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1 | INTRODUCTION

Rigid local systems are local systems which are globally determined by their local monodromy.
They have been studied in detail by Katz in [12] who proved that any such local system arises
from a system of rank 1 by iterating tensor products with rank one local systems and middle con-
volution. To include equations or connections with irregular singularity, Arinkin has extended
the result of Katz by additionally involving Fourier-Laplace transform of D-modules in [1]. This
builds on work of Bloch and Esnault who prove in [2] that Fourier-Laplace transform preserves
rigidity. The statement is that any rigid irreducible connection (with possibly irregular singular-
ities) can be obtained from a connection of rank one by iterating Fourier-Laplace transforms.
In the article [9], this method of construction was used to give a classification of rigid irregular
irreducible connections with differential Galois group G, and whose slopes have numerator 1.
When working with #-adic sheaves on some open subset U C P}( over the algebraic closure k
of a finite field I, of characteristic p, one can prove similar results. There are a lot of similarities
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and analogies in both settings, but unfortunately not everything translates directly from one to
the other. The goal of this article is to introduce the necessary tools and methods to transfer the
classification of [9] to the arithmetic setting.

Let us explain the strategy of the classification. Rigid local systems can be identified through
a cohomological invariant. An irreducible Z-adic local system & on U C P! is rigid if and
only if

X(Pla ]*%I’ld(g)) =2,

where j, denotes the non-derived direct image along the open embedding j : U < P!. For this
reason, we will call

rig(£) = x(P', j,End(ZL)

the index of rigidity. The fact that rig(&) = 2 implies that rigidity of & is essentially a con-
sequence of Poincaré duality for #Z-adic sheaves. The other direction is more complicated and
was recently proven by Fu in [7] using rigid analytic geometry. Let S = P! — U. Using the
Euler-Poincaré formula, one can compute the index of rigidity through local invariants as
follows:

rig(£) = (2= |SPIk(L)? + Y Sw(Z) + dim(£)".

seS

One of the main ingredients of the classification in [9] is a classic result of Levelt-Turrittin for
formal connections which allows to decompose any such connection into a direct sum of objects
of the form

[r].(&7 ® R),

where [r] denotes an r-fold covering of the formal punctured disc, &% = (C(t)),d + d¢) is a
formal connection with an exponential solution and R is some regular singular formal connec-
tion. For objects of this form, one knows how to compute the invariants needed to compute
the index of rigidity. We will see that the same is true for representations of the inertia group
I = Gal(k(t)**P|k((t)) corresponding to sheaves of the form

[11,(Zy(9) ® ),

where & is the restriction of an Artin-Schreier sheaf (for some fixed non-trivial additive char-

acter : F, — @;), Zy(p) denotes pull-back of Z, by the morphism given by the polynomial
@ € t7'k[t7!] and K some tamely ramified sheaf on the punctured formal disc. In general, an
irreducible representation of I might not be of the above form, that is, an analogue of the Levelt-
Turrittin decomposition does not exist in positive characteristic. There is, however, a weaker form
proven by Fu in [5]. In the same article, he raised the following question. Given an 1rredu01ble
continuous Q,-representation V of I, does there exist a tame character y : I — Q,o such that
x ® V has finite image?
We answer this question positively, strengthening his result [5, Proposition 0.5] to the following
statement.
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Proposition 1.1. Let p : I — GL(V) be an indecomposable continuous Q,-representation and
denote by P the wild ramification subgroup of I. Suppose that p(PP[P, P]) = 1 and that the Swan con-
ductor Sw(V') < p. In this case, V is isomorphic to the representation corresponding to [r],(Z(¢) ®
) for an integer r prime to p, ¢ € t~'k[t~'] and K some tamely ramified sheaf.

In our setting, this result suffices to conclude that the local monodromy of the rigid local sys-
tems we will consider decomposes into these simpler objects. We will compute tensor products
and determinants of such representations and attach to them invariants which are similar to for-
mal monodromy and exponential torus of a formal connection (these are invariants coming from
differential Galois theory). This will, in turn, allow us to conclude the following classification the-
orem which is a generalisation of the classification of tame rigid G,-local systems by Dettweiler
and Reiter in [4].

Theorem 1.2. Let k be the algebraic closure of a finite field of characteristic p > 7. Let 1,,A, € k
such that A, # +1, and let

X:X,Y,2Z,8€,L . I(E MN(k)q@f
(N.p)=1

be non-trivial characters such that y is not quadratic, z* is non-trivial, x, y, xy and their inverses are
pairwise different and such that ¢ is of order 3 and ( is of order 4. Denote by y the inverse of y, by 1
the trivial representation of rank one and by —1 the unique character of order 2. Every pair of local
monodromies in the following list is exhibited by some irreducible rigid ¢-adic local system of rank 7
on G, with monodromy group G,(Q,).

