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Abstract
The subject of this work are orbital functionals in density-functional theory (DFT).

After a short introduction the basic ideas of static and time-dependent DFT are pre-

sented in Chap. 2. In this chapter the advantages and disadvantages of common approx-

imations for the exchange-correlation (xc) functional are also discussed as well as the

basic ideas behind orbital functionals.

In the first part of Chap. 3 the ground-state formalism of the DFT for fractional

particle numbers is recapitulated. In the second part the concept of fractional particle

numbers is extended to time-dependent situations and physical consequences are dis-

cussed. In particular, it is shown that under certain conditions the time-dependent xc

potential must change discontinuously whenever the particle number crosses an integer

number.

The subject of Chap. 4 is the static and time-dependent optimized effective potential

equation. This integral equation must be solved to obtain the xc potential corresponding

to an orbital-functional approximation for the xc functional. It is shown that the integral

equation in the time-dependent case can be transformed into a set of coupled differential

equations. Based on this set of differential equations an approximate solution for the xc

potential is developed.

In Chap. 5 the set of coupled differential equations obtained in Chap. 4 is studied

from a numerical point of view. It turns out that instabilities spoil the exact numerical

solution, however, the approximation developed in Chap. 4 is found to be stable and can

be used to go beyond the commonly used Krieger-Li-Iafrate (KLI) approximation.

Exact properties of the xc potential are studied in Chap. 6. In particular, it is shown

that the widely used KLI approximation for the xc potential violates the ‘Zero-Force

theorem’. As demonstrated in Chap. 6 this violation can render the whole approximate

solution useless. In combination with the fact that the KLI approximation satisfies the

‘Harmonic-Potential theorem’ this observation also shows that the xc potential obtained

from the KLI approximation is not a functional derivative of some xc functional.

In Chap. 7 and 8 the photoelectron spectra from small anionic sodium clusters are

studied. In Chap. 7 the Kohn-Sham eigenvalues obtained from different approxima-

tions for the xc potential are compared to the experimental results. It is found that

although the more weakly bound peaks are well reproduced in all approximations the

more strongly bound peaks are not. In Chap. 8 the theoretical photoelectron spectra

are extracted from the excitation energies of the clusters with one electron less. It is

found that the general agreement between the experimental and theoretical spectra is

considerably improved. Especially the more strongly bound parts of the spectra are

reproduced much better. This result shows that even for sodium clusters effects beyond

the independent-particle picture must be taken into account in the interpretation of

photoelectron spectra.



Kurzfassung
Die vorliegende Arbeit beschäftigt sich mit Orbitalfunktionalen in der Dichtefunk-

tionaltheorie (DFT). In Kap. 2 werden die Grundlagen der statischen und zeitabhängigen

DFT präsentiert. Dieses Kapitel beinhaltet außerdem eine Diskussion der Vor- und

Nachteile üblicher Näherungen für das Austausch-Korrelations(xc) Funktional. Des

Weiteren wird in Kap. 2 die Grundidee von Orbitalfunktionalen vorgestellt.

Im ersten Teil von Kap. 3 wird das Konzept fraktionaler Teilchenzahlen in der zeitun-

abhängigen DFT vorgestellt. Im zweiten Teil wird das Konzept fraktionaler Teilchen-

zahlen auf den zeitabhängigen Fall erweitert und physikalische Konsequenzen diskutiert.

Insbesondere wird gezeigt, dass unter gewissen Umständen das zeitabhängige xc Poten-

tial sich unstetig ändert, wenn die Teilchenzahl ganzzahlige Zahlen überschreitet.

Kap. 4 beschäftigt sich mit der ‘optimized effective potential’ Gleichung. Diese

Integralgleichung muss gelöst werden, um das zu einem Orbitalfunktional gehörende

xc Potential zu bestimmen. Es wird gezeigt, dass sich die Integralgleichung in ein gekop-

peltes System von Differentialgleichungen transformieren lässt. Schließlich wird eine auf

diesen Differentialgleichungen entwickelte Näherung präsentiert.

In Kap. 5 wird das in Kap. 4 hergeleitete Differentialgleichungssystem numerisch

untersucht. Es stellt sich heraus, dass Instabilitäten auftreten, welche die exakte Lösung

verhindern. Die in Kap. 4 entwickelte Näherung zeigt jedoch ein stabiles Verhalten und

kann dazu benutzt werden, um einen Schritt weiter als die übliche Näherung von Krieger,

Li und Iafrate (KLI) zu gehen.

Kap. 6 beschäftigt sich mit exakten Eigenschaften des xc Potentials. Insbesondere

wird gezeigt, dass die viel genutzte KLI Näherung das ‘Zero-Force Theorem’ verletzt.

Desweiteren wird gezeigt, dass dies dazu führen kann, dass die Näherung unbrauchbar

wird. Die Beobachtung, dass die Näherung von KLI das ‘Harmonic-Potential Theorem’

erfüllt, jedoch das ‘Zero-Force Theorem’ verletzt, zeigt außerdem, dass das aus der KLI

Näherung resultierende xc Potential keine Funktionalableitung eines xc Funktionals ist.

In Kap. 7 und 8 werden Photoelektronspektren von kleinen, anionischen Natri-

umclustern untersucht. In Kap. 7 werden die aus unterschiedlichen Näherungen für

das xc Potential erhaltenen Kohn-Sham Eigenwerten mit den experimentellen Spektren

verglichen. Es zeigt sich dabei, dass für alle Näherungen die schwächer gebundenen

Peaks in den Photoelektronspektren gut reproduziert werden, die stärker gebundenen

Peaks jedoch nicht. In Kap. 8 werden die theoretischen Photoelektronspektren aus den

Anregungsenergien der Tochtercluster, d.h. der Cluster mit einem Elektron weniger,

berechnet. Es zeigt sich dabei, dass die Übereinstimmung der theoretischen und experi-

mentellen Spektren dadurch erheblich verbessert wird. Insbesondere die stärker gebun-

denen Peaks werden deutlich besser reproduziert. Dieses Ergebnis zeigt, dass es für

die Interpretation von Photoelektronspektren selbst für Natriumcluster notwendig ist,

Wechselwirkungseffekte mitzunehmen, die nicht durch das effektive Ein-Teilchenbild des

Kohn-Sham Systems beschrieben werden.



Chapter 1

Introduction

Since the rigorous foundation by Hohenberg and Kohn in 1964 [Hoh64, Koh99] density-

functional theory (DFT) has become one of the most important tools for calculating

electronic properties of finite and infinite systems (see, e.g., Ref. [Dre90, Per92, Gro95]).

As shown by Hohenberg and Kohn in their seminal work the electronic density of a

many-particle system is sufficient for a complete description of the system, i.e., one

can use the density, instead of the many-particle wavefunction, as a basic variable. In

contrast to the high-dimensional wavefunction, the density depends only on three spatial

coordinates. Due to this fact DFT offers access to large systems which are out of reach for

wavefunction-based methods. Especially in the field of bio- and nanophysics in which

large molecules consisting of several hundreds of atoms are of interest DFT offers a

promising tool for theoretical investigations [Cha98, Ehr03, Ma03a].

Nowadays, typical quantities which can be reliably obtained from static DFT calcu-

lations are ground-state energies, densities, geometries, vibrational frequencies,. . .

Although, in principle, it is also possible to obtain excitation energies from static

DFT, in practice these energies must be extracted from time-dependent DFT (see,

e.g., Ref. [Gro96]). Based on the Runge-Gross theorem proved in 1984 [Run84] time-

dependent DFT is a generalization of static DFT to the time domain, i.e., it allows to

describe time-dependent processes in terms of the time-dependent density. In addition to

being applicable to systems containing many electrons, time-dependent DFT also pro-

vides access to non-perturbative, non-linear effects like high-harmonic generation and

above-threshold ionization on a first-principle basis [Gav92, Gro96, Poh03]. In general,

the theoretical description of such effects requires the solution of the time-dependent,

interacting Schrödinger equation. Since the solution of this equation is already beyond

the capability of modern supercomputers for three electrons, time-dependent DFT is a

natural candidate for the description of such phenomena.

The majority of DFT calculations is done in the Kohn-Sham scheme of DFT [Koh65].

In this scheme the interacting system is replaced by a system of non-interacting particles

moving in a local potential. This potential is chosen in such a way that the density of
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the non-interacting and the interacting system are identical. Commonly, this potential

is separated into the external potential of the interacting system, the Hartree potential

containing the classical electrostatic interaction, and the unknown exchange-correlation

potential which contains all non-classical effects. Since the exact exchange-correlation

potential is in general not known, approximations for it are required. In fact, having

reliable approximations for this potential is of crucial importance for any Kohn-Sham

DFT calculation and much research is devoted to this subject [Per98, Bec97, Gra00]. In

particular, knowing as many exact properties of the true exchange-correlation potential

as possible is extremely useful since this provides guidelines for the construction of

approximate exchange-correlation potentials [Hes99, Per98].

At present, most approximations use the density and gradients thereof to construct

approximations to the exchange-correlation potential. The best-known representatives

of this class of approximations are the local-density approximation and the generalized-

gradient approximation of Perdew et al. [Hoh64, Cep80, Per81, Per96]. Since these

functionals suffer from several drawbacks, using a different class of functionals (named

orbital functionals) is desirable [Gra00]. Instead of using the density and its gradients

directly, these functionals use the Kohn-Sham orbitals, i.e., the orbitals from the non-

interacting Kohn-Sham system, to construct approximations for the exchange-correlation

potential. Since these orbitals are implicit functionals of the density, the resulting ap-

proximations are also legitimate density functionals. In static DFT orbital functionals

have already been used successfully to calculate the static response of hydrogen chains

to an electrical field [Kü04a]. The fact that functionals based directly on the density

and its gradients fail completely in this situation clearly demonstrates how promising

orbital functionals are.

In terms of applications DFT has been extensively used in the field of cluster physics,

in particular for the description of sodium clusters (see, e.g., Ref. [Rei03] for an overview).

Roughly speaking clusters are an aggregation of matter containing between a few and

several thousand atoms or molecules. Of particular interest in cluster physics are the

determination of the ionic structures of clusters which are governed by geometric and

electronic finite size effects, e.g., electronic shell effects [Kni84]. In many cases the

only method to reveal these structures is to combine photoelectron spectroscopy with

theoretically predicted photoelectron spectra obtained from different ionic structures

[Kie96, Kos07]. Clearly, this procedure crucially depends on the reliability of the theo-

retically obtainable photoelectron spectra. Since the overwhelming majority of clusters

is too large to be described by quantum-chemical methods, density-functional theory is

in many cases the only first-principle approach available. Therefore, developing methods

for reliably extracting photoelectron spectra from a DFT calculation is highly desirable.

The present work deals with these aspects of DFT. Rather than being dedicated

exclusively to one topic, it covers subjects ranging from fundamental considerations to

applications in cluster physics, namely photoelectron spectra of anionic sodium clus-
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ters. Roughly it can be divided into two parts; the first mainly covers fundamental

aspects (Chap. 2 - Chap. 6) and the second discusses the results for anionic sodium

clusters (Chap. 7 - Chap. 8). The two basic theorems, i.e., the Hohenberg-Kohn and

the Runge-Gross theorem, are presented together with the Kohn-Sham scheme and the

exchange-correlation potential in Chap. 2. As mentioned above this potential is of cru-

cial importance for Kohn-Sham DFT and in general an exact expression for it is not

known. Thus, it must be approximated. In Chap. 3 the influence of the particle number

on the exact exchange-correlation potential is investigated in the framework of fractional

particle-number DFT. Physical implications of the findings on systems with constant,

integer particle number are also discussed in this chapter. In Chap. 4 the optimized

effective potential equation is presented. This integral equation must be solved to ob-

tain the exchange-correlation potential resulting from an orbital functional. As shown

in Chap. 4 it is possible to transform this integral equation into a set of coupled differ-

ential equations. These equations offer a promising solution scheme for time-dependent

situations in which solving the integral equation directly is out of reach at present. In

Chap. 5 this solution scheme is investigated from a numerical point of view. After

this chapter the first part is closed by Chap. 6. There, several properties of the exact

exchange-correlation potential are presented. In addition, it is studied which approxima-

tions have these desired properties. In the last two chapters two different approaches to

obtain photoelectron spectra from DFT calculations are investigated. Both approaches

are compared to experimental photoelectron spectra of anionic sodium clusters and to

each other. Finally, a summary and conclusion is provided in Chap. 9.
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Chapter 2

Density-functional theory (DFT)

In this chapter the basic ideas of DFT are presented. It is pointed out that two things are

crucial for a successful DFT description: a reliable approximation for the energy/action

of a system in terms of the density and for the observables of interest. In addition, the

Kohn-Sham scheme is presented which is the basis of orbital functionals. The latter are

one of the main topics of this work.

2.1 Static density-functional theory

The original idea of DFT is to describe the electrons in a many-particle system in terms of

the one-particle electron density n(r) instead of a many-particle wavefunction. In static

DFT this is possible due to the celebrated theorem proven by Hohenberg and Kohn in

1964 [Hoh64] for non-relativistic, spin-saturated systems with non-degenerate ground

states (see, e.g., [Dre90] and references therein for extensions). This theorem, called the

Hohenberg-Kohn theorem, states that for a given particle-particle interaction W (r, r′) a

one-to-one mapping between the one-particle ground-state density and the local external

potential v(r) exists1. In other words, a given ground-state density determines the

external potential and, as a consequence, the Hamiltonian Ĥ = T̂ + Ŵ + V̂ of the

system (where T̂ =
∑

j

p̂2j
2m , V̂ =

∑

j v(r̂j), Ŵ =
∑

j 6=k w(r̂j , r̂k), and the indices j, k run

over all particles). Since, at least in principle, it is possible to extract any information

about the system from its Hamiltonian via the stationary Schrödinger equation

Ĥ |ψj〉 = Ej |ψj〉 , (2.1)

the ground-state density itself provides access to all information. Thus, any observable is

a functional of the density, in particular the ground state |ψ0〉 = |ψ0[n]〉. Furthermore,

Hohenberg and Kohn have proven that a universal functional F [n] = 〈ψ0|T̂ + Ŵ |ψ0〉

1To be precise the external potential is only determined up to a constant which has no physical

consequences.
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exists which via minimization of the total energy,

E[n] = F [n] +

∫

v(r)n(r) d3r , (2.2)

leads to the exact ground-state density corresponding to the given external potential

v(r). In other words, knowing the functional F [n] allows one to obtain the ground-state

density of a system via the variational equation

δE[n]

δn(r)
= 0 . (2.3)

The huge advantage of this method is obvious: instead of working with a wavefunction

depending on 3N coordinates, one only has to work with the density depending on

three spatial coordinates. However, since the exact functional F [n] is not known for an

interacting N -particle system, the success of a DFT calculation crucially depends on the

approximations available for F [n]. In Sec. 2.3 this aspect is discussed in detail.

2.2 Time-dependent density-functional theory (TDDFT)

The basis of time-dependent DFT is provided by the Runge-Gross theorem [Run84]. This

theorem states that for a given initial state and particle-particle interaction W (r, r′), a

one-to-one map between the one-particle density n(r, t) and the time-dependent external

potential v(r, t) exists (this time up to a purely time-dependent function c(t)). Thus,

in principle, every observable is known if one knows the exact time-dependent density

and the initial state |ψ(t0)〉 at time t0. As a consequence, any observable is not only

a functional of the density as in static DFT, but also a functional of the initial state.

Fortunately, the dependence on the initial state vanishes in many situations, namely

those in which the initial state is a non-degenerated ground state. In this case the initial

state itself is a functional of the density via the Hohenberg-Kohn theorem of static DFT.

Thus, every observable is again a ‘pure’ density functional. A detailed discussion of this

and other aspects of time-dependent DFT can be found in the review article of Gross et

al. [Gro96].

In order to obtain a practical scheme for the description of time-dependent pro-

cesses within DFT it is necessary to determine the correct density corresponding to a

given time-dependent external potential without solving the time-dependent Schrödinger

equation

i~∂t |ψ(t)〉 = Ĥ(t) |ψ(t)〉 (2.4)

for the state |ψ(t)〉. In static DFT the density of interest can be calculated by approxi-

mating the functional F [n] and subsequently minimizing the resulting energy expression.

Since in a time-dependent case no energy minimization exists, one has to find a different
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method to obtain the time-dependent density. One such method has been proposed by

Runge and Gross [Run84]. They put forward the variational principle

δA = δ

∫ t1

t0

〈ψ[n](t)| i~∂t − Ĥ(t) |ψ[n](t)〉 dt = 0 (2.5)

to obtain the time-dependent density. However, this procedure suffers from serious

problems as shown in [Lee98, Lee01] and explained in detail in the following.

To understand why the variational principle 2.5 cannot be used in the framework

of time-dependent DFT one has to recall how the time-dependent Schrödinger equation

can be derived from Eq. (2.5). Usually a partial integration is used to obtain

δA =

∫ t1

t0

〈δψ(t)| i~∂t − Ĥ(t) |ψ(t)〉 + c.c. dt + [ i~ 〈ψ(t)|δψ(t)〉 ]t1t0 . (2.6)

Imposing the boundary condition δψ(t1) = δψ(t2) = 0 leads to

δA = 2 Re

∫ t1

t0

〈δψ(t)| i~∂t − Ĥ(t) |ψ(t)〉 dt . (2.7)

Writing δψ = δψ1 + iδψ2 (with δψj real-valued) and using Re(iz) = −Im(z), one obtains

δA = 2 Re

∫ t1

t0

〈δψ1(t)| i~∂t − Ĥ(t) |ψ(t)〉 dt

− 2 Im

∫ t1

t0

〈δψ2(t)| i~∂t − Ĥ(t) |ψ(t)〉 dt = 0 . (2.8)

An independent variation of δψ1 and δψ2 shows that both the imaginary and the real

part of ( i~∂t − Ĥ(t) ) |ψ(t)〉 must vanish, i.e., the time-dependent Schrödinger equation

must hold.

In addition to this derivation a second way to obtain the time-dependent Schrödinger

equation from the action principle 2.5 exists [Löw72]. Combining the general relation

δA =

∫ t1

t0

〈δψ(t)| i~∂t − Ĥ(t) |ψ(t)〉 dt +

∫ t1

t0

〈ψ(t)| i~∂t − Ĥ(t) |δψ(t)〉 dt = 0

(2.9)

with the variations δψ(t) = δφ(t) and δψ(t) = iδφ(t), one obtains the equations

δA =

∫ t1

t0

〈δφ(t)| i~∂t − Ĥ(t) |ψ(t)〉 dt +

∫ t1

t0

〈ψ(t)| i~∂t − Ĥ(t) |δφ(t)〉 dt = 0

(2.10)

and

δA = −i
∫ t1

t0

〈δφ(t)| i~∂t − Ĥ(t) |ψ(t)〉 dt + i

∫ t1

t0

〈ψ(t)| i~∂t − Ĥ(t) |δφ(t)〉 dt = 0 .

(2.11)
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From these equations one obtains

∫ t1

t0

〈δφ(t)| i~∂t − Ĥ(t) |ψ(t)〉 dt = 0 (2.12)

and thus the time-dependent Schrödinger equation

(
i~∂t − Ĥ(t)

)
|ψ(t)〉 = 0 . (2.13)

In the framework of time-dependent DFT both methods are not applicable since

the allowed density variations are restricted to ‘v-representable’ densities, i.e., densities

obtained from wavefunctions satisfying the time-dependent Schrödinger equation. In

other words, all variations δn must be obtained from variations δψ satisfying the time-

dependent Schrödinger equation. For such variations the second boundary term cannot

vanish if the first one is zero. This is a direct consequence of the fact that the time-

dependent Schrödinger equation is of first order in time. Additionally, shifting the second

boundary to infinity and introducing a convergence factor limη→0+ exp(−η (t− t0)) does

not cure the problem since this leads to an additional term of the form

lim
η→0+

η

∫ ∞

t0

exp
(
− η (t− t0)

)
〈ψ(t)|δψ(t)〉 dt (2.14)

which generally does not need to vanish. Therefore, the first method to obtain the

time-dependent Schrödinger equation from Eq. (2.5) does not work in the framework

of time-dependent DFT. The second method to obtain the time-dependent Schrödinger

equation also does not work since the variation iδψ can only be produced by a potential

change iδv. Here, δv is the potential change that leads to δψ. However, the potential

variation iδv is not allowed since the potential must be real. Thus, both ways to obtain

the time-dependent Schrödinger equation from the Runge-Gross action, Eq. (2.5), are

not applicable in the framework of DFT and, as a consequence, the Runge-Gross action

cannot be used to obtain the time-dependent density in a DFT calculation.

To avoid the problems in conjunction with the Runge-Gross action a different action

functional has been proposed by van Leeuwen [Lee98]. This functional is defined on the

Keldysh contour which is known from the theory of non-equilibrium Green’s functions

[Kel65, Dan84]. For the present work only the main idea behind the Keldysh formalism is

important, namely the parameterization of the physical time t by a parameter τ which is

called pseudotime. This parameterization is done in such a way that for τ running from

τi to τf the physical time t runs from t0 to t̃ and back to t0. The detailed parameterization

is not important since all physical results are independent of it. The only requirement is

that t̃ must be chosen later than any time t at which physical quantities are calculated.

The equation-of-motion for any state on the Keldysh contour is given by

i~t′(τ)−1∂τ |ψ(τ)〉 = Ĥ(τ) |ψ(τ)〉 (2.15)
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with Ĥ(τ) = T̂ + Ŵ + v̂(τ) being the Hamiltonian consisting of the kinetic part, the

particle-particle interaction and the time-dependent local external potential on the con-

tour. The van Leeuwen action functional is defined as

A[n] = −Ã[v] +

∫ ∫

C
n(r, τ) v(r, τ) dt d3r (2.16)

where Ã[v] = i~ ln
[
〈ψ0|TC exp(−i

∫

C Ĥ(τ) dt/~) |ψ0〉
]

and
∫

C dt =
∫ τf
τi
t′(τ) dτ (with

t′(τ) = dt(τ)/dτ) denoting integration on the Keldysh time contour [Lee98, Lee05].

TC is the time-ordering operator on this contour. In the context of DFT one of the

main advantages of the Keldysh formalism is that it allows to construct causal response

functions from functional derivatives which are not causal (see Appendix A) and that

the relation

δA[n]

δn(r, τ)
= v(r, τ) (2.17)

holds [Lee01]. This relation plays a crucial role in the next section where it is used

to construct a practical scheme to compute the time-dependent density from the ac-

tion (2.16).

2.3 Kohn-Sham equations and related approximations

The previous section shows that two ingredients are necessary to have a practical ad-

vantage from using DFT. First, a good approximation for the functional F [n] (or A[n])

is needed to obtain an accurate density. Second, a good approximation for the func-

tional connecting the density to the observables of interest must be found. It is clear

that the first problem is of crucial importance for the second since it determines the

density which must be used in the functional for the observable of interest. One way to

approximate the functional F [n] is based on a direct approximation of 〈ψ0|T̂ + Ŵ |ψ0〉 in

terms of the density. The Thomas-Fermi model is an example for this approach (other

examples can be found in, e.g., [Dre90]). The most appealing feature of this approach is

that it is independent of the particle number, i.e., one has to solve the same equations

no matter how many particles are in the system. Unfortunately, this approach has a

serious drawback: approximating 〈ψ0|T̂ + Ŵ |ψ0〉 accurately in terms of the density is

highly non-trivial [Koh65, Dre90]. In particular, approximating the kinetic energy part

is extremely difficult.

In most DFT calculations this problem is circumvented by using the Kohn-Sham

equations [Koh65] which are presented in the following subsections. The main idea be-

hind the Kohn-Sham scheme is to use the kinetic energy expression for non-interacting

particles and absorb the difference between the non-interacting and the interacting ki-

netic energy in an additional external potential. This procedure corresponds to replacing

the interacting system by a system of non-interacting particles which move in an effec-

tive potential. This effective potential is chosen in such a way that the resulting density
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is the same density as in the interacting system. One advantage of this approach is its

capability to reproduce the atomic shell structure (due to the explicit treatment of the

kinetic energy) [Koh65] which is missing in the Thomas-Fermi model. Furthermore, the

Kohn-Sham scheme provides a starting point for perturbation expansions of the exact

energy [Gör93, Lee96, Gör97, Bon01, Gra02, Ba05b]. For later applications the follow-

ing equations will be formulated for spin-polarized systems [Bar72, Dre90]. The basic

variables in this case are the two spin densities nσ (σ =↑, ↓). For notational simplicity

functionals will nevertheless be written in the form O[n] instead O[n↑, n↓].

2.3.1 Static Kohn-Sham scheme

As mentioned above the main idea behind the Kohn-Sham method is to replace the

interacting kinetic energy by the kinetic energy expression for non-interacting parti-

cles. Additionally, the classical electrostatic energy of the density is used in the energy

functional, i.e., the total energy is written in the form

E[n] = TS[n] +

∫

n(r) v(r) d3r

︸ ︷︷ ︸

Eext

+
1

2

∫ ∫

n(r)W (r, r′)n(r′) d3r′ d3r

︸ ︷︷ ︸

EH

+Exc[n] . (2.18)

Here, Eext is the energy contribution from the external potential and EH, called the

Hartree energy, is the classical electrostatic energy. TS is the kinetic energy of a non-

interacting system with the density n. Combining Eq. (2.18) and Eq. (2.2) shows that

the energy contribution Exc[n], called the exchange-correlation energy, is defined as

Exc[n] := F [n] − 1

2

∫ ∫

n(r)W (r, r′)n(r′) d3r′ d3r − TS[n] . (2.19)

This definition explicitly shows that the main problem of a DFT calculation, namely

the missing knowledge of the functional F [n], is not solved in Eq. (2.18), but shifted to

the unknown functional Exc[n]. However, since for many systems TS + EH + Eext is

already a reasonable approximation for the total energy of the system, the splitting in

Eq. (2.18) provides a good starting point for constructing accurate approximations for

the total energy. As shown below neglecting Exc[n] completely leads to the well-known

Hartree theory. Thus, even the most simple approximation based on Eq. (2.18) leads to

results which are significantly superior to the results known from direct approximations

of the functional F [n], e.g., the Thomas-Fermi approximation.

In connection with Eq. (2.18) the question arises how TS can be calculated. As

mentioned previously TS is the kinetic energy of a non-interacting N -particle system

(N = N↑ +N↓) which has the same ground-state density as the interacting N -particle

system. Supposing the external potential vS which leads to the ground-state density n in

the non-interacting system exists [Dre90, Lee03], the kinetic energy TS can be obtained
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from

TS[n] =

Nσ∑

j=1
σ=↑,↓

∫

ϕ∗
jσ(r)

(

− ~
2

2m
∇2

)

ϕjσ(r) d
3r (2.20)

where the orbitals ϕjσ, known as the Kohn-Sham orbitals, are the Nσ lowest eigenfunc-

tions of the one-particle Kohn-Sham Hamiltonian

(

− ~
2

2m
∇2 + vSσ(r)

︸ ︷︷ ︸

hSσ(r)

)

ϕjσ(r) = ǫjσ ϕjσ(r) , j = 1, . . . ,Nσ . (2.21)

The density of the system is given by

nσ(r) =

Nσ∑

j=1

|ϕjσ(r)|2 and n(r) =
∑

σ=↑,↓

nσ(r) . (2.22)

Thus, knowing the potential vS, called the Kohn-Sham potential, allows one to calculate

the ground-state density n and the kinetic energy TS in a straightforward manner. It

is important to note that since the Hohenberg-Kohn theorem also holds for a non-

interacting system, the Kohn-Sham potential is uniquely defined up to an irrelevant

constant. In other words, a one-to-one map between the density and the Kohn-Sham

potential exists. Consequently, the Kohn-Sham orbitals are also determined by the

density because they are uniquely connected to the Kohn-Sham potential via the Kohn-

Sham equations. Thus, the Kohn-Sham orbitals are functionals of the density, i.e.,

ϕjσ = ϕjσ[n]. This fact shows that TS[n] is a legitimate density functional. Furthermore,

this observation is the basis for the concept of orbital functionals (see below).

