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Abstract

This theoretical thesis studies many-body systems of interacting particles in and out
of equilibrium. To rationalize the physics of many-body systems it is necessary to
coarse grain their large number of degrees of freedom. By coarse graining the degrees
of freedom of all except one particle, an exact one-body force balance equation re-
solved in space and in time arises. In systems made of anisotropic particles, the force
balance equation is complemented with an exact one-body torque balance equation.
The force and the torque balance equations contain several contributions such as
internal, external, and transport terms, that together determine the physics of the
system at the one-body level. This includes for example the dynamical evolution of
the one-body fields, such as the density and the velocity profiles, in non-equilibrium
systems.

Using computer simulations we study many-body systems of isotropic and aniso-
tropic particles following Newtonian, Langevin and Brownian dynamics. We sample
all terms contributing to the one-body balance equations and use the results to for-
mulate accurate approximations to the unknown contributions, such as the internal
force field. Besides this, we also develop computer simulation methods based on
the exact one-body force and torque balance equations. These methods allow us
to find the external force that generates the desired time evolution, as well as to
improve the sampling efficiency of the orientational distribution function in systems
of anisotropic particles.

First, we develop a custom flow method for molecular dynamics simulations of
isotropic particles. Custom flow is based on the force balance equation and it finds
numerically the external force field that generates the desired, prescribed, dynam-
ics of the system. For given space and time resolved density and velocity profiles,
custom flow finds iteratively the space and time resolved external force field that
generates such one-body kinematic fields. Beyond its practical applications in com-
puter simulations, custom flow also demonstrates numerically the fundamental map-
ping between the internal force field and the one-body kinematic fields postulated
in power functional theory. We demonstrate the validity of the method with sev-
eral test cases which include a slow-motion dynamics of a non-equilibrium process
and the complete prescription of the time evolution between two equilibrium states.
We also show that custom flow can be used together with thermostat algorithms
designed to control the temperature.

We use custom flow to investigate in detail the unknown contributions to the
one-body force balance equation, namely the internal force field and the momentum
transport term, the latter is given by the divergence of the kinetic stress tensor.
With custom flow we design two model flows: a pure shear flow and a pure bulk
(compressible) flow. In both cases the current factorizes into temporal and spatial
parts, being the temporal part common to both flows. Moreover, the density profile
remains stationary during the whole time evolution. These imposed flow character-
istics help us to rationalize and to construct accurate approximations for both the
internal force field and the transport term.

We demonstrate that the internal force field contains superadiabatic contribu-
tions that are generated by the flow, and are hence genuine non-equilibrium forces.
The superadiabatic forces can be split into structural and viscous components, de-
pending on their behaviour upon flow reversal. Moreover, we unambiguously demon-
strate that the acceleration field contributes to generate the superadiabatic forces,



in agreement with the predictions of power functional theory. The behaviour of the
kinematic stress tensor in non-equilibrium is rather complex. We split it into an
idealized term that is generated by the velocity profile only, and an excess term that
contains the velocity fluctuations. A detailed analysis shows that the excess term
contains also viscous and structural components.

Beyond isotropic systems, we also study systems with orientational degrees of
freedom. Based on the one-body torque balance equation for many-body systems of
interacting anisotropic particles, we develop a torque sampling method to measure
with high efficiency the orientational distribution function in computer simulations.
The method samples the torques acting on each particle, and uses them to construct
the orientational distribution function via the exact torque balance equation. We
demonstrate the advantage of the torque sampling method by testing it against the
traditional counting method in several model situations. We consider cases that
differ in the overall density, the dimensionality, the type of dynamics, the type of
orientational order, and the interparticle interaction potential. In all cases torque
sampling delivers better results than the counting method. Moreover, the accuracy
in torque sampling is independent of the angular resolution of the bin. Hence, it
is possible to sample the orientational distribution function with arbitrarily small
angular resolutions.



Kurzfassung

In dieser theoretischen Dissertation untersuchen wir Vielteilchensysteme, bestehend
aus miteinander wechselwirkenden Teilchen, im Gleichgewicht und im Nichtgleich-
gewicht. Um die Physik von Vielteilchensystemen verständlich darzustellen, ist es
notwendig die große Anzahl an Freiheitsgraden zu reduzieren. Integriert man über
alle Freiheitsgrade bis auf die eines Teilchens, ergibt sich eine exakte Gleichung für
das Einteilchenkräftegleichgewicht abhängig von Raum und Zeit. In Systemen mit
anisotropen Teilchen ergibt sich zusätzlich zum Kräftegleichgewicht noch eine ex-
akte Gleichung für das Drehmomentengleichgewicht. Die Gleichungen für Kräfte-
und Drehmomentengleichgewicht beinhalten mehrere Beiträge, wie interne und ex-
terne Terme sowie Transportterme, die zusammen die Physik des Systems auf dem
Einteilchenniveau bestimmen. Dies beinhaltet zum Beispiel die Zeitentwicklung der
Einteilchenfelder, wie Dichte- und Geschwindigkeitsprofil, in Nichtgleichgewichtssys-
temen.

Wir verwenden Computersimulationen, um Vielteilchensysteme isotroper und
anisotroper Teilchen zu untersuchen. Die Teilchen bewegen sich gemäß Newton-
scher, Langevin und Brownscher Dynamik. Wir samplen alle Terme, die zu den
Einteilchengleichgewichtsgleichungen beitragen, und verwenden die Resultate, um
genaue Näherungen für die unbekannten Beiträge zu formulieren, zum Beispiel für
das interne Kraftfeld. Desweiteren entwickeln wir Methoden für Computersim-
ulationen basierend auf den Gleichungen fürs Kräfte- und Drehmomentengleich-
gewicht. Diese Methoden erlauben es uns das externe Kraftfeld zu bestimmen, das
eine gewünschte Zeitentwicklung der Dichte und des Stromes generiert, sowie die
Samplingeffizienz der Orientierungsverteilungsfunktion in Systemen mit anisotropen
Teilchen zu verbessern.

Als Erstes entwickeln wir eine custom flow Methode für Molekulardynamik Simu-
lationen isotroper Teilchen. Custom flow basiert auf der Gleichung fürs Kräftegleich-
gewicht und findet numerisch das externe Kraftfeld, das die gewünschte Dynamik
des Systems generiert. Für gegebene, in Raum und Zeit aufgelöste, Dichte- und
Geschwindigkeitsprofile findet custom flow iterativ das zugehörige, in Raum und
Zeit aufgelöste, externe Kraftfeld. Über die praktische Anwendung in Compu-
tersimulationen hinaus zeigt custom flow numerisch die fundamentale Abbildung
zwischen dem internen Kraftfeld und den kinematischen Einteilchenfeldern, welche
von der Powerfunktionaltheorie vorausgesagt wird. Wir validieren die Methode mit
mehreren Testfällen, welche eine verlangsamte Dynamik eines Nichtgleichgewichts-
prozesses und eine komplett vorgeschriebene Zeitentwicklung zwischen zwei Gleich-
gewichtszuständen beinhaltet. Ferner zeigen wir, dass custom flow zusammen mit
Thermostatalgorithmen verwendet werden kann, welche die Temperatur in einem
System kontrollieren.

Als Nächstes benutzen wir custom flow, um die unbekannten Beiträge zum
Kräftegleichgewicht detailliert zu untersuchen. Diese Beiträge sind das interne
Kraftfeld und der Impulstransportterm, wobei letzterer durch die Divergenz des
kinetischen Spannungstensors gegeben ist. Wir designen mit custom flow zwei Mo-
dellflüsse: einen reinen Scherfluss und einen reinen kompressiblen Fluss. In beiden
Fällen faktorisiert der Strom in einen zeitlichen und einen örtlichen Teil, wobei der
zeitliche Teil für beide Flüsse gleich ist. Ferner bleibt das Dichteprofil für die kom-
plette Zeitentwicklung stationär. Diese vorgegebenen Flusseigenschaften helfen uns
das interne Kraftfeld und den Transportterm zu verstehen und genaue Näherungen



zu konstruieren.
Wir zeigen, dass das interne Kraftfeld superadiabatische Beitrage beinhaltet, die

durch den Fluss erzeugt wurden und daher Nichtgleichgewichtskräfte sind. Abhängig
vom Verhalten der superadiabatischen Kräfte bei Flussumkehr können diese in struk-
turelle und viskose Komponenten aufgespalten werden. Desweiteren zeigen wir ein-
deutig, dass das Beschleunigungsfeld zur Erzeugung der superadiabatischen Kraft
beiträgt, wie von der Powerfunktionaltheorie vorhergesagt. Das Verhalten des kine-
matischen Spannungstensors ist im Nichtgleichgewicht komplex. Wir teilen ihn in
einen faktoriesierten Term, der nur vom Geschwindigkeitsprofil erzeugt wird, und
einen Exzessterm, der die Geschwindigkeitsfluktuationen beinhaltet, auf. Eine de-
taillierte Analyse zeigt, dass der Exzessterm auch viskose und strukturelle Kompo-
nenten enthält.

Über isotrope Systeme hinausgehend betrachten wir Systeme mit Orientierungs-
freiheitsgraden. Basierend auf der Einteilchengleichung fürs Drehmomentengleich-
gewicht von Vielteilchensystemen wechselwirkender anisotroper Teilchen entwickeln
wir eine Samplemethode, um die Orientierungsverteilungsfunktion mit hoher Ef-
fizienz in Computersimulationen zu messen. Die Methode sampled die auf jedes
Teilchen wirkenden Drehmomente und nutzt sie, um die Orientierungsverteilungs-
funktion mithilfe der Gleichung fürs Drehmomentengleichgewicht zu berechnen. Wir
zeigen die Vorteile der auf Drehmomente basierenden Samplemethode auf, indem wir
sie mit der traditionellen Zählmethode für mehrere Modellsituationen vergleichen.
Wir betrachten Fälle, die sich in der Dichte, der Dimensionalität, der Art der Dy-
namik, der Orientierungsordnung und demWechselwirkungspotential unterscheiden.
In allen Fällen liefert die auf Drehmomenten basierte Samplemethode bessere Re-
sultate als die Zählmethode. Ferner hängt erstere nicht von der Winkelauflösung
des Rasters ab, was es ermöglicht die Orientierungsverteilungsfunktion mit beliebig
kleinem Winkelabstand zu samplen.
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1 Introduction

To understand the physics of many-body systems it is necessary to reduce the
amount of information provided by the huge number of degrees of freedom of the
system. By integrating out over the degrees of freedom of all but one particle, it
is possible to formulate exact one-body force and torque balance equations. These
balance equations can then be used to understand the equilibrium and dynamical
properties of many-body systems at the one-body level.

This thesis is devoted to the study of many-body systems of interacting particles
at the one-body level. We develop methods based on the one-body force and torque
balance equations. In particular, custom flow for molecular dynamics (MD) [1, 2]
and reduced variance sampling of the orientational distribution function [3]. The
methods help us to analyse the internal interactions and transport processes on the
one-body level, including memory effects [2, 4].

This introductory chapter starts by discussing the many-body dynamics of iso-
tropic and anisotropic particles. We show how to integrate out degrees of freedom
to reduce the description of the system to one-body fields that are governed by exact
force and torque balance equations. We also summarize the alternative approach
of continuum mechanics, which uses symmetry arguments and approximations to
obtain the relevant one-body equations of motion. One goal of this work is to
describe the one-body dynamics using the framework of power functional theory [5],
which we introduce in this chapter. Furthermore, several methods and techniques
related to the work done in this thesis are also described. We recapitulate force
sampling methods with reduced variance [6, 7], and explain the custom flow method
for Brownian dynamics [8]. We also discuss memory effects in various frameworks,
and introduce briefly the role of thermostats in many-body computer simulations.

1.1 One-body description of many-body systems

1.1.1 Anisotropic particles

In order to understand and theoretically describe a physical system, one needs to
isolate the relevant physical effects and find the corresponding variables that generate
and control those effects. Therefore, it is advisable to start with a simple model of
the system and identify its basic effects. To later reach an accurate and realistic
description, one can add properties to the basic model and check its agreement with
the real physical system.

The simplest type of interacting particles are isotropic particles, i.e. particles
with spherical symmetry, that interact with each other based solely on their relative
distance. In Refs. [1, 2] we investigate many-body systems of isotropic particles
interacting via the Weeks-Chandler-Andersen potential [9], i.e. only the repulsive
interaction of the Lennard-Jones potential. Even this, arguably simple, particle
model creates complex dynamical behaviour on the one-body level. In nature, most
particles additionally interact with each other depending also on their relative ori-
entation. Examples range from relatively simple molecules such as water and air
molecules (excluding inert gases) to complex proteins and liquid crystals. There-
fore, it is necessary to go beyond simple (isotropic) particle models and develop the
appropriate theoretical descriptions and methods by incorporating the orientational
degrees of freedom of the system [3].

Particle anisotropy plays a major role in colloidal science. In Fig. 1 several
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(a) (b)

(c)

Figure 1: (a) Colloidal particles of different shapes created with photo litography.
The white scale bar indicates a length of 3µm. Adapted with permission from Ref.
[19]. Copyright © 2007 American Chemical Society. (b) Patchy colloids with mul-
tiple interaction sites created with colloidal fusion. The white scale bar indicates a
length of 1µm. The insets show the fluorescent patches of the particles. Reproduced
with permission from Ref. [20]. Copyright © 2017 Springer Nature. (c) Different
stages of producing banana shaped colloidal particles. The white scale bar indicates
a length of 10µm. Reprinted with permission from Ref. [21]. Copyright © 2020
AAAS.

examples of anisotropic colloidal particles are shown. The microscopic interaction
potential determines the collective behaviour such as the self assembly of colloidal
particles [10]. The interaction between colloidal particles can be anisotropic due to
the particle shape, see e.g. Fig. 1 (a) and (c), but also due to directional bonding,
see Fig. 1 (b). One example of the latter are patchy colloids. These are particles
with designated sites on their surface, called patches, through which patchy colloids
interact with each other. An overview of different types and models is given in
Ref. [11]. Patchy colloids can be used to construct simple models for water [12] or
silica [13]. The particle core can be represented by a hard sphere and the interaction
sites for hydrogen or valence bonds are patches on the surface with the respective
geometry. Another example of anisotropic particles are proteins, which have com-
plicated structures built of hundreds of amino acids. It is very time consuming to
simulate the structures formed by the vast amount of occuring proteins. Instead,
one can use simple models by approximating the shape of the protein as a hard body
and the interaction sites with patches [14, 15].

Another important class of anisotropically shaped particles are liquid crystals
which often possess a rich phase behaviour [16]. Liquid crystal particles can have
either an elongated or a disk-like shape. They form several bulk phases characterized
by their positional and orientational order. In a nematic phase, for example, the
particles exhibit orientational order while having no positional order. In a smectic
phase there is orientational order and additionally positional order in one spatial
dimension along which the particles form layers. Liquid crystals have several appli-
cations as displays [17] and in pharmacy as drug delivery systems [18].

In hard systems, the structure formed is purely determined by the shape of the
particles. For example, in Ref. [22] the optimal packing of superdisks is investigated.
Superdisks are described by |x1|2d + |x2|2d ≤ 1 with the coordinates xi and the
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deformation parameter d (for circles d = 1). Ref. [23] investigates the highest packing
fraction of Platonic and Archimedean solids. Hard kites form orientationally ordered
phases with different symmetries of the orientation field depending on the packing
fraction and their interior angles [24]. A 2d fluid of hard right isosceles triangles self
assembles into larger clusters forming liquid-crystal phases with tetratic and octatic
ordering [25, 26].

