total force
ftot in Eq. (79). Since the initial assumptions for the cortex velocities and the surface tension
do not correspond to the correct values, this residue is in general non-zero.

The cortex velocities and surface tension are then determined iteratively using a conjugate
gradient method. Here, an initial trial cortex velocity is taken as input to obtain the viscous
force on each node. The total force and cortex velocity are then updated accordingly using the
tension force computed from the surface tension. The magnitude of the total force is calculated
subsequently and compared to a small convergence tolerance parameter ϵ which is chosen as
ϵ = 10−10. If ϵ is exceeded, the conjugate gradient method yields an improved estimate for the
trial velocity. This procedure is repeated until the force balance and the fixed area constraint is
fulfilled and vc and ζ0 are found.

Upon computation of the correct value for vc, the cortex velocity is used to evolve the actin and
myosin concentrations using the discretized advection-diffusion equations (67) and (68), yielding
ċa and ċµ. The actin and myosin concentrations are then evolved in time using the Euler method
with time step ∆t. The position of the cell boundary is evolved using the local cortex velocity.
The distortion of the mesh, which would result from the advection of the node positions with the
cortex velocity, is prevented by moving the nodes along the surface, as described in Refs. [82,83].
The concentrations of actin and myosin at the new positions are then computed by interpolation.
Furthermore, the dissipation function is invariant upon addition of an arbitrary translation or
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rotation of the cortex velocity field, and therefore the solution of Eq. (79) is not unique. This
ambiguity is resolved by choosing the solution with zero translational and angular velocities.
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Part I.

Transport of passive cells in time-dependent
microflows
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3. Directed cell motion is driven by oscillatory,
non-progressing flows

The present chapter reports on a deformation-dependent propulsion phenomenon for soft par-
ticles, such as red blood cells, in planar microchannels. Hereby, cells migrate along the channel
axis in oscillatory flows. Intriguingly, this directed motion takes place despite zero mean flow
in each oscillation cycle. The underlying mechanism relies on a broken time-reversal symmetry
imposed by alternating fast forward and a slow backward motions of the fluid which induce
different deformations of the particle during the respective flow sections. Analytical calculations
for a minimal soft particle model combined with Stokesian dynamics and LBM simulations of
realistic models for (red blood) cells reveal that this generic transport phenomenon is not lim-
ited to red blood cells, but in fact takes place for any deformable particle of appropriate size.
Strikingly, the net progress depends besides the characteristics of the oscillatory flow also on the
particle stiffness and type. This suggests new label-free microfluidic strategies which do not rely
on complex channel geometries or obstacles and render the extraction of individual cells even
from large populations possible. Combining these advantages, the proposed sorting mechanism
suits the needs of diagnostic tools for various cell-related diseases which require efficient and
reliable separation of healthy from malignant cells.

The findings reported in this chapter are published in Ref. [86]. These theoretical predictions for
red blood cells in oscillatory flows triggered microfluidic experiments. The resulting experimental
study [87] reported on a deformation-dependent net migration of red blood cells in such flows,
while rigid beads do not move on average, confirming the findings reported in this chapter of the
present thesis. The systematic investigations presented in this chapter are based on first results
reported in the Master’s thesis of the author of the present thesis [88].

This chapter is structured as follows. After an introduction in section 3.1, the numerical im-
plementation of the red blood cell is elaborated in section 3.2, followed by the description and
implementation of the oscillatory flow in section 3.3. The parameter choice is then detailed in
section 3.4. Continuing, an explanation for the net progress despite zero mean flow is given
in section 3.5. The net progress is then systematically characterized in section 3.6, before the
findings are summarized in section 3.7.

3.1. Introduction: Using microfluidics for the stiffness-dependent
separation of cells

The stiffness of cells is often an indicator of their health status. For example, cancerous cells
have been shown to have an altered deformability than their healthy counterparts [89,90]. Other
diseases specifically affect the deformability of erythrocytes, such as sickle cell anemia [23],
malaria [24], or diabetes [25]. This renders the reliable separation of cells with different stiffness
as a great need for the diagnosis of these diseases.
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Microfluidics deals with the manipulation of fluids which are confined to a length at the micro
scale [16]. The field owes its recent growth to a variety of achievements, including methods for
focusing and sorting micron-sized particles, such as healthy and cancerous cells [16,21,22,91–99].
A great advantage of such hydrodynamic separation methods is their label-freeness. That is,
no prior treatment with, e.g., biochemical markers is needed which could potentially alter the
properties of the suspended particles.

The underlying principles of such microfluidic methods vary. Due to the confinement to a few
microns, the Reynolds number typically is small in microfluidic devices. However, some meth-
ods rely on inertial effects [96, 100] which become important, for instance for high throughput
velocities of the suspending liquid. Another prominent method is the so-called deterministic
lateral displacement which is based on the precise arrangements of obstacle arrays in a chan-
nel [101–104]. These methods primarily aim to separate solid particles according to their size
and particle deformability adds an additional degree of freedom [104,105].

On the other hand, some phenomena in low Reynolds number microfluidic systems depend
crucially on the deformability of particles. An example for this is the lift force experienced by
vesicles in shear flow due to the presence of the walls which break the spatial symmetry [106–108].
In the bulk of Poiseuille flows, i.e., away from the walls, the spatially varying shear rate of
the parabolic flow profile leads to an asymmetric deformation of the particle which causes a
cross-streamline migration down the gradient of the shear rate towards the channel center.
This migration across streamlines is well-known and has been studied for vesicles, bubbles, and
capsules [109–113]. Further studies revealed that the direction of cross-streamline migration
is inverted for cells and vesicles where the ratio of the inner and outer viscosity is sufficiently
large [114], by gravitational effects [115], and in microchannels with wavy walls [116]. While
the migration direction for these effects may depend on the deformability of particles, only two
discrete directions are possible, namely migration towards to or away from the channel center.
The separation of particles according to a continuous variation of their deformability is thus not
possible.

Time-periodic flows through microchannels have been increasingly studied recently [117–127].
They are, e.g., used in a combination with arrays of obstacles to create deterministic ratchets
[120] or to reduce clogging of the channel by the particles [121,122]. By contrast, the phenomenon
described in this chapter is based on a time-periodic switching of the flow direction, but does
not rely on obstacles. A flow through a simple, plane microchannel at low Reynolds number is
considered. Key element for the separation mechanism is an asymmetric flow oscillation where
the forward and backward velocities are differently strong, while the fluid does not move on
average in a flow period. Despite this condition of zero mean flow, there is a finite net progress
of the particles in each flow period, which is due to a different deformation of the particle in the
forward and backward flow section and results in different particle velocity relative to the speed
of the background flow.

In the following, the net progress in oscillatory flows is numerically investigated for four different
particles, as described above in section 2.3.1, namely the minimal model, the ring polymer, the
capsule, and the RBC. In addition, for the minimal model an analytical approach is possible.
The Stokesian dynamics method, see section 2.2.2, is used to simulate the minimal model, the
ring polymer, and the capsule. The LBM in combination with the immersed boundary method,
see section 2.2.3, is applied for simulations of the RBC.
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3.2. Implementation of the red blood cell

The source codes for the simulations of the minimal model, the ring polymer, and the capsule
were developed by the author of the present thesis prior to his doctorate. The simulations of
these particles, the results of which are presented in the following, were performed within the
frame of the present thesis. The LBM simulations of the RBC are based on a source code
written in the group by Dr. Andre Förtsch which, prior to the work of the present thesis, was
able to simulate a capsule in a steady, plane Poiseuille flow. During his doctorate, the author of
the present thesis added to the LBM code the RBC and the oscillatory flow, as detailed in the
following.

3.2. Implementation of the red blood cell

In the following, the implementation of the RBC is described and validated. The implementation
of the RBC comprises the biconcave resting shape, as described section 3.2.1, and the algorithm
for the bending forces, see section 3.2.2.

3.2.1. Shape

In order to obtain the biconcave initial shape of the RBC, the spherical initial shape of the
capsule with radius R0 is taken as input. The nodes of the spherical mesh are shifted according
to [128]

z(ϱi) = ±R0
2

√
1 − ϱ2

i

(
C0 + C2ϱ

2
i + C4ϱ

4
i

)
, (80)

assuming that the rotational symmetry axis of the RBC is along the z-axis, with ϱi :=
√
x2

i + y2
i /R0

[69]. The shape parameters are C0 = 0.207, C2 = 2.003 and C4 = −1.123 [128]. The initial
diameter of the RBC is given by 2R0. A cross-section of the RBC shape is sketched in Fig. 4.

Figure 4. Cross-section of a RBC through its center. The discocyte shape is described by Eq. (80). The polar
angle θ is sketched.
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3. Directed cell motion is driven by oscillatory, non-progressing flows

3.2.2. Bending force

To obtain the total energy of the RBC according to Eq. (54) it is necessary to compute the
bending energy Eb from which the bending forces can be derived. Generally, the bending
energy of a soft object with an infinitely thin surface is described by the Canham-Helfrich
model [28,129]. Here, the bending energy stored in the instantaneous surface S of the object is
given by

Eb = 2κb

∫
S

(H −H0)2 d2r, (81)

where κb is the bending modulus, H(r) is the local mean curvature of the membrane, and H0(r)
the local reference membrane curvature, also known as spontaneous curvature. There are several
approaches to include the bending force of a soft particle [130, 131]. Prior to the work of the
present thesis, the source code used for LBM simulations of RBCs was equipped with a method
for the bending algorithm for RBCs which approximates Eq. (81) as [132,133]

Eb ≈ 2κ̃b
∑
⟨i,j⟩

(1 − cos θij) . (82)

Here, the sum runs over all edges ⟨i, j⟩ which are formed by neighboring nodes i and j. θij is the
angle formed by the normal vectors of the two neighboring triangles which contain edge ⟨i, j⟩.
Following Ref. [68], in Eq. (82) κ̃b =

√
3κb has been chosen together with

cos θij ≈ 1 − 1
2
θ2

ij . (83)

The forces can be derived analytically as a function of the node positions ri from Eq. (82) (for
details see Ref. [68]) via

Fb(ri) = −∂Eb
∂ri

. (84)

While easy to implement, this algorithm showed insufficient performance when compared to
other methods that realize the Canham-Helfrich model on triangulated meshes [130]: The errors
of the force density for a static biconcave RBC are large and even diverge with increasing
mesh resolution. Furthermore, when employed for a capsule in linear shear flow, the results
obtained with this method showed significant differences compared to other methods. Note
that, in addition, the small angle approximation according to Eq. (83) can become problematic
when large RBC deformations are considered. The phenomena described in this chapter depend
sensitively on the shape changes of red blood cells. Thus, the implementation of a sufficiently
accurate bending algorithm is crucial.

Therefore, the method introduced by Meyer et al. [134] is employed in the following. It delivers
superior results than the above described method, both regarding the force density for a static
RBC, as well as dynamic simulations in shear flow, and proofed to be a reasonable trade-off
between accuracy and performance [130, 135]. In contrast to the above-described method, this
algorithm is based on an expression for the bending force as a function of the mean and Gaussian
curvature. Hereby, the bending force density (that is, the bending force per unit area) acting
on node i is obtained via

fb(ri) = 2κb
[
∆S(H(ri) −H0(ri))

+2(H(ri) −H0(ri))
(
H(ri)2 −K(ri) +H(ri)H0(ri)

)]
n(ri) , (85)
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3.2. Implementation of the red blood cell

with the local Gaussian curvature K(ri), the local outwards directed normal vector n(ri) and
the Laplace-Beltrami operator ∆S . The bending force is then given by

F b(ri) = Ai
mixedfb(ri), (86)

where Ai
mixed is the so-called mixed area. Ai

mixed is a fraction of the total surface area that is
assigned to each node, so that

N∑
i=1

Ai
mixed = AS , (87)

where AS is the total surface area. The mixed area is implemented following Ref. [134]. The
Laplace-Beltrami operator applied to a scalar function χ(ri) is given by

∆Sχ(ri) ≈ 1
2Ai

mixed

∑
j(i)

(
cot θ(ij)

1 + cot θ(ij)
2

)
[χ(ri) − χ(rj)] , (88)

where the sum runs over the one-ring neighborhood of the i-th node, with j being the index of
nodes which form adjacent faces to node i. θ(ij)

1 and θ(ij)
2 are the angles at the vertices opposite

to the edge ⟨i, j⟩ in the triangles containing node j and j + 1, respectively, which is illustrated
e.g. in Ref. [135]. The normal vector in Eq. (86) is computed by averaging the normal vectors of
the adjacent faces, weighted with their incident angle to node i [136]. The local mean curvature
is calculated via [137]

H(ri) = 1
2

3∑
k=1

(∆Sri,k)nk(ri) , (89)

where nk(ri) is the k-th component of normal vector n(ri)1. The spontaneous curvature is set
to zero. Finally, the Gaussian curvature in Eq. (86) is obtained via

K(ri) = 1
Ai

mixed

(
2π −

∑
t

θ
(i)
t

)
, (90)

with the sum running over all triangles adjacent to node i and θ
(i)
t being the angle in triangle t

at node i.

In the following, the implementation of the bending algorithm is verified for a static biconcave
RBC by plotting the mean and Gaussian curvature, the Laplace Beltrami operator of the mean
curvature, and the bending force density. This has also been done in the literature where analyt-
ical formula for these expressions were derived [130]. Since the biconcave shape is axisymmetric,
the spatial dependence of these quantities is fully characterized as a function of the polar angle

θi = arccos

 zi√
x2

i + y2
i + z2

i

 . (91)

For this, the non-dimensional quantities

H̃ := R0H, K̃ := R2
0K, ∆̃SH̃ := R3

0∆SH, f̃b := R2
0

κb
fb (92)

are introduced. Fig. 5 shows the numerical results for these expressions as a function of the
polar angle for the biconcave RBC and the spherical capsule. To this end, a discretization with
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Figure 5. Numerical results of four quantities that are used to calculate the bending forces according to Eq.
(85) on the surface of the particle (see subcaptions). The results for the biconcave RBC (red) and the spherical
capsule (blue) are shown as function of the polar angle θ.

N = 2562 has been used. A particle radius of R0 = 5 is chosen. Due to the spherical shape
of the capsule, all four expressions are constant as a function of the polar angle. The mean
and Gaussian curvature are 1, which is in accordance with the expected value for a sphere.
Consequently, one has ∆̃SH̃ = 0, and |f̃b| = 0 according to Eq. (85). The situation is different
for the biconcave shape. Here, the mean curvature, as shown in Fig. 5(a), reaches its minimum
with H̃ ≈ −1.9 for θ = 0, i.e., at the flatted part in the center of the RBC. It then increases with
growing θ, transitions to positive values, and reaching its maximum with H̃ ≈ 2.2 close to the
edge of the RBC. The Gaussian curvature, shown in Fig. 5(b), changes sign twice, being positive
close to the center and the edge of the RBC, and negative for a small interval in between. The
Laplace Beltrami operator of the mean curvature, see Fig. 5(c), and the magnitude of the force
density, as shown in Fig. 5(d), exhibit a more complex behavior. For all four quantities, good
agreement with the literature [130] is observed.

1Note that this definition of the mean curvature deviates from the mean curvature used in the definition of the
tension force in Eq. (65) by a factor of 1/2. Both conventions are common depending on the literature. In
the present chapter, Eq. (89) is used whereas in chapters 6 and 7 the mean curvature without the prefactor is
employed.
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3.3. Asymmetrically oscillating flow

3.3. Asymmetrically oscillating flow

The findings reported in the present chapter are based on an asymmetrically oscillating Poiseuille
flow with zero mean flow per oscillation period. In the following, first a general description of
the flow is given in section 3.3.1. The implementation and characterization of the oscillatory
flow in the LBM is then elaborated in section 3.3.2.

3.3.1. General remarks

Assuming that the two plane channel boundaries are located at y = ±w, the parabolic flow
profile is given by

u (r, t) = ũ(t)
(

1 − y2

w2

)
ex, (93)

where ũ(t) is the flow amplitude, that is, the flow speed at the center of the channel, and êx is
the unit vector in x-direction. The dependence of the flow amplitude on time t is given by

Figure 6. Asymmetrically oscillating flow with zero mean net flow. The flow amplitude ũ(t) as a function of
time t is shown according to Eq. (94). The forward section (purple) with u1 > 0 lasts for a time T1, while the
backward section (orange) with u2 < 0 lasts for a time T2. One has T1 < T2 and u1 > |u2|. Figure adapted from
Ref. [86]. Copyright (2022) by the American Physical Society.

ũ(t) =

u1 > 0 for t ∈ [0, T1[
u2 < 0 for t ∈ [T1, T [

, (94)

repeating periodically n times, where n is the number of flow periods and T = T1 + T2 the flow
period. That is, each flow period is subdivided into a forward (flow speed u1, duration T1) and
a backward section (flow speed u2, duration T2). Furthermore, zero mean flow per oscillation
period is considered,

u1T1 + u2T2 = 0. (95)

This leads to the definition of the flow asymmetry A which sets in relation the ratios of the two
durations and the two flow speeds,

A = T2
T1

= −u1
u2
. (96)

The flow amplitude is sketched in Fig. 6 for one flow period and A = 2.
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3. Directed cell motion is driven by oscillatory, non-progressing flows

3.3.2. Implementation with the Lattice-Boltzmann method

Prior to the work of the present thesis, the existing source code allowed for LBM simulations
of stationary plane Poiseuille flow. The present section focuses on the implementation and
characterization of the oscillatory flow in the LBM. To this end, no particles are considered.
The simulation box of the Eulerian grid has a size of Sx, Sy, and Sz in the respective spatial
directions. The plane channel walls are located in y-direction, i.e., Sy = 2w. In x- and z-
direction periodic boundaries are employed. In this section, the parameters as listed in tab. 1
are chosen. Further explanations for the choice of LBM parameters are given below in section
3.4.

Table 1. Parameters used for simulations of the oscillatory flow without a particle, if not mentioned otherwise.

parameter value

lattice constant ∆xl 1
time step ∆t 1

LBM relaxation time τ 1
fluid viscosity η 1

6
system size in x-direction Sx 40
system size in z-direction Sz 40

As described above in section 2.2.3.2, in the Stokesian dynamics method, the flow amplitude
according to Eq. (94) serves as direct input for the simulation, while the fluid in the LBM
is driven by the pressure gradient ∇P . In the present case of an oscillatory flow, a piecewise
constant time-dependence of ∇P is applied. Assuming a steady, laminar Poiseuille flow between
two planar walls, the Navier-Stokes equation yields

∇P1,2 = −2u1,2η

w2 ex, (97)

where u1,2 are the respective flow amplitudes, that is, the signed flow speed at the channel center.
Eq. (97) is however valid only for a fully developed flow profile. Given a quickly changing pressure
gradient, the full flow profile develops after a certain relaxation time τf . In the context of an
initially homogeneous flow entering a channel, such a transient has been referred to as the entry
flow [138].

Fig. 7 shows the maximum of the absolute value of the flow velocity in the channel, |umax|,
as a function of time for a LBM simulation. Hereby, |umax| corresponds to the magnitude
of the flow velocity at the channel center. Starting with a fully developed flow profile with
u1 = 5 × 10−3, the pressure gradient switches sign for the first time at t = 5 × 103. As a
result, |umax| decreases sharply, increases again as soon as the flow direction reverses, and then
saturates to |umax| = 2.5 × 10−3. This value corresponds to a fully developed flow in negative
x-direction with u2 = −2.5×10−3. Reserving the pressure gradient again at t = 1.5×104 results
in |umax| saturating to 5 × 10−3 and the cycle repeats.

Fig. 7 furthermore shows the influence of the system sizes Sx and Sy on the saturation of the
flow profile. The relaxation time depends only on the wall-to-wall distance Sy, whereas the size
of the simulation box along the flow direction has no influence on the saturation dynamics of the
flow amplitude. In particular, comparing the graph for Sx = 20 and Sy = 40 to the saturation
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3.3. Asymmetrically oscillating flow

Figure 7. Maximum of the absolute value of the flow velocity in the channel, |umax|, as a function of time t,
resulting from a piecewise constant, asymmetrically oscillating pressure gradient in LBM simulations. The pressure
gradients in forward and backward section, ∇P1,2, are chosen according to Eq. (97) to obtain u1 = 5 × 10−3 and
u2 = −2.5 × 10−3 (A = 2), where u1,2 are the flow amplitudes corresponding to the fully developed parabolic flow
profiles. n = 2 flow periods are shown with T1 = 5 × 103 and T2 = 104. The values for three different combination
of system sizes in x- and y-direction, Sx and Sy, are shown (see legend).

dynamics for Sx = Sy = 20 shows that a decrease in the wall-to-wall distance results in a faster
relaxation. Conversely, increasing the system size in x-direction from Sx = 20 to Sx = 40 while
keeping Sy = 40 fixed does not change the result.

The relaxation time τf can be extracted from a fit to the numerically obtained relaxation dy-
namics. Assuming exponential relaxation, an ansatz for the time-dependence of |umax| can be
made according to

|umax|(t) = −u2

[
1 − exp

(
T1 − t

τf

)]
. (98)

In the following, a symmetric flow oscillation with u1 = −u2 = 5 × 10−3 and T1 = T2 = 5 × 104

is chosen. The time where the flow switches sign (i.e., shorty after T1, see Fig. 7) is chosen as
the lower limit and the end of the first flow period as the upper limit of the time-interval for
the fit. Using τf and T1 as fit parameters, the results for the relaxation time of the flow are
plotted in Fig. 8 as a function of the channel width. τf increases monotonically with Sy. This
trend agrees with the observation from Ref. [138] that the entry length of a flow at low Reynolds
number increases with growing channel radius. A quantitative comparison to the literature can
be made by introducing an effective entry length for the oscillatory flow which is approximated
by xe ≈ (u1 − u2)τf . For Sy = 80 one has τf = 3.98 × 103 from Fig. 8, yielding xe = 39.8. For
a cylindrical channel, the entry length has been shown to be at the order of magnitude of the
channel radius [138]. In the present case of a plane channel, the lateral length of the channel is
given by its half-height w = 40. Thus, one finds w ≈ xe which is in good agreement with the
literature.

The findings of the present section are important for the investigation of soft particles in os-
cillatory flows since the flow relaxation time poses a lower limit to the other time scales of the
problem. This is because stationary particle shapes are assumed during both forward and back-
ward section of the oscillatory flow, as described below. The time scale on which the particle
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3. Directed cell motion is driven by oscillatory, non-progressing flows

Figure 8. Relaxation time τf of the flow as a function of the wall-to-wall distance Sy, as obtained from a fit of
Eq. (98) to |umax|(t), see Fig. 7.

deforms is given by the particle relaxation time τp which depends on the particle’s properties,
as described below. For the particle to reach a stationary shape, the flow must have developed
its full profile and therefore τp > τf has to hold.

3.4. Parameter choice for Lattice-Boltzmann simulations

Before proceeding to the simulation results, the parameter choice for LBM simulations is dis-
cussed in the following. For a fixed value of the time step and the lattice constant, setting the
LBM relaxation time and the fluid viscosity fixes the fluid density according to Eq. (36). In
the present thesis, τ = 1 and η = 1/6 are chosen so that ϱ = 1. In the following, the Reynolds
number in LBM simulations is defined as

Re = u1ϱR0
η

. (99)

To minimize inertial effects, Re has to be small. The lower limit of the particle radius R0 is
determined by the immersed boundary method which requires R0 to be significantly larger than
∆xl to ensure sufficiently accurate interpolation [59]. On the other hand, larger values for R0
result in increasing simulation run times since the size of the simulation box in y-direction has
to be scaled accordingly in order to obtain the same ratio of particle size to channel height. This
ratio is referred to as the confinement χ of the particle and is given by

χ = 2R0
Sy

= R0
w
. (100)

In the following, R0 = 9 is chosen, as, e.g., in Ref. [68]. To vary the confinement, Sy is changed.
The only free parameter to control the Reynolds number in Eq. (99) is thus the flow amplitude
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3.5. Explanation for the net progress despite zero mean flow

u1. The flow amplitude cannot be chosen arbitrarily small since decreasing u1,2 result in growing
simulation run times. Throughout the present thesis, Re < 0.3 holds which represents a trade-off
between acceptable computational effort and small inertial effects.

Whereas the system size in y-direction is determined by the confinement as in Eq. (100), the
lower limits of the simulation box sizes along x- and z-directions are a priori only given by the
size of the particle. However, if the system size in these directions is too small, the particle
experiences hydrodynamic interaction with its image due to the periodic boundaries which leads
to unphysical results. To rule out such interactions, simulations of a RBC in a symmetrically
oscillating flow (A = 1) are conducted, where zero net progress is expected. If Sx and Sz are
chosen at the order of the particle size, a finite drift in x-direction, caused by the hydrodynamic
self-interaction, is observed. This drift decreases with increasing system size in x- and z-direction
and finally saturates for a sufficiently large size of the simulation box. This is the case for
Sx = Sz = 128 which are chosen in the following.

Besides the Reynolds number and the confinement, the capillary number C represents a third
non-dimensional quantity which is important in the description the problem. It is defined as

C1,2 = 2|u1,2|R0τp

w2 , (101)

where C1 and C2 is the capillary number in the forward and backward flow section, respectively.
τp is the above-mentioned particle relaxation time. For the RBC it is in the following defined as
τp = ηR0/κs. Eq. (101) can be interpreted as the non-dimensional curvature of the flow profile,
given by ∂2

yux = 2|u1,2|/w2, where ux is the x-component of the flow velocity in Eq. (93). Given
that only particle positions at the center of the parabolic flow are considered where the shear
rate γ̇ = ∂yux vanishes, the curvature is the only relevant spatial derivative of the flow profile. C
is the ratio between viscous and elastic forces and thus measures the deformation of the particle
due to the flow.

Finally, parameter values for the elastic constants of the RBC have to be given. In the following,
variables with a tilde denote quantities in physical units, variables without a tilde refer to
quantities in simulation units. The strain and bending moduli of a RBC are given by κ̃s =
5 × 10−6 N m−1 and κ̃b = 3 × 10−19 N m [139]. Assuming typical experimental values of ũ1 =
2.5 × 10−1 mm s−1, w̃ = 5 µm, η̃ = 5 mPa s, and R̃0 = 3.9 µm [87], this gives a capillary number
of C = 0.3, from which one obtains κs = 6.51879 × 10−4. Since the surface area and volume
of the RBC are assumed to be conserved, relatively large values of κα = κv = 100κs for these
stiffness constants are chosen. The value for the bending modulus in simulation units can be
obtained by computing the bending number B = κb/(R2

0κs) which sets in relation bending
and shear elasticity of the RBC. From the above-named physiological quantities one obtains
B = 3.9 × 10−3, and from this κb = 2.08293 × 10−4. All discussed parameters are summarized
in tab. 2.

3.5. Explanation for the net progress despite zero mean flow

In the present section, an explanation for the net progress of soft particles in oscillatory flows
with zero mean flow is given. At first, the general behavior is described for simulation results
of all four particle types in section 3.5.1. The deformation and entrainment of the particle in a
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Table 2. Parameters used for LBM simulations of the RBC, if not mentioned otherwise.

parameter value

lattice constant ∆xl 1
time step ∆t 1

LBM relaxation time τ 1
fluid viscosity η 1

6
RBC strain modulus κs 6.51879 × 10−4

RBC area dilation modulus κα 6.51879 × 10−2

RBC bending modulus κb 2.08293 × 10−4

RBC volume modulus κv 6.51879 × 10−2

initial particle radius R0 9
channel height 2w 47

system size in x-direction Sx 128
system size in z-direction Sz 128
forward flow amplitude u1 1.6 × 10−3

backward flow amplitude u2 −4 × 10−4

forward flow duration T1 2 × 105

backward flow duration T2 8 × 105

simulation time tend 3 × 106

number of nodes N 642

steady Poiseuille flow are then investigated in section 3.5.2. Finally, explicit expressions for the
net progress and the particle’s lateral size are given for the minimal model in section 3.5.3.

3.5.1. Central observations

In Poiseuille flows through rectangular and cylindrical microchannels, RBCs are deformed by
the parabolic flow field. Hereby, cells which move along the channel center loose their biconcave
shape and adopt a so-called croissant or parachute shape [2,3,139–141]. Such shapes are repro-
duced with LBM simulations here, as shown in Fig. 9. This deformation takes place during the
forward and backward flow section and the respective shapes are curved in opposite direction.
In addition, the RBC shape is deformed stronger in the forward than in the backward section
due to the flow asymmetry, u1 > |u2|. The deformation of a particle in Poiseuille flow can be
quantified by its lateral size ∆y1,2 in the respective flow section, as sketched in Fig. 9. The
different particle velocities in the two flow sections are denoted as v1,2, with v1 > 0 and v2 < 0.
Given that the RBC is initially placed with its rotational symmetry axis along the x-axis, one
observes a croissant shape with stronger curvature and a smaller lateral size in the forward flow
section compared to the backward flow section where the flow is weaker and the deformation
smaller. Therefore, one has ∆y1 < ∆y2 < 2R0 for the RBC.

Despite vanishing mean flow, one observes a finite net progress along the channel axis as il-
lustrated in Fig. 10: The RBC is advected by the flow alternately in positive and negative
x-direction, leading to sawtooth-like kymograph. However, after each flow period, a residual
net progress ∆x is observed, indicating that the RBC does not follow the flow completely. This
migration step takes place along the positive x-direction and, after an initial transient, remains

46



3.5. Explanation for the net progress despite zero mean flow

Figure 9. Snapshots of the RBC from a LBM simulation in the forward (left of vertical dashed line) and backward
flow section (right of vertical dashed line). The flow is stronger (amplitude u1) in the forward section, leading to
a stronger deformation of the RBC than in the backward section where the flow is weaker (amplitude u2). The
deformation is quantified by the lateral size ∆y1,2. The RBC lags behind the flow less in the forward than in the
backward section, i.e., v1/u1 > v2/u2, where v1,2 is the particle velocity. The resulting net progress ∆x (blue)
per flow period T = T1 + T2 is the difference between the RBC’s initial (shaded snapshot, black bar) and its final
position (bold snapshot, orange bar). Figure adapted from Ref. [86]. Copyright (2022) by the American Physical
Society.

(a) Position along channel axis. (b) Local minima of position along channel axis.

Figure 10. (a): Position of the RBC’s center along the channel, xc, as a function of time (kymograph) in
the asymmetrically oscillating flow. The particle position and time are given in units of the RBC’s equilibrium
diameter d0 and the flow period T , respectively. (b): Local minima of the kymograph in (a), where a net progress
∆x per flow period is visible. Figure adapted from Ref. [86]. Copyright (2022) by the American Physical Society.

constant in time. Similar observations are made for the minimal model, shown in Fig. 11, with
simulation parameters as given below. Here, the net progress ∆x > 0 despite zero mean flow
grows linearly with the number of flow periods n as well.

By contrast, simulations of the ring polymer and the capsule reveal a net progress in negative
x-direction. However, all four particle types share a non-zero net progress as a common feature.
Fig. 12 shows simulation snapshots during the forward and backward flow section for the capsule,
the ring polymer, and the minimal model. The three particles are deformed more amply during
the forward section than during the backward section. This leads to particle shapes which are
not mirror symmetric, similar to the RBC shown in Fig. 9.
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Figure 11. Position xc along the channel axis of the minimal model’s center in units of its initial diameter d0

as a function of time in units of the flow period T for n = 10 flow periods. The particle moves along the flow
alternately in positive and negative x-direction. Despite zero mean flow, a net progress in positive x-direction
takes place which is illustrated by the horizontal black dashed line.