To obtain the Kohn-Sham potential the functional derivative of Eq. (2.18) with

respect to the density nσ is calculated. The result is

δE

δnσ(r)
=

δTS

δnσ(r)
+ v(r) +

∫

W (r, r′)n(r′) d3r′

︸ ︷︷ ︸

vH(r)

+
δExc

δnσ(r)
︸ ︷︷ ︸

vxcσ(r)

. (2.23)

The functional derivative δTS/δnσ can be calculated via

δTS =
Nσ∑

j=1

∫

δϕ∗
jσ(r)

(

− ~
2

2m
∇2

)

ϕjσ(r) + c.c. d3r

=

Nσ∑

j=1

∫

δϕ∗
jσ(r)

(
ǫjσ − vS(r)

)
ϕjσ(r) + c.c. d3r

=

Nσ∑

j=1

ǫjσ

∫

δϕ∗
jσ(r)ϕjσ(r) + c.c. d3r −

∫

vS(r) δnσ(r) d
3r . (2.24)
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For norm-conserving variations the first term vanishes and Eq. (2.23) in combination

with Eq. (2.3) shows that

vSσ(r) = vH(r) + v(r) + vxcσ(r) . (2.25)

must hold. This expression shows that the Kohn-Sham potential vS depends on the

density. On the other hand, the density depends on the Kohn-Sham potential via the

Kohn-Sham equations, Eqs. (2.21). As a consequence, the ground-state density must

be determined in a self-consistent way from Eq. (2.25) and Eqs. (2.21). This can be

done in an iterative procedure. After an initial guess for the density one constructs the

Kohn-Sham potential via Eq. (2.25). With this potential a new density is obtained from

the solutions of the Kohn-Sham equations. Then a new potential is constructed which

leads to a new density. These steps are repeated until convergence is achieved. Since the

Kohn-Sham equations are one-particle equations, i.e., they only depend on three space

coordinates, this procedure can be carried out very efficiently on a computer.

Finally, one last aspect of the Kohn-Sham scheme must be discussed. From Eq. (2.18)

it is clear that the unknown functional Exc[n] is the central quantity in any Kohn-Sham

calculation. Neglecting this energy contribution leads to the well-known Hartree theory

as one can see from Eq. (2.25). Thus, in order to go beyond the Hartree theory it is

crucial to have good approximations for Exc[n]. Due to the outstanding importance of

Exc[n] for all static Kohn-Sham DFT calculations the last subsection of this chapter is

devoted to discussing approximations for this functional.

2.3.2 Time-dependent Kohn-Sham equations

The Kohn-Sham formalism for time-dependent systems is based on the same idea as in

static DFT: the interacting system is replaced by a ficticious system of non-interacting

particles moving in a, now time-dependent, Kohn-Sham potential vSσ(r, t). This poten-

tial is again determined by the requirement that both systems, the interacting and the

non-interacting one, have the same density. The existence of such a potential can be

proved under mild restrictions [Lee99]. The time evolution of the non-interacting system

is determined by the time-dependent Schrödinger equation

i~∂t ϕjσ(r, t) = hSσ(r, t)ϕjσ(r, t) , j = 1, . . . ,Nσ . (2.26)

The time-dependent density is obtained via Eq. (2.22), but with time-dependent orbitals.

As in the static case the Kohn-Sham potential and all Kohn-Sham orbitals are unique

functionals of the density (this time due to the Runge-Gross theorem).

To derive an expression for the Kohn-Sham potential one defines the action of the

non-interacting Kohn-Sham system. In analogy to Eq. (2.16) one obtains

AS[n] = −ÃS[vS] +
∑

σ=↑,↓

∫ ∫

C
nσ(r, τ) vSσ(r, τ) dt d

3r (2.27)
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where

ÃS[vS] = i~ ln
[
〈Φ0|U(τf , τi) |Φ0〉

]
(2.28)

and

U(τf , τi) = TC exp
(
− i

∫

C
ĥS(τ) dt/~

)

ĥS(τ) = T̂ + v̂S(τ)

is used. |Φ0〉 is the initial Kohn-Sham Slater determinant. Based on these quantities

one can define the exchange-correlation part Axc[n] by

A[n] = AS[n] − Axc[n] − 1

2

∫ ∫ ∫

C
n(r, τ)W (r, r′)n(r′, τ) dt d3r′ d3r . (2.29)

Taking the functional derivative of this expression one obtains

v(r, τ) = vSσ(r, τ) − vxcσ(r, τ) − vH(r, τ) (2.30)

where Eq. (2.17) has been applied to the action of the interacting and non-interacting

system. vxcσ(r, τ) = δAxc/δnσ(r, τ) is the exchange-correlation potential and

vH(r, τ) =

∫

W (r, r′)n(r′, τ) d3r′ (2.31)

is the Hartree potential. Thus, by construction, the Kohn-Sham potential reproduces the

density of the interacting system if vSσ(r, τ) = vH(r, τ)+v(r, τ)+vxcσ(r, τ) holds. Taking

the derivatives at the physical time-dependent density, one can transform to physical

time and one obtains the time-dependent Kohn-Sham equations with the Hamiltonian

hSσ(r, t) = − ~
2

2m
∇2 + vH(r, t) + v(r, t) + vxcσ(r, t) . (2.32)

As in static Kohn-Sham DFT only the exchange-correlation part of the action functional

must be approximated. Existing approximations for it are discussed below together with

approximations for Exc[n].

At this point it is worth noting that, in principle, it is not necessary to introduce

any action functional or variational principle for the exchange-correlation potential. The

Kohn-Sham potential is uniquely defined by the condition that the non-interacting sys-

tem has the same density as the interacting system. Subtracting from the Kohn-Sham

potential the Hartree potential and the external potential of the interacting system leads

to the exchange-correlation potential without invoking any action functional or varia-

tional principle. Nevertheless it is useful to work with an action principle for, at least,

two reasons. First, as one can see from this section, the action principle provides an el-

egant derivation of the Kohn-Sham equations. Second and more important, it provides

a systematic way to derive approximations for vxcσ(r, t) [Lee96, Lee98]. Especially, ap-

proximating the action functional offers an elegant way to construct exchange-correlation
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potentials which satisfy many exact constraints and fundamental conservation laws. For

instance, momentum conservation is guaranteed if the exchange-correlation potential is

derived from an action functional which is invariant under space translations. This is

discussed in detail in Chap. 6. Moreover, Chap. 6 contains an example for an exchange-

correlation potential which is not the functional derivative of some action functional,

namely the time-dependent Krieger-Li-Iafrate potential.

2.3.3 Exchange-correlation (xc) approximations

Having established the basic formalism of Kohn-Sham DFT, it is now necessary to dis-

cuss approximations for the exchange-correlation functionals Exc and Axc. The oldest

approximations for the exchange-correlation energy are explicit functionals of the den-

sity, i.e., only the density is used in these approximations. The most well-known example

for such an explicit density functional is the local-density approximation (LDA) which

is based on the homogenous electron gas [Koh65]. For this system the ground-state

energy density ehom(n) can be obtained with high accuracy as a function of the con-

stant density n [Cep80]. To approximate Exc for an arbitrary system the resulting

function is used in combination with a spatially varying density n(r), i.e., eLDA[n(r)] :=

ehom(n)|n→n(r). This approximation works surprisingly well even for non-homogenous

systems as discussed, e.g., in [Dre90]. Improvements can be obtained by the inclusion

of gradient terms of the density. This leads to the ‘generalized gradient approxima-

tions’ (GGAs) which are explicit functionals of the density and the gradients thereof

[Pe85a, Bec88, Lee88, Per96, Per98]. For completeness, another class of functionals

should be mentioned, namely ‘hybrid’ functionals. These functionals are outside the

Kohn-Sham scheme since they mix a fractional amount of the Hartree-Fock exact-

exchange energy to the total energy of the system [Bec92, Bec97].

For time-dependent DFT the most frequently used approximation is the adiabatic

LDA/GGA [And77, Peu78, Zan80]. This approximation is obtained by using the static

LDA/GGA functional in combination with the time-dependent density. Thus, these

approximations are also explicit density functionals. The action is given in this case by

ALDA/GGA
xc =

∫

C
ELDA/GGA

xc [n(r, τ)] dt . (2.33)

In addition to the approximations already present in the static case the adiabatic LDA

also neglects any memory effects, i.e., the exchange-correlation potential vxc(r, t) result-

ing from Eq. (2.33) depends only on the density at time t and not at prior times t′ < t.

This is in contrast to the exact exchange-correlation potential which depends on the

density at all former times [Ma02a].

In general, the main advantages of the static and time-dependent LDA/GGA are

its extreme efficiency (systems with up to 600 electrons can be treated [Kro06]) and the

satisfaction of many constraints of the exact exchange-correlation potential (see Chap. 6).

However, the LDA/GGA also has serious problems:



2.3. KOHN-SHAM EQUATIONS AND RELATED APPROXIMATIONS 15

• The Hartree energy contains a contribution coming from the interaction of each

electron with itself. This self-interaction contribution is canceled by the exact

exchange-correlation energy, but not by the LDA/GGA exchange-correlation en-

ergy. This can be most easily seen in the case of a hydrogen atom in which the

exact exchange-correlation potential must be equal to the Hartree potential. In

general, the self-interaction error is particularly problematic in situations involving

strongly localized electrons since it prevents a strong localization. This can lead

to a completely wrong description of a system, e.g., an insulator predicted to be

metallic [Sva90].

• Instead of the −1/r asymptotic behavior of the exact exchange-correlation poten-

tial [Alm85], the LDA/GGA potential falls off exponentially. As a result ionization

potentials and ionization dynamics are wrong, no Rydberg series are observed, . . .

• Charge-transfer excitations are severely underestimated [Toz03].

• The adiabatic LDA yields only single excitations due to the missing memory effects,

i.e., the missing dependence on the density at former times. Excited states with

double excitation character cannot be obtained without including memory effects

[Mai04].

• In the framework of fractional particle-number DFT (Chap. 3) the LDA/GGA

exchange-correlation potential does not show a discontinuous behavior with parti-

cle number changes [Pe82a]. This can lead, e.g., to non-integer particle numbers

for two atoms separated by a large distance.

In order to solve these problems orbital functionals are a promising concept. In

this class of functionals the quantity of interest is not expressed explicitly in terms of

the density and the gradients thereof, but in terms of the Kohn-Sham orbitals. Since

these orbitals, as discussed above, are themselves functionals of the density, any explicit

functional of the Kohn-Sham orbitals is an implicit density functional. The most simple

orbital functional for the exchange-correlation energy is the exact-exchange functional

Ex[{ϕiτ [n]}] = −e
2

2

Nσ∑

j,k=1
σ=↑,↓

∫ ∫
ϕ∗
jσ(r)ϕjσ(r

′)ϕ∗
kσ(r

′)ϕkσ(r)

|r− r′| d3r′ d3r . (2.34)

It is important to note that the orbitals in this expression are the Kohn-Sham orbitals

and not the Hartree-Fock orbitals. In contrast to the Hartree-Fock orbitals, the Kohn-

Sham orbitals must be obtained from the local and orbital-independent Kohn-Sham

potential. The main advantages of orbital functionals are:

• Using the exact-exchange functional cures the Hartree self-interaction error and

thus, one of the main deficiencies of explicit density functionals.
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• The exchange potential resulting from the exact-exchange functional, Eq. (2.34),

has the correct −1/r asymptotic behavior [Tal76]. As a consequence, much im-

proved ionization potentials and Rydberg series are found.

• Since the Kohn-Sham orbitals at time t depend on the densities at all prior times

t′ ≤ t [Ma02a], orbital functionals include memory effects.

• Perturbation expansions of the exact energy in terms of the Kohn-Sham orbitals

exist [Gör94, Lee96, Lee98].

• The exchange-correlation potential resulting from an orbital functional can show

a discontinuous behavior under particle number changes [Kr92a, Mun05].

However, orbital functionals also have a serious drawback. For these functionals the

construction of the Kohn-Sham potential is much more involved than for explicit density

functionals since δExc/δn cannot be evaluated analytically. Instead, one has to solve an

integral equation for the potential [Sha53, Ull95]. As shown in Chap. 4 solving this

equation (called the optimized effective potential equation) is not a trivial task.



Chapter 3

DFT for fractional particle

numbers

In Chap. 2 the importance of the exchange-correlation potential vxc for the success of

any DFT calculation has been pointed out. Although ever more refined approximations

have been developed and tested [Mar01], the existing approximations can still fail dra-

matically in some situations [Pet99, Gis99, Gri00]. Thus, it is necessary to construct

better exchange-correlation potentials. In order to do this it is important to include as

many properties of the exact potential as possible into the approximate potential. This

chapter deals with such an exact property, namely the influence of the particle number

on the exchange-correlation potential. Since the static case is crucial to understand the

time-dependent one, a thorough discussion of the ground-state case is given first.

3.1 Ground-state theory

3.1.1 Formalism

In the original proof of the Hohenberg-Kohn theorem an integer number of electrons

in a closed system is assumed. As a consequence, the functional FN [n] is defined only

for integer particle numbers N in the Hohenberg-Kohn formulation. Here, FN [n] is

used instead of F [n] to point out explicitly the dependence on the particle number N .

Although fractional particle numbers do not exist in nature, it is desirable to extent

the definition of the functional FN [n] to non-integer particle numbers. In the statistical

description of open systems, for instance, fractional particle numbers are an extremely

useful concept. In addition, using an unrestricted density variation in combination with

imposing the subsidiary condition
∫
n(r) d3r = N via the Lagrange multiplier µ̃, i.e.,

δ

δn
{EN [n] − µ̃

∫

n(r) d3r} = 0 , (3.1)

requires a definition of EN [n] for arbitrary particle numbers.
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The most natural way to include non-integral particle numbers into static DFT is

via Mermin’s generalization of the Hohenberg-Kohn theorem to systems in equilibrium

with a reservoir [Mer65, Pe85b]. In the zero-temperature limit the ‘constraint search’

concept [Lev79, Val80, Dre90] leads to the expression

EN [n] = Ffrac[n] +

∫

n(r) v(r) d3r (3.2)

with

Ffrac[n] := min
ρ̂→n

ρ̂=(1−ω)|ψM 〉〈ψM |+ω|ψM+1〉〈ψM+1|

tr{ ρ̂ (T̂ + Ŵ )} (3.3)

for the energy functional EN [n] of a system with N = M + ω particles (M : integer,

0 < ω < 1) [Pe82a]. In Eq. (3.3) the search for the minimum runs over all ensembles

which consist of an M - and an (M + 1)-particle function and which yield the given

density n. With the above expressions the variational principle is well defined and

Eq. (3.1) results in

δEN [n]

δn(r)
= µ̃ . (3.4)

The physical meaning of the Lagrange multiplier µ̃ for a given particle number N is

revealed by the relation

EN+ǫ − EN =

∫
δEN [n]

δn(r)

∣
∣
∣
∣
nN

(nN+ǫ(r)− nN (r)) d3r . (3.5)

Combining this equation with Eq. (3.4) shows that µ̃ is equal to the chemical potential µ

because

EN+ǫ − EN =

∫

µ̃
(
nN+ǫ(r)− nN(r)

)
d3r = µ̃ ǫ (3.6)

and thus,

µ̃ =
∂EN
∂N

= µ(N) (3.7)

in the limit ǫ→ 0.

From Eq. (3.2) it follows that the ground-state energy of the system consisting of

M + ω particles is given by [Pe82a]

EM+ω = (1− ω)EM + ωEM+1 (3.8)

where EM is the ground-state energy of the M -particle system. Thus, for a finite system

with electron affinity A and ionization potential I the energy as a function of ω looks

as in Fig. 3.1. Obviously, µ(N) = ∂EN/∂N changes discontinuously at ω = 0. In
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Figure 3.1: Ground-state energy of a

finite (M + ω)-particle system. I(M)

is the ionization potential and A(M)

the electron affinity of the system with

integer particle number M . By con-

struction the curve is a continuous se-

ries of straight-line segments with pos-

sible discontinuous derivatives at inte-

ger M .

other words, the energy EN as a function of the particle number N has a derivative

discontinuity at integer particle numbers. The value of the derivative discontinuity is

∆ := I(M) − A(M)

= lim
ω→0

{
µ(M + ω) − µ(M − ω)

}

= lim
ω→0

{
δE[n]

δn(r)

∣
∣
∣
∣
M+ω

− δE[n]

δn(r)

∣
∣
∣
∣
M−ω

}

, (3.9)

where |M+ω denotes ‘taken at the correct (i.e., minimizing) density of the (M + ω)-

particle system’. I(M) and A(M) are the ionization potential and the electron affinity

of the system containing M electrons, respectively.

In the Kohn-Sham scheme the derivative discontinuity can be expressed in terms of

the functional derivatives of the exchange-correlation energy Exc and the kinetic energy

of the Kohn-Sham system. This is possible since neither the functional derivative of the

external-energy contribution, i.e., the external potential, nor the functional derivative of

the Hartree energy (i.e., the Hartree potential) changes discontinuously with the particle

number. Thus, the contributions of these two energies to the derivative discontinuity

vanish and one obtains

∆ = lim
ω→0

{
δTS[n]

δn(r)

∣
∣
∣
∣
M+ω

− δTS[n]

δn(r)

∣
∣
∣
∣
M−ω

}

+ lim
ω→0

{
δExc[n]

δn(r)

∣
∣
∣
∣
M+ω

− δExc[n]

δn(r)

∣
∣
∣
∣
M−ω

}

. (3.10)

The first summand can be written as

lim
ω→0

{
δTS[n]

δn(r)

∣
∣
∣
∣
M+ω

− δTS[n]

δn(r)

∣
∣
∣
∣
M−ω

}

= lim
ω→0

{
ǫM+1(M + ω) − vS(r)|M+ω

− ǫM (M − ω) + vS(r)|M−ω

}
(3.11)

where ǫj(N) is the j-th Kohn-Sham eigenvalue of the N -particle system. Furthermore,

in the limit ω → 0 the Kohn-Sham potential vS(r)|M+ω and the potential vS(r)|M−ω

can only differ by some constant c since the difference between the densities vanishes,
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i.e., limω→0

{
vS(r)|M+ω

}
= limω→0

{
vS(r)|M−ω+c

}
holds. As a consequence, the Kohn-

Sham eigenvalues ǫM+1(M + ω) and ǫM+1(M − ω) can also differ only by the same

constant in the limit ω → 0, i.e., limω→0 ǫM+1(M +ω) = limω→0 ǫM+1(M −ω)+ c holds.

Thus, one can write

lim
ω→0

{
δTS[n]

δn(r)

∣
∣
∣
∣
M+ω

− δTS[n]

δn(r)

∣
∣
∣
∣
M−ω

}

= lim
ω→0

{
ǫM+1(M − ω)− ǫM (M − ω)

}

︸ ︷︷ ︸

=: ∆nonint

(3.12)

For open-shell systems the eigenvalues ǫM+1(M −ω) and ǫM (M −ω) are equal and thus,

according to Eq. (3.10), the exchange-correlation potentials for a system with M + ω

and one with M − ω particles must differ by the constant ∆ = I(M) − A(M) in the

limit ω → 0.

At first sight this result seems to be a contradiction to the fact that the Kohn-Sham

potential vanishes at infinity for all particle numbers, i.e.,

lim
r→∞

{
vxc(r)|M+ω − vxc(r)|M−ω

}
= 0 . (3.13)

Indeed, if the limit r→∞ is taken first, as done by Zahariev and Wang [Zah04], the dif-

ference between vxc(r)|M+ω and vxc(r)|M−ω vanishes in the limit ω → 0 [Pe85b]. This is,

however, no contradiction to the above result since for any arbitrarily small, but finite, ω,

the difference between the exchange-correlation potentials is

vxc(r)|M+ω − vxc(r)|M−ω = f(r) 6= const. (3.14)

Similar to the Fermi function for low temperatures the function f(r) is constant in a

region r < rc and goes to zero for r > rc [Pe85b, Per97]. For ω → 0 the radius rc increases

and approaches infinity. As a consequence, different results are obtained for a different

order of the two limits and thus, Eq. (3.13) is no contradiction to limω→0

{
vxc(r)|M+ω −

vxc(r)|M−ω

}
= const.

Before discussing the physical implications of the discontinuities, two final remarks

should be made. First, it is important for the time-dependent case, Sec. 3.2, that the

same results can be obtained with the definition

F̃frac[n] := min
ρ̂→n

ρ̂=
P

∞

j=1
pj |ψ

j〉〈ψj |

P

∞

j=1
pj=1

tr{ ρ̂ (T̂ + Ŵ )} (3.15)

instead of Eq. (3.3). Here, the search runs over density matrices containing antisym-

metric j-particle functions. Nevertheless the minimizing condition leads to exactly the

same minimizing ensemble consisting of an M -particle and (M + 1)-particle state as

Eq. (3.3) [Pe82a]. In other words, the energy minimization establishes a one-to-one
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mapping between the ensemble and the particle number which is independent of the

particle reservoir1.

The second remark is about existing approximations for the exchange-correlation

functional. One may ask if any approximations with such discontinuities exist. The

answer is yes. As Krieger, Li, and Iafrate have impressively demonstrated [Kr92a] orbital

functionals, in contrast to the LDA/GGA functionals, have such a property. In addition

to the advantages of orbital functionals discussed in Chap. 2 this is another reason why

orbital functionals are a promising concept in DFT.

3.1.2 Physical consequences

The fact that virtually all DFT calculations deal with an integer particle number raises

the question whether the discontinuities presented in the preceeding subsection are of

any practical importance. Following Perdew et al., this can be answered by considering

a system composed of two separated atoms, A and B, with nuclear charge ZA and ZB

(ZA, ZB : integer). For the time being, any interactions between the atoms are neglected

and the Hamiltonian of the system is approximated by

Ĥ = Ĥ(A) ⊗ 1 + 1⊗ Ĥ(B) (3.16)

where ⊗ is the tensor product and Ĥ(A/B) the Hamiltonian of atom A/B. Given the

Hamiltonian (3.16) antisymmetrization of atom A’s states with the states of atom B is

not required. In fact, it is even not allowed for the system defined by Eq. (3.16) since

the Hamiltonian is not symmetric under particle exchange between the two atoms. The

state of the complete system can be written in the form

|ψ〉 =

ZA+ZB∑

J=0

∑

j,k

cj,k(J) |ψ(A)
j (J)〉 |ψ(B)

k ( (ZA + ZB)− J )〉 (3.17)

where |ψ(A/B)
j (J)〉 is the j-th eigenstate of atom A/B with J electrons, i.e., (with N̂

being the particle-number operator)

Ĥ(A) |ψ(A)
j (J)〉 = E

(A)
j (J) |ψ(A)

j (J)〉 (3.18)

〈ψ(A)
j (J)| N̂ |ψ(A)

j (J)〉 = J . (3.19)

Since the smallest first ionization potential I in the periodic table is greater than the

largest electron affinity A (ICs = 3.89 eV, ACl = 3.62 eV), the ground-state energy of

the complete system is given by

E0(ZA + ZB) = E
(A)
0 (ZA) + E

(B)
0 (ZB) . (3.20)

1This statement requires the assumption that the energy as a function of the particle number M is

upward convex for integer M [Pe82a]. Although this property is not generally proven, it seems to be

satisfied for all systems with repulsive interactions [Pe82a, Dre90, Aye00].
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Figure 3.2: Energy of two widely sep-

arated atoms with nuclear charge ZA

and ZB as a function of the electron

shift from atom A to atom B. Clearly,

the energy is minimized at zero net

charge. I(M) is the ionization poten-

tial and A(Z) the electron affinity of an

atom with nuclear charge Z.

The total ground-state density is the sum of the two ground-state densities n
(A)
0 (ZA)

and n
(B)
0 (ZB), i.e.,

n0(ZA + ZB) = n
(A)
0 (ZA) + n

(B)
0 (ZB) . (3.21)

As expected both atoms are neutral in the ground state, i.e., ZA electrons are found in

atom A and ZB electrons in atom B.

In order to describe the closed (ZA +ZB)-particle system in the framework of DFT,

the fractional DFT formalism of the previous subsection can be used. Since the two

atoms do not interact, the energy minimization of the (ZA+ZB)-particle system can be

replaced by two separate energy minimizations for atom A and atom B with fractional

particle numbers. The possibility of fractional particle numbers is a result of the fact

that arbitrary density variations are allowed in the closed (ZA + ZB)-particle system.

The only constraint in the closed system is
∫
n(r) d3r = ZA +ZB . As shown in Fig. 3.1

the exact ground-state energy of atom A as a function of the particle number is a series

of straight lines (compare Eq. (3.8)). Combining this curve with the analogous result

for atom B, one obtains the graph shown in Fig. 3.2. There, the minimal energy of the

two separated atoms is shown as a function of the transfered particle number from atom

A to B. As one can see the absolute minimum of the energy is zero, i.e., no fractional

particle number is transfered. Thus, in accordance with reality, both atoms are also

neutral in the exact DFT treatment with fractional particle numbers.

The situation changes dramatically, however, if one uses approximate energy func-

tionals without a derivative discontinuity at integer particle number. In this case µ(N)

is a continuous function of N and, as a consequence, the total energy of the system can

be lowered by transferring some density from one atom to the other atom with lower µ.

Thus, in clear contradiction to all experimental facts, two well-separated atoms are not

neutral but slightly charged. As an example the missing derivative discontinuity in the

LDA functional leads to the configuration Li+0.25 H−0.25 for a Lithium and Hydrogen

atom at large distances [Pe82a].

The example of the two separate atoms clearly demonstrates that, even for integer
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particle numbers, any approximate energy functional without a derivative discontinuity

can lead to wrong results. Without interactions between the two atoms one may ar-

gue that this is not a real problem since it can be easily circumvented by a separate

energy minimization with integer particle numbers for the two atoms. However, with

interactions between the atoms included this procedure does not work anymore. Thus,

the question arises how interactions between the two atoms influence the arguments

given above. As described in the following the first problem one observes in this situ-

ation is that the inclusion of the interactions makes impossible a rigorous definition of

the particle numbers of the two atoms. Without interactions the potential part of the

Hamiltonian as defined in Eq. (3.16) is

v̂ = v̂(A) ⊗ 1 + 1⊗ v̂(B) . (3.22)

As mentioned above the antisymmetrization of the atoms’ states is missing and one can

define the particle number in the atoms via

N̂ (A) = N̂ ⊗ 1 , (3.23)

N̂ (B) = 1⊗ N̂ . (3.24)

In a more rigorous description of the two atoms the Hamiltonian must include an atom-

atom interaction and it must be symmetric under particle exchange. For instance, the

external potential part must have the form

v̂ = (v̂(A) + v̂(B))⊗ 1 + 1⊗ (v̂(A) + v̂(B)) (3.25)

and the wavefunction must be antisymmetric. Consequently, the two operators N̂ (A)

and N̂ (B) have the same expectation values and are useless to define a particle number

of the single atoms. The missing rigorous definition of an atom’s particle number is

just a consequence of the fact that the wavefunctions of the two atoms have a non-zero

overlap for any finite distances RA−B between atom A and B. Nevertheless it is possible

to define the observable

NA/B
geom :=

∫

VA/B

n(r) d3r (3.26)

where VA/B is a volume around the nucleus of atom A/B and n is the density of the

total system. In this definition VA is assumed to have zero overlap with VB and the sum

of VA and VB constitutes the complete space. The ground-state energy of the complete

system can be written as

E0(MA +MB) = E
(A)
0 (MA) + E

(B)
0 (MB) + EA−B . (3.27)

Here, the interaction energy EA−B is simply defined as the difference between the true

ground-state energy E0(MA + MB) of the combined system and the sum of the two
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ground-state energies E
(A)
0 (MA) and E

(B)
0 (MB) of the isolated atoms. The crucial ob-

servation now is that in the limit RA−B −→ ∞ the above quantities have the limits

EA−B −→ 0 , (3.28)

NA
geom −→ MA , (3.29)

NB
geom −→ MB . (3.30)

This can be proven by using a Heitler-London-type ansatz to calculate an upper bound

for the ground-state energy as, e.g., done in [Sch93]. Thus, for sufficiently large distances

RA−B the difference between the results from a DFT calculation with fractional particle

numbers (possibly approximating the interaction between the atoms via the electrostatic

expression −e2ω2/RA−B where ω is the transfered charge) and the results of a DFT

calculation with integer particle number must be arbitrary small. For approximations

of the total energy which do not have a derivative discontinuity with respect to the

particle number this observation is clearly not reproduced. In other words, given an

approximation for the energy functional of a system with arbitrary particle number and

without a derivative discontinuity, one can construct a situation in which the results of

a DFT calculation with fractional particle number differ significantly from the results of

a DFT calculation with integer particle number although the results should be almost

equal.