1.1.2 Many-body dynamics

In this thesis, we make use of three many-body simulation techniques: molecular
dynamics (MD), Langevin dynamics (LD), and over-damped Brownian dynamics
(BD). In the following we summarize each technique and provide their respective
many-body equations of motion.

Molecular dynamics. In MD, a system of N anisotropic particles with uniaxial
symmetry (i.e. the particles are rotationally symmetric around an orientational unit
vector u) with mass m and inertia tensor I is characterized by the Hamiltonian H
given by

H(rN ,pN ,uN ,pu,N ) =
∑

i

[
1

2m
p2
i +

1

2
pu
i · I−1 · pu

i + Vext(ri,ui)

]
+ U(rN ,uN ).

(1)

Here, the sum runs over all particles in the system with ri and pi the position
and the momentum of particle i, respectively. Furthermore, ui and pu

i are the
orientation vector and the canonical angular momentum of particle i, respectively.
The canonical angular momentum is given by

pu
i = u̇i · I. (2)

The angular velocity of particle i is given by

ωi = ui × u̇i. (3)

The overdot indicates a time derivative. Calculating the cross product ωi×ui using
Eq. (3) and exploiting the Graßmann identity with ui · u̇i = 0 (which follows from
the vanishing time derivative of ui · ui = 1) we obtain

u̇i = ωi × ui. (4)

The external potential Vext and the total potential energy U in Eq. (1) depend in
general on both position and orientation. We use here the shorthand notation for
positions rN = r1, r2, ..., rN and for orientations uN = u1,u2, ...,uN . A detailed
derivation of the Hamiltonian and the angular canonical momentum exploiting the
rotational symmetry around ui is provided in Appendix C.

Hamilton’s equation of motion for the spatial degrees of freedom are then given
by

∂H
∂ri

= −dpi

dt
, (5)

∂H
∂pi

=
dri
dt

. (6)
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Hence, using the Hamiltonian in Eq. (1) we obtain the translational equations of
motion for particle i

ṙi =
pi

m
, (7)

ṗi = fi, (8)

with fi = −∇i(Vext+U) the force on particle i due to external −∇iVext and internal
−∇iU contributions. Here, ∇i denotes the derivative with respect to ri. Hamilton’s
equation of motion for the orientational degrees of freedom are given by

∂H
∂ui

= −dpu
i

dt
, (9)

∂H
∂pu

i

=
dui

dt
. (10)

Calculating the corresponding derivatives in Eqs. (9) and (10) and multiplying by
ui×, we arrive at the equations of motion for the orientational degrees of freedom

ui × ṗu
i = ti, (11)

ui × pu
i = I · ωi, (12)

with ti = −ui ×∇ui(Vext +U) the torque on particle i due to external and internal
contributions. Here, ∇ui is the nabla operator acting on the components of the
orientation vector ui of particle i. Note that the angular momentum Li = ui × pu

i

is perpendicular to the canonical angular momentum. We focus here on rotation-
ally symmetric particles around an axis ui. In Ref. [27] a general derivation of the
equations of motion for a rigid body with arbitrary shape is given. In molecular dy-
namics, the particles are not subject to friction or stochastic processes and therefore
follow deterministic trajectories. In Refs. [1, 2, 4] we use the velocity-Verlet algo-
rithm [28] to propagate the particles in time and space according to the many-body
equations of motion.

Langevin dynamics. LD can be viewed as an extension of MD. The particles
are immersed in a solvent that is only implicitly described by a friction force and a
stochastic force. The equation of motion for the translational degrees of freedom of
the i-th particle in LD is

mv̇i = fi − γvi + f rand
i , (13)

with γ the translational friction coefficient against the implicit solvent and f rand
i the

stochastic force that models collisions between the particles and the molecules of
the solvent. Here, we choose a scalar γ independent of the orientation since we use
LD only in equilibrium situations. If one is also interested in dynamical properties,
the friction can be generalized to a second rank tensor that depends on the particle
orientation.

For the orientational degrees of freedom we obtain for particle i the equation of
motion

I · ω̇i = ti − γrωi + trandi , (14)

with γr the rotational friction coefficient and trandi a stochastic torque due to the
implicit solvent.
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Both the stochastic force and torque have no drift and the strength of the fluc-
tuations is determined by fluctuation dissipation theorems [29]:

⟨f rand
i ⟩ = 0, (15)

⟨f rand
i f rand

k ⟩ = 2γkBTδikδ(t− t′)1, (16)

⟨trandi ⟩ = 0, (17)

⟨trandi trandk ⟩ = 2γrkBT (1− uiuk)δikδ(t− t′), (18)

with t the time, kB the Boltzmann constant, T absolute temperature, δik the Kro-
necker delta, δ(·) the Dirac delta distribution, and 1 the identity matrix. To numer-
ically evolve the system in time, we use the integrator presented in Ref. [30] which
adds friction to the velocity-Verlet algorithm.

Overdamped Brownian dynamics. Starting from LD and taking the over-
damped limit, i.e. vanishing inertial forces as compared to frictional forces, yields
BD. The equations of motion for the i-th particle are

γvi = fi + f rand
i , (19)

γrωi = ti + trandi , (20)

with the same definitions of the random force and the random torque as those
provided in Eqs. (15)-(18). We use the Euler algorithm to propagate the particles
according to the many-body equations of motion (19) and (20). Recently, an efficient
adaptive BD algorithm has been developed [31].

1.1.3 From many-body equations of motion to one-body force and torque
balance equations

At the many-body level we have access to the degrees of freedom of each particle.
In order to make sense of such an amount of information, we need to reduce it to
a level that we can understand without losing the relevant information to describe
the physics. To this end, we focus here on one-body quantities that are defined by
averages, see e.g. Ref. [32]. In molecular dynamics, the average is calculated as:

⟨⟩ =
∫

drN
∫

dpN

∫
duN

∫
dpu,N ϕ(rN ,pN ,uN ,pu,N , t), (21)

with the integrals spanning the whole phase space and the superscript N denot-
ing all particles, i.e. drN = dr1dr2...drN . The many-body probability distribution
ϕ(rN ,pN ,uN ,pu,N , t) is normalized to one

∫
drN

∫
dpN

∫
duN

∫
dpu,N ϕ(rN ,pN ,uN ,pu,N , t) = 1. (22)

The time evolution of the many-body probability distribution is governed by the
Liouville equation

∂ϕ

∂t
+
∑

i

(
∂ϕ

∂ri
· ṙi +

∂ϕ

∂pi

· ṗi +
∂ϕ

∂ui
· u̇i +

∂ϕ

∂pu
i

· ṗu
i

)
= 0. (23)
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one-body quantity Q qi
density ρ 1
current J vi

angular current Jω ωi

kinetic stress tensor τ −mvivi

angular kinetic stress tensor τω ωiωi

coupling tensor C viωi

force density F fi
torque density T ti

internal force density Fint −∇iU
external force density Fext −∇iVext

internal torque density Tint −R̂iU

external torque density Text −R̂iVext

Table 1: Definition of one-body quantities via Eq. (24). The dyadic product between
two vectors a and b is indicated by ab. Note that all one-body quantities Q(r,u, t)
depend on a generic position r and orientation u, as well as explicitly on time.

This gives us the tools to define microscopically resolved one-body quantities via

Q(r,u, t) =

〈∑

i

qiδ(r− ri)δ(u− ui)

〉
, (24)

with δ the Dirac delta distribution and qi a generic property of particle i such as its
velocity. The resulting one-body quantity has therefore the units of density times
the units of qi. In Table 1 the definitions for several one-body quantities relevant
for our work are given. In simulations, the average denoted by ⟨⟩ is sampled over
different initial microstates (in MD, LD, and BD) and also over different realizations
of the thermal noise (in LD and BD). In equilibrium and in steady state, we can
also average over time.

From these averages useful balance equations can be constructed. The continuity
equation, for example, can be obtained by time deriving the one-body density

ρ̇(r,u, t) =

〈∑

i

[
δ(u− ui)

∂δ(r− ri)

∂(r− ri)
· d(r− ri)

dt
+ δ(r− ri)

∂δ(u− ui)

∂(u− ui)
· d(u− ui)

dt

]〉
.

(25)

The generic variables r and u do not depend on time. Furthermore, we can rewrite
the partial derivatives acting on the Dirac distribution as the Nabla operator ∇ and
the differential operator on the unit sphere ∇u. Hence, we obtain

ρ̇ =−
〈∑

i

∇ · δ(r− ri)δ(u− ui)vi

〉
−
〈∑

i

u̇i · ∇uδ(u− ui)δ(r− ri)

〉
. (26)

The Nabla operator acting on the generic position r can be pulled out of the average
since the integrals in the average ⟨⟩ depend on all particle positions but not on r.
Furthermore, making use of Eq. (4) we arrive at

ρ̇ =−∇ ·
〈∑

i

δ(r− ri)δ(u− ui)vi

〉
−
〈∑

i

(ωi × ui) · ∇uδ(u− ui)δ(r− ri)

〉
.

(27)
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Using the definition of the current J(r,u, t), see Table 1, and changing the order of
the triple dot product yields

ρ̇ =−∇ · J−
〈∑

i

(ui ×∇u) · ωiδ(u− ui)δ(r− ri)

〉
. (28)

Due to the Dirac distribution on the orientations there is only a contribution to
the average provided that u = ui and hence, we can pull the rotation operator
R̂ = u×∇u out of the average and obtain

ρ̇ =−∇ · J− R̂ ·
〈∑

i

ωiδ(u− ui)δ(r− ri)

〉
. (29)

Finally, inserting the definition of the angular current Jω(r,u, t), see Table 1, we
arrive at the continuity equation

ρ̇ =−∇ · J− R̂ · Jω. (30)

We are particularly interested in the one-body force and torque density balance
equations. Time deriving the current yields the force density balance equation for
MD [5, 33]

mJ̇ = Fext + Fint +∇ · τ −mR̂ ·C. (31)

Analogous steps compared to the derivation of the continuity equation need to be
performed. A detailed derivation is provided in Appendix A. Here, Fext is the
external force density, Fint is the internal force density, τ is the kinetic stress tensor,
and C is the coupling tensor, see Table 1.

We split the kinetic stress tensor into a factorized term τ id(r,u, t) = −mvvρ
with the velocity field v = J/ρ and the remaining excess contribution τ exc(r,u, t) =
τ − τ id. Hence, we can rewrite the force density balance as

mJ̇+m∇ · (vvρ) = Fext + Fint +∇ · τ exc −mR̂ ·C. (32)

The force balance equation relates the current to the forces acting on the system
and the momentum transport present in the system. The current is obtained by the
time integral over the whole history of forces and momentum transport. Note that
for anisotropic particles there is in general also a coupling between the momentum
and the angular momentum via the coupling tensor C.

The corresponding one-body torque density balance equation in MD for the
orientational degrees of freedom follows by time deriving the angular current [3]

J̇ω · I =Text +Tint −∇r ·Ct · I− R̂ · τω · I. (33)

A detailed derivation is provided in Appendix B. Here, Text is the external torque
density, Tint is the internal torque density, and τω is the angular kinetic stress tensor,
see Table 1. The torque balance equation relates the angular current to the torques
acting on the system and the angular momentum transport present in the system.
The angular current is obtained by the time integral over the whole history of forces
and momentum transport. The angular momentum is coupled to the momentum
via the coupling tensor C.
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Equilibrium. Next, we derive the equilibrium one-body force and torque den-
sity balance equations starting from the non-equilibrium equations (31) and (33). In
equilibrium there is no time dependence. Furthermore, the currents vanish, i.e. J = 0
and Jω = 0, and the coupling tensor also vanishes, C = 0, since the velocity and
the angular velocity are uncorrelated in equilibrium. Hence, we conclude that in
equilibrium

0 =Fext + Fint +∇ · τ , (34)

0 =Text +Tint − R̂ · τω · I. (35)

Moreover, in equilibrium it is possible to simplify the momentum and the angu-
lar momentum transport terms τ and τω, respectively. We use the equipartition
theorem [34] given by

〈
bj
∂H
∂bk

〉
= δjkkBT, (36)

with bj the j-th component of a vector appearing in the Hamiltonian, such as e.g. the
momentum and the canonical angular momentum. For finite systems there might
be small temperature differences depending on the selected statistical ensemble [35].
Only in the thermodynamic limit the different ensembles lead to identical results.
Using the Hamiltonian given in Eq. (1), and the equipartition theorem, Eq. (36), for
the components of the momentum

〈
pj

∂H
∂pk

〉
=

〈
pj

pk

m

〉
= (37)

〈
mvjvk

〉
= δjkkBT, (38)

and for the canonical angular momentum

〈
pu,j

∂H
∂pu,k

〉
=

〈
3∑

m=1

pu,j(Ikm)−1pu,m

〉
= (39)

〈
3∑

m=1

ωmImjωk

〉
= δjkkBT, (40)

where we have used the two representations of the rotation energy described in
Appendix C. Hence, using Eq. (38) to rewrite the kinetic stress tensor in Eq. (34)
we arrive at the equilibrium one-body force density balance equation

0 = Fext + Fint − kBT∇ρ. (41)

Using Eq. (40) to rewrite the angular kinetic stress tensor in Eq. (35) we obtain the
equilibrium one-body torque density balance equation

0 =Text +Tint − kBT R̂ρ. (42)

Brownian dynamics. In BD, the non-equilibrium one-body force density bal-
ance equation is given by [5]

γJ = Fext + Fint − kBT∇ρ. (43)

8



Compared to MD, the transport term, ∇ · τ , reduces to the ideal diffusive part,
−kBT∇ρ, in BD for both equilibrium and non-equilibrium situations.

For orientational degrees of freedom in BD we have additionally the non-equilibrium
one-body torque density balance equation [3] given by

γrJω = Text +Tint − kBT R̂ρ. (44)

In MD, the force density balance equation (31) links the forces acting in the
system to the time derivative of the current, mJ̇. Therefore, the current can be
expressed as a time integral over the history of all forces that have acted in the
system and shows hence the inertia present in the system. In BD, the force density
balance equation (43) links the forces acting in the system to the instantaneous
current flowing in the system, J, via the friction coefficient. The same observation
holds for the torque balance equations in MD and BD. Hence, no inertial effects are
present in BD systems.

1.1.4 Navier-Stokes equation

Particle-based simulations, like MD, can be used to investigate systems with up
to millions of particles [36, 37]. However, the length and time scales accesible in
computer simulations of such systems is still small for certain situations, such as for
example water flow in a pipe, wind in the atmosphere, and boiling water in a pot.
To describe these larger systems a continuum description is valuable. In continuum-
based approaches one considers volume elements much larger than the particle length
scale. To derive balance equations one exploits conservation laws. For example, mass
and momentum conservation lead to the continuity equation and the force balance
equation, respectively. In MD we can derive an exact force balance equation (32) that
describes conservation of momentum and is based on microscopically resolved one-
body fields. These one-body fields are directly accessible in computer simulations
and can be used to model the internal force field and the momentum transport.

Both approaches, particle-based and continuum-based, describe the same physics.
Hence, the particle-based description of the one-body force balance equation should
yield for large length and time scales the corresponding momentum conservation law
of the continuum description. The particle-based approach can be used to find new
phenomena on small scales that are beyond the continuum description and also to
validate existing approximations in the continuum description.