Figure 12. Simulation snapshots of the capsule, the ring polymer, and the minimal model (MM) during the
forward (left half of figure) and backward flow section (right half of figure). A stronger flow in the forward (u1)
than in the backward section (u2) is applied, which results in particle shapes which are not mirror-symmetric
with respect to the vertical black dashed line. Figure adapted from Ref. [86]. Copyright (2022) by the American
Physical Society.

3.5.2. Steady Poiseuille flow: Shape-dependent particle entrainment

In order to understand the implications of the particle deformation on the net progress in
oscillatory flow, it is appropriate to first examine the deformation behavior in a steady flow
which is done in the present section for the capsule as an exemplary particle. Consider a steady,
plane Poiseuille flow with flow amplitude ũ. Fig. 13(a) shows the time-evolution of the capsule’s
lateral size after the onset of the flow. ∆y first increases and, after a time at the order of
τp, saturates to a steady-state value as soon as the particle reaches its respective stationary
shape, as shown in Fig. 13(b). Such bullet-like deformations have also been found for human
promyelocytic cells [142, 143]. The lateral extension of the capsule is larger for C ′ = 0.98 than
for C ′′ = 0.49, i.e., one has ∆y′ > ∆y′′ > d0. The capsule thus shows the opposite behavior
compared to the above-described RBC, where stronger flows result in a decreasing lateral size.
This illustrates that the deformation behavior in Poiseuille flow depends on the particle type.
A lateral size which increases with the flow amplitude is in agreement with previous numerical
studies on elastic neo-Hookean particles with spherical equilibrium shape in Poiseuille flow [144].

If hydrodynamic interactions are neglected, the velocity of a particle in steady Poiseuille flow
is given by the incident flow velocity averaged over the particle’s surface. In a Poiseuille flow

48



3.5. Explanation for the net progress despite zero mean flow

Figure 13. Numerically determined lateral size and ratio of particle over flow speed for a capsule in steady
Poiseuille flow. (a): Lateral size ∆y as a function of time after the onset of the flow at t = 0 for two different flow
strengths, given by the capillary numbers C′ = 0.98 (blue dotted line) and C′′ = 0.49 (red dashed line). Lateral
size is given in units of the capsule’s initial diameter d0 and time in units of the particle relaxation time τp. (b):
Simulation snapshots of the capsule’s stationary shape for C′ and C′′. (c): The capsule’s lateral size (top panel)
is anti-correlated to its speed divided by the background flow amplitude, v/ũ (bottom panel). Data for the figure
taken from Ref. [88]. Figure adapted from Ref. [86]. Copyright (2022) by the American Physical Society.

where the velocity decays from the channel center towards the walls, the particle cannot follow a
single streamline due to its finite size and thus lags behind the fluid [113]. This lag behind is also
responsible for the outward migration of soft particles in Poiseuille flows with wavy streamlines
as shown in Ref. [116], to which the author of the present thesis contributed the numerical results
for RBCs. In the present case of a flow with straight streamlines, the lateral size of a particle
determines its entrainment by the flow. Consequently, ∆y is expected to be anti-correlated to
the ratio between the particle speed and the flow speed at its center, v/ũ. This is confirmed by
numerical simulations for the capsule as shown in Fig. 13(c), where a growing lateral size yields
a decreasing ratio v/ũ. In the case of the capsule, ∆y increases as a function of the capillary
number and therefore the ratio of particle over flow speed decreases with C. The ratio between
the speed of the particle and the flow has also been shown experimentally to depend on the flow
strength for RBCs in flows through microcapillaries [140].

In the oscillatory flow, the net progress is given as the sum of the displacement of the particle
during the forward and the backward section,

∆x = v1T1 + v2T2. (102)

From Eq. (102) and the condition of vanishing mean flow in Eq. (95) follows, as also described
in Ref. [88], that net progress in positive x-direction takes place for

v1
u1

>
v2
u2

(103)
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and net progress in negative x-direction for2

v1
u1

<
v2
u2
. (104)

Eqs. (103) and (104) indicate that the ratio between the speed of the particle and the flow speed
during each of the two flow sections determines the direction of the particle’s net progress in the
oscillatory flow. Consider a capsule in oscillatory flow with asymmetry A = 2 with C1 = C ′ and
C2 = C ′′. Fig. 13(c) then allows to determine its lateral size during the forward and backward
flow sections and the corresponding ratios v1/u1 and v2/u2. This yields a larger lag behind of
the capsule during the forward section compared to the backward section and, consequently,
the net progress is expected to be directed along the negative x-direction. This is consistent
with the numerical result as described above. By contrast, the lateral size of a RBC decreases
as a function of C, resulting in increasing v/ũ. This leads to a net progress along the positive
x-direction in the oscillatory flow. In the case of a rigid particle, no deformation takes place and
∆y and v/ũ are constant functions of the capillary number. The lag behind of a rigid particle
is thus equal during the forward and the backward flow section, resulting in zero net progress
in each flow cycle.

Since the net progress relies on different deformations of the particle during the two flow sections,
the time intervals T1 and T2 have to be chosen larger than the particle relaxation time τp. If
the deformation behavior of a soft particle is initially unknown, characterizing its lateral size
as a function of time for the forward and backward capillary number as in Fig. 13(a) suffices
to obtain the lower bounds for T1,2 as well as the sign of the net progress. In general, the time
intervals between flow reversals should be chosen much larger than the particle relaxation time
in order to ensure a reasonable difference between the traveled distances during the forward
and backward flow section, v1T1 and |v2|T2. According to Eq. (102), longer intervals T1 and T2
result in a larger net progress per flow period. Since ∆x scales linearly with T , the total net
progress of a particle can be increased either by choosing longer times between flow reversals or
a growing number n of oscillation cycles, provided that T1,2 ≫ τp holds.

3.5.3. Analytical approach

For the minimal model as described in section 2.3.1.1, the net progress ∆x and the lateral
sizes ∆y1,2 can be determined analytically with respect to the particle properties. A detailed
calculation is given in the Master’s thesis of the author of the present thesis [88] and can also
be found in Ref. [86]. In the following, only the most important steps of the calculation are
outlined and its results given.

Neglecting hydrodynamic interactions between the beads of the minimal model, the simplified
equations of motion (15) for each bead i = {1, 2, 3} are given by

ṙi = u(ri) + Fi

6πηa
. (105)

In the limit of small deformations of the particle, its relaxation time is much shorter than the time
intervals between flow reversals, i.e., τp ≪ T1,2. This allows one to assume a stationary particle
shape in each flow section. In the following, the particle relaxation time for the minimal model
is defined as τp = ζ/k with ζ = 6πηa. Together with Eq. (105) and the bead forces according
2Note that the right hand sides of Eqs. (103) and (104) are positive since v2 < 0 and u2 < 0.
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to Eq. (45), the explicit expressions for v1 and v2 can be found. The actuation velocity of the
particle in the oscillatory flow is defined as the net displacement of the particle divided by the
flow period,

vact = ∆x
T

(102),(96)= v1 +Av2
A+ 1

. (106)

With this and the expressions for v1 and v2 [86, 88], the actuation velocity is obtained as

vact ≈ b

3τp
B1
W (A)A

1
3 −W (1)

A+ 1
, (107)

where

W (x) :=

√√√√1 + 8x
2
3

4x
2
3 +B1

with B1,2 :=
(
2C2

1,2

) 1
3 . (108)

The lateral size of the minimal model during the forward and backward flow section decreases
with increasing C according to

∆y1,2 ≈ 2b
[
1 − B1,2

12
+ O(B2

1,2)
]
. (109)

In the special case of a symmetrically oscillating flow, i.e., for A = 1, one has u1 = −u2 and
thus C1 = C2. From Eq. (109) follows that the flow-induced deformation of the particle in
the two flow sections is identical. In other words, one has ∆y1 = ∆y2 and the shapes during
the forward and backward section are mirror-symmetric. In this case, the net progress vact
vanishes according to Eq. (107). For an asymmetrically oscillating flow, i.e., for A ̸= 1, this
mirror symmetry is broken with ∆y1 < ∆y2. Here, one obtains a non-zero actuation velocity
according to Eq. (107). Assuming A > 1, the difference between the lateral sizes in both flow
sections, ∆y2 −∆y1, increases for growing asymmetry and therefore the actuation velocity grows
as well.

3.6. Characterization of the net progress

In the following, the net progress in oscillatory flows with zero mean flow is investigated system-
atically for the soft particles described above in section 2.3.1. After simulations of the minimal
model, the ring polymer, and the capsule in unbounded flows in section 3.6.1, the results of
LBM simulations in bounded flows are given in section 3.6.2.

3.6.1. Stokesian dynamics simulations

In the following, the net progress is investigated as a function of the capillary number C and
the flow asymmetry A. To this end, the particle relaxation time for the ring polymer is defined,
in analogy to the minimal model, according to τp = ζ/k with ζ = 6πηa. As for the RBC,
the relaxation time of the capsule is given by τp = ηR0/κs. The parameters for simulations in
unbounded flows as used in this section are listed in tab. 3. The numerical findings are compared
to the analytical prediction from Eq. (107). Note that in Ref. [88], C was varied by changing
the elastic constants, while here, it is adjusted via the flow amplitude. This is more consistent
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3. Directed cell motion is driven by oscillatory, non-progressing flows

Table 3. Parameters used for simulations of the minimal model, the ring polymer, and the capsule, as well as
for analytical considerations for the minimal model, if not mentioned otherwise.

parameter minimal model ring polymer capsule

time step ∆t 2 × 10−5 2 × 10−4 5 × 10−2

fluid viscosity η 1 1 1
particle bead radius a 0.1 0.1 0.2

particle spring constant k 60 10 -
undeformed particle size d0 4 6 13.269
particle strain modulus κs - - 0.2

particle bending modulus κb - 50 0.1
particle volume modulus κv - - 3

channel height 2w 6 12 40
forward flow amplitude u1 40 30 1.5

backward flow amplitude u2 −20 −15 −0.75
forward flow duration T1 0.6 10 1250

backward flow duration T2 1.2 20 2500
simulation time tend 18 1.5 × 102 3.75 × 104

with regards to a direct comparison of the different particle models since the elastic constants
are particle-specific. For a given flow asymmetry, upon varying C1, the flow amplitude during
the backward section is adapted according to C2 = C1/A in order to maintain zero mean flow
in each oscillation cycle.
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Figure 14. Net progress ∆x per flow period in units of the initial particle diameter d0 in unbounded, asym-
metrically oscillating flow as a function of the capillary number in the forward flow section, C1. For the minimal
model (MM), the analytical result ∆x = vactT according to Eq. (107) (orange solid line) and the numerical one
(black dashed line) are shown. The numerical results for the ring polymer and the capsule are displayed as red
short-dashed and blue long-dashed lines, respectively. Reprinted figure with permission from Ref. [86]. Copyright
(2022) by the American Physical Society.

Fig. 14 shows the net progress per flow period in the oscillatory flow as a function of C1. For all
particles, the magnitude of the net progress, |∆x|, increases with growing C1. This is consistent
with the above described reasoning that stronger flows results in a stronger deformation of
each particle during both flow sections. In particular, the difference between deformations, i.e.,
lateral sizes, |∆y1 − ∆y2|, in both flow sections grows with increasing C1,2, and therefore the
net progress increases as well. Whereas ∆x is positive for the minimal model, it is negative
for the ring polymer and the capsule. As discussed above, this is reasoned in the particle-
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specific response to a parabolic flow: For increasing flow strength, the lateral size of the minimal
model and the RBC becomes smaller whereas the ring polymer and the capsule are stretched
along the y-direction. In the case of the ring polymer, more complex shape deformations are
possible which can lead to a reversal of the migration direction in the oscillatory flow as further
described in Ref. [88]. Fig. 14 furthermore shows that the analytical formula agrees well with the
numerical findings for the minimal model, especially in the regime of small capillary numbers.
This reflects the approximation of small particle deformations made in the derivation of the
analytical expression above.
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Figure 15. Net progress ∆x per flow period in units of the initial particle diameter d0 in unbounded, asymmet-
rically oscillating flow as a function of the flow asymmetry A. For the minimal model (MM), the analytical result
∆x = vactT according to Eq. (107) (orange solid line) and the numerical one (black dashed line) are shown. The
numerical results for the ring polymer and the capsule are displayed as red short-dashed and blue long-dashed
lines, respectively. Reprinted figure with permission from Ref. [86]. Copyright (2022) by the American Physical
Society.

Fig. 15 shows the net progress for the three particles as a function of the flow asymmetry. Starting
from A = 1, the asymmetry is varied by decreasing u2 and increasing T2 to ensure zero mean
flow, see Eq. (95), while keeping u1 and T1 constant. |∆x| increases monotonically with A for all
types of soft particles, as shown in Fig. 15. For A = 1, i.e., for a symmetrically oscillating flow,
zero net progress is observed for all particles, corresponding to the above formulated expectation.
The analytical approximation and numerical result for the net progress for the minimal model
also agree well here.

3.6.2. Lattice-Boltzmann simulations of red blood cells

In the following, the results from LBM simulations of RBCs are presented. First, a single RBC
in the oscillatory flow is studied in section 3.6.2.1 and then the investigations are extended to
multiple RBCs in section 3.6.2.2.

3.6.2.1. Single cell dynamics

The RBC is placed at the center of the channel with the rotational symmetry axis of its initial
biconcave shape aligned with the x-direction. In agreement with experiments [87], a flow asym-
metry of A = 4 is chosen throughout the analysis. Fig. 16 shows ∆x as a function of C1 in the
oscillatory flow. For the determination of ∆x the average value of the net progress within the
range of three flow periods is taken into account. The net progress of the RBC takes place along
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3. Directed cell motion is driven by oscillatory, non-progressing flows

Figure 16. Net progress ∆x of the RBC per flow period in units of its initial diameter d0 in bounded, asymmet-
rically oscillating flow as a function of the capillary number in the forward flow section, C1. The results for two
different confinements χ = 0.38 (blue solid line) and χ = 0.5 (red dashed line) are shown. Reprinted figure with
permission from Ref. [86]. Copyright (2022) by the American Physical Society.

the positive x-direction for the majority of capillary numbers. An exception are small values of
C1, where ∆x < 0 is observed. This non-monotonous behavior is reasoned in the more complex
deformation of RBCs when exposed to shear flow compared to the particles whose net progress
is shown in Fig. 14.

The results of the Stokesian dynamics simulations as given above in section 3.6.1 proof that
the net progress originates from the deformation of the particle in the bulk of the flow, since
the hydrodynamic interaction of the particle with the channel walls has been neglected. This
is a good approximation in the limit of small χ. The LBM has the major merit that this
hydrodynamic interaction is taken into account and the influence of the walls on the net progress
can be investigated. In Fig. 14 the results for two different, experimentally common values of
χ = 0.5 and χ = 0.38 are displayed. The magnitude of the net progress is larger for χ = 0.38
than for χ = 0.5 throughout the majority of values of the capillary number. From this it is
concluded that the net progress in oscillatory flows is reduced, but only quantitatively changed
by the particle-wall hydrodynamic interactions. The particle deformation is mainly determined
by the shear stresses of the parabolic flow, while contributions to the particle deformation which
stem from the hydrodynamic interaction with the walls are secondary and thus provide only
corrections to the leading order bulk effect.

3.6.2.2. Multiple cell dynamics

Here, a concise analysis of LBM simulations with four RBCs in the asymmetrically oscillating
flow is given. This allows in particular an estimation of the role of the hydrodynamic interactions
between particles in the oscillatory flow. For simplicity, the four RBCs are initially placed at the
center of the channel along the x-axis with x1

0 = 0, x2
0 = 31.5, x3

0 = 63.5, and x4
0 = 95.5, where xi

0
is the x-component of the initial position of the i-th RBC. In order to illustrate the application
potential of the net progress in oscillatory flows for the sorting of particles according to their
stiffness, two different values for the strain modulus are chosen, namely κs = 6.51879 × 10−4 for
RBCs 1 and 3 (denoted as “soft” RBCs in the following), and κs = 1.30376 × 10−3 for RBCs
2 and 4 (denoted as “stiff” RBCs in the following). A flow strength of u1 = 2.4 × 10−3, and
u2 = −6 × 10−4 accordingly, is chosen.
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3.7. Summary of part I

(a) Trajectory along channel axis. (b) Maxima of trajectory along channel axis.

Figure 17. Simulations of four RBCs with two different elasticities in bounded, oscillatory flow. RBCs denoted
as “soft” have a shear modulus of κs = 6.51879 × 10−4, “stiff” RBCs shear modulus of κs = 1.30376 × 10−3.
(a) shows the positions along the x-axis in units of the initial RBC diameter d0 as a function time, (b) the
local maxima of the curves in (a) where the initial position has been subtracted. Figure adapted from Ref. [86].
Copyright (2022) by the American Physical Society.

Fig. 17(a) shows the trajectories of the four RBCs in the asymmetrically oscillating flow. Similar
to the above described case of a single particle, all cells follow the flow in positive and negative x-
direction during the respective flow section, resulting in oscillatory trajectories. The net progress
becomes clearly visible by plotting the local maxima of the trajectory xc(t), as shown in Fig.
17(b). Here, the respective initial position xi

0 has been subtracted which allows to directly
compare the net progress for the differently stiff RBCs. While all RBCs exhibit a net progress
in positive x-direction, soft RBCs show a larger ∆x than stiffer ones. The maxima agree well
for the two soft RBCs as well as for the two stiff ones. This shows that the net progress does
not depend on the initial position along the channel axis (the channel exhibits translational
invariance in x-direction), and only on the stiffness of the particle. These findings furthermore
suggest that the hydrodynamic interaction between particles does not eliminate the net progress,
at least not for the inter-particle distances chosen here.

3.7. Summary of part I

This part of the present thesis focused on the flow-induced actuation of passive cells, such as
red blood cells, in oscillatory flows. Despite zero mean flow, cells migrate selectively along the
channel axis according to their stiffness in every flow cycle. Since cell stiffness is altered for a
variety of diseases, this propulsion mechanism enables the separation of cells with respect to
their health status and can thus be applied for the identification of malignant cells within a
sample. In contrast to so-called microfluidic ratchets [120–122], the presented method allows
for the sorting of cells according to their size and deformability using oscillatory flows without
asymmetric posts inside the channel. The broken time-reversal symmetry, a requirement for
the actuation of particles in a low Reynolds number fluid, is imposed via an asymmetric flow
oscillation which consists of alternating fast forward and a slow backward sections.

While the migration step of particles of the same type with different stiffness differs in its
magnitude, it was shown that particles of different type may be even propelled in opposite
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directions. For instance, particles which respond to flow by adopting a smaller lateral size, such
as RBCs [139], migrate in the direction of the stronger flow. Other particles are stretched in
lateral direction as they adopt bullet-like shapes [144] as observed for HeLa cells [142], and thus
move along the direction of the weaker flow. In both cases, particles of different elasticity are
separated from another. This accentuates the potential of the method for the rapid and accurate
separation of different cell types.

The periodic flow reversals allow for the operation of the sorting mechanism in short channels
compared to other methods. This paves the way for the design of compact devices for the
identification of diseased cells. Another strength of the method is that even cells with small
elasticity differences can be separated by simply increasing the number of flow cycles. Moreover,
since the mechanism does not rely on inertial effects, small flow amplitudes can be applied
which enables cell separation at physiological shear stresses where cells are not damaged or
altered mechanically or biochemically.

In the Master’s thesis of the author of the present thesis [88], a related propulsion phenomenon
has been described where particles with inhomogeneous stiffness or asymmetric shape progress
along the channel axis in symmetrically oscillating flows. A great advantage of the mechanism
present here is that such an intrinsic particle asymmetry is not necessary. In fact, using analytical
calculations and numerical simulations of four different particles types, it was demonstrated in
the present part of the thesis that the net progress in oscillatory flows is generic and takes place
for any particle which is deformed by a Poiseuille flow.

LBM simulations of RBCs in bounded Poiseuille flows revealed that the net progress is primarily
a bulk effect which is quantitatively affected, but not eliminated, by hydrodynamic particle-wall
interactions. Further LBM simulations of multiple cells point to the fact that also inter-particle
hydrodynamic interactions play only a minor role in the mechanism, at least for dilute suspen-
sions. This was verified by recent experiments [87] where even large ensembles of RBCs showed
a net drift in each flow cycle, while rigid beads did not move on average. These experiments
furthermore demonstrated that RBCs progress along the direction of the stronger flow section,
in agreement with the theoretical results reported in the present chapter.

The net progress can be estimated for typical experimental parameters: Consider a suspension
of RBCs with a diameter of d0 = 8µm with a shear modulus κs of 7µN/m for healthy cells
and 10µN/m for RBCs with the sickle cell mutation [23, 145]. After 250 s of oscillation with a
flow amplitude of u1 = 4.8 mm s−1 and a flow asymmetry of 4 in a microchannel with height
2w = 21µm, healthy RBCs will have moved along the channel axis by ∆x = 3.6 mm, malignant
cells only by ∆x = 1.3 mm per flow cycle.
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Deformable microswimmers in Poiseuille flows
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4. Lateral migration of swimmers in planar flows

The navigation of microswimmers, such as sperm cells, bacteria, or artificial swimmers, is guided
by rheotaxis, the reorientation with respect to flow gradients. Deformable microswimmers in
Poiseuille flows through planar channels are known to drift towards the channel center, where
they orient against the flow which enables them to switch from tumbling to swinging motion.
In the present chapter, this inward drift is explained by the flow-induced deformation of a semi-
flexible microswimmer and its ability to self-propel which breaks the fore-aft symmetry. To this
end, a numerical bead-spring model for a microswimmer, such as a bacterium, is introduced
and extensively validated. The model allows for the simulation of both pusher and puller-
type swimmers with various geometries and accounts for their hydrodynamic self-interaction.
Applying the model in simulations of swimmers in plane Poiseuille flows reveals rich behavior,
including a stable swinging motion and a migration away from the channel center. This outward
drift leads to previously unknown off-centered attractors, located either at the channel walls or
between the center and the walls. These states may coexist with the inward drift and are
found to depend on central parameters such as the swimmer’s activity, its stiffness, and the
flow strength. Moreover, it is demonstrated that slight changes in the swimmer’s geometry can
profoundly impact the magnitude and even the direction of the lateral drift. These findings
contribute to the understanding of the rheotactic behavior of microswimmers, such as bacteria
or sperm cells. Furthermore, suggesting that cargo loading can significantly affect trajectories,
the results may also be applied to the design of microrobots.

The present chapter is structured into an introduction in section 4.1, followed by the descrip-
tion and validation of the swimmer model in section 4.2, and the investigations of pusher-type
microswimmers in section 4.3 and pullers in section 4.4.

Parts of the findings reported in the present chapter are published in Ref. [146]. This includes
the numerical model for a deformable microswimmer which is developed and validated below in
section 4.2. Furthermore, central findings obtained from simulations of a pusher-type microswim-
mer with homogeneous friction coefficient reported below in section 4.3.2 entered Ref. [146]. The
explanation for the inward drift (section 4.3.1), the results on pusher-type swimmers with vary-
ing friction coefficient (section 4.3.3), and the findings for puller-type swimmers (section 4.4)
are not yet submitted.

4.1. Introduction: Microswimmers and flow environments

Swimming organisms are abundant in nature. Unicellular active agents, such as spermatozoa or
bacteria, have the size of a few microns, giving rise to the term “microswimmer”. At such length
scales, the Reynolds number is typically much smaller than unity and viscous friction dominates
over inertia in fluids. Organisms adapted to these environments by developing unique swimming
techniques which are different from the principles of swimming at high Reynolds numbers, as
famously illustrated by Purcell’s scallop theorem [8]. Such non-reciprocal patterns of motion are
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widely observed in nature, an example being the rotary motion of bacterial flagella, whip-like
structures protruding from the cell body [9]. The absence of inertia implies that, in order to
keep swimming, microorganisms have to constantly convert internal energy into motion of these
appendages. The moving flagella exert a force, F0 say, on the cell body which leads to thrust
along the direction of the force. This force is balanced by an equal and opposite force −F0 that
is exerted by the flagella on the fluid [147]. Swimmers are thus able to self-propel autonomously,
even in the absence of external forces or torques [9, 148]. The flow field created by a swimmer
modeled as such as force dipole has been shown to describe the hydrodynamic signature in the
bulk of a fluid far away from a single swimmer [51,148]. Hereby, the flow field of these so-called
“dipole swimmers” can have two different characteristics [9]: Swimmers which have their motor
(e.g., flagella) at the back are referred to as pushers. In the opposite case, when the motor sits
in the front, the flow field of a puller is generated. Examples for pushers are bacteria, such as
the species E. coli or B. subtilis, and sperm cells, whereas the algae Chlamydomonas reinhardtii
falls into the category of a puller [9, 51,149].

Many of these organisms face flowing environments while swimming. Examples are pathogens
moving in the mucus of lungs [10] or sperm cells in Fallopian tubes [11]. The ability to self-
propel leads to behavior which is not existent for passive cells in flows as described above in
part I of the present thesis. The reorientation of a swimming organism due to flow gradients is
termed rheotaxis [13,15,150]. It is observed for metazoans such as fish and aquatic invertebrates
[151,152], but also occurs for unicellular swimmers such as spermazotae and bacteria. One type
of rheotaxis is the reorientation of motile E. coli or B. subtilis bacteria towards the vorticity
direction. This is observed in bulk fluids [13] or close to surfaces [15,153–155] where, in addition,
oscillatory trajectories are possible [15]. Another example is positive rheotaxis, the tendency
of swimming organisms to swim upstream, opposite to the incident flow [150, 156]1. Positive
rheotaxis occurs for sperm cells where it plays an important role for fertilization [150, 156,
159–161]. Besides that, artificial self-propelled particles have been shown to exhibit positive
rheotaxis [157,162–166]. This phenomenon may result in upstream migration which, in the case
of bacteria, can be detrimental since it can lead to the contamination of ducts and catheters,
causing bacterial infections [14, 15]. Note that upstream reorientation of swimmers does not
necessarily lead to upstream motion if the flow is stronger than the swimming speed. In this
type of rheotaxis, swimmers reorient to swim opposite to the flow but are advected downstream
in the laboratory frame [149,167,168].

Despite the importance of rheotaxis, many underlying mechanisms remain unclear. In contrast
to the flow response observed for metazoans, rheotaxis for unicellular swimmers has purely
physical origins [13, 168]: The drift perpendicular to the shear plane in bulk flows has been
attributed to the helical shape of bacterial flagella [13]. Near the walls or in the corners of
channels where flows are small, swimmers are able to migrate upstream [149]. Such surface
rheotaxis has been attributed to the fore-aft asymmetry of swimmers [15]. Furthermore, an
increasing shear rate has been shown to trigger a transition from steady upstream swimming to
oscillatory rheotaxis on surfaces [15].

Deformability is an inherent property of many microswimmers. For example, the rod-shaped
bodies of E. coli bacteria can be bent under sufficiently strong forces [169] or flows [170].
The thin flagella of spermazotae, bacteria, and algae are flexible [168, 171–173]. The bac-
terium Spiroplasma, which lacks flagella, self-propels by actively deforming its helical-shaped
1The opposite case, when swimmers reorient to swim downstream, is referred to as negative rheotaxis [157,158].
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body [174]. The effect of deformability on the behavior of microswimmers in flow environments
has been studied for swirl flows [175,176], linear shear flows [171,172,177], and plane Poiseuille
flows [168, 171, 172, 178]. Flexible microswimmers have been shown migrate transversely to
streamlines in the bulk of plane Poiseuille flows [171, 172]. This lateral drift is not observed
for rigid microswimmers [179] but is similar to the cross-streamline migration of deformable
passive particles, such as semi-flexible polymers [180, 181], vesicles [111], droplets [109], or cap-
sules in oscillating shear flows [124]. Upon migration towards the centerline of Poiseuille flows,
deformable swimmers, e.g., spermazotae or Chlamydomonas reinhardtii, have been shown to
reorient to swim opposite to the flow [168,171,172].

The shape of microswimmers profoundly impacts their dynamics in flows and thus has to be
taken into account in swimmer models. Typical shapes are elongated bodies as observed, e.g.,
for bacteria [12, 15, 154, 179]. Going beyond a simple rod-shaped body, more detailed swimmer
geometries can be accounted for in numerical models, for instance the flagella of bacteria or sperm
cells [171, 172]. Modeling the swimmer body by a discretization into spherical beads offers the
advantage that a variety of different geometries can be realized by adopting the radii of individual
beads [167, 182, 183]. This has been applied, for instance, to account for the inhomogeneous
viscous friction of Chlamydomonas reinhardtii where one large bead represents the swimmer
body and two smaller beads the flagella [182]. The swimmer geometry is, however, also relevant
from a medical and engineering perspective with regards to the design of microrobots. These
are micron-sized artificial swimmers which are designed to perform specific tasks inside the
human body, such as the delivery of therapeutics and other cargo [184]. The geometry and the
distribution of the hydrodynamic friction coefficient across the body may change, depending on
whether the robot is carrying a payload [167].

4.2. The swimmer model

In the following, a model for a microswimmer is introduced in section 4.2.1. Details on the
parameter choice are given in section 4.2.2. It follows a validation of the model in section
4.2.3.

4.2.1. Model description

The microswimmer is assumed to move in a Newtonian fluid with viscosity η at low Reynolds
number. Inspired by the rod-like shape of many bacteria such as E. coli or Bacillus subtilis, the
swimmer body is modeled as a linear, semi-flexible bead-spring chain which consists of N beads
with radius ai. For now, a swimmer with equal bead radii ai = a for i = 1, ..., N is considered.
The influence of different radii is addressed below in section 4.3.3. The equilibrium distance
between neighboring beads is given by b.

The beads interact with each other via elastic forces F i = −∇iE, where E is the total elastic
energy, as given by Eq. (46): Hookean springs of stiffness k connect neighboring beads. Further-
more, the bead configuration is stabilized via a bending potential as in Eq. (47) with bending
rigidity κb which is in the following for simplicity denoted as κ. While the elastic energy of the
passive swimmer body is equal to the ring polymer, the first and last bead in the chain are not
connected, resulting in a rod-like shape. Consequently, the swimmer has a linear resting shape
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4. Lateral migration of swimmers in planar flows

with length L0 = (N − 1)b+ 2a. An inextensible swimmer is assumed which is realized by large
values for k and relatively small κ to allow for bending of the chain. The swimmer’s center
is computed according to the positions of the N beads as in Eq. (44). The swimmer’s mean
orientation, i.e., the average orientation of its N beads with respect to the x-axis is quantified
by the angle ψ. A swimmer with equal bead radii is as sketched in Fig. 18.

Figure 18. Sketch of a semi-flexible microswimmer consisting of N = 5 spherical beads (dark gray circles). Its
mean orientation with respect to the x-axis is given by the angle ψ. Self-propulsion is realized by a force dipole
of strength F0 (red arrows) at the swimmer’s rear. The light red arrows indicate the flow disturbance caused by
the force dipole. Figure adapted from Ref. [146]. Copyright (2022) by the American Physical Society.