The previous discussion also shows that in the ‘integer particle DFT’, e.g., the

Hohenberg-Kohn formulation, F [n] must have a property that guarantees particle num-

bers Ngeom almost identical to an integer for distant atoms2. In the limit RA−B −→ ∞
this property of F [n] has exactly the same consequences as the derivative discontinuity in

the DFT for fractional particle numbers. Consequently, the Kohn-Sham potential must

also have a feature that guarantees integer particle numbers for large enough distances.

Since neither the Hartree potential nor the external potential provide such a feature,

the exchange-correlation potential must include a property that leads to integer parti-

cle numbers in the situation described above. Clearly, this property becomes especially

important if processes involving well-separated subsystems are of interest. The response

of molecular chains like poly-acetylene to electric fields is just one, but technologically

very relevant [Kan94], example for such a process. Other examples are the adiabatic

dissociation of a molecule and charge-transfer processes in extended systems.

Since neither the LDA nor the GGA exchange-correlation potential has a property

that guarantees integer particle numbers for distant atoms, it is hardly surprising from

the previous discussion that these approximations fail dramatically (in some cases by

orders of magnitude) in the description of the just mentioned processes. For instance,

2Using the same electrostatic approximation for the interaction energy as above, the minimum dis-

tance for which neutral atoms can be expected is approximately given by RA−B ≈ e2/(IA − AB). In

this estimate it is assumed that IA − AB < IB − AA holds.
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the energy required for a charge transfer between two separated systems is predicted sig-

nificantly too low in an LDA or GGA calculation [Toz03]. Also, the static longitudinal

linear and non-linear polarizabilities of different molecular chains are extremely overes-

timated by DFT calculations using the LDA or GGA functional [Cha98]. In contrast to

the LDA or GGA exchange-correlation potential, the exact-exchange potential obtained

from the exact-exchange orbital functional shows, like the true exchange-correlation po-

tential, a field-counteracting behavior when the external field is applied to the molecular

chain [Gis99, Kü04a]. As a consequence, the static linear and non-linear polarizabilities

are reduced tremendously. For hydrogen chains highly accurate Møller-Plesset results

are available and the exact-exchange results are in good agreement with them [Kü04a].

A thorough study of the field-counteracting effect [Kör06] shows that its origin is in the

same term of the exchange-correlation potential which is also responsible for the deriva-

tive discontinuity in the case of fractional particle numbers. This observation, discussed

in Chap. 4 in more detail, demonstrates the close relationship between features of the

exchange-correlation potential for a system with integer particle number and the discon-

tinuous behavior of the exchange-correlation potential found in the DFT for fractional

particle numbers.

Before closing this subsection, it should also be mentioned that the jump of the

exchange-correlation potential at integer particle number is of crucial importance if the

band gap of a solid is extracted in the standard way, i.e., from the Kohn-Sham band-

structure [Per83, Sha83, Pe85b, Dre90]. The reason for this is that the Kohn-Sham

band gap ∆nonint is not equal to the true band gap ∆, but differs by the jump in the

exchange-correlation potential as can be seen from Eq. (3.12) and Eq. (3.10).

3.2 Time-dependent theory

3.2.1 Formalism

The natural way to include non-integral particle numbers into time-dependent DFT is

via statistical ensembles in analogy to static DFT [Mun05]. This method relies on an

extension of the Runge-Gross theorem to time-dependent ensembles [Li85]. The central

statement of this extension is that for a given initial state a one-to-one map between

an ensemble v-representable density and an external potential v(r, t) (up to an additive

purely time-dependent function) exists. In other words, the ensemble density operator

with probabilities pj,

ρ̂(t) =
∑

j

pj |ψj(t)〉〈ψj(t)| (3.31)

is a functional of the density n(r, t) and, as in the standard Runge-Gross theorem and

in contrast to static DFT, a functional of the initial state, i.e. ρ̂(t) = ρ̂ [n, ρ̂0]. Thus, the

expectation value of any observable Ō = Tr (ρ̂ Ô) is a functional of the density and the
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initial state. Varying the particle number for a fixed external potential and asking how

such a functional changes at the correct time-dependent density immediately reveals a

problem: a given fractional particle number can be associated with infinitely many dif-

ferent ensembles via Eq. (3.31). As described above in the static case the condition that

the energy be minimized ensures that just one specific ensemble – the minimizing one –

is associated with a given fractional particle number. But in a time-dependent theory, a

priori no such minimizing criterion exists. Thus, without an additional prescription of

how to choose the ensemble no statement can be made on how functionals change with

particle number.

This ambiguity is resolved when the initial state at time t0 in the time-dependent

theory is chosen to be the ground state. Although a special case, this is the typical

physical situation and therefore of great practical importance. As already mentioned

in Chap. 2 for a non-degenerate ground state the functional becomes a pure density

functional via the Hohenberg-Kohn theorem. In contrast to the general time-dependent

case, the density operator is now uniquely determined at all times by just the total

particle number: for the (M + ω)-particle system the initial condition

ρ̂(t0) = (1− ω) |ψM0 〉〈ψM0 | + ω |ψM+1
0 〉〈ψM+1

0 | , (3.32)

fixes the ensemble once and for all since the propagation does not affect the weights.

Again, M is integer, 0 < ω < 1, and |ψM0 〉 denotes the ground state of the system with

M particles. As in the static case the expectation values of all observables are now given

by linear interpolation between the neighboring systems with integer particle numbers.

As a consequence, any observable’s expectation value O[n] at the correct time-dependent

density changes continously with varying particle number, but its functional derivative

needs not. The corresponding time-dependent derivative discontinuity is defined by

∆O(t) := lim
ω→0

{

δO[n]

δn(r, t)

∣
∣
∣
∣
M+ω

− δO[n]

δn(r, t)

∣
∣
∣
∣
M−ω

}

, (3.33)

where |M+ω denotes ‘taken at the true (physical) time-dependent density of the (M+ω)-

particle system corresponding to the given external potential’.

It follows from the considerations in the static case that the time-dependent energy

functional E(t) = Tr (ρ̂(t) Ĥ(t)) at the initial time t0 has a derivative discontinuity. Since

the system evolves in time in a continuous manner for t > t0, the derivative discontinuity

must also exist in the time-dependent system, at least for times close to t0. The question

whether this initial discontinuity will persist for all later times is not easy to answer for

interacting systems. For non-interacting particles it seems possible to make ∆E vanish

at later times by switching adiabatically from an external potential without degenerate

highest-occupied orbital to a potential with degenerate highest-occupied orbital.

An elegant way to study the influence of derivative discontinuities on the time evolu-

tion of the density is via the action functional (2.16) presented in the previous chapter,
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i.e.,

A[n] = −Ã[v] +

∫ ∫

C
n(r, τ) v(r, τ) dt d3r . (3.34)

Taking the derivative of the action of the interacting system with respect to the density

and evaluating this derivative at the physical time-dependent density, one obtains (see

Chap. 2)
δA

δn(r, τ)

∣
∣
∣
∣
n(r,t)

= v(r, t) . (3.35)

Since the external potential v(r, t) is kept fixed the action of the interacting system

has no derivative discontinuity. Carrying out the same calculation for the action of

the Kohn-Sham system AS one obtains δAS/δn(r, τ)|n(r,t) = vS(r, t). As pointed out

above the Kohn-Sham potential vS(r, t) changes discontinuously when the number of

particles crosses an integer and thus, in analogy to the arguments given for the time-

dependent energy, one obtains the result that the action of the Kohn-Sham system AS

has a derivative discontinuity in the Axc part.

3.2.2 Physical consequences

In the ground-state theory of Sec. 3.1 the example of the two well-separated atoms shows

that the static exchange-correlation potential must have a property that guarantees inte-

ger particle numbers at each atom. Since such a situation can evolve from an adiabatic

time-dependent process, it is clear that the time-dependent exchange-correlation po-

tential must also have such a property. However, the question how this property is

related to the derivative discontinuities discussed in the previous subsection is consid-

erably more involved in the time-dependent case than in the ground-state situation of

Sec. 3.1. There, combining arbitrary density variations with the fact that for large dis-

tances Etot = EA+EB holds provides a connection between the derivative discontinuities

in the ‘fractional particle DFT’ and the properties of the exchange-correlation potential

in the ‘integer particle DFT’.

In the time-dependent case the connection between the ‘fractional-particle formalism’

and the integer particle-number treatment is mainly complicated by the fact that the

time-dependent density is not obtained from any minimization with arbitrary density

variations. Instead, the density at some instant t1 evolves from the densities at former

times t < t1. In other words, the time evolution depends on the system’s past, i.e.,

memory effects or, equivalently, initial state dependencies exist [Ma02a]. Thus, it is

generally not possible to switch from a pure state description to an ensemble description

with fractional particle numbers. Especially, going over from a pure state to an ensemble

description by calculating the partial trace in one subsystem does not allow one to

connect the fractional and integer particle-number descriptions since the resulting density

operator for the subsystem has time-dependent weights pj = pj(t) and its time evolution

is thus no longer given by the von Neumann equation (see, e.g., [Coh99]).
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Despite the just discussed problems situations exist in which the time-dependent

exchange-correlation potential of a system with integer particle number can be expected

to be almost identical to the potential from a fractional particle-number calculation.

One such situation is long after an ionization process in which only the weakest-bound

electron can be ionized. In the beginning of such a process the atom consists of M + 1

electrons. After some time tI the density around the nucleus integrates to M + ω with

ω << 1. Under the reasonable assumption that memory effects and the small additional

amount of density do not influence the time evolution of the remaining atom significantly,

the exchange-correlation potential around the nucleus must be almost identical to the

potential from a M + ω-particle calculation for t > tI . This potential in turn can

be expected to differ from the M -particle potential by just the constant shift of the

derivative discontinuity in the exchange-correlation potential.

In order to support these arguments an ionization process of a one-dimensional Li

atom is numerically studied in the following. For this purpose the exact-exchange action

functional

Ax[n] = −1

2

Nσ∑

j,k=1
σ=↑,↓

∫ ∫ ∫

C

ϕ∗
jσ(r

′, τ)ϕkσ(r
′, τ)ϕjσ(r, τ)ϕ

∗
kσ(r, τ)

|r − r′| dt d3r′ d3r . (3.36)

is used. The resulting exchange potential in the KLI approximation is (a detailed dis-

cussion can be found in Chap. 4)

vKLI
xσ (r, t) =

1

2nσ(r, t)

Nσ∑

j=1

|ϕjσ(r, t)|2
[
uxjσ(r, t) + (v̄KLI

xjσ (t)− ūxjσ(t))
]

+ c. c. (3.37)

where nσ(r, t) is the total spin density,

uxjσ(r, t) =
1

ϕ∗
jσ(r, t)

δAx

δϕjσ(r, t)
(3.38)

and bars denote orbital averages, e.g., v̄KLI
xjσ (t) =

∫
|ϕjσ(r, t)|2 vKLI

xσ (r, t) d3r . The con-

dition that vxc(r, t) must go to zero for |r| → ∞ is fulfilled by enforcing

v̄KLI
xNσ(t) = ūxNσ(t) . (3.39)

Although this potential is not the exact exchange-correlation potential, it can be expected

to be qualitatively close to the true potential for atoms [Ull95]. In the simulation the

(−1/r) Coulomb interaction is replaced by (−1/
√
z2 + 0.3) (see Chap. 5 for details).

Initially, the atom is in its ground state. At t = 0 a homogenous external field (pulling

density to the left) is linearly switched on over a time period of 40 a.u. As commonly

done in strong-field calculations the field is cut off at some large distance (here, 20 a.u.)

to avoid problems with strongly accelerated electrons. The Kohn-Sham orbitals are

propagated on a real-space grid in real time with a Crank-Nicolson algorithm [Pre92]
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Figure 3.3: Li atom in one dimension subjected to a strong, ionizing external field

F=0.06 a.u. In each figure the exchange potential of the two spin-up electrons at different

times (as labeled) is shown. At time t = 0 the atom is in its ground state. Then the

external field is linearly ramped up over 40 a.u. and finally held constant. One can

clearly see the escape of density to the left and the buildup of the steplike structure.

t≫111 denotes an extrapolation to very large times.

and a time step of 0.025 a.u. A large grid is used, 1500 points with a spacing of 0.2 a.u.,

to guarantee that no density reaches the boundary of the numerical box over the whole

simulation time. The field strength (0.06 a.u.) is chosen such that only the highest

occupied Kohn-Sham orbital is ionized.

Fig. 3.3 shows the exchange potential of the two spin-up electrons during the ioniza-

tion process. In the left part the ground-state potential and the potential at time t = 31

a.u. are plotted. One clearly sees how the potential is lowered on the left-hand side due

to the outgoing density. At later times (middle part of Fig. 3.3) ‘humps’ or ‘steps’ start

to build up at the edges of the remaining Li+ ion. Finally (right part), the potential in

the area around the nucleus remains almost unchanged, but the humps on both flanks

keep growing and move outwards. The dotted line marked t≫111 indicates what the

potential would qualitatively look like if one continued the simulation further to times

close to ‘infinity’. The humps would turn more and more steplike and continue to move

outwards. When all of the 2s orbital-density would have escaped to ‘infinity’, the steps

would reach ‘infinity’.

To demonstrate the relationship between the exchange potential of the Li atom and

the potential from the Li+ ion one can do a second simulation, subjecting a Li+ ion to

exactly the same field as the Li atom. The exchange potential for both systems after a

time of 111 a.u. is shown in Fig. 3.4. The chosen field strength is too small to ionize the

more strongly bound 1s electrons, but the orbital density of the Li atom’s 2s electron has

nearly completely been removed from the core region. Therefore, in both systems the

core region (shown in Fig. 3.4) basically corresponds to a Li+ ion with slightly polarized

1s orbital densities. However, in the simulation where one starts from a Li atom and then

explicitly ionizes it, one is effectively looking at a 1s core with a tiny additional fractional

charge still left over from the 2s electron. As predicted above this tiny fractional charge

has no recognizable influence on the shape of the potential (the two curves are perfectly
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Figure 3.4: Snapshot at t=111 a.u. of

the TD spin-up exchange potential of a Li

atom (labeled Li(2+ω)) and a Li+ ion (la-

beled Li(2)). Both were subjected to the

electrical field of Fig. 3.3. The Li 2s elec-

tron has been nearly completely ionized, so

both systems are basically Li+ cores. But

for the system that started as a Li atom the

minute fractional 2s electron charge around

the core leads to a constant upward shift ∆.

parallel between -2 and 2), but it leads to a constant upward shift in the potential.

Mathematically, the shift comes in via Eq. (3.39): to guarantee that vx(r, t) vanishes

at infinity v̄KLI
xNσ(t) − ūxNσ(t) must be chosen to vanish for N = 1 in the Li+ case and

N = 2 in the Li case. This leads to a constant difference between the potentials in

the non-asymptotic region. The ‘steps’ appear in those regions where the Li potential

goes over from the non-asymptotic to the asymptotic form that decays to zero, i.e., the

regions in which the highest-occupied orbital starts to dominate the total density. With

progressing ionization, this region moves further away from the core towards ‘infinity’.

In the fractional particle-number treatment the main difference between the Li+ ion’s

exchange potential and the (2 + ω)-particle exchange potential is again that the term

v̄KLI
xNσ(t)−ūxNσ(t) must be zero for N = 1 and, respectively, N = 2. Since for very small ω

the tiny additional density has practically no influence in the core region, both potentials

have again a similar shape there, but differ by a constant. Thus, in the above situation

the exchange potential from the integer particle-number calculation and the exchange

potential from the fractional particle-number treatment are practically identical.

3.3 Concluding remarks

Before closing this chapter, it should be mentioned again that fractional particle numbers

are not essentially necessary for a DFT description of systems at zero temperature.

However, the previous sections show that the concept of fractional particle numbers

can be useful to understand the properties of functionals even in situations involving

integer particle numbers. In particular, the present chapter clearly shows that any given

approximation for the exchange-correlation energy of the form Exc[n] =
∫
f(n(r)) d3r ,

with f(x) being a smooth function with finite derivatives must fail in situations involving

well-separated subsystems. In addition, the discrepancy between the Kohn-Sham band

gap and the true band gap demonstrates the importance of the discontinuities in the

DFT for fractional particle numbers. Having these facts in mind, there is no doubt that

the generalization to fractional particle numbers is a useful concept even in the zero

temperature case.



Chapter 4

The optimized effective potential

(OEP)

As pointed out in the previous two chapters several reasons exist why orbital functionals

are a promising concept for the construction of accurate exchange-correlation potentials.

However, orbital functionals also have a serious drawback: one has to solve a complicated

integral equation to get the exchange-correlation potential. This equation, called the

optimized effective potential (OEP) equation, is the subject of this chapter. Since the

derivation and the final form of the equation differ considerably in the static and time-

dependent theory, both cases are discussed in separate sections.

4.1 Static OEP equation

As mentioned in Chap. 2 the starting point in static Kohn-Sham DFT is an approxima-

tion for the exchange-correlation part Exc of the energy. The corresponding exchange-

correlation potential is then given by the functional derivative of Exc with respect to the

spin density nσ, i.e.,

vxcσ(r) =
δExc[n]

δnσ(r)
. (4.1)

This equation immediately reveals the problem caused by orbital functionals: for them

Exc[n] is not known explicitly but just implicitly via the orbitals, i.e., Exc[{ϕiτ [n]}]1. As

a consequence, the derivative must be calculated by applying the functional chain rule

twice [Sha93, Gör94]. This leads to the expression

vxcσ(r) =
∑

α,β=↑,↓

Nα∑

j=1

∫ ∫ (
δExc[{ϕiτ}]
δϕjα(r′)

δϕjα(r′)

δvSβ(r′′)
+ c.c.

)
δvSβ(r

′′)

δnσ(r)
d3r′′ d3r′ . (4.2)

1In the following it is assumed that Exc and Axc only depend on occupied orbitals. In Appendix A

the general case involving also unoccupied orbitals is discussed.
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The last term on the right side is the inverse of the static density-response function

χSα,β(r, r
′) = δnα(r)/δvSβ(r′) of the Kohn-Sham system. Since this function is diagonal

with respect to the spin variables, the sum over β breaks down and just the sum over α

remains. With the help of first-order perturbation theory the expression

δϕjα(r)

δvSβ(r′)
= δα,β

∞∑

k=1
k 6=j

ϕkα(r)ϕ
∗
kα(r′)

ǫjα − ǫkα
ϕjα(r′) (4.3)

is calculated under the assumption of non-degenerate states. If degenerate states exist

the sum is restricted to all states with ǫkα 6= ǫjα [Kr92a]. Given Eq. (4.3) the response

function can be written in the form

χSα,β(r, r
′) =

δ

δvSβ(r′)

( Nα∑

j=1

ϕ∗
jα(r)ϕjα(r)

)

= δα,β

Nα∑

j=1

∞∑

k=1
k 6=j

ϕ∗
jα(r)ϕkα(r)ϕ∗

kα(r′)ϕjα(r′)

ǫjα − ǫkα
+ c.c. (4.4)

Multiplying both sides of Eq. (4.2) with the response function and using Eq. (4.3) and

Eq. (4.4), one obtains

Nσ∑

j=1

∫
(
vxcσ(r

′)− uxcjσ(r
′)
)
ϕ∗
jσ(r

′)ϕjσ(r)

∞∑

k=1
k 6=j

ϕ∗
kσ(r)ϕkσ(r

′)

ǫjσ − ǫkσ
d3r′ + c.c. = 0 (4.5)

where

uxcjσ(r) =
1

ϕ∗
jσ(r)

δExc[{ϕiτ}]
δϕjσ(r)

. (4.6)

Eq. (4.5) is the optimized effective potential equation for the exchange-correlation po-

tential. As one can expect from the Hohenberg-Kohn theorem this equation fixes the

potential only up to a constant. At this point it is worth mentioning that the same

result can be obtained by using δEv/δvSσ(r) = 0 [Sha53, Tal76, Kr92a], i.e., by choosing

the Kohn-Sham potential vSσ in such a way that the total energy Ev for a fixed external

potential v is minimized. This is the historical reason for the name optimized effective

potential [Sha53, Tal76].

4.1.1 Transformation to coupled differential equations

Eq. (4.5) is not very well suited for a numerical treatment in three dimensions because

of the sum over all occupied and unoccupied Kohn-Sham orbitals. Nevertheless for

spherical systems one can reduce the problem to solving a one-dimensional integral

equation. For the exact-exchange functional this has been done for several atoms by

Talman [Tal76] and Engel [Eng93, Eng94]. For solids Kotani has performed calculations
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using the atomic-sphere approximation [Kot94, Ko95a, Ko95b, Kot96]. A review of all

results for atomic systems can be found in [Gra00].

In order to construct the full three-dimensional optimized effective potential three

possibilities exist. One is by brute force evaluation of the response function with the help

of a basis set and a subsequent inversion of the response function [Stä97, Stä99, Gör94,

Gör99, Iva99, Hir01, Del01, Ham02]. In the second method the Kohn-Sham potential

is expanded in a set of basis functions. The expansion coefficients in this expansion are

then determined in such a way that the total energy is minimized [Yan02]. The third

method, which is discussed in the following, is based on auxiliary functions ψjσ, called

orbital shifts [Kü03a, Kü03b]. Following Krieger, Li and Iafrate [Kr92b], one defines the

orbital shifts as

ψjσ(r) :=
∞∑

k=1
k 6=j

∫
ϕ∗
kσ(r

′)
(
vxcσ(r

′)− u∗xcjσ(r
′)
)
ϕjσ(r

′) d3r′

ǫjσ − ǫkσ
ϕkσ(r) . (4.7)

Actually, this is not exactly the function defined in [Kr92b]. There, pjσ(r) = ψjσ(r)/ϕjσ(r)

is used. Since pjσ becomes singular whenever the Kohn-Sham orbital ϕjσ is zero, it is

much better to work with the orbital shifts ψjσ. With this definition the integral equa-

tion (4.5) becomes

Nσ∑

j=1

ψ∗
jσ(r)ϕjσ(r) + c.c. = 0 . (4.8)

Since ψjσ is the orbital shift of ϕjσ induced by (vxcσ − u∗xcjσ) in first-order perturbation

theory, Eq. (4.8) states that the induced density change

δnσ(r) =

Nσ∑

j=1

|ϕjσ(r) + δϕjσ(r)|2 − |ϕjσ(r)|2 (4.9)

must vanish to first order.

Up to here Eq. (4.5) has just been rewritten. The essential observation now is that

an equation for the orbital shift ψjσ exists which can be solved easily. Acting with the

Kohn-Sham Hamiltonian and the Kohn-Sham eigenvalue on ψjσ, one obtains

(
hSσ(r)− ǫjσ

)
ψjσ(r) = −

(
vxcσ(r)− u∗xcjσ(r)− (v̄xcjσ − ū∗xcjσ)

)
ϕjσ(r) (4.10)

where

v̄xcjσ =

∫

ϕ∗
jσ(r) vxcσ(r)ϕjσ(r) d

3r (4.11)

and

ūxcjσ =

∫

ϕ∗
jσ(r)uxcjσ(r)ϕjσ(r) d

3r . (4.12)
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This equation is singular since to every solution the Kohn-Sham orbital ϕjσ can be

added. However, this ambiguity is resolved by the condition
∫

ψ∗
jσ(r)ϕjσ(r) d

3r = 0 (4.13)

which can be easily proven with the definition of ψjσ (4.7). In the case of any degeneracies

ψjσ must be orthogonal to all orbitals ϕlσ with ǫlσ = ǫjσ [Kr92a].

To express the exchange-correlation potential in terms of the orbitals and orbital

shifts one multiplies Eq. (4.8) with the exchange-correlation potential and replaces the

term vxcσ ψ
∗
jσ with the help of Eq. (4.10). Eq. (4.8) and the Kohn-Sham equations

(hSσ − ǫjσ)ϕjσ(r) = 0 can then be used to obtain

vxcσ(r) =
1

2nσ(r)

Nσ∑

j=1

{

|ϕjσ(r)|2
(
uxcjσ(r) + (v̄xcjσ − ūxcjσ)

)

−~
2

m
∇ ·

(
ψ∗
jσ(r)∇ϕjσ(r)

)
}

+ c.c. (4.14)

Although still being an integral equation for the exchange-correlation potential, this

equation can be solved semi-analytically [Kr92a]. Multiplying Eq. (4.14) by |ϕlσ(r)|2
and integrating over space yields

v̄xclσ = w̄lσ +

Nσ∑

j=1

Mljσ

(
v̄xcjσ −

1

2
(ūxcjσ + ū∗xcjσ)

)
(4.15)

where

w̄lσ =

∫ |ϕlσ(r)|2
nσ(r)

Nσ∑

j=1

{

|ϕjσ(r)|2
1

2

(
uxcjσ(r) + u∗xcjσ(r)

)

− ~
2

2m
∇ ·

(
ψ∗
jσ(r)∇ϕjσ(r) + ψjσ(r)∇ϕ∗

jσ(r)
)
}

d3r (4.16)

and

Mljσ =

∫ |ϕlσ(r)|2 |ϕjσ(r)|2
nσ(r)

d3r . (4.17)

The matrix equation (4.15) determines the averaged terms v̄xclσ. Again, the exchange-

correlation potential is fixed only up to an additive constant. This is determined by the

condition [Kr92b, Gra00]

v̄xcNσσ − ūxcNσσ = 0 . (4.18)

This condition guarantees that the exchange-correlation potential vanishes at infinity

for the regions dominated by the highest-occupied orbital. If this orbital has a nodal

surface which extends out to infinity the potential does not vanish there and, as a con-

sequence, the exchange-correlation potential goes to different asymptotic constants for
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different spatial directions [Kr92b, Del02, Kü03b]. In a practical calculation Eq. (4.18)

is simply enforced by restricting the sum in Eq. (4.15) to the first Nσ − 1 terms, i.e.,

by neglecting the term corresponding to the highest-occupied orbital ϕNσσ. The crucial

point in Eq. (4.14) is that the exchange-correlation potential is expressed by just the

occupied orbitals and their corresponding orbital shifts. Thus, in order to obtain the

optimized effective potential only this equation and the ones for the orbital shifts and

the orbitals must be solved self-consistently. This can be done in a straight-forward

manner as discussed in Chap. 5 and [Kü03a, Kü03b].

Another advantage of replacing the integral equation (4.5) by the set of coupled

differential equations is that one can easily construct an approximate solution to the

exact optimized effective potential [Kr92a, Kr92b]. It is obtained by neglecting the terms

involving the orbital shifts, i.e., neglecting the ∇ ·
(
. . .

)
term. This approximation is

called the KLI approximation [Kr92b, Gra00]. The exchange-correlation potential is

given by

vKLI
xcσ (r) =

1

2nσ(r)

Nσ∑

j=1

|ϕjσ(r)|2
(
uxcjσ(r) + (v̄xcjσ − ūxcjσ)

)
+ c.c. (4.19)

Although this approximation gives excellent results for the energy and possesses many

properties of the exact solution [Kr92a, Li93, Gra00], it can fail dramatically in some

systems when response properties are calculated [Kü04a]. This is the reason for the

importance of the exact solution scheme described above. In addition, this is also the

reason why it is so desirable to have a solution scheme beyond the KLI approximation

for the time-dependent equation derived in the next section.