The Navier-Stokes equations are a prominent example of a continuum descrip-
tion. They are used in numerous applications to simulate the time evolution of
the coarse-grained velocity and pressure fields of fluids. The air around rotor blades
from helicopters [38] and airplane turbines [39] can be studied with the Navier-Stokes
equations. Deep learning algorithms were used for analyzing airflow around different
shapes of airfoils [40]. Furthermore, gas flow in the context of micro devices [41]
and in human lungs [42] was investigated. Water flows were studied for land slides
[43], and a dam break [44]. Further examples include the modified Navier-Stokes
equations applied to shock waves [45].

The most general form of the force density balance equation in the continuum-
based picture is the Cauchy momentum equation. Detailed derivations based on
energy balance and symmetry arguments are given in Refs. [46, 47]. The Cauchy
momentum equation in its conservation form is given by

∂

∂t
(ρ̃ṽ) +∇ · (ρ̃ṽṽ) = ∇ · σ̃ + ρ̃g (45)
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with the mass density ρ̃, the velocity field ṽ, the Cauchy stress tensor σ̃, and body
accelerations g. The mass density in our one-body description would correspond
to mρ and the body accelerations would be fext/m. The velocity fields v and ṽ
correspond to the same physical fields but our one-body field v is microscopically
resolved in contrast to the coarse grained field ṽ. There are several definitions of the
stress tensor in atomistic simulations, which give not necessarily the same results as
the Cauchy stress [48].

There are efforts to find a formal link between the many-body description and the
continuum description [49]. In Ref. [50] the classical Boltzmann equation is derived
as a limiting case of a system of hard spheres following Newtonian dynamics. From
this mesoscopic description of the Boltzmann equation of a tagged particle the heat
equation can be derived [51].

Comparing the Cauchy momentum equation (45) and the exact one-body force
balance equation (32) we observe some similarities. The left hand side of both
equations has the same structure. Also on the right hand side the external force
density Fext of Eq. (32) corresponds to ρ̃g in Eq. (45). Since both equations express
the momentum conservation, Fint+∇·τ in Eq. (32) corresponds to ∇·σ̃ in Eq. (45).
In both approaches their exact forms are unknown. Hence, approximations must be
found. In the case of the Cauchy momentum equation, physical assumptions about
the Cauchy stress tensor need to be made. In Ref. [52] the following assumptions
are made to arrive at the Navier-Stokes equation: (i) the relationship between stress
and strain of shear has to be linear, (ii) in isotropic fluids the stress tensor has to
be symmetric. Applying these assumptions to the Cauchy stress tensor we obtain

σ̃ = µ

[
∇ṽ+ (∇ṽ)t − 2

3
(∇ · ṽ)1

]
− p1+ ξ(∇ · ṽ)1, (46)

with µ the dynamic viscosity, ξ the bulk viscosity, p the pressure, and the superscript
t indicating the transposition of a second rank tensor. Inserting this expression for
the Cauchy stress Eq. (46) into Eq. (45) leads to the well-known Navier-Stokes
equation

∂

∂t
(ρ̃ṽ) +∇ · (ρ̃ṽṽ) = −∇p+ µ∆ṽ+

(
1

3
µ+ ξ

)
∇ (∇ · ṽ) + ρ̃g. (47)

Looking back at the one-body force balance equation (32) we also need to approx-
imate the internal force and the excess kinetic stress tensor. However, in contrast
to the continuum approach, we can sample these objects directly in particle-based
computer simulations, see Sec. 1.1.3 and use the result to construct accurate ap-
proximations.

We perform many-body simulations and sample the internal force directly. As we
see below, custom flow allows us to tailor the dynamics and the form of the velocity
field [1]. To isolate shear effects, we study a flow with ∇ · v = 0 and ∇ × v ̸= 0
with constant density in time and space. To isolate bulk effects we study a flow with
∇ × v = 0 and ∇ · v ̸= 0 with a density profile constant in time. Our analysis in
Ref. [2] revealed that the acceleration field plays an important role in the internal
force field. Directly comparing our results with the Navier-Stokes equation is difficult
because the length of our system is of the order of a few particle sizes and the volume
elements of the coarse grained velocity field in the continuum approaches are on a
much larger length scale. It would be interesting to find a formal link between both
approaches.
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1.1.5 Power functional theory

Density functional theory (DFT) is a well established variational framework to de-
scribe inhomogeneous many-body systems in equilibrium. DFT was first introduced
for quantum systems [53, 54] and later adapted to classical systems [55]. A widely
used extension of DFT to describe time dependent systems is dynamical density func-
tional theory (DDFT) [56, 57]. In DDFT one assumes that the equal-time two-body
correlation function out of equilibrium has the same properties as its equilibrium
counterpart. This implies that the internal force due to interparticle interactions
in non-equilibrium is the same as that of a reference equilibrium system with the
same instantaneous density profile as the non-equilibrium system. This constitutes
an adiabatic approximation that disregards all the genuine non-equilibrium internal
forces, see Ref. [58] for a recent perspective discussing the limitations of DDFT.

Power functional theory (PFT) [33, 59, 60] is a formally exact variational prin-
ciple able to incorporate the superadiabatic force contributions that go beyond the
equilibrium adiabatic contributions. Hence, PFT is formally able to describe non-
equilibrium many-body systems accurately. In a recent review by Schmidt [5], PFT
and background information is laid out comprehensively.

PFT was first introduced for overdamped Brownian particles [59]. The central
object is the power functional Rt[ρ,J] that depends functionally on the one-body
density and on the one-body current profiles. Minimizing the functional

δRt[ρ,J]

δJ(r, t)

∣∣∣∣
ρ

= 0, (48)

with respect to the one-body current J while keeping the one-body density and the
history of both, i.e. at times t′ < t, unchanged yields the physical density and current
fields at the current time t. Setting the functional derivative to zero in Eq. (48) gives
by construction the exact one-body force balance equation (43) in BD. The power
functional itself can be split into several contributions

Rt[ρ,J] = P id
t + P exc

t + Ḟid + Ḟexc −Xt. (49)

Here, we find three exact terms: (i) the ideal dissipative intrinsic contribution P id
t

related to the friction force against the solvent, (ii) the time derivative of the ideal
free energy Ḟid responsible for the ideal gas diffusion, and (iii) Xt containing all
external contributions. Furthermore, we have two excess terms due to interparticle
interactions that are not exactly known and hence need to be approximated. The
time derivative of the excess free energy Ḟexc relates to the adiabatic, i.e. equilibrium-
like, contribution of the interparticle interactions. This contribution has been inves-
tigated extensively in the framework of DFT and there are excellent approximations
available in the literature, such as for example fundamental measure theory for hard
spheres [61]. The remaining contribution P exc

t contains all superadiabatic, i.e. gen-
uine non-equilibrium, contributions due to interparticle interactions. In general, the
structure of P exc

t can have a complex dependence on both, ρ and J, incorporating
non-local memory effects in space and time.

In BD simulations, the superadiabatic internal force can be obtained via the adi-
abatic construction [62]. Using custom flow [8] an equilibrium reference system with
the same instantaneous density profile as the non-equilibrium system can be con-
structed. Subtracting the adiabatic internal force of the reference system from the
internal force of the non-equilibrium system yields the superadiabatic force [62]. Us-
ing the adiabatic construction, the superadiabatic forces of several non-equilibrium
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systems have been investigated. In Ref. [63] a 2d sheared system, investigated on the
Focker-Planck level solving numerically the many-body Smoluchowski equation and
also using BD simulations, exhibits a superadiabatic viscous internal force working
against the flow field and a superadiabatic structural internal force perpendicular
to the flow direction sustaining a density gradient. In Ref. [64] a change of vari-
able from J → ∇v with respect to the minimization of the power functional was
performed. The use of ∇v is advantageous since it incorporates by construction
the Galilean invariance of the system. Furthermore, an approximation of P exc

t for
viscous contributions in the lowest order of the velocity gradient is constructed. In
Ref. [65] a 2d system made of two particle species that differ only on their value of
the buoyant mass is subject to an external force and exhibits lane formation. This
demixing of particles is driven by a superadiabatic structural internal force. The
particles exhibit also a superadiabatic viscous internal force working against the flow
field. In Ref. [66] a systematic analysis of complex flows reveals that superadiabatic
forces can in general be classified as structural and viscous and obtained by many-
body simulations. Furthermore, approximations of the power functional based on
powers of ∇v are constructed.

PFT has been also used to describe the motility induced phase separation of
active Brownian particles. In Ref. [67] an approximation for the excess part of the
power functional is constructed based on the one-body density and current profiles
and is tested against BD simulations. In Ref. [68] PFT is generalized to particles with
orientational degrees of freedom and the steady state properties of active Brownian
particles are studied. In Refs. [69, 70] the superadiabatic internal force in a system of
active Brownian particles is split into four contributions. In particular, a ”quiet life”
term favors the motility induced phase separation. Furthermore, a self contained
theoretical power functional description of the system is provided and compared to
BD simulations. Further calculations yield a positive interfacial tension supporting
the observed stability of the phase separation [71]. Additionally, sum rules for the
interface polarization are proven [72].

Recently, superadiabatic internal forces of a colloidal gel former subject to an
external shear force are investigated in the framework of PFT [73] using BD simu-
lations with an efficient adaptive integration scheme [31].

On the two-body level of correlation functions, the van Hove function is an
important object. It describes how likely it is to find two particles at different times
separated in space by a given vector. Within the framework of PFT for BD, a
dynamical test particle theory for the van Hove function of a bulk system consisting
of one particle species is developed in Ref. [74]. In Ref. [75] the two-body dynamics of
a dense Brownian liquid is investigated and superadiabatic contributions identified.
Further investigations of the van Hove function in a hard sphere and Lennard-Jones
liquid show also superadiabatic effects that can be theoretically described within the
framework of PFT [76, 77].

Recently, Noether’s theorem applied to functionals in statistical mechanics yields
exact identities from translational and rotational symmetries [78]. Exploiting the
symmetries of a classical many-body system yields also sum rules for the global
force variance [79]. There is also a quantum mechanical description of PFT [60] in
which superadiabatic forces have been shown to contain contributions due to the
acceleration field [80].

In this thesis, we are particularly interested in the application of PFT to Newto-
nian particles [33]. There, the central object is the power rate functional Gt[ρ,v,a]
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that depends functionally on the one-body density, velocity, and acceleration fields.
Minimizing the functional

δGt[ρ,v,a]

δa

∣∣∣∣
ρ,v

= 0, (50)

with respect to the acceleration field a = v̇ while keeping the one-body density and
velocity fields as well as the history of all three fields constant yields the physical
fields, ρ, v, a, at the current time. This minimization principle is equivalent to
the original one given in Ref. [33] where the dependence is on J̇ rather than on a.
Furthermore, calculating the functional derivative in Eq. (50) gives by construction
the exact one-body force balance equation (31). The power rate functional can be
split into three contributions

Gt[ρ,v,a] = G id
t +G exc

t −Xt. (51)

Here, G id
t generates via functional differentiation the left hand side of the force

balance equation (32). The excess part G exc
t contains all contributions related to

interparticle interactions and momentum transport effects of the particle velocities
fluctuating around the velocity field v. The last part, Xt, contains the external
contributions. Our work in Ref. [2], which is part of this thesis, makes use of
computer simulations to demonstrate that the one-body internal force field, which
follows by functional differentiation of G exc

t , depends on the one-body velocity and
acceleration fields beside the one-body density. Hence, we validate with particle-
based computer simulations that the functional G exc

t carries a dependency on the
one-body acceleration field. Furthermore, we give explicit expressions for the viscous
internal force and the corresponding functional generator for shear and bulk flows
including temporal memory effects.

1.2 Theoretical approaches and simulation techniques in many-
body systems

1.2.1 Force sampling methods with reduced variance

This thesis is largely based on results from particle-based computer simulations.
With the growth of computational power in the last decades, it has become possible
to simulate many physical systems. The widespread use of computer simulations in
research makes it necessary to develop efficient algorithms and methods to save time
and reduce energy consumption.

Several works have been recently devoted to the development of equilibrium
methods to sample one-body quantities (e.g. the density profile) with reduced-
variance in particle-based computer simulations. See e.g. the review by Rotenberg
[7] that explains the shortcoming of the traditional histogram-based counting meth-
ods and presents some alternatives based on sampling the force. The main limitation
with the traditional counting of events methodology is illustrated in Fig. 2 for the
orientational distribution function. The orientational distribution function describes
the probability of finding a particle with a certain orientation. With increasing the
number of bins, one needs more sampling steps over different microstates to fill the
histograms of the counting method and therefore to obtain an accurate profile for
the orientational distribution function.

To the best of our knowledge, the first equilibrium sampling method with re-
duced variance appeared in the context of sampling the one-body electron density
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a) b)
c)

counting
torque
sampling

Figure 2: Illustration of the bin size dependence using the counting method. Panels
a) and b) show the top view of the upper half unit sphere, which represents all
possible orientations of a uniaxial particle. The hemisphere is divided into bins:
forty in a) and eighty in b). The orange dots represent the particle orientations of a
given microstate. The cyan color indicates bins with at least one particle with this
orientation. Note that significantly less area is covered by occupied bins (cyan) in b)
than in a). In c) a system of rods is illustrated schematically and the orientational
distribution function is shown schematically for the counting method on the left
with more statistical noise than the torque sampling method on the right.

in quantum Monte Carlo simulations [81, 82]. For classical systems, an estimator
for the radial distribution function and the one-body density using the force acting
on the particle was proposed in Ref. [83]. This work was extended to sample 3d
charge and polarization densities with better accuracy [84]. Another approach for
sampling the one-body density more accurately is force sampling, based on rewrit-
ing and integrating the exact one-body force balance equation to eliminate the ideal
gas fluctuations [6]. In Ref. [6] it is shown that spurious small negative densities
can occur in force sampling in regions that the particles rarely visit, e.g. close to a
hard wall. To remedy this artifact the use of optimal linear combinations of reduced
variance estimators is fruitful [85].

To further profit from methods with reduced statistical noise, the mapped-
averaging framework was developed [86]. This framework uses approximate theoret-
ical results to derive an ensemble average with less statistical noise. The mapped-
averaging framework can be used to derive the previously mentioned force sampling
methods and it has the potential to improve other existing methods. Usually, sam-
pling the internal interactions is the key ingredient in reduced-variance sampling
methods. This is difficult in hard systems, even though event driven simulations can
be used to sample the force via the momentum transfer of each collision averaged
over time. Alternatively, the mapped averaging framework can be applied to hard
sphere systems in which a direct sampling of the forces is not feasible Ref. [87].

In this thesis, we develop a reduced variance method to sample the orientational
distribution function [3], illustrated in Fig. 2 c). The method is conceptually related
to the force sampling method in Ref [6] which we summarize in the following. The
starting point is the exact one-body force balance equation in equilibrium given by

0 = Fext + Fint − kBT∇ρ. (52)
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The equilibrium one-body force density balance equation (52) is the same in MD,
BD, and LD. Separating the ideal diffusive term and formally applying the inverse
nabla operator ∇−1 leads to the following expression for the one-body density in
terms of the force densities

ρ = ρ0 +
1

kBT
∇−1 · (Fext + Fint) . (53)

The constant ρ0 is fixed such that the one-body density is normalized to the total
number of particles, i.e.

∫
dr ρ(r) = N . Integrating the sampled external and internal

force densities allows us to obtain the density profile via Eq. (53) with less statistical
noise compared to the counting method. For systems inhomogeneous only along one
spatial dimension, the inverse nabla operator reduces to a simple integral in space.
For higher dimensions, a line integral, the electrostatic form of the inverse nabla
operator, or minimization of a cost function based on the force balance equation
with respect to the one-body density can be used [6] to obtain the density profile
via Eq. (53).