Activity is introduced via an additional driving force F0 = F0es which acts on the N -th bead
(that is, the last bead in the chain). Here, F0 is the activity and

es = rN−1 − rN

|rN−1 − rN |
(110)

is the unit vector along the driving direction. Thus, the swimmer is propelled along the con-
nection between the last two beads (i = N − 1, N) of the chain. Note that in the case of a
deformed swimmer, the angle formed between es and the x-axis is not necessarily equal to ψ

(see also Fig. 18). As described above, a hallmark of microswimmers is their autonomous motion
which requires that the total interaction force between the fluid and the swimmer is zero. In
the present swimmer model, this total force free condition is realized by introducing a second
active force Fp = −F0 which acts on a counter-force point in the fluid. This point is indexed
according to i = N + 1 in the following and its location rp is determined by the position of the
beads according to

rp := rN+1 = rN − 2aes. (111)

The counter-force point is treated as an additional bead with radius zero in the equations
of motion, as described below. For F0 > 0, the swimmer falls in the class of a pusher-type
microswimmer, i.e., the passive body is pushed in front of the swimmer. For F0 < 0, a puller is
obtained where the body is dragged behind the propulsive dipole.
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Together, the forces which are prescribed on each point ri of the swimmer are

Fi =


−∇iE for i ∈ [1, N − 1]
−∇iE + F0 for i = N

−F0 for i = N + 1
. (112)

Since the elastic, non-active bead forces compensate each other,

N∑
i=1

−∇iE = 0, (113)

it follows from Eq. (112) that the total swimmer, i.e., all N beads and the counter-force point,
is force-free,

N+1∑
i=1

Fi = 0. (114)

From these forces the translational ṙi and angular velocities Ωi of the beads are obtained ac-
cording to

ṙi = u(ri) +
N+1∑
j=1

µtt
ijF j +

N∑
j=1

µtr
ijT j , (115)

Ωi = 1
2

∇ × u(ri) +
N+1∑
j=1

µrt
ijF j +

N∑
j=1

µrr
ijT j , (116)

where the bead torques Ti are described below. These equations corresponds to the expressions
given above in Eqs. (17) and (18), but are extended with an additional contribution from the
counter-force point on the translational and rotational bead velocities (the N + 1-st addend
in the sums). With the exception of some parts of the validation of the swimmer model, the
findings of the present chapter are based on a steady, laminar flow through a plane microchannel,
given by

u(ri) = u0

(
1 − y2

i

d2

)
, (117)

with flow strength u0 and channel half-height d.

The two equal and opposite active forces render the model a dipole swimmer [9, 148]. The
resulting flow disturbance of such a force dipole around the swimmer’s rear is sketched in Fig.
18. Note that relative motion of the beads with respect to each other is not necessary in order for
the swimmer to self-propel. This is in contrast to one class of microswimmer models often used in
the literature where beads move in a non-reciprocal fashion that breaks time-reversal symmetry
and enables self-propulsion [182, 185, 186]. Swimmer models which employ a force dipole in
combination with several beads, that mimic the swimmer body, have been used previously in
the literature [147, 187]. In Ref. [187] the hydrodynamic part of the problem was solved using
the LBM. Here, in Eqs. (115) and (116) the mobility matrices for differently sized beads are used
to account for the hydrodynamic interaction on the beads. The interaction matrices are applied
to both passive and active forces [182]. In the “dry” case, when hydrodynamic interactions
between the beads are neglected, the present model corresponds to a microswimmer with an
effective active drive [175]. Similar active bead-spring models have been used in the literature
to realize active filaments [188,189].
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Figure 19. Segment of the chain around bead i (center) with neighboring beads i−1 (left) and i+1 (right). The
local opening angle is denoted as αi. The torque according to Eq. (118) penalizes deviations of the orientation
vectors pi (violet) and qi (orange) from the local unit vectors along the body axis (black dashed line) and
perpendicular to it. Reprinted figure with permission from Ref. [146]. Copyright (2022) by the American Physical
Society.

Besides the forces, the torques Ti affect the motion of the beads according to Eqs. (115) and (116).
The rotational degrees of freedom for individual beads have to be taken into account in order
to reproduce realistic behavior of a rod-shaped particle in a shear flow. In particular, a rigid,
passive object with a finite aspect ratio performs so-called Jeffery orbits in shear flow [190,191],
continuous rotations due to the non-zero flow vorticity. The bead-spring chain considered here
is effectively one-dimensional. Thus, including only translation degrees of freedom would lead
to an alignment of the passive chain with the straight streamlines of a linear shear or plane
Poiseuille flow, but no continuous rotation. The instantaneous orientation of each bead i is fully
characterized by two unit vectors pi and qi which are chosen perpendicular to each other for
the initial linear bead constellation of the swimmer body. The orientations of neighboring beads
are synchronized with a bead torque

T i = κt
2

[
pi ×

(
ê

∥
i + ê

∥
i−1

)
+ qi ×

(
ê⊥

i + ê⊥
i−1

)]
. (118)

Here, κt is the torque strength, ê
∥
i the unit vector pointing from bead i to bead i+1, and ê⊥

i the
unit vector perpendicular to ê

∥
i which is obtained by shifting the polar angle of ê

∥
i in spherical

coordinates by π/2. A sketch of a segment of the chain around bead i is shown in Fig. 19.
Finally, the orientation of each bead is evolved via

ṗi = Ωi × pi, (119)
q̇i = Ωi × qi. (120)

In the case of a linear, straight chain, the torque according to Eq. (118) on bead i is minimal when
pi points towards the neighboring bead to the right and qi in the direction of ê⊥

i . Deviations
of pi or qi from this configuration are penalized with a restoring torque, which couples to the
translational and angular velocities of all beads of the chain via Eqs. (115) and (116). As a
result, rotations of individual beads translate to a rotation of the entire chain. By this Jeffery
orbits are reproduced, as shown in the following.
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4.2.2. Parameter choice: A passive rod in linear shear flow

As described above, a rigid, passive object with a finite aspect ratio, such as an ellipsoid,
performs periodic, full rotations when exposed to a shear flow which are known as Jeffery
orbits [190, 191]. These orbits play an important role also for self-propelled particles and their
interplay with the activity results in the so-called swinging and tumbling motion [179,192,193].
In the present model, the swimmer body is not a cohesive object, but consists of several beads
which hydrodynamically interact with each other via the viscous fluid that occupies the space
between them. In the following, the geometric parameters of the swimmer body are determined
that result in realistic Jeffery dynamics which are obtained when the tumbling time of the chain
of beads is equal to the time period of a rigid ellipsoid with the same aspect ratio. The literature
comparison for self-propelled objects with a finite activity is done below in section 4.2.3.3. While
the length of a rigid ellipsoid (and thereby its aspect ratio) is determined by its semi-major axis,
the length of the swimmer body in the present model can be varied by either changing the
equilibrium distance between the beads, b, or the number of beads, N . Thus, for a given value
of the bead radius, a, one has a degree of freedom in varying the aspect ratio.

Table 4. Parameters used for test simulations of the passive, stiff swimmer in linear shear flow, if not mentioned
otherwise.

parameter value

time step ∆t 0.01
fluid viscosity η 1

swimmer bead radius a 0.5
swimmer hookean spring constant k 100

swimmer bending stiffness κ 100
swimmer torque strength κt 10

shear rate γ̇ 0.1

To this end, the swimmer activity is set to zero and large values for the stiffness constants are
chosen, resulting in a negligible flow-induced deformation of the swimmer. For simplicity, a
linear shear flow

u(r) = γ̇yex, (121)

is applied, with shear rate γ̇. The time T during which a rigid rod with aspect ratio rp completes
a full Jeffery orbit in a linear shear flow is referred to as the tumbling time. It has been derived
as [191]

T = 2π
γ̇

(
rp + 1

rp

)
. (122)

The aspect ratio of the swimmer

rp = 1 + (N − 1)b
2a

(123)

is defined by the ratio of its equilibrium length L0 over its width 2a. In the following, for a
given number and radius of the beads, the aspect ratio is adapted by varying the equilibrium
distance between the beads. The parameters listed in tab. 4 are used.
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Figure 20. Tumbling time T of the passive rod in units of the inverse shear rate γ̇−1 as a function of its aspect
ratio rp. The numerically obtained values are shown for three different numbers of beads, N = 5 (blue upright
crosses), N = 8 (red diagonal crosses), and N = 10 (orange squares). The analytical function from the literature
for a rigid ellipsoid [191] given by Eq. (122) is shown as a violet bold line. The short black bold line has a slope
of 5/3.

The numerically computed values for the tumbling time are plotted in Fig. 20 as a function of
rp for different N . For small aspect ratios where b < 2a, that is, for rp < N , neighboring beads
overlap. In this case, the numerically determined tumbling time is smaller than its respective
value for a rigid ellipsoid given by Eq. (122). While T grows as a function of rp for the bead
chain, it increases slower than for a cohesive ellipsoid, the latter growing linearly in rp for large
aspect ratios. For all three values of N explored here, this behavior changes when the bead-to-
bead distance becomes large enough that the beads do not overlap anymore, i.e., for rp > N .
Here the inter-bead hydrodynamic interaction is determined by lubrication friction in the fluid
between the beads and one observes that T grows as r5/3

p . This exponent is larger than unity
and therefore all three curves match the tumbling time of a rigid ellipsoid at one specific aspect
ratio.

In the remainder of the present thesis, for simplicity, only swimmers with N = 5 are considered.
For this number of beads, as illustrated in Fig. 20, the literature value for the tumbling time
of a rigid ellipsoid is obtained for an aspect ratio of rp = 5.38, corresponding to a bead-to-
bead equilibrium distance of b = 1.095. This value, together with a = 0.5 is employed for all
simulations in the following, if not mentioned otherwise. In practice, the angular velocities of
neighboring beads can be reduced significantly even if beads are allowed to rotate freely, i.e.,
without a torque as in Eq. (118). This is the case for almost touching beads, which results
in a large lubrication friction between the rotating surfaces of neighboring beads [194]. The
numerically determined value for the equilibrium bead-to-bead distance corresponding to the
tumbling time of a rigid ellipsoid obtained here is in agreement with the value for b in previous
models for semi-flexible fibers where the specific expression of the torques employed here has
not been used [181,194].
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4.2.3. Validation

The above-described swimmer model is now validated. First, the numerically determined in-
trinsic swimming speed is compared to an analytical expression in section 4.2.3.1. Continuing,
the flow field far away from the swimmer is evaluated in section 4.2.3.2. Finally, the behavior
of a non-deformable swimmer in plane Poiseuille flow is verified by a comparison to analytical
results from the literature in section 4.2.3.3, where also the behavior of a deformable swimmer
is characterized.

4.2.3.1. Intrinsic swimming speed

In the present swimmer model, self-propulsion is achieved by the active force with magnitude
F0 at the swimmer’s rear end. The relevant physical quantity, however, is the resulting intrinsic
swimming speed v0. In the following, v0 is approximated analytically as function of F0 for a
non-deformable swimmer in a quiescent fluid (u0 = 0), and then compared to the numerical
result. For simplicity, bead rotations as well as the hydrodynamic flow field created by the
elastic forces are neglected. Furthermore, only the hydrodynamic flow disturbance in Eqs. (115)
and (116) originating from the pair of active forces is considered.

For the analytical approach, a swimmer initially aligned with the x-axis is considered. The
position of bead i is given by ri = (−(i − 1)b, 0, 0) and the counter-force point is located at
rp = (−(N −1)b−2a, 0, 0), as sketched in Fig. 21(a). In the limit of a stiff swimmer, the motion

Figure 21. (a): Sketch of the swimmer with N = 5 beads in a linear configuration. The force dipole (red arrows)
is located at its left, and the resulting swimming velocity v0êx is directed along the x-axis. (b): Calibration curve
for the intrinsic swimming speed v0 as a function of the activity F0 for the stiff swimmer. The results of the
analytical calculation (brown dashed line) according to Eq. (126) and the numerical simulation (blue bold line)
are shown. Reprinted figure with permission from Ref. [146]. Copyright (2022) by the American Physical Society.

of the beads relatively to each other can be neglected. The simplified equations of motion for
the swimmer velocity then yield

ṙc = 1
N

N∑
i=1

ṙi = 1
N

N∑
i=1

 Fi

6πηa
+

N∑
j=1,j ̸=i

µtt
ijFj + µtt

ipFp

 , (124)
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where µtt
ip = µtt

i,N+1 describes the hydrodynamic interaction between bead i and the counter-
force point according to Eq. (115). Taking into account only active forces, Eq. (112) simplifies
to

Fi =


0 for i ∈ [1, N − 1]
F0 for i = N

−F0 for i = N + 1
. (125)

From Eq. (115) then follows ṙc = v0êx with

v0 = F0
4πηN

{
5

24a
+

N−1∑
i=1

1
(N − i)b

[
1 − 2a2

3(N − i)2b2

]

− 1
((N − i)b+ 2a)

[
1 − a2

3 ((N − i)b+ 2a)2

]}
. (126)

Eq. (126) contains the velocity due to the Stokes friction of the N -th bead and contributions
of the flow field created by the force dipole on all beads of the chain. The result is shown in
Fig. 21(b) for N = 5 together with the numerically obtained values for v0, where the simulation
parameters given by tab. 4 were used with γ̇ = 0. For F0 > 0 the swimmer moves in positive
x-direction and for F0 < 0 in negative x-direction. Differences between the analytical and
numerical results arise from the approximation of zero bead forces, but overall good agreement
is observed. In the following, the numerically obtained values for v0 as a function of F0 are
used.

4.2.3.2. Far field around the swimmer

The model for the swimmer can be further validated by analyzing the far field around the
swimmer. As described above, the sum of all forces acting on an autonomous swimmer is zero,
cf. Equation (114), and in a fluid at low Reynolds number the flow field has dipolar character
far away from the swimmer [148]. Thus, it decays as the inverse squared distance from the
swimmer. This is in contrast to an externally driven particle, where the sum of all forces on the
particle is non-zero and therefore also monopolar contributions (Stokeslets) are present in the
far field.

In the following, the numerically obtained far field is analyzed for a swimmer that is deformed
by a plane Poiseuille flow, cf. Eq. (117). Here, the swimmer performs active Jeffery orbits and
a tumbling motion, as described below in section 4.2.3.3. The parameters from tab. 5 are used.
An instantaneous swimmer shape is analyzed, the simulation snapshot of which is shown in Fig.
22(a). The corresponding positions of all points of the swimmer are

r1 =

263.8
10.53

0

 r2 =

264.7
9.933

0

 r3 =

265.6
9.274

0



r4 =

266.3
8.481

0

 r5 =

266.9
7.532

0

 rp =

267.4
6.663

0

 . (127)
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Table 5. Parameters used for the validation of the far field around the swimmer and its behavior in plane
Poiseuille flow, if not mentioned otherwise.

parameter value

time step ∆t 0.01
fluid viscosity η 1
flow strength u0 0.162

channel half-width d 20
swimmer bead radius a 0.5

swimmer equilibrium bead distance b 1.095
swimmer number of beads N 5

swimmer hookean spring constant k 10
swimmer bending stiffness κ 0.5
swimmer torque strength κt 10

swimmer activity F0 0.6
initial swimmer position (xc,0, yc,0, zc,0) (0, 5, 0)

initial swimmer orientation ψ0 ±π

Note that this bead constellation is more general than the linear arrangement considered above
in section 4.2.3.1. The numerically obtained forces at the respective positions ri are

F1 =

 2.292 10−2

−5.089 10−3

0

 F2 =

−1.488 10−2

1.313 10−2

0

 F3 =

−4.182 10−2

3.942 10−2

0



F4 =

−4.841 10−3

−3.501 10−2

0

 F5 =

−2.579 10−1

5.092 10−1

0

 Fp =

 2.965 10−1

−5.216 10−1

0

 . (128)

Note that these are the full forces experienced by each discretization point of the swimmer,
in contrast to the simplification made above in section 4.2.3.1 where forces from bending and
stretching of the chain were not taken into account. For simplicity, only contributions to the
flow field originating from the translational-translational mobility matrix are taken into account.
The flow field at a point r in the fluid is then given by

v(r) =
N+1∑
j=1

µtt
j (ϱ) · Fj (129)

with

µtt
j (ϱ) = 1

8πηϱ

[(
1 +

a2
j

3ϱ2

)
1 +

(
1 −

a2
j

ϱ2

)
ϱ ⊗ ϱ

ϱ2

]
. (130)

Here, ϱ := r − rj and ϱ = |ϱ| is the distance between the point r and the j-th bead. The
absolute value of v(r) as function of the distance from the swimmer in x- and y-direction is
shown in Fig. 22(a) and (b), respectively. In both cases, for positions close to the swimmer, the
amplitude of the flow field decays non-monotonically with the distance from the swimmer which
is a consequence of the complex near field around the swimmer. Importantly, for large distances,
the flow field decays as the inverse squared distance in both the x- and y-direction. Given that a
Stokeslet decays as the inverse distance, this rules out the presence of monopolar contributions
in the flow field and confirms the expectation formulated above that the slowest-decaying parts
of the flow field are dipolar.
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Figure 22. Absolute value of the flow field v(r) according to Eq. (129) (red line) for large distances from the
swimmer’s center rc. The short black bold line has a slope of −2. This shows that the flow field decays as the
inverse squared distance from the swimmer both in x-direction (a) and in y-direction (b). The inset in (a) shows
the numerically obtained positions of the swimmer’s discretization points, as given in Eq. (127). The beads are
sketched in gray and the counter-force point in red. Reprinted figure with permission from Ref. [146]. Copyright
(2022) by the American Physical Society.

4.2.3.3. A rigid swimmer in plane Poiseuille flow

For a final validation of the swimmer model, the behavior of both a rigid and semi-flexible
swimmer body are investigated in a parabolic flow. In both cases, as mentioned above, two
qualitative different types of motion can be identified [179, 193]: The swinging motion is char-
acterized by sinusoidal trajectories around the channel center, while the swimmer is on average
oriented against the flow. It occurs for small ratios u0/v0 and initial lateral positions close to
the channel center, where the swimmer moves fast enough to cross the channel center before it
is reoriented by the local flow vorticity. The latter is given by

∇ × u(r) = 2u0y

d2 ez, (131)

i.e., has opposite sign in the upper and lower channel halves. The second type of motion is
the tumbling motion which occurs for large u0/v0 and/or lateral positions far away from the
channel center. Here, the flow vorticity is strong enough to reorient the swimmer completely
before it crosses the channel center. This leads to continuous swimmer rotations similar to the
above described Jeffery orbits of a passive particle. Consequently, a rigid swimmer remains in
the channel half where it has been initially placed and its trajectory oscillates around a constant
off-centered position. For elongated swimmer shapes, the angular velocity ψ̇ becomes a function
of the instantaneous orientation angle [179]

ψ̇ = u0
d2 y (1 −G cos(2ψ)) , (132)

where

G =
r2

p − 1
r2

p + 1
(133)

is the geometry factor. For a spherical swimmer one has G = 0 and for an infinitely long
swimmer G → 1.

For a rigid swimmer, both swinging and tumbling are characterized by periodic orbits in the
phase space, as further illustrated below. By contrast, for deformable microswimmers, e.g.,
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swimmers with flexible flagella, it was shown that phase space orbits become non-periodic [168,
171, 172]. Here, a lateral drift (cross-streamline migration) towards the channel center takes
place during tumbling. This drift enables the swimmer to transition from tumbling to swinging
and is not observed for a rigid swimmer where the type of motion in bulk Poiseuille flow is
determined solely by the initial conditions. After the transition to swinging, the deformable
swimmer either approaches a stable fixed point of swimming at the channel center while being
orientated upstream [168,171,172], or a limit cycle where the amplitude of the swinging motion
remains finite [171].

Figure 23. (a) Real space and (b) corresponding phase space trajectory of a semi-flexible (red line) and a stiff
swimmer (blue line) in plane Poiseuille flow. Lengths are given in units of the initial swimmer length L0 and
the channel half-width d. (c) Angular velocity ψ̇ of a stiff swimmer (red dots) as a function of its instantaneous
orientation ψ. The result agrees well with the theoretical prediction from the literature [Eq. (132), orange bold
line]. Reprinted figure with permission from Ref. [146]. Copyright (2022) by the American Physical Society.

The trajectory of a stiff swimmer is shown in Fig. 23. The parameters listed in tab. 5 have
been used, with F0 = 0.3 which results in an intrinsic swimming speed of v0 = 4.872 × 10−3, an
initial lateral position of yc,0 = 6, and κ = 100. Fig. 23(a) shows the real-space trajectory where
tumbling is observed around a constant mean value of y ≈ 0.4d. The corresponding phase space
trajectory, shown in Fig. 23(b), is compared to the analytical expression from the literature, see
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Eq. (131), in Fig. 23(c). In alignment with the expectation, periodic phase-space orbits take
place and very good agreement to the literature result is observed.

Next, a deformable swimmer is considered with κ = 0.5. While only a qualitative comparison to
the literature is possible, the previously reported trends are well reproduced. This includes the
lateral inward drift of a tumbling swimmer with a subsequent transition to swinging, followed by
the approaching to the channel center, as shown in Fig. 23(a). The corresponding non-periodic
phase space orbits are shown in Fig. 23(b) where the convergence to the fixed point of upstream
orientation at the center line is visible. An explanation for the lateral drift towards the center
of the channel is given in the following section.

4.3. Pushers

The present section is dedicated to the investigation of a pusher-type microswimmer in plane
Poiseuille flow. In section 4.3.1, an explanation for the above-described inward migration during
tumbling is given. Continuing, the migration behavior of the swimmer is characterized more
systematically in section 4.3.2. Finally, the analysis is generalized to a swimmer with inhomo-
geneous friction coefficient in section 4.3.3.

4.3.1. Explanation for the inward migration during tumbling

As pointed out before [168,171], the convergence towards the center is influenced by an interplay
of swimmer activity and its deformability. Fig. 24(a) shows the angular velocity of a semi-flexible
swimmer during one tumbling period as a function of its instantaneous orientation angle ψ. For
comparison, the numerical result for a stiff swimmer and the literature formula according to Eq.
(132) are shown as well. One observes a larger angular velocity for a semi-flexible compared to
a stiff one for ψ ∈ (−π, 0), that is, while it swims away from the channel center. Conversely, ψ̇
is smaller than for a rigid swimmer in the range ψ ∈ (0, π) where swimming towards the channel
center takes place. This asymmetry can be expressed by the inequality

Tout =
∫ 0

−π

dψ

ψ̇(y, ψ)
<

∫ π

0

dψ

ψ̇(y, ψ)
= Tin. (134)

Here, Tout and Tin is the time the swimmer spends swimming towards the wall or the channel
center per tumbling period, respectively. Tin + Tout = 2π/ω0 is the tumbling period, with ω0
being the tumbling frequency. According to Eq. (134), Tout < Tin holds, implying that, in
each tumbling period, the swimmer spends more time swimming towards the channel center
than away from it, which accounts for the net inward migration observed during tumbling. By
contrast, for a rigid swimmer, one has Tin = Tout and no net migration takes place. In this case,
the swimmer oscillates around a constant y-position during tumbling, cf. Fig. 23.

This asymmetry in the swimmer’s angular velocity can be further understood by analyzing the
instantaneous deformation of the swimmer during a tumbling cycle. To this end, it is helpful
to define the angle θ which is formed by the driving direction, given by es, and the x-axis. As
pointed out above, for a rigid swimmer, θ = ψ alway holds, while for a deformed swimmer both
angles in general are different. Figure 24(b) (top panel) shows the difference ∆ψ̇ between the
angular velocity of the semi-flexible swimmer and the analytical formula for a rigid swimmer

72



4.3. Pushers

Figure 24. a): Angular velocity ψ̇ of a stiff (dashed red line) and the semi-flexible (bold violet line) swimmer
as a function of its instantaneous orientation ψ. The analytical literature result from Eq. (132) is shown as the
orange bold line. b): Difference ∆ψ̇ of the semi-flexible swimmer’s angular velocity and the analytical formula
(top panel), and difference ψ − θ of its mean orientation angle and swimming direction angle (bottom panel) as
function of its mean orientation. c): Simulation snapshots showing the shape of the semi-flexible swimmer during
four instances of one tumbling cycle [i): downstream, ii): pointing away from the channel center, iii): upstream
and iv): pointing towards the channel center]. Blue arrows show the mean orientation which determines the angle
ψ, red arrows the swimming direction which determines the angle θ.

from Ref. [179] as a function of its instantaneous orientation ψ. ∆ψ̇ is directly correlated to the
difference of the semi-flexible swimmer’s orientation angle and its swimming angle, ψ − θ, as
shown in the bottom panel of Fig. 24(b): During outward swimming (negative ψ), a deformable
swimmer reorients faster than a rigid one and ψ is larger than θ, with both ∆ψ̇ and ψ − θ

being maximal at ψ ≈ −π/2. During inward swimming (positive ψ), one observes a slower
reorientation compared to a rigid swimmer and ψ is smaller than ψ, with a minimal value for
both curves at ψ ≈ π/2. When the semi-flexible swimmer points upstream (ψ = 0) and when it
swims downstream (ψ = ±π), its angular velocity is the same as for a rigid swimmer and one
has θ ≈ ψ.

To further illustrate this behavior, Fig. 24(c) shows simulation snapshots of the swimmer’s shape
in four instances during one tumbling cycle. The counter-clockwise tumbling direction of the
swimmer is determined by the sign of the flow vorticity according to Eq. (131) which points in
positive z-direction in the upper channel half. In panel i) the swimmer is orientated downstream
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4. Lateral migration of swimmers in planar flows

(ψ = ±π). Here it is aligned with the flow, not deformed, and thus ψ and θ are identical. After
one quarter of a tumbling cycle, the swimmer’s mean orientation vector points away from the
channel center (ψ = −π/2). The finite shear rate γ̇ = |∇ × u| leads to a curved swimmer
shape with ψ > θ. Hence, the pushing of the swimmer in the direction of its rear amplifies the
vorticity-induced rotation, resulting in an increased angular velocity. This is the case until the
swimmer is directed upstream [ψ = 0, panel iii)]. Here, the situation is similar to downstream
swimming with no deformation (ψ = θ). After three quarters of a tumbling cycle, the swimmer
is oriented towards the centerline [ψ = π/2, panel iv)]. Its shape is similar to the one in panel
ii), however, the active force now acts on the bead furthest away from the centerline. From
there it induces an antagonistic contribution to the total counter-clockwise rotation, leading to
decreased ψ̇.

While the swimmer shapes in panels ii) and iv) closely resemble each other, the up-down sym-
metry is broken by the activity vector which points outwards in ii) and inwards in iv). This
illustrates how the ability to self-propel which breaks the fore-aft symmetry of the swimmer is
responsible for the inward drift. Increased swimming speed amplifies the effect of the activity in
the angular motion of the swimmer body. The inward migration thus grows with the activity.

It is noted that the instantaneous deformation state of the swimmer depends on its bending
rigidity κ, the local shear rate, but also on its length (that is, the number of beads N). In
the particular case considered here, inward migration during tumbling takes place. However,
depending on the parameters, more complex swimmer deformations may arise, which would
qualitatively influence the migration behavior. Furthermore, the above-given explanation for
the inward drift is valid only for a pusher-type swimmer. Pullers have their driving force at the
front, which is expected to impact the migration behavior as well.

4.3.2. Swimmer with homogeneous friction coefficient

The lateral drift of a deformable microswimmer towards the channel center stands in contrast
to the outward-directed migration of passive soft particles with elongated shape, such as semi-
flexible fibers and vesicles [180, 181]. This cross-streamline migration of passive particles is due
to the hydrodynamic self-interaction of the particle which depends on its deformation due to the
flow. By contrast, as described above, the inward drift arises from a combination of swimmer
activity and its flow-induced deformation. The swimmer activity is thus expected to critically
affect the migration direction. If not mentioned otherwise, the parameters listed in tab. 6 are
used in the following.

The trajectories of a swimmer with an initial orientation of ψ0 = 0 and a bending stiffness of
κ = 0.5 shown in the insets of Fig. 25 demonstrate three different types of swimmer behavior,
depending on the swimmer’s activity and its initial lateral position in the channel:

1. The above-discussed inward migration during tumbling, followed by a transition to swing-
ing, and subsequent stable upstream swimming at the channel center (left).

2. The swimmer converges towards a limit cycle in the swinging regime, characterized by a
constant, non-zero amplitude and frequency (bottom right).

3. The swimmer initially tumbles and migrates away from the channel center towards the
closest wall. It thus never transitions to swinging (top right).
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4.3. Pushers

Table 6. Parameters used for simulations of pusher-type microswimmers in plane Poiseuille flow, if not mentioned
otherwise.

parameter value

time step ∆t 10−2

simulation end time tend 5 × 102

fluid viscosity η 1
flow strength u0 0.162

channel half-width d 20
swimmer bead radius a 0.5

swimmer equilibrium bead distance b 1.095
swimmer number of beads N 5

swimmer hookean spring constant k 5
swimmer bending stiffness κ 0.5
swimmer torque strength κt 10

swimmer activity F0 0.07
initial swimmer orientation ψ0 ±π

In the following, the occurrence of these three states is characterized as a function of the swimmer
activity and initial lateral position. Note that in the simulations presented here, no swimmer
wall-interactions are taken into account. Thus, an outward migrating swimmer would eventually
cross the position of the channel wall unhindered which would yield unphysical results. There-
fore, the simulation is stopped if one of the swimmer’s beads reaches the position of one of the
walls. Otherwise, a simulation run time of tend = 5 × 105 is chosen, which is large enough to
ensure that the swimmer approaches its final state of swinging or centerline swimming. Due
to the symmetry of the channel, it is sufficient to consider only initial lateral positions of the
swimmer in the upper channel half (y > 0). In the following, the swimmer’s lateral position as
a function of time, yc(t), is considered and its local maxima are computed. The local maximum
of this trajectory at the end of the simulation time is denoted as ∆yend and allows to distinguish
between the three above-named states: One has ∆yend = 0 for centerline swimming, ∆yend = d

for outward migration, while in the case of a stable swinging motion, ∆yend yields the oscillation
amplitude.

Fig. 25 shows the resulting phase diagram. For initial positions of the swimmer close to the
channel center, one observes convergence towards the fixed point for small activities and towards
the limit cycle for large values of F0. For initial lateral positions close to the walls, outward
migration takes place, independently of the activity. In an intermediate regime, for F0 ≈ 0.9,
outward migration even occurs for positions close to the channel center. Altogether, one observes
rich behavior with coexisting regimes that demonstrate that the final state of the swimmer may
depend on its initial conditions.

These trends are in qualitative agreement with the literature: The upstream fixed point [168,171,
172] and the limit cycle [171] have been identified for flagellated swimmers. Close to the channel
wall, the shear rate and therefore the swimmer’s deformation become very large. This reduces
the swimming persistence, the ability to swim along a certain direction before being reoriented,
which depends, as discussed above, on the linearity of the chain. Thus, close to the walls, the
swimmer resembles a passive fiber for which outward migration has been reported [180, 181].
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Figure 25. Phase diagram of a deformable swimmer in plane Poiseuille flow for large activities. The center of
the channel is at y = 0, its walls are at y = ±d. Maximum of the swimmer’s lateral position after a sufficiently
large run time, ∆yend (color code, see legend), as a function of the initial lateral position, y0, given in units of the
channel half-height d, and the swimmer’s activity F0. Red areas show outward migration, blue areas migration
towards the channel center, and light-blue areas the radius of the limit cycle, if applicable. The insets show
exemplary trajectories for each of these three cases, as indicated by the black arrows.

Indeed, is has been shown for shape-changing swimmers that increasing the shear rate can lead
to migration away from the channel center [168].
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(a) Dependence on swimmer activity F0.
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(b) Dependence on the flow strength u0.