4.2 Time-dependent OEP equation

In the original derivation of the time-dependent optimized effective potential equation

[Ull95] Ullrich et al. have used the Runge-Gross action and required stationarity with

respect to variations of the Kohn-Sham potential. Although this procedure leads to the

correct result, it suffers from the deficiencies of the Runge-Gross action discussed in

Chap. 2. Thus, the following derivation is based on the approach due to van Leeuwen

which does not require any stationarity arguments [Lee98]. The starting point in this

approach is an expression for the exchange-correlation action functional Axc[n] in terms

of the Kohn-Sham orbitals, i.e., Axc[n] = Axc[{ϕiα[n]}]. As shown in Chap. 2 the

exchange-correlation potential is given by

vxcσ(r, t) =
δAxc[{ϕiα[n]}]
δnσ(r, τ)

∣
∣
∣
∣
nσ(r,t)

. (4.20)

In this expression the pseudotime τ parameterizes the Keldysh contour [Kel65, Lee96,

Lee98, Lee01, Lee05] and δ /δnσ(r, τ)|nσ(r,t) is the derivative on the Keldysh contour
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taken at the physical time-dependent density nσ(r, t) [Lee98]. Using the functional

chain rule and the Kohn-Sham density-response function χS(r, τ ; r
′, τ ′) on the Keldysh

contour, one can express the exchange-correlation potential on this contour by
∫ ∫

C
χSσ,σ(r, τ ; r

′, τ ′) vxcσ(r
′, τ ′) dt′ d3r′ =

Nσ∑

j=1

∫ ∫

C

δAxc[{ϕiτ}]
δϕjσ(r′, τ ′)

δϕjσ(r
′, τ ′)

δvSσ(r, τ)
+ c.c. dt′ d3r′ . (4.21)

As in Chap. 2 the expression
∫

C dt′ denotes
∫ τf
τi
t′(τ ′) dτ ′ with t′(τ) = dt(τ)/dτ . τi

is the initial and τf the final pseudotime argument corresponding to the physical time

t0. In a lengthy calculation (see Appendix A) the Kohn-Sham density-response function

χS(r, τ ; r
′, τ ′) and δϕjσ(r

′, τ ′)/δvSσ(r, τ) can be evaluated on the Keldysh contour. Using

the resulting expressions in Eq. (4.21) and transforming to physical time one obtains the

integral equation

Nσ∑

j=1

i

~

∫ ∫
(
vxcσ(r

′, t′)− uxcjσ(r
′, t′)

)
ϕ∗
jσ(r

′, t′)ϕjσ(r, t)

×
∞∑

k=1

ϕ∗
kσ(r, t)ϕkσ(r

′, t′) θ(t− t′) dt′ d3r′ + c.c. = 0 (4.22)

where

uxcjσ(r, t) =
1

ϕ∗
jσ(r, t)

δAxc[{ϕiτ}]
δϕjσ(r, τ)

∣
∣
∣
∣
∣
ϕiτ=ϕiτ (r,t)

. (4.23)

This is the time-dependent optimized effective potential (OEP) equation for the exchange-

correlation potential. As one can expect from the Runge-Gross theorem the exchange-

correlation potential is fixed only up to a purely time-dependent function. Eq. (4.22)

shows that the exchange-correlation potential at time t depends on all prior times t′.

Solving this equation is an extremely demanding task due to the time integral and even

for one-dimensional problems no such calculations have been performed up to date.

4.2.1 Transformation to coupled differential equations

To derive a practical solution scheme for the time-dependent OEP equation the integral

equation for the potential is transformed into a set of coupled differential equations. As

in the static case this can be done by defining orbital shifts ψjσ [Ull95, Mu06a]. These

shifts are given by

ψjσ(r, t) := − i
~

∫ ∫
(
vxcσ(r

′, t′)− u∗xcjσ(r
′, t′)

)
ϕjσ(r

′, t′)

×
∞∑

k=1
k 6=j

ϕ∗
kσ(r

′, t′)ϕkσ(r, t) θ(t− t′) dt′ d3r′ . (4.24)
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Again, this definition differs from the function pjσ(r, t) = −ψ∗
jσ(r, t)/ϕ

∗
jσ(r, t) used by

Ullrich et al. [Ull95]. A straightforward calculation shows that ψjσ satisfies the equation

(
hSσ(r, t) − i~∂t

)
ψjσ(r, t) = −

(
vxcσ(r, t)− u∗xcjσ(r, t)

− (v̄xcjσ(t)− ū∗xcjσ(t))
)
ϕjσ(r, t) (4.25)

where

v̄xcjσ(t) =

∫

ϕ∗
jσ(r, t) vxcσ(r, t)ϕjσ(r, t) d

3r (4.26)

and

ūxcjσ(t) =

∫

ϕ∗
jσ(r, t)uxcjσ(r, t)ϕjσ(r, t) d

3r . (4.27)

Due to the orthogonality of the time-dependent Kohn-Sham orbitals the relation
∫

ψ∗
jσ(r, t)ϕjσ(r, t) d

3r = 0 (4.28)

holds. With the definition of the time-dependent orbital shifts the integral equation for

the exchange-correlation potential, Eq. (4.22), becomes

Nσ∑

j=1

ψ∗
jσ(r, t)ϕjσ(r, t) + c.c. = g(r, t) (4.29)

where

g(r, t) =
i

~

Nσ∑

j=1

|ϕjσ(r, t)|2
∫

(
ūxcjσ(t

′) − ū∗xcjσ(t
′)
)
θ(t− t′) dt′ . (4.30)

The function g vanishes for a large class of functionals including all functionals which

depend on {ϕiα} only through the combination ϕiα(r, t)ϕ∗
iα(r′, t) [Gro96]. The best-

known example for such a functional is the exact-exchange functional, Eq. (2.34). In

analogy to the static case the exchange-correlation potential can be expressed in terms

of the orbitals and orbital shifts. Multiplying Eq. (4.29) by vxcσ and using the time-

dependent Kohn-Sham equations in combination with the equation-of-motion for ψjσ,

one can deduce (see Appendix B)

vxcσ(r, t) + f(r, t) =
1

2nσ(r, t)

Nσ∑

j=1

{

|ϕjσ(r, t)|2
(
uxcjσ(r, t) + (v̄xcjσ(t)− ūxcjσ(t))

)

− ~
2

m
∇ ·

(
ψ∗
jσ(r, t)∇ϕjσ(r, t)

)
}

+ c.c. (4.31)

The difference between the static and the time-dependent equation for vxcσ is given by

f(r, t) =
1

2nσ(r, t)

{

− ~
2

2m
∇2 g(r, t) + i~∂t

Nσ∑

j=1

(
ψ∗
jσ(r, t)ϕjσ(r, t) − c.c.

)
}

. (4.32)
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Eq. (4.31) can be solved semi-analytically with the same procedure as in the the static

case. All orbitals, potentials, and orbital shifts are just replaced by their time-dependent

analogon and w̄lσ is slightly modified,

w̄lσ(t) = w̄stat
lσ (t) −

∫

|ϕlσ(r, t)|2 f(r, t) d3r . (4.33)

Here, w̄stat
lσ (t) is the static expression of w̄lσ (Eq. (4.16)) with the time-dependent orbitals,

potentials, and orbital shifts.

The previous equations show that the exact time-dependent OEP can be obtained by

solving a set of coupled differential equations. However, the solution of these equations

requires initial conditions for the orbitals and orbital shifts. In most real-time simula-

tions the system of interest is in its ground state before the time-dependent external

perturbation is turned on [Ul98b, Pet99, Cal00, Kun03, Rei03, And04, Ca04a, Chu05].

Thus, the ground-state orbitals and orbital shifts are natural candidates for the initial

conditions. Since the system must remain stationary without a time-dependent external

potential, it is necessary to prove that the time-dependent OEP scheme reduces to the

static scheme in this situation. In order to prove that this is indeed the case the or-

bitals in Eq. (4.22) are replaced by the stationary solution ϕjσ(r, t0) exp(−iǫjσ(t− t0)/~)

of the time-dependent Kohn-Sham equations with t0 being an arbitrary time before the

perturbation is turned on. It is reasonable to assume that in this situation the exchange-

correlation part of the action reduces to the time integral over the exchange-correlation

energy [Gro96]. Thus, the stationary orbital-dependent potential ustat
xcjσ becomes

ustat
xcjσ(r, t) =

1

ϕ̃∗
jσ(r)

δExc[{ϕ̃iτ}]
δϕ̃jσ(r)

∣
∣
∣
∣
∣
ϕ̃i(r)=ϕiσ(r) exp(−iǫjσ(t−t0)/~)

. (4.34)

This expression does not depend on time if one makes the assumption that Exc[{ϕ̃iτ}] is

invariant under phase transformations ϕj → ϕj exp(−iϑj). This is quite reasonable since

Exc is a density functional and the density does not change under such transformations.

The function g on the right-hand side of Eq. (4.29) also vanishes in this case because

at some arbitrary time ustat
xcjσ can be chosen real-valued. The time-dependent optimized

effective potential equation is then given by

Nσ∑

j=1

i

~

∫ ∫
(
vstat
xcσ (r′)− ustat

xcjσ(r
′)
)
ϕ∗
jσ(r

′)ϕjσ(r) (4.35)

×
∞∑

k=1
k 6=j

ϕ∗
kσ(r)ϕkσ(r

′) exp
(
− i(ǫjσ − ǫkσ)(t− t′)/~

)
θ(t− t′) dt′ d3r′ + c.c. = 0 .

The integral over t′ can be calculated and one obtains the static optimized effective

potential equation

lim
η→0+

Nσ∑

j=1

∫
(
vstat
xcσ (r′)− ustat

xcjσ(r
′)
)
ϕ∗
jσ(r

′)ϕjσ(r)

∞∑

k=1
k 6=j

ϕ∗
kσ(r)ϕkσ(r

′)

ǫjσ − ǫkσ − iη
d3r′ + c.c. = 0 .
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For the last step it is necessary that the lower time boundary is −∞. For a finite lower

boundary the exchange-correlation potential has an unphysical time dependence due to

memory effects (which are not properly accounted for by a finite time integral [Gro96]).

The same result can be obtained by working with the set of coupled differential

equations instead of the integral equation. Since

ϕjσ(r, t) = ϕjσ(r, t0) exp
(
− iǫjσ(t− t0)/~

)
(4.36)

holds for a time-independent Hamiltonian, Eq. (4.29) suggests

ψjσ(r, t) = ψjσ(r, t0) exp
(
− iǫjσ(t− t0)/~

)
. (4.37)

Feeding this ansatz into Eq. (4.25) and using the same arguments for ustat
xcjσ as above,

one obtains

(
hSσ(r)− ǫjσ

)
ψjσ(r, t0) = −

(
vxcσ(r)− ustat ∗

xcjσ (r)− (v̄xcjσ − ūstat ∗
xcjσ )

)
ϕjσ(r, t0) .

(4.38)

Thus, ψjσ(r, t0) must satisfy the equation for the static orbital shifts. Since the difference

f between the static and time-dependent equation for vxcσ also vanishes (Eq. (4.32)), the

time-dependent scheme is reduced exactly to the static one for a system in its ground

state.

4.2.2 Approximations to the time-dependent OEP

In addition to the previously mentioned advantages the orbital shifts also provide a good

starting point for the construction of approximations to the exact OEP. The best-known

approximation derived from Eq. (4.31) is the time-dependent KLI approximation already

mentioned in the previous chapter. This approximation has been used successfully to cal-

culate time-dependent processes in the linear, non-linear, and non-perturbative regime,

e.g., ionization processes and high-harmonic generation. Applications of it can be found

in various fields of physics, e.g., in atomic [Gro96, Ton98, Ton01, Chu05], molecular

[Ch01a, Ch01b], and cluster physics [Ul98a, Ull00, Mar01, Vén01, Ngu04]. It is obtained

from Eq. (4.31) by neglecting all terms involving ψjσ, i.e., by setting ψjσ to zero. Since

the neglected terms vanish when averaged over the density, i.e.,

Nσ∑

j=1

∫
{
− ~

2

m
∇ ·

(
ψ∗
jσ(r, t)∇ϕjσ(r, t)

)
− i~∂t

(
ψ∗
jσ(r, t)ϕjσ(r, t)

)}
d3r + c.c. = 0 ,

(4.39)

the time-dependent KLI approximation can be regarded as a mean field approximation

to the exact potential [Gra00, Ull95]. The first part in Eq. (4.39) is zero since it can

be transformed into a surface integral which gives no contribution for exponentially
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decaying orbitals. Due to Eq. (4.28) the second part vanishes after interchanging the

time derivative and the space integral. It is worth mentioning that it is possible that

even without the space integral the term involving the time derivative vanishes. Since

Eq. (4.29) is just an equation for the real part of
∑

j ψ
∗
jσ ϕjσ it is not possible to make any

statement about the time derivative of the imaginary part. Evaluating the expression

i~∂t
∑Nσ

j=1

(
ψ∗
jσ(r, t)ϕjσ(r, t) − c.c.

)
with the equations-of-motion for the orbitals and

orbital shifts (Eq. (2.26) and Eq. (4.25)) leads back to the equation for the exchange-

correlation potential, Eq. (4.31). Thus, setting the term i~∂t
∑Nσ

j=1

(
ψ∗
jσ(r, t)ϕjσ(r, t) −

c.c.
)

to zero is in consistency with the equations for the orbitals, orbital shifts, and the

exchange-correlation potential.

In order to go one step beyond the time-dependent KLI approximation one can

generalize an idea of Krieger et al. and approximate the orbital shifts by [Mu06a]

ψjσ(r, t) ≈ bσ(t)
(
vKLI
xcσ (r, t) − u∗xcjσ(r, t) − (v̄KLI

xcjσ(t)− ū∗xcjσ(t))
)
ϕjσ(r, t)

=: bσ ψ̃jσ(r, t) . (4.40)

This can be viewed as a natural extension of the time-dependent KLI approximation

because by construction
∑Nσ

j=1 ψ̃jσ(r)ϕjσ(r, t) + c.c. = 0, i.e., the approximate shifts

formally fulfill an equation in analogy to the OEP equation. Like the exact orbital shifts

the approximate orbital shifts are orthogonal to the corresponding Kohn-Sham orbitals.

The real-valued bσ(t) is determined from the condition that the approximate orbital

shifts bσ ψ̃jσ(r, t) fulfill Eq. (4.25) ‘on average’, i.e., summed over all j and integrated

over space. This condition leads to the equation

i~∂t bσ(t) = 1− aσ(t) bσ(t) (4.41)

for bσ(t) where

aσ(t) =

∑Nσ
j=1

∫
ψ̃∗
jσ(r, t)

(
i~∂t − hSσ(r, t)

)
ψ̃jσ(r, t) d

3r
∑Nσ

j=1

∫
ψ̃∗
jσ(r, t) ψ̃jσ(r, t) d

3r
. (4.42)

For a stationary state the exchange-correlation potential and the orbital-dependent po-

tential in Eq. (4.40) are time-independent and thus, i~∂t ψ̃jσ(r, t) = ǫjσ ψ̃jσ(r, t) holds.

This observation can be used to avoid the critical evaluation of the time derivative of

the orbital shifts in Eq. (4.42) by making the ‘adiabatic’ approximation

∑

j

∫

ψ̃∗
jσ(r, t) i~∂t ψ̃jσ(r, t) d

3r ≈
∑

j

∫

ψ̃∗
jσ(r, t) ǫj(t) ψ̃jσ(r, t) d

3r (4.43)

where ǫjσ(t) = 〈ϕjσ(t)|hSσ(t)|ϕjσ(t)〉. As a consequence of this approximation, the right-

hand side of Eq. (4.41) becomes purely real and, since bσ(t) is also real, the time deriva-

tive of bσ(t) must vanish leading to bσ(t) = bσ(0). The initial value bσ(0) is obtained

from the corresponding ground-state formalism [Kr92b, Mu06a]. It is interesting to note

that the same result can be obtained by assuming that
∫
ψ̃∗
jσ(r, t) i~∂t ψ̃jσ(r, t) d

3r is
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Figure 4.1: The exact-exchange potential of a one-dimensional H16 chain with alter-

nating bond lengths of one and two a0. The difference between the exact OEP potential

and the ’one-step beyond KLI’ result hardly can be seen. Nevertheless the static polar-

izability is considerably different – see Tab. 4.1.

purely real or, in other words, by excluding any exponentially growing or decreasing

solutions.

At present not many applications of the previous approximation exist. However, in

the case of a one-dimensional Hydrogen chain in combination with the exact-exchange

potential the results are quite promising. As discussed in more detail in the next chapter

Hydrogen chains provide a severe benchmark for approximations to the exact OEP. As

Fig. 4.1 shows, the previous approximation, labeled ‘OSBK’, is almost identical to the

exact-exchange OEP. For comparison, the KLI potential differs clearly from the exact

potential. Although the ‘OSBK’ potential is very similar to the exact OEP, the polariz-

αKLI αOSBK αOEP ∆

H8 29.1 28.3 27.0 62

H12 51.6 49.4 46.2 59

H16 75.4 71.5 66.0 59

Table 4.1: Static polarizability of three different H chains in different approximations.

The values were obtained from applying a small finite electric field and are given in a.u.

∆ = (αOSBK − αOEP)/(αKLI − αOEP) is given in %.
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ability can differ considerably as Tab. 4.1 shows. Nevertheless the ‘OSBK’ approximation

improves significantly upon the polarizabilities obtained from the standard KLI approx-

imation. Beside this improvement the ‘OSBK’ approximation also offers a possibility to

get an idea about the quality of the approximate potentials in situations where the exact

OEP is not known. In any case the ‘OSBK’ approximation offers a promising method

to go beyond the standard KLI approximation at very low computational cost.



Chapter 5

Numerical study of the OEP

In Chap. 4 the static and the time-dependent optimized effective potential equation

have been derived and transformed into a set of coupled differential equations. Since

it is in general not possible to solve these equations analytically, a numerical treatment

is necessary. In the present chapter numerical methods to solve the set of differential

equations are investigated. For the exchange-correlation functional the exact-exchange

orbital functional, Eq. (2.34), is used.

5.1 Introductory remarks

The physical systems studied in the following are molecular chains of hydrogen atoms

with alternating bond lengths. Since for these systems the KLI approximation fails

dramatically [Gis99, Kü04a], such chains provide a severe benchmark for the quality of

the full OEP. Although not existing in nature, hydrogen chains are chosen since they

mimic the same features as more complicated molecular chains, e.g., high and directional

electron mobility and large response coefficients. At the same time they possess a simple

electronic structure with one electron per atom. In addition, hydrogen chains are the

most difficult to describe due to the importance of the self-interaction error for single

Hydrogen atoms.

To reduce the numerical effort the movement of the electrons is restricted to one

dimension. This restriction has the additional advantage that one can easily plot and

study all quantities, e.g., the Kohn-Sham potential. Especially for developing new meth-

ods this is a huge benefit. However, using a one-dimensional grid also has a drawback:

the use of the standard Coulomb interaction is not possible. One has to replace it by

a ‘soft’ Coulomb potential given by −1/
√
z2 + 0.3 [Jav88, Lei05] with z being the spa-

tial coordinate. The reason for this is that in one dimension electrons are not able to

pass each other due to the singularity in the Coulomb potential. Despite the modified

interaction, the one-dimensional approximation leads to qualitatively reasonable results

as can be seen in Fig. 5.1. There, the exact-exchange ground-state potential of H8 in
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Figure 5.1: Exchange potential vx of H8 in the ground state. The exact potential and

the KLI potential are plotted. Left: vx from a calculation in three dimensions taken from

[Kü04a]. Right: vx from a calculation in one dimension with alternating H-H distances

of 1.2 and 2.0 a0. In both cases the qualitative features are the same.

one dimension and in three dimensions is plotted. Clearly, the shapes of the potential

are very similar.

5.2 Static OEP and Kohn-Sham equations

In the following an equidistant real-space grid is used for the description of the system.

The grid consists of 800 grid points with a spacing of ∆ = 0.05 a0. Outside the grid the

Kohn-Sham orbitals vanish. This real-space approach has several advantages over other

methods, e.g., Gaussian basis functions. First, the real-space grid is one of the most

unbiased basis sets since the only parameters are the number of grid points and the grid

spacing. Second, real-space methods are very intuitive and can be easily parallelized

[Kro06]. These aspects are especially important from a practical point of view. Finally,

real-space grids are clearly superior to basis functions in situations in which the shape of

the density changes dramatically [Cal00, Ma03b]. This fact is especially important if one

is interested in a description of strong non-linear processes, e.g., ionization processes,

within time-dependent DFT.

To construct the optimized effective potential an iterative procedure based on the

Kohn-Sham orbitals and orbital shifts is used [Kü03a, Kü03b, Kü04b]. The main idea

in this approach is to solve the Kohn-Sham equations (Eq. (2.21)), the equations for

the orbital shifts (Eq. (4.10)) and the equation for the exchange-correlation potential

(Eq. (4.14)) self-consistently by an iterative procedure. The starting point for this itera-

tion is a guess for the Kohn-Sham orbitals ϕjσ. With these orbitals the KLI potential is

constructed as a first approximation. This approximation for the potential can then be

used to solve the Kohn-Sham equations for the Nσ lowest eigenvalues and corresponding

orbitals. With the new orbitals the potential can be updated and the new lowest eigen-
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values and orbitals can be calculated. This procedure is repeated until self-consistency

is obtained. From the resulting quantities one can then calculate a first guess for the

orbital shifts ψjσ via Eq. (4.10) and the orthogonality condition, Eq. (4.13). With these

orbital shifts a better approximation for vxcσ can be constructed. Then the Kohn-Sham

equations are again solved self-consistently but this time with fixed exchange-correlation

potential. With the resulting eigenvalues and orbitals one can construct new orbital

shifts and a new vxcσ. This is done until self-consistency with respect to the orbitals,

orbital shifts and the Kohn-Sham potential is obtained.

Going through this procedure, one can see that three different problems must be

tackled. First, it is necessary to solve the eigenvalue equation for a fixed Hamiltonian.

Second, for a given potential and given orbitals Eq. (4.10) must be solved to obtain the

orbital shifts. Finally, Eq. (4.14) must be evaluated to obtain the exchange-correlation

potential. In the following all three tasks will be discussed separately.

5.2.1 Solving the eigenvalue equation

To solve the eigenvalue problem for a fixed Hamiltonian it is necessary to approximate

the kinetic energy on the real-space grid. This is done by a discrete approximation

to the Laplacian. Since in one dimension one can afford to work with a small grid

spacing, the lowest order approximation is sufficient. In one dimension it is given by

[Pre92, Ame92, Tve98]

d2

dz2
f(z)

∣
∣
∣
∣
z=zi

≈ f(zi+1)− 2f(zi) + f(zi−1)

∆2
(5.1)

Thus, the Kohn-Sham Hamiltonian is represented by a sparse matrix with the elements

(hSσ)ij =

(
~

2

m∆2
+ vSσ(zi)

)

δi,j −
~

2

2m∆2
(δi,j−1 + δi,j+1) . (5.2)

A well suited algorithm for obtaining only the lowest eigenvectors and eigenvalues of

such sparse matrices is the damped gradient algorithm [Rei82, Blu92, Kü04b]. This

algorithm makes use of the fact that matrix-vector multiplications with sparse matrices

can be carried out very fast due to the simple structure of the matrix. The main idea

of this algorithm is to project out the eigenvalue of each eigenvector by applying hSσ

to a first guess and then damping the eigenvectors corresponding to higher eigenvalues

stronger than the eigenvector of the lowest eigenvalue. After repeating this procedure

often enough just the lowest eigenvalue and eigenvector survives. To obtain the higher

eigenvalues the lower eigenvectors are projected out from the iterative solution after each

step and thus, the next larger eigenvalue is found. To clarify the exact procedure the

different steps with suppressed arguments and spin indices are given in detail in the next

paragraph.

First, one makes a guess for ϕj and initializes

ϕ
(0)
j = ϕ

(init)
j , j = 1, . . . ,N . (5.3)
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This guess should not be orthogonal to any of the N exact eigenvectors. Then the

iteration is carried out for increasing j = 1, . . . ,N according to

ϕ′
j = ϕ

(p)
j − δ

T + Einv

(
hS − 〈ϕ(p)

j |hS |ϕ(p)
j 〉

)
ϕ

(p)
j

ϕ′′
j = ϕ′

j −
j−1
∑

k=1

ϕ
(p)
k 〈ϕ

(p)
k |ϕ′

j〉

ϕ
(p+1)
j = [〈ϕ′′

j |ϕ′′
j 〉]−1/2 ϕ′′

j . (5.4)

In the case of H4 the step size is δ = 1.5 and Einv = 4.5 a.u. is chosen. In general, δ ≈ 1

can be chosen and Einv should be roughly the depth of the Kohn-Sham potential. In the

first equation the inverse of the kinetic operator T is needed. However, the full inversion

of this operator can be avoided by solving the inhomogeneous linear equation

(T + Einv)φ =
(
hS − 〈ϕ(p)

j |hS |ϕ(p)
j 〉

)
ϕ

(p)
j (5.5)

in order to obtain

φ =
1

T + Einv

(
hS − 〈ϕ(p)

j |hS |ϕ(p)
j 〉

)
ϕ

(p)
j . (5.6)

To measure the accuracy of an approximate eigenvalue the energy variance is used, i.e.,

∆ǫ =
√

〈ϕj |h2
S |ϕj〉 − 〈ϕj |hS |ϕj〉 2 . (5.7)

The iteration is carried on until the variance for all ϕj is smaller than a given accuracy.

This is chosen to be 5.0 · 10−6 a.u.

For the self-consistent solution of the Kohn-Sham equations (with constant orbital

shifts) the same criterion is used. With the new orbitals the Hamiltonian is updated

and Eq. (5.7) is evaluated with the new hS. Again, if the variance is small enough

the iteration of the Kohn-Sham equations is terminated. During the whole procedure

it is not necessary to fully converge the eigenvalues for a fixed Hamiltonian since this

Hamiltonian changes in the next step. Instead of calculating the ‘exact’ eigenvalues for

each fixed Hamiltonian, the Kohn-Sham potential is recalculated each time the ϕj are

updated according to Eq. (5.4) until ∆ǫ ≤ 5.0 · 10−6 for all orbitals.

5.2.2 Obtaining the orbital shifts

At first sight the determination of the orbital shifts ψjσ for given Kohn-Sham orbitals and

potential seems to be a trivial task. All one has to do is to solve the inhomogeneous linear

equation (4.10). However, solving this inhomogeneous linear equation is by no means

trivial. The reason for this is, as already mentioned in Chap. 4, that Eq. (4.10) is singular.

Only with the additional orthogonality condition it can be uniquely solved. Thus, a

special numerical procedure is needed to obtain just the inhomogeneous solution. One

such algorithm is the singular value decomposition [Pre92]. But since this algorithm is
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too expensive for the present purpose, a different method, namely the conjugate gradient

method [Pre92, Gre97], is used [Kü03a]. In this method the solution of a linear equation

is constructed iteratively from an initial guess ψinit
jσ . Writing Eq. (4.10) in the form

Ajσψjσ = rsjσ, the first correction to the initial guess is proportional to rsjσ−Ajσψinit
jσ .

This correction is orthogonal to ϕjσ because Ajσϕjσ = 0 and ϕjσ ⊥ rsjσ. Since the

following steps proceed analogously, the final result is also orthogonal to ϕjσ if ψinit
jσ

is chosen orthogonal to ϕjσ. In a practical calculation ψinit
jσ ≡ 0 is chosen to satisfy

this constraint. Numerical inaccuracies in the process can lead to contributions of ϕjσ

in ψjσ but these can be easily removed by an orthogonalization procedure. Since the

conjugate gradient method is an iterative procedure, it requires a stop criterion. Different

possibilities for this exist [Pre92]. For the present calculations the iteration is stopped

if ψjσ satisfies

|Ajσψjσ − rsjσ|
|rsjσ|

< 5.0 · 10−6 . (5.8)

with | . . . | being the standard vector norm.

5.2.3 Evaluating the exchange-correlation potential

To obtain the exact optimized effective potential one last step has to be taken: the

construction of the potential for given orbitals and orbital shifts according to Eq. (4.14).

Two problems must be tackled for this. First, the averaged values v̄xcjσ − ūxcjσ must

be obtained. This can be done either by the procedure described below Eq. (4.14) or

by an iterative process. In the iterative method vxcjσ is calculated with an initial guess

for v̄xcjσ − ūxcjσ. With this new vxcjσ one can calculate new values for v̄xcjσ − ūxcjσ.

Again, these can be used to obtain a better potential. This is done until convergence is

achieved. The convergence is checked by

|v(p+1)
xcjσ − v

(p)
xcjσ|

Ngrid
< δv (5.9)

with Ngrid the number of grid points, p the iteration index, and δv = 5.0 · 10−6.The

second problem associated with Eq. (4.14) is the evaluation of the density denominator.