0 0
U3)eu@) o1 2L.(ZAu ) (x & X))
& [2].(Z,lu) & (-1)
-U@)e-u@) a1’ 2. (Z,Qu )@ (x & X))
®[2].(Z,Clu™) & (-1)
—UQ)®-UQ) @ 1* [2].(Z,(4u™) ® (-U(2))
®[2].(Z,Clu™) & (-1)
xOXOXDxD 1’ [2].(Z,Au ™) @ (x & X))
®[2].(Z,Clu™) & (-1)
x®xOXDx D1’ [2].(Z,(A,u™) ® (U(2)))
& [2].(Z,lu™) & (-1)
U)oU) U(2) 21.(Zy A u™) @ [2].(ZLy(u™)
@ [2.(Zy((4 + A u™) & (-1)
DLP—1D—1D-12P1 [3]*(3¢(/11“_1))
& [BlL(&Lu ) el
u() [6].(Z,u ™) & -1
UR)®c'UR) B 1 [6].(Z,(u ™) & -1
ZUQ)@z'UQ) @27 ®z @1 [6].(Zy(Au™") & -1
xUQ) @ x'U(2) & U(3) [6].(ZyAu") & -1
x®ydxyd ) ' ey ex D1 [6].(Zy(Au™") ® -1
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2542 | JAKOB

Conversely, the above list exhausts all possible local monodromies of wildly ramified irre-
ducible rigid £-adic local systems on open subsets of P! with monodromy group G, of slopes with
numerator 1.

2 | RIGID LOCAL SYSTEMS AND THE KATZ-ARINKIN ALGORITHM

For the rest of this article, let k be the algebraic closure of a finite field of characteristic p and fix
aprime? # p.letj: U< IP}( be a non-empty open subset with complement S. An #-adic local
system £ can be given as a continuous representation

o ﬂ?t(U,H) - GL,(Q,)

of the étale fundamental group with Q,-coefficients. For any x € S, we denote by I, the inertia
group at x and we say that p is rigid if and only if the collection {[p[; I} of isomorphism classes
of continuous I -representations determines p up to isomorphism.

Recall that the index of rigidity of an Z-adic local system is given by

rig () = x(P', j, End(£).
We call the local system & cohomologically rigid if rig (&) = 2.

Proposition 2.1 ([7], Thm 0.9 & [12], Thm 5.0.2). An irreducible local system Z on j : U < Pl is
rigid if and only if it is cohomologically rigid.

‘We would like to link the index of rigidity to invariants of the local monodromy in order to be
able to compute it from knowledge of local information only. In order to do that, we recall the
local setting. Let K = k((t)) and I its absolute Galois group, called the inertia group. We denote by
K'aMe the maximal tamely ramified extension of K and by P its absolute Galois group, which we
will call the wild ramification subgroup. We have an exact sequence

15>P > hme_ 1

where the tame inertia '*™M¢ = 1(@ N.p)=1 un (k) is an inverse limit over N'th roots of unity in k for
D)=

N prime to p.
Lemma 2.2. The sequence
1P 11951
splits. In particular, there is a subgroup H C I isomorphic to 1'%,
Proof. The group I'*™¢ is the maximal pro-p’ quotient of I and P is the pro-p-Sylow subgroup of I.

Therefore, the assertion follows from the profinite version of the Schur-Zassenhaus theorem [16,
Prop. 2.3.3]. O
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WILDLY RAMIFIED RIGID G,-LOCAL SYSTEMS | 2543

The wildness of the ramification can be measured by two kinds of invariants. They are the slopes
(also called breaks) and the Swan conductor. Recall that I has an upper numbering filtration,
a decreasing filtration by closed subgroups I indexed by real numbers r > 0. For its defining
properties, we refer to [10, 1.0].

Theorem 2.3 (Slope Decomposition [10], 1.1). Let p : I — GL(V) be a continuous representation
of I with coefficients in Q.. Then there is a unique decomposition

v=@p vy

Y€Q50

such that each V() is P-stable, V(0) = VF, (V(x))'™ =0 for x > 0 and (V(x))!*’ = V(x) for all
y > x. Note that only finitely many V (y) do not vanish. The corresponding y are called the slopes of
V. The number Sw(V) = Zye@>0 ydim V(y) is called the Swan conductor of V and is a non-negative
integer. The representation V is tame if and only if all of its slopes vanish or equivalently if Sw(V') = 0.