Figure 26. Phase diagrams of a pusher-type microswimmer in plane Poiseuille flow. The migration velocity vm

(color code, see legend) is shown as a function of the swimmer’s initial lateral position y0 and (a) its activity F0

and (b) the flow strength u0. Migration velocities are given in units of u0, lateral positions in units of the channel
half-height d. Blue areas indicate migration towards the channel center at y = 0, red areas migration towards the
closest wall at y = d.

In the following, the migration behavior of swimmers is characterized for small swimmer activities
compared to the parameters shown in Fig. 25. To this end, simulations with the parameters
listed in tab. 6 are presented. Fig. 26 shows phase diagrams of the migration velocity of the
swimmer which is denoted as vm. Herein, vm is determined by the slope of a linear fit to the
first 4 peaks of the absolute lateral swimmer position as a function of time, |y(t)|.
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4.3. Pushers

Fig. 26(a) shows the migration velocity as a function of the swimmer’s activity and its initial
lateral position y0. For zero F0 (in the passive case), vm is positive for all y0. That is, the
particle migrates away from the center towards the closest wall, independently of the initial
position. Increasing the swimmer activity, one observes for F0 ≳ 0.08 migration towards the
center (vm < 0) for initial positions close to y = 0. In other words, the channel center becomes
an attractor for swimmers which are launched sufficiently close to it. This center migration
coexists with the regime of outward drift which takes place for larger initial lateral positions
of the swimmer. Consequently, a repeller separates outward from inward directed trajectories,
which is visible as the white areas in Fig. 26(a). With increasing activity, the repeller shifts
further outwards. Herby, its y-position depends linearly on the activity. This can be explained
by the fact that, as discussed above, the outward migration of a passive particle increases with
the local shear rate which in turn grows linearly with the distance y from the channel center.
For a growing lateral position, larger activities are necessary in order to reverse the migration
direction in favor of the inward drift.

The dependence of the migration velocity on the lateral position and the flow strength is shown
in Fig. 26(b). Inward migration is observed for small u0 and initial positions close to the channel
center, while outward migration takes place for large flow strengths and large y0. Increasing val-
ues for u0 result in a growing shear rate and a stronger flow-induced deformation of the swimmer
body. If this deformation is strong enough to preclude a sufficiently persistent swimming along
the driving direction, the swimmer resembles a passive particle and outward migration takes
place. Thus, for sufficiently large flow strengths, the swimmer migrates away from the channel
center for all initial lateral positions.

4.3.3. Swimmer with inhomogeneous friction coefficient

The findings reported so far are based on a homogeneous friction of the swimmer body which
is realized by an equal radius for all beads. In the following, a heterogeneity of the friction
coefficient along the swimmer body is implemented by varying the size of the front bead, as
sketched in Fig. 27(a). In the following, the radius of the front bead is denoted as a2, while the
radii of the remaining four beads are referred to as a1. The parameters as listed in tab. 6 are
used, with the exception of F0 = 0.2 and k = 100.

Fig. 27(b) shows trajectories of swimmers with three different inhomogeneities of the friction
coefficient in planar Poiseuille flow. Despite equal initial conditions ψ0 and y0, qualitatively
different behavior is observed: For a swimmer with homogeneous friction coefficient, swinging
takes place with a decaying amplitude and the upstream fixed point is approached. By contrast,
a swimmer with a2/a1 = 1.7 initially performs a swinging motion with increasing amplitude.
Upon a sufficiently large oscillation amplitude a transition to tumbling takes place. The tumbling
swimmer then migrates towards the closest channel wall. Such transitions are not observed for
swimmers with homogeneous drag coefficient as described above, where only transitions from
tumbling to swinging take place. For an even larger inhomogeneity of a2/a1 = 3, no swinging
takes place and the initially tumbling swimmer migrates towards one of the walls.

This demonstrates that a variation of the friction coefficient of only one of the beads remarkably
alters the overall migration behavior of swimmers. As discussed above in section 4.3.1, the
migration direction of the swimmer is determined by the time it spends inward and outward
swimming in each tumbling period, see Eq. (134). A larger friction coefficient at the swimmer’s
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4. Lateral migration of swimmers in planar flows

a2

a1

x
y

(a) Swimmer with different bead radii. (b) Swimmer trajectories.

Figure 27. (a): Sketch of a deformable swimmer (beads drawn as gray circles) with inhomogeneous friction
coefficient, subjected to a Poiseuille flow (light-gray horizontal arrows). The driving force is sketched as the red
arrow (opposite force not shown). The front bead of the swimmer has a radius a2, the remaining four beads have
a smaller radius a1. (b): Trajectories of a swimmer with homogeneous friction coefficient (a2/a1 = 1, blue line),
and a drag inhomogeneity of a2/a1 = 1.7 (red line) and a2/a1 = 3 (orange line), in Poiseuille flow. The channel
center at y = 0 is highlighted by the gray dashed line.

front results in a smaller angular velocity in the range of negative ψ and a faster reorientation
for positive ψ, compared to a swimmer with homogeneous friction coefficient. Therefore, the
migration direction is reversed in favor of outward drift for a large enough radius of the front
bead.
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Figure 28. Phase diagram of a pusher-type microswimmer with inhomogeneous friction coefficient in plane
Poiseuille flow. The migration velocity vm (color code, see legend) is shown as a function of the swimmer’s initial
lateral position y0 and the drag inhomogeneity, given by the ratio of the front bead radius to the radius of the
other beads, a2/a1. Migration velocities are given in units of the flow strength u0, lateral positions in units of
the channel half-height d. Blue areas indicate migration towards the channel center at y = 0, red areas migration
away from it.

The dependence of the migration direction on the heterogeneity of the swimmer’s friction coef-
ficient is further characterized by the phase diagram in Fig. 28. Herein, the migration velocity
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4.4. Pullers

is determined by a linear fit to the full trajectory of the swimmer’s lateral position, |y(t)|. For a
swimmer with homogeneous friction coefficient, a repeller is located at y ≈ 0.5d which separates
inward from outward directed trajectories. For increasing inhomogeneity of the drag coefficient,
the regime of inward migration becomes smaller and outward drift takes place for initial posi-
tions increasingly close to the channel center. For large enough inhomogeneities, the swimmer
migrates away from the channel center independently of its initial position.

4.4. Pullers

Besides pushers, the present swimmer model allows for simulations of puller-type microswim-
mers by choosing a negative activity F0. In the following, the lateral migration of pullers is
investigated, where, for simplicity, the analysis is restricted to swimmers with homogeneous
friction coefficient. The parameters as given in tab. 7 are used.

Table 7. Parameters used for simulations of puller-type microswimmers in plane Poiseuille flow, if not mentioned
otherwise.

parameter value

time step ∆t 10−2

simulation end time tend 5 × 102

fluid viscosity η 1
flow strength u0 0.162

channel half-width d 20
swimmer bead radius a 0.5

swimmer equilibrium bead distance b 1.095
swimmer number of beads N 5

swimmer hookean spring constant k 5
swimmer bending stiffness κ 0.05
swimmer torque strength κt 10

swimmer activity F0 −0.07
initial swimmer orientation ψ(0) ±π

Generally, pushers and pullers behave similar in the simulations. An exception is the regime of
very small bending rigidities where the shape of pushers can become unstable, resulting in a loss
of swimming persistence. This is because the driving force is situated at the rear for pushers.
This instability is not observed for pullers where the force dipole is located at the swimmer’s
front and the swimmer body remains stable even for small κ.

The phase diagrams for the migration velocity as a function of the initial lateral position and
the activity are shown in Fig. 29 for pullers. The migration velocity is determined by a linear
fit over the full trajectory |y(t)|. In accordance with the phase diagram for a pusher, see above
in Fig. 26, one observes outward migration for all values of y0 in the passive case. Another
similarity to the behavior of pushers is the emergence of an attractor at the channel center
whose basin grows with increasing activity. However, for 0.03 ≲ F0 ≲ 0.15, negative values for
vm are observed for initial positions far away from the channel center which is not the case for
pushers. For intermediate values of y0, the migration velocity becomes positive. Consequently,
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(a) Initial upstream orientation, ψ(0) = 0.
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(b) Initial downstream orientation, ψ(0) = ±π.

Figure 29. Phase diagrams of a puller-type microswimmer in plane Poiseuille flow. The migration velocity vm

(color code, see legend) is shown as a function of the swimmer’s initial lateral position y0 and the swimmer’s
activity F0. Migration velocities are given in units of the flow strength u0, lateral positions in units of the channel
half-height d. Blue areas indicate migration towards the channel center at y = 0, red areas migration away from
it. Similar behavior is obtained for a change of the initial orientation ψ(0), see figure caption.

a second, off-centered attractor emerges which is located approximately halfway between the
channel center and the wall. This implies that, for pullers, tumbling swimmers can migrate
transversely across the channel until they reach a stable lateral position where they continue
to tumble. This off-centered attractor coexists with the attractor at the channel center where
swimmers approach stable upstream orientation. The basins of the two attractors are separated
by the above-discussed repeller. The repeller is shifted away from the channel center with
increasing activities and merges with the attractor for a critical activity of F0 ≈ 0.15. For
activities above this value, the channel center is the only remaining attractor and swimmers
migrate inwards independently of their initial lateral position.
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Figure 30. Phase diagram of a puller-type microswimmer in plane Poiseuille flow. The migration velocity vm

(color code, see legend) is shown as a function of the swimmer’s initial lateral position y0 and the swimmer’s
bending stiffness κ. Migration velocities are given in units of the flow strength u0, lateral positions in units of
the channel half-height d. Blue areas indicate migration towards the channel center at y = 0, red areas migration
away from it.
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Comparing Figs. 29(a) and (b), one observes large similarities between the phase diagrams for
initially upstream and downstream oriented swimmers. While the magnitude of the migration
velocity differs quantitatively, parameter ranges of inward and outward migration are approx-
imately the same for both values of ψ0. In particular, outward migration for small activities,
inward migration for large swimming speeds, and the coexistence regime of the center and off-
centered attractor for intermediate values of F0 are observed. This shows that the migration
behavior of swimmers is robust with respect to their initial orientation, whereas it may depend
sensitively on their initial lateral position.

Besides the flow strength, the flow-induced deformation of swimmers is determined by their
rigidity. Fig. 30 shows the influence of the bending stiffness κ on the migration velocity of
pullers. For very small bending stiffnesses, one observes a lateral drift towards the center of the
channel for all initial positions. For 0.02 ≲ κ ≲ 0.11, a bistable regime exists where the channel
center is an attractor for swimmers with initial positions close to it, and an off-centered attractor
exists for tumbling swimmers. This off-centered attractor shifts further outwards with increased
stiffness, while the repeller separating outward in inward directed trajectories eventually merges
with the channel center. As a consequence, for κ ≳ 0.11, migration away from the channel center
is observed for all initial lateral positions.
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5. Controlling bacterial swimming in flows through wavy
channels

Guiding the swimming behavior of bacteria is crucial, for example, to prevent contamination of
ducts and catheters. In the present chapter, it is shown that flows through wavy microchannels
can fundamentally change the dynamics of motile bacteria which are modeled by deformable
microswimmers. Herein, a wavy-induced swinging motion is unveiled, which suppresses the
upstream reorientation and lateral migration towards the channel center that takes place for
swimmers in the bulk of plane Poiseuille flows. In contrast to the well-known swinging motion
of rigid microswimmers in planar flows, wavy-induced swinging is a robust phenomenon which
is independent of the swimmers’ initial conditions. A novel resonance effect is identified which
entails large swinging oscillations that depend on crucial parameters such as the swimmers’ speed
and size, the flow strength, and the channel modulation. Beyond swinging, tumbling motion of
swimmers in wavy flows is found to exhibit a much larger amplitude than in planar channels.
Thus, using modulated channels, microswimmers can be deflected in a controlled manner so that
they swim distributed over the channel cross-section rather than localized near the walls or the
channel center. This enables, for instance, the separation of different bacterial species according
to their properties and, moreover, the accumulation of swimmers at the boundaries, which can
promote surface rheotaxis, is suppressed. Together, these results suggest new strategies for
manipulating the behavior of live and synthetic swimmers in microchannels.

The findings of the present chapter on semi-flexible microswimmers in wavy Poiseuille flows are
published in Ref. [146]. These results are based on the swimmer model and parts of the findings
on swimmers in flows through planar channels, which are reported above in chapter 4.

This chapter is structured as follows. After a motivation given in section 5.1, at first the flow
field through such a wavy channel is calculated in section 5.2. Based on this, the results for a
microswimmer in a wavy Poiseuille flow are given in section 5.3 in the swinging regime, and in
section 5.4 in the tumbling regime. Finally, the findings of part II of the present thesis are then
summarized in section 5.5.

5.1. Motivation for considering a wavy channel

The lateral drift of microswimmers in flows through planar channels as described in the previous
chapter might be undesirable for several reasons. As described above, upstream migration of
bacteria can be detrimental as it causes contamination of ducts and catheters. Upstream motion
of microswimmers requires their orientation against the flow, a state which was found to be
stable in the bulk for a deformable swimmer [168,171,172], as confirmed for the swimmer model
employed in the present thesis in chapter 4. While the flow at the channel center might be strong
enough to flush swimmers downstream, a lateral drift of swimmers towards the walls of planar
channels has been identified in chapter 4. This effect can promote the accumulation of swimmers,
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5. Controlling bacterial swimming in flows through wavy channels

such as bacteria, at the channel boundary where they are able to migrate upstream due to
surface rheotaxis [154, 155]. Besides its relevance for upstream motion, the lateral migration of
bacteria towards the walls of plane channels may facilitate the growth of biofilms on the channel
boundaries [195]. Furthermore, the inward migration can lead to the formation of swimmer
clusters [196].

It is thus of interest to seek for solutions to suppress the lateral migration of semi-flexible
microswimmers observed in planar channels, both towards the channel center and towards the
walls. In the present chapter, the effect of a wavy Poiseuille flow on a semi-flexible microswimmer
is investigated. From a physical perspective, the curved streamlines of a flow through a wavy
channel represent an interesting extension to the dynamics of swimmers in plane Poiseuille flows.
For passive cells, such as RBCs, wavy channels with alternating converging and diverging cross-
sections have been shown to lead to the emergence of new off-centered attractors for lateral
migration [116]. In the present case, where self-propelling cells are considered, flows through
channels with serpentine-like geometry lead to a continuous reorientation of the swimmer which
is expected to suppress the above-described fixed point of upstream orientation.

5.2. Flow field through a wavy channel

A wavy channel is considered with sinusoidally modulated walls located at

y±
w (x) = d

[
±1 + ε sin

(2π
λ
x

)]
, (135)

where d is the channel half-height, ε the dimensionless modulation amplitude, and λ the modula-
tion wavelength. The “±” indicates the location of the two walls, where the plus-sign corresponds
to the top wall and the minus-sign to the bottom wall. The aim of this section is to derive the
profile of a pressure-driven flow in such a channel, which is done in section 5.2.1. The result
in then validated in section 5.2.2 by a comparison to the full numerical solution, obtained from
LBM simulations.

5.2.1. Derivation of the flow profile

In the limit of small modulation amplitudes, a solution of the Stokes equations can be obtained
by a perturbation expansion. This method has been applied to derive the flow profile, e.g., in
axisymmetric wavy channels [116,197] and for flows over a single wavy boundary [198].

5.2.1.1. Problem formulation and coordinate transformation

For the purpose of the derivation of the flow profile it is helpful to rewrite the Stokes equations.
In the following, translational invariance along the z-direction is assumed and thus the resulting
flow field is given by

u(x, y) = ux(x, y)ex + uy(x, y)ey. (136)
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5.2. Flow field through a wavy channel

For such 2D incompressible flows, the stream function Ψ(x, y) can be defined according to

ux(x, y) = ∂

∂y
Ψ(x, y), (137)

uy(x, y) = − ∂

∂x
Ψ(x, y). (138)

More conveniently, by introducing the vectorial stream function Ψ(x, y) = Ψ(x, y)ez, one can
write

u(x, y) = ∇ × Ψ(x, y). (139)

Applying the curl to the Stokes equations (7) without external forces, one obtains

− ∇ × ∇p︸ ︷︷ ︸
=0

+η∇ × ∆u = 0 (140)

(139)⇒ η∆ (∇ × ∇ × Ψ) = 0 (141)
∆
[
∇(∇ · Ψ︸ ︷︷ ︸

=0

) − ∆Ψ
]

= 0 (142)

⇒ ∇4Ψ = 0. (143)

Here,

∇4 = ∆∆ =
(
∂2

∂x2 + ∂2

∂y2

)2

(144)

is the biharmonic operator. Thus, solving Eq. (143) is equivalent to solving the Stokes equations
(7). The wavy walls of the channel are sketched in Fig. 31. One assumes no-slip boundary
conditions at the walls, given by

ux[x, y±
w (x)] = 0, (145)

uy[x, y±
w (x)] = 0. (146)

The wavy channel as sketched in Fig. 31 exhibits point symmetry with respect to the origin of
coordinates. This symmetry is assumed to translate onto the flow, yielding

ux(−x,−y) = ux(x, y), (147)
uy(−x,−y) = uy(x, y). (148)

To obtain the flow profile in Eq. (136), one has to solve Eq. (143) under the conditions given
by Eqs. (145), (146), (147), and (148). In order to obtain the solution, first a coordinate
transformation to plane coordinates is conducted. For this, one introduces the dimensionless
variables for the x- and y-coordinates and the stream function,

x′ := x

λ
, y′ := y

d
, Ψ′ := Ψ

u0d
, (149)

where u0 is the characteristic flow speed. With this the plane coordinates η and ζ can be defined
according to

η := x′, (150)
ζ := y′ − h(x′). (151)

85



5. Controlling bacterial swimming in flows through wavy channels

x

y

d

−d

−λ/2 λ/2

y+
w (x)

y−
w (x)

0

dε

Figure 31. Sketch of the wavy channel walls (gray hatched areas), as given by Eq. (135). The walls and the
resulting flow profile, driven by a constant pressure drop along the x-direction, exhibit point symmetry with
respect to the origin of coordinates at (x, y) = 0.

with

h(x′) = ε sin
(
2πx′) . (152)

These coordinates are chosen in such a way that the walls, which are in physical coordinates
(x, y) given by Eq. (135), are in the pair of coordinates (η, ζ) given by

ζ = ±1. (153)

The no-slip boundary conditions (145) and (146) transform into

∂

∂ζ
Ψ(η, ζ)

∣∣∣∣
ζ=±1

= 0, (154)

− ∂

∂η
Ψ(η, ζ)

∣∣∣∣
ζ=±1

= 0, (155)

(156)

where Ψ(η, ζ) is the stream function in the plane coordinates. The point symmetry, see Eqs.
(147) and (148), can be translated into the new coordinates as well, yielding

∂Ψ
∂ζ

(−η,−ζ) = ∂Ψ
∂ζ

(η, ζ) (157)

−∂Ψ
∂η

(−η,−ζ) = −∂Ψ
∂η

(η, ζ) . (158)
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5.2. Flow field through a wavy channel

That is, both derivatives ∂ζΨ and ∂ηΨ are even functions in η and ζ. Thus, Ψ(η, ζ) must be an
odd function,

−Ψ(η, ζ) = Ψ(−η,−ζ). (159)

The Laplace operator in generalized curvilinear coordinates is given by

∆̄ =
∑
m,n

∇ξm · ∇ξn ∂2

∂ξm∂ξn
+ ∇2ξm ∂

∂ξm
. (160)

With {m,n} = {1, 2}, ξ1 = η, ξ2 = ζ, and ∇ being the gradient with respect to the physical
coordinates, one obtains

∆̄ = ∂2

∂η2 − 2∂h
∂η

∂2

∂η∂ζ
− ∂2h

∂η2
∂

∂ζ
+
[
1 +

(
∂h

∂η

)2
]
∂2

∂ζ2 . (161)

With this, Eq. (143) transforms into

∆̄∆̄Ψ(η, ζ) = 0, (162)

which is solved in the following.

5.2.1.2. Perturbation approach and solution

For the purpose of the perturbation analysis, small modulation amplitudes are assumed. Thus,
ε is taken as the perturbation parameter and the solution of Eq. (162) can be written up to first
order as

Ψ ≈ Ψ0 + εΨ1. (163)

Upon substitution of Eq. (163) into Eqs. (154) it is clear that, since ε can be chosen arbitrarily,
the no-slip boundary conditions apply to the stream function in each order separately, namely

∂Ψ0
∂η

∣∣∣∣
ζ=±1

= 0, ∂Ψ0
∂ζ

∣∣∣∣
ζ=±1

= 0, (164)

and
∂Ψ1
∂η

∣∣∣∣
ζ=±1

= 0, ∂Ψ1
∂ζ

∣∣∣∣
ζ=±1

= 0. (165)

The perturbation ansatz (163) can now be substituted in Eq. (162) and the resulting terms
sorted according to their order in ε. This yields in zeroth order

∂4

∂ζ4 Ψ0(ζ) = 0, (166)

where it was assumed that Ψ0 is only a function of ζ. Using the symmetry property (159) and
the boundary conditions (164), one obtains the expression for the stream function in zeroth
order,

Ψ0(ζ) = ζ − ζ3

3
. (167)

Upon substitution of this result in Eq. (162), the equation for Ψ in first order in ε reads

∂4

∂ζ4 Ψ1 (η, ζ) + 2 ∂4

∂ζ2∂η2 Ψ1 (η, ζ) + ∂4

∂η4 Ψ1 (η, ζ) + 16π2 sin (2πη)
[(
ζ2 − 1

)
π2 − 1

]
= 0. (168)
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To obtain a solution for this equation, one chooses a separation ansatz,

Ψ1(η, ζ) = g1(ζ) cos(2πη) + g2(ζ) sin(2πη). (169)

Substitution in Eq. (168) yields[
∂4

∂ζ4 g1(ζ) − 8π2 ∂
2

∂ζ2 g1(ζ) + 16π4g1(ζ)
]

cos(2πη)

+
[
∂4

∂ζ4 g2(ζ) − 8π2 ∂
2

∂ζ2 g2(ζ) + 16π4
(
g2(ζ) + ζ2 − 1 − 1

π2

)]
sin(2πη) = 0. (170)

Since η and ζ are independent of each other, the terms in square brackets have to vanish. This
yields two ordinary differential equations in ζ for g1 and g2,

∂4

∂ζ4 g1(ζ) − 8π2 ∂
2

∂ζ2 g1(ζ) + 16π4g1(ζ) = 0 , (171)

∂4

∂ζ4 g2(ζ) − 8π2 ∂
2

∂ζ2 g2(ζ) + 16π4
(
g2(ζ) + ζ2 − 1 − 1

π2

)
= 0. (172)

This reasoning can also be applied to the boundary conditions: Substituting the ansatz (169)
in Eq. (165) yields the boundary conditions for Eqs. (171) and (172),

g1(ζ)|ζ=±1 = 0, ∂g1(ζ)
∂ζ

∣∣∣∣
ζ=±1

= 0, (173)

g2(ζ)|ζ=±1 = 0, ∂g2(ζ)
∂ζ

∣∣∣∣
ζ=±1

= 0. (174)

With this, Eqs. (171) and (172) for g1 and g2 can be solved, resulting in

g1(ζ) = 0, (175)

g2(ζ) = 1
4π + sinh(4π)

{
−4 sinh(2π) cosh(2πζ) + 4ζ sinh(2πζ) cosh(2π)

−4
(
ζ2 − 1

) [1
2

cosh(2π) sinh(2π) + π

]}
. (176)

Upon resubstitution in Eq. (169) one obtains the expression for Ψ1. With the expression for Ψ0
(167) the solution for the stream function up to first order in ε according to Eq. (163) reads

Ψ(η, ζ) = ζ − ζ3

3
+ ε

4 sin(2πη)
4π + sinh(4π)

{
− sinh(2π) cosh(2πζ) + ζ sinh(2πζ) cosh(2π)

−
(
ζ2 − 1

) [1
2

cosh(2π) sinh(2π) + π

]}
. (177)

From here, the flow field in the physical components can be obtained using the transformation
given by Eqs. (150) and (151), according to

ux′(x′, y′) = ∂Ψ(η, ζ)
∂η

∂η(x′, y′)
∂y′ + ∂Ψ(η, ζ)

∂ζ

∂ζ(x′, y′)
∂y′ (178)

uy′(x′, y′) = −∂Ψ(η, ζ)
∂η

∂η(x′, y′)
∂x′ − ∂Ψ(η, ζ)

∂ζ

∂ζ(x′, y′)
∂x′ , (179)

and then the dimensional variables according to Eq. (149) can be resubstituted. By calculating
the flow field from Eqs. (178) and (179), terms of higher order in ε are obtained. Thus, one has to
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5.2. Flow field through a wavy channel

expand the resulting expression again in ε and truncate after the first order in the dimensionless
modulation amplitude. The final expressions for the x- and y-component of the flow field (136)
are then given by

ux(x, y) = u0

(
1 − y2

d2 + ε
sin
(

2πx
λ

)
4π + sinh (4π)

{
[−8π sinh(2π) + 4 cosh(2π)] sinh

(2πy
d

)
+
[
8π cosh(2π) cosh

(2πy
d

)
− 4 cosh(2π) sinh(2π) + 2 sinh(4π)

]
y

d

})
, (180)

uy(x, y) = −u0 ε cos
(2πx

λ

) 2π
4π + sinh (4π)

{
4 cosh(2π)y

d
sinh

(2πy
d

)

− 4 sinh(2π) cosh
(2πy

d

)
+ [sinh(4π) − 2 cosh(2π) sinh(2π)] y

2

d2

}
. (181)

Note that in the case of flat walls, that is, for ε = 0, this solution reduces to the well-known
parabolic flow with straight streamlines,

ux(y) = u0

(
1 − y2

d2

)
, (182)

uy = 0. (183)

It can be seen that Eqs. (180) and (181) fulfill the point symmetry as formulated above in Eqs.
(147) and (148). Furthermore, the wavy flow field is periodic along the x-direction in λ, that
is

ux(x± nλ, y) = ux(x, y) (184)
uy(x± nλ, y) = uy(x, y) (185)

with n ∈ Z, which is easily verified by substitution.

5.2.2. Validation by comparison to the Lattice-Boltzmann solution

A quantitative validation of the analytically derived flow profile can be done by a comparison to
the flow field through the wavy channel obtained with the LBM. To this end, the LBM code used
in chapter 3 for simulations of flows through plane channels is extended by the wavy walls. To
generalize the implementation, the position of the bottom wall is implemented with an arbitrary
phase shift Φ. That is, the walls are located at

y+
w (x) = d

[
1 + ε sin

(2π
λ
x

)]
(186)

y−
w (x) = d

{
−1 + ε sin

[2π
λ

(x+ Φ)
]}

. (187)

For Φ = 0 the serpentine wavy channel with two in-phase modulated walls as given by Eq. (135)
is obtained. For Φ = λ/2 one obtains an axisymmetric channel with alternately converging and
diverging cross-section and walls located at

y±
w (x) = ±

[
1 + ε sin

(2π
λ
x

)]
. (188)
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5. Controlling bacterial swimming in flows through wavy channels

Such a channel has been used in previous work [116] for the study of passive deformable particles
such as red blood cells in wavy flows.

As described above in section 2.2.3.2, in the LBM the no-slip boundary conditions at the channel
walls are realized using the bounce-back method, where populations which are hitting a rigid
wall during propagation are reflected back to the node from which they came from. In the
D3Q19 scheme employed here, each lattice node is connected by 18 lines with either a fluid
or solid neighboring node, depending on the node’s position in the channel. In contrast to a
plane boundary as used in chapter 3, the location of such fluid-solid connection lines is a priori
not known in the case of the curved boundary of the wavy channel. In order to realize the
wavy channel with the LBM, one has to first identify all solid nodes which is done according to
the conditions y > y+

w (x) and y < y−
w (x). For each fluid node, the populations are then freely

streamed along connection lines with other fluid nodes, while the bounce-back method is applied
along connection lines with solid nodes. Finally, the pressure gradient which forces the fluid into
motion is computed according to

∇P = −2u0η

d2 ex, (189)

where the flow strength u0 serves as an input parameter for the simulation. Note that Eq. (189)
is an approximation for the wavy channel since it is strictly valid only for a plane channel.

Table 8. Parameters used for LBM simulations of the flow through a wavy channel.

parameter value

lattice constant ∆xl 1
time step ∆t 1

LBM relaxation time τ 1
fluid viscosity η 1

6
system size in x-direction Sx 50
(mean) channel half-height d 50
system size in z-direction Sz 100

channel modulation amplitude ε 0.2
channel modulation wavelength λ 50

flow strength u0 0.01

Tab. 8 lists the parameters used for the LBM simulation. Periodic boundary conditions along the
x- and z-direction are employed. Fig. 32 shows the flow field from the full numerical simulation
of a pressure-driven flow through a serpentine wavy channel obtained from a LBM simulation.
The flow component along the channel axis, see Fig. 32(a), points in positive x-direction and
is largest in the channel center. It decreases towards the walls where it becomes zero, and a
small flow is observed in the range of the wall modulation. The flow in y-direction, see Fig.
32(b), is at least one order of magnitude smaller than the flow in x-direction. It changes sign
in the channel, pointing in positive (negative) y-direction in ranges where the wall modulation
function [Eq. (135)] has a positive (negative) slope, that is, the flow “follows” the curvature of
the channel. Furthermore, the magnitude of uy(x, y) is large in regions close to the walls and
small close to the channel center.

For the sake of the comparison of the two results, the components of the analytically obtained
flow field, given by Eqs. (180) and (181), are in the following denoted as uana

x (x, y) and uana
y (x, y),
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Figure 32. Flow field (color code) obtained from LBM simulations in a serpentine wavy channel (channel
boundaries drawn in black). (a) shows the x-component ux(x, y) and (b) the y-component of the flow field
uy(x, y).

respectively. Their deviation from the full numerical solution obtained from the LBM simulation
can be quantified by the errors

εv,x(x, y) = |uana
x (x, y) − uLBM

x (x, y)|
max[uLBM

x (x, y)]
, (190)

εv,y(x, y) =
|uana

y (x, y) − uLBM
y (x, y)|

max[uLBM
y (x, y)]

, (191)

where uLBM
x (x, y) and uLBM

y (x, y) are the flow components of the LBM solution. Here, max[•]
refers to the maximum value of a quantity within the channel domain.
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Figure 33. Deviation of the numerically from the analytically obtained flow field in the wavy channel given by
the errors εv,x (a) and εv,y (b) (color code), according to Eq. (190) and (191). The channel walls are drawn in
black.

Fig. 33 shows the velocity errors in the channel domain. The error of the x-component, see Fig.
33(a), is relatively small in the center of the channel and becomes largest in regions close to the
boundaries. This is reasoned in the fact that the LBM solves the full Navier-Stokes equations
and thus the resulting flow vanishes at the wavy boundaries. Conversely, as a consequence
of the perturbation approach on which the analytical solution is based, the no-slip boundary
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5. Controlling bacterial swimming in flows through wavy channels

conditions are fulfilled only up to first order in ε for the flow field in Eqs. (180) and (181). Thus,
the deviations between the numerical and analytical solution can become large close to the walls.
This trend is also observed for the error of the y-component of the flow field, shown in Fig. 33(b).
This means that the analytical solution for the flow field becomes increasingly unreliable close
to the walls. Nevertheless, it has been shown that the behavior of soft particles in the flow field
through an axisymmetric wavy channel calculated by such a perturbation expansion agrees well
with the results of the corresponding LBM simulation [116]. The analytically determined flow
field in Eqs. (180) and (181) is employed in the following for the description of microswimmers
in wavy Poiseuille flows.