Analytically this is not a problem since
|ϕjσ(r)|2

nσ(r) ≤ 1 and the orbital shifts fall off at least

as fast as the corresponding orbitals or even faster [Del01, Kü03b, Kör06]. Nevertheless

numerical inaccuracies can strongly magnify during the iteration and spoil the whole

procedure. For the ground-state KLI potential the problem is not severe because the

inaccuracies in the denominator are canceled by the inaccuracies of |ϕjσ(r)|2 in the

numerator. But for the exact potential including the ∇ ·
(
. . .

)
term the division by

the density is critical. A detailed discussion of the encountered problems can be found

in the diploma thesis of Körzdörfer [Kör06]. In the present context these problems are

circumvented by adding a suitable chosen function to the density, i.e., replacing the
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Figure 5.2: Left: Energy of the occupied Kohn-Sham eigenvalues in dependence of the

cut-off δc for H4. The higher eigenvalue ǫ2 is shifted down by 0.1625 a.u. The horizontal

bars indicate the values obtained by the iteration scheme without cut-off parameter.

Right: The function S at the end of the iteration. Sδ indicates the result obtained with

a cut-off δc = 0.001. SS is the result obtained by updating vx according to Eq. (5.11).

1/nσ(r) by 1/(nσ(r) + fcut(r)). The simplest choice for the added function is fcut ≡ δc

with δc being a constant. Since it is not guaranteed that this procedure can yield the

correct OEP, this workaround should be rather considered as an approximation than a

way to construct the exact OEP. In the limit δc →∞ the approximation reduces to the

KLI approximation.

Despite its approximative character the just described procedure can lead to very

accurate results as Tab. 5.1 and Fig. 5.2 shows. In this figure the lowest eigenvalues

for an H4 chain are shown for different δc. For comparision the values obtained from a

different method (see below) are also indicated by horizontal bars. Since this method

does not have any cutt-off parameter, it serves as a benchmark for the iteration using δc.

Fig. 5.2 also shows the function S (defined in Eq. (5.10)) for both schemes. Since this

function vanishes for the exact potential, it is a measure for the quality of the obtained

solution. Both figures and the values in Tab. 5.1 clearly demonstrate that the method

presented above can be used to obtain reliable results, at least for H4.

Etot Ekin EH Ex Eext

S-method -7.8715 0.8374 5.9325 -2.2385 -12.4029

δc-method -7.8715 0.8372 5.9323 -2.2384 -12.4027

Table 5.1: Electronic energies of H4 in a.u. obtained from different iteration schemes.

S-method denotes the iterative procedure of [Kü03a]. The δc-method uses the explicit

formula with δc = 0.001 for vx. The alternating distance between H atoms is 1 and 2 a0.

The grid consists of 800 grid points with a distance of 0.05 a0.
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Before finishing this section, a brief description of a different scheme for obtaining the

static exchange-correlation potential must be presented [Kü03a]. Instead of evaluating

Eq. (4.14), this method uses the function

Sσ(r) =

Nσ∑

j=1

ψ∗
jσ(r)ϕjσ(r) + c.c. (5.10)

which, as already pointed out above, is a measure for the error inherent in an approx-

imative solution. For given orbitals and orbital shifts the function S can be calculated

and used to construct a new exchange-correlation potential according to

v(p+1)
xcσ (r) = v(p)

xcσ(r) + c Sσ(r) . (5.11)

Eq. (4.18) is subsequently enforced by adding the constant ūxcNσσ − v̄
(p+1)
xcNσσ

to the

potential. With the new potential at hand one can calculate new orbitals and orbital

shifts which give rise to a new S. The parameter c > 0 in Eq. (5.11) has the dimension

energy times volume. For H4 convergence is achieved for a value of approx. 3 in atomic

units. The main advantage of this method is that it does not require the evaluation of

Eq. (4.14), i.e., it avoids all problems associated with the division by the density.

5.3 Time-dependent OEP and Kohn-Sham equations

The presented algorithm to construct the ground-state exchange-correlation potential

suggests a method to obtain the time-dependent potential. Again, the idea is to use

the orbital shifts ψjσ to get the potential. In order to do this it is necessary to solve

the coupled set of equations consisting of the time-dependent Kohn-Sham equations

(Eq. (2.26)), the equations-of-motion for the orbital shifts (Eq. (4.25)), and the equation

for vxcσ (Eq. (4.31)). For the time-dependent Kohn-Sham equations a formal solution

can be given in terms of the propagator (see, e.g., [Sha80])

ϕjσ(r, t) = U(t, t0)ϕjσ(r, t0) = T exp

{

− i

~

∫ t

t0

hSσ(r, t
′) dt′

}

ϕjσ(r, t0) . (5.12)

T exp{. . . } is the time-ordered exponential. In more detail the propagator U(t, t0) is

given by

U(t, t0) =

∞∑

k=0

(−i~)k

k!

∫ t

t0

. . .

∫ t

t0

T
{
hSσ(r, t1) . . . hSσ(r, tk)

}
dt1 . . . dtk . (5.13)

Using the property U(t, t0) = U(t, t1)U(t1, t0), the full propagator can be transformed

into the numerically much more convenient form

U(t, t0) =
N−1∏

k=0

U
(
t0 + (k + 1)∆t , t0 + k∆t

)
. (5.14)
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For small time steps ∆t many approximations for U(t + ∆t, t) exist [Ca04b]. One of

the most well-known approximative propagation schemes is the Crank-Nicolson method

[Pre92, Ame92] which uses (indices surpressed)

U(t+ ∆t , t) ≈ 1− i∆t2 hS(r, t+ ∆t/2)/~

1 + i∆t2 hS(r, t+ ∆t/2)/~
. (5.15)

Like the true propagator this approximation is unitary and preserves time-reverseal

symmetry. To avoid the inversion of an operator the orbitals ϕ(r, t + ∆t) are obtained

from the linear equation

[
1 + i

∆t

2
hS(r, t+ ∆t/2)/~

]
ϕ(r, t+ ∆t) =

[
1− i∆t

2
hS(r, t+ ∆t/2)/~

]
ϕ(r, t) (5.16)

which can be efficiently solved since hS is a sparse matrix. This algorithm will be used

in the following.

Before looking at the equation-of-motion for the orbital shifts, the self-consistency

of the Hamiltonian must be discussed. For a given time-dependent Hamiltonian one can

easily propagate the orbitals up to any time t. But for the Kohn-Sham equations the

potential, and thus the Hamiltonian, depends on the orbitals via the density, i.e., the

time-dependent Hamiltonian is not known at the beginning. Nevertheless Eq. (5.16) can

be used to obtain the solution of the Kohn-Sham equations via an iterative procedure.

First, one propagates the orbitals with hS(r, t) to obtain a first guess for ϕ(r, t + ∆t).

With the new orbitals an approximate hS(r, t + ∆t) can be calculated. Using the in-

terpolation hS(r, t + ∆t/2) ≈ (hS(r, t) + hS(r, t + ∆t))/2, a better approximation for

ϕ(r, t + ∆t) is obtained. After this the same procedure is repeated until convergence is

achieved. For small time steps it is very often sufficient to use just one iteration. For

a time-dependent KLI calculation or a calculation using an explicit density functional

all required procedures are known at this point. However, for the full time-dependent

optimized effective potential the orbital shifts must be also taken into account. Since

this has not been done before, the next subsection is devoted to the question if it is

possible to construct the exact time-depdent potential from the propagated orbitals and

orbital shifts.

5.3.1 Study of the coupled equations for the orbitals and orbital shifts

In order to construct the exact time-dependent OEP via the orbital shifts it is necessary

to find an algorithm to propagate them in time, i.e., to solve Eq. (4.25). The simplest

differencing scheme for this equation is obtained by a simple time centering (again indices

are surpressed)

i~
ψ(r, t+ ∆t)− ψ(r, t)

∆t
= hS(r, t+ ∆t/2)

1

2

(
ψ(r, t+ ∆t) + ψ(r, t)

)

+
1

2

(
rs(r, t+ ∆t) + rs(r, t)

)
(5.17)
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where rs(r, t) is the inhomogenity

rs(r, t) =
(
vxc(r, t) − u∗xc(r, t)− (v̄xc(t)− ū∗xc(t))

)
ϕ(r, t) . (5.18)

The complete propagation scheme consists of the following steps (with space coordinates

neglected):

1. Given the Hamiltonian hS(t) a first guess for ϕ(t + ∆t) and thus for u∗xc(t + ∆t)

and ū∗xc(t+ ∆t) is calculated via Eq. (5.16).

2. With the quantities from the previous step the orbital shifts ψ(t) are propagated

with Eq. (5.17) to obtain a first guess for ψ(t + ∆t). In this step the unknown

quantities hS(t+ ∆t/2) and vxc(t+ ∆t/2) are approximated by the corresponding

quantities at time t, i.e., hS(t) and vxc(t).

3. hS(t+∆t) and vxc(t+∆t) (via Eq. (4.31)) are obtained. In addition, hS(t+∆t/2) ≈
(
hS(t) + hS(t+ ∆t)

)
/2 is calculated.

4. Given hS(t+ ∆t/2) an improved approximation for ϕ(t+ ∆t) is constructed. This

procedure is repeated until self-consistency is obtained.

As a first test the most simple situation is considered, namely the propagation of the

ground state. For this special case the exact solution is known: both orbitals and orbital

shifts should just obtain a phase factor exp(−iǫjσ(t−t0)/~) and the exchange-correlation

potential as well as all observables should stay unchanged. As a typical result Fig. 5.3

shows the resulting dipole moment e
∫
z n(z, t) dz. One can clearly see that it does not

stay zero like it should, but starts to oscillate with increasing amplitude. The same

observation is made for the total energy and other observables. Different values for the

time step and the grid spacing do not change the results qualitatively, and neither does

using other external potentials, e.g., harmonic ones.

To clarify the nature of this instability several tests have been carried out. First,

different splitting schemes (cf. Ref. [Ame92], and Appendix C) for the orbital shifts

have been tested, namely an implicit scheme, an explicit one and a predictor-corrector

method. Additionally, a split-operator scheme [Pre92] using a Crank-Nicolson step for

the homogenous part of the orbital shift propagation and different methods for the

inhomogeneous part have been tested. Generally, none of these methods solves the

encountered problems.

As a second test one can carry out a procedure to circumvent problems stemming

from the required self-consistency of the coupled equations. In this procedure one first

does a KLI calculation and saves the resulting exchange potential for all times. Then

one propagates the orbital shifts with the saved KLI potential. Thus one obtains a

first approximation for the time-dependent orbital shifts. From these shifts one can

calculate a new approximation for the exchange potential at all times and propagate the
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Figure 5.3: The time evolution of the dipole moment from the coupled propagation of

the KS orbitals and orbital shifts. The initial state is the ground state and no external

time-dependent potential is applied. Thus, the correct solution would be a straight

line at zero. Other observables, e.g., the total energy, show the same oscillations with

increasing amplitude.

orbitals in this fixed potential (the Hartree part is still calculated dynamically). After

this one propagates the orbital shifts again with the new orbitals and obtains a new

approximation for the exchange potential. This procedure is repeated until convergence

is achieved. Again, the solution shows the same instabilities.

Finally, one can do a simple ‘linearization’ by fixing the exchange-correlation poten-

tial and propagating orbitals and orbital shifts without other restrictions. This leads to

a stable solution. In a next step, which goes beyond this most simple linearization, one

can use the exact time-dependence for the orbitals, i.e., the ϕj(r, t) are calculated not

from a numerical propagation but from the numerically obtained ground-state orbitals

multiplied with the analytically known phase factor exp(−iǫjσ(t− t0)/~) (see Chap. 4).

The orbital shifts are numerically propagated and vxc is evaluated numerically according

to Eq.(4.31). In this way the non-linearities in Eq. (4.25) are fully taken into account,

but not the coupling between Eq. (4.25) and Eq. (2.26). The result is that the calculation

is stable and the exchange-correlation potential and the orbital shifts show the behavior

expected from the exact solution. Reversing the role of orbitals and orbital shifts, i.e.,

propagating the shifts analytically and the orbitals numerically, leads to the same result,

i.e., a stable and correct solution.

From this observation one concludes that the coupling between the orbitals and the

orbital shifts seems to be the crucial problem and not the separate differential equations.

This is supported by the observation that the cut-off of the 1/n term influences the

instability. For a large value of δ the influence of the term containing the orbitals

and orbital shifts is reduced and one can observe a slower increasing amplitude of the
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oscillations. As previously mentioned in the limit δ → ∞ the KLI approximation is

obtained which is found to be perfectly stable.

In general, since the whole scheme is based on non-linear, coupled partial differential

equations, any exact statement about existence and stability of a solution is highly

non-trivial from a rigorous point of view. As a consequence, one can just give some

suggestions what may cause the problems. First of all, it cannot be ruled out that the

underlying set of coupled equations is unstable. In this case any inaccuracy unavoidably

introduced by the numerical treatment inevitably blows up. For sure, this would be the

worst case. A different possibility is that the problem is related in a complicated way

to the numerical division by the density. This can be the case if the whole scheme is

critically sensitive on the asymptotic behavior of the term containing the orbital shifts.

Since in a time-dependent calculation no way to obtain the correct asymptotic behavior

is known, this would also be a severe problem. Lastly, the most comfortable reason

would be that the splitting schemes used above violate some unknown exact constraints

on the orbital shifts, e.g., norm conservation. This violation in combination with the

coupling could then lead to instabilities. In this case a propagation scheme that respects

this property could solve the problem. Unfortunately, up to date little is known about

the orbital shifts beside their orthogonality on the corresponding orbitals. Definitely,

a deeper knowledge about the properties of the orbital shifts would be of great value

for either setting up a stable propagation scheme or for developing further approximate

solutions like the ‘OSBK’ approximation proposed in Chap. 4.
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Chapter 6

Exact properties of the xc

potential

The great importance of accurate approximations to the exchange-correlation potential

has already been mentioned several times in the previous chapters. In this context it has

also been pointed out that it is important to include as many exact properties as possible

in approximate exchange-correlation potentials. Especially the fundamental conserva-

tion laws of energy, particle number, and momentum should be respected. Beside these

conservation laws two theorems exist which are satisfied by the exact time-dependent

exchange-correlation potential. One is the ‘Harmonic-Potential theorem’ [Dob94] and

the other one is the ‘Zero-Force theorem’ [Vig95, Gro96]. As shown below the ‘Zero-Force

theorem’ corresponds to Newton’s third law and thus guarantees momentum conserva-

tion.

In connection with the two theorems the question arises which existing approxima-

tions satisfy them. As discussed below the time-dependent LDA and the time-dependent

exact-exchange OEP satisfy both theorems. In contrast, the exact-exchange KLI approx-

imation only satisfies the ‘Harmonic-Potential theorem’, but violates the ‘Zero-Force

theorem’.

6.1 ‘Harmonic-Potential theorem’

The ‘Harmonic-Potential theorem’ is a general statement about an interacting system in

a harmonic external potential with a perturbation F(t) ·∑j rj where F(t) is an arbitrary

time-dependent function, i.e., the Hamiltonian of the system of interest is given by

H(r1, . . . , rN , t) = H0(r1, . . . , rN ) − F(t) ·
N∑

j=1

rj (6.1)
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where

H0(r1, . . . , rN ) =

N∑

j=1

(

− ~
2

2m
∇2
j +

1

2
rj ·K · rj

)

+ W (|rk − rl|) (6.2)

is the time-independent part of the Hamiltonian. In Eq. (6.2) the term W (|rk − rl|) de-

notes the particle-particle interaction between all particles. The spring-constant matrix

K can be assumed to be symmetric without loss of generality. The statement of the

‘Harmonic-Potential theorem’ is that any state of the form

ψ(r1, . . . , rN , t) = exp
(
− i (Ekt + ~NS(t) − Nm ẋ(t) ·R) /~

)
ψk (̄r1, . . . , r̄N ) (6.3)

is a solution of the time-dependent Schrödinger equation if the following conditions are

fulfilled (ẋ = dx/dt):

• the state ψk(r1, . . . , rN ) is an eigenstate with eigenvalue Ek of the interacting

Hamiltonian H0(r1, . . . , rN ),

• the phase angle S(t) is given by

S(t) =
1

~

∫ t

t0

m

2
ẋ(t′)2 − 1

2
x(t′) ·K · x(t′) dt′ (6.4)

and x(t) is a solution of the differential equation

m ẍ = −K · x + F(t) , (6.5)

• r̄j = rj − x(t) and R = 1
N

∑

j rj holds.

As a consequence, all densities evolving from a stationary initial state by applying a

time-dependent potential F(t) ·∑j rj are given by n(r, t) = nk(r− x(t)). Here, nk(r) is

the density of the initial state ψk and x(t) is the solution of m ẍ = −K · x + F(t).

Focusing on DFT, the question arises which constraints the exchange-correlation

potential must satisfy to reproduce the previously discussed results. In order to find this

out an ansatz similar to Eq. (6.3) is made for the Kohn-Sham orbitals. Inserting this

ansatz into the time-dependent Kohn-Sham equations reveals that the Hartree and the

exchange-correlation potential must rigidly follow a rigidly shifted density [Dob94]. In

more detail,

vH[n(r− x(t))](r, t) = vH[n(r)](r− x(t)) (6.6)

vxc[n(r− x(t))](r, t) = vxc[n(r)](r− x(t)) (6.7)

must hold. For the Hartree potential this condition is always satisfied due to the trans-

lation invariance of the term 1/|r − r′|.
In the time-dependent LDA the exchange-correlation potential has the form vxc(r, t) =

f(n(r, t)) where f(x) is a smooth function of x. In other words the LDA exchange-

correlation potential only depends on r and t via the dependence of the density on these
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variables. As a consequence, the time-dependent LDA exchange-correlation potential

satisfies Eq. (6.7) and therefore the ‘Harmonic-Potential theorem’.

For the exact time-dependent OEP and also for the time-dependent KLI potential

Eq. (6.7) is satisfied if the orbital-dependent potentials uxcj(r, t) have the property

uxcj

[
{ϕl(r− x(t))}

]
(r, t) = uxcj

[
{ϕl(r)}

]
(r− x(t)) . (6.8)

Before proving this statement, it should be mentioned that the orbital-dependent poten-

tials from the exact-exchange functional satisfy this property and thus, the ‘Harmonic-

Potential theorem’. As in the case of the Hartree potential the deeper reason for this

is the translation invariance of the term 1/|r − r′|. To prove the statement given above

one makes the ansatz

ϕj(r, t) = exp
(
− i (ǫjt + ~S(t) − m ẋ(t) · r) /~

)
ϕ0
j (r− x(t)) (6.9)

for the time-dependent Kohn-Sham orbitals. In this expression the function S(t) is

defined as in Eq. (6.4), x(t) satisfies Eq. (6.5), and ϕ0
j is the initial eigenstate with

eigenvalue ǫj . The total density and the orbital densities are in this case n0(r − x(t))

and, respectively, n0
j(r − x(t)). Thus, for orbital-dependent potentials uxcj(r, t) which

satisfy Eq. (6.8) the time-dependent KLI potential

vKLI
xc (r, t) =

1

2n(r, t)

N∑

j=1

|nj(r, t)|2
(
uxcj(r, t) + (v̄xcj(t)− ūxcj(t))

)
+ c.c. (6.10)

satisfies Eq. (6.7) and, as a consequence, justifies the previous ansatz (v̄xcj(t) and ūxcj(t)

are the averaged potentials, see Chap. 3 and 4). For the exact time-dependent OEP one

has to take into account the orbital shifts, too. For this purpose the derivation of the

static OEP equation from the time-dependent OEP equation in Chap. 4 suggests the

same ansatz 6.9 for the orbital shifts. Evaluating the additional ∇ · (. . . ) term with the

expressions for the orbitals and orbital shifts leads to

∇ ·
(
ψ∗
j (r, t)∇ϕj(r, t)

)
= ∇ ·

(
ψ0
j
∗
(r− x(t)) ∇ϕ0

j (r− x(t))
)

+ ∇ ·
(
i
m

~
ẋ(t) ψ0

j
∗
(r− x(t)) ϕ0

j (r− x(t))
)
. (6.11)

Since the initial orbitals and orbital shifts are chosen real-valued, the second term is

purely imaginary and does not contribute to the potential. The function f(r, t) in

Eq. (4.31) also vanishes in this situation. Thus, the exact time-dependent OEP satisfies

Eq. (6.7). A lengthy but straightforward calculation finally shows that the ansatz for the

orbital shifts is consistent with the resulting equation-of-motion for the time-dependent

orbital shifts.

As shown by Vignale [Vig95] the constraint (6.7) can also be derived by describing

an interacting many-particle system in an accelerated reference frame1. As a result one

1For the accelerated reference frame a Cartesian coordinate system with axes parallel to the original

coordinate system is used. In addition, it is assumed that at t = 0 the two coordinate systems coincide

and the relative velocity vanishes.
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obtains that the exchange-correlation functional for the action must satisfy

Axc[n
′] = Axc[n] (6.12)

where n′(r, t) = n(r + x(t), t) is the density in the accelerated coordinate system. The

vector x(t) is the origin of the accelerated reference frame relative to the original coordi-

nate system. Due to the definition of the exchange-correlation potential as a functional

derivative of Axc with respect to the density the relation

Axc[n+ δn] − Axc[n] =

∫

C

∫

vxc[n](r′, τ) δn(r′, τ) d3r dt (6.13)

holds. Using the same relation for the transformed density n′ and combining the two

relations with Eq. (6.12) leads to the desired result (after transformation to physical

time)

vxc[n
′](r, t) = vxc[n](r + x(t)) . (6.14)

Thus, Eq. (6.12) offers a convenient method to check if an approximate exchange-

correlation potential satisfies the ‘Harmonic-Potential theorem’. However, it is important

to keep in mind that this method only works if the exchange-correlation potential is given

by the functional derivative of some known exchange-correlation action functional. This

constraint plays an important role in the context of the ‘Zero-Force theorem’ which is

the subject of the next section.

6.2 ‘Zero-Force theorem’

In order to derive the ‘Zero-Force theorem’ it is necessary to calculate the second time

derivative of the dipole moment of an interacting system [Gro96]. Using the Ehrenfest

theorem and d
dt [Ĥ(t), r̂] ≡ 0, one obtains the equation

d2

dt2

∫

rn(r, t) d3r = − 1

~2
〈ψ(t)| [Ĥ(t), [Ĥ(t), r̂]] |ψ(t)〉 (6.15)

where the operator r̂ is given by

r̂ =

∫

r n̂(r, t) d3r (6.16)

and Ĥ(t) = T̂ + Ŵ + V̂ext(t) is the Hamiltonian of the interacting system. Calculating

the double commutator in Eq. (6.15) leads to the result

m
d2

dt2

∫

rn(r, t) d3r = −
∫

n(r, t)∇vext(r, t) d
3r . (6.17)

The physical meaning of this equation is revealed by using the continuity equation for

the density to obtain

d

dt
P(t) :=

d

dt

∫

m j(r, t) d3r = −
∫

n(r, t)∇vext(r, t) d
3r (6.18)
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where j(r, t) is the current of the system. Eq. (6.18) states that the change of the

system’s total momentum is equal to the net force exerted from the external potential

on the system, i.e., Newton’s third law.

Carrying out the same calculation for a non-interacting Kohn-Sham system with

Kohn-Sham potential vS(r, t), one finds

d

dt
PS(t) :=

d

dt

∫

m jS(r, t) d
3r = −

∫

n(r, t)∇vS(r, t) d3r (6.19)

where jS(r, t) is the Kohn-Sham current

jS(r, t) =
~

2

2mi

N∑

k=1

(
ϕ∗
k(r, t)∇ϕk(r, t) − c.c.

)
. (6.20)

Since by definition nS(r, t) = n(r, t) holds, it follows from Eq. (6.17) and Eq. (6.18) that

PS(t) = P(t) must hold. Thus, equating Eq. (6.18) and Eq. (6.19) leads to

−
∫

n(r, t)∇vext(r, t) d
3r = −

∫

n(r, t)∇vS(r, t) d3r . (6.21)

Inserting vS(r, t) = vH(r, t) + vxc(r, t) + vext(r, t), one obtains

0 = −
∫

n(r, t)
(
∇vH(r, t) + ∇vxc(r, t)

)
d3r . (6.22)

Since the integral over the Hartree potential vanishes, the final result is given by
∫

n(r, t)∇vxc(r, t) d
3r = 0 . (6.23)

This statement is called the ‘Zero-Force theorem’. Beside the derivation given here it can

also be derived from the transformation property (6.12) of the action [Vig95]. However,

the presented derivation has the advantage that it is independent of any action principle

arguments.

Since the time-dependent LDA obeys Eq. (6.12), the ‘Zero-Force theorem’ and the

‘Harmonic-Potential theorem’ are both satisfied by this approximation. As shown by von

Barth the exact-exchange OEP also satisfies the ‘Zero-Force theorem’ if the full time-

dependent OEP equation is solved [Ba05a]. However, since this is a crucial requirement

for the proof, this observation cannot be used to make a statement about the time-

dependent KLI potential. In fact, it is possible to find situations in which the ‘Zero-Force

theorem’ is violated by the exact-exchange time-dependent KLI potential [Mu07a]. One

such situation is discussed in the following.

In order to demonstrate that the time-dependent exact-exchange KLI approximation

violates the ‘Zero-Force theorem’ one can calculate the response of a Na5 cluster to a

small dipole excitation2. This cluster has a planar geometry (oriented in the (x − y)-
plane in the following) and provides a critical test case due to its rather ‘soft’ electron

2For the calculation a modified version of the PARSEC program [Kro06] is used. Further numerical

details can be found in Chap. 8 and in Ref. [Mu07a].
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Figure 6.1: y-component of the dipole moment of Na5 after an initial boost of |pboost| =
3.834 × 10−4

~a−1
0 . In contrast to the time-dependent LDA result, the time-dependent

exact-exchange KLI curve shows an increasing amplitude of the oscillation. The time-

dependent exact-exchange KLI curve is slightly shifted for better comparison. Rydberg

atomic units are used throughout.

cloud. After the ground-state calculation the system is excited by a momentum boost

exp(i r · pboost/~) with |pboost| = 3.834 × 10−4
~a−1

0 , corresponding to a total excitation

energy of the system of 1.0 × 10−5 eV, applied to all Kohn-Sham orbitals. The boost

has equal strength in x-, y-, and z-direction. After the boost the resulting excited state

is propagated in real time with fixed ions.

Fig. 6.1 shows the resulting y-component of the dipole moment dy(t) = e
∫
y n(r, t) d3r

(with e being the electron’s charge). For a while the amplitude shows reasonable oscilla-

tions in agreement with the initial boost. But after about 400 a.u., it increases rapidly

and steadily. For comparison the same quantity is plotted for a time-dependent LDA

calculation. There, no increasing amplitude is observed.

To demonstrate that the increasing amplitude is connected to a violation of the ‘Zero-

Force theorem’ one can monitor the expected time derivative of the total momentum,

i.e., one calculates the right-hand side of Eq. (6.18) with the external potential coming

from the ions. In addition, one can evaluate the left-hand side of Eq. (6.23), which should

be zero. Fig. 6.2 shows the result obtained from Eq. (6.18) and the sum of Eq. (6.23) and

Eq. (6.18). One observes that the total force from the external potential on the electron

density, Eq. (6.18), differs significantly from the total force obtained from the sum of

both equations. This clearly demonstrates that vx violates the ‘Zero-Force theorem’ and

contributes to the total force. Since the time-dependent dipole moment is connected to

the total force F(t) via (see Eq. (6.17) and (6.18))

m∂2
t d(t) = e ∂tP(t) = eF(t) , (6.24)
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Figure 6.2: Time derivative of the y-component of the total momentum of the electron

density. ‘vext + vx’ and ‘vext’ label the results calculated via Eq. (6.18) with the external

potential or, respectively, the external and the exchange potential. The violation of the

‘Zero-Force theorem’ is visible in the difference between ‘vext + vx’ and ‘vext’.

it follows that the violation of the ‘Zero-Force theorem’ leads to a wrong time-dependent

dipole moment and to a self-excitation of the system. Finally, one can check that

Eq. (6.24) holds for the Kohn-Sham system. To do this one calculates the force from

the total Kohn-Sham potential, i.e.,

F(t) := −
∫

n(r, t)∇vS(r, t) d3r , (6.25)

and compares it to the time derivative of the Kohn-Sham current, Eq. (6.20), from the

calculation. The current is connected to the total momentum via P(t) = m
∫

jS(r, t) d
3r.