We can now compute the Euler characteristic of an Z-adic local system by means of local
information using the Euler-Poincaré formula.

Proposition 2.4 ([6], Corollary 10.2.7). Let & be an ¢-adic local system on an open subset j : U <
P} corresponding to the representation p of nft(U, ), letS =P, — U and s = #S. We have

X j.L) = Q2= k(L) = Y (Swlp,) — dim(p,)x).

x€eS

For the rest of the article, we fix a non-trivial additive character ¢ : F, — @g* and denote by
Zy the Artin-Schreier sheaf on Al associated to the character .

Let us briefly recall the definition of middle convolution with Kummer sheaves, cf. [12, Chap-
ter 2]. Denote by Perv(Al) the category of #-adic perverse sheaves on the affine line and let K
be a perverse sheaf on Al. Denote by <, the Kummer sheafon j : G,, & Al corresponding to

the character y : LiE(N =1 unk) - ﬁ; and by m the addition map of Al. We have the two

convolutions

K # J. 2,11 = m(K ® . Z,[1])
and

K %, j.Z,[1] = m (KR ].Z,[1])
in the derived category Df(/—\l, @f). There is a natural morphism

K 2,11 = K %, .2, 1],
and we denote its image by K *,:q j.Z,[1]. We obtain the middle convolution functor
MC, : Perv(A') — Perv(A')
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2544 | JAKOB

If € is an Z-adic local system on j : U < Al and K = j,€[1], the convolution K *mid J«Zy[1]
will again be of the form j,€’[1] for some #-adic local system &’ on U. For ease of notation,
we will sometimes write MC X(?) = &’ in this situation. As mentioned before, the main theorem
about the structure of tamely ramified local systems is the following.

Theorem 2.5 ([12], Thm 5.2.1). Let € be a tamely ramified conomologically rigid ¢-adic local system
on some non-empty proper open subset of A of rank at least 2. Then there exists a tame ¢-adic local
system £ of rank one and a character y as above such that

k(77 (MC,(j.(j*€ @ j* L)1) < (%),

where j : U < Al is the embedding of an open subset of A' where both & and & are lisse and %"
denotes the cohomology in degree i.

We wish to extend this theorem to include #-adic local systems which are wildly ramified. To
that end, we recall the definition of the Fourier transform for #Z-adic sheaves. Let A = Atl be the
affine line with coordinate t and dual A’ = Atl, and denote by

m:AXkA/—>Ga

the canonical pairing. Let pr : AX; A’ > A and pr’ : Ax, A’ - A’ be the projections. The
Fourier transform with respect to the non-trivial character 3 : k — Q, is the functor

Fy Perv(4,Q,) — Perv(A’,Q,)
given by
Fy(K) = Rpr|(pr'K @ Zy(m))[1]

for K an object in Perv(A). One of the most important features of the Fourier transform in dimen-
sion 1 is the principle of stationary phase. It will allow us to control the behaviour of local
monodromy after Fourier transform. To state it, we introduce the following notation. Let 7, be
the formal punctured disc around s and 7, be the formal punctured disc around oo’ (i.e. in the
coordinate after Fourier transform). We denote by 97120’“,) Laumon’s local Fourier transform as
defined in [13, Def 2.4.2.3].

Proposition 2.6 ([11], Corollary 7.4.2). Let k be the algebraic closure of a finite field, j : U & Al
be an open subset, S its complement, £ a lisse irreducible sheaf on U and K = j, Z[1] its middle
extension. Furthermore, let K’ = F(K) and &' = %~(K'|;») where U’ is the maximal open subset
of Al where K’ has lisse cohomology sheaves. We then have

Ly =P (721, 1 215) © 2y6x)) @ F>( ).

seS

The stationary phase formula also allows for the computation of the generic rank of the Fourier
transform.
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Corollary 2.7. Suppose that k is algebraically closed. Let j : U < A! be an open subset, Z a lisse
irreducible sheaf on U and K = j, Z[1] its middle extension. With notations as before the rank of
&L is

(=Y (Sw(gh_]s) + k(L) — rk(gl%i)) +Sw(Z|;) - rk(‘gl;:)'

seSs

An analogue of Theorem 2.5 holds under some hypotheses for local systems with not necessarily
tame ramification, if we make use of the Fourier transform. The following theorem is analogous
to [1, Thm A], and its proof is essentially the same.

Theorem 2.8. Let Z be an irreducible rigid £-adic local systemon j : U < P! of rk(¥£) > 1, ram-

ified at S = P! \ U. We denote by ?, s ? the collection of all rational numbers occurring as a
1 r

slope of & at some point s € S, ordered arbitrarily. Assume that we have rk(<£) < char(k) = p and
max{k, ..., k,} < p. Then one of the following holds.