In Ref. [3] we develop an equilibrium sampling method for anisotropic particles to
sample the orientational distribution function with better statistical accuracy than
the traditional counting method. Instead of the force density balance equation, we
use the exact one-body torque density balance equation, see Eq. (42). We demon-
strate that using torque sampling the statistical noise in the sampled orientational
distribution function does not depend on the bin size. The torque sampling method
outperforms the traditional counting method and it is particularly useful in systems
that require small bin sizes.

1.2.2 Custom flow

In many-body computer simulations one propagates the particles in space and time
according to the forces acting on each particle. The external force, which is in
general time dependent, is usually prescribed. Furthermore, the particles interact
not trivially with each other due to a given inter-particle interaction potential. The
forces acting on the particles generate different many-body trajectories for each
initial microstate and each realization of the thermal noise (the latter only in LD
and BD). Averaging over an ensemble of different realizations (initial microstate
and thermal noise) yields the corresponding one-body density and current fields.
Their respective one-body dynamics, i.e. space and time dependence, are in general
unknown beforehand.

We are interested in solving the inverse problem to have full control over the
flow, which facilitates the systematic analysis of the one-body internal force and
transport terms contributing to the force balance equation. The time-evolution of
the one-body density and that of the current are prescribed, and we want to find the
corresponding external force generating the desired dynamics. This inverse problem
can be solved with the iterative custom flow method, first introduced for BD [8].
To construct the iteration scheme in BD, one starts with the exact one-body force
balance equation (43) and solves for the external force

fext = kBT∇ ln ρ− fint + γv. (54)

The density ρ(r, t) and the velocity v(r, t) profiles are prescribed and are hence
known. The only unknown term to determine the corresponding external force is
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Figure 3: Custom flow BD simulations of N = 30 particles interacting via the
WCA potential [9] in a 2d box with a side length of 10σ and periodic boundary
conditions. The length and time scale are given by σ and τ , respectively. Profiles
are averaged over 108 different trajectories. Three cases, that start in equilibrium
with a homogeneous density profile, are displayed. In all cases four times are shown:
τ1/τ = 0.08 (violet), τ2/τ = 0.48 (yellow), τ3/τ = 1.0 (green), and τ4/τ = 2.2 (blue).
a) external field switched on at t = 0. b) speed up dynamics of the one-body density
of a) using custom flow. c) one-body current offset compared to a) using custom
flow. Reprinted with permission from Ref. [8]. Copyright © 2019 by the American
Physical Society.

the internal force fint(r, t). The idea behind custom flow is to construct the external
force iteratively by sampling the internal force at iteration i and calculating, based
on Eq. (54), the external force for the next iteration i+ 1. That is

f
(i+1)
ext = kBT∇ ln ρ− f

(i)
int + γv. (55)

This iteration is repeated until convergence is achieved. The iteration time step
with which the external force is resolved in time, ∆t, is in general larger than the
integration time step of the simulation. The initial external force at each iteration
can be set to that in an ideal gas. That is, using fint = 0 in Eq. (54).

Using custom flow, arbitrary flow patterns and density distributions can be con-
structed provided that they are compatible with the continuity equation (30). In
Fig. 3 an example of custom flow in BD is shown. The first row (a) is a standard
simulation with a fixed external force (a3) which is switched on at t = 0. The
second row (b) uses custom flow to speed up the dynamics of the original density
(a1) by a factor of two. Hence, as dictated by the continuity equation, the current
(b2) is twice as large as in (a2). Furthermore, the external force (b3) is now time
dependent. The third row (c) has the same time evolution of the density as in (a1).
However, the current (c2) has now an offset of J0σ/τ = 0.5 compared to (a2) and
hence uses also custom flow to find the corresponding external force. Here, σ and
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τ are the length and time scales, respectively. The external force (c3) is also time
dependent.

Solving this inverse problem, is useful even at the level of individual particles. It
allows to e.g. independently and simultaneously move particles that have different
shapes [88] or different magnetic properties [89].

Having full control over the flow allows us to study the viscous and the structural
components of the internal force field [66]. The special case of having no flow and
hence, being in equilibrium, is used to construct the adiabatic potential to separate
adiabatic and superadiabatic contributions of the internal force in BD [65].

In this thesis we develop a custom flow method for Newtonian dynamics [1].
The goal is the same as in BD, i.e. to prescribe the time-evolution of the one-body
density and current and then find the corresponding external force. The underlying
dynamics, however, is different since we have inertia and in general complex mo-
mentum transport effects. The development of custom flow for MD has allowed us
to study systematically viscosity, transport, and memory effects in bulk and shear
flows [2, 4].

1.2.3 Memory effects

Memory effects occur in most physical systems. That is, the state at the present
time depends on what happened in the past. This is very general, e.g. presently I
am writing this thesis and this depends on the research that I have done in the past
years. Memory effects play a role in, for example, optics [90], batteries [91], granular
materials [92], and polymers able to remember different shapes [93].

In the following, we focus on memory effects that occur by integrating out degrees
of freedom. One successful approach to deal with memory effects in many-body sys-
tems is the Mori-Zwanzig projection operator formalism [94, 95]. Originally used in
statistical mechanics to coarse-grain the complex many-body dynamics using fewer
degrees of freedom. This coarsening procedure introduces memory effects, friction,
and fluctuating forces. The Mori-Zwanzig formalism was applied in different areas
with complex dynamics in need of coarse graining. In Ref. [96] the formalism is ex-
tended towards general relativity in order to coarse-grain the universe in cosmology.
In Ref. [97] the Mori-Zwanzig formalism was applied in the context of large eddy
simulations. Also in climate models the formalism was successfully used [98]. The
arising fluctuating forces in the Mori-Zwanzig formalism are often assumed to be
delta-correlated. In Ref. [99] equations with non-Markovian fluctuating forces are
derived. Using these projection techniques yields a generalized Langevin equation
for a stationary underlying dynamics and can also be used to find a generalized
Langevin equation for non-stationary underlying dynamics [100]. In both cases nu-
merical iterative methods were developed to reconstruct the memory kernel using
many-body simulations [101, 102].

In general memory effects can be non-local in space and time. In the following,
we focus on the one-body level of many-body systems with memory effects arising
due to integrating out degrees of freedom. In Ref. [103] memory effects in BD are
investigated by applying a predefined external field that jumps in space and time
favoring a step shear velocity field. A sketch of the system with the time evolution
of the external field and the corresponding response of the current in BD and MD is
shown in Fig. 4 (a) and 4 (b), respectively. The BD current reacts instantaneously
to the applied forces due to the absence of inertia. The current jumps to a value
compatible with the amplitude of the external force. Due to memory effects in
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Figure 4: Illustration of the time evolution of a system with an applied external step
shear force (orange solid) and the corresponding amplitude of the system response
(blue dashed) for a) J for BD and b) J for MD.

the internal force, the current relaxes to a steady value. When the external force
is switched off at time T , the current jumps to a negative value compatible with
the internal interaction opposing the former external field until the memory effects
decay. In MD there is inertia and the current is the time integral over all forces
applied to the system in the past. Hence, the steady state current builds up slower
than in BD until dissipation is compensated by the external driving. When the
external field is switched off it takes time to dissipate the energy of the flow. This
happens while also the internal interaction and the momentum transport are subject
to memory effects. Hence, it is difficult to distinguish between inertial and memory
effects in such situations.

Memory kernels non-local in time and additionally non-local in space have been
used to describe the internal force using the framework of PFT in over-damped
Brownian systems. We use a slightly different approach in Refs. [2, 4] for MD
systems. Instead of prescribing the external force, we prescribe the time-evolution
of the velocity field and the one-body density and find the corresponding external
force using custom flow [1]. This allows us to decrease the velocity field to zero
fast and not having to wait for the viscous forces to reach a vanishing velocity field.
Forcing the velocity field to vanish quickly isolates signals in the internal force and
the kinetic stress tensor that come solely from memory effects. This helped us to
identify the acceleration dependence of the one-body internal force in shear and bulk
flows [2, 4].

1.2.4 Thermostats

In some applications it is desirable to simulate many-body systems at a controlled
temperature, e.g. to study temperature dependent processes, to remove heat dissi-
pated from the flow in non-equilibrium systems, and to match experimental condi-
tions. In these cases a thermostat controlling the temperature is helpful. In Ref. [1]
we implement and test a thermostat alongside custom flow in MD. Furthermore,
custom flow can be used, as demonstrated in Ref. [1], to investigate the possible ef-
fects that thermostats have on the one-body level, especially on the one-body force
balance equation. In Ref. [2] the dissipated energy of the flow is negligible and hence
requires no thermostat. Furthermore, the use of a thermostat would complicate the
analysis on the level of the one-body force balance due to new terms originating from
the thermostat. Especially, the kinetic stress tensor, which we investigate in Ref. [4],
containing the velocity fluctuations would be affected. Nevertheless, using custom

18



flow with a thermostat might be fruitful to investigate the effect of keeping the tem-
perature constant on the momentum transport, as described by the divergence of
the kinetic stress tensor.

Several thermostats have been developed to modify the many-body dynamics in
order to keep the temperature constant, see an overview in Ref. [104]. First of all, we
need to define what temperature is in this context. In equilibrium the temperature
is well defined by the equipartition theorem, Eq. (36), which relates the average
kinetic energy in the system to the thermal energy. However, defining a temperature
in non-equilibrium is not straightforward [105]. One possibility in MD is to modify
the equilibrium definition by subtracting the kinetic energy of the flow from the
total kinetic energy. There are several algorithms to keep the desired temperature
constant in computer simulations. Most thermostats rely on velocity scaling in one
way or another. In Ref. [106] the velocity rescaling originates from stochastic forces
on the particles enforcing the correct temperature. In Ref. [107] the system is coupled
to an external heat bath. A more elaborated approach is presented in Ref. [108] that
has a smoother rescaling and recovers the two aformentioned algorithms as limiting
cases. Also LD and BD, introduced in Sec. 1.1.2, keep the temperature constant
by construction. A closely related approach is dissipative particle dynamics that
additionally conserves momentum [109]. Since the approaches to create a thermostat
are different, they might also lead to different results [110]. This is especially the
case in e.g. ultra confined flows with high shear rates [111]. For highly confined
systems it also makes a difference whether the thermostat acts on the fluid or on
the confining wall when comparing simulations to experimental results [112].
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2 Overview of the publications

In the following we give an overview of the publications contributing to this cumu-
lative thesis [1–3]. The publications have in common the development of methods
and theoretical approaches for a better understanding and characterisation of many-
body systems using one-body fields. We focus especially on the exact one-body force
and torque balance equations. The publications are interconnected and cover several
physical aspects of many-body systems, including equilibrium and non-equilibrium,
isotropic and anisotropic interactions, inertial and overdamped dynamics, see Fig. 5.
In the first publication [1] we introduce the numerical custom flow method derived
from the non-equilibrium one-body force balance equation in MD. The method al-
lows us to prescribe the one-body dynamics of the density and of the flow. Fur-
thermore, we provide test cases as a proof of concept, including the addition of a
thermostat alongside custom flow.

Publications [2] and [4] (to be submitted) rely on custom flow to provide clean
bulk and shear flows in order to study memory and inertial effects of the one-body
internal force field and the momentum transport in the non-equilibrium one-body
force balance equation in MD. In Ref. [2] we focus on the internal interactions and
show that the acceleration field is required to properly model the internal force field.
Reference [4] (to be submitted) focuses on momentum transport and the interplay

equilibrium

non-equilibrium

PFT

one-body force and torque balance equations

custom flow

torque sampling
acceleration
viscosities

momentum
transport in MD

many-body 
systems

[1][2] [3]

[4]

isotropic
anisotropic

Figure 5: Illustration of the connections and differences between the works derived
from this thesis: MD custom flow method [1], applying custom flow to design bulk
and shear flows and investigate the contribution of the acceleration field to the inter-
nal force [2] and the momentum transport [4] (to be submitted), and torque sampling
[3]. All works make use of many-body simulations with information reduced to the
one-body level and are based on either the one-body force or the one-body torque
balance equations.
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of all terms contributing to the one-body force balance equation.

Lastly, we introduce a numerical method for anisotropic particles based on the
exact equilibrium one-body torque density balance equation that improves the sam-
pling accuracy of the one-body orientational distribution function [3]. We also pro-
vide several test cases to show the advantages of torque sampling compared to the
traditional counting method.

2.1 Custom flow in molecular dynamics

In this publication [1] we develop a numerical iterative method to prescribe the
time evolution of the one-body density and the one-body current of a many-body
system following Newtonian dynamics. Controlling the one-body density, velocity,
and acceleration fields is convenient to e.g. study memory effects and to systemat-
ically construct approximations for the one-body inter-particle force field and the
momentum transport via an approximate power functional [2, 4].

The custom flow method generates the desired time evolution of the input fields
by iteratively adjusting the external force in an iteration time step which is usu-
ally larger than the integration time step. The adjustment reduces iteratively the
difference between the target and sampled fields during each iteration time step. Re-
peating the iteration scheme for every time step leads to the desired time evolution
of the system.

We provide several test cases as a proof of concept. We first prescribe an ex-
ternal force which is constant in time and obtain the corresponding dynamics of
the one-body fields by averaging over a set of simulations that differ on the initial
microstates. Then, we use custom flow to slow down the sampled dynamics of the
one-body density. The resulting complex time-dependent external force field of the
slow motion system produces the same one-body dynamics of the density profile and
additionally the one-body current profile has half the original amplitude as dictated
by the continuity equation. Furthermore, we demonstrate the validity of the custom
flow method in presence of thermostats. We propose that the thermostat should act
on the kinetic energy of the velocity fluctuations rather than on the total kinetic
energy. Otherwise, the kinetic energy of the flow due to the velocity field would
be altered. As a last example we demonstrate the use of custom flow to generate
arbitrary one-body dynamics provided that they are compatible with the continu-
ity equation. In this case we grow peaks in the one-body density profile fixing the
one-body current up to a constant which we choose such that the integrated current
vanishes. Hence, when the density peak is fully grown the one-body current van-
ishes everywhere. At this point the input fields are all time-independent, but the
one-body momentum transport and the internal force field still change with time.
This clearly illustrates the occurrence of memory effects and also shows the potential
of custom flow to isolate memory effects from the time-evolution of the one-body
density and current profiles.

2.2 Shear and bulk acceleration viscosities in simple fluids

Here, we use the custom flow method for MD [1] to investigate superadiabatic con-
tributions to the one-body internal force field, especially in rapidly changing flows
[2]. Custom flow allows us to create pure bulk (∇× v = 0 and ∇ · v ̸= 0) and pure
shear (∇ · v = 0 and ∇× v ̸= 0) flows with prescribed time evolution. Having full
control over the flow profile and the density profile is essential to investigate sys-
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tematically the superadiabatic internal force field originating from the inter-particle
interactions. Both flows have a time independent one-body density and a time de-
pendent current. Furthermore, the velocity field factorizes in a time dependent part
and a space dependent part. As a consequence, the velocity and the acceleration
fields have in each flow the same spatial dependence. The time dependent part of
the velocity field is such that its amplitude first increases, then stays constant during
a time interval, later decreases until it vanishes, and finally stays zero afterwards.
We show that the viscous suepradiabatic internal force depends linearly on both the
velocity and the acceleration field. Therefore, the superadiabatic internal force can
be split into a spatial and a time dependent part. The space dependent contribution
is the same for the velocity and the acceleration fields. This allows us to investigate
the dependence on the velocity and the acceleration fields by looking only at the
time dependent part.