By explicitly calculating the second time derivative of the monitored dipole signal, one

can confirm that Eq. (6.24) holds in the calculation as it should be.

To study the influence of the ‘Zero-Force theorem’ violation in more detail one can

carry out the same calculation for a Na+
9 cluster. In contrast to Na5, this cluster can be

considered as one of the most ‘forgiving’ systems because of its spherical shape and the

positive charge leading to a stable ‘plasmon’-like oscillation when excited. Fig. 6.3 shows

the resulting violation of Eq. (6.23). A close look reveals that the ‘Zero-Force theorem’

is slightly violated again. But, in contrast to Na5, the violation does not increase in

time. Checking the time-dependent dipole moment shows that it is also stable. Beside

the stronger binding forces a possible explanation for this observation could be that the

higher inversion symmetry of the almost spherical Na+
9 leads to an error cancellation

in the course of one density oscillation and thus to a strongly reduced increase of the

violation. In any case, the result clearly corroborates the intuitive expectation that the

system properties have a strong influence on the degree of the violation of the ‘Zero-Force

theorem’.
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Figure 6.3: Violation of the ‘Zero-Force theorem’ for Na+
9 and Na5. Again, the y-

component is plotted. Both systems are excited by a momentum boost corresponding

to an excitation of the system by 1.0× 10−5 eV. In contrast to Na5, the resulting curve

for Na+
9 does not increase in time. The resulting dipole moment of Na+

9 is also observed

to be stable.

In addition to the system properties one can also expect an influence of the excitation

energy on the ‘Zero-Force’ violation. And indeed, this can be found. Fig. 6.4 shows

the results for Na5 excited with three different boost strengths of 3.834 × 10−4
~a−1

0

(1.0×10−5 eV), 6.062×10−4
~a−1

0 (2.5×10−5 eV), and 8.573×10−4
~a−1

0 (5.0×10−5 eV).

Obviously, the deviation from zero varies with the boost strength. The importance of

the excitation energy can also be demonstrated by considering the extreme situation

of no excitation at all. In this case the time-dependent Kohn-Sham orbitals are given

by the ground-state orbitals multiplied by a time-dependent phase factor exp(−iǫkt/~)

containing the Kohn-Sham eigenvalue ǫk. But since this phase factor does not influence

the potential, the whole system remains in a stationary state and the violation of the

‘Zero-Force theorem’ remains constant. This constant violation does not lead to a non-

stationary state since
∫
n(r, t)∇vS(r, t) d3r vanishes due to the ground-state iteration.

In other words, for the ground-state density the total force from the external and the

exchange-correlation potential are in equilibrium leading to a stationary state.

Beside the just discussed aspects there are three other conditions under which a

violation of the ‘Zero-Force theorem’ in a time-dependent KLI calculation may not be

observed. First, for short time scales the accumulation of the violation can be too small

to show up significantly. Certainly, this time scale depends on the two aspects discussed

above: the excitation strength and the system properties. The second situation occurs

when a strong, ionizing external field is applied to the system as in Chap. 3. This

can hide the error in the exchange-correlation potential completely. Finally, for spin-

saturated two-particle systems the time-dependent KLI and the time-dependent OEP
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Figure 6.4: Violation of the ‘Zero-Force theorem’ for Na5 excited with different boosts

of 3.834× 10−4, 6.062× 10−4, and 8.573× 10−4
~a−1

0 . Only the y-component is plotted.

potential coincide and, as a consequence, the ‘Zero-Force theorem’ is rigorously satisfied

if the time-dependent KLI potential comes from a ‘conserving approximation’ [Ba05a].

From the numerical results presented in the previous paragraphs the question may

arise whether it is possible to analytically prove the violation of ‘Zero-Force theorem’. As

discussed above any potential obtained from an exchange-correlation action which obeys

Eq. (6.12) satisfies the ‘Zero-Force theorem’ and the ‘Harmonic-Potential theorem’. Ac-

tually, the same arguments show that if vxc(r, t) satisfies Eq. (6.7) and is the functional

derivative of some exchange-correlation action functional, it must also satisfy the ‘Zero-

Force theorem’. Since the exact-exchange KLI potential satisfies the ‘Harmonic-Potential

theorem’, one concludes from the numerical results that the potential in general cannot

be obtained as the functional derivative of some exchange-correlation action. This re-

sult is in line with earlier results for the static Slater potential [OuY90]. In any case the

missing knowledge of an action expression which yields the exact-exchange KLI potential

makes any analytical statements extremely difficult. A hand-waving argument, however,

is provided by the expression for the exact-exchange time-dependent OEP involving the

orbitals and orbital shifts. Since the full expression satisfies the ‘Zero-Force theorem’, it

is not surprising that the time-dependent KLI approximation, which neglects the terms

containing the orbital shifts, violates the ‘Zero-Force theorem’.

Finally, a comment about the generalization of the previous results to KLI potentials

from other exchange-correlation functionals is in place. Clearly, the possibility that other

expressions lead to a KLI potential which satisfies the ‘Zero-Force theorem’ cannot be

ruled out from the example given above. However, since the exact-exchange functional

in combination with the OEP is a ‘conserving approximation’ [Ba05a] and this property

is destroyed by using the KLI potential, it is highly plausible that this also happens if

other orbital functionals are used.
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6.3 Energy conservation and other constraints

In ground-state DFT the energy of a system is of crucial importance since it is used to

find the ground-state density. As pointed out earlier the decisive role of the energy is lost

in time-dependent situations. However, the time-dependent energy is still very useful

for several reasons. For example, it allows to analyze the energy absorbed by a system

in the course of a laser pulse. Furthermore, analyzing the different energy contributions

offers a possibility to study the energy transfer from, e.g., the electronic to the ionic

degrees of freedom. In addition, the conservation of the total energy can be used as a

sensitive measure for the numerical accuracy. In any case having an approximation for

the time-dependent energy is highly desirable.

According to the Ehrenfest theorem the time-evolution of the exact time-dependent

energy E(t) = 〈ψ(t)| T̂ + Ŵ + V̂ (t) |ψ(t)〉 is given by

dE(t)

dt
= 〈ψ(t)| ∂tV̂ (t) |ψ(t)〉 . (6.26)

As expected the total energy is conserved for time-independent external potentials. It

is clear that this property should also be satisfied by any DFT approximation for the

time-dependent energy. However, due to the time-dependence of the Hartree and the

exchange-correlation potential it is by no means obvious that a time-independent ex-

ternal potential yields a constant energy in a DFT calculation. In order to derive a

condition which guarantees energy conservation in such situations the time-dependent

energy is written in the form

E(t) = TS[n(r, t)] + EH[n(r, t)] + Eext[n(r, t)] + Ẽxc[n](t) . (6.27)

Similar to the static case Eq. (6.27) actually defines the energy contribution Ẽxc[n](t).

The expression (6.27) is a natural candidate for the time-dependent energy because it

reduces to the ground-state energy if the time-dependent exchange-correlation energy

Ẽxc[n](t) has the property Ẽxc[n0(r)](t) = Exc[n(r)] with n0(r) being the ground-state

density and Exc[n(r)] the ground-state exchange-correlation energy. Calculating the

time derivative of Eq. (6.27), one obtains

dE(t)

dt
=

dẼxc[n](t)

dt
− i

~

N∑

j=1

〈ϕj(t)| [ t̂ + v̂H(t) + v̂(t) , ĥS(t) ] |ϕj(t)〉

+

N∑

j=1

〈ϕj(t)| ∂tv̂(t) |ϕj(t)〉

=
dẼxc[n](t)

dt
+
i

~

N∑

j=1

[
〈ϕj(t)| [ v̂xc(t) , ĥS(t) ] |ϕj(t)〉 − i~〈ϕj(t)| ∂tv̂(t) |ϕj(t)〉

]

=
dẼxc[n](t)

dt
+
i

~

N∑

j=1

[
〈ϕj(t)| [ v̂xc(t) , t̂ ] |ϕj(t)〉 − i~〈ϕj(t)| ∂tv̂(t) |ϕj(t)〉

]
.

(6.28)
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In this equation ĥS(t) = t̂ + v̂H(t) + v̂(t) + v̂xc(t) is the Kohn-Sham Hamiltonian with

t̂ = p̂2

2m . For time-independent external potentials the total energy must be constant and

Eq. (6.28) leads to the condition

dẼxc[n](t)

dt
= − i

~

N∑

j=1

〈ϕj(t)| [ v̂xc(t) , t̂ ] |ϕj(t)〉 . (6.29)

Since the time-dependent exact-exchange KLI potential violates the ‘Zero-Force theo-

rem’, it is hardly surprising that the total energy evaluated with the Fock exchange

integral is also not conserved in the calculations presented above. In contrast, the time-

dependent LDA satisfies Eq. (6.29) as one can readily verify by calculating

dELDA
xc [n(r, t)]

dt
=

∫ ∫
δELDA

xc [n(r, t)]

δn(r′, t′)
∂t′ n(r′, t′) dt′ d3r′

=

∫ ∫

vxc(r
′, t′) δ(t− t′) ∂t′ n(r′, t′) dt′ d3r′

= − i

~

N∑

j=1

〈ϕj(t)| [ v̂xc(t) , t̂ ] |ϕj(t)〉 . (6.30)

Before closing this chapter a remark about other constraints is in place. One impor-

tant conservation law which has not yet been mentioned is particle-number conserva-

tion. This conservation law can be easily satisfied in a Kohn-Sham calculation by using

real-valued exchange-correlation potentials. For such potentials the Kohn-Sham system

obeys the continuity equation for the density and, as a consequence, the particle number

is conserved.

In connection with the continuity equation it is worth mentioning that the continuity

equation does not answer the question whether the interacting and the Kohn-Sham

current are identical. Despite several attempts to answer this prominent question a

rigorous answer is still missing [Ma02b]. The only possible statement from the continuity

equation is that

∂t
(
n(r, t)− nS(r, t)

)
+ ∇ ·

(
j(r, t) − jS(r, t)

)
= ∇ · jxc(r, t) = 0 (6.31)

must hold because the densities n(r, t) and nS(r, t) are equal. In this equation jxc(r, t)

is defined as the difference between the current j(r, t) of the interacting system and the

Kohn-Sham current jS(r, t). From the equation

∫

j(r, t) d3r =

∫

r ∂tn(r, t) d3r =

∫

jS(r, t) d3r (6.32)

follows the identity

∫
(

j(r, t)− jS(r, t)
)
d3r =

∫

jxc(r, t) d
3r = 0 . (6.33)
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A connection between jxc(r, t) and the exchange-correlation potential can be obtained

from angular momentum considerations. The angular momentum of the interacting

system is defined by

L(t) =

∫

m r × j(r, t) d3r (6.34)

and the time derivative is given by [Lee01]

d

dt
L(t) =

∫

m r× ∂t j(r, t) d3r = −
∫

n(r, t) r×∇v(r, t) d3r . (6.35)

Subtracting the angular momentum of the Kohn-Sham system, one obtains

d

dt

(
L(t)− LS(t)

)
=

∫

m r× ∂t jxc(r, t) d
3r =

∫

n(r, t) r×∇
(
vS(r, t) − v(r, t)

)
d3r .

Since the integral involving the Hartree potential vanishes [Lee01], the final result is
∫

m r× ∂t jxc(r, t) d
3r =

∫

n(r, t) r×∇vxc(r, t) d
3r . (6.36)

Due to the fact that jxc(r, t) is generally not known this relation cannot be used to make

any statements about approximative exchange-correlation potentials in time-dependent

situations. However, in static situations Eq. (6.36) reduces to
∫

n(r) r×∇vxc(r) d
3r = 0 . (6.37)

This equation states that the torque due to the exchange-correlation potential vanishes

in the ground state. As all other theorems mentioned above the LDA respects Eq. (6.37).

To prove this statement the invariance of ELDA
xc under rotations is used, i.e.,

ELDA
xc [n′] = ELDA

xc [n] (6.38)

where n′(r) = n(r + α û × r) holds. The unit vector û is the rotation axis and α the

angle of rotation. For infinitesimal angles α one can write

n(r + α û× r) = n(r) + α ( û× r ) · ∇n(r) . (6.39)

Combining this result with

Exc[n+ δn] = Exc[n] +

∫
δExc[n]

δn(r)
︸ ︷︷ ︸

vxc(r)

δn(r) d3r (6.40)

and using the property (6.38) one obtains

α

∫

vxc(r)
(
û× r

)
· ∇n(r) d3r = −αû ·

∫

vxc(r)
(
r×∇n(r)

)
d3r = 0 . (6.41)

Since the rotation axis and rotation angle is arbitrary,
∫

vxc(r)
(
r×∇n(r)

)
d3r = −

∫

n(r)
(
r×∇vxc(r)

)
d3r = 0 (6.42)

holds. Thus, the LDA satisfies Eq. (6.37).



Chapter 7

Photoelectron spectra from

Kohn-Sham DFT

Up to this point mainly fundamental aspects of DFT have been discussed in the present

work. This changes in the next two chapters. There, two different approaches to calculate

photoelectron spectra in the framework of DFT are investigated. The systems for which

the two approaches are tested and compared are small anionic sodium clusters.

7.1 Photoelectron spectroscopy in cluster physics

Although being used in all areas of physics, photoelectron spectroscopy is especially

important in the context of nanoscale materials. For these materials photoelectron spec-

troscopy is one of the most important experimental tools since it is almost the only

method that provides access to the electronic and ionic structures of these materials.

The direct observation of the electronic shell structure in sodium clusters [Wri02] is

just one example for the power of the method. As indicated above another application

is the determination of the ionic structure. Since the electronic structure, and thus

the photoelectron spectrum, depends on the ionic configuration, comparing the mea-

sured photoelectron spectrum with the results from first-principle calculations allows

the identification of the ionic structure. This interplay between theory and experiment

has already been used successfully in many cases [Kie96, Ako00, Kha01, Kro02, Mos03,

Ber04, Man04, Häk04, Kos07].

Clearly, the just mentioned method can only work if reliable calculations for the

system of interest can be performed. Since most of the measured systems consist of

many electrons, DFT is an especially well-suited tool due to its low numerical costs.

Unfortunately, evaluating the photoelectron spectrum from a Kohn-Sham DFT calcu-

lation is not an easy task since only the highest occupied Kohn-Sham eigenvalue has a

rigorous connection to the photoelectron spectrum: it is equal to the ionization potential

[Lev84, Alm85, Per97]. Thus, it yields the position of the first peak in the photoelectron
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Figure 7.1: Schematic view of two different approaches to calculate the photoelectron

spectrum of a system consisting of (N +1) electrons. Left: The process is described as a

strong excitation of the (N + 1)-electron system. Right: The photoelectron has already

been detected and the remaining N -electron system is left in an excited state. The link

between the kinetic energy of the photoelectron and the energy of the excited state of

the N -electron system is provided by energy conservation.

spectrum. It is the aim of this chapter to present and discuss methods how the other

peaks can be obtained from a static DFT calculation. In the next chapter the same

subject is treated in the framework of time-dependent DFT.

7.2 Theoretical background

Before discussing any results, the theoretical background of the following calculations

is presented in more detail. Fig. 7.1 schematically shows two approaches how the peak

positions in the photoelectron spectrum of a system consisting of (N + 1) electrons can

be calculated. On the left hand side the process is described as an excitation process

from the ground state to an energetically high-lying state with continuum contributions.

Since Kohn-Sham eigenvalue differences are zeroth-order approximations to excitation

energies [Gör96, Fil97], the Kohn-Sham density of states of the (N + 1)-electron sys-

tem can be used to obtain an approximate photoelectron spectrum. This procedure is

used in the present chapter and in many others, e.g., the previously cited publications

[Ako00, Kha01, Kro02, Mos03, Ber04, Man04, Häk04, Kos07]. In addition to the just

given argument this approach is supported by the work of Chong et al. [Cho02]. In

this work well founded arguments are given that Kohn-Sham eigenvalues can be in-

terpreted as approximations to relaxed vertical ionization potentials. As shown in the
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cited publication this is especially true if the eigenvalues are calculated from quasi-exact

Kohn-Sham potentials obtained from highly accurate ab initio densities.

On the right-hand side of Fig. 7.1 the situation after the photoelectron has been

detected is considered. In this case the remaining system is left in an energetically low-

lying excited state of the N -electron system. To connect the excitation energies of this

system to the photoelectron spectrum energy conservation is used. Before the photon

is absorbed the total energy is given by E
(N+1)
0 + ~ω where E

(N+1)
0 is the ground-state

energy of the ‘mother’ system containing N + 1 electrons and ~ω is the photon energy.

After the detection of the photoelectron the total energy is given by the kinetic energy

of the photoelectron Ekin and the energy of the remaining ‘daughter’ system with N

electrons. Since the total energy is conserved, it follows that

Ebind,j = Ekin − ~ω = E
(N+1)
0 − E(N)

0 −∆E
(N)
j (7.1)

must hold. Here, E
(N)
0 is the ground-state energy of the ‘daughter’ system and ∆E

(N)
j are

its excitation energies. This approach is used in the next chapter and in the publications

[Bon89, Ehr03]. It is important to note that ionic relaxation processes are neglected in

Eq. (7.1), i.e., it is assumed that the ions do not move during the time interval between

the photon absorption and the photoelectron detection. As a consequence, the excitation

energies of the ‘daughter’ system must be calculated in the ionic configuration of the

‘mother’ system. For the first peak in the photoelectron spectrum the kinetic energy of

the photoelectron is maximal. In this case the ‘daughter’ system is in its ground state,

i.e., ∆E
(N)
j is zero and the peak position is at E

(N+1)
0 − E(N)

0 .

Looking at a measured photoelectron spectrum as, e.g., shown in Fig. 7.2, it is

obvious that a photoelectron spectrum does not only consist of peak positions, but also

peak heights. In first-order perturbation theory the probability for a transition from the

ground state |ψ0〉 with energy E0 to a final state |ψf〉 with energy Ef is proportional to

|〈ψf |D̂|ψ0〉|2
︸ ︷︷ ︸

→ peak height

δ(E0 + ~ω − Ef)
︸ ︷︷ ︸

→ peak position

(7.2)

where ω is the laser frequency and D̂ is the dipole operator describing the perturbing

laser field in dipole approximation. Since the matrix elements depend on the full inter-

acting many-particle wavefunctions calculating these exactly is close to being impossible.

Fortunately, the experimental spectra considered in the following indicate that the ma-

trix elements do not play a crucial role in the more weakly bound part of the spectrum

one is mostly interested in. In other words, even without access to the matrix elements

a reasonable comparison between the experimental and the theoretical spectra can be

made, at least in the weakly bound regions.
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7.3 Results for anionic sodium clusters

To understand the following work it is necessary to give a brief summary of earlier re-

sults by Moseler et al. [Mos03]. In the cited publication the authors have measured and

calculated the photoelectron spectra of sodium cluster anions with 4 to 19 atoms. The

calculated photoelectron spectra have been based on LDA and GGA Kohn-Sham eigen-

values, i.e., the occupied ground-state Kohn-Sham eigenvalues have been interpreted

as binding energies. The comparison between the theoretical and experimental photo-

electron spectra has revealed the following facts: i) For many clusters the ground-state

eigenvalue spectrum and the measured photoelectron spectrum match quite reasonably.

ii) In some cases the measured spectra cannot be explained based solely on the ground-

state configuration of the ions. The reason for this is the finite temperature in the

experiment (approx. 300 K). On the energy scale of the electrons such a temperature

(corresponding to approx. 0.03 eV) plays no significant role, however, on the ionic level

it results in an ensemble of different ionic structures. If different isomers are taken

into account theoretically, e.g., through Langevin molecular dynamics [Mos03], then the

observed spectra can be reproduced. iii) Although the theoretical and experimental

spectra in this sense match qualitatively for all clusters studied in the work, there is a

systematic discrepancy between theory and experiment: the width of the experimental

spectrum, i.e., the energetic difference between the highest peak observed in the photo-

electron spectrum and the lowest, is about 0.2 – 0.4 eV smaller than the width of the

theoretical spectrum. This effect is seen for all cluster sizes and is a puzzling observation

since sodium clusters (due to the free-electron-like behavior of the valence electron) are

usually considered to be among the most benevolent systems for (semi-)local functionals

like the LDA or GGA.

7.3.1 Photoelectron spectra from the exact-exchange OEP

Due to the discussed advantages of the exact-exchange OEP it is natural to check whether

the differences in the widths of the spectra may be cured by using this potential. As

documented in the work by Moseler et al. [Mos03] the width of the spectrum for all

clusters beyond Na−9 is overestimated by LDA and GGA calculations in a similar way.

Thus, it is sufficient to consider only small clusters. Fig. 7.2 shows the experimentally

measured photoelectron spectrum of Na−5 and the results from the LDA and the exact-

exchange OEP calculation (numerical details can be found in Ref. [Mu06b]). For both

cases the Kohn-Sham eigenvalues are convoluted with Gaussians of 0.08 eV width to

make visual comparison easier. For the same reason the LDA and the exact-exchange

OEP spectrum are rigidly shifted in such a way that their first peak is aligned with

the first experimental peak, i.e., the highest occupied eigenvalue is lined up with the

experimental vertical detachment energy. The unshifted results are reported in Tab. 7.1.

As one can infer from Tab. 7.1 the corresponding shift is smaller for the exact-
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Figure 7.2: Left: The experimental photoelectron spectrum of Na−5 from Ref. [Mos03].

Right: Spectrum obtained from Kohn-Sham eigenvalues with Gaussian broadening,

σ =0.08 eV. Full line: exact-exchange OEP. Dashed line: LDA. The exact-exchange

OEP leads to a smaller separation between highest and lowest peak and thus is closer

to the experimental results.

exchange OEP than for the LDA. This confirms that the bare eigenvalues of the exact-

exchange OEP are a much better approximation to electron removal energies than the

LDA eigenvalues. Considering the correct −1/r-behavior of the exact-exchange OEP

and the canceled Hartree self-interaction, this observation is hardly surprising.

Figure 7.2 immediately reveals that qualitatively the spectra obtained from LDA

and exact-exchange OEP are very similar, but quantitatively, there are differences. The

width of the exact-exchange OEP spectrum is smaller by somewhat more than 0.1 eV

and the exact-exchange OEP spectrum is thus in better agreement with the experimental

result. In order to check whether the same is true for other clusters the spectra for Na−7 ,

Na−9 , and Na−19 have been calculated. The results are shown in Tab. 7.1 and confirm

that the exact-exchange OEP consistently reduces the width.

However, Tab. 7.1 also shows that a discrepancy remains between theory and exper-

iment. One might argue that these differences are at the limits of what can be expected

from DFT and the experiments anyway. However, there are several reasons that suggest

that the observed differences should be taken seriously. First, as said previously, sodium

clusters are the paradigm systems where the LDA/GGA functional can be expected to

be accurate. Second, for many materials with an electronic structure that one expects

to be more complicated than the one of sodium [Ako00, Kro02, Häk04], the Kohn-Sham

eigenvalues match the experimental spectra remarkably well and much better than for

the ‘simple’ sodium. Third, the fact that the experimental width is observed to be

smaller than the theoretical one for all cluster sizes excludes statistical experimental

errors as an explanation for the differences. And finally, as mentioned above, the results

of Chong et al. [Cho02] show that Kohn-Sham eigenvalues from accurate Kohn-Sham

potentials can be very accurate approximations to electron removal energies. Therefore,
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Na−5 Na−7 Na−9 Na−19

εLDA
H 0.072 −0.103 −0.215 −0.645

εXOEP
H −0.861 −1.121 −1.153 −1.294

εLDA
L −1.111 −1.554 −1.963 −3.185

εxOEP
L −1.926 −2.477 −2.773 −3.748

WLDA 1.183 1.451 1.748 1.615

WxOEP 1.065 1.356 1.620 1.516

WExp 0.99 1.11 1.33 1.17

Table 7.1: The highest (εH) and lowest (εL) occupied Kohn-Sham eigenvalues, and the

corresponding width of the spectrum W = εH−εL for four sodium clusters as obtained in

LDA and exact-exchange OEP calculations, compared to the experimentally measured

width WExp. All values in eV. For Na−19 only the experimentally resolved part of the

spectrum is taken into account (i.e., the deepest level is excluded).

in the next subsection other influences that might contribute to the discrepancy between

theory and experiment are investigated.

7.3.2 Comparison between different theoretical approaches

A possible reason for the differences between the experimental and the theoretical results

is the usage of pseudopotentials [Phi59, Tro91, Kü00c]. The main idea behind these

potentials is to absorb the influence of the nucleus and the more strongly bound electrons

in an effective potential. This potential can be constructed either in an empirical or in

a non-empirical way [Kü00c]. Generally, pseudopotentials must be non-local in order to

give results in agreement with all-electron calculations [Phi59, Bac82, Tro91]. The main

advantages of pseudopotentials are the reduced number of explicitly treated electrons

and the reduced size of the employed basis sets. In the case of a real-space grid for

instance, extremely small grid spacings are required to accurately describe the strong

oscillations due to the high kinetic energy of the more deeply bound orbitals. By using

pseudopotentials this can be avoided. It is clear that the use of pseudopotentials is only

justified as long as the strongly bound electrons are not affected by the surroundings.

In the calculations discussed above only the sodium’s 3s valence electron has been

treated explicitly. For the LDA and GGA calculations first-principles pseudopotentials

constructed according to the scheme of Troullier and Martins [Tro91] have been used.

Since this scheme cannot be applied straightforwardly for the exact-exchange functional

[Byl95, Eng01], an empirical pseudopotential has been employed for the exact-exchange

OEP calculation. Due to the particularly simple electronic structure of sodium with one
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εH εL W

LDA nc. rel. 0.072 -1.111 1.183

LDA cc. urel. 0.068 -1.115 1.183

LDA cc. rel. 0.104 -1.146 1.250

GGA cc. rel. 0.148 -1.040 1.188

Table 7.2: Highest and lowest Kohn-Sham eigenvalue of Na−5 and their difference W in

eV as obtained with LDA pseudopotentials with and without non-linear core correction

and with the GGA of Ref. [Per96] with core correction. nc.: without non-linear core

correction; cc.: with non-linear core correction; rel.: geometry relaxed to lowest energy;

urel.: geometry kept fixed at ‘LDA without core correction’-values.

valence electron above otherwise completely filled shells, a purely local pseudopotential

can be constructed [Küm98, Kü00a]. For the construction of this empirical pseudopoten-

tial the atomic eigenvalues have been used as a criterion in the fitting of the pseudopo-

tential parameters. It is important to point out that it is not just the pseudopotential

that makes the difference in the width of the LDA and exact-exchange OEP spectra:

even if the same pseudopotential is employed for both functionals, the exact-exchange

OEP leads to a width that is about 0.1 eV smaller [Kü03b].

There is, however, another source of errors related to the use of a pseudopoten-

tial. In the standard Troullier-Martins construction one obtains the pseudopotential by

unscreening the total Kohn-Sham potential with the valence electrons’ contribution to

the Hartree and the exchange-correlation potential. The non-linear dependence of the

exchange-correlation potential on the density is usually neglected in this step, i.e., the

unscreening is linearized. The error introduced in this way can be minimized by using

a non-linear partial core correction [Lou82]. Studies show that this correction indeed

can be necessary to accurately describe Na clusters within the Troullier-Martins scheme

[Kro00]. One can imagine that the core correction might also affect the width of the

eigenvalue spectrum, e.g., by having a larger influence on the lower eigenvalues than

on the higher ones. Therefore, the LDA calculations for the test case Na−5 have been

repeated with a core-corrected pseudopotential. This has been done once with the ionic

positions fixed to the values obtained in the calculation without core correction (termed

unrelaxed core correction in Tab. 7.2) and once with a relaxed cluster structure found

from an additional total energy minimization with the core-corrected pseudopotential.

For the sake of completeness the eigenvalues obtained from the GGA of Ref. [Per96]

in combination with the corresponding core-corrected GGA pseudopotential and the

relaxed geometry are also shown in Tab. 7.2.