(i) There exists a tame character A nft(Gm, 1) - @; and an ¢-adic local system y of rank one
on U — {oo} such that if we let K = MC;((j, % om(x, ZL)[1]), V the open subset of P! where
%Y (K) is lisse and MC(# om(y, L)) := #~1(K)|y, we have

rk(MC(Z om(y, L)) < rk(ZL).

(ii) There is ¢ € Aut(P') and an ¢-adic local system y of rank one on U such that if we let k :
¢~ 1(U) & P! the embedding, K = F (k.¢*(F om(x, £)[1])), V the open subset of P! on which
1K) is lisse and let

F@* Hom(x, L) := 2 (Kly,
we have

rk(F (" FH om(y, £L))) < rk(Z).

The additional input that one needs to prove Theorem 2.8 in this setting is the following lemma,
which is stated in [1], Lemma 6.1, without proof and without the additional assumption n < p.

Lemma 2.9. Let V and W be Q,-representations of I. Let x = g € Q, with (p,d) =1andn < p.
We have

dim((V ® W)(x)) > dim V(x) dim W(x)(1 — 1/d).
Proof. First note that in any case,
dim((V ® W)(x)) > dim((V(x) ® W(x)))(x)).

Hence, we can assume that V = V(x) and W = W(x) and we can furthermore assume that they
are irreducible. Write x = n/d with (n,d) = 1. Since p does not divide d, V and W are induced
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2546 | JAKOB

from the unique open normal subgroup I(d) of index d from characters y and p of slope n, see
[10, 1.14.]. Let us write

V = Ind!

I(d))(,W = Ind

I
1@)P

By [3, Thm. 10.18], we have

vew=  Ind,‘x®p,
9€l/Id)

where 9y denotes the conjugate representation of y and by abuse of notation by g, we mean a lift
in I. Because p < n by [10, 8.5.7.1], we have

X =2 ZLya,t" + - +at) @ Iy
and similarly,
p = gzp(bntn + A + blt) ® %2,

where for p(u) € k() by Z;(¢(u)), we denote the pull-back corresponding to the covering of
formal discs given by ¢ and where %, and %, are tamely ramified representations. In this setting,
if we identify I/I(d) = u,(k), then

I(Zy(pu)) = Zy(p(gu)).

An explicit computation shows that the slope of 9 y ® p can only be less thannifa,¢" + b, =0
and this can happen at most for one g. From this, it follows that

dim((V@W)x) = Y, dim (Indf, 7x ®p)(x) > d(d — 1)
g€l]Id)

because at most one summand can vanish. Finally, we have

d(d — 1) = dim V(x) dim W(x)(l —_ é)

proving the claim. ]

Using this lemma, one can check that the results of Section 4.3. of [1] hold in the arithmetic
setting. The rest of the proof of Theorem 2.8 works completely analogous.

Most importantly, as a corollary, we have the following version of the Katz-Arinkin algorithm
for rigid irreducible local systems having slopes with numerator 1.

Corollary 2.10. Let Z be a rigid irreducible ¢-adic local system on j : U — P! such that
rk(Z) < p and all of its slopes have numerator 1. After a finite sequence of Fourier transforms, coor-
dinate changes by automorphisms of P! and twists with rank one local systems, the sheaf & is reduced
to a tamely ramified Q,-sheaf of rank one.
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Using the principle of stationary phase from Proposition 2.6, to understand the behaviour of
local monodromy under Fourier transform, it is therefore enough to understand the local Fourier
transform of representations of the inertia group I. For a certain type of representations, we can
explicitly compute these transforms. These are analogues of the formal connections which are
called elementary in [15] and correspond to sheaves of the form

[r].(Zy ® X)
for some integer r prime to p, ¢ € t~'k[t~!] and ¥ some tamely ramified sheaf.

Proposition 2.11 ([5], Thm 0.1). Let A' = Speck|[t] with k algebraically closed, % an indecompos-
able tamely ramified ¢-adic local system on G,, and denote by t' the Fourier transform variable. Let
p(t) =t"and

a_g a_, -1 -1
= —++— et k[t
p) = —= + e+ —— € Tk[T]

and let

d

N __EGO(I«‘) o N
plt) = =7 y P(6) = p(t) + p()P(D).

dr

Suppose that 2,r,s andr + s are all prime to p and denote by x, : u,(k) - @; the unique quadratic
character. We then have

FOD (o (Ly(@(0) ® H)\,) = PALy @) @ H B 1", -

Even though an analogue of the Levelt-Turrittin theorem does not hold in full generality,
we will see in the next section that in our setting, it still suffices to understand representa-
tions of the above form. The construction of rigid local systems is then carried out exactly
asin [9].