5.3. Wavy-induced swinging motion of a microswimmer

In this section, the behavior of a semi-flexible, pusher-type microswimmer, as described above in
section 4.2, is investigated in the wavy Poiseuille flow. The focus here lies on the regime of small
u0/v0 where the swimmer propulsion dominates over the flow speed and the swimmer would
migrate towards the upstream fixed point in a plane Poiseuille flow. The parameters listed in
tab. 9 are used. In section 5.3.1 first the general behavior of a microswimmer in the wavy flow

Table 9. Parameters used for simulations of a microswimmer in wavy Poiseuille flow, if not mentioned otherwise.

parameter value

time step ∆t 10−2

simulation end time tend 2 × 106

fluid viscosity η 1
flow strength u0 0.162

channel half-width d 20
swimmer bead radius a 0.5

swimmer equilibrium bead distance b 1.095
swimmer number of beads N 5

swimmer hookean spring constant k 10
swimmer bending stiffness κ 3
swimmer torque strength κt 10

swimmer activity F0 1
initial swimmer orientation ψ0 0

initial swimmer position (xc,0, yc,0, zc,0) (0, 1, 0)
channel modulation amplitude ε 0.1

channel modulation wavelength λ 807

is described. The emerging resonant oscillations are then analyzed numerically and the results
compared to a simple analytical approximation in section 5.3.2. This is further supported by
the Fourier spectra in section 5.3.3. The dependence of the wavy-induced swinging motion on
additional important parameters is finally described in section 5.3.4.
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5.3.1. General behavior

Fig. 34(a) shows the swimmer’s trajectories in the wavy flow in comparison to its behavior
in plane Poiseuille flow. In planar flow, the swimmer tumbles during a short transient, then
transitions to swinging, and finally approaches the upstream fixed point, as discussed above in
section 4.3. This fixed point exists because the flow vorticity according to Eq. (131) is zero at
the channel center and increases with growing distance from the center. The swimmer migrates
towards locations of smaller vorticity where it is deformed less and ends up at the channel center
where its bending deformation is zero. By contrast, in the wavy flow the vorticity is non-zero
everywhere in the channel. The upstream fixed point is thus eliminated and the swimmer is
continuously reoriented by the wavy streamlines. This is shown in Fig. 34(a) where, after an
initial transient, a swinging motion with finite amplitude and constant frequency emerges which
is not present in plane Poiseuille flow. Notably, as illustrated in the figure, only the short-
time transient depends on the initial orientation and lateral position of the swimmer, while the
long-time limit cycle is independent of these initial conditions. The limit cycle, on which the
trajectory converges, is shown in phase space in Fig. 34(b).

Figure 34. (a): Real space trajectories of a semi-flexible microswimmer in plane (violet bold line) and wavy
Poiseuille flow (red dashed and blue dotted lines) with initial conditions as indicted in the legend. y0 is the
initial lateral position and ψ0 the initial orientation of the swimmer. Lateral positions are given in units of
the channel half-height d, axial positions in units of the undeformed swimmer length L0. The gray dashed line
marks the channel center. (b): Phase space trajectory (black bold line) for a swimmer with initial conditions
(yc,0, ψ0) = (0.05d, 0), converging to a limit cycle (red bold line). Reprinted figure with permission from Ref. [146].
Copyright (2022) by the American Physical Society.

It is noteworthy to differentiate between the pointsymmetric wavy channel geometry employed
here, where the walls are given by Eq. (135), and the axisymmetric wavy channel used in previous
work [116], with walls given by Eq. (188). In Ref. [116] is has been shown that passive soft
particles, such as capsules or RBCs, are deformed differently strong during the converging and
diverging section of the flow which can result in a net outward migration. The flow vorticity
in such an axisymmetric flow is zero at the channel center, similar to a plane Poiseuille flow.
Thus, an axisymmetric channel cannot suppress the upstream fixed point of an actively driven
deformable particle discussed in the present thesis.
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5. Controlling bacterial swimming in flows through wavy channels

5.3.2. Resonant oscillation

In order to systematically investigate the wavy-induced swinging motion of the microswimmer, it
is helpful to approximate the frequency of the swimmer reorientation due to the wavy flow while
is moves along the channel. Assuming perfect upstream orientation at all times, this channel
frequency is given by

ωCh ≈ 2π|u0 − v0|
λ

. (192)

Here, the absolute value of the difference between the flow amplitude and the swimming speed
is taken in order to account for the two possible cases of net upstream swimming (u0 < v0) and
net downstream drift (u0 > v0). For a rigid elongated swimmer in planar Poiseuille flow, the
swinging frequency in the limit of small oscillation amplitudes has been derived as [179]

ω0 =

√
u0v0(1 −G)

d2 . (193)

This frequency can be interpreted as the eigenfrequency of the oscillator which is perturbed by
the wavy streamlines. Thus, ωCh can be interpreted as the frequency of an external periodic drive
with amplitude ε. In the case of ωCh ≈ ω0, one expects resonant oscillations of the swimmer, i.e.,
large swinging amplitudes. This condition leads to a resonance channel modulation wavelength

λres ≈ 2πd|u0 − v0|√
u0v0(1 −G)

. (194)

If the channel wavelength is much smaller than the resonance wavelength, the driving frequency
is much larger than the eigenfrequency. In this case one expects a vanishing response of the
system with an oscillation amplitude close to zero. In the opposite case, for λ ≫ λres, the
driving frequency is much smaller than the eigenfrequency of the system and one expects small
swinging amplitudes as well. To characterize the wavy-induced swinging motion, two quantities
are introduced: The maximum oscillation amplitue ymax

c and the stationary oscillation amplitude
ystat

c . The former refers to the global maximum of the absolute value of the swimmer’s lateral
position |yc(t)| which typically lies in the initial transient regime (see Fig. 34). ystat

c is the size
of the limit cycle, i.e., the amplitude of the swinging motion after the transient, as shown in
Fig. 34.

Fig. 35 shows the swinging amplitude as a function of the channel modulation wavelength.
Both the maximum and the long-time swinging amplitude are small in the regime of very small
modulation lengths. From there, the oscillation amplitude increases and peaks in the range of
193 ≲ λ/L0 ≲ 223. In this range the response of the system is large enough that the swimmer
crosses the position of one of the walls during the initial transient. In this case, if one of the
swimmer’s beads reaches the position of one of the walls, the simulation is stopped, similar
to the simulations of swimmers in plane channel above. For further increasing λ, both ymax

c

and ystat
c decrease and saturate to a small but non-zero value for λ → ∞. Such a resonance

curve corresponds to the above-formulated expectation for the dependence of the oscillation
amplitude on the modulation length. The theoretical prediction for the resonance wavelength
according to Eq. (194) yields λres = 257L0, which is a good approximation for the location of
the numerically determined resonance peak in Fig. 35. The difference between this prediction
and the numerically determined behavior results from the approximation of perfect upstream
orientation and a swimmer position at the channel center which the expression for the channel
frequency in Eq. (192) is based on. The closer the system is to the resonance, the larger the
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5.3. Wavy-induced swinging motion of a microswimmer

Figure 35. Maximum ymax
c (red dots, dotted line) and long-time swinging amplitude ystat

c (orange squares,
bold line) of the microswimmer in the wavy flow, given in units of the channel half-width d, as a function of the
channel modulation wavelength λ in units of the swimmer’s undeformed length L0. The black hatched region
illustrates the range of the wall modulation. The light-red rectangle indicates the range of modulation lengths
where the swimmer crosses the position of one of the walls. Figure adapted from Ref. [146]. Copyright (2022) by
the American Physical Society.

swinging amplitude becomes and thus the error of this approximation increases. Furthermore,
the literature prediction for the eigenfrequency in Eq. (193) is based on the assumption of small
swinging amplitudes as well, further increases the error of the approximation for the resonance
wavelength.

So far only the case of u0 > v0 has been investigated where the swimmer is on average oriented
opposite to the flow but drifts downstream due to the large flow strength. However, it may be
of interest to consider the case of a smaller flow strength than the swimming speed, allowing
for a net motion of the swimmer against the flow, i.e., in negative x-direction. Investigating the
influence of the flow strength on the swimmer behavior is of interest for the situation of bacteria
swimming in a catheter. It is also of practical relevance since the flow strength is a relatively
accessible parameter in experiments. Fig. 36 shows the swinging amplitude as a function of the
flow strength in units of the swimming speed. Two resonance peaks are observed, one in the
regime of upstream motion and a second one for downstream drift. Similar to the resonance
curve in Fig. 35, the peaks are relatively sharp with a comparably small oscillation amplitude
in ranges for u0/v0 both below and above the peaks. Depending on the bending rigidity of the
swimmer, the resonant oscillation can become sufficiently large to drive the swimmer far enough
away from the channel center that it reaches one of the walls during the transient. Furthermore,
one observes that stiffer swimmers experience a larger swinging amplitude than more flexible
ones. As discussed above, the migration of a swimmer towards the upstream fixed point in
planar Poiseuille flow is caused by its deformability in the first place. Thus, softer swimmers
respond less strongly than stiffer ones to the wavy flow which ejects them from the centerline.

Solving Eq. (194) for u0/v0, one obtains an expression for the resonance ratio of flow strength
over swimming speed,

u0
v0

= 1 + α2

2
(1 −G) ± α

√
(1 −G) + α2

4
(1 −G)2, (195)

with α := λ/(2πd) > 0. While G depends only on the swimmer’s geometry, the parameter
α encodes the channel geometry. With the parameters from tab. 9, the two solutions of Eq.
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5. Controlling bacterial swimming in flows through wavy channels

Figure 36. Long-time swinging amplitude ystat
c of the microswimmer in the wavy flow, given in units of the

channel half-width d, as a function of the ratio of flow strength over swimming speed, u0/v0. The simulation
results for two different swimmer bending rigidities κ = 1 (red dots, bold line) and κ = 3 (blue crosses, dotted
line) are shown. The ranges of net upstream swimming (u0 < v0) and net downstream drift (u0 > v0) are shown
by the white and gray background, respectively. The flow speed ranges where the swimmer crosses the position
of one of the walls are indicated by the blue hatched boxes for κ = 3 and the red crosshatched box for κ = 1.
Reprinted figure with permission from Ref. [146]. Copyright (2022) by the American Physical Society.

(195) are obtained as u0/v0 = 0.22 (upstream swimming) and u0/v0 = 4.54 (downstream drift).
Both values agree well with the numerically found resonance peaks in Fig. 36. The deviations
between these theoretical predictions and the numerical findings are reasoned in the assumption
of perfect upstream swimming, as discussed above.

5.3.3. Fourier spectra

Figure 37. Lateral position yc of the swimmer in the wavy channel in units of the channel half-height d as a
function of time, given in units of the swimming speed v0 and d. The trajectories for u0/v0 = 0.197 (close to the
resonance case, red bold line) and u0/v0 = 0.554 (off-resonant, blue dotted line) are shown.

To further characterize the resonance of the swimmer in the wavy channel, the Fourier spectrum
of its trajectory yc(t) is examined. For this, two exemplary trajectories are chosen with u0/v0 =
0.554 and u0/v0 = 0.197. According to Fig. 36, the former ratio of flow strength to swimming
speed is characterized by a small, off-resonant oscillation, while the trajectory in the latter case
is close to the resonance and thus has a larger swinging amplitude. Fig. 37 shows the lateral
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5.3. Wavy-induced swinging motion of a microswimmer

position of the swimmer as a function of time in both cases. For u0/v0 = 0.197 one observes a
comparably large swinging amplitude, modulated by a slowly varying enveloping oscillation.

Figure 38. Fourier spectra which are numerically obtained from the swimmer’s lateral position as a function
of time, yc(t). The spectral density is given in arbitrary units and the angular frequency in units of the channel
half-height d and the swimming speed v0. (a) corresponds to u0/v0 = 0.554 (far away from the resonance case)
and (b) to u0/v0 = 0.197 (close to the resonance case). The theoretical predictions for the eigenfrequency ω0,
see Eq. (193), and the driving frequency ωCh, see Eq. (192), are shown as orange dashed and pink dotted lines,
respectively. Reprinted figure with permission from Ref. [146]. Copyright (2022) by the American Physical
Society.

The time signals in Fig. 37 are used to compute the Fourier spectra which are shown in Fig.
38(a) and (b). In the off-resonant case, one observes two small local maxima in Fourier space
which agree well with the theoretically predicted values for ω0 and ωCh. The eigenfrequency
is approximately three times larger than the driving frequency which is in alignment with the
expectation that both frequencies lie far apart from another in the off-resonant case. The situ-
ation is different for the trajectory close to resonance where both maxima are more pronounced
than in the off-resonant case and lie much closer together. This also holds for the theoretically
obtained predictions for eigen- and driving frequency which agree well with the numerical peaks
here as well. This illustrates that close to the resonance one has ωCh ≈ ω0.

5.3.4. Further characterization

In the following, the wavy-induced swinging motion is characterized as a function of the channel
modulation amplitude and the swimming speed. Fig. 39 shows the size of the limit cycle as a
function of ε. For zero wall modulation one recovers the case of a plane Poiseuille flow. Here,
the swimmer approaches the upstream fixed point, yielding ystat

c = 0. The long-time oscillation
amplitude then grows monotonically with the channel modulation amplitude, in accordance with
the expectation. This is the case for all three channel modulation wavelengths examined in the
figure. The value of λ/L0 = 250 is close to the resonance in Fig. 35 and thus the response
of the system is large compared to the case of λ/L0 = 150 (i.e., below the resonance peak in
Fig. 35) and λ/L0 = 400 (i.e., above the resonance peak in Fig. 35). Close to the resonance
peak, the transient oscillation causes the swimmer to cross the wall position for ε ≳ 0.14, while
no wall-crossings are observed for the two other modulation wavelengths within the considered
range of the wall modulation amplitude.

Fig. 40 shows the resonance curves for three different values of the swimmer activity. While
resonant behavior is observed in all cases, the peak is broader for lower activity. As discussed
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Figure 39. Long-time swinging amplitude ystat
c of the microswimmer in the wavy flow, given in units of the

channel half-width d, as a function of the dimensionless channel modulation amplitude ε. The simulation results
for three different channel wavelengths λ/L0 = 150 (red dots, bold line), λ/L0 = 250 (orange crosses, dotted line),
and λ/L0 = 400 (violet squares, dashed-dotted line) are shown where L0 is the swimmer’s undeformed length.
For λ/L0 = 250 the swimmer crosses the position of one of the walls in the range indicated by the light-orange
rectangle. Figure adapted from Ref. [146]. Copyright (2022) by the American Physical Society.

above, in planar flow, the activity is responsible for the inward drift of the swimmer and its
convergence towards the upstream fixed point at the channel center. Thus, in the wavy flow,
swimmers with a small intrinsic swimming speed are more susceptible to the wavy streamlines
which drive them away from the channel center. By contrast, faster swimmers are ejected from
the channel center only for modulation lengths which are close to the resonance wavelength.
Moreover, one observes that the location of the resonance is shifted towards increased λ for
decreasing activity. This is in agreement with Eq. (194) which predicts that, in the case of net
downstream drift of the swimmer, the resonance wavelength decreases as a function of v0.

5.4. Wavy-induced tumbling motion of a microswimmer

The following, the swimmer behavior in the wavy flow is investigated in the regime of large u0/v0
where tumbling takes place. As described above in chapter 4, for such large flow amplitudes
compared to the swimming speed, the repellers in a plane channel are increasingly shifted towards
the center and swimmer migration away from the channel center towards the walls takes place.
In order to describe the behavior of the swimmer close to the channel walls, a repulsive wall
potential is introduced, given by [199]

V (ri
min) =

V ∗(ri
min) for ri

min ≤ rw,c

0 for ri
min > rw,c

(196)

with

V ∗(ri
min) = 4V0

( σ

ri
min

)12

−
(

σ

ri
min

)6
 . (197)

Here, ri
min is the minimal distance between the position of the i-th bead and the closest wall. It

is given by ri
min := |ri

w − ri|, where ri
w is the point along the wall which is closest to the position

of bead i. rw,c is the cut-off length, V0 the repulsion energy, and σ = 2−1/6a the repulsion
length. While Eq. (197) corresponds to the full Lennard-Jones potential, a cut-off distance of
rw,c = 21/6σ is chosen in Eq. (196) in order to take into account only the repulsive contribution of
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5.4. Wavy-induced tumbling motion of a microswimmer

Figure 40. Long-time swinging amplitude ystat
c of the microswimmer in the wavy flow, given in units of the

channel half-width d, as a function of the channel modulation amplitude ε. The simulation results for three
different swimmer activities F0 = 0.6 (red dots), F0 = 1 (blue crosses), and F0 = 1.4 (orange squares) are shown.
Reprinted figure with permission from Ref. [146]. Copyright (2022) by the American Physical Society.

the potential. The repulsion range corresponds to the radius of one of the swimmer’s beads which
could, for instance, mimic a short-ranged steric interaction between the swimmer and the walls.
The point ri

w along the walls is determined for each bead i iteratively. This is done by starting
with a trial position along the channel axis, xtrial, and by computing the distance between the
position of bead i and the position of the wall evaluated at the trial position, y±

w (xtrial), with
y±

w (x) given by Eq. (135). A small increment δx is added or subtracted to the trial position and
the differences between ri and y±

w (xtrial + δx) and y±
w (xtrial − δx) are compared. xtrial is then

shifted by δx along the direction of decreasing distance between the local wall position and ri.
This process is repeated until ri

w and the minimal distance are found. The repulsion force

F w
i = −∂V (ri

min)
∂ri

min

ri − ri
w

|ri − ri
w|

(198)

is then added to the bead forces given by Eq. (112) for i = 1, ...N . In the remainder of this
section, simulation results including the repulsive wall-potential are presented, where V0 =
5 × 10−2 and δx = 10−3 are chosen.

Fig. 41(a) compares the trajectories of a swimmer in plane and wavy flow for a large flow strength
compared to the swimming speed of u0/v0 = 107. In plane channels, for this flow strength, the
repellers are located at y ≈ ±d/4. Here, a swimmer which is initially placed outside of the
repellers migrates towards the closest wall during tumbling. Due to the wall repulsion, the
migration stops upon a critical distance between the swimmer and the wall and the swimmer
subsequently moves along a constant lateral position while continuing to tumble. Note that this
off-centered attractor originates from the repulsive swimmer-wall interactions employed here
and is thus of different physical origin than the off-centered attractor observed for puller-type
swimmers described above which is caused by the swimmer’s deformation in the bulk. The
situation is different in a wavy channel, where the oscillation of the swimmer trajectory shows
a significantly larger amplitude than in the plane flow. Furthermore, a smaller frequency is
observed which is determined by the channel modulation. One observes a periodicity of the
trajectory of 4λ. As a consequence of the large tumbling amplitude, the average y-value of the
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5. Controlling bacterial swimming in flows through wavy channels

long-time trajectory is located closer to the channel center than for a swimmer in plane flow,
as shown in Fig. 41(b). In the wavy flow, the swimmer crosses a considerable portion of the
channel cross-section in a time much shorter than the time scale on which the cross-streamline
migration takes place, which is the swimmer’s dominant lateral motion in the planar flow.

Figure 41. (a): Trajectories of a swimmer in plane (blue bold line) and wavy (red dotted line) Poiseuille flow
for u0/v0 = 107. The wavy wall is drawn as the black dashed line. (b): The same trajectories averaged over 4λ
for both cases on a longer time-scale. (c) and (d) show the probability distribution of a microswimmer in plane
(blue shaded bars) and wavy flow (light-red bars) for u0/v0 = 107 and u0/v0 = 5.36, respectively. Reprinted
figure with permission from Ref. [146]. Copyright (2022) by the American Physical Society.

To quantify this lateral motion, the probability distribution p(yc) of the swimmer is computed.
For a single trajectory yc(xc), the probability distribution is computed by dividing the simulation
domain into equally sized intervals along the axial and the lateral direction. 105 intervals are
used along the x-direction and 50 intervals along the y-direction. A comparably long simulation
time of tend = 3×107 for each trajectory is chosen in order to focus on the long-time behavior of
the swimmer and minimize the influence of the initial lateral migration which takes place in plane
channels. The individual probability distribution then results from an averaging of the trajectory
over the x-intervals. The mean probability distributions are then obtained from averaging 10
individual distributions with initial positions yc,0 ∈ [−d/2, d/2] over the y-direction.

The result is shown in Fig. 41(c) and (d) for both the plane and the wavy channel. For u0/v0 =
107, in planar flow, the repellers result in migration both towards the walls or the channel center,
depending on the initial lateral position of the swimmer. Thus, one has an increased probability
of finding the swimmer either in the region around the channel center or close to each of the
walls. The small probabilities between these attractors arise from the transient migration of the
swimmer, see Fig. 41(b). In the wavy flow, one observes a reduced swimmer probability at both
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the channel center and in regions close to the walls compared to the plane flow. Generally, due
to the large amplitude of the wavy-induced tumbling of the swimmer, its distribution is more
uniform than in the plane channel, with an increased probability approximately halfway between
the center and the walls. For u0/v0 = 5.36, that is, a 20 times smaller ratio of flow strength
over swimming speed, shown in Fig. 41(d), one recovers the case of wavy-induced swinging, as
discussed above in section 5.3, with a swinging amplitude of ystat

c ≈ 0.4d [cf. Fig. 36]. This leads
to a non-zero but relatively uniform probability distribution in the respective region around the
channel center. Most notably, this distribution is much flatter than the sharp peak around y = 0
observed in the distribution of a swimmer in a plane channel which is the result of the migration
towards the center line.

5.5. Summary of part II

5.5.1. Swimmers in planar flows

In chapter 4, the dynamics of a deformable, rod-shaped microswimmer in plane Poiseuille flows
were investigated. First, a model for the microswimmer was introduced. It combines previ-
ous models of linear, semi-flexible bead-spring chains for passive fibers with dipole models for
microswimmers, allowing for the simulation of both pushers and pullers. The geometry of the
swimmer, that is, its length and the inhomogeneity of the Stokes drag coefficient along its body,
can be varied freely using this model by changing the number of beads and their individual
radii.

The behavior of swimmers with both homogeneous and inhomogeneous friction coefficient was
analyzed with regards to the lateral drift in the channel. Swimmers were found to exhibit
rich behavior where three qualitatively different types of motion are identified: (1) Migration
towards the channel center during tumbling motion, followed by stable upstream swimming, (2)
convergence to a limit cycle in the swinging regime, and (3) tumbling motion accompanied by
migration towards the walls. These states occur depending on central parameters such as the
swimmer’s activity, its deformability, the inhomogeneity of the Stokes drag coefficient along its
body, and the flow strength. Coexistence regimes of different states were identified, depending
on the swimmer’s initial lateral position in the channel. Hereby, repellers separate outward-
from inward-directed trajectories. Furthermore, off-centered attractors exist where tumbling
swimmers migrate towards a stable lateral position between the channel center and the walls.
Lateral migration is observed for both pushers and pullers.

Recently, the coexistence of the three above-named states has been predicted for a rigid swimmer
in Poiseuille flow due to inertial lift forces [200]. For rigid swimmers, non-periodic phase space
orbits which lead to a lateral drift and stable upstream swimming have been shown to emerge
in viscoelastic fluids [201, 202]. By contrast, here it was demonstrated that neither inertial nor
viscoelastic effects are required for the emergence of such trajectories. The drift in phase space
is a consequence of the swimmer deformability only and takes place even in Newtonian fluids
and at low Reynolds number. Deformability is an inherent property of many microswimmers
and arises, e.g., from the flexible flagella of bacteria.

The findings of chapter 4 contribute to the understanding of the behavior of swimming mi-
croorganisms in shear flows and help to complete the picture for deformable swimmers. The
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deformability-induced outward migration can result in the accumulation of swimmers at the
channel boundaries. Since the migration is a bulk effect, this mechanism is of inherently differ-
ent physical origin than the previously identified hydrodynamic capturing or propulsion-induced
surface accumulation of rigid swimmers [9]. The mechanism described here may or may not act
in combination with the latter two causes of surface accumulation. The drift towards the channel
walls may be problematic since, at the boundary, bacteria can form biofilms [195] or migrate
upstream due to surface rheotaxis [154,155].

Moreover, these findings might be applied for the identification of various bacterial species with
different properties in a suspension: For instance, for a given flow strength, the migration direc-
tion bacteria of different swimming speed or deformability might differ. Thus, some bacterial
species accumulate at the channel center and others close to the walls. Furthermore, it was
shown that even a slight change of the swimmer’s geometry can qualitatively alter the migration
behavior. Swimmers with a Stokes drag bias along their body, realized by a larger radius of the
front bead compared to the other beads, show a transition from swinging to tumbling motion
which is not observed for swimmers with a homogeneous friction coefficient. These findings
could be utilized for the design of microrobots, where the loading and unloading of cargo may
lead to a varying friction coefficient along the swimmer body [167].

5.5.2. Swimmers in wavy flows

The findings reported in chapter 5 demonstrate that the flow through a serpentine-like wavy
channel can significantly alter the behavior of deformable, elongated microswimmers, such as
bacteria. It was shown that the fixed point of upstream swimming at the center line, observed
in plane channels, is eliminated in such a wavy Poiseuille flow and replaced by a limit cycle. The
associated swinging motion was shown to depend on the characteristics of both the swimmer
and the channel, e.g., the channel’s modulation wavelength and amplitude, the flow strength,
the swimmer’s activity, and its deformability. In contrast to the swinging motion of a rigid
microswimmer in planar Poiseuille flow, wavy-induced swinging does not depend on the initial
conditions of the swimmer which renders it a relatively robust phenomenon. Theoretical consid-
erations and the analysis of the Fourier spectra of the swimmer trajectory revealed a resonance
of the swinging motion which is characterized by large periodic oscillations around the channel
center. Consequently, swimmers are distributed across the channel instead of accumulating at
its center.

Besides the wavy-induced swinging motion, the wavy channel has also been shown to consider-
ably affect the tumbling motion of swimmers in the regime of large flow amplitudes compared
to their intrinsic swimming speed. Wavy-induced tumbling exhibits a much larger amplitude
compared to tumbling in planar flows. Hereby swimmers perform rapid, oscillatory patterns of
motion along the lateral direction.

As a consequence of wavy-induced tumbling, swimmers are depleted in regions close to the
channel walls, potentially aiding the suppression of biofilm formation [195] or surface rheotaxis
[154, 155]. The large oscillations around the channel center associated with the wavy-induced
swinging motion can, in a suspension of microswimmers, potentially prevent the formation of
swimmer clusters at the channel center [196]. If the resonance condition is fulfilled, the swinging
amplitude can become large enough to cause swimmers to hit the channel walls. There, at the
boundaries, swimmers may be killed using antibacterial surface coatings [203] or nanopillars
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[204]. Since the resonance depends on the swimmer properties, the wavy channel provides a
means for the selective elimination of pathogenic bacterial species: Bacteria of specific size or
swimming speed can be driven from the bulk of the flow towards the walls where they can be
immobilized, while other swimmers or passive particles are allowed to freely pass the channel.
For instance, the wavy channel could be used for the separation of pathogenic bacteria from
human red blood cells [27]. Besides that, the dependence of the resonance on the size of the
swimmers enables the sorting of bacteria according to their length and therefore their age [26].
Sorting swimmers according to their size and speed may also be utilized to apply a selective
evolutionary pressure on motile microorganisms in experiments [205].
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Part III.

Spontaneous, cortex-driven cell motility
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6. Three-dimensional numerical simulations of the cell
cortex

The cell cortex is a thin layer of cross-linked cytoskeletal filaments which plays a crucial role in
a variety of biological phenomena, including cell division and motility. In the present chapter,
a fully 3D computational model for the cortex is extensively validated. Considering the viscous
limit, herein the cortex is modeled as a thin layer of a 2D, compressible fluid right underneath
the cell membrane. The model is based on the cortex force balance equations which are repre-
sented on an arbitrarily deformable 3D mesh and take into account frictional viscous forces, the
mechanics of the plasma membrane, and active forces arising from the local actin and myosin
concentrations. The cortex velocity is obtained by solving the force balance equations using
the conjugate gradient method. The viscous and active forces of the algorithm are validated
separately by comparison to analytical expressions and numerical literature values in the limit
of small cell deformations. In both cases, the performance of the algorithm with respect to the
mesh refinement and osmotic pressure is characterized.

The simulation results which entered Ref. [206] are based on the numerical method which is
validated in the present chapter. The results of this validation are not yet submitted.

Within the present chapter, after an introduction in section 6.1, the validation is conducted first
for the viscous forces in section 6.2 and then for the active forces in section 6.3.

6.1. Introduction: Mechanisms of mammalian cell motility and
physical modeling of the cell cortex

The present part of the thesis focuses on the mechanisms which lead to the onset of motility
of mammalian cells with a cortex. The findings reported so far in parts I and II addressed the
interactions of cells with an extracellular flow environment. To this end, the self-propulsion
of swimmers investigated in part II was effectively accounted for by an active force dipole,
while the specific mechanism leading to this propulsion (e.g., the movement of flagella) was not
explicitly modeled. In order to meet the goal of the present part, a more detailed description
of the intracellular dynamics of the cell cortex is necessary. This requires the development of
a sufficiently accurate numerical model for the 3D cortex, the validation of which the present
chapter is dedicated towards. This algorithm is then used and extended to obtain the numerical
results presented subsequently in chapter 7.

Mammalian cell motility is a complex biological process. Historically, experiments have been
restricted to cell motility on flat, solid substrates. Such 2D cell motility can be described by a
three-step cycle [7, 30, 207, 208]: The first step is the extension of the leading edge of the cell
via protrusions, termed lamellipodia, of the membrane caused by polymerizing actin filaments.
The resulting leading edge of the cell adheres to the substrate, e.g., by using integrin receptors,
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transmembrane proteins which mechanically link the cytoskeleton to the substrate. At the same
time, cell adhesion to the substrate is reduced at the cell rear. Myosin-driven contraction of
the actin network leads to a retraction of the rear. This cycle is repeated periodically, causing
continuous forward motion of the cell. Physiological examples where 2D migration occurs is
the crawling of cells during organogenesis, epithelial cells during wound healing, or leukocytes
patrolling the inner face of blood vessels [7].

However, in most physiological situations, cells have to navigate through 3D environments such
as tissue [7]. Compared to migration on a flat substrate, fluctuations play a minor role in such
confined environments. Cells thus do not rely on focal adhesion proteins such as integrins for
sustained contact to the environment, and crawling can arise mediated by friction only [209–215].
This type of movement, which does not rely on adhesion, has been termed the amoeboid mode
of cell migration [7]. The momentum transfer from the cortex to the outer environment which
is required for locomotion is generated by a cell-scale flow of the cortex along the surface. In
the cell frame, this flux of cross-linked F-actin is directed tangentially to the surface from the
front towards the rear, giving rise to the term “retrograde flow”. It is driven by polymerization
of F-actin at the cell front, in combination with myosin-aided contraction of the cortex at the
rear. At the posterior end of the cell, F-actin depolymerizes again to G-actin which diffuses
inside the cytoplasm. By this, actin monomers reach the cell front where they are available
for polymerization again. The retrograde flow allows amoeboid cells to move in ubiquitous
environments, such as in 3D matrix [216], tortuous geometry [217], and in 2D confinement [213].
While cell swimming in fluids is typically achieved by controlled shape changes [75, 218–220],
it was shown that the retrograde cortex flow can drive motility also in unconfined fluids and
even in the absence of shape changes [42, 43]. The suggested underlying mechanism of this is
a molecular paddling of transmembrane proteins which are linked to the cortex and transmit
forces to the outer fluid [43].