Comparing the first and the second line of Tab. 7.2, one notes that the LDA eigenval-
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ues obtained with the non-linear core-corrected pseudopotential for fixed ionic geometry

are just uniformly shifted by a tiny amount, and the width of the spectrum is identical

to the one obtained without core correction. Only when the ionic geometry is relaxed

do the effects of the core correction on the width become noticeable, as seen in the third

line of Tab. 7.2. That the core-correction affects results indirectly, via the bond-length,

is in agreement with earlier findings on the influence of core-corrections [Kro00] and in

line with studies that have shown the importance of bond-length effects in Na clusters

[Kü00a, Kü00b]. However, whereas the core correction in previous studies has improved

the agreement with experiment, the opposite is true in the present case: the change

goes in the wrong direction since the highest eigenvalue goes up in energy and the lowest

eigenvalue goes down, i.e., the total width of the spectrum increases. However, the fourth

line which shows the GGA results reveals that this is not to be overinterpreted: employ-

ing the GGA with the corresponding core-corrected pseudopotential and fully relaxing

the ionic geometry brings the width back to the value that it had in the LDA calculation

without core correction. Therefore, these results in summary seem to indicate that the

way in which the core-valence interaction is treated in the pseudopotential approach

may lead to uncertainties of about 0.1 eV in the width of the spectrum, but it is not

at the heart of the discrepancy between the theoretical and experimental photoelectron

spectra.

In order to test the effect of relaxation one can calculate the Kohn-Sham eigenvalues

with the transition state concept [Per81], i.e., one occupies one spin-orbital with only

a half electron. Again, the effect is moderate and furthermore it goes in the wrong

direction. E.g., for Na−5 one obtains the eigenvalues (in eV) ε1,↑(occ = 0.5) = −2.502,

ε2,↑(occ = 0.5) = −1.658, ε3,↑(occ = 0.5) = −1.198, i.e., the ‘bandwidth’ is too large

by about 0.3 eV. Since Kohn-Sham eigenvalues from accurate potentials are approx-

imations to relaxed electron removal energies, one does not expect that the transition

state concept, which is an approximation itself, needs to be taken into account in further

considerations.

The above considerations show that the observed discrepancies are not due to de-

ficiencies in the ‘technical’ treatment of the clusters. Therefore, the question arises

whether a different way of relating the Kohn-Sham eigenvalues to the measured photo-

electron spectra leads to different conclusions and clears up the situation. Specifically, a

scheme which is believed [Jel03] to convert Kohn-Sham eigenvalues into electron binding

energies is tested by applying it to the LDA eigenvalues of Na−5 and Na−7 . The calcu-

lations are based on what in Ref. [Jel03] is called the ‘integer valued grid’ since this is

supposed to be accurate for atomic clusters [Jel03]. Tab. 7.3 shows the corrections that

have to be added to the negative of each eigenvalue in order to obtain the corresponding

electron binding energy. Since the density is not spin polarized in the cases studied

here, the same correction applies to the first and second eigenvalue, third and fourth

eigenvalue, etc. The last column shows the width of the spectrum that results from the

‘corrected’ eigenvalues.
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Cluster ∆2 ∆4 ∆6 ∆8 W

Na−5 1.361 1.309 1.279 – 1.265

Na−7 1.438 1.350 1.321 1.313 1.576

Table 7.3: ‘Corrections’ ∆i that have to be added to the negative of the i-th LDA

Kohn-Sham eigenvalue to obtain the corresponding electron binding energy according

to the scheme of Ref. [Jel03]. All values are in eV and have been calculated according

to the ‘integer-grid scheme’[Jel03]. W is the width of the spectrum that results from the

‘corrected’ eigenvalues. Note that the ‘corrections’ make the width larger, i.e., worsen

the agreement with experiment (compare Tab. 7.1).

The first fact that becomes evident from Tab. 7.3 is that the ‘corrections’ are very

similar for all eigenvalues of a given cluster. Thus, the scheme in the present cases does

hardly more than shifting the whole spectrum by a constant. The second conclusion

from Tab. 7.3 is that the small differences in the corrections to the individual eigenvalues

which make the scheme a little different from a rigid shift actually influence the width

of the spectrum in the wrong way: instead of making the energetic difference between

the most strongly bound and the most loosely bound electron smaller, the corrections

make the difference larger. Thus, the width of the spectrum increases and agreement

with experiment becomes worse. This is not considered to be a serious issue since the

effect is rather small. But these findings are in line with the fact that the scheme of

Ref. [Jel03] is not a rigorous density functional for obtaining electron binding energies,

but rather a procedure which makes use of information from total energy differences in

a not unplausible but nevertheless ad hoc way.

To summarize, the calculations presented above confirm that better approximations

for the Kohn-Sham potential, as provided, e.g., by the exact-exchange OEP, lead to

Kohn-Sham eigenvalues that are better approximations to electron removal energies

than LDA eigenvalues. In particular, the width of the occupied eigenvalue spectrum

is reduced and thus in better agreement with experiments. However, the theoretically

predicted width of the photoelectron spectra is still overestimated by the exact-exchange

OEP Kohn-Sham eigenvalues. Thus, the question arises whether the approach based on

the excitation energies of the ‘daughter’ system can remove the discrepancy between the

theoretical and experimental results. This question is the subject of the next chapter.
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Chapter 8

Photoelectron spectra from

TDDFT

As described in Chap. 7 theoretical photoelectron spectra can be obtained by calculating

the excitation energies of the ‘daughter’ system. In the framework of time-dependent

DFT one can use the full linear density-response function to obtain the excitation ener-

gies of a system. This function provides access to the excitation energies since it has poles

at these energies. The crucial observation for DFT is that the interacting linear density-

response function can be expressed in terms of the Kohn-Sham response function and

the exchange-correlation kernel fxc(r, t, r
′, t′) = δvxc(r,t)

δn(r′,t′)

∣
∣
∣
n0

(n0 being the ground-state

density) [Pet96, Cas96, Gro96]. Nowadays, most applications use the matrix equation

of Casida [Cas96] to obtain the excitation energies.

Alternatively, the excitation energies can be extracted from a spectral analysis of the

time-dependent density coming from a real-time propagation [Yab96, Cal00, Mar01].

In this approach the exchange-correlation kernel is not needed, but instead, the time-

dependent Kohn-Sham equations are solved without explicit linearization. To illustrate

this approach imagine one has created a time-dependent density n(r, t) of an interacting

system by, e.g., a laser excitation. Assuming that the system is confined by the same

time-independent potential before and after the laser pulse, one can write the excited

density in terms of the eigenstates |ψj〉 of the interacting system in the time-independent

potential. It reads

n(r, t) = 〈ψ(t)|n̂|ψ(t)〉 =
∑

j,k

c∗jck〈ψj |n̂|ψk〉 exp(−i(Ek − Ej)t/~) (8.1)

where Ej is the eigenvalue corresponding to |ψj〉 and n̂ is the density operator. Assuming

that the time-dependent state |ψ(t)〉 is dominated by the ground state, i.e., c0 ≫ cj, one

can write

n(r, t) ≈ |c0|2n0(r) +
∑

j

c∗0cj〈ψ0|n̂|ψj〉 exp
(
− i(Ej − E0)t/~

)
+ c.c. (8.2)
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Here, n0(r) is the ground-state density of the system. If one now calculates the Fourier

transform of n(r, t) one gets peaks at the exact excitation energies of the system. Since

time-dependent DFT in principle provides one with the exact time-dependent density,

this is an easy method to obtain the excitation energies of the interacting system from

a time-dependent DFT calculation.

In a practical calculation two problems must be solved to get the excitation energies

from this scheme. First, one has to create a time-dependent density which is dominated

by the ground-state density and, in addition, contains the excited states of interest.

The second problem is how to extract the excitation energies from the time-dependent

density in practice. Since the density in every space point at all times cannot be stored,

a full Fourier transform of Eq. (8.2) giving n(r, ω) is not possible. To overcome this

problem several possibilities exist. One is to evaluate n(r, ω) only for some points in

space [Küm01], e.g., in the center of the cluster. A different method is to Fourier

transform certain moments of the density distribution, e.g., the dipole moment

d(t) = e

∫

rn(r, t) d3r . (8.3)

Obviously, some excitations are filtered out by this procedure because the Fourier spec-

trum of the dipole moment only shows excitation energies of states which can be coupled

to the ground state via the dipole operator. In order to get non-dipole active excita-

tions one has to record also higher moments, e.g., quadrupole moments. In the following

the time-dependent dipole and quadrupole moments are used to extract the excitation

energies of the systems of interest.

8.1 Numerical details

In order to obtain the results presented in this chapter and in Chap. 6 a numerical

scheme for solving the time-dependent Kohn-Sham equations in three dimensions has

been implemented into a modified version of the PARSEC program package [Kro06]. The

main features of this implementation are presented in this subsection. Originally, the

PARSEC program package solves the static Kohn-Sham equations in combination with

pseudopotentials on a real-space grid with a high-order approximation to the Laplacian

(up to twelfth-order). This can be done either on a single processor or on several proces-

sors due to the implemented parallelization. Using PARSEC as a starting point, several

numerical routines which solve the time-dependent Kohn-Sham equations in real-time

have been added to the original package. The general philosophy is to use the PARSEC

routines to solve the static Kohn-Sham equations and then use the resulting ground-state

quantities as initial conditions for the time-dependent equations.

In contrast to the one-dimensional implementation presented in Chap. 5 a different

approximation for the propagator is used in three dimensions. Instead of the Crank-

Nicolson method a fourth-order Taylor approximation is used, i.e., the propagator is
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approximated by [Yab96, Ca04b]

Û(t+ ∆t, t) ≈
4∑

n=0

(
− i∆t

~
ĥS(t+ ∆t/2)

)n
. (8.4)

The advantage of this method is that one does not have to solve any linear equations to

obtain the Kohn-Sham orbitals at later times. One only has to apply the Hamiltonian

several times to the initial Kohn-Sham orbitals. Thus, for a real-space grid only matrix-

vector multiplications are needed. Since the Hamiltonian is sparse, these multiplications

can be performed very efficiently. For the Hamiltonian in Eq. (8.4) the approximation

ĥS(t+ ∆t/2) ≈ ĥS(t) + ĥS(t+ ∆t)

2
(8.5)

is used. The Hamiltonian ĥS(t+∆t) is calculated from approximated Kohn-Sham orbitals

obtained from a time step with ĥS(t + ∆t/2) ≈ ĥS(t). The main other aspects of the

implementation are listed in the following.

• For the time-dependent exchange-correlation potential either the time-dependent

LDA, the time-dependent exact-exchange KLI potential, or the time-dependent

Perdew-Zunger self-interaction correction KLI potential can be used [Per81, Kör06].

• For the excitation of the system a momentum boost is implemented. This boost

is realized by multiplying all ground-state orbitals with a phase factor exp(i r ·
pboost/~). In addition, a time-dependent laser field in dipole approximation can

be applied to the system. Implemented are the common pulse shapes, i.e., a sin2

envelope, a Gaussian envelope and a linear up and down ramping with a constant

amplitude in between. Additionally, the same shape without an oscillating field

can be used. All different potentials and the required parameters are plotted in

Fig. 8.1.

• The atomic cores consisting of the nuclei and the core electrons can be propagated

according to classical equations-of-motion with Hellmann-Feynman forces [Jin94].

The equations-of-motion are solved with a second-order symplectic leapfrog al-

gorithm (named si2.a in Ref. [Gra94]). The implemented scheme allows a non-

adiabatic treatment of couplings between the electronic and ionic degrees of free-

dom [Saa96, Cal00, Ca04a, Hey05].

• For strong ionizing excitations absorbing boundary conditions can be activated to

prevent that the ionized density is reflected back into the system by the boundary of

the numerical box [Rei06]. The absorbing boundary is realized by multiplying the

Kohn-Sham orbitals in a boundary layer after every time step by a mask function,

i.e.,

ϕj(r, t) = ϕj(r, t) sinp
(
π d

2BBl

)

, for d ≤ BBl (8.6)
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where d is the distance from the point r to the surface of the numerical box and

BBl is the thickness of the absorbing boundary layer provided by the user. The

damping exponent p has a default value of 0.02 [Rei06] and can be also changed

by the user. The sinp is chosen because it goes smoothly from zero to one. Since

all absorbing potentials also lead to a reflection in a quantum mechanical treat-

ment, the boundary layer should not be chosen too small to guarantee minimal

backscattering.

• As in the static part of the code the routines connected to the propagation are

parallelized.

All in all the additional routines contribute around 4000 new lines of code and comments

to PARSEC.

AA

Time

E
le

ct
ri

c 
fi

el
d

Ti

ω

Ti

Ti Ti
Ti + Tw

Ti + Tw
Ti + Tw

Ti + Tw

ω

ω

AA

Tr

TrTr

Tr

Figure 8.1: Schematic view of different pulse shapes implemented in the modified

version of the PARSEC code. Upper left corner: Gaussian envelope, upper right corner:

sin2 envelope, lower left corner: linear envelope, and lower right corner: linearly ramped

field. The pulses are characterized by an amplitudeA, a laser frequency ω, a starting time

Ti, and a pulse duration Tw. The linearly shaped pulses are additionally characterized by

a ‘ramping’ time Tr and the Gaussian pulses by the full width at half maximum TFWHM

(not plotted).
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8.2 Anionic sodium clusters

8.2.1 Technical aspects

For the ionic ground-state configurations of the ‘mother’ systems optimized structures

obtained with the PARSEC program package are used. The generalized-gradient approx-

imation of Perdew et al. (PBE) [Per96] has been employed for the geometry optimization.

The ionic cores are treated consistently with norm conserving non-local pseudopoten-

tials [Tro91]. A time step of 0.003 fs is used and the total propagation time is 75 fs. In

the propagation the ionic cores are also described by norm conserving non-local pseu-

dopotentials. Furthermore, the ionic structures are fixed during the propagation. The

grid spacing is 0.7 a0 and the grid radius varies between 20 and 23 a0 depending on the

system. The time-dependent density is created by applying a boost exp(i r · pboost/~)

to the ground-state Kohn-Sham orbitals. The total excitation energy of the system is

Eexcit = 1.0× 10−5 eV, i.e., a boost strength |pboost| =
√

2meEexcit/N is applied to each

Kohn-Sham orbital (with me being the electron mass and N the number of electrons).

In addition, the calculations are repeated with a boost strength reduced by a factor

of 1.0 × 10−2. Using these two small boost strengths allows one to check whether the

created time-dependent density is dominated by the ground-state density (see below).

Instead of applying the same boost vector pboost to all Kohn-Sham orbitals, and thus

creating a coherent velocity field, the boost directions for different Kohn-Sham orbitals

are varied. This is necessary since applying the same boost direction to all Kohn-Sham

orbitals corresponds to first order in pboost to a dipole excitation of the system, i.e., from

the resulting time-dependent density it is only possible to retrieve the excitation energies

of ‘dipole-active’ states. By applying different boost directions to different Kohn-Sham

orbitals one models a general excitation mechanism creating a time-dependent density

containing excited states with different symmetry properties. In detail, one randomly

chooses a boost direction (no symmetry axis of the considered cluster) for the first orbital

and then chooses a coordinate system such that this direction is the first diagonal (for

the remaining rotational degree of freedom a random angle is chosen). After this one

boosts the second orbital in the opposite direction of the first boost. The third orbital

is then boosted in the direction of the second diagonal of the chosen coordinate system,

the forth again in the opposite direction and so on. For Na9, the ninth orbital is boosted

again in the same direction as the first orbital. Since the only purpose of this procedure

is to create a time-dependent density without any particular symmetries, the relative

orientation of the cluster with respect to the boost directions is not considered to be of

special importance.

Finally, the time-dependent local-density approximation for the exchange-correlation

potential is used for the propagation. Since the linear response of the homogeneous

electron gas is the same in this approximation and in the PBE functional, the differences

in the resulting excitation energies can be expected to be small in the low-energy regime.
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Figure 8.2: Dipole power spectrum of Na3 resulting from an incoherent boost excita-

tion. The result obtained from a total excitation of 1× 10−5 eV is labeled ‘strong excit.’

whereas the label ‘weak excit.’ corresponds to a boost reduced by a factor of 1× 10−2.

Clearly, the dipole power spectrum scales quadratically with the boost strength indicat-

ing that the peak positions correspond to excitation energies between the ground state

and excited states.

8.2.2 Results for Na−
3

Fig. 8.2 shows the dipole power spectra of Na3 resulting from two boost strengths dif-

fering by a factor of 102. The dipole power spectrum is given by

D(ω) :=

3∑

j=1

|dj(ω)|2 (8.7)

where dj(ω) is the Fourier transform of the j-th component of the dipole moment,

Eq. (8.3). For small momentum boosts first-order perturbation theory predicts a linear

dependence of the expansion coefficients cj in Eq. (8.1) on the boost strength. As a

consequence, reducing the boost strength by a factor of c suppresses peaks corresponding

to energy differences between two excited eigenstates by a factor of c4 in the power

spectrum. Since peaks corresponding to transitions between the ground state and an

excited eigenstate are only suppressed by a factor of c2, changing the boost strength

allows one to distinguish between these two kinds of excitations. As one can see in

Fig. 8.2, the results for the two boost strengths are almost identical except for the

predicted factor of 104. Thus, one concludes that all the peak positions in the dipole

power spectrum of Fig. 8.2 correspond to energy differences between the ground state

energy and the energy eigenvalues of the excited eigenstates.

The situation is different for the power spectrum resulting from the quadrupole

moments. In Fig. 8.3 the quantity
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Figure 8.3: Sum of the absolute square of the Fourier-transformed components of the

quadrupole tensor resulting from the same excitations as in Fig. 8.2. In contrast to the

dipole power spectrum some peaks vanish with reduced boost strength indicating that

they correspond to energy differences between excited states.

Q(ω) :=

3∑

i=1

j≥i

|qij(ω)|2 (8.8)

is plotted for the same two excitation boosts. In this equation, qij(ω) is the Fourier

transform of the quadrupole moment

qij(t) =

∫

n(r, t) (3xixj − r2δij) d
3r , (8.9)

r2 =
3∑

i=1

x2
i ,

and the sum only runs over the independent components of the quadrupole tensor.

Clearly, the quadrupole spectra for the different excitation strengths differ considerably.

For instance, the three large peaks at around 0.3, 1.1, and 1.7 eV vanish almost com-

pletely. Thus, one concludes that they belong to transition energies between different

excited states. Indeed, one can see that these energies are exactly equal to the energy

differences between the first excited state and the other excited states from the dipole

spectrum.

The reason why there are no peaks at these energies in the dipole spectrum can

easily be understood if one takes the geometry of Na3 into account. Since Na3 has a

linear ionic configuration, the ground state has even parity. Thus, the dipole spectrum

only shows excited states with odd parity. Since two states with odd parity cannot be

coupled by the dipole operator, transitions between these states do not show up in the

dipole spectrum.
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Figure 8.4: Measured photoelectron spectrum of Na−3 (‘Exp.’) and theoretical photo-

electron spectrum obtained from the excitation energies of Na3. Excitation energies from

the dipole spectrum are labeled ‘Dip. excit.’ whereas ‘Quad. excit.’ labels excitation en-

ergies deduced from the quadrupole moments. Arrows indicate the result obtained from

the Kohn-Sham DOS. Left part: results obtained from the ionic ground-state configura-

tion at zero temperature. Right part: results obtained from an ionic configuration with

a larger bond length to simulate a higher temperature. For most peaks the agreement

with the experimental photoelectron spectrum is clearly improved.

After the identification of the true excitation energies one can now compare the

results with the measured photoelectron spectrum. In Fig. 8.4 the excitation energies of

Na3, the Kohn-Sham density of states (DOS) of Na−3 and the measured photoelectron

spectrum (of Na−3 ) are plotted. The positions of the occupied Kohn-Sham eigenvalues are

indicated by arrows, long bars indicate excitation energies from the dipole spectrum and

shorter bars excitation energies from the quadrupole moments. In addition, excitation

energies leading to peaks below the strongest bound experimental peak are reduced in

their overall height. For better comparison the Kohn-Sham DOS and the excitation

spectrum are both rigidly shifted in such a way that the most weakly bound peak

coincides with the experimental one.

As the left part of Fig. 8.4 shows the peak positions that one obtains from the Kohn-

Sham DOS are close to the experimental peak positions. Unlike to the case of larger Na

clusters the width is slightly smaller than the energy difference between the two large

experimental peaks but it is still reasonable. However, since there are only two occupied

Kohn-Sham orbitals in Na−3 the Kohn-Sham DOS picture fails completely to describe

the higher lying peaks in the measured spectrum.

As one expects from Eq. (7.1) the photoelectron spectrum obtained from the exci-

tation energies shows a much richer structure than the Kohn-Sham DOS. One striking

feature for instance is the second excitation around −2.0 eV. It seems that the energy

difference between this peak and the one at −1.7 eV is too large in the calculation and

that they are merged to one peak in the experimental photoelectron spectrum. However,
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in general, the dynamically calculated excitation energies and the energies obtained from

the experimental photoelectron spectrum are close to each other even for the stronger

bound peaks. To see if the remaining discrepancy can be further reduced by taking

temperature effects into account one can repeat the calculations with a larger bond

length. Due to the net negative charge of the cluster one can expect that other geom-

etry changes, e.g., bending, only play a minor role in the case of Na−3 . The new bond

length is approximately 6.8 instead of 6.5 a0. This new value for the bond length l of

the cluster is obtained from an estimate for the thermal expansion at T = 300 K. It is

based on the formula β = 1
l
∂l
∂T for the linear thermal expansion coefficient β which one

can roughly estimate by β ≈ 2βbulk [Kü00b], where βbulk is the bulk value for crystalline

sodium at room temperature.

The result can be seen in the right part of Fig. 8.4. For most peaks one can observe

a small shift towards lower absolute binding energies. Except for the peak at −1.7 eV

the agreement between the experimental and theoretical spectrum is slightly improved

by the increased bond length. Especially the broader peak at around −2.6 eV is nicely

reproduced in this case. All in all, both calculations show that for Na−3 the main advan-

tage of the ‘excitation picture’ is the reproduction of the deeper bound structures in the

photoelectron spectrum.

8.2.3 Results for Na−
5 , Na−

7 , and Na−
9

Fig. 8.5 shows the experimental photoelectron spectrum of Na−5 , the Kohn-Sham DOS,

and the photoelectron spectrum obtained from the excitation energies of Na5. The

labeling is the same as in the corresponding previous figures. As for Na−3 the Kohn-

Sham DOS is in acceptable agreement with the first large peaks although the strongest

bound large peak has a too negative binding energy in the Kohn-Sham DOS. As one

can see these peaks are also well described by the excitation energies of the ‘daughter’

system with the additional advantage that the last peak at −2.2 eV is better reproduced.

In this approach it consists of four close-lying excitations.

Beyond the peak at −2.2 eV the comparison with the experimental measurement is

difficult since no clear peak structures can be observed. Perhaps the accumulation of

excited states around −3.3 eV can be associated with the measured peak in this region,

but for the reasons given below, one has to be very cautious in making comparisons in

this part of the spectrum.

As one can see from the results for Na−7 and Na−9 discussed below the problem of

comparing the deeper lying part of the measured photoelectron spectrum with calcu-

lated excitation energies is not specific to Na−5 . In general, the density of excited states

grows with the excitation energy, i.e., more and more states appear in the theoretical

calculation. On the other hand, as mentioned previously, the photoelectron spectrum

depends not only on the positions of the excited states but also on the matrix element

of the perturbing operator D̂ between the initial and the final state. Taking the ground
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Figure 8.5: Same as in Fig. 8.4 but for Na−5 . Although both, the Kohn-Sham DOS

and the photoelectron spectrum from the excitation energies, describe the measured

photoelectron spectrum acceptable the large peak at −2.2 eV is much better reproduced

by the excitation energies from the ‘daughter’ system.

state of the ‘mother’ system for the initial state and a product state consisting of one

photoelectron with momentum k for the final state one obtains matrix elements of the

form 〈k, ψ(N)
j | D̂ |ψ

(N+1)
0 〉. It is intuitively clear that these matrix elements are much

larger for low-lying states than for energetically high-lying ones which in an independent-

particle picture would correspond to removing one particle and exciting a second one

above the Fermi level. Especially, in the case of truly independent particles this pro-

cess cannot happen if the perturbing operator is a one-particle operator like the dipole

operator. Thus, many energetically high-lying eigenstates of the ‘daughter’ system are

hardly or even not at all excited in the experiment. Since the mentioned matrix elements

depend on the interacting many-particle wavefunctions, calculating these exactly is close

to being impossible. Especially, retrieving these matrix elements from a time-dependent

DFT propagation of the ‘daughter’ system is not trivial because the propagation only

provides information about matrix elements between excited states and the N -particle

ground state and not the (N + 1)-particle ground state.

However, as the presented calculations show, the matrix elements do not play a very

important role in the part of the spectrum that one is mainly interested in. Nevertheless

the calculations also clearly indicate that one has to consider them if the deeper lying

parts of the spectrum are of interest. A possible method how this can be done in a

time-dependent DFT calculation can be found at the end of this chapter.

The results for Na−7 are shown in Fig. 8.6. As said previously in the region below

−2.5 eV it is difficult to compare theory and experiment due to the great number of

close lying transitions. As in Na−5 the Kohn-Sham DOS describes the strongest bound
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Figure 8.6: Same as in Fig. 8.4 but for Na−7 . Especially, the peak at −2.4 eV is much

more accurately described by the excitation energies than by the Kohn-Sham DOS. In

the weakly bound region thermal effects play an significant role in the case of Na−7 . This

explains the rather poor agreement between the theoretical values calculated at zero

temperature and the measured curve between −1.3 and −1.7 eV.

large peak worst. In this case it is already off by 0.4 eV. In contrast, the peak position

obtained from the time-dependent LDA excitation energies is considerably closer to the

experimental peak. It is only off by 0.1 eV. Thus, the overestimation of the spectrum’s

width by the Kohn-Sham DOS discussed in the previous chapter is not observed in the

result obtained from the time-dependent LDA calculation. The remaining difference of

0.1 eV between the width of the theoretical and the experimental spectrum can be easily

caused by technical aspects like the employed pseudopotential and exchange-correlation

potential. In addition, thermal effects like bond elongation and structural isomerization

can shift the obtained width by 0.1 eV [Kü00b, Mos01, Mos03]. Considering that the

experimental photoelectron spectra are obtained from clusters with a temperature of

around 250-300 K, the difference between the theoretical result at zero temperature and

the experimental result is hardly surprising. At these temperatures the larger anionic

sodium clusters behave liquidlike [Mos03]. Consequently, many different ionic configu-

rations are present in the experiment and show up in the measured spectra.

This aspect must also been kept in mind if the theoretical and experimental results

are compared in the region between −1.3 and −1.7 eV. In this region both the zero tem-

perature Kohn-Sham DOS result and the zero temperature result from the excitation

energies do not describe the measured photoelectron spectrum very accurately. Espe-

cially, the excitation peak at −1.45 eV does not fit very well. However, from Ref. [Mos03]

it is known that the agreement between the experimental and the Kohn-Sham DOS re-

sult in this energy region is significantly improved if different ionic structures are taken
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into account via Born-Oppenheimer Langevin molecular-dynamics [Bar93]. Therefore,

one can expect that the agreement between the experimental and the time-dependent

LDA result is also improved if different ionic structures are taken into account. Due

to the more complicated structures and the growing number of isomers the inclusion

of the temperature influence on the ionic structures of larger clusters is much more in-

volved than in the case of Na−3 . Additionally, combining Born-Oppenheimer Langevin

molecular-dynamics with the calculation of excitation energies is substantially more ex-

pensive than combining such a molecular dynamics scheme with a Kohn-Sham DOS

calculation. Thus, including thermal effects in the present study is beyond the scope of

the present work.

Finally, the theoretical results for Na−9 are compared in Fig. 8.7 with the measured

photoelectron spectrum. This cluster is the first one which has a clear peak in the range

between the highest and lowest occupied Kohn-Sham eigenvalue which is completely

absent in the Kohn-Sham DOS, i.e., the experimental photoelectron spectrum shows six

clear peaks whereas the Kohn-Sham DOS consists of only five peaks: the peak around

−2.4 eV is completely missing in the Kohn-Sham DOS. In addition, the strongest bound

peak in the Kohn-Sham DOS is off by 0.5 eV. In other words, the Kohn-Sham DOS result

is inaccurate to the extent of being useless below −2.2 eV. As for Na−7 the splitting of the

large peak around −1.8 eV is reproduced if different ionic structures are used [Mos03].