3 | LOCAL STRUCTURE

A powerful tool for the classification in the complex setting is the Levelt-Turrittin theorem. It
describes the structure of C(¢))-connections in a very detailed way which allows us to explicitly
compute the formal types of Fourier transforms. Under the right conditions, we have the following
weaker version of an analogue of the Levelt-Turrittin theorem.

Theorem 3.1 ([5] Prop. 0.5). Let p : I — GL(V) be an irreducible @f—representation satisfying the
following conditions.

(i) Let P be the wild inertia subgroup of I. Denote by PP the pth powers in P. Then p(PP[P,P]) = 1.
(ii) The image p(I) is finite.
(iii) We have s := Sw(p) < p where Sw(p) is the Swan conductor of p.
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2548 | JAKOB

Then there is an integer r not divisible by p, a tame character A of I and a polynomial ¢ € u='k[u=!]
of degree s such that

~ I
V = Indy, (Zy(@) ®4).
Note that

Resﬁ,lndf(r)(ggb(cp(t)) ®l) ~ @ Zy(@CD),
Seu, (k)

and this is a direct sum of characters factoring through up(@f). Hence, it is trivial on
PP[P, P]. Therefore, the first condition is a necessary condition for a representation to be of the
desired shape.

Let ¢ be a topological generator of I'“*® and denote by J the pre-image of ¢Z in I under the
canonical map I — I'“"¢ ThenJ is a dense subgroup of I and we have J /P = {Z whose generator
we also denote by ¢.

Lemma 3.2 ([5], Lemma 2.2). Let p : J — GL(V) be an irreducible representation over @f. Then
there is a character y : J — @; trivial on P such that p @ x has finite image.

Regarding the second condition in Theorem 3.1, the following stronger statement holds.

Corollary 3.3. Let p : I — GL(V) be an irreducible Q,-representation of dimension n. Then there
isa character y : I - ﬁ; trivial on P such that p @ y has finite image.

Proof. Let p = p|; be the restriction of p to J. This is again irreducible which can be seen as
follows. Suppose that it is not, then g(J) stabilises a subspace W C V hence is contained in a
proper parabolic subgroup P of GL(V). Since p is continuous and P is closed, we have

p(I) = p(7) € p(J) C P = P.

Therefore, p could not have been irreducible. We conclude that § must be irreducible. By the above
lemma, there exists a character 7 : J — ﬁ; such that § ® ¥ has finite image in GL(V). Let g € J
be an inverse image of { € J/P and let x = § ® ¥(g). The cyclic group generated by x inside the
image of § ® ¥ must be finite, so there is a positive integer r such that ¢" lies in the kernel of
P/ ® ¥. We find that

1 =det(p ® ¥(g") = ¥(¢9)" det(p(g")).
Since p(I) is compact, we can assume that it is a subgroup of GL,,(Op) for a finite extension E of Q.
Now (g") = p(9") € GL,(Op) and ¥(g)" € OF. After a further finite extension E C E', we get

that ¥ factors through (92,,. The latter is compact, hence complete and we can extend 7 : J — O*E,
by [8, Page 96] to a character

X105, Q.
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Finally, we have
P® XD =p®x(D)CH® ) =H® 1),
proving the claim. O
This means that the following stronger version of Theorem 3.1 is true.

Corollary3.4. Letp : I - GL(V) bean indecomposable Q ,-representation. Suppose p(PP[P, P]) =
1 and Sw(p) < p. Then the lisse Q,-sheaf on 7 = Spec k(t)) corresponding to p is isomorphic to

[11.(Zy(9) ® )

wherer is an integer prime to p, [r|(u) = u’, % is a tamely ramified Q,-sheaf on 1, &y is the Artin-
Schreier sheaf and ¢ is a polynomial in u=" where u” = t.

Corollary3.5. Letp : I — GL(V)bean indecomposable@f-representation. Suppose p(PP[P, P]) =
1 and Sw(p) < p. Then the same is true for ¥ (0’°°,)(V).

Proof. By the corollary, V = [r] (Z, () ® #) with deg(p) = Sw(p). Now by Theorem 2.1, the

local Fourier transform % (0’°°/)(V) is of a similar shape with the same Swan conductor and hence
satisfies the desired conditions. O

In particular, we obtain a Levelt-Turrittin-type decomposition for the local monodromy of rigid
local systems with slopes having numerator 1. Note that the tame sheaf # can be given in terms
of a Jordan form. Denote by U(n) the representation of I**™¢ given by mapping the topological
generator to a Jordan block of length n. Then any indecomposable representation of I**™¢ of rank
n can be written as y ® U(n) for y some character.