For the bulk flow, the time dependent part can be easily described using the
velocity and the acceleration profiles together with a simple memory kernel. The
time dependent part of the internal force shows an overshoot compared to the steady
state value when increasing the amplitude of the velocity profile and an undershoot
below zero when decreasing the amplitude of the velocity field to zero. Using sym-
metry arguments we demonstrate that the acceleration field is responsible for this
behaviour. It would be possible to use only the velocity field and construct a com-
plex memory kernel with a negative tail. However, this would imply an unphysical
negative viscosity.

For the shear flow no such over- and undershoot appear. This might be due
to longer memory times associated to shear-like deformations. The internal viscous
force can be approximated reasonably good using only the velocity field. However, we
could confirm the presence of the acceleration field in the internal viscous force using
a modified flow. Instead of decreasing again the current in amplitude, we propagate
the spatial structure with a constant drift velocity in the positive direction while
keeping the amplitude constant. Describing the viscous force using only the velocity
field results in a phase shift in the theoretical prediction of the viscous internal
force as compared to the sampled data. Incorporating the acceleration field yields,
however, an accurate description of the internal viscous force.

This work shows the relevance of the acceleration field to describe the internal
viscous force in rapidly changing flows accurately. We argue that using both the
velocity and the acceleration fields constitutes an accurate and more physical alter-
native to the description of the internal force than using complex memory kernels
and only the velocity profile.

2.3 Reduced-variance orientational distribution functions from torque
sampling

In many-body computer simulations it is possible to sample the orientational distri-
bution function (ODF) by dividing the set of orientations (here given by the surface
of the unit sphere) into bins and counting how often the particles visit each bin. By
decreasing the bin size, this traditional counting method either produces significant
statistical noise or requires a substantial increase of the sampling time. We develop
in Ref. [3] a method to sample the ODF in many-body systems of anisotropic par-
ticles in equilibrium taking advantage of the exact one-body torque density balance
equation. The ODF is obtained by sampling the one-body torques and integrating
them appropriately. This circumvents the ideal gas fluctuations and hence reduces
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the statistical noise in the sampled profile of the ODF.

To demonstrate the advantages of the torque sampling method compared to the
counting method we consider several systems. First, we perform Langevin dynamics
simulations of rectangles in a two dimensional box with periodic boundary condi-
tions. We investigate a system with low packing fraction and an external potential
favoring one orientation. We show visually for several sampling times the smoother
profiles obtained by the torque sampling method compared to the counting method.
Furthermore, we investigate the error of each method as a function of the bin size.
The error of the torque sampling method is independent of the bin size, whereas the
error of the counting method diverges for bin sizes approaching zero. With torque
sampling it is therefore possible to sample the ODF with arbitrarily high angular
resolution. Second, we investigate a system with moderate packing fraction favor-
ing tetratic order, i.e. there are two favored orientations (directors) orthogonal to
each other. Additionally, the particles are subject to an external potential favoring
orientations along only one of the directors. The resulting ODF has two peaks with
different amplitudes. Again, the torque sampling method delivers more accurate
profiles than the counting method. This particular case shows that the complete
ODF might be required to fully characterise the orientational order of the system
since sampling only the nematic and the tetratic order parameters would not provide
enough information. Last, we perform overdamped Brownian dynamics simulations
of Gay-Berne particles in a three dimensional box. The particles are subject to an
external potential favoring orientations along the polar axis. The torque sampling
method provides better accuracy than the counting method, especially close to the
pole since we use spherical coordinates, and hence smaller bins for smaller polar
angles.

2.4 Outlook

This thesis gives insight into some problems concerning methods and theoretical
descriptions of many-body systems on the one-body level, and it also opens new
interesting questions, some of which are described in the following.

In ongoing work [4] we investigate shear and bulk flows of isotropic particles
similar to those in Ref. [2]. We investigate all contributions to the exact one-body
force balance equation and focus in particular on the momentum transport term
given by the divergence of the kinetic stress tensor. The density profile is stationary
and both flows can be factorized in a time and a space dependent part. This setup
allows us to investigate the response of the kinetic stress tensor to a prescribed flow
using custom flow [1]. The kinetic stress tensor has an ideal part and an excess part,
see Eq. (32) and the discussion around it. The latter contains all velocity fluctua-
tions. We also split the excess contribution into viscous and structural components
depending on whether the sign changes or not under flow reversal, respectively. We
propose approximations for the spatial part of each component of the kinetic stress
tensor.

The flow in the shear case is relatively strong, and hence flow energy is dissi-
pated. This influences the amplitude of the internal force and the kinetic stress
tensor. Despite of the strong driving of the system, the spatial dependence of the
approximations for the kinetic stress tensor are in very good agreement with the
sampled data. Examples of the kinetic stress tensor components for the shear flow
are shown in Fig. 6.

The bulk flow dissipates very little energy compared to the thermal energy that
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Figure 6: Kinetic stress tensor of a pure shear flow with homogeneous density profile
and a sinusoidal velocity field pointing in y-direction. Here, only the non-vanishing
components of the excess kinetic stress tensor are shown at different times t1 = 0.5τ ,
t2 = 4τ , t3 = 5.5τ , and t4 = 6.05τ corresponding to increasing, quasi stationary, de-
creasing, and vanishing currents, respectively. The diagonal elements of the kinetic
stress tensor yy in panel a), xx in panel b) (solid lines), and zz in panel b) (dashed
lines) are structural, i.e. no sign change under flow reversal. The off-diagonal ele-
ment xy in panel c) is viscous, i.e. its sign changes under flow reversal. The solid
and dashed lines represent sampled data and the circles represent the theoretical
prediction.

is already present in the system. The structural components change slightly in
amplitude due to the dissipated flow energy. The viscous part of the xx-component of
the kinetic stress tensor shows complex behaviour changing also its spatial structure
during the time evolution of the system. A local description in space with a non-local
memory kernel in time seems to be sufficient to describe the kinetic stress tensor
for a steady velocity field. To find a complete description in full non-equilibrium we
propose the following two routes.

• To derive an exact equation for the time evolution of the one-body kinetic
stress tensor, analogous to the derivation of the exact one-body force balance
equation. New terms will appear that need to be sampled and understood.
Splitting the equation for the dynamics of the kinetic stress tensor might also
reveal more insights.

• To investigate flows with both a homogeneous and an inhomogeneous part in
the system. This setup allows for the detection and the isolation of memory
effects in space. The internal force and the kinetic stress tensor depend on
spatial derivatives of the velocity field that vanish in the homogeneous part
of the system. Hence, any signal of the internal force and the kinetic stress
tensor in the homogeneous region must occur due to non-local memory effects
in space. Investigating these systems might help to find a memory kernel
non-local in space and in time capable to describe complex flows.

It would be interesting to extend the analysis of the internal force and that of
the momentum transport from isotropic to anisotropic particles. First, one needs
to extend MD custom flow to systems with orientational degrees of freedom. Then,
one can perform an analysis similar to that done here for isotropic particles but for
anisotropic particles and focusing on the internal torques, the angular kinetic stress
tensor, and the coupling tensor linking spatial and orientational degrees of freedom.
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Similar to time deriving the kinetic stress tensor to obtain its equation of motion,
it might be interesting to do the analogue for the orientational counterpart and also
for the coupling tensor.

Finally, applying force and torque sampling simultaneously might be advanta-
geous in situations where spatial and orientational degrees of freedom in the one-
body density are coupled, such as for example if topological defects arise in the
system [113] or if there is also positional order like in smectic [114] or columnar
phases [115]. In these situations the one-body force and torque balance equations
determine the density profile, which carries a dependence on both the spatial and
the orientational degrees of freedom, simultaneously.
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2.5 Author contributions

I am the first author in all three publications contained in this cumulative thesis
[1–3]. I created the first complete draft, including text, figures, and bibliography,
of all the publications. I generated, analysed, and interpreted the data in close
collaboration with my supervisors. Besides generating the first draft, I contributed
as follows to each publication.

• In Ref. [1] I developed the numerical iterative custom flow method for MD and
implemented the parallel MD code including custom flow for MD with ther-
mostats. I ran the test cases for the custom flow method using the developed
code.

• In Ref. [2] I used the code developed in Ref. [1] to simulate shear and bulk
flows. Furthermore, I implemented a parallel BD Code including custom flow
to compare between MD and BD. I analyzed the resulting data and developed
approximate terms to the Power functional including memory and acceleration
field contributions.

• In Ref. [3] I wrote MD and LD codes for purely repulsive rectangles in two
dimensions. Furthermore, I implemented a BD code for Gay-Berne particles
in three dimensions. I developed the torque sampling method and tested its
advantages compared to the counting method with simulations using the afore-
mentioned codes.
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Driving an inertial many-body system out of equilibrium generates complex dynamics due to memory
effects and the intricate relationships between the external driving force, internal forces, and transport effects.
Understanding the underlying physics is challenging and often requires carrying out case-by-case analysis. To
systematically study the interplay between all types of forces that contribute to the dynamics, a method to
generate prescribed flow patterns could be of great help. We develop a custom flow method to numerically
construct the external force field required to obtain the desired time evolution of an inertial many-body system,
as prescribed by its one-body current and density profiles. We validate the custom flow method in a Newtonian
system of purely repulsive particles by creating a slow-motion dynamics of an out-of-equilibrium process and
by prescribing the full time evolution between two distinct equilibrium states. The method can also be used with
thermostat algorithms to control the temperature.

DOI: 10.1103/PhysRevResearch.3.013281

I. INTRODUCTION

The precise application of a space- and time-resolved ex-
ternal force field can be used to drive a many-body system out
of equilibrium in a controlled way. Analyzing the response
of a system to an external field is a primary method to cal-
culate transport coefficients [1] such as shear [2,3] and bulk
[4,5] viscosities and the thermal conductivity [6]. Imposed
pressure gradients, patterned substrates, capillary forces, elec-
tromagnetic fields, and centrifugal forces are examples of
external fields that can be used in lab-on-a-chip devices [7]
for the control of microflows [8]. However, the dynamics
are complex due to far from trivial relationships between the
external driving, the interparticle interactions, and transport
effects. It is therefore difficult to predict the time evolution
of a many-body system under the influence of an imposed
external field, and case-by-case analyses are often required
[9–11].

We consider here the inverse problem: to impose the de-
sired dynamics and then find the corresponding external field.
Such inversion, known as a closed-loop control system in
control theory [12], is a valuable tool even at the level of in-
dividual particles. It allows, for example, the independent and
simultaneous motion of several particles (that differ in either
shape [13] or magnetic properties [14]) in arbitrary directions
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using a single external magnetic field. Particles with different
characteristics respond differently to the magnetic field and
can therefore be transported in different directions. In other
words, a unique magnetic field creates different external force
fields for different particles. We focus here on many-body
systems. We aim at specifying the dynamics of a many-body
system of identical particles, as given by the time evolution of
the one-body density and the one-body current fields, and then
find, with computer simulations, the corresponding space- and
time-resolved external field.

From a fundamental viewpoint, such inversion can be used
to time-reverse the dynamics of a many-body system [15] and
might offer new insights into irreversible processes [16,17].
The inversion can be also used as an alternative to Gauss’s
principle of least constraint [18] in order to impose con-
straints on a dynamical system. From an applied viewpoint,
controlling the time evolution of the system instead of the
external force acting on it can also be useful for the calculation
of transport coefficients and relaxation times, especially in
nanochannels where deviations from the Navier-Stokes for-
malism and from bulk behavior are expected [19–23]. The
study of memory effects [24,25], the design of lab-on-a-chip
devices [26,27], and the determination of the slip length
at the nanoscale [28] can also benefit from such inverse
methodology.

From a theoretical perspective, the existence in equilibrium
of a unique mapping between the density distribution and
the conservative external force forms the basis of quantum
[29,30] and classical [31] density functional theory. In time-
dependent quantum mechanical systems, the Runge-Gross
theorem [32] ensures the existence of a unique mapping be-
tween the density distribution and a time-dependent external
potential. A classical analog of the Runge-Gross theorem was
proposed by Chan and Finken [33]. The existence of a unique
mapping between the kinematic fields and the external force
field plays a central role in power functional theory, an exact

2643-1564/2021/3(1)/013281(12) 013281-1 Published by the American Physical Society
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variational principle for nonequilibrium classical many-body
overdamped Brownian [34] and Hamiltonian systems [35] as
well as for many-body quantum systems [36].

The rapid increase in computational power has made pos-
sible the development of numerical inverse methods that
implement these unique mappings in equilibrium for both
classical [37,38] and quantum [39,40] systems. It is hence
possible to prescribe an equilibrium density distribution and
find the corresponding external potential that generates the
density using, e.g., Monte Carlo simulations in the case of
an equilibrium classical system. We have also developed a
custom flow method for time-dependent overdamped Brow-
nian systems [38]. The method is a valuable tool to generate
specific flow and density patterns in a completely controlled
way [15]. Custom flow is based on the exact one-body force
balance equation that, in overdamped Brownian systems, re-
lates the friction (against the solvent) force field, the internal
force field, the external force field, and the thermal diffusion.
Using Brownian dynamics simulations, custom flow finds the
external force required to generate the desired (imposed) time
evolution of both the one-body density and the one-body cur-
rent distributions. We prescribe elements that enter into the
force balance equation, namely, the density and the current
distributions, and use an iterative scheme to find the generat-
ing external force field.

The force sampling method [41] uses a closely related idea:
By sampling the one-body internal force field and using the
force balance equation it is possible to obtain the one-body
density distribution of an equilibrium system. The density
distributions obtained using the forces acting on the particles
[41–45] are more accurate than those obtained via the tradi-
tional counting of particles at space points.

Here, we present a custom flow method for classical
many-body systems following Newtonian dynamics. The
method is motivated by the exact one-body force balance
equation (Sec. II A), and it constructs iteratively the external
force field that is required to generate the desired (target) time
evolution of both the density and the current distributions
(Sec. II B). The method constitutes the solution of a complex
inverse problem in statistical physics and implements
numerically the map between the kinematic fields (density and
current) and the external force field. Custom flow can be used
with both conservative and nonconservative forces as well as
with thermostats. We validate the method in a model system
(Sec. III) of purely repulsive particles using several test cases
(Sec. IV), including one with the Bussi-Donadio-Parrinello
thermostat [46].

II. THEORY

A. One-body force balance equation

Consider a classical system with N identical and mutu-
ally interacting particles following Newtonian dynamics. The
equations of motion of the ith particle are

dri

dt
= pi

m
, (1)

dpi

dt
= fi, (2)

where m is the mass of the particle, ri denotes its position,
pi = mvi is the momentum of the particle with vi being its

velocity, and fi is the total force acting on the particle,

fi = −∇iu(rN ) + fext(ri, t ), (3)

which in general consists of an imposed time-dependent ex-
ternal contribution, fext(ri, t ), and an internal contribution,
−∇iu(rN ). Here, ∇i is the partial derivative with respect to
ri, and u(rN ) is the interparticle potential energy with rN =
{r1 · · · rN } being the complete set of particle positions.