From a physical perspective, the cortex is an active, viscoelastic material which forms a thin layer
at the cell surface. Such materials which consist of polar cytoskeletal filaments, locally driven out
of equilibrium by motor proteins, have been successfully described by active gel theory [221,222].
Within this theory, the elastic limit [223–225] is obtained for a strong degree of cross-linking and
on short time scales. By contrast, viscous behavior [42,226–228] is observed for weak cross-linking
and on long time scales which are relevant for cell migration. Key quantity in such a viscous
description is the cortex velocity. Several models in the literature obtain the cortex velocity by
solving the local cortex force balance [42, 78, 228]. The cortex can also be coupled dynamically
to a surrounding fluid environment [42, 228]. Several numerical and analytical studies have
described the dynamics of the cortex assuming axisymmetric cell shape deformations [41,42,78].
The numerical description of the cortex as an arbitrarily curved thin shell requires the use
of differential geometry [228–230]. Recently, an algorithm which discretizes the cortex force
balance on the nodes of a triangulated mesh has been developed, where, using a parabolic fitting
procedure, the resulting system of linear equations is solved using a minimization ansatz [228]. In
the present algorithm, the respective linear system is solved using the efficient conjugate gradient
method (see section 2.3.2.3). The algorithm presented here furthermore accounts for the active
stress arising from the concentration field of a molecular species which in turn dynamically
evolves as a function of the local cortex velocity and deformation [78,229].

The present chapter is dedicated to the validation of the numerical method which was introduced
above in section 2.3.2 and was originally developed by Dr. Alexander Farutin. The author of
the present thesis further developed the source code in order to conduct the comparison to the
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analytical solution derived by him, as reported in the present chapter below. Upon validation,
the source code was then further developed and applied by the author of the present thesis to
obtain the numerical results presented in chapter 7, as detailed therein.

6.2. Validation of the viscous forces

This section focuses of the validation of the viscous forces. To this end, the active force in Eq.
(71) is replaced by a prescribed test force f test. This artificial force is chosen simple enough to
allow for an analytical solution of the problem which can then be compared to the numerical
output of the algorithm. Thus, the force balance Eq. (71) is modified to

fvisc(vc) + f tens + ∆Pn + f test = 0. (199)

The test force is expanded in spherical harmonics as described below. In the following, the
analytical solution for the cell shape and the cortex velocity is calculated in section 6.2.1. It is
then compared to the numerical results in section 6.2.2 as function of key parameters such as
the pressure difference and the mesh refinement.

6.2.1. Analytical considerations

The spherical harmonics expansion necessary for the analytical solution are given in section
6.2.1.1. The problem is then solved in section 6.2.1.2.

6.2.1.1. Spherical harmonics expansion

An analytical solution of Eq. (199) can be obtained in the limit of small deviations from a
spherical cell shape. Assuming a cell radius of R0 = 1 and that the origin of coordinates is
located at the center of the cell, one can set n = er, where n is the local normal vector on the
surface of the sphere, and

er =

sin θ cosφ
sin θ sinφ

cos θ

 (200)

the unit vector in radial direction. Here, θ ∈ [0, π] is the polar and φ ∈ [0, 2π] the azimuthal
angle. The cell shape, described by a vector r, is parameterized by

r = R0[1 + ϱ(r)]er, (201)

where ϱ(r) is a shape function, representing the local deviation from a spherical shape. Since ϱ
is assumed to be small, an expansion with respect to spherical harmonics

ϱ(r) =
∞∑

l=2

l∑
m=−l

ϱl,mYl,m(r) (202)

is justified. Here, ϱl,m are the coefficients of the shape function. The scalar spherical harmonics
of degree l and order m are defined as

Yl,m(r) =
√

2l + 1
4π

(l −m)!
(l +m)!

Pm
l (cos θ)eimφ, (203)
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6. Three-dimensional numerical simulations of the cell cortex

with the associated Legendre polynomials Pm
l (cos θ). All forces are expanded according to

f(r) =
3∑

j=1

∞∑
l=0

l∑
m=−l

fj,l,mY j,l,m(r), (204)

and the cortex velocity according to

vc(r) =
3∑

j=1

∞∑
l=0

l∑
m=−l

vc
j,l,mY j,l,m(r). (205)

Here, fj,l,m and vc
j,l,m are the constant coefficients for the forces and cortex velocity, respectively.

The vector spherical harmonics are given by

Y 1,l,m =
[
∇S − (l + 1)

R0
er

]
Yl,m(r),

Y 2,l,m =
[
∇S + l

R0
er

]
Yl,m(r), (206)

Y 3,l,m = er × ∇SYl,m(r).

The vector spherical harmonics in Eq. (206) are orthogonal,∫
Y j,l,0 · Y j′,l′,0 dΩ = αj(l)δjj′δll′ (207)

with

αj(l) =


2
(
l + 1

2

)
(l + 1) for j = 1,

2
(
l + 1

2

)
l for j = 2,

(l + 1) l for j = 3,
(208)

and dΩ = sin θdθdφ.

For simplicity, the analytical calculations in the present part of the thesis shall be limited to an
axisymmetric consideration. This corresponds to the case of m = 0 which implies that all terms
do not depend on φ anymore. Eq. (203) then simplifies to

Yl(θ) =

√
2l + 1

4π
Pl(cos θ), (209)

where Yl(θ) := Yl,0(r) are the axisymmetric scalar spherical harmonics and Pl(cos θ) := P 0
l (cos θ)

are the axisymmetric Legendre polynomials. The first polynomials are given by

P0(cos θ) = 1,
P1(cos θ) = cos θ,

P2(cos θ) = 1
2

(
3 cos2 θ − 1

)
,

P3(cos θ) = 1
2

(
5 cos3 θ − 3 cos θ

)
,

... (210)

The expansion of the shape function as in Eq. (202) is then given by

ϱ(θ) =
∞∑

l=2
ϱlYl(θ) (211)
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with coefficients ϱl := ϱl,0. A more simple notation can also be introduced for the vector spherical
harmonics in Eq. (206), namely Y j,l(r) := Y j,l,0(r). Accordingly, the forces and velocities in
Eqs. (204) and (205) simplify to

f(r) =
3∑

j=1

∞∑
l=0

fj,lY j,l(r), (212)

and

vc(r) =
3∑

j=1

∞∑
l=0

vc
j,lY j,l(r). (213)

with fj,l := fj,l,0 and vc
j,l := vc

j,l,0.

6.2.1.2. Solution

The test force in l-th order is given by

f test
l (r) =

3∑
j=1

f test
j,l Y j,l(r). (214)

The goal of the analytical considerations is to solve the force balance (199) under the condition
of a fixed cell shape, i.e., the shape does not change in time. Since cell deformations are caused
by the normal-component of the cortex velocity, this implies

vc · er = 0. (215)

For a test force given by Eq. (214), one can then obtain explicit expressions for the four coeffi-
cients ϱl and vc

j,l (j = {1, 2, 3}) which determine the cortex velocity via Eq. (213) and the cell
shape according to Eqs. (201) and (211). The tension force is given by Eq. (65). The mean
curvature of the surface can be related to the cell shape by [42]

H(θ) = H0 + 1
R0

∞∑
l=2

(l − 1)(l + 2)ϱlYl(θ), (216)

where H0 = 2/R0 is the mean curvature of a perfect sphere, corresponding to the harmonic of
order zero. If only position-independent terms are taken into account in Eq. (199), one obtains
the force balance equation in zeroth order,

−ζ0H0n + ∆Pn = 0. (217)

This yields an expression for the membrane tension,

ζ0 = R0∆P
2

. (218)

With Eq. (207) one obtains from the force balance equation (199) by projection on vector
spherical harmonics a condition for the coefficients for every value of j and arbitrary l,

fvisc
j,l + f tens

j,l + f test
j,l = 0. (219)
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6. Three-dimensional numerical simulations of the cell cortex

With Eq. (211), Eqs. (216) and (65) can be solved for the coefficients of the tension force,
yielding

f tens
1,l = (l − 1)(l + 2)

2(2l + 1)
R0ϱl∆P,

f tens
2,l = −f tens

1,l , (220)
f tens

3,l = 0.

The explicit expressions for the coefficients fvisc
j,l as function of the velocity coefficients are given

in Ref. [42]. With Eqs. (215), (219), and (220) one obtains the final solution for the velocity
and shape coefficients,

vc
1,l =

l
(
f test

1,l + f test
2,l

)
R2

0

(2l + 1) [l(l + 1)ηb + 2(l2 + l − 1)ηs]
,

vc
2,l = l + 1

l
vc

1,l,

vc
3,l =

f test
3,l R

2
0

(l + 2)(l − 1)ηs
,

ϱl =
− [2(l + 1)ηs + lηb] (l − 1)(l + 1)f test

1,l + [2lηs + (l + 1)ηb] l(l + 2)f test
2,l

(l − 1)(l + 2)∆P
[

l
2(l + 1)ηb + (l2 + l − 1)ηs

] . (221)

Here, the first two coefficients of the cortex velocity, vc
1,l and vc

2,l, depend linearly on the first
two test force amplitudes, f test

1,l and f test
2,l , while being independent of f test

3,l . This also holds for
the shape coefficient. By contrast, vc

3,l depends on f test
3,l but not on f test

1,l and f test
2,l . Furthermore,

the shape function scales inversely with ∆P . This implies that a larger pressure inside the cell
leads to a shape that is closer to a sphere.

6.2.2. Comparison of analytical and numerical solution

In the following, the analytically obtained solution is compared to the numerical one. To this
end, the test force according to Eq. (214) is implemented in the source code. For a prescribed
value of l the three coefficients f test

j,l then serve as input for both the analytical calculation and the
numerical simulation. The concentrations of actin and myosin are set to zero in the simulation
to ensure vanishing active forces. Numerically, an almost spherical cell shape is obtained by a
large pressure difference ∆P in combination with the fixed surface area of the cell. Since the
analytical solution was derived in the limit of small deviations from a spherical cell shape, the
agreement between the analytical and numerical solution is expected to improve for growing
values of the pressure difference. Furthermore, a larger refinement of the mesh yields a shape
that is closer to a sphere. Thus, the cortex velocity and shape function are expected to agree
better with the analytical solution for a larger refinement.

To quantify the deviation of the numerical results from the analytical solution, the shape and
velocity errors are calculated. The respective local errors are computed via

εϱ(ri) = |ϱn(ri) − ϱa
l (ri)|

max
(
|ϱa

l (ri)|
)

i

, (222)

εv(ri) =
|vn

c (ri) − vc,a
l (ri)|

max
(
|vc,a

l (ri)|
)

i

, (223)
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where superscripts “n” and “a” denote the numerical and analytical value of the function at
vertex ri, and max(•)i refers to the maximum of the argument with respect to all nodes. The
analytical reference functions are given by

ϱa
l (ri) = ϱlYl(ri), (224)

vc,a
l (ri) =

3∑
j=1

vc
j,lY j,l(ri), (225)

with the coefficients from Eq. (221). Based on Eqs. (222) and (223) one can compute as global
values the average error

ε̄• = 1
N

N∑
i=1

ε•(ri) (226)

and the maximum error

εmax
• = max [ε•(ri)]i . (227)

Both the average and maximum error are analyzed for the shape and velocity as function of the
mesh refinement and the pressure difference in the following. The comparison is done for two
sets of parameters, as given in tab. 10.

Table 10. Parameters for simulations and analytical expressions used for the validation of the viscous forces, if
not mentioned otherwise.

parameter set 1 set 2

degree l 2 5
test force amplitude f test

1,l 1 2
test force amplitude f test

2,l 0 1
test force amplitude f test

3,l 0 1.5
surface shear viscosity ηs 1 0.5
surface bulk viscosity ηb 0 0.5

Set 1 represents the most simple combination of parameters for this purpose: The value of
l = 2 is the lowest possible degree of spherical harmonics that leads to a deformation of the
cell without translation. Furthermore only one of the three force coefficients and one of the two
surface viscosities are different from zero. Set 2 represents a more general set of parameters with
a larger degree of spherical harmonics, a bulk viscosity different from zero, and non-zero values
for all test force coefficients, leading to a more complex test force, as described below.

Generally, larger refinements of the mesh require smaller time steps. In this section, a time step
of ∆t = 2 × 10−6 is chosen which resolves the dynamics properly even for large refinements such
as nsp = 26 (N = 6762). After the onset of the test force, the shape and velocity errors decay
exponentially in time and then approach a stationary value as soon as the fixed shape is reached,
as shown in Fig. 42. With tend = 0.1, the run time of each simulation is chosen large enough in
order to ensure that all errors reach their stationary value.

Fig. 43(a) shows the applied test force for parameter set 1. Since f test
3,l = 0, the azimuthal

component of the test force is zero. The radial component is pointing inwards close to the poles
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Figure 42. (a) Shape and (b) velocity errors as function of time t. The respective average errors ε̄• according
to Eq. (226) (black bold line) and maximum errors εmax

• according to Eq. (227) (red dashed line) are shown.
Parameter set 1 in tab. 10, together with a pressure difference of ∆P = 100 and a mesh refinement of nsp = 22
are chosen.

Figure 43. Simulation snapshots of the (a) test force f test
l (ri), together with the resulting (b) shape function

ϱ(ri) and (c) cortex velocity vc(ri) on the surface of the cell. Parameter set 1 in tab. 10, together with a pressure
difference of ∆P = 300 and a mesh refinement of nsp = 8 are chosen. Color code indicates the magnitude of
scalar and vector fields (see legend).

and outwards in the region around the equator. Consequently, ϱ(ri), as shown in Fig. 43(b),
becomes negative close to the two poles and positive in the region around the equator. The
polar component of the test force points away from the equator towards the closest pole. This
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also applies to the resulting cortex velocity field, as shown in Fig. 43(c). An exception to this
behavior are the nodes with five neighbors which are visible in Fig. 43(b). These nodes are a
result of the mesh refinement of an initial icosahedron and are the locations where the mesh
is most irregular. Thus, they are expected to determine the maximum error. Note that the
stationary velocity field is shown, after the cell has adapted its final shape. As mentioned above,
any radial component of the velocity field would lead to a further shape change.

Figure 44. Validation of the viscous forces for parameter set 1 (see main text for details): Shape (a) and velocity
errors (b) as function of the refinement nsp. The black bold line without symbols scales as O(n−2

sp ). Average (blue
bold lines, crosses) and maximum errors (red dashed lines, triangles) are shown.

As mentioned above, both the shape and velocity errors are expected to decrease with nsp.
Limited by the piecewise linear interpolation of all variables on the surface, the optimal scaling
behavior of the errors is inversely proportional to the number of nodes. Since N ∝ n2

sp according
to Eq. (72), this corresponds to a scaling as n−2

sp . This behavior is well reproduced by the algo-
rithm, as Fig. 44(a) and (b) show. Both the average and maximum errors of shape and velocity
decay as O(n−2

sp ). Only for large refinements one observes small deviations from this scaling
behavior for the velocity errors in Fig. 44(b). This is reasoned in the fact that, numerically, the
shape is determined besides the refinement also by the pressure difference which is kept constant
in Fig. 44 and limits a further decrease of the error. Thus, the velocity errors saturate for large
refinements.

Fig. 45 shows the velocity error as function of the pressure difference. Both average and max-
imum error decay monotonously as well. A scaling behavior as the inverse pressure difference
is observed. This is in accordance with the analytical solution for the shape coefficients in Eq.
(221) where one has ϱl,0 ∝ ∆P−1, and thus confirms the expected behavior.
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6. Three-dimensional numerical simulations of the cell cortex

Figure 45. Validation of the viscous forces for parameter set 1 (see main text for details): Velocity errors as
function of the pressure difference ∆P . The black bold line without symbols scales as O(∆P−1). Average (blue
bold lines, crosses) and maximum errors (red dashed lines, triangles) are shown.

Figure 46. Simulation snapshots of the (a) test force f test
l (ri), together with the resulting (b) shape function

ϱ(ri) and (c) cortex velocity vc(ri) on the surface of the cell. Parameter set 2 in tab. 10, together with a pressure
difference of ∆P = 300 and a mesh refinement of nsp = 26 are chosen. Color code indicates the magnitude of
scalar and vector fields (see legend).

Fig. 46 shows snapshots of the cell for parameter set 2. Due to the odd value of l = 5, the test
force, shape, and velocity exhibit no mirror symmetry with respect to plane that cuts through
the equator anymore. Furthermore, the force and velocity have non-zero azimuthal components
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which is reasoned in the finite value of f test
3,l . As in the case of parameter set 1, the shape

function is determined by the radial component of the test force with ϱ(ri) < 0 at positions
where the radial component of f test

l (ri) points inwards and ϱ(ri) > 0 where it is directed
outwards. Moreover, the velocity is parallel to the tangential component of the test force. A
higher refinement of nsp = 26 is chosen in Fig. 46 compared to Fig. 43, in order to properly
resolve these fields on the surface. Generally, growing values of l require larger refinements.
Therefore, also the errors are expected to be larger for parameter set 2 than for set 1.

Figure 47. Validation of the viscous forces for parameter set 2 (see main text for details): Shape (a) and velocity
errors (b) as function of the refinement nsp. The black bold line without symbols scales as O(n−2

sp ). Average (blue
bold lines, crosses) and maximum errors (red dashed lines, triangles) are shown.

In Fig. 47 the shape and velocity errors as a function of the mesh refinement are shown. As
expected, for the majority of parameters, the errors are larger than for parameter set 1. Impor-
tantly, both average and maximum errors decrease as function of the refinement according to
O(n−2

sp ), as shown for the shape in Fig. 47(a) and velocity in Fig. 47(b).

Finally, the dependence of average and maximum error on the pressure difference are shown
in Fig. 48. This confirms again the expected behavior of a decrease inversely to the pressure
difference, as discussed above.

6.3. Validation of the active forces

After the validation of the viscous forces, as a next step the active forces can be validated. For
this one takes into account the full force balance according to Eq. (71) with the active forces
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6. Three-dimensional numerical simulations of the cell cortex

Figure 48. Validation of the viscous forces for parameter set 2 (see main text for details): Velocity errors as
function of the pressure difference ∆P . The black bold line without symbols scales as O(∆P−1). Average (blue
bold lines, crosses) and maximum errors (red dashed lines, triangles) are shown.

given by Eq. (70) where ca(ri) and cµ(ri) have finite values. The findings of the algorithm
employed here are then compared to the numerical results in Ref. [42].

6.3.1. Preparatory remarks

The numerical results in Ref. [42] were obtained by using a spectral method where the relevant
fields on the surface of the cell are expanded into spherical harmonics. This limits the analysis to
the case of small deviations from a spherical cell shape. By contrast, the finite-element numerical
model presented here is conceptualized to simulate arbitrary cell shapes due to a discretization
of the cell surface on a 3D mesh. In order to conduct a comparison with the literature results,
in the following only shapes close to a sphere are considered, i.e., a large pressure difference is
employed, as in section 6.2.

A major finding of Ref. [42] is the onset of a swimming motion of a spherical cell caused by a
spatial symmetry breaking due to the dynamics of the actomyosin cortex. The initially uniform
distributions of actin and myosin in the cortex become unstable in favor of a polarized state
that is accompanied by a retrograde flow of the cortex along the surface from the pole of small
to the pole of large actin and myosin concentration. By force transmission to the surrounding
fluid, this cortex flow leads to a finite swimming velocity vs of the cell which is directed opposite
to the cortex flow. Depending on the myosin contractility and the actin turnover rate, steady
(both supercritical and subcritical) and oscillatory Hopf bifurcations are possible.

The stationary instability can be understood intuitively, as also discussed in Ref. [42]: A slight
local increase of myosin creates according to Eq. (69) contractile stresses and thus a flow of the
cortex on the surface along the gradient of myosin concentration (the retrograde flow). This flow
brings even more myosin by advection [see Eq. (68)], leading to a positive feedback loop. This
instability is counteracted by myosin diffusion [see Eq. (68)], actin turnover [see Eq. (67)], and
actin stiffness which causes extensional stresses according to Eq. (69). The final polarized state
is thus determined by a critical balance of these effects and therefore depends on the myosin
contractility χ, the myosin diffusion coefficient Dµ, the actin stiffness α, and the actin turnover
rate β.
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The aim of the present section is to reproduce this instability and to quantify the deviations
of the resulting swimming speed to the literature result. However, in contrast to Ref. [42],
the numerical simulations in the present thesis neglect the coupling of the cortex to the inner
(cytoplasm) and outer fluid (surrounding fluid). Thus, the swimming speed vs = |vs| has to be
extracted from the cortex velocity itself. In the following, the swimming velocity vs is calculated
as the surface integral of the cortex velocity,

vs = − 1
AS

∮
AS

vc(r)d2r. (228)

The underlying assumption for this expression is that the cortex flow directly translates into a
motion of the cell, regardless of the extracellular environment and the exact mechanism of how
momentum is transmitted to it. This is motivated by the fact that the retrograde flow has been
shown to drive cell motion in a variety of different environments, as described above in section
6.1. Furthermore, Eq. (228) is an approximation for a spherical cell shape.

For simplicity, the analysis here shall be limited to steady bifurcations, omitting the case of a
Hopf bifurcation. The swimming speed serves as the order parameter and the myosin contrac-
tility as the control parameter. The instability occurs if χ̄ > χ̄c = min (χ̄1, χ̄2) [42], with

χ̄1 = 2 + 2ᾱ
β̄
, χ̄2 = 2 + ᾱ+ β̄, (229)

where it is helpful to introduce the dimensionless motor contractility, compressibility of actin,
and turnover rate of actin, according to

χ̄ := χcµ
0R

2
0

Dµηs
, ᾱ := αca

0R
2
0

Dµηs
, β̄ := R2

0β

Dµ
. (230)

Depending on the value of β̄, super- or subcritical bifurcations are obtained. In oder to in-
vestigate the onset of the instability, one chooses for the initial actin concentration a small
perturbation ca

1 of the homeostatic concentration ca
0, that is,

ca
init(ri) = ca

0 + ca
1zi, (231)

where zi is the coordinate along the z-axis of the i-th node. Eq. (231) describes a concentration
field that is slightly polarized along the z-axis. Below the critical value (for χ̄ < χ̄c), the per-
turbation is expected to decay in time and the homeostatic concentration to be restored. Above
the critical contractility (for χ̄ > χ̄c), the perturbation is expected to first grow exponentially
and then saturate to a stationary, non-zero polarization of the concentration fields.

If not mentioned otherwise, the parameters as listed in tab. 11 are used. A time step of ∆t =
2 × 10−5 for simulations is used. A run time of tend = 100 per simulation ensures saturation
of the swimming speed to its stationary value. However, close to the bifurcation point, the
dynamics of the system becomes very slow. Thus, saturation of the relevant quantities may not
be reached which is expected to lead to deviations from the literature results.

6.3.2. Comparison to literature results for the onset of cell polarity

For an actin turnover rate of β̄ = 3, a supercritical bifurcation is expected for χ̄ > χ̄c = 8.67
according to Eq. (229). Fig. 49 shows the swimming speed as function of time for three exemplary
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Table 11. Parameters for simulations used for the validation of the active forces, if not mentioned otherwise.

parameter value

surface shear viscosity ηs 1
surface bulk viscosity ηb 0

homeostatic actin concentration ca
0 1

actin compressibility α 10
actin diffusion coefficient Da 0.01

initial myosin concentration cµ
0 1

myosin diffusion coefficient Dµ 1
initial actin perturbation ca

1 0.01
mesh refinement nsp 8

pressure difference ∆P 300

chosen contractilities which are below and above the critical value. In accordance with the
expectation, vs approaches zero for χ̄ < χ̄c. For contractilities above χ̄c, first an exponential
increase of vs is observed, followed by a saturation to a plateau value. The latter depends on the
contractility, with increasing χ̄ resulting in growing vs. Visual inspection of the cell reveals that

Figure 49. Swimming speed vs as function of time t for three different values of the myosin contractility χ̄ and
an actin turnover rate of β̄ = 3 (supercritical case). For χ̄ = 8 (blue bold line), vs approaches zero, while for
χ̄ = 9 (red dashed line) and χ̄ = 11 (black dotted line) the swimming speed plateaus to a non-zero value after an
initial increase.

during the initial increase of vs, the polarization of the actin and myosin concentration fields
increases as well, while simultaneously the retrograde flow starts to form and grows in amplitude.
After saturation is reached, the concentration fields, the retrograde flow, and consequently the
swimming speed remain constant. The corresponding simulation snapshots are shown in Fig. 50
for a myosin contractility of χ̄ = 9. One observes accumulation of actin and myosin at the pole
on the right side of the cell (the north pole). The expectations formulated above are further
confirmed by the retrograde cortex flow which points along the surface from the south to the
north pole. In a fluid, the cell would swim in the direction opposite to the retrograde flow, that
is, to the left.

Fig. 51 shows a direct comparison of the plateau swimming speed with Ref. [42]. The results
are in good agreement with the supercritical bifurcation branch. In particular, vs is zero for
χ̄ < χ̄c and finite for χ̄ > χ̄c. Significantly above the critical contractility where the cell is
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Figure 50. Validation of the active force. Simulation snapshots of the (a) actin concentration ca(ri) and (b)
myosin concentration cµ(ri) (color code, see legend) on the surface of the cell. z-axis points horizontally from the
left to the right. χ̄ = 9 and β̄ = 3 are chosen. Black arrows show the cortex velocity.

strongly polarized and higher order harmonics become increasingly important, the swimming
speed agrees also well with the literature value.

Figure 51. Comparison of simulation results (red triangles) with literature values (black line) from Ref. [42] for
the swimming speed vs as function of the myosin contractility χ̄ in the case of a supercritical bifurcation (β̄ = 3).

In the following, the deviation of the results from the literature values are quantified as function
of the mesh refinement and the pressure difference. To this end, a single value of χ̄ = 12.03
is considered. This myosin contractility is significantly above the critical value χ̄c, cf. Fig. 51,
resulting in a fairly strong polarization of actin and myosin concentrations. The swimming speed
error is computed according to

εs = |vs − vlit
s |

vlit
s

, (232)

with the literature value vlit
s according to Ref. [42].

Fig. 52 shows εs as function of the pressure difference for different mesh refinements. One
observes a decrease of the error with ∆P . This corresponds to the expected behavior as a higher
pressure difference leads to an increasingly spherical shape. For moderate values of ∆P , the
expected scaling behavior of εs inversely proportional to the pressure difference is observed, as
discussed above. For very large values of the pressure difference, the swimming speed error
saturates. As addressed above, both the mesh refinement and the pressure difference determine
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Figure 52. Swimming speed error εs according to Eq. (232) as function of the pressure difference ∆P for different
refinements nsp = 4 (blue bold line, crosses), nsp = 6 (red dashed line, triangles), and nsp = 8 (violet dotted line,
squares). The black bold line without symbols scales as O(∆P−1).

the similarity of the cell to a sphere, and thus an increasing value of ∆P does not lead to a
change in the error in cases where the error is limited by the mesh refinement. Consistent with
this is the observation shown in Fig. 52 that the plateau value, which the swimming speed error
saturates to, decreases with increasing refinement.

Figure 53. Simulation snapshots of the (a) actin ca(ri) and (b) myosin concentration cµ(ri) on the surface of
the cell (color code, see legend). z-axis points horizontally from the left to the right. χ̄ = 9 and β̄ = 3 are chosen.
The small pressure difference of ∆P = 2 results in significant deviations from a spherical shape. Black arrows
show the cortex velocity.

To conclude this chapter, some exploratory simulation results are presented for a smaller pressure
difference, allowing for larger cell deformations. Fig. 53 shows simulation snapshots of the cell
for ∆P = 2 with the actin and myosin concentrations and the retrograde flow. Similar to the
shapes shown for a larger pressure difference in Fig. 50, actin and myosin accumulate at the
north pole which becomes the cell rear. Therefore, the active surface stresses in the cortex, both
pulling and pushing in nature, are larger at the cell rear. This yields stronger deformations at
the north pole compared to regions closer to the south pole and results in a conical shape of the
cell rear.
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Mammalian cell motility plays a vital role in many physiological and pathological phenomena,
such as the immune system, embryonic development, wound healing, and cancer metastasis. The
retrograde flow of the cortex has been shown to drive the movement of amoeboid cells in ubiq-
uitous environments. Key to the emergence of the retrograde flow is believed to be a concerted
interplay between polymerization of cortical actin filaments and myosin-mediated contraction
of the cortex. Intriguingly, recent experiments show that immune cells can remain motile, even
after the inhibition of myosin activity, questioning the importance of motor contractility in the
retrograde flow dynamics [43]. In the present chapter, a unique theoretical framework is devel-
oped, demonstrating that actin polymerization alone is sufficient to spontaneously induce cell
polarity accompanied by a retrograde flow. Most notably, cell deformation, adhesion, or myosin
motor activity are not necessary for these processes, marking a break with the classical image.
Analytical calculations and numerical simulations supported by a molecular model reveal that
polarity is maintained by a self-sustained retrograde flow from the low-concentration pole at the
cell front to the high-concentration pole at the cell rear. These findings have profound implica-
tions for our understanding of the molecular mechanisms of cell motility. Moreover, the results
of the present chapter could potentially impact our understanding of the evolution of cellular
systems, suggesting that actin polymerization may have played a key role in the evolution of
cell motility before the emergence of molecular motors.

The present chapter is structured as follows. Starting with an introduction in section 7.1, the
model assumptions are subsequently given in section 7.2. This is followed by an explanation for
the proposed mechanism of cell motility on the molecular level, given in section 7.3. The full
model is subsequently analyzed starting with the basic state in section 7.4, followed by the linear
regime in section 7.5, and a weakly nonlinear analysis in section 7.6. The resulting analytical
expressions are compared to the full numerical solution in section 7.7. In section 7.8, analytical
results for a shape instability of cells due to actin polymerization are presented. Finally, the
findings of part III of the present thesis are summarized in section 7.9.

Large parts of the findings of the present chapter are included in the currently submitted Ref. [206]
and focus on a fixed, spherical cell shape and the associated stationary instabilities. The simula-
tion results were obtained using the numerical method validated above in chapter 6. Furthermore,
the present chapter contains results on an oscillatory instability for a free cell shape, described
in section 7.8, which did not enter Ref. [206] and are currently unpublished.
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7. Amoeboid cell motility is triggered by actin polymerization only

7.1. Introduction: Models for the onset of cell polarity and role of
actin polymerization

In order to move, cells first need to form an axis of polarity which determines the direction of mi-
gration. In recent years, much theoretical work has been dedicated to elucidate the mechanisms
of such a spatial symmetry breaking associated with the transition from an initially unpolarized
cell to a polarized state. Several such models rely on myosin motors which contract the cortex
and thereby create active pulling stresses in it [36, 42, 45, 226,231]. Here, myosin spontaneously
accumulates in a small part of the cortex which becomes the posterior end of the cell. However,
recent experiments on amoeboid swimming lymphocytes question the importance of molecular
motors for cell motility [43]: This study showed that, on the one hand, inhibiting myosin ac-
tivity in cells does not notably alter the retrograde flow which is the origin of cell motion. On
the other hand, impeding actin polymerization in such cells was shown to significantly reduce
the retrograde flow velocity. This suggests that actin polymerization is a key element in the
dynamics of the retrograde flow, while cortical contraction due to myosin only plays a minor
role.