4 | CLASSIFICATION

To carry out the same classification as in [9], we need the following tools:

(1) away to compute the determinant of representations of the form

[r].(Zy(p) @ )

(2) tensor products of such objects,

(3) an analogue of formal monodromy (see [14, Section 1]), giving us constraints on the tame
sheaves % and

(4) an analogue of the exponential torus, providing constraints on the ¢.

We will discuss these in the given order.
Proposition 4.1. The determinant of the representation p associated to

[r].(Zy(pw) @ F)
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with (r, p) = 1 is given by
det(p) = (x)" " XnTro) @ det(F)

where n is the rank of &, X, Ty ) is the character associated to Zy(nTro(t)) and Tr¢(t) is the trace
of o(u) with respect to the Galois extension k((t)) C k(w)).

Proof. The representation p is induced from the unique normal subgroup I(r) of I. Using the
projection formula, we reduce to the case [r],Z,; (¢(u)). Denote by y the character corresponding
to Z,(¢(w)). By [3, Prop. 13.15.], we have

detInd; . (X) = €14 - (XoVy,),

where €;_,;((0) is the sign of the permutation induced by o on I/I(r) and V}(r) is the transfer
map. We refer to [3, 13.10] for the definition of the transfer map. To compute the character

— %
€1y - I = Qs

first note that since I(r) is normal, the permutation representation 7 : I — S,,0 + 7, onI/I(r)
factors through I/I(r) = u,(k).
We therefore have the following commutative diagram:

E-1(r) *

I Q,

N

uy (k)

and we denote the map u,(k) — @f* also by ¢;_,j(. Choose representatives g; of I/I(r) for
i =0,..,r —1in such a way that the image of g; in u.(k) is ¢} where ¢, is a primitve rth root
of unity. In this case, the permutation associated to g; is 7;(j) = j +i mod r. Now &;_,;(g;) =
sgn(m;) = (=1)"~'. We can view ¢;_, 1, as a map I'**™¢ — @, and we see that 1) = (=1t
where ¢ denotes the topological generator of I'*™¢, Hence, ¢;_, ) = )(5‘1 where y, is the unique
quadratic character. It remains to compute ¢ := )(on(r) 1> @f*. Note that for o € I(r), we
have )((P(u)(gi‘lagi) = Xt u)(o). By the definition of transfer

r—1
1 _ -1
Vl(r)(a) - H gﬂ'a(i)o'gi'
i=0
Recall that the sequence

Itame

1->P->1-> -1

splits by the profinite Schur-Zassenhaus theorem and that we have a subgroup H C I which is
isomorphic to I'¥™M¢ such that I = PH and HN P = 1. Let 0 € H. We have ¢ = 7P for some 7 as
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every element in H is a pth power. Therefore, we find

$(0) = 2V (@) = x (V] ,@)P) = 1.

For a general element o € I, we have o = opoy With op € P and oy € H. Since we have P C I(r)
and the Artin-Schreier character &, (Tre(w)) is also trivial on H, we compute

r—1
$(0) = $(op)p(oyy) = )(<H g;lopgi> = Zy(TrpW))(op) = Z(Trpw))(0).
i=0

Here, we used the additivity

r—1

R Zy (@) = Zy(Trp(w))
i=0

of the Artin-Schreier sheaf. We have therefore computed both factors of the determinant, proving
the claim. O

Corollary 4.2. Suppose that in the situation of the above proposition s < r. The sheaf

det([r].(Zy(p(w) @ F))
is tamely ramified.

Proof. It is enough to prove the claim for p(u) = a_;/u. We have

o 1
Trp) =a_, Y, €'

$eu (k)

The map
M (k) = (), & = &

defines a non-trivial character of y,(k), hence de #r(k)(g“ $)~1 = 0. Therefore, Tr(p(u)) = 0 and
the sheaf is tamely ramified. O

Proposition [15, Prop. 3.8.] provides a detailed formula to compute tensor products of
elementary connections [r],. (&% ® R). A similar formula is true in our setting.