In molecular dynamics (MD) simulations the equations of
motion, (1) and (2), are integrated in time. The observables of
interest can be obtained as space- and time-resolved one-body
fields. For example, the one-body density distribution is given
by

ρ(r, t ) =
〈

N∑
i=1

δ(r − ri )

〉
, (4)

where δ(r) is the three-dimensional Dirac delta distribution,
the sum runs over all particles N , and r is the position vector.
The brackets 〈·〉 denote a statistical average, which out of
equilibrium is done at each time t over different realizations of
the initial conditions (that is, the positions and the velocities
of the particles at the initial time t0 = 0). Differentiation of
Eq. (4) with respect to time yields the one-body continuity
equation

ρ̇(r, t ) = −∇ · J(r, t ), (5)

where the overdot indicates a time derivative and the one-body
current is defined as

J(r, t ) =
〈

N∑
i=1

δ(r − ri )vi

〉
. (6)

Differentiating Eq. (6) and using Eqs. (1), (2), and (3) result
in the exact one-body force balance equation

mJ̇(r, t ) = ρ(r, t )[fext(r, t ) + fint(r, t )] + ∇ · τ(r, t ). (7)

See, e.g., Ref. [35] for a more detailed derivation of
Eq. (7). Here, the one-body internal force field is fint(r, t ) =
Fint(r, t )/ρ(r, t ), where Fint is the internal force density field
given by

Fint(r, t ) = −
〈

N∑
i=1

δ(r − ri )∇iu
(
rN

)〉
. (8)

The last term in Eq. (7) describes the transport effects that
arise due to the one-body description. This transport term
involves the one-body kinetic stress tensor

τ(r, t ) = −m

〈
N∑

i=1

δ(r − ri )vivi

〉
, (9)

where vivi is a dyadic product such that τ is of second rank.

B. Custom flow in inertial systems

We present here an iterative method to construct the ex-
ternal force that generates a prescribed time evolution of the
one-body fields ρ and J. The most general form of the itera-
tion scheme reads

f (k+1)
ext (r, t )= f (k)

ext (r, t )+α(J(r, t )−J(k)(r, t ))

+β(J̇(r, t ) − J̇(k)(r, t ))+γ∇ ln
ρ(r, t )

ρ (k)(r, t )
. (10)
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Here, k denotes the iteration index, and α, β, and γ are free
non-negative prefactors that in general can carry spatial and
temporal dependencies. The fields ρ and J are the prescribed
(target) fields, and J̇ is also known since it follows directly
from the prescribed J via partial time derivative.

The procedure to find fext(r, t ) iteratively using Eq. (10)
is the following: (i) Run an MD simulation, evolving all
the initial microstates from t0 to t0 + �t and sampling the
space-resolved one-body fields ρ (k)(r, t0 + �t ), J(k)(r, t0 +
�t ), and J̇(k)(r, t0 + �t ); (ii) use the sampled fields at iter-
ation k to construct the external force for the next iteration
k + 1 according to Eq. (10); and (iii) iterate until the process
converges and the external force at time t0 + �t is found.
Convergence is achieved once the sampled fields ρ (k), J(k),
and J̇(k) are the same (within the desired numerical accuracy)
as their target counterparts ρ, J, and J̇. Next, advance the time
from t0 + �t to t0 + 2�t and repeat the previous steps until
the external force at t0 + 2�t is found. The process is repeated
for the complete time evolution which is discretized in time
steps �t .

The idea behind Eq. (10) is simple but very useful: At
each time, the external force at iteration k + 1 is that at the
previous iteration k plus terms that (i) correct the deviations
in the sampled fields with respect to the target fields and
(ii) vanish if the target and sampled fields are identical. For
example, if the current at a given position is higher (lower)
than the desired one, the external force at that position de-
creases (increases) in the next iteration. Other correction terms
are possible provided that they change the external force at
each iteration in the right direction. For example, the third
term on the right-hand side of Eq. (10) can be replaced by
something like γ∇(ρ − ρ (k) ). The precise form of Eq. (10) is
motivated by the exact force balance equation, as we show in
Appendix.

The non-negative prefactors α, β, and γ control how much
the external force changes in one iteration. Using the exact
one-body force balance equation (7), we obtain suitable ex-
pressions for them (see Appendix for a detailed calculation):

α(r, t ) = m

ρ(r, t )�t
, (11)

β(r, t ) = m

ρ(r, t )
, (12)

γ = kBT0. (13)

Here, kB is the Boltzmann constant, and T0 denotes the tem-
perature of the initial state. Recall that the above expressions
for α, β, and γ are not unique. The prefactors only fix the
amount of change between two iterations. The method can in
principle be also implemented by simply using non-negative
constant prefactors. Also, not all three prefactors need to
be present. Actually, having only α or only β is sufficient
to find the external force iteratively. In cases for which the
time-dependent density distribution ρ determines the full dy-
namical evolution of the system it is also possible to work only
with the coefficient γ . Such cases occur only if the current is
free of both rotational and harmonic terms such that ρ alone
fully determines J via Eq. (5).

In our particular implementation of Eq. (10) we iterate
using only the target and sample currents. Hence we set α to

the value in Eq. (11) and set both β and γ to zero. Then, the
iterative custom flow method we use here reads

f (k+1)
ext (r, t ) = f (k)

ext (r, t ) + m

ρ(r, t )�t

(
J(r, t ) − J(k)(r, t )

)
.

(14)

This iteration scheme is repeated at every �t . That is, we use
Eq. (14) to iteratively find fext(r, t0 + �t ). We then advance
time to t0 + 2�t and use Eq. (14) to find fext(r, t0 + 2�t ). The
process repeats until the complete time evolution is found.

The same algorithm can be used to find a suitable collection
of initial microstates at t0 such as, e.g., microstates from
an equilibrium system with a prescribed one-body density
distribution. To this end, we can start with a homogeneous
equilibrium system and use custom flow to find microstates of
another equilibrium system with the desired density distribu-
tion that serves as our initial state at t0. Alternatively, such an
initial set of microstates can be also found using the inversion
between the external field and the density distribution for
equilibrium systems described in Ref. [38].

At each time we initialize the iterative process (k = 0)
using the external force

f (0)
ext (r, t ) = mJ̇(r, t )

ρ(r, t )
, (15)

which follows by making both fint and ∇ · τ zero everywhere
in Eq. (7). Another possible initialization is to include the
contributions of the internal force and the kinetic stress tensor
at the previous sampling time step �t on the right-hand side
of Eq. (15).

In principle the time step �t can be as small as the in-
tegration time step dt of the MD simulation. In practice,
however, we use a larger time step (�t/dt = 10) that does not
compromise the accuracy of the calculation but still reduces
the computational effort. In the MD integration algorithm of
the equations of motion, we keep the external force constant
between two consecutive time steps, t and t + �t . Interpolat-
ing the external force between two consecutive time steps can
be problematic in cases where fext changes drastically (such
as, e.g., if an external force is switched on at a specific time).

The iteration scheme (14) is particularly well suited since
it is general and it requires us to sample only J(k) in order to
find the external force for the next iteration k + 1. Sampling of
J̇, which can be done by individually sampling the terms on
the right-hand side of Eq. (7), is therefore not required. The
proposed version of custom flow in Eq. (14) does not require
knowledge of any additional contribution or modification to
the one-body force balance equation that might arise if, e.g.,
a thermostat algorithm acts on the many-body level. As we
demonstrate below, our method works also with thermostats.

III. MODEL AND SIMULATION DETAILS

We implement the method in a system of N = 50 parti-
cles that interact via the purely repulsive Weeks-Chandler-
Andersen interparticle-interaction potential [47]:

φ(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6 + 1
4

]
if r � rc

0 otherwise.
(16)
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Here, r is the distance between two particles, σ is the length
scale, ε is the energy scale, and rc/σ = 21/6 is the cutoff
radius which is set at the minimum of the 12-6 Lennard-Jones
potential. We use τ =

√
mσ 2/ε as the time scale.

The particles are located in a periodic three-dimensional
simulation box with lengths Lx, Ly, and Lz. The origin of
coordinates is located at the center of the simulation box.
The system is inhomogeneous only in the x̂ direction, which
is discretized with bins of size 0.05σ . The system remains
homogeneous and without average flow in the other two di-
rections, ŷ and ẑ.

The many-body equations of motion, Eqs. (1) and (2), are
integrated in time using the velocity Verlet algorithm [48] with
an integration time step dt/τ = 10−4. The particle positions
are initialized randomly with the condition that the particles
do not interact with each other (all interparticle distances are
larger than rc). The particle velocities are initialized according
to a Maxwell-Boltzmann distribution. Hence each velocity
component is generated from a Gaussian distribution with
zero mean and standard deviation

√
2kBT/m with T absolute

temperature, which needs to be prescribed. The center of mass
is set initially at rest. We then let the system equilibrate for 1 τ

with no external force applied.
For the custom flow method we use a time step of �t/dt =

10 and average at each time over 2 × 106 trajectories (dif-
ferent realizations of the initial positions and velocities of
the particles at t = 0) to obtain accurate results. Since the
time step �t is small and the prefactor α has been carefully
selected, only three iterations are required at each time for
the method to converge to the desired external force. The
one-body fields are sampled at every �t and used according
to Eq. (14) to find the external force for the next iteration.

IV. RESULTS

We illustrate the validity of the method with three ex-
amples. In Sec. IV A we measure the time evolution of the
one-body fields ρ and J in a system subject to a spatially
inhomogeneous external force which is switched on at t = 0
and then kept constant in time. We next construct the time-
dependent external force required to slow down the observed
dynamics by an arbitrarily prescribed factor. In Sec. IV B, we
incorporate a thermostat to demonstrate its easy implementa-
tion within custom flow. Finally, in Sec. IV C, we prescribe the
full time evolution of the one-body density and the one-body
current and then find the corresponding external force.

A. Slow-motion dynamics

As a first example, we use custom flow to modify the time
scale of a dynamical process. The particles are located in a
box with dimensions Lx/σ = 4, Ly/σ = 8, and Lz/σ = 10.
We start with a homogeneous system at equilibrium at t = 0
and initial temperature kBT/ε = 0.5. Then, we switch on the
following external potential:

V (x) = V0 cos

(
4πx

Lx

)
, (17)

with V0/ε = 1. Hence the corresponding external force, which
is constant in time for t > 0, acts only in the x̂ direction

fext(x) = −∇V (x) = V0
4π

Lx
sin

(
4πx

Lx

)
x̂. (18)

We let the system evolve for a total time of 10τ , which is long
enough to reach proximity to a new equilibrium state with an
inhomogeneous density profile. The time evolution of the one-
body density and current profiles is shown in Figs. 1(a) and
1(b), respectively. The external force field, shown in Fig. 1(c),
accelerates the particles toward the minima of the external
potential, located at x/σ = ±1. Two density peaks grow from
the homogeneous density distribution at t = 0, reaching the
largest amplitude at t/τ ≈ 0.65. At short times, the shape of
the one-body current resembles that of the external force (sine
wave), and it increases in amplitude until it reaches its largest
value at t/τ ≈ 0.3. Then, the amplitude of the current de-
creases until the current starts to flip sign, which occurs when
the density peaks reach the largest amplitude (t/τ ≈ 0.65).
Next, the density peaks decrease in amplitude and get broader
since only some particles have enough momentum to over-
come the external potential barrier. Most particles, however,
cannot overcome the potential barrier. Instead, they partially
climb the barrier (contributing to the broadening of the density
peaks). Then, once the kinetic energy of the particles has
been transformed into external energy, the particles start to
move backwards towards the minima of the potential. This
backward motion leads to an increase in the density peaks, and
the process repeats again in time. Now, however, the process
is less intense since both the energy stored in the current and
the external energy have been partially dissipated due to, e.g.,
interparticle collisions and converted into thermal energy. The
described time evolution repeats in time creating a damped
oscillatory behavior. Eventually, the system reaches an equi-
librium state at t/τ ≈ 9.5 with vanishing one-body current
(within our numerical accuracy). Recall that this highly non-
trivial time evolution of the one-body density and current
profiles is produced by a simple external force [see Eq. (18)]
that is switched on at t = 0 and then kept constant in time.
A video showing the time evolution of the one-body fields is
provided in the Supplemental Material [49].

Next, we use custom flow to find the external force required
to reproduce this complex dynamics but in slow motion, i.e.,
slowed down by an arbitrarily chosen factor. By changing the
time scale of the process we expect the external force of the
slow-motion system to be time dependent, which is indeed
the case. We want to scale the time by a factor a. Hence, in
the new system the density profile ρa at time t is the same
as the density profile in the original system at time at . That
is, ρa(r, t ) = ρ(r, at ). The time derivative in the continuity
equation (5) implies that the current in the new system is also
scaled by a factor a. That is, Ja(r, t ) = aJ(r, at ). Therefore
scaling the time leads to a factor a in front of the current
that needs to be considered when prescribing the target fields.
Similarly, the time derivative of the current gets an additional
scaling factor J̇a(r, t ) = a2J̇(r, at ).

In Figs. 1(d)–1(f) we show the slow-motion dynamics with
scaling factor a = 0.5. Hence the slow motion runs for 20τ ,
i.e., twice the original total time. The sampled one-body den-
sity and current profiles coincide with their target. The time
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FIG. 1. Time evolution of the density (a) and the current (b) profiles of a system under the influence of a sinusoidal external force (c).
The profiles in (a) and (b) are colored according to time, as indicated. Both J and fext act along the x̂ axis. The horizontal arrows illustrate the
direction of the vector field at specific regions (position of the arrow) and also times (color). Sampled (solid lines) density (d) and current (e)
profiles of a slow-motion system with dynamics slowed down by a factor a = 1/2 [note that the indicated times are twice those in (a) and (b)].
The dashed lines indicate the target profiles. (f) External force, color-coded as in (d), obtained with custom flow, that produces the slow-motion
dynamics. Sampled density (g) and current (h) profiles for a system under the influence of the external force field (i), which is a smoothed
version of that shown in (f). The set of initial microstates used to obtain the averaged fields in the second and in the third column are not the
same. A video showing the time evolution is provided in the Supplemental Material [49].

evolution of the one-body density [Fig. 1(d)] is the same as
in the original system [Fig. 1(a)], but it proceeds only at
half speed. Similarly, the evolution of the one-body current
[Fig. 1(e)] is two times slower, and the amplitude is half of the
original target current profiles [Fig. 1(b)]. The time-dependent
external force that generates the slow motion (found with
custom flow) is shown in Fig. 1(f). At short times the shape
of the external force resembles that in the original system
[Fig. 1(c)], but its amplitude is reduced by a factor of 4. This
was expected since at t = 0 the system is in equilibrium under
no external force. That is, at t = 0 both ∇ · τ and Fint are
homogeneous and cancel each other in Eq. (7). At short times,
only J̇a contributes to the external force in the force balance
equation; hence the external force has the same shape as in the
original system, but it is rescaled by a factor a2 since J̇a = a2J̇
as discussed above.

Although the maximum amplitude of the density peaks
occurs at 1.3τ , the amplitude of the external force continues
to grow, and its shape deviates from a sinusoidal wave. The
maxima and the minima of the external force are shifted
towards the location of the density peaks at x/σ = ±1. While
the amplitude of the density profile decreases, the extrema of

the external force shift towards the minima of the one-body
density at x = 0 and x/σ = ±2.

When the slow-motion system reaches the equilibrium
state, the shape of the external force resembles that in the
original system, but interestingly, the amplitude is slightly
smaller in the slow-motion system. In slow motion, less en-
ergy is dissipated due to the reduced value of the one-body
current. Hence also the temperature is slightly different. For
the original time evolution the final temperature after equi-
librium is reached is kBT/ε = 0.77, and in slow motion it is
kBT/ε = 0.68 [50]. This temperature difference is responsible
for the different amplitudes of the external force. Note that in
equilibrium the transport term reduces to

∇ · τ = −kBT ∇ρ. (19)

Hence, according to Eq. (7) it is clear that two equilibrium
systems with the same density distribution but at different
temperatures are generated by external forces with different
amplitudes.