Only few studies have focused on the question whether polymerization of actin can lead to
the spontaneous emergence of cell polarity without myosin activity. In a model proposed by
Blanch-Mercader and Casademunt [232], motility arises in combination with shape changes
and no cell-scale retrograde flow is described. Another model introduced by Callan-Jones et
al. [233] accounts for filament treadmilling which results in a fingering instability. However, the
first circular harmonic cannot become unstable in the linear regime, ruling out the formation
of a front/back asymmetry required for motility. More recently, Lavi et al. [234] described the
spontaneous emergence of polarity in a viscous droplet confined between two planar plates driven
by an active chemical species distributed in the cytosol. Since the species freely diffuses within
the bulk fluid that fills the cell, it is however more reminiscent to monomeric G-actin. In the
model employed in the present thesis, the active species is concentrated within a thin shell which
encloses the bulk of the cell and can thus be identified with F-actin, which G-actin serves as
building blocks for.

7.2. Actin polymerization model and general remarks

As a first step, the model for the cell cortex discussed above in chapter 6 has to be extended by
the polymerization of actin. To this end, a polymerization velocity vp(r) is introduced which
describes the outward pushing of the cellular membrane due to the polymerization of cortical
actin filaments. While the cortex velocity vc, as described in chapter 6, describes the locally
averaged movement of material points of the filaments, vp(r) refers to the growth of these
filaments due to polymerization. The sum of these two velocities, termed full velocity in the
following, then describes the movement of the end points of filaments, i.e., the polymerization
front [215],

v(r) = vc(r) + vp(r). (233)

Since the cortex is assumed to be attached to the membrane, the normal component of v(r)
accounts for the deformation of the cell. In the remainder of the present thesis, for simplicity, the
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7.2. Actin polymerization model and general remarks

actin filament concentration along the cortex is denoted as c(r) := ca(r). For the polymerization
velocity, the ansatz

vp(r) = v0
pe

− c(r)
cr n(r) (234)

is chosen. Here, v0
p is the polymerization strength and cr a reference concentration. In Eq.

(234) the polymerization velocity is assumed to be purely normal to the membrane since actin
filaments polymerize on average perpendicular to the membrane [232,233].

Eq. (234) further assumes the polymerization velocity to be a decreasing function of the local
actin concentration. This is justified since polymerization is known to be stronger at the cell front
where the number of filaments per unit area is less, and weaker at the cell rear where filament
concentration is larger, and can be motivated by a competition of polymerizing filaments for
monomeric G-actin [30]: In regions where the filament density is larger, monomers can not diffuse
fast enough and thus bind to filaments only after a certain time which limits polymerization.
The exponentially decreasing behavior in Eq. (234) can further be motivated by thermal ratchet
models for membrane protrusions driven by polymerizing filaments [235, 236]. Filaments grow
against a thermally fluctuating membrane using chemical energy provided by ATP hydrolysis
by intercalation of monomers in the space between the filament and the membrane. Once
the monomer is attached to the rest of the filament, the membrane cannot move back and is
pushed away by the mean distance of a monomer length, after which the cycle repeats. In the
context of such ratchet models, the number of polymerizing filaments per unit membrane area,
c, is proportional to a load force which inhibits polymerization. This furthermore implies that
cr ∝ kBT , where kBT is the thermal energy. Here, cr is assumed as an independent parameter.

The mass balance of actin on the surface is given by the advection-diffusion dynamics,

ċ+ ∇S · (vc) = D∆Sc+ β(c0 − c). (235)

This equation corresponds to Eq. (67), with the exception that the advection term contains
the full velocity instead of merely the cortex velocity. This is because advection of filaments
along the surface is determined by both the flow of the cortex and the filament growth due to
polymerization.

In the present chapter, the above-described model is solved numerically and analytically in the
limit of an almost spherical cell: First, the cortex velocity is obtained by solving the force balance
Eq. (66), using the expression for the surface stress in Eq. (64) and the tension force in Eq. (65).
Note that, for simplicity, the simplified force balance is considered here which corresponds to
α = 0 in Eq. (71). Once the cortex velocity is obtained, the full velocity follows from Eq. (233),
where the polymerization velocity is calculated using Eq. (234). Finally, the full velocity then
yields the actin concentration according to Eq. (235).

For the analytical calculations in the present chapter, the actin concentration is expanded into
Legendre polynomials,

c(r, t) = c0 +
∞∑

l=1
δcl(r, t)

= c0 +
∞∑

l=1
δCl(t)Pl(cos θ), (236)

with the time-dependent coefficients δCl(t). In chapter 6, all scalar fields have been expanded
in spherical harmonics which have different prefactors than Legendre polynomials. Here, the
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7. Amoeboid cell motility is triggered by actin polymerization only

latter are chosen in order to obtain more compact expressions. Furthermore, in the following,
the projection of a function f(θ) on the l-th Legendre polynomial is denoted more compactly
as

⟨f(θ)|Pl(cos θ)⟩ := 2l + 1
2

∫ π

0
sin θ f(θ)Pl(cos θ) dθ. (237)

For the numerical simulations, the polymerization velocity according to Eq. (234) is implemented
in the source code from chapter 6. The position of the cell boundary is updated after each time
step according to the full velocity.

7.3. Molecular model

As described above, cell polarity is a requirement for the onset of motility. In the following, a
qualitative explanation for a self-sustained polarization instability and retrograde flow, driven
by actin polymerization alone, is given on the molecular level. The only necessary ingredients for
this explanation are the curved surface of the cell and the assumption that the polymerization
velocity is anti-correlated to the local actin concentration1. Most notably, neither the presence
of myosin nor continuous shape changes are required for this instability. Assuming a fixed cell
shape, the membrane is stationary in the cell frame, while the actin cortex is allowed to move
along the surface.

Figure 54. Actin filaments (salmon rods) polymerize (newly attached monomers in red) against a stationary
membrane (black), resulting in an inward treadmilling motion of filaments (blue arrows). (a): For a flat mem-
brane, the distance between material points of filaments remains constant. (b): For curved membrane, inward
treadmilling leads to an extensional stress (green arrows) which is directed tangential to the membrane. (c): Since
the polymerization velocity is anti-correlated to the local filament concentration, the surface stress is larger on the
right of the cell (regions of low filament concentration) than on its left (regions of high filament concentration),
resulting in a self-sustained, cell-scale retrograde flow of filaments (orange arrows) from the right to the left.
Figure adapted from Ref. [206].

As described in section 2.1.2, actin filaments undergo continuous treadmilling in the cortex.
Hereby, polymerizing monomers are intercalated between the membrane and the filament, lead-
ing to a motion of filament material points away from the surface, as shown in Fig. 54. The

1The quantitative relation according to Eq. (234) is not needed at this point.
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velocity of this inward flow is given by the polymerization velocity2. In the case of a flat mem-
brane [Fig. 54(a)], filaments are aligned parallel and thus treadmilling does not change the
distance of material points which are part of neighboring filaments.

This is different from the case of a curved membrane which is shown in Fig. 54(b). Here,
the treadmilling motion away from the membrane leads to a compression of the cortex since
material points of neighboring filaments approach each other while moving inward. The result
is an extensional stress that is directed along the surface and is proportional to the treadmilling
velocity and the curvature of the membrane.

This active stress can have consequences for the dynamics of the cortex on the scale of the
cell, as illustrated in Fig. 54(c): Here, an inhomogeneous concentration of actin filaments is
assumed, with a slightly higher filament density on the left side of the cell than on its right side.
Consequently, the treadmilling velocity is also non-uniform across the surface. Since it is anti-
correlated to the local filament concentration, filaments treadmill inwards faster on the right
side of the cell where their density is less, compared to the left side of the cell. Thus, the surface
stress is largest on the right side of the cell and decreases monotonically along the surface of the
cell towards its left side. The result is a net transport of filaments tangentially to the membrane
from regions of low filament concentration to parts of the cortex where filaments are concentrated
more densely. This tangential flow of the cortex thus amplifies the inhomogeneity in the actin
concentration, leading to a positive feedback loop. Notably, this simple mechanism for a self-
sustained cell polarization relies only on the finite, convex curvature of the membrane and on an
anti-correlated relation between the polymerization velocity and the filament concentration.

7.4. Homogeneous basic state of the model

The analysis in the present chapter shall be limited to a spherical cell shape with radius R0 = 1.
As done in chapter 6, n = er is set with er as in Eq. (200). The basic state of the above-
described model is characterized by a homogeneous actin concentration c0 along the surface. It is
a trivial steady-state solution of the model which always exists. As shown below, it can become
unstable with respect to small perturbations of the concentration field in certain parameter
ranges. According to Eq. (234), the polymerization velocity in the basic state is given by

vp
b(r) = v0

pe
− c0

cr er, (238)

that is, it points radially outwards everywhere on the sphere with the same magnitude v0
pe

− c0
cr .

The basic state is further characterized by a radial inward flow of treadmilling filaments of the
cortex

vc
b(r) = −v0

pe
− c0

cr er (239)

which fully cancels the isotropic polymerization velocity in Eq. (238). Specifically, from Eq.
(233) follows that the full velocity vanishes,

vb = vc
b(r) + vp

b(r) = 0. (240)
2Note that in the context of Eq. (233) this implies that the polymerization velocity vp is directed outward,
while the cortex velocity vc points inward and has the same magnitude. Consequently, the velocity of filament
endpoints, v, is zero.
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7. Amoeboid cell motility is triggered by actin polymerization only

This implies that the membrane is not deformed and no tangential flow of cortex takes place for
a homogeneous actin concentration. Substituting Eq. (239) into Eqs. (64) and (66) shows that
vc

b(r) creates an isotropic, radially outwards-directed force. This corresponds to an effective
pressure due to filament treadmilling which is added to the hydrostatic pressure in Eq. (66). It
would therefore lead to an increase of the sphere’s radius which is however precluded by the
inextensible membrane. This contribution is thus canceled by the tension force in the force
balance equation (66).

7.5. Linearized problem

In the following, the linear regime of the model is discussed. At first, the mechanism underlying
the onset of a retrograde cortex flow is illustrated by a decomposition of the linearized poly-
merization velocity in section 7.5.1. This is followed by a linear stability analysis for the first
spherical harmonic in section 7.5.2 and for all higher-order harmonics in section 7.5.3.

7.5.1. Decomposition of the polymerization velocity

In the following, a linear perturbation δc1(r, t) of the homeostatic actin concentration in the
shape of the first spherical harmonic is considered, with δc1(r, t) ≪ c0. The actin concentration
is herewith given by

c(r, t) = c0 + δc1(r, t)
= c0 + δC1(t) cos θ, (241)

that is, the concentration is slightly higher at the north pole compared to the south pole of the
cell. With Eq. (241) one obtains from Eq. (234) the linearized polymerization velocity

vp(r) = vp
b(r) + δvp(r), (242)

with vp
b(r) given by Eq. (238). Here,

δvp(r) = −v0
pe

− c0
cr
δC1
cr

cos θ er (243)

is the contribution to the polymerization velocity which arises from the small perturbation of
the actin concentration. In contrast to the isotropic part in Eq. (238), δvp(r) depends on the
position along the surface. This small perturbation of the polymerization velocity is sketched
as red arrows in Fig. 55. δvp(r) points inward at the north pole of the cell and outward at the
south pole. That is,

δvp(θ = 0) = δvp(θ = π) = −δṽez, (244)

where for brevity

δṽ := v0
pe

− c0
cr
δC1
cr

(245)

has been introduced. Since the shape of the cell is fixed, the normal component of the filament
endpoint velocity

δv = δvc + δvp (246)
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Figure 55. Onset of cell polarity and retrograde flow in the linear regime of the model. “+” (“-”) symbol
indicates the hemisphere with excess (reduced) actin concentration compared to the homeostatic concentration
c0. The polar angle with respect to the z-axis is denoted as θ. Red arrows show the small perturbation δvp(r)
of the polymerization velocity according to Eq. (243). A position-independent cortex velocity δvc (blue arrows),
given by Eq. (247), compensates the normal component of δvp(r) at each point of the surface. The residue is a
purely tangential retrograde flow of filament endpoints δv(r) [see Eq. (250)] in the cell frame (orange arrows).
Since δvc is a constant, it describes a rigid-body translation of the sphere, illustrated by the black dotted circle.
Figure adapted from Ref. [206].

must be zero in the cell frame. Therefore, the polymerization velocity at both poles has to be
compensated completely by the cortex velocity. In general, determining vc requires solving the
force balance equation (66). In the present case of the linearized problem, this solution is given
by a position-independent cortex velocity

δvc = δṽez. (247)

Eq. (247) is the result of a further decomposition of the polymerization velocity in Eq. (243),

δvp(r) = −δṽ

sin θ cos θ cosφ
sin θ cos θ sinφ

1 − sin2 θ

 = −δṽ (ez + sin θeθ) = −δvc + δv(r) (248)

with the unit vectors in polar and in z-direction,

eθ =

cos θ cosφ
cos θ sinφ

− sin θ

 , ez =

0
0
1

 . (249)

Since δvc is position-independent, it corresponds to a translation of the cell as a whole which
does not affect the force balance equation. This is clear from Eq. (64) where only gradients of
the cortex velocity enter. Thus, any arbitrary rigid body translation or rotation added to the
solution of the force balance equation (66) gives another valid solution since such transformations
do not deform the cortex. Once δvc is subtracted from the polymerization velocity in Eq. (248),
a purely tangential full velocity

δv(r) = −ṽ sin θeθ (250)

remains. The magnitude of δv(r) is maximal at the equator and zero at the two poles. It is
directed along the negative polar direction and it thus advects further actin from parts of the
cortex with low concentration to regions with high filament area density. Such a self-amplification
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7. Amoeboid cell motility is triggered by actin polymerization only

of the polarization in the concentration field is consistent with the dynamics of the retrograde
flow described above. Both δvc and δv(r) are sketched in Fig. 55 with blue and orange arrows,
respectively.

The onset of the retrograde flow can also be understood intuitively without considering δvc and
only from the graphic visualization of δvp(r): The heads of neighboring red arrows in Fig. 55
are more far apart than their tails in the hemisphere with reduced actin concentration. This
means that the anisotropic polymerization velocity pushes filaments along the surface further
apart from another. Consequently, the actin concentration is further reduced in this part of the
cortex. The opposite is the case in the hemisphere with excess concentration where heads of
neighboring arrows are closer than their respective tails. This implies that filaments are shifted
closer together along the surface, resulting in a further increased concentration of filamentous
actin.

7.5.2. Linear stability analysis of the first harmonic

In order to assess for which parameters the basic state becomes unstable, it is necessary to
consider the dynamics of the model in the linear regime. In the following, a linear stability
analysis is conducted where only the first spherical harmonic is considered. Since this mode
describes a front/back polarization of the cell, its instability is of primary relevance for the onset
of cell motility. The linear stability of the higher order harmonics is then analyzed subsequently
in section 7.5.3, where it will be shown that the first harmonic is in fact the mode which always
becomes unstable first.

In first order (l = 1), the tension force from Eq. (65) with the mean curvature as in Eq. (216)
is zero. Thus, the force balance equation (66) becomes trivial. To analyze the linear stability
of the first harmonic, the linearized concentration from Eq. (241) and the retrograde flow from
Eq. (250)3 can therefore be directly substituted into the advection-diffusion equation (235). For
this first the derivatives have to be calculated, yielding

∆Sc(θ) = 1
R2

0 sin θ
∂

∂θ

[
sin θ ∂

∂θ
(c0 + δC1 cos θ)

]
= −2δC1

R2
0

cos θ, (251)

∇S · [v(r)c(θ)] = −δṽ 1
R0 sin θ

∂

∂θ

[
sin2 θ(c0 + δC1 cos θ)

]
= − δṽ

R0

[
2c0 cos θ + δC1

(
3 cos2 θ − 1

)]
, (252)

where due to the symmetry of the problem, only derivatives with respect to the polar angle are
taken into account. Herewith, the advection-diffusion equation (235) reads

δĊ1(t) cos θ = δṽ

R0

[
2c0 cos θ + δC1(t)

(
3 cos2 θ − 1

)]
− 2δC1(t) D

R2
0

cos θ − βδC1(t) cos θ. (253)

Projection on the Legendre polynomial for l = 1 yields with Eq. (245)

δĊ1(t) = λ1δC1(t) (254)

with

λ1 = 2
v0

p

R0

c0
cr
e− c0

cr − 2 D
R2

0
− β. (255)

3Note that the full velocity vanishes in zeroth order according to Eq. (240).
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This implies that for λ1 > 0 the small perturbation δC1(t) of the actin concentration grows
exponentially in time and therefore the basic state is instable. For λ1 < 0 the perturbation
decays and the homogeneous solution is stable. Accordingly, for λ1 = 0 one obtains a criterion
for the onset of the instability which takes place for

v0
p > v0

p,c = cr

c0

(
D

R0
+ βR0

2

)
e

c0
cr , (256)

where v0
p,c is the critical polymerization speed. From Eq. (256) it is evident that the membrane

curvature is crucial for the instability: In the limit of a flat membrane, i.e., for R0 → ∞, one has
v0

p,c → ∞, implying that the basic state is always stable. Eq. (255) shows that the instability
is driven by the polymerization of actin filaments since the growth rate λ1 increases with the
polymerization speed v0

p. Furthermore, λ1 decreases with D and β, showing that both surface
diffusion and turnover of F-actin counteract the instability. For v0

p > v0
p,c, the polarization of

the concentration field grows to infinity according to Eq. (254). In practice, the growth of the
polarization is limited by nonlinear terms which are not taken into account here and will be
discussed below in section 7.6.

7.5.3. Linear stability for higher-order harmonics

In the following, the linear stability analysis is generalized to higher-order harmonics. To inves-
tigate the stability of the l-th mode, the ansatz

c(r, t) = c0 + δCl(t)Pl(cos θ) (257)

with l ≥ 2 is chosen. Substituting Eq. (257) into Eq. (234) and by taking into account only
terms up to linear order in δCl, one obtains the linearized polymerization velocity in l-th order

vp
l (r) = v0

pe
− c0

cr

[
1 − δCl

cr
Pl(cos θ)

]
er. (258)

To obtain the cortex velocity, the force balance equation (66) has to be solved for a given value
of l. This follows the procedure presented above in section 6.2.1.2. To this end, the tension force
and the viscous force are expanded in vector spherical harmonics according to Eq. (212), where
the force coefficients f tens

j,l and fvisc
j,l with j = {1, 2, 3} are given by Eq. (220) and in Ref. [42].

The difference to the calculation in chapter 6 is that no test forces are included in the force
balance equation here. One obtains a cortex velocity in l-th order

vc
l (r) =

3∑
j=1

vc
j,lYj,l(r) (259)

with

vc
1,l =

√
4π

2l + 1
(l − 1)[2(l + 1)ηs + lηb]

8(2l + 1)ηs(ηs + ηb)
R3

0∆Pϱl,

vc
2,l = −

√
4π

2l + 1
(l + 2)[2lηs + (l + 1)ηb]

8(2l + 1)ηs(ηs + ηb)
R3

0∆Pϱl,

vc
3,l = 0. (260)
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The shape coefficients ϱl remain to be determined. They can be obtained from the fixed shape
condition,

v(r) · er = 0. (261)

Note that, in the present analysis, a fixed shape requires the normal component of the full
velocity v = vc + vp to vanish, with the polymerization velocity given by Eq. (258). This is in
contrast to Eq. (215) where this constraint was applied to the cortex velocity vc. Projection of
Eq. (261) on Pl(cos θ) yields4

ϱl = −
4v0

pe
− c0

cr

∆PR2
0

δCl

cr

ηs(ηs + ηb)
(l2 + l − 1)ηs + l

2(l + 1)ηb

. (262)

By reinsertion into Eqs. (260), one obtains the cortex velocity as a direct function of the con-
centration perturbation δCl,

vc
1,l = −

√
4π

2l + 1
v0

pR0e
− c0

cr
δCl

cr

(l − 1)[2(l + 1)ηs + lηb]
[l(l + 1)ηb + 2(l2 + l − 1)ηs] (2l + 1)

,

vc
2,l =

√
4π

2l + 1
v0

pR0e
− c0

cr
δCl

cr

(l + 2)[2lηs + (l + 1)ηb]
[l(l + 1)ηb + 2(l2 + l − 1)ηs] (2l + 1)

,

vc
3,l = 0. (263)

At this stage of the analysis, with the cortex velocity vc
l from Eq. (259) and coefficients as in

Eqs. (263) and the polymerization velocity vp
l according to Eq. (258), the full velocity in l-th

order,

vl(r) = vc
l (r) + vp

l (r), (264)

has been determined as a function of δCl. vl can now be substituted into the advection-diffusion
equation (235) in order to obtain the time-evolution of the concentration harmonics. To this
end, it is helpful to introduce a scalar flow potential U(r). The full velocity is then obtained by
taking the surface gradient,

v(r) = ∇SU(r). (265)

Integration yields

U(θ) = v0
pR0e

− c0
cr
δCl

cr
Pl(cos θ) ηs + ηb

(l2 + l − 1)ηs + l
2(l + 1)ηb

, (266)

The advection term can be rewritten with the flow potential according to

∇S · [v(r)c(r)] = 1
2

{
∆S [c(r)U(r)] + c(r)∆SU(r) − U(r)∆Sc(r)

}
. (267)

With the concentration as in Eq. (257), this allows the calculation of time-derivative of the
concentration using the advection-diffusion equation (235). In order to obtain the growth rates
of the individual harmonics, the result is projected on the Pl(cos θ). This yields in linear ap-
proximation

δĊl(t) = λlδCl(t), (268)
4Note that the shape coefficient vanishes for the l = 1 harmonic, that is, ϱ1 = 0. This mode corresponds to a
rigid-body translation of the cell along the z-direction without shape deformation, as discussed above in section
7.5.1.
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with the growth rates

λl = l(l + 1)(ηs + ηb)
(l2 + l − 1)ηs + l

2(l + 1)ηb

v0
pc0

R0cr
e− c0

cr − l(l + 1) D
R2

0
− β. (269)

Note that in the special case of l = 1, Eq. (269) corresponds to the growth rate obtained above
for the first harmonic in Eq. (255). With λl = 0 the critical polymerization speed for each mode
l is obtained,

v0,p,c
l = R0

cr

c0
e

c0
cr

[
l(l + 1) D

R2
0

+ β
] [

(l2 + l − 1)ηs + l
2(l + 1)ηb

]
l(l + 1)(ηs + ηb)

. (270)

v0,p,c
l is plotted as a function of the mode index l in Fig. 56 for an exemplary set of parameters
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Figure 56. Analytically calculated critical polymerization speed v0,p,c
l according to Eq. (270) for each mode l.

Parameters: R0 = 1, c0 = 3, cr = 1, D = 0.03, β = 1, ηs = 1, ηb = 1.

as indicated in the figure caption. The critical polymerization speed increases monotonically as
a function of the mode index. This means that the loss of stability of the homogeneous basic
state always takes place via an instability of the first harmonic. This is also evident from the
first addend in Eq. (269) which decreases as a function of l, regardless of the parameters. This
has important consequences for the ability of the present model to describe the onset of cell
motility which necessitates a front/back polarity of the cell which is given by the first harmonic.
Furthermore, this underlines the importance of the discussions above in sections 7.5.1 and 7.5.2
which focused exclusively on the l = 1 mode.

7.6. Weakly nonlinear analysis

So far, the linearized problem has provided the reader with an explicit expression for the thresh-
old of the instability of the unpolarized cell. This linear approximation, however, does not yield
predictions for the value of the polarization of the concentration field and the retrograde flow
above the critical value. To this end, in the following a perturbation analysis close to the bifurca-
tion point is conducted. The following procedure is employed: At first, a perturbation approach
is made by an ansatz for the concentration up to second order. From this the polymerization
velocity is calculated. The cortex velocity is obtained by solving the force balance equation
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7. Amoeboid cell motility is triggered by actin polymerization only

together with the fixed shape condition in second order. Continuing, the advection-diffusion
equation yields the time-evolution of the concentration modes. Based on this, the stationary
solutions can be calculated in order to obtain stable and unstable solutions.

The following discussions are based on an expansion of the actin filament concentration in terms
of a perturbation series up to second order,

c(r, t) = c0 + εδC1(t)P1(cos θ) + ε2δC2(t)P2(cos θ), (271)

where ε > 0 is assumed to be small. From Eq. (234) follows a polymerization velocity given
by

vp(r) = v0
pe

− c0
cr

{
1 − ε

δC1
cr

cos θ + ε2

2

[
δC2
cr

+ cos2 θ

(
δC2

1
c2

r

− 3δC2
cr

)]

− ε3

6
δC1
cr

cos θ
[(

δC2
1

c2
r

− 9δC2
cr

)
cos2 θ + 3δC2

cr

]}
er + O(ε4). (272)

To obtain the cortex velocity in second order, the force balance has to be solved. Eq. (260)
yields for l = 2

vc
1,2 =

√
5π(3ηs + ηb)∆Pϱ2R

3
0

50(ηs + ηb)ηs
,

vc
2,2 = −

√
5π (4ηs + 3ηb)R3

0ϱ2∆P
25(ηs + ηb)ηs

,

vc
3,2 = 0. (273)

In accordance with the above-described considerations, ϱ2 is obtained here from the fixed shape
condition in Eq. (261). In contrast to the linear analysis, here the full velocity contains the
polymerization velocity up to third order as given by Eq. (272). Projection of Eq. (261) on
P2(cos θ) yields an expression for the shape coefficient in second order as a function of the
amplitudes of the concentration harmonics δC1 and δC2,

ϱ2 =
4ε2v0

pe
− c0

cr

∆PR2
0

(
δC2

1
3c2

r

− δC2
cr

)
ηs(ηs + ηb)
(5ηs + 3ηb)

. (274)

Upon substitution of Eq. (274) in Eq. (273), one obtains the cortex velocity in second order [see
Eq. (259)]

vc
2(r) =

3∑
j=1

vc
j,2Yj,2(r), (275)

with the coefficients

vc
1,2 = 2ε2v0

pR0e
− c0

cr

(
δC2

1
c2

r

− 3δC2
cr

) √
5π(3ηs + ηb)

75(5ηs + 3ηb)
,

vc
2,2 = −4ε2v0

pR0e
− c0

cr

(
δC2

1
c2

r

− 3δC2
cr

) √
5π(4ηs + 3ηb)

75(5ηs + 3ηb)
,

vc
3,2 = 0. (276)
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Herewith, the cortex velocity

vc(r) = vc
0(r) + vc

1 + vc
2(r) (277)

is determined up to the second order in ε. Herein, the zeroth-order term vc
0(r) represents an

isotropic, radially directed contribution and the first-order term is given by

vc
1 = εv0

pe
− c0

cr
δC1
cr

ez. (278)

With the polymerization velocity up to second order given by Eq. (272), one obtains the full
velocity from Eq. (233). Its tangential components represent the retrograde flow,

v(r) =v0
pe

− c0
cr

[
−εδC1

cr
sin θ

+ε2
(
δC2

1
c2

r

− 3δC2
cr

)
ηs + ηb

5ηs + 3ηb
cos θ sin θ − ε3

10
δC1
cr

(
δC2

1
c2

r

− 4δC2
cr

)
sin θ

]
eθ. (279)

Note that, if truncated after the first order in ε, Eq. (279) corresponds to the retrograde flow in
the linear regime derived above in Eq. (250). The term cos θ sin θeθ is zero at the poles and the
equator and is directed in each hemisphere along the polar direction from the pole towards the
equator.

From the retrograde flow in Eq. (279) follows with Eq. (265) the flow potential

U(r) =v0
pR0e

− c0
cr

[
ε
δC1
cr

cos θ

−ε2

2

(
δC2

1
c2

r

− 3δC2
cr

)
ηs + ηb

5ηs + 3ηb
cos2 θ + ε3

10
δC1
cr

(
δC2

1
c2

r

− 4δC2
cr

)
cos θ

]
. (280)

With this and Eq. (267), the advection-diffusion equation (235) can be calculated. Upon projec-
tion of the resulting expression on the Legendre polynomials, the time-evolution of the individual
harmonics are obtained as

ċ0 = 0, (281)

δĊ1 = ελ1δC1 + ε3
(
α1δC

3
1 + β1δC1δC2

)
, (282)

δĊ2 = ε2
(
λ2δC2 + α2δC

2
1

)
. (283)

Herein, the linear growth rates λ1 and λ2 are given by

λ1 = 2
v0

p

R0

c0
cr
e− c0

cr − 2 D
R2

0
− β, (284)

λ2 = 6
v0

p

R0
e− c0

cr
c0
cr

ηs + ηb

5ηs + 3ηb
− 6 D

R2
0

− β. (285)

These expressions are equivalent to the growth rates in Eq. (269) for l = 1 and l = 2 which were
obtained above within the linear stability analysis. The nonlinear coefficients in Eqs. (282) and
(283) are obtained as

α1 =
v0

p

5R0c2
r

e− c0
cr

[
c0
cr

− 2(ηs + ηb)
5ηs + 3ηb

]
, (286)

β1 = −4
v0

p

R0cr
e− c0

cr

(
c0
cr

+ ηs

5ηs + 3ηb

)
, (287)

α2 = 2
v0

p

R0cr
e− c0

cr

(
c0
cr

ηs + ηb

5ηs + 3ηb
− 1

)
(288)
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and lead to a coupling of the dynamics of the first and second concentration harmonic. The
relaxation time of the l = 2 mode is much smaller than that of the l = 1 harmonic. This allows
to set

δĊ2 = 0. (289)

This condition yields with Eq. (283) an expression for the amplitude of the second harmonic,

δC2 =
2v0

pR0e
− c0

cr
δC2

1
cr

[
c0
cr

(ηb + ηs) − (3ηb + 5ηs)
]

(3ηb + 5ηs)
(
6D +R2

0β
)

− 6v0
pR0e

− c0
cr

c0
cr

(ηs + ηb)
. (290)

By substitution into Eq. (282), δC2 can be eliminated in the dynamical equation for δC1.

In the following, the quantities are rescaled using as characteristic scales β−1 for time and cr

for concentrations. The non-dimensional quantities are denoted with bars. The problem can be
reduced to four non-dimensional parameters,

c̄0 := c0
cr
, v̄0

p :=
v0

p

R0β
e−c̄0 , D̄ := D

R2
0β
, η̄ := ηs

ηb
. (291)

The non-dimensional critical polymerization speed from Eq. (256) is then given by

v̄0
p,c = 2D̄ + 1

2c̄0
. (292)

Substituting Eq. (290) into Eq. (282) and evaluating the resulting term in third order in ε at
v̄0

p = v̄0
p,c yields

δ ˙̄C1 = 2c̄0(v̄0
p − v̄0

p,c)δC̄1 + νδC̄3
1 (293)

with the nonlinear coefficient

ν =

(
2D̄ + 1

){[(
3
2 + 8D̄

)
η̄ +

(
5D̄ + 1

)]
c̄2

0 −
[(

5 + 12D̄
)
η̄ +

(
3 + 8D̄

)]
c̄0 −

(
1 + 2D̄

)
η̄

}
5c̄2

0

[(
1 + 12D̄

)
η̄ + 6D̄

] .