Proposition 4.3. Let p;,(u) = u'i, d = ged(ry,1,), 7 = r;/d, p](w) = W' and o(u) = ui Suppose
that p does not divide either r, or r,. For two polynomials ¢, ¢, € %k[%], we set oM (u) = gol(uré) +
§02((§2r2/du)r1) where{, . /q is a primitive %th root of unity. In addition, let &, and &, be tamely
ramified ¢-adic local systems on n and let & = (p;)*%’l ® (pi)*(%z. We then have

d-1

P1:(Ly (@) ® H) ® p; . (Ly(#,(W) ® H>) = @D pu(Zy (9P (W) ® ).
k=0
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Proof. The proof is an application of Mackey theory Firstly notice that because of the projection
formula, we can reduce to the case of %, = %, = Q,. We regard all the sheaves as representations
of respective Galois groups

I

I(d)

N
N

nr
I( . ).

I(ry)

In this language, we have to compute the tensor product of induced representations
e Trdl I
V= IndI(r1)$¢(qol) ® IndI(r2)$¢(¢2).

We have I(r;) - I(r,) = I(d) and I(r;) NI(r,) =1 (%). In addition, all these subgroups are
normal, hence stable under conjugation, and furthermore, we have

IO\ /I(ry) = IrDI(r )\ =2 ug(k).
We apply [3, Thm. 10.18] for to obtain

d-
E@ ndI . (Resl((}l)r )3¢(¢1)®Res< r2) >3¢(¢Zom{k)>
i=0 d

d d

where m,(u) = {u for a primitive %th root of unity ¢. The representation

Res' "V Zy(@1) ® Res 1(r2) Zy (qozomgk)

1(47) 1(47)
is isomorphic to
Zy(@1005) ® Zy(pr01sk0p]) = gzp((P(k)),
hence translating back to sheaves yields the claim. O

Consider the sheaf [r]*(3¢(¢(t)) ® ) where r is a positive integer prime to p, % is an inde-
composable tamely ramified sheaf and denote by p its associated representation. Recall that by
Lemma 2.2 for the wild inertia group P of I, we have the exact sequence

Itame

1->P->1-> -1,
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where P is the pro-p-Sylow subgroup and I'**™¢ js the maximal prime-to-p-quotient of I. In par-
ticular, there is a subgroup H C I such that H = J®*™M€ and [ = P X I'*™¢, Recall that after a choice
FV" of an rth root of &, we have

[r].(Zy(p(0) ® H) = [r] (ZLy(@t) ® H/".
We want to compute
Resfqlndﬁ(r)gw (e(1))

to obtain the tame monodromy of the induced Artin-Schreier sheaf. By the Mackey Subgroup
Theorem [3, Thm. 10.13], we have

I ~ H )
Resj,Indj, Zy(p(0) = @ Indj,, ,Res; ") *Z,(p(0).
x€l/I(r)H

One can check that I(r) N H = H(r) where H(r) is the corresponding subgroup obtained
through the Schur-Zassenhaus theorem for I(r).
Since Z,;(p(1)) is trivial on pth powers in I(r) and every element of H(r) is a pth power,

Resy) *Zy(p(1)) = 1

is the trivial representation. Therefore,

I
ResHInd

I(r)gw(qo(t)) = ResHInd

I (r)
As a representation of H = ['¥™M€ the representation IndI( )1 maps the topological generator to the
cyclic permutation matrix P, of dimension r. Restricting the representation p corresponding to

[ (Zy(@t) @ %"

to H therefore yields the tame sheaf %'/" @ P,. This is the analogue of formal monodromy in
differential Galois theory.

The exponential torus is a diagonal subgroup of the differential Galois group coming from the
relations satisfied by the exponential factors of formal solutions to a C((t)-connection, see [17,
Section 11.22.].

Denote by p the representation Indl(r)
of I. By the projection formula, we have

(Zy(p(u)) ® 1) where 1 is a tamely ramified character

Indl(r)(ffw(go(u)) ® l) = Indf(r)(ggb((t’(u))) ® /11/r

for any choice of rth root of 4. Restricting the representation p to the wild ramification subgroup
P C I(r) yields the diagonal shape

plr= @ Ly

{eu, (k)

SdNY) SUORIPUOD PUe SWe L 83 88S *[£202/0T/9T] U ArIgITaUIUO A8|IM ‘Yineieq 1eIsIoAIUN AQ T8BZT'SWIA/ZTTT OT/I0PAL0D 48| 1M AreIq 1 BUI|UO"00SYIRWPUO|//SONY WO14 papeojumoq ‘S ‘€202 ‘02T2697T

pUe-SLLIB) /W0 A3 IM A

35UB017 SUOLLILIOD aAIa1D aqealjdde ay) Aq pausenob ale sapie YO ‘9sn Jo Sani 1o Akeiqiauljuo A3|1 uo (suor



2554 | JAKOB

In particular, the image T := p(P) is a diagonal subgroup of the monodromy group. Noting that

Zy(p(1)) @ Zy(B(1)) = ZLy(p(t) + B(1)),

we obtain the same relations for the p({t) as in the differential setting.