Robustness of the external force. Custom flow generates
a noisy external force; see Fig. 1(f). The iterative scheme,
Eq. (14), minimizes the error in the current profile since it
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is designed to converge if target and sampled currents coin-
cide. As a result, the statistical fluctuations in J are directly
translated into the external force field. Such fluctuations arise
due to the finite number of realizations (recall that at each
time we average over 2 × 106 trajectories that have evolved
from different realizations of the initial particle positions and
velocities). One could then think that the external force is
tailored to the set of initial conditions and cannot be used
in other circumstances. We demonstrate in the following that
this is not the case and that the external force is indeed quite
robust and independent of the small details. To this end, we
first smooth the external force in Fig. 1(f) using a Fourier
transform and eliminating the high-frequency modes (only the
lowest 15 modes are retained). The smoothed external force
is depicted in Fig. 1(i). Next, using the smoothed external
force and also a different set of initial conditions (with the
same number of microstates, i.e., 2 × 106), we sample the
time evolution of the density and the current one-body fields,
shown in Figs. 1(g) and 1(h), respectively.

Both the density and the current profiles obtained with
the original external force and with the smoothed external
force and a different set of initial conditions are similar and
reproduce accurately the target profiles. Of course, small dif-
ferences occur; compare, e.g., the current profiles at t/τ = 1
in Figs. 1(e) and 1(h). Hence we conclude that custom flow is
suitable to reproduce the prescribed dynamics using other sets
of initial conditions provided that enough trajectories are used.
Furthermore, we want to stress that for the cases considered
here the noise in the external force is not relevant to generate
the target fields ρ and J. We expect that other filters that
keep the structure and eliminate the noise can also be used
to smooth the external force.

B. Thermostats

It is often the case that MD simulations are performed at
constant temperature. In the following we show that custom
flow is also valid with algorithms to control the temperature
(thermostats). Several types of thermostats can be imple-
mented in MD [51]. In general, a thermostat acts on the
many-body level by rescaling the particle velocities and mod-
ifying therefore the equations of motion and the integration
algorithm. Hence thermostats generate new terms in the one-
body force balance equation (7). However, custom flow is
designed such that sampling of these terms is not required
to advance the iterative process. Custom flow uses only the
external force at the previous iteration and the sampled cur-
rent field [cf. Eq. (14)]. The external force constructed with
custom flow changes, of course, if a thermostat is used, but
the implementation of the method remains unchanged.

To illustrate the use of thermostats, we implement the well-
known Bussi-Donadio-Parrinello (BDP) thermostat [46], an
extension of the Berendsen thermostat [52], that stochastically
ensures a thermalized distribution of the kinetic energy.

Out of equilibrium, the kinetic energy has a contribution
due to the net flow of the system

Eflow = m

2

∫
drρv2, (20)

which is unrelated to the temperature [51]. To control the
temperature considering only the velocity fluctuations around
the mean velocity [53], we can rescale the particle velocities
using only the thermal kinetic energy:

Ethermal =
〈

m

2

N∑
i=1

(vi − v)2

〉
, (21)

where it is important to note that v(r, t ) is the space- and
time-dependent velocity profile (and not the center of mass
velocity). The implementation of Eq. (21) is particularly sim-
ple within custom flow since the velocity profile is known in
advance.

To demonstrate that custom flow can be used with ther-
mostats, we find the external force that generates the same
time evolution of ρ and J as that in Figs. 1(a) and 1(b)
but using the BDP thermostat. We set the time constant (re-
quired in the algorithm to control the temperature) to five
times the integration time step dt of the simulation. We show
in Fig. 2 results from both using the total kinetic energy
and using only the thermal energy [Eq. (21)] to rescale the
velocities.

The sampled one-body density and one-body current are
displayed in Figs. 2(a) and 2(b), respectively. The results
from both thermostats are on top of each other and are in-
distinguishable from the case without a thermostat [Fig. 1]. In
Fig. 2(c) we show the external force constructed with custom
flow and smoothed using the same procedure as discussed
above. We have verified that the smoothed external force also
reproduces the target time evolution. The inclusion of the
thermostat has a strong influence on the external force, which
is now time dependent, in contrast to the original (constant en-
ergy) dynamics for which the external force is constant in time
[Eq. (18)]. Furthermore, the external force required to pro-
duce the desired dynamics depends on the thermostat. This is
clearly visible at, e.g., t/τ = 0.35, at which the current profile
has its largest amplitude. At that time the flow kinetic energy
has also its largest value, and hence the two versions of the
thermostat rescale the velocities differently. Differences are
also noticeable both in the internal force field [see Fig. 2(e)]
and especially in the transport term ∇ · τ [Fig. 2(f)], since τ is
directly related to the total kinetic energy [cf. Eq. (9)].

Custom flow can help us to understand how different ther-
mostat algorithms modify the physical properties of a system.
In Fig. 2(c) we plot the external force at t/τ = 0.35 calculated
by using the sampled fint and ∇ · τ in the force balance equa-
tion (A1), which is exact only without thermostats. Using the
thermal kinetic energy in the BDP thermostat results in an ap-
proximated external force, via Eq. (A1), that is almost on top
of the actual force generated with custom flow. The external
force obtained with the original BDP thermostat (which uses
the total kinetic energy) via the force balance equation (A1)
shows a clear deviation from the force obtained in custom
flow. We therefore conclude that using the total kinetic energy
in the BDP thermostat induces a nontrivial contribution to the
force balance equation that alters the flow. In contrast, using
the thermal energy, only the velocity fluctuations are rescaled,
and the flow is left unchanged.

As expected, the time derivative of the current J̇ [Fig. 2(d)]
is very small for t = 0.35τ since J reaches at that time the
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FIG. 2. Time evolution of a system with target ρ and J like those in Figs. 1(a) and 1(b), respectively, but under the influence of either
the BDP thermostat (solid lines) or the modified BDP thermostat (dashed lines). Three different times are displayed: t/τ = 0.35 (yellow),
t/τ = 0.6 (blue), and t/τ = 9.9 (green). (a) Density profile ρ, (b) current profile J, (c) external force fext, (d) time derivative of the current J̇,
(e) internal force fint, and (f) transport term ∇ · τ. All vector fields act along the x̂ axis. The horizontal arrows in (b)–(f) indicate the direction
of the respective field at specific regions and times, as indicated by the position and the color of the arrow, respectively. The violet line in
(c) indicates the constant-in-time external force that generates the target fields ρ and J if no thermostat is present. The gray circles (white
triangles) in (c) show the external force calculated via the force balance equation for the BDP (modified BDP) thermostat at time t/τ = 0.35.
The third column shows the time evolution of the kinetic (g), thermal (h), and potential (i) energies in the case of no thermostat (violet lines),
a BDP thermostat (black lines), and a modified BDP thermostat (dashed orange lines).

maximum amplitude. Also for t/τ � 9.9 the system is very
close to equilibrium, and J̇ vanishes within the numerical
accuracy.

Finally, we show in Figs. 2(g), 2(h), and 2(i) the time evo-
lution of the total kinetic energy, the thermal energy, and the
internal potential energy, respectively. Shown are the original
dynamics (no thermostat) and both the BDP thermostat and
the modified version that uses only the thermal kinetic energy.
The total kinetic energy is constant in time for the BDP ther-
mostat as it should be by construction. In the modified version,
the thermal kinetic energy [Fig. 2(h)] is constant in time,
but the total kinetic energy varies with time since the flow
kinetic energy is kept unchanged. The original time evolution
is clearly not at constant temperature since both the kinetic
energy and the thermal kinetic energy vary substantially over
time. The total internal potential energy is for neither ther-
mostat constant in time [Fig. 2(i)]. For a short period of time
around t/τ = 0.35 there is a significant difference between
both versions of the BDP thermostat due to the large ampli-
tude of the one-body current.

Custom flow can be used as a new tool to analyze the
quality and the physical consequences of the inclusion of
thermostats in the dynamics of many-body systems. We have
shown here that separating the flow and thermal kinetic en-

ergies, especially in systems with large magnitude of the
one-body current, is advisable.

C. Tailoring inhomogeneous density profiles

In the previous examples we obtained ρ and J in a simu-
lation for a fixed external force and used modified versions of
them as target fields. In this last example, we show that there
is freedom to prescribe the fields provided that they represent
a physical system. For example, the target ρ and J must obey
the continuity equation.

We set a simulation box with dimensions Lx/σ = 10,
Ly/σ = 5, and Lz/σ = 5 and prescribe the one-body density

ρ(x, t ) = ρ0 − A

2
cos

(
4πx

Lx

)[
1 − cos

(πt

T0

)]
, (22)

with average density ρ0 = N/(LxLyLz ) = 0.2σ−3 and con-
stants Aσ 3 = 0.05 (maximum amplitude of the density
inhomogeneity) and T0/τ = 0.5. At t = 0 the density is ho-
mogeneous [see Eq. (22)], and the system is in equilibrium.
The density profile evolves according to Eq. (22) for 0 < t <

T0 (two peaks grow from the initial homogeneous state). At
t � T0 the one-body current is set to zero everywhere, and
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FIG. 3. Sampled one-body (a) density ρ and (b) current J profiles at different times, as indicated. The target fields are prescribed according
to Eqs. (22) and (23). (c) External force field constructed with custom flow (semitransparent lines) and smoothed external force (solid lines).
Sampled (d) time derivative of the current profile J̇, (e) internal force density fint, and (f) transport term ∇ · τ. All vector fields act along the
x̂ axis. The horizontal arrows indicate the direction of the respective field at specific regions (arrow’s position) and times (arrow’s color). The
Supplemental Material [49] contains a movie showing the time evolution.

therefore the inhomogeneous density profile remains station-
ary.

The target current J follows from Eq. (22) and the space
integral of the continuity equation (5):

Jx = −
∫

dx ρ̇ + C, (23)

with Jx being the x component of J and C being a constant
that we set such that the total integral of the current vanishes,∫

dxJx = 0. That is, for convenience we choose to not have
motion of the center of mass. We calculate the target current
analytically using Eq. (23). Note that in our effective one-
dimensional system with periodic boundary conditions the
time evolution of ρ determines the current J up to a constant
only. However, in higher dimensions the continuity equation
alone is not enough to determine the current from the time
evolution of the density profile since any divergence-free field
can be added to the current without altering ρ.

Using custom flow to construct the external force that
generates the time evolution prescribed in Eq. (22) yields the
results shown in Fig. 3 (a movie is also included in the Supple-
mental Material [49]). Figures 3(a) and 3(b) show for different
times the sampled one-body density and the one-body current,
respectively. Both fields are in perfect agreement with their
respective target fields [cf. Eqs. (22) and (23)]. The largest
amplitude in J occurs at t/τ = 0.25, which is also the time
of the largest change in the density profile. The constructed
external force, shown in Fig. 3(c), is highly nontrivial, and
it is closely related to the behavior of J̇, shown in Fig. 3(d).
Initially, the external force accelerates the particles towards
the maxima of the one-body density. Then, around t/τ = 0.25
the external force flips sign and decelerates, therefore, the
particles. At t/τ = 0.5 there is a jump in the time evolution
of the external force due to the imposed vanishing J̇ (compare
the profiles at t/τ = 0.499 and 0.502). Custom flow finds the

correct external force despite this drastic change in time. After
J̇ vanishes, neither ρ nor J changes anymore. Interestingly,
the external force continues to evolve in time. This can be ex-
plained by memory effects occurring in both the internal force
field fint [Fig. 3(e)] and the transport term ∇ · τ [Fig. 3(f)].
Even though J̇ vanishes at t/τ > 0.5, the external force still
needs to vary in time in order to cancel the time evolution of
the internal and the transport terms. Custom flow is therefore
a valuable tool to study memory effects [24,25,54–56] since it
allows us to isolate memory contributions in the force balance
equation from the time evolution of the density and the current
fields.

V. DISCUSSION AND CONCLUSIONS

We have presented a numerical iterative scheme [see
Eqs. (10) and (14)] to construct the external force required
to achieve a given (prescribed) time evolution of a Newto-
nian many-body system, as specified by the one-body density
and the one-body current. We have previously shown how
in overdamped Brownian dynamics the exact one-body force
balance equation can be directly used to construct a reliable
custom flow method [38]. The external force is generated
as the sum of different contributions that are sampled in the
simulation. Here, we have followed a different and more gen-
eral approach. We construct iteratively the external force by
adding at each iteration terms that correct the external force
in the right direction and that vanish when target and sample
fields coincide. Although we have restricted ourselves here to
inertial molecular dynamics, the method is general and can
be also used in, e.g., overdamped Brownian dynamics and
Langevin dynamics. There the corresponding force balance
equation can be used to recalculate suitable expressions for
the prefactors α, β, and γ since they might be different.

The more general iterative scheme, Eq. (10), modifies
the external force based on three types of target-sampled
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differences that occur in the gradient of the density, in the
current, and in the time derivative of the current. This is
analogous to the three different fundamental equations in
classical mechanics: d’Alembert’s principle based on parti-
cle displacements, Jourdain’s principle based on variations
in particle velocities, and the Gibbs-Appell-Gauss principle
based on variations in particle accelerations. It is therefore not
surprising that only one prefactor, α, β, or γ , in Eq. (10) needs
to be present (using only γ is restricted to curl-free target
current profiles as discussed in Sec. II B).

Since the calculation of the external force requires us to
sample only the current, but not the individual contributions to
the force balance equation, it is straightforward to use custom
flow together with a thermostat. Applying custom flow to
systems with the same target fields but different thermostat
algorithms provides new insight into the different mechanisms
to control the temperature since it is possible to precisely
analyze how the individual contributions to the force balance
equation are affected by different thermostats. The choice
of thermostat can heavily influence the results [57,58], and
custom flow might help us to make an educated selection as
to how to control the temperature out of equilibrium, which is
a delicate issue [59].

The external field controls the density and the velocity pro-
files, but it does not determine the fluctuations of the particle
velocities around the mean velocity. Hence we do not expect
that custom flow can be used in general to construct an ideal
thermostat able to maintain a temperature profile constant in
time and uniform in space. However, it might be possible to
generalize custom flow to include a new external field that
produces such a temperature profile by acting on the particle
velocities. The new spatially and temporally resolved field
could then be found iteratively by comparing the target and
the desired thermal kinetic energy fields [cf. Eq. (21)].

Custom flow can be used to prescribe target fields such
that at least one contribution to the force balance equation
vanishes. For example, the current vanishes after a certain
time in the example of Sec. IV C. This can facilitate the study
of memory effects and the structure of memory kernels, a
topic of current interest [24,25,54–56].

The external forces constructed with custom flow are in
general noisy since they are tailored to the finite set of initial
microstates used during the iterative process. Nevertheless, we
have shown that a smoothed version of the external force,
constructed by filtering out the high-frequency terms, also
produces the target dynamics within the numerical accuracy.
We note, however, that we have stayed away from instabilities
that might be the source of convergence issues.

Although they are only model situations, the examples con-
sidered here are demanding; the target fields vary substantially
over distances comparable to the particle size, and we have
designed a case in Sec. IV C for which the resulting external
force is discontinuous in time. Custom flow has in all cases
found the external force field that produces the target fields
within the numerical accuracy. Nevertheless, convergence is-
sues can occur, e.g., in strongly driven systems, in flows with
rapid spatial variations, and near the onset of mechanical and
fluid instabilities. Integer arithmetic [17,60] and using small
values for the prefactors α, β, and γ might help to mitigate
some of the problems that might appear.