In contrast to the Kohn-Sham DOS result the photoelectron spectrum obtained from

the excitation energies is close to the measured curve over the whole range. Below the

lowest lying peak at −2.7 eV the comparison is again difficult without knowing the ma-

trix elements mentioned above. For the two peaks at −2.7 and −2.4 eV the theoretical

values are off by 0.1 eV. Especially since Na−9 , in contrast to Na−7 , is not a closed-shell

cluster, one can expect that such energy differences can be easily caused by ionic struc-

ture modifications induced by finite temperatures. As expected from Ref. [Mos03] the

splitting of the peak at −1.8 eV is also not reproduced by the zero temperature time-

dependent LDA calculation. All in all, the experimental result in the weaker bound part

of the spectrum is described equally well by the Kohn-Sham DOS and the excitation en-

ergies of the ‘daughter’ system. However, in the stronger bound part the time-dependent

calculation yields a much more realistic description of the photoelectron spectrum than

the Kohn-Sham DOS. Since this emerges as a general observation for all systems studied,

it is discussed on general grounds in the following section.

8.2.4 Conclusion

In general, the photoelectron spectra for all clusters studied in this work can be divided

into three parts. The first part consists of large, ‘weakly’ bound peaks, the second of

large, ‘strongly’ bound peaks, and finally a ‘less structured’ region below the strongest-

bound large experimental peak. Except for Na−3 no comparisons between the theoretical

and the experimental results can be made in the third region. As previously discussed
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Figure 8.7: Same as in Fig. 8.4 but for Na−9 . As in Na−7 especially the stronger bound

part of the spectrum is described more accurately by the calculated excitation energies

than by the Kohn-Sham DOS.

the main reason for this is the missing access to the transition matrix elements between

the ground and the excited states. Since the number of excited states can grow very

rapidly, one can expect that the omission of the transition matrix elements can cause

severe problems if more complex systems are examined. A possible way to overcome this

problem is by including the information of the matrix elements in the initial density, i.e.,

by creating an initial density that only includes the states which are really excited in

the ionization process.

In the middle part of the spectrum the results obtained from the excitation energies

are clearly superior to the results from the Kohn-Sham DOS. Especially, the position

of the strongest bound large peak is much better reproduced by the time-dependent

approach than by the Kohn-Sham DOS. Thus, using the ‘excitation-energy’ picture

cures the main problem that plagues theoretical results obtained from the Kohn-Sham

DOS for sodium clusters, namely the prediction of a significantly too large width of

the spectrum. In addition, the photoelectron spectrum from the time-dependent LDA

excitations can describe an experimental peak in the photoelectron spectrum of Na−9
which is completely missing in the Kohn-Sham DOS. The remaining differences between

the experimental and the theoretical results are all small enough to be explainable by

technical details or the finite temperature (250-300 K) of the ionic structures in the

experiment. In particular the finite temperature can be expected to be responsible for

the difference since the considered clusters behave liquidlike at this temperature and

thus, the measured photoelectron spectra result from many different ionic structures /

isomers which differ from the theoretical zero temperature ground-state structures used

for the calculations.
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Finally, in the most weakly bound part of the spectrum one finds that the time-

dependent results and the ones from the Kohn-Sham DOS are very similar. Since the

Kohn-Sham DOS at finite temperature is in very good agreement with the experimental

result [Mos03], it is extremely likely that also the excitation energies calculated from

higher temperature ionic structures will describe the experimental photoelectron spectra

very well in this region.

Generally, these findings are in line with earlier results [Pe82b, Cho02] which report

a worse agreement between the Kohn-Sham DOS results and the experimental values for

stronger bound levels. In addition, the results clearly show that the agreement between

the theoretical and the experimental spectrum is considerably improved for small sodium

clusters if the photoelectron spectrum is extracted from the true excitation energies of

the ‘daughter’ system and not the Kohn-Sham DOS. This shows the importance of

taking effects beyond the independent-particle picture into account in the interpretation

of photoelectron spectra.



Chapter 9

Summary and Conclusion

Offering the possibility to describe an interacting many-particle system solely in terms

of its density, density-functional theory has been the subject of a tremendous number

of scientific publications covering fundamental aspects and applications. Despite the

enormous efforts made in the field many aspects are still not sufficiently understood

and need to be investigated. Of paramount interest in this context are the properties

of the unknown exchange-correlation potential. As has been described in Chap. 2 this

local potential allows one to replace an interacting system by a non-interacting system

which has the same electronic density. The advantage of this replacement is that for a

given exchange-correlation potential one can obtain the electronic density of an inter-

acting system by just solving one-particle Schrödinger equations. In contrast to the full

interacting many-particle problem these equations can be solved extremely efficient. As

stated by the Hohenberg-Kohn and Runge-Gross theorem the knowledge of the density

in principle allows one to calculate any observable of interest. Thus, the full interacting

many-particle problem can in principle be solved by calculating the solution of one-

particle Schrödinger equations if the exact exchange-correlation potential is known.

However, as stated above the exact exchange-correlation potential is not known and

must be approximated in any practical calculation. In Chap. 2 the idea behind the most

common approximation for this potential, namely the local-density approximation, has

been presented together with one of its most prominent failures: the self-interaction

error. As discussed at the end of Chap. 2 approximations based directly on the density

cannot solve this problem completely. However, potentials constructed from the Kohn-

Sham orbitals, i.e., from those orbitals which solve the Kohn-Sham equations, can solve

this problem. Since the Kohn-Sham orbitals are implicit functionals of the density, any

expression constructed from these orbitals is a legitimate density functional. This is the

basis of orbital functionals.

As has been shown in Chap. 3 orbital functionals are also a promising concept be-

cause they can show a discontinuous behavior when the particle number is changed.

Such a discontinuous behavior of the exchange-correlation potential under particle-
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number changes is required in the fractional particle-number formalism of static and

time-dependent density-functional theory. The discussion given in Chap. 3 furthermore

shows that even in situations in which the particle number is an integer the exchange-

correlation potential can have a behavior similar to the discontinuous behavior in the

fractional particle-number formalism. This feature can be expected to play a crucial

role in any time-dependent process involving a particle transfer between two separated

sub-systems, e.g., charge-transfer excitations in molecules and molecular dissociation.

Due to the presented reasons using orbital functionals is highly desirable. Unfortu-

nately, this is not trivial since the exchange-correlation potential must be obtained from

the complicated optimized effective potential integral equation. In ground-state density-

functional theory this equation can be solved by transforming the integral equation into

a set of coupled differential equations. As has been demonstrated in Chap. 4 the time-

dependent optimized effective potential equation can also be transformed into a set of

coupled differential equations. In contrast to the static case, however, Chap. 5 shows

that no converging method to solve the time-dependent coupled differential equations

exists at present. Thus, one of the most pressing problems of time-dependent density-

functional theory, namely the construction of the time-dependent optimized effective

potential, is an unsolved problem. Hopefully future work will cure this problem. At

present, the ‘OSBK’ approximation which has been put forward in Chap. 4 can be used

to go beyond the commonly used Krieger-Li-Iafrate approximation.

The missing access to the time-dependent optimized effective potential turns out to

be particularly severe since the popular Krieger-Li-Iafrate approximation to the time-

dependent optimized effective potential violates the ‘Zero-Force theorem’, i.e., Newton’s

third law. This has been demonstrated in Chap. 6. In this chapter it has also been

shown that the violation of the ‘Zero-Force theorem’ can lead to a completely wrong

time evolution of the density. Considering this, the observation that the time-dependent

Krieger-Li-Iafrate potential satisfies the ‘Harmonic-Potential theorem’ is only a cold

comfort. In the case of strong external potentials one can hope that the dynamics is

dominated by the external fields and the violation of the ‘Zero-Force theorem’ plays only

a minor role. However, if one is interested in extracting the excitation energies from a

real-time propagation as done in Chap. 8 the violation of the ‘Zero-Force theorem’ can

be an insurmountable obstacle. The fact that the time-dependent local-density approx-

imation satisfies all the constraints discussed in Chap. 6 demonstrates how resourceful

this approximation is despite all its drawbacks.

In contrast to the chapters 2 - 6 which have mainly dealt with fundamental aspects

of density-functional theory the last two chapters have been dedicated to an application

of density-functional theory in the field of cluster physics. Quite generally, clusters are

an aggregation of atoms or molecules. The number of constituents in one cluster can

vary between a few units and several thousand units, i.e., clusters are scalable objects

and provide a bridge between atomic / molecular physics and solid state physics. Due to
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the resulting large differences in particle numbers density-functional theory is a perfect

tool for this area of physics.

Of particular interest in cluster physics are the electronic and ionic structures of

clusters. Due to the small size of many clusters photoelectron spectroscopy is very

often the only method that provides access to these structures. Whereas the electronic

structure can directly be accessed by photoelectron spectroscopy this is not possible for

the ionic structure. However, comparing the measured photoelectron spectrum with

theoretical results obtained from first-principle calculations for different ionic structures

allows one to identify the ionic structure of the measured cluster. Clearly, using this

elegant interplay between experiment and theory can only work if reliable methods exist

to calculate the photoelectron spectrum. In Chap. 7 and Chap. 8 different theoretical

approaches to obtain the photoelectron spectrum from density-functional calculations

have been investigated and compared to experimental results for small anionic sodium

clusters. Since sodium clusters are among the most studied clusters, both experimentally

and theoretically, they provide a well-suited test ground for such comparisons of different

methods. In addition, due to their electronic structure with one ‘quasi free’ valence

electron per atom these clusters are the paradigm representative for metal-like clusters.

As a consequence, the local-density approximation can be expected to work well in this

case.

The most common method to obtain the photoelectron spectrum from a density-

functional calculation has been studied in Chap. 7. In this method the Kohn-Sham

eigenvalues obtained from a ground-state calculation are interpreted as binding energies.

This procedure turns out to work quite well for the outer valence states, i.e., for the

weakly bound peaks in the photoelectron spectrum. However, the more strongly bound

peaks of the experimental spectrum are not accurately reproduced by this approach. As

shown in Chap. 7 this observation holds for different approximate exchange-correlation

potentials and can also not be explained by technical aspects of the calculations. This

indicates that the observed discrepancy between the theoretical and experimental results

is rather due to the interpretation of the Kohn-Sham eigenvalues as binding energies

than due to the approximate exchange-correlation potentials employed. However, to

ultimately prove this statement it would be highly desirable to calculate the exact Kohn-

Sham eigenvalues, i.e., the eigenvalues resulting from the exact exchange-correlation

potential. Unfortunately, this requires the knowledge of the exact density and calculating

this density from quantum-chemical ab-initio methods requires a huge effort for larger

systems.

In Chap. 8 it has been explained that the second approach to obtain the photoelectron

spectrum is based on the interpretation of the photoelectron spectrum as a measurement

of the excited states of the remaining system, i.e., the system without the photoelectron.

Since excitation energies can be calculated by time-dependent density-functional the-

ory, at least the peak positions can be obtained from time-dependent density-functional
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theory. As shown in Chap. 8 this approach considerably improves the agreement be-

tween the theoretical and the experimental results. Especially, the more strongly bound

parts of the spectrum are much better reproduced in this approach than in the previous

approach based on the Kohn-Sham eigenvalues. However, this second approach also

clearly demonstrates the major drawback of both methods, namely the missing access

to the peak heights. Developing methods for extracting these heights from a density-

functional calculation is one of the main future tasks in the density-functional treatment

of photoelectron spectroscopy.



Appendix A

The density-response function on

the Keldysh contour

In this appendix δϕjσ(r
′, τ ′)/δvSσ(r, τ) and the Kohn-Sham density-response function

χS(r, τ ; r
′, τ ′) on the Keldysh contour are calculated. This calculation demonstrates how

the Keldysh formalism leads to a response function which is symmetric under the trans-

formation r′, τ ′ ←→ r, τ on the Keldysh contour, but becomes causal when transformed

to physical time. Thus, the following derivation also gives an idea how the Keldysh for-

malism solves the ‘symmetry-causality paradox’ which plagues the Runge-Gross action

[Gro95, Gro96, Lee98].

To calculate δϕjσ(r
′, τ ′)/δvSσ(r, τ) one adds a small perturbation δvSσ(r, τ) with

τi < τ < τf to the Kohn-Sham Hamiltonian and solves the Schrödinger equation on the

Keldysh contour for this perturbed problem, i.e., one determines the solution of

(
i~t′(τ)−1∂τ − hSσ(r, τ) + δvSσ(r, τ)

)
ϕ′
jσ(r, τ) = 0 . (A.1)

Since the solution ϕkσ of the unperturbed equation provides a complete orthonormal

basis set, one can write the perturbed orbitals in the form

ϕ′
jσ(r, τ) =

∞∑

k=1

cjkσ(τ)ϕkσ(r, τ) . (A.2)

Inserting this ansatz into Eq. (A.1), one obtains

i~t′(τ)−1
∞∑

k=1

ċjkσ(τ)ϕkσ(r, τ) =

∞∑

k=1

cjkσ(τ) δvSσ(r, τ)ϕkσ(r, τ) . (A.3)

The orthogonality of ϕ∗
lσ can be used to reduce the sum on the left side to just one

constant. The result is

ċjlσ(τ) =
t′(τ)

i~

∞∑

k=1

cjkσ(τ)

∫

ϕ∗
lσ(r, τ) δvSσ(r, τ)ϕkσ(r, τ) d

3r . (A.4)
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The usual ansatz cjkσ(τ) = c
(0)
jkσ(τ) + c

(1)
jkσ(τ) + · · · for a perturbation expansion in

combination with a proper collection of corresponding orders on each side of Eq. (A.4)

yields the following set of coupled differential equations

ċ
(0)
jlσ(τ) = 0

ċ
(1)
jlσ(τ) =

t′(τ)

i~

∞∑

k=1

c
(0)
jkσ(τ)

∫

ϕ∗
lσ(r, τ) δvSσ(r, τ)ϕkσ(r, τ) d

3r (A.5)

...

Before integrating these differential equations, it is necessary to specify the boundary

conditions. Since ϕ′
jσ evolves from τi forward in pseudotime and δvSσ(r, τi) is zero,

δϕjσ(r, τi) = ϕ′
jσ(r, τi)−ϕjσ(r, τi) must vanish. This implies c

(0)
jkσ(τi) = δj,k and c

(1)
jkσ(τi) =

0. Given the first condition the differential equation for c
(0)
jkσ(τ) can be immediately

integrated yielding c
(0)
jkσ(τ) = δj,k. Feeding this result into the equation for c

(1)
jlσ(τ) and

using the second condition one obtains

c
(1)
jlσ(τ) =

1

i~

∫ ∫ τ

τi

ϕ∗
lσ(r, τ

′) δvSσ(r, τ
′)ϕjσ(r, τ

′) t′(τ ′) dτ ′ d3r . (A.6)

Thus, the first-order correction is

δϕjσ(r, τ) =

∞∑

k=1

c
(1)
jkσ(τ)ϕkσ(r, τ) (A.7)

=
∞∑

k=1

1

i~

∫ ∫ τ

τi

t′(τ ′)ϕ∗
kσ(r

′, τ ′) δvSσ(r
′, τ ′)ϕjσ(r

′, τ ′) t′(τ ′) dτ ′ d3r′ ϕkσ(r, τ) .

To calculate the functional derivative of δϕjσ with respect to δvSσ one has to take care

of the integration measure. Since
∫ ∫

f(r′, τ ′)
δvSσ(r, τ)

δvSσ(r′, τ ′)
t′(τ ′) dτ ′ d3r′ = f(r, τ) (A.8)

must hold for any test function f , the functional derivative is given by

δvSσ(r, τ)

δvSσ(r′, τ ′)
= t′(τ)−1δ(τ − τ ′) δ(r − r′) . (A.9)

With this in mind δϕjσ/δvSσ is finally obtained as

δϕjσ(r, τ)

δvSσ(r′, τ ′)
= − i

~
θ(τ − τ ′)ϕjσ(r′, τ ′)

∞∑

k=1

ϕ∗
kσ(r

′, τ ′)ϕkσ(r, τ) . (A.10)

When calculating the same functional derivative for the complex conjugate ϕ∗
jσ, one has

to be careful with the boundary condition [Lee98]. Since ϕ∗
jσ evolves from τf backwards

in time (see, e.g., Eq. (2.28)), δϕ∗
jσ has to satisfy the condition δϕ∗

jσ(r, τf) = 0. Carrying

out a similar calculation as above leads to

δϕ∗
jσ(r, τ)

δvSσ(r′, τ ′)
= − i

~
θ(τ ′ − τ)ϕ∗

jσ(r
′, τ ′)

∞∑

k=1

ϕkσ(r
′, τ ′)ϕ∗

kσ(r, τ) . (A.11)
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In analogy to the static case the density-response function on the Keldysh time contour

χS(r, τ ; r
′, τ ′) can be calculated and one obtains

χSσ,σ(r, τ ; r
′, τ ′) = − i

~

∞∑

j=1

∞∑

k=1

fj θ(τ − τ ′)ϕ∗
jσ(r, τ)ϕjσ(r

′, τ ′)ϕkσ(r, τ)ϕ
∗
kσ(r

′, τ ′)

+ fj θ(τ
′ − τ)ϕ∗

jσ(r
′, τ ′)ϕjσ(r, τ)ϕkσ(r

′, τ ′)ϕ∗
kσ(r, τ)

(A.12)

with fj being the occupation number of the j-th orbital. As expected this expression

is symmetric on the Keldysh time contour. Nevertheless it becomes causal when trans-

formed to physical time. In order to demonstrate this the density response in physical

time due to a physical potential variation δvSσ(r, t) is calculated. One obtains

δnσ(r, t) =

∫ ∫

C
χSσ,σ(r, τ ; r

′, τ ′) δvSσ(r
′, τ ′) dt′ d3r′ (A.13)

= − i
~

∞∑

j=1

∞∑

k=1

∫ ∫ τ

τi

fjϕ
∗
jσ(r, τ)ϕjσ(r

′, τ ′)ϕkσ(r, τ)ϕ
∗
kσ(r

′, τ ′) δvSσ(r
′, τ ′) t′(τ ′) dτ ′

+

∫ τf

τ
fjϕ

∗
jσ(r

′, τ ′)ϕjσ(r, τ)ϕkσ(r
′, τ ′)ϕ∗

kσ(r, τ) δvSσ(r
′, τ ′) t′(τ ′) dτ ′ d3r′

= − i
~

∞∑

j=1

∞∑

k=1

∫ ∫ t

t0

fjϕ
∗
jσ(r, t)ϕjσ(r

′, t′)ϕkσ(r, t)ϕ
∗
kσ(r

′, t′) δvSσ(r
′, t′) dt′

−
∫ τ

τf

fjϕ
∗
jσ(r

′, τ ′)ϕjσ(r, τ)ϕkσ(r
′, τ ′)ϕ∗

kσ(r, τ) δvSσ(r′, τ ′) t′(τ ′) dτ ′ d3r′ .

Since the physical potential δvSσ(r, t) is equal on the forward and backward time branch,

the second integral reduces to

∫ ∫ τ

τf

fjϕ
∗
jσ(r

′, τ ′)ϕjσ(r, τ)ϕkσ(r
′, τ ′)ϕ∗

kσ(r, τ) δvSσ(r
′, τ ′) t′(τ ′) dτ ′ d3r′ =

∫ ∫ t

t0

fjϕ
∗
jσ(r

′, t′)ϕjσ(r, t)ϕkσ(r
′, t′)ϕ∗

kσ(r, t) δvSσ(r
′, t′) dt′ d3r′ .

(A.14)

For exchange-correlation functionals which depend on occupied and unoccupied orbitals1

Eq. (4.21) is replaced by

∫ ∫

C
χSσ,σ(r, τ ; r

′, τ ′) vxcσ(r
′, τ ′) dt′ d3r′ =

∞∑

j=1

∫ ∫

C

δAxc[{ϕiτ}]
δϕjσ(r′, τ ′)

δϕjσ(r
′, τ ′)

δvSσ(r, τ)
+ c.c. dt′ d3r′ . (A.15)

1Such functionals are typically obtained from higher orders in the perturbation expansion of vxc or

Axc, see, e.g., Ref. [Gör97]
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Inserting Eq. (A.12) and Eq. (A.10) into Eq. (A.15), one obtains after a transformation

to physical time

∞∑

j=1

i

~

∫ ∫
(
fj vxcσ(r

′, t′)− uxcjσ(r
′, t′)

)
ϕ∗
jσ(r

′, t′)ϕjσ(r, t)

×
∞∑

k=1

ϕ∗
kσ(r, t)ϕkσ(r

′, t′) θ(t− t′) dt′ d3r′ + c.c. = 0 (A.16)

with

uxcjσ(r, t) =
1

ϕ∗
jσ(r, t)

δAxc[{ϕiτ}]
δϕjσ(r, τ)

∣
∣
∣
∣
∣
ϕiτ=ϕiτ (r,t)

. (A.17)

This is the time-dependent optimized effective potential (OEP) equation for the exchange-

correlation potential. For exchange-correlation action functionals which depend only on

occupied orbitals, e.g., the exact-exchange functional, Eq. (A.16) reduces to the well-

known expression (4.22).



Appendix B

The xc potential in terms of the

orbitals and orbital shifts

In this appendix the expression for the exchange-correlation potential in terms of the

orbitals and orbital shifts, Eq. (4.31), is derived. Starting point are the time-dependent

Kohn-Sham equations

i~∂t ϕjσ(r, t) = hSσ(r, t)ϕjσ(r, t) , (B.1)

the equation-of-motion for the orbital shifts
(
i~∂t − hSσ(r, t)

)
ψjσ(r, t) =

(
vxcσ(r, t)− u∗xcjσ(r, t)

− (v̄xcjσ(t)− ū∗xcjσ(t))
)
ϕjσ(r, t) , (B.2)

and the OEP equation in terms of the orbitals and orbital shifts

Nσ∑

j=1

ψ∗
jσ(r, t)ϕjσ(r, t) + c.c. = g(r, t) . (B.3)

Multiplying Eq. (B.3) by vxcσ and using the time-dependent Kohn-Sham equations to

replace vxcσϕjσ, one obtains

Nσ∑

j=1

ψ∗
jσ(r, t)

(
i~∂t +

~
2

2m
∇2 − vH(r, t)− v(r, t)

)
ϕjσ(r, t) + c.c. = vxcσ(r, t) g(r, t) .

(B.4)

Using the identity

Nσ∑

j=1

ψ∗
jσ(r, t) i~∂t ϕjσ(r, t) =

Nσ∑

j=1

i~∂t
(
ψ∗
jσ(r, t)ϕjσ(r, t)

)
− ϕjσ(r, t) i~∂t ψ

∗
jσ(r, t) ,

one can transform Eq. (B.4) into

vxcσ(r, t) g(r, t) − I(r, t) =

Nσ∑

j=1

ψ∗
jσ(r, t)

( ~
2

2m
∇2 − vH(r, t) − v(r, t)

)
ϕjσ(r, t)

− ϕjσ(r, t) i~∂t ψ
∗
jσ(r, t) + c.c. (B.5)
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where

I(r, t) := i~∂t

Nσ∑

j=1

(
ψ∗
jσ(r, t)ϕjσ(r, t) − c.c.

)
(B.6)

is used. Replacing −i~∂t ψ∗
jσ(r, t) with the help of Eq. (B.2) leads to

vxcσ(r, t) g(r, t) − I(r, t) =

Nσ∑

j=1

ψ∗
jσ(r, t)

~
2

2m
∇2 ϕjσ(r, t)

+ ϕjσ(r, t)
(
− ~

2

2m
∇2 + vxcσ(r, t)

)
ψ∗
jσ(r, t)

+ |ϕjσ(r, t)|2
(
vxcσ(r, t)− uxcjσ(r, t)

− (v̄xcjσ(t)− ūxcjσ(t))
)

+ c.c. (B.7)

From Eq. (B.3) follows that

Nσ∑

j=1

ϕjσ(r, t)vxcσ(r, t))ψ
∗
jσ(r, t) + c.c. = vxcσ(r, t) g(r, t) (B.8)

holds. Thus, Eq. (B.7) reduces to

−I(r, t) =

Nσ∑

j=1

ψ∗
jσ(r, t)

~
2

2m
∇2 ϕjσ(r, t) − ϕjσ(r, t)

~
2

2m
∇2 ψ∗

jσ(r, t)

+ |ϕjσ(r, t)|2
(
vxcσ(r, t)− uxcjσ(r, t)

− (v̄xcjσ(t)− ūxcjσ(t))
)

+ c.c. (B.9)

Using

ϕjσ(r, t)∇2 ψ∗
jσ(r, t) = ∇2

(
ψ∗
jσ(r, t)ϕjσ(r, t)

)
− ψ∗

jσ(r, t)∇2 ϕjσ(r, t)

− 2
(
∇ψ∗

jσ(r, t)
)(
∇ϕjσ(r, t)

)
(B.10)

and

Nσ∑

j=1

∇2
(
ψ∗
jσ(r, t)ϕjσ(r, t) + c.c.

)
= ∇2 g(r, t) (B.11)

in Eq. (B.9) leads to

~
2

2m
∇2 g(r, t) − I(r, t) =

Nσ∑

j=1

ψ∗
jσ(r, t)

~
2

m
∇2 ϕjσ(r, t) +

~
2

m

(
∇ψ∗

jσ(r, t)
)(
∇ϕjσ(r, t)

)

+ |ϕjσ(r, t)|2
(
vxcσ(r, t)− uxcjσ(r, t)

− (v̄xcjσ(t)− ūxcjσ(t))
)

+ c.c. (B.12)

This equation can be solved for vxcσ(r, t) and one obtains the desired result, Eq. (4.31).



Appendix C

Finite differencing scheme for the

orbital shift’s equation-of-motion

In this small appendix another finite differencing scheme is presented. It is based on the

formal solution

ψ(r, t) = U(t, t0)ψ(r, t0) −
i

~

∫ t

t0

U(t, t′) rs(r, t′) dt′ (C.1)

for the inhomogeneous Schrödinger equation

i~∂t ψ(r, t) = hS(r, t)ψ(r, t) + rs(r, t) (C.2)

In Eq. (C.1) the propagator U(t, t0) is given by

U(t, t0) =
∞∑

k=0

(−i~)k

k!

∫ t

t0

. . .

∫ t

t0

T
{
hS(r, t1) . . . hS(r, tk)

}
dt1 . . . dtk . (C.3)

Approximating the integral in Eq. (C.1) by

∫ t

t0

U(t, t′) rs(r, t′) dt′ ≈ ∆t U(t, t0) rs(r, t0) (C.4)

leads to

ψ(r, t) ≈ U(t, t0)
(
ψ(r, t0) −

i

~
∆t rs(r, t0)

)
(C.5)

Using the Crank-Nicolson approximation for U(t, t0) one obtains the equation

[
1 + i

∆t

2
hS(r, t+ ∆t/2)/~

]
ψ(r, t + ∆t) =

[
1− i∆t

2
hS(r, t+ ∆t/2)/~

]
r̃s(r, t) (C.6)

where r̃s(r, t) is given by

r̃s(r, t) = ψ(r, t) − i

~
∆t rs(r, t) . (C.7)
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For the Hamiltonian hS(r, t + ∆t/2) the same approximation is used as in the orbital

propagation, i.e.,

h(r, t+ ∆t/2) ≈ 1

2

(
h(r, t + ∆t) + h(r, t)

)
. (C.8)

As a consequence, this algorithm guarantees that the orbital shifts are exactly orthogonal

to the corresponding orbitals for any time step ∆t.

Unfortunately, this algorithm also leads to instabilities. This observation in combi-

nation with the fact that the presented algorithm has already been used successfully to

solve the inhomogeneous Schrödinger equation [Ser05] is a further indication the insta-

bilities are not caused by the propagation algorithm used for the orbital shifts.
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[Küm01] S. Kümmel, K. Andrae, and P.-G. Reinhard, Appl. Phys. B 73, 293 (2001).
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[Kü04a] S. Kümmel, L. Kronik, and J. P. Perdew, Phys. Rev. Lett. 93, 213002 (2004).
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Hiermit erkläre ich, dass ich die vorliegende Arbeit nur unter Zuhilfenahme der ange-

gebenen Quellen und keiner weiteren Hilfsmittel angefertigt habe. Die Arbeit wurde
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