The exponential torus provided a method to analyse of what form the exponential factors in the
differential setting could be. This will almost carry over to this setting. The only instance where it
does not is [9, Lemma 5.3.] whose proof we have to modify.

Lemma 4.4. Let & be an irreducible rigid £-adic local system with monodromy group G, on some
open subset of P! with all slopes having numerator 1 and let V. be its local monodromy at some singu-
larity x of &. The pole order of any ¢ appearing in the analogue of the Levelt-Turrittin decomposition
of V, can only be 1 or 2.

Proof. We have the following table of possible cases for the ramification order r and for the pole
order s.

S r

2 2,4,6
3 36
4 4

6 6

All cases apart from s = 3 and r = 6 or r = 3 are excluded in the same way as in the proof of
[9, Lemma 5.3.]. We will deal with these two remaining cases separately. Let us consider the case
s = 3 and r = 3. The local monodromy of V', then contains a module of the form

Ind; ;) (L, (W) ® D),
where A is a tame character and
1

p(w) = azu™> + a,u™* + au”

with a3 # 0. This representation is not self-dual, and therefore, its dual also has to appear. This
means that

V, = Indj ) (£y(p(w) ® 1) @ Ind;  (Zy(—pw) @ 1) @ A

for some tame character A’. Denote by p, the homomorphism corresponding to V,. A general
element in p, (P, (3)) is of the form

x,y,z,x Lyt z7h 1),

To prove that there are elements not contained in G,(Q,), it is therefore enough to show that there
is no relation xy = z, xz = y or yz = x. This can be reformulated as follows. Let {; be a primitive

SdNY) SUORIPUOD PUe SWe L 83 88S *[£202/0T/9T] U ArIgITaUIUO A8|IM ‘Yineieq 1eIsIoAIUN AQ T8BZT'SWIA/ZTTT OT/I0PAL0D 48| 1M AreIq 1 BUI|UO"00SYIRWPUO|//SONY WO14 papeojumoq ‘S ‘€202 ‘02T2697T

pUe-SLLIB) /W0 A3 IM A

35UB017 SUOLLILIOD aAIa1D aqealjdde ay) Aq pausenob ale sapie YO ‘9sn Jo Sani 1o Akeiqiauljuo A3|1 uo (suor



WILDLY RAMIFIED RIGID G,-LOCAL SYSTEMS 2555

third root of unity. We have to show that there is no relation

pw) + p($3u) = p($3u)

and the other combinations, respectively. Note that the coefficient of u=3 in (¢ éu) is the same
for all i. Therefore, any of these relations translates into a; + a; = a;. Since s = 3, we have a; # 0
and hence there cannot be a relation of the above form.

The case s = 3 and r = 6 is similar. We consider a representation of the form

Ind§(6)g¢ (go(u)) ® A

with p(u) = a;u™ + a,u™2 + a,u~!. This representation has to be self-dual which, in turn, forces
a, = 0. In this case,

V, = Indy o (Zy(ew) ® ) & 2
for a tame character A’. Let { be a primitive sixth root of unity. We have the following relations:

pu) + p({iu) =0,
P(eu) + p(Seu) =0,
P(Ceu) + p(Lou) = 0.

Therefore, elements in p,(P,(6)) are of the form
x,y,z,x Lyt z7h 1),

As before, we have to show that there are no relations xy = z, xz = y or yz = x. In terms of the
leading coefficient of p(¢ éu) for i = 1,2, 3, this translates into a; — a; = a3, a; + a; = —a; and
—a; + a3 = as, respectively. Because the characteristic p > 7 in all cases from these relations, it
would follow that a; = 0. But we have a; # 0 because s = 3. Therefore, none of these relations
are satisfied and we find elements in p,.(P,) which do not lie in G,(Q,). O

Theorem 1.2 is now obtained by the following methods. The index of rigidity yields constraints
on Swan conductors and dimensions of invariants of the local monodromy by using the results
on tensor products and determinants. We obtain further constraints on the shape of the local
monodromy by means of the analogues of exponential torus and formal monodromy. A case-by-
case check of the remaining possibilities of the Levelt-Turrittin-type decomposition of the local
monodromy yields the classification theorem in the arithmetic setting. For a detailed proof, we
refer to [9, Section 6]. The arguments are completely analogous after replacing all objects by their
respective counterparts.
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