(294)
As done for the linear stability analysis in section 7.5, the stationary solutions of the nonlinear
problem here are obtained from Eq. (293) by setting

δ ˙̄C1 = 0. (295)

The trivial steady-state solution δC̄1 = 0 always exists. It corresponds to the homogeneous
basic state of the model described above in section 7.4 and zero retrograde flow. Eq. (293)
yields insights about the stability of the basic state and the amplitude of the first concentration
harmonic closely above the threshold of instability. Two cases can be distinguished, depending
on the sign of ν. For ν < 0, a supercritical bifurcation is obtained. Here, a non-trivial solution
of Eq. (293) exists for v̄0

p > v̄0
p,c which is given by

δC̄1 =

√
2c̄0(v̄0

p − v̄0
p,c)

−ν
. (296)

This solution represents a non-zero amplitude of the first concentration harmonic and thus, as
discussed above, to a finite retrograde flow of the cortex. The stability of this solution above
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7.6. Weakly nonlinear analysis

the critical polymerization speed is evident from Eq. (293): For v̄0
p > v̄0

p,c, small perturbations
δC̄1 of the basic state grow exponentially in time due to the linear term on the right-hand side.
For sufficiently large δC̄1, the nonlinear term becomes important which, for ν < 0, acts against
the linear growth of the first concentration harmonic. Therefore, for long times, the system
saturates to the finite amplitude given by Eq. (296). In the second case, for ν > 0, a subcritical
bifurcation is obtained. Here, C̄1 in Eq. (296) is real only for v̄0

p < v̄0
p,c, i.e., in the regime

where the basic state is linearly stable. Thus, the steady-state solution in Eq. (296) describes
an unstable branch which cannot be observed in the simulation.

In the following, the maximum retrograde flow velocity along the cell boundary is denoted as v0.
Closely above the onset of the instability, v0 can be calculated by substituting the fixed-point
solution for the first concentration harmonic in Eq. (296) into vc

1 from Eq. (278). The underlying
assumption for this is that, as discussed above in section 7.5.1, at the equator of the sphere the
cortex velocity is equal to the retrograde flow velocity for the l = 1 harmonic5. This yields

v̄0 = v̄0
p,ce

−c̄0δC̄1ez = e−c̄0 2D̄ + 1
2c̄0

√
2c̄0(v̄0

p − v̄0
p,c)

−ν
ez. (297)

Here, again v̄0
p = v̄0

p,c has been set for simplicity, and

v̄0 := v0
R0β

e−c̄0 (298)

is the dimensionless retrograde velocity.

The nonlinear coefficient in Eq. (294) allows for the identification of parameter ranges where
the bifurcation becomes supercritical or subcritical. The phase diagram is shown in Fig. 57 as a
function of the homeostatic concentration c̄0 and the diffusion coefficient D̄. Herein, the black
line corresponds to ν = 0. Supercritical bifurcations take place for small diffusion coefficients and
small homeostatic concentrations while subcritical bifurcations are predicted for large diffusion
coefficients and high homeostatic concentrations.
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Figure 57. Phase diagram showing regions of supercritical (ν < 0, orange) and subcritical bifurcations (ν > 0,
blue) as a function of the non-dimensional homeostatic concentration of F-actin, c̄0, and the non-dimensional
F-actin diffusion coefficient, D̄. The black line separating the two regimes is obtained from the analytically
calculated nonlinear coefficient in Eq. (294). Parameters: R0 = 1, cr = 1, ηs = 1, ηb = 1, β = 1.

5δv(θ = π/2) in Eq. (250) equals δvc in Eq. (247).
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7.7. Comparison of analytical and numerical results

In this section, the analytically obtained results from section 7.6 are confronted with the numer-
ical solution which solves the full problem. The comparison is done at first for the concentration
fields and secondly for the retrograde speed. The parameters as listed in tab. 12 are used if not
otherwise mentioned.

Table 12. Parameters for simulations and analytical expressions, if applicable. The analytically obtained values
for the resulting critical polymerization velocity v̄0

p,c [see Eq. (292)] and nonlinear coefficient ν [see Eq. (294)] are
also displayed.

parameter set 1 set 2 set 3 set 4

time step ∆t 10−5 10−5 10−5 10−5

run time tend 50 50 300 300
pressure difference ∆P 300 300 300 300

surface shear viscosity ηs 1 2 1 1
surface bulk viscosity ηb 0 1 1 1
actin compressibility α 0 0 0 0
actin turnover rate β 1 1 1 1

actin homeostatic concentration c0 1 1 3 3
actin reference concentration cr 1 1 1 1

actin diffusion coefficient D 0.01 1 0.03 0.4
critical polymerization speed v̄0

p,c 0.510 1.50 0.177 0.300
nonlinear coefficient ν −0.83 −0.49 −0.01 0.10

7.7.1. Concentration field

In the following, the numerically and analytically obtained amplitudes of the second harmonic
of the concentration field are compared by visual inspection. This serves as a first validation of
the analytical results obtained above with the weakly nonlinear analysis. The analytical solution
yields an explicit expression for the amplitude of the second harmonic of the concentration field,
as given by Eq. (290) and termed δCa

2 in the following. It can be visualized on the numerically
obtained shape of the cell by calculating the second harmonic of the concentration,

δca
2(ri) = δCa

2
2

[
3(zi − zc)2 − 1

]
. (299)

Here, ri is the numerical position of the i-th mesh node, with zi being its position along the
axial direction and zc being the z-component of the cell’s center. Note that in this section, the
dimensional parameters (parameters without bars) are used for the comparison with simulation
parameters. The numerical counterpart to the analytical second concentration harmonic in Eq.
(299) can be extracted from the simulation data by subtracting the zeroth and first harmonic
from the total numerically obtained concentration field cn(ri). That is,

δcn
2(ri) = cn(ri) − c0 − δca

1(ri), (300)

where

δca
1(ri) = δCa

1 (zi − zc) (301)
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(a) analytical, δca
2(ri)

(b) numerical, δcn
2(ri)

Figure 58. Analytical (a) and numerical function (b) for the second harmonic of the concentration (color code,
see legend), according to Eq. (299) and (300), respectively. z-axis points horizontally from the left to the right.
Parameter set 1 from tab. 12 is used.

is the first harmonic with the analytically obtained amplitude δCa
1 according to Eq. (296). Note

that Eq. (300) is an approximation which neglects concentration modes higher than the second
one. In the following, parameter set 1 from tab. 12 is used together with v0

p = 1.45, a poly-
merization speed that lies closely above the critical point. Herewith, one obtains analytically
δCa

1 = 0.24 and δCa
2 = 0.11. The perturbation analysis above only takes into account concentra-

tion modes up to the second harmonic, which is a good approximation for v̄0
p ≈ v̄0

p,c. Far above
the critical point, higher order harmonics become important and Eq. (300) looses its validity.

(a) analytical, δca
2(ri) (b) numerical, δcn

2(ri)

Figure 59. Analytical (a) and numerical function (b) for the second harmonic of the concentration (color code,
see legend), according to Eq. (299) and (300), respectively. z-axis points horizontally from the left to the right.
Parameter set 2 from tab. 12 is used.

Fig. 58 shows the analytically and numerically obtained second harmonic of the concentration
field on the surface of the cell. One observes good agreement, with a high concentration at the
poles and low concentration around the equator in both cases, which is characteristic for the
second spherical harmonic. Whereas the analytically obtained concentration field exhibits mirror
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symmetry with respect to the equator plane, a slight asymmetry is observed in the numerically
obtained field. These differences arise from the presence of higher order harmonics, as discussed
above6. Furthermore, the five-neighbor mesh points exhibit a slightly higher concentration than
their surrounding nodes, as visible in Fig. 58(b). For a discussion of such mesh-related errors it
is referred to chapter 6.

The comparison is done for a second set of parameters, namely set 2 in tab. 12 where, in contrast
to set 1, a non-zero bulk viscosity is employed. Choosing v0

p = 4.50, one obtains δCa
1 = 0.80

and δCa
2 = 0.35. The visualization of the concentration fields of the second harmonic is shown

in Fig. 59. Here, good agreement between analytical and numerical results is observed as well.
In particular, five-neighbor mesh points are not visible for this parameter set.

7.7.2. Retrograde speed

Finally, the retrograde speed obtained by the analytical perturbation analysis is compared to the
full numerical solution. As discussed above, the cortex velocity which is obtained as a solution

(a) Polymerization velocity vp(ri). (b) Retrograde flow velocity vretro(ri).

Figure 60. Simulation snapshot of a cell above the onset of motion. Parameter set 4 in tab. 12 (subcritical
bifurcation) with v̄0

p = 0.30 is used. z-axis points horizontally from the left to the right. Color code shows the
actin concentration c(ri) (see legend), black arrows show in (a) the polymerization velocity according to Eq. (234)
and in (b) the retrograde flow according to Eq. (302). In an external environment, the cell would move to the left
(in negative z-direction).

of the force balance equation can only be determined up to a rigid body translation or rotation.
Thus, the full velocity field v(ri) obtained from the simulation generally contains both tangential
and normal components. A fully tangential velocity field can be constructed by subtracting a
suitably chosen constant velocity vector,

vretro(ri) := v(ri) − vconst, (302)
6Among all neglected modes, the third harmonic, which is not mirror symmetric with respect to the equator
plane, is expected to have the largest amplitude.
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where vretro(ri) denotes the local retrograde flow velocity in the following. Hereby, vconst is cho-
sen as the full velocity, evaluated at the mesh node with the maximum polymerization velocity,
rmax. That is,

vconst = v(rmax),
with |vp(rmax)| = max [|vp(ri)|]i . (303)

According to Eq. (234), rmax is the node where the concentration is minimal. Given a polarized
actin concentration field in the shape of the first spherical harmonic [see Eq. (241)], rmax is the
node closest to the south pole of the cell. Finally, the maximum retrograde velocity is computed
as

v0 = max [vretro(ri)]i . (304)

Considering the discussions above, v0 corresponds to the retrograde flow evaluated at the equator
of the sphere. Eq. (304) may be interpreted as the negative migration velocity of a spherical cell
that crawls on a flat surface and has contact with the substrate only at the equator, assuming
perfect no-slip conditions between the cortex and the substrate.

Fig. 60 shows a snapshot of a typical concentration field and retrograde flow from a simulation
of a cell above the onset of motion. The stationary state is shown where the actin concentration
and retrograde flow do not change over time anymore. Choosing c0 = 3, a stable polarization
of the concentration field has emerged. Hereby, c(ri) is smaller than c0 on the left part of the
sphere and reaches over four times of the homeostatic concentration on the right part. The
normal-directed polymerization velocity shown in Fig. 60(a) is large on the left part of the cell
and decreases significantly towards the right part. The retrograde cortex flow shown in Fig.
60(b) is directed along the surface from the left to the right, i.e., from the region of low to
high actin concentration. Importantly, these numerical findings demonstrate that a spherical
cell can spontaneously become polarized, confirming the theoretical considerations above. In an
external environment, the cell would move in the direction opposite to the retrograde flow, i.e.,
in negative z-direction.

In the following, the dependence of the retrograde speed on the polymerization speed is inves-
tigated systematically. Fig. 61 shows the numerically obtained retrograde speed v0 = |v0| using
parameter sets 1 to 3 in tab. 12. In some cases, the run time tend is adapted to ensure that the
retrograde speed saturates to its stationary value. For all three sets of parameters, one obtains
ν < 0 analytically which predicts a supercritical bifurcation. This is confirmed by the numerics,
showing a continuous transition from a non-motile state to a finite retrograde speed. Above the
critical point, small deviations between both solutions are observed which are reasoned in the
approximations made in the analytical calculation and the numerical errors, as discussed above.
However, generally, good agreement between the numerical and the stable branch predicted by
the analytical solution is observed for all three sets of parameters.
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(b) Parameter set 2.
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(c) Parameter set 3.

Figure 61. Supercritical bifurcations, obtained for ν < 0 with the parameter sets as given in tab. 12, see sub-
captions. Blue crosses show numerical results. The black line shows the analytical result according to Eq. (297)
which predicts a stable branch for v̄0

p > v̄0
p,c.

Continuing, the comparison of the retrograde speed is conducted for parameter set 4 in tab. 12
where one obtains ν > 0, indicating a subcritical bifurcation. In order to account for metastable
solutions in the numerics, simulations with two different initial perturbations of δC1 = 0.01 and
δC1 = 1 are conducted. For a subcritical bifurcation, the analytical result predicts an unstable
branch which cannot be observed in the simulation. However, the critical polymerization speed
can be compared. Fig. 62 shows the analytical branch for the retrograde speed together with
the numerically determined values after the initial transient. In the simulation, the cell remains
at rest for v̄0

p ≲ 0.26. A metastable regime is obtained for 0.24 ≲ v̄0
p ≲ 0.3, where the system
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Figure 62. Subcritical bifurcation, obtained for ν > 0 with parameter set 4, see tab. 12. Blue crosses show
numerical results. The black dashed line shows the analytical result according to Eq. (297) which predicts an
unstable branch for v̄0

p < v̄0
p,c.

approaches the non-motile solution for a small initial concentration perturbation and a polarized,
motile state for a large initial concentration polarization. For v̄0

p ≳ 0.3, the polarized state
becomes the only stable solution, where a finite retrograde speed is obtained that does not
depend on the initial condition. The analytically obtained critical polymerization speed of
v̄0

p,c = 0.3 is in good agreement with the numerical observation.

7.8. Free-shape instability

Up to this point, only fixed, spherical cell shapes have been considered. The main motivation
for this has been to demonstrate that shape changes are not necessary for cell motility which
is driven by actin polymerization alone. However, cells are known to often undergo ample
shape changes during migration. Membrane protrusions that dynamically change their size and
position along the cell surface have been shown to drive cell motility, e.g., in the case of cells
that are able to swim in bulk fluids [75, 218–220]. From a modeling perspective, the changing
shape adds an additional degree of freedom to the problem. The goal of the present section is
to investigate the influence of a free cell shape on the dynamics of the cortex. For simplicity,
the analysis shall be limited to an analytical approach on a simple model for a shape-changing
protrusion of a cell.

7.8.1. Model description

If the cell shape is allowed to change, one expects cell protrusions in some regions of the cortex
as a result of actin polymerization which pushes the membrane outwards. To this end, a minimal
model for a single protrusion of the cell is proposed in the following. The protrusion is assumed
to be part of a much larger rest of the cell which is not explicitly modeled. This cell rest serves
as a reservoir for lipid molecules which make up the membrane. Thus, the surface area of the
protrusion is allowed to change in time. The protrusion is modeled by a sphere of time-dependent
radius R(t) with polymerizing cortical actin distributed homogeneously over its surface, see Fig.
63. Note that this spherical assumption does not take into account the detailed shape of the
protrusion. The time-dependent F-actin concentration on the surface of the protrusion is denoted
as c(t).
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Figure 63. Minimal model for a spherical
cell protrusion (orange) with radius R that is
allowed to change its shape. It is part of a
much larger cell rest (gray). On the surface
of the protrusion a homogeneous actin con-
centration c is assumed (red).

With the total mass of actin being denoted as M(t), the actin concentration is defined as the
actin mass divided by the surface area of the protrusion,

c = M

4πR2 . (305)

The actin mass changes due to polymerization and depolymerization,

Ṁ = 4πR2p(c) − βM. (306)

Here, p(c) is the concentration-dependent polymerization, i.e., the mass of G-actin that poly-
merizes into F-actin per unit time and area. The constant β > 0 is the depolymerization rate.
The first addend in Eq. (306) accounts for the increase of actin mass and is proportional to the
surface area of the protrusion. This reflects the observation that actin filaments polymerize into
available space. It is further assumed that the presence of actin inhibits further polymeriza-
tion,

p(c) = p0 − p1c, (307)

where p0 > 0 describes the undisturbed polymerization and p1 > 0 the polymerization rate.
Note that Eq. (307) is the equivalent to the polymerization velocity in Eq. (234). In the present
model, for simplicity, a linear dependence on c is considered, assuming that the polymerization
function in Eq. (307) deviates only slightly from p0. The analysis is restricted to 0 ≤ c < p0

p1
in the following in order to preclude negative and thus unphysical values for the polymerization
function. The model is closed by an equation for the time-evolution of the protrusion radius,

Ṙ = γp(c) − αR. (308)

Here, the first addend describes the growth of the protrusion due to polymerization of filaments
which push against the membrane, where γ > 0 is a measure for the efficiency of this process.
The second addend models restoring forces caused by the membrane tension which counteract
the growth of the protrusion, where α > 0 is an effective membrane tension.

7.8.2. Linear stability analysis

To investigate the dynamical behavior of the protrusion, a linear stability analysis is conducted
in the following. Taking the time-derivative of Eq. (305) yields

ċ = Ṁ

4πR2 − MṘ

2πR3
(306)= p(c) − βM

4πR2 − MṘ

2πR3
(305),(307)= p0 − p1c− βc− 2cṘ

R
. (309)
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7.8. Free-shape instability

Together with Eq. (308), one obtains two coupled dynamical equations for the F-actin concen-
tration and the protrusion radius,

ċ = F1(c,R) := p0 − p1c− βc− 2cγ(p0 − p1c)
R

+ 2αc (310)

Ṙ = F2(c,R) := γ(p0 − p1c) − αR. (311)

More compactly, one has

ẇ = F (w) (312)

with

w :=
(
c

R

)
and F (w) :=

(
F1(c,R)
F2(c,R)

)
. (313)

The stationary solutions of the system are obtained for ẇ = 0. This yields the fixed point

wf = (cf , Rf )T =
(

p0
p1 + β

,
βγp0

α(p1 + β)

)T

, (314)

which is the basic state of the model. It corresponds to a protrusion of finite size and actin
concentration on its surface. The linear stability of this basic state is analyzed in the following
by considering a small perturbation wp = (cp, Rp)T of the concentration and radius, that is,

w = wf + wp (315)

with |wp| ≪ |wf |. This allows a linearization of F around the fixed point,

ẇ = ẇp = J · wp, (316)

with the Jacobi matrix

J =
(

∂F1
∂c

∂F1
∂R

∂F2
∂c

∂F2
∂R

)∣∣∣∣∣
w=wf

=
(2αp1

β − β − p1
2α2

βγ

−γp1 −α

)
. (317)

Choosing an exponential ansatz for the perturbation

wp = w0e
λt, (318)

with constant amplitude w0 and growth rate λ, one obtains upon substitution into Eq. (316)

λwp = J · wp. (319)

The non-trivial solutions of the problem are obtained under the condition that det(J −λ1) = 0,
leading to an expression for the growth rates

λ1,2 = 1
2

[
tr(J) ±

√
tr(J)2 − 4 det(J)

]
, (320)

where the trace tr(J) and the determinant det(J) are given by

tr(J) = 2αp1
β

− β − p1 − α, (321)

det(J) = α(β + p1). (322)
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The stability of the fixed point in Eq. (314) is determined by the real part of the growth rate,
Re(λ). Since α, β, and p1 are positive, det(J) > 0 always holds, precluding a steady instability.
Depending on the sign of the trace, two cases can be distinguished: For tr(J) < 0, one has
Re(λ) < 0, implying that the perturbation decays in time and wf is stable. For tr(J) > 0,
the real part of the growth rate is positive, the perturbation grows exponentially in time, and
the basic state becomes unstable. In this case, the imaginary part of the growth rate, Im(λ), is
non-zero and thus the perturbation (318) oscillates as a function of time. Thus, an oscillatory
instability emerges which is characterized by a dynamically increasing and decreasing actin
concentration and protrusion radius. From Eq. (321) follows that, for 0 < β < 2α, the basic
state becomes unstable for

p1 > p1,c = α+ β
2α
β − 1

, (323)

while it is always stable for β > 2α. Herein, p1,c is the critical polymerization rate which is
shown in Fig. 64. The critical polymerization rate grows for increasing β, since depolymerization

Figure 64. Critical polymerization rate p1,c (color code, see legend) according to Eq. (323) as a function of the
surface tension α and the depolymerization rate β, with β < 2α. The fixed point according to Eq. (314) is stable
for p1 < p1,c and becomes unstable in favor of an oscillatory instability for p1 > p1,c.

counteracts the onset of the oscillatory instability. The reason for this is that the protrusion
cannot grow if depolymerization is too strong which renders the basic state stable for large
values of β. Furthermore, an increased surface tension leads to a decrease of the threshold for
the instability. Once the protrusion has grown, the surface tension and the associated restoring
force leads to a decrease of the protrusion radius which is a requirement for the oscillatory
instability.

This simplistic model shows that for a cell protrusion with free shape, the basic state, charac-
terized by a finite protrusion size and actin concentration, can become unstable with respect to
a state of a dynamically growing and shrinking protrusion. Such an oscillatory instability is in
contrast to the stationary instability that was analyzed in sections 7.3 to 7.7 of this chapter,
where the cell shape was kept fixed.
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7.9. Summary of part III

The present part of the thesis focused on spontaneous mammalian cell motility, driven by the
cell cortex. In chapter 6, a numerical model for the 3D viscous cortex was extensively validated
in separate steps. The model relies on the forces acting on the cortex which are represented
on a triangular mesh and therefore allows for the simulation of a deformed cell. The force
balance is solved using the conjugate gradient method in order to obtain the cortex velocity
field on each node of the mesh. Using a reduced force balance equation, the viscous force of
the algorithm was validated by a comparison to analytically derived expressions in the limit of
small deviations from a spherical cell shape. By considering the full force balance, it was shown
by comparison to literature results that the algorithm successfully reproduces the spontaneous
onset of a retrograde cortex flow due to a spatial symmetry breaking caused by the advection-
diffusion dynamics of actin and myosin. In each step of the validation, the performance of the
algorithm with respect to the mesh refinement and the intracellular pressure was characterized,
showing satisfactory behavior.

Upon validation of the algorithm, it was extended by a polymerization velocity, allowing for
simulations of the cell cortex with a concentration-dependent growth of cortical actin filaments.
In chapter 7, it was revealed that actin polymerization alone can lead to the onset of cell polarity,
accompanied by a self-sustained, cell-scale retrograde flow, the driving mechanism of amoeboid
cell motility in various extracellular environments [213,216,217]. A description on the molecular
level illustrated how filament treadmilling in cells with convex curvature can lead to the onset
of a self-sustained polarity and retrograde flow, provided that the polymerization velocity is
anti-correlated to the local F-actin concentration. For the continuum model, a linear stability
analysis yielded an explicit expression for the critical polymerization rate which marks the onset
of the instability. Furthermore, it was shown that the unpolarized basic state becomes unstable
first with respect to a front/back polarization of the cell, a requirement for cell motility. Using a
weakly nonlinear analysis, explicit expressions for the retrograde flow velocity above the critical
point were obtained, revealing that the spontaneous polarization of the cell takes place either
continuously (supercritical bifurcation) or discontinuously (subcritical bifurcation), depending
on central parameters. These analytical results were compared to the full numerical solution
and good agreement was found. Finally, analytical results for a minimalistic model for a cell
protrusion demonstrated that actin polymerization can lead to an oscillatory instability, which is
characterized by dynamically growing and shrinking protrusions, if the cell is allowed to change
its shape.

The findings of chapter 7 challenge the classical picture which suggests that cortical contraction
due to molecular motors is necessary for the onset of amoeboid cell motility. The findings
are in alignment with recent experiments on immune cells which questioned the importance of
myosin in cell motility [43]. The model developed and analyzed in chapter 7 provides a minimal
set of ingredients for the spontaneous onset of the retrograde flow, and therefore cell motility,
starting from an initially unpolarized cell. The model relies on the anti-correlation between
the polymerization rate of filaments and their local concentration in the cortex, a common
assumption for Brownian polymerization ratchets [235, 236]. The second key ingredient is the
convex curvature of the cell membrane. Crawling cells often form lamellipodia at their front,
where the principal curvature in the plane perpendicular to the substrate is much stronger
than in the rest of the cell, which promotes the motility mechanism. The findings of chapter
7 furthermore could have implications on our understanding of the evolution of cell motility,
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suggesting that actin polymerization may have played a crucial role for motility before myosin
motors emerged.

The described mechanism for the spontaneous onset of the retrograde flow due to actin polymer-
ization is related to the elastic instability observed in actin gels which grow around a spherical
bead due to polymerization and without myosin activity [237,238]. This mimics the propulsion
technique observed for some pathogenic bacteria, such as Listeria monocytogenes, which move
inside their host cell by promoting actin polymerization around them. While this instability
has been explained by elastic stresses in the actin gel, the spontaneous symmetry breaking de-
scribed in the present thesis results from the viscous stresses of treadmilling filaments inside the
cortex.

An estimate for the speed of the polymerization-driven retrograde flow in a fixed, spherical cell
can be given based on available parameters from the literature. To this end, for simplicity,
D = 0, c0 = cr, and ηb = 0 are assumed in the following. Given a cell radius of R0 = 10 µm,
a cortical viscosity of ηs = 2.7 mPa s m [211], and a rate at which F-actin stops treadmilling
(e.g., due to the attachment of a capping protein) of β = 0.1 s−1 [30], Eq. (256) gives a critical
polymerization speed of v0

p,c = 1.4 µm s−1. From Eq. (294) one obtains ν = −9 × 10−2 < 0,
implying a supercritical bifurcation. Values for the polymerization speed of F-actin reported
in the literature span several orders of magnitude, ranging from 5 × 10−3 µm s−1 to 3 µm s−1

[30, 239–241]. Choosing an intermediate value of v0
p = 1.7 µm s−1, as reported in Ref. [239],

yields from Eq. (297) a maximum retrograde speed of v0 = 16 µm min−1. This value agrees well
with experimentally measured cell migration speeds [213].
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8. Conclusion and outlook

The present thesis investigated the directed motion of biological cells in various scenarios. Part
I of the thesis focused on passive particles, such as (red blood) cells, in flows through planar
microchannels with a time-dependent modulation (oscillation). It was demonstrated that such
a non-progressing flow can result in a net progress of cells parallel to the flow direction, despite
zero mean flow in each oscillation cycle. This passive actuation mechanism is based on a broken
time-reversal symmetry imposed by the flow oscillation. These findings pave the way for the
development of new microfluidic strategies allowing for the efficient and reliable separation of
cells according to their type and stiffness and thus their health status, enabling the diagnosis
of various cell-related diseases. Recent experiments confirmed these predictions, demonstrating
that the net progress takes place for deformable RBCs along the direction of the stronger flow
section, while rigid beads do not move on average [87]. Based on the findings reported in the
present thesis, future work may focus on the systematic numerical study of multiple cells in the
oscillatory flow. This task can be readily tackled using the LBM, which will yield interesting
results on more dense RBC suspensions in asymmetrically oscillating flows.

Part II of the present thesis focused on autonomously swimming cells, such as bacteria, in flow
environments. To this end, at first a numerical bead-spring model for a semi-flexible microswim-
mer was developed and validated. The model allows for the realization of arbitrary bead radii of
the swimmer, providing a computationally efficient tool to simulate various swimmer geometries.
By using the numerical model, it was demonstrated that swimmers migrate laterally in plane
Poiseuille flow where they accumulate either at the center, close to the walls, or at locations
between the center and the walls of a plane channel. The migration direction is determined by
the intricate interplay between the incident shear flow and the swimmer’s activity, deformabil-
ity, and hydrodynamic drag. These findings further advance the understanding of the rheotactic
behavior of swimming microorganisms and may be applied for the design of artificial swimmers
such as microrobots. It will be interesting to further characterize the migration behavior of
pushers and pullers, both with a homogeneous and inhomogeneous drag coefficient. Based on
these results, it was shown in part II that the behavior of microswimmers can be selectively
controlled and manipulated using a wavy Poiseuille flow. Such a spatially modulated flow gives
rise to a wavy-induced swinging motion of swimmers which can become resonant. Together with
wavy-induced tumbling, it results in a dispersion of swimmers across the channel, eliminating
the lateral focusing which is observed in plane Poiseuille flows. These findings suggest novel
microfluidic methods for, e.g., the separation of different bacterial species from another and
their targeted elimination. Moreover, the wavy channel can suppress the stable reorientation of
swimmers opposite to the flow observed in plane Poiseuille flow and their accumulation close
to the walls which can prevent surface rheotaxis. Possible future work might focus on LBM
simulations of microswimmers which yield the exact solution for the flow field through the wavy
channel. This enables simulations with improved accuracy at the expense of higher computa-
tional cost. Furthermore, bacterial run-and-tumble motion, thermal noise, or the chirality of
bacterial flagella may be incorporated in the model.
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8. Conclusion and outlook

Part III of the present thesis studied the motion of mammalian cells which is driven by the cell
cortex. Numerical simulations of the cortex require a sufficiently accurate and efficient model.
To this end, a simulation algorithm for the viscous cortex was partly developed and extensively
validated in the present thesis. The method solves the force balance for the cortex velocity
on a 3D mesh, taking into account the advection-diffusion dynamics of actin and myosin. The
method was subsequently applied to address the question how polarity and retrograde flow, the
driving mechanism of amoeboid cell motility, can emerge from an initially unpolarized cell due
to the polymerization of actin only. To this end, a model was introduced which accounts for the
concentration-dependent growth of actin filaments, while myosin motor activity was deliberately
left out. Numerical and analytical investigations combined with a molecular model revealed an
instability due to a spatial symmetry breaking, resulting in spontaneous cell polarization and
the onset of a cell-scale retrograde flow. Characterizing the instability as a function of crucial
parameters, such as the polymerization rate, the homeostatic concentration of cortical actin, and
the cortex viscosities demonstrated that the transition from a non-motile to a motile state takes
place either continuously (supercritical bifurcation) or discontinuously (subcritical bifurcation).
Strikingly, myosin motor activity is not necessary which challenges the traditional view of cell
motility and is in alignment with recent experiments on immune cells [43]. A future task is the
coupling of the cortex to the extracellular environment. This will yield insights into cell motility
in physiological environments such as swimming in a bulk fluid or crawling on a 2D surface or
in 3D tissue geometry. While the numerical method allows for the simulation of a deformed
cortex, the cell was kept spherical throughout the analysis, demonstrating that dynamical shape
changes are not necessary for the motility mechanism. The analysis of a simple model for
a polymerization-driven cell protrusion in the last section of part III suggested an oscillatory
instability due to the free cell shape. Its systematic analytical and numerical investigation
remains an interesting task for future work.
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Appendix A.

Abbreviations and conventions

Abbreviations

The following is a list of abbreviations used in the present thesis:

1D one-dimensional
2D two-dimensional
3D three-dimensional
ATP Adenosine triphosphate
cf. confer (Latin), compare
e.g. exempli gratia (Latin), for example
Eq. equation
Fig. figure
IBM Immersed boundary method
i.e. id est (Latin), that is
LBM Lattice Boltzmann method
RBC red blood cell
Ref. reference

Conventions

The following conventions are used throughout the present thesis:

• Vectors and tensors of second and third rank are written as bold variables, e.g., r and O.

• ∇ is the Nabla operator.

• ∆ = ∇ · ∇ is the Laplace operator.

• 1 denotes the identity matrix.

• The scalar product of two vectors is denoted with “·”, e.g., ∇ · u denotes the divergence
of a vector field u.

• The outer product of two vectors is denoted as “⊗”, e.g., r ⊗ r.

• The matrix-vector multiplication is denoted with a “·”, e.g., O · F is a vector, where O is
a second rank tensor and F another vector.

• The Einstein sum convention is used for repeated coordinate indices.

• The Dirac delta function is denoted as “δ”.
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