The existence of a unique mapping between the density
distribution and a time-dependent external potential is at the
core of time-dependent density functional theory [33]. Such
mapping is not completely general but is restricted to the
occurrence of gradientlike forces only. Similarly, in the widely
spread dynamical density functional theory [31,61], the inter-
nal force field is drastically approximated as a functional of
the density distribution only. No functional dependence on the
flow occurs. These limitations are solved in the formally exact
power functional theory [34,35] that considers a functional de-
pendence on all kinematic fields. Such dependence is required
to properly describe, e.g., shear migration [62], phase coexis-
tence of active particles [63], and laning formation in binary
mixtures [64]. Power functional theory relies on a mapping
between the external force and both the density and the current
distributions. Such mapping is indispensable to, e.g., describe
systems in which the current field contains nongradient contri-
butions (i.e., rotational and harmonic contributions) since the
continuity equation links only the divergence of the current
and the time evolution of the density profile. It is therefore
perfectly possible to construct families of systems that, e.g.,
share the same time evolution of the density profile but have
different current profiles [15] and are therefore generated by
different external forces. Custom flow provides the numerical
evidence of the existence of the unique mapping between the
external force and the kinematic fields.

Custom flow has proven to be an excellent tool to develop
approximated power functionals in overdamped Brownian
systems [15], and we expect it to be also of great help to
develop approximate power functionals in Newtonian sys-
tems. To study large-scale systems, it can be useful to extend
custom flow to adaptive resolution techniques for multiscale
molecular dynamics simulations [65–68]. The extension of
custom flow to multicomponent systems is of both applied
and fundamental interest. It would allow us to, e.g., explore
up to what extent the dynamics of a collection of interacting
particles that differ in, e.g., their shape can be controlled using
a single external field such as, e.g., a magnetic field.
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APPENDIX: PREFACTORS FROM THE FORCE BALANCE
EQUATION

We start with the exact one-body force balance equation
(7). Solving for the external force field yields

fext(r, t ) = mJ̇(r, t )

ρ(r, t )
− fint(r, t ) − ∇ · τ(r, t )

ρ(r, t )
. (A1)

Following the ideas of Ref. [38], it is possible to establish
an iteration scheme to find the external force at iteration
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k + 1 as

f (k+1)
ext (r, t ) = mJ̇(r, t )

ρ(r, t )
− f (k)

int (r, t ) − ∇ · τ (k)(r, t )

ρ(r, t )
. (A2)

Here, the unknown terms on the right-hand side of Eq. (A1),
i.e., the internal force field and the kinetic stress tensor, are
sampled at each iteration and used to construct the exter-
nal force iteratively. This idea, which works in overdamped
Brownian systems [38], presents stability issues in inertial
systems and does not converge in general. We next observe
that the one-body force balance equation (7) implies that for
iteration k

f (k)
ext (r, t ) = mJ̇(k)(r, t )

ρ (k)(r, t )
− f (k)

int (r, t ) − ∇ · τ (k)(r, t )

ρ (k)(r, t )
. (A3)

Combining Eqs. (A2) and (A3) yields

f (k+1)
ext (r, t ) = f (k)

ext (r, t ) + m

ρ(r, t )

(
J̇(r, t ) − J̇(k)(r, t )

)

−∇ · τ (k)(r, t )

(
1

ρ(r, t )
− 1

ρ (k)(r, t )

)
, (A4)

where we have assumed that target and sampled density pro-
files are the same, i.e., set ρ (k)(r, t ) → ρ(r, t ) in the first
term of the right-hand side of Eq. (A3). Note that this is
necessarily the case if the iterative process converges. Com-
paring Eqs. (A4) and (10) yields β = m

ρ
.

To find an expression for α, we approximate J̇(r, t ) and
J̇(k)(r, t ) in Eq. (A4) by

J̇(r, t ) = J(r, t ) − J(r, t − �t )

�t
, (A5)

J̇(k)(r, t ) = J(k)(r, t ) − J(r, t − �t )

�t
, (A6)

where we have used that the sampled J(k) and the target J co-
incide at time t − �t . This is again necessarily the case if the
process converges. Although a central time difference would
be more precise, we use here the backward time difference
since J(k)(r, t + �t ) is unknown at time t . Inserting Eqs. (A5)
and (A6) into Eq. (A4) and comparing the result with Eq. (10)
result in α = m

ρ�t .
Finally, to find a suitable expression for γ , we use the

equilibrium expression for the transport term (19) to roughly
approximate the second term in Eq. (A4) by

−∇ · τ (k)

(
1

ρ
− 1

ρ (k)

)
∼ +kBT ∇ ln

ρ

ρ (k)
, (A7)

from which we obtain γ = kBT by comparison with Eq. (10).
We note that Eq. (A7) is a crude approximation, but we are
only interested in a suitable expression for the prefactor γ .
The precise value of the prefactors is not critical for the
method to converge (provided they are small enough such
that the iterative process is stable). However, having suitable
expressions is relevant to achieve a fast convergence since the
prefactors control the amount of change in the external force
from iteration to iteration.
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Inhomogeneities in the velocity field of a moving fluid are dampened by the inherent viscous behavior of
the system. Both bulk and shear effects, related to the divergence and the curl of the velocity field, are
relevant. On molecular time scales, beyond the Navier-Stokes description, memory plays an important role.
Using molecular and overdamped Brownian dynamics many-body simulations, we demonstrate that
analogous viscous effects act on the acceleration field. This acceleration viscous behavior is associated with
the divergence and the curl of the acceleration field, and it can be quantitatively described using simple
exponentially decaying memory kernels. The simultaneous use of velocity and acceleration fields enables
the description of fast dynamics on molecular scales.
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The viscous force determines the resistance of a moving
fluid to change the magnitude and the direction of the flow.
Such a viscous response, originated by the interparticle
interactions, is relevant in, e.g., lubrication [1], protein
dynamics in biological solvents [2,3], viscotaxis [4,5],
magnetic [6] and quantum [7] fluids, lava flows [8], cardio-
vascular events [9,10], food manufacturing [11], and cosmo-
logical models [12,13]. Viscous effects are associated with
inhomogeneities in the velocity field of the fluid. The viscous
force fvisðr; tÞ experienced by a particle of a fluid at position r
and time t contains bulk fbðr; tÞ and shear fsðr; tÞ contribu-
tions, i.e., fvis ¼ fb þ fs. These contributions are associated
with the divergence∇ · v (bulk) and the curl∇ × v (shear) of
the velocity field vðr; tÞ, respectively. Specifically, fvis in the
Navier-Stokes [14] equations is

ρfvis ¼ ηb∇∇ · v − ηs∇ × ð∇ × vÞ; ð1Þ

where ρðr; tÞ is the density profile and ηα with α ¼ b, s are
transport coefficients known as bulk and shear viscosities.
Here, we demonstrate the occurrence in simple fluids

of analog viscous contributions, but generated by the
divergence and the curl of the acceleration field aðr; tÞ.
We use custom flow [15,16] to design specific flows
(driven by external forces) in which we can unambiguously
single out the acceleration contribution of the viscous force.
We consider inhomogeneous and rapidly changing flows.
Hence, memory effects and inhomogeneities of the density
profile cannot be ignored and need to be included in
Eq. (1). We propose the following expressions for bulk and
shear viscous forces of an inhomogeneous simple fluid,

fbðr; tÞ ¼
1

ρ

Z
t

0

dt0½Kv
bðt − t0Þ∇ðρρ0∇ · v0Þ

þ Ka
bðt − t0Þ∇ðρρ0∇ · a0Þ�; ð2Þ

fsðr; tÞ ¼
−1
ρ

Z
t

0

dt0½Kv
sðt − t0Þ∇ × ðρρ0∇ × v0Þ

þ Ka
s ðt − t0Þ∇ × ðρρ0∇ × a0Þ�; ð3Þ

where we leave out the dependence on r and t, primed
quantities are evaluated at t0, e.g., ρ0 ¼ ρðr; t0Þ, and KΓ

α

(with α ¼ b; s and Γ ¼ v; a) are exponentially decaying
memory kernels

KΓ
αðt − t0Þ ¼ cΓα

τΓα
e−ðt−t0Þ=τΓα ; ð4Þ

with constant amplitudes cΓα and memory times τΓα . The first
terms of Eqs. (2) and (3) are the familiar bulk and shear
viscous forces in the Navier-Stokes equations, Eq. (1), for
flows with inhomogeneous density profiles and with the
addition of a memory kernel. The second terms have
identical structure but replacing v by a and represent
therefore a viscous response generated by an inhomo-
geneous acceleration field. The viscous force in Eq. (1)
with viscosities ηα ¼ cvαρ2 follows from the velocity con-
tributions of Eqs. (2) and (3) by ignoring the effect of both
memory and an inhomogeneous density profile. Our
specific form for fvis arises in power functional theory
[17–19] by retrieving the first terms of an expansion in
acceleration gradients; see additional details in the
Supplemental Material [20].
To demonstrate the occurrence of viscous effects asso-

ciated with the acceleration field, we need to disentangle
the velocity and the acceleration contributions from the
total viscous force. This requires a complete control over
the characteristics of the flow, which we achieve using
custom flow [15,16]. Custom flow uses particle-based
simulations to find numerically the spatially and temporally
resolved external field required to generate the desired
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dynamics of a many-body system. The one-body density
ρðr; tÞ and current Jðr; tÞ ¼ ρðr; tÞvðr; tÞ profiles serve as
input target fields, while the external field fextðr; tÞ that
generates these targets is the output of the method. At each
time, fextðr; tÞ is constructed iteratively. At iteration kþ 1
we add to the external force of the previous iteration k a
term proportional to the difference between the target (J)

and sampled (JðkÞ) currents, i.e., fðkþ1Þ
ext ¼ fðkÞextþα0ðJ−JðkÞÞ.

Here, the parameter α0ðr; tÞ > 0 is chosen to ensure that
the difference between the target and sampled current
fields progressively shrinks. Details about custom flow
are provided in Refs. [15,16] and in the Supplemental
Material [20]. Custom flow is essential here to tailor the
dynamics of the system such that the viscous force can be
(i) easily measured and (ii) unambiguously split into
velocity and acceleration contributions. We use molecular
dynamics (MD) simulations to study a three-dimensional
system of particles of mass m interacting via the short-
ranged and purely repulsive Weeks-Chandler-Andersen
pair potential [21] with length and energy parameters σ

and ϵ, respectively. We work in units of σ, ϵ, and m. Hence,
the unit of time is τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ϵ

p
. We consider two different

flows that represent pure bulk (compressible) and shear
situations. In both flows the one-body current J factorizes
into a (vectorial) spatial part Jr and a (scalar) temporal part
Jt, i.e., Jðr; tÞ ¼ JtðtÞJrðrÞ.
The temporal part is common to both flows; see Fig. 1(a)

and the Supplemental Material [20] for the mathematical
expression. The current increases from the initial time until
t↑ ¼ 1τ, then remains constant (quasisteady state) until
tc ¼ 5τ, decreases until it vanishes at t↓ ¼ 6τ, and it stays
zero afterward. This setup helps to disentangle the velocity
and the acceleration contributions from fvis since v and a
are parallel to each other during the increase of J, but they
are antiparallel during the decrease of J. Both v and a stay
unchanged during the quasisteady state and during the final
evolution toward equilibrium which is useful to character-
ize memory effects.
Both flows are designed to have a stationary one-body

density during the whole time evolution, i.e., _ρðr; tÞ ¼ 0,

FIG. 1. (a) Temporal part of the current Jt vs time t common to the bulk (b) and shear (c) flows. Four times ti with i ¼ 1, 2, 3, and 4 are
highlighted with colored circles. The vertical dotted lines indicate the times t↑; tc, and t↓. (b),(c) The external force fext, density ρ,
velocity v, acceleration a, and viscous force fvis profiles as a function of x for the bulk and shear flows, respectively. To improve the
visualization, the external force has been smoothed by eliminating high-frequency Fourier modes (see details and raw data in the
Supplemental Material [20]). The thin black solid lines are the target fields that coincide (up to numerical accuracy) with the sampled
fields. The color of the profiles indicates the time t1 ¼ 0.5τ (red), t2 ¼ 4τ (blue), t3 ¼ 5.5τ (yellow), and t4 ¼ 6.05τ (purple), as
indicated in (a). The arrows indicate the direction of the vector field at specific locations (arrow position) and times (arrow color).
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where the overdot denotes a time derivative. This simplifies
the data analysis since as a direct consequence the viscous
forces in Eqs. (2) and (3) also factorize into spatial and
temporal terms [20]

fαðr; tÞ ¼ CαðtÞfr;αðrÞ; α ¼ b; s: ð5Þ

Bulk flow.—Here, by construction ∇ × v ¼ 0 and
∇ × a ¼ 0 but ∇ · v ≠ 0 and ∇ · a ≠ 0. Hence, only bulk
effects contribute to the viscous force, i.e., fvis ¼ fb. We
take the one-body density to be inhomogeneous, but only
along the x direction. The one-body current has only an x
component which is taken to be constant in space:

ρðr; tÞ ¼ ρðxÞ ¼ ρ0 − ρ1 cos ð4πx=LxÞ; ð6Þ

Jðr; tÞ ¼ JðtÞ ¼ J0JtðtÞêx; ð7Þ

with average density ρ0σ3¼0.15625, amplitude ρ1σ3¼0.1,
side length of the simulation box Lx=σ ¼ 4, and maximum
value of the current J0τσ2 ¼ 0.01. Both the velocity
v ¼ J=ρ and the acceleration a ¼ _v ¼ _J=ρ (where the
second equality holds here since _ρ ¼ 0) are inhomo-
geneous in space even though the current is homogeneous.
The external force that produces this bulk flow together

with density, velocity, and acceleration profiles sampled in
MD are shown in Fig. 1(b) for four selected times. The
viscous force fvis [also shown in Fig. 1(b)] is the part of the
internal force that changes sign under flow reversal [20,22].
The four times selected in Fig. 1 represent the different
regimes of the time evolution imposed by Jt; see Fig. 1(a).
At t1 ¼ 0.5τ, i.e., t1 < t↑, the current increases, and both v
and a point in the same direction. At t2 ¼ 4τ, i.e.,
t↑ < t2 < tc, the system is in a quasisteady state with
negligible memory effects (we know this by monitoring the
viscous force which does not change with time). The
acceleration vanishes everywhere, and the velocity profile
remains unchanged in this time interval. At t3 ¼ 5.5τ,
i.e., tc < t3 < t↓ the current decreases. The velocity and the
acceleration profiles have opposite sign everywhere.
Finally, at t4 ¼ 6.05τ, i.e., t4 > t↓, both v and a vanish
everywhere. However, due to memory effects the system
has not reached equilibrium yet; there is, for example, a
viscous force generated by the history of v and a.
A visual inspection of the viscous force fvis, in Fig. 1(b),

reveals two strong indications that the acceleration profile
contributes to the viscosity. First, at t4 the viscous force
points in the opposite direction than at the previous times.
Hence, the history of the acceleration profile must be
dominating the viscosity since the velocity profile does not
change its sign during the whole time evolution. Only a
changes sign during the decrease of the current [compare
the acceleration profiles at times t1 and t3 in Fig. 1(b)].
Second, the profiles fvis at times t1 and t3 are similar.
At these two times the velocity profiles are identical by

construction; see Figs. 1(a) and 1(b). However, a and the
history of both v and a are different. Since the viscosity at a
given time depends on the history of the system, the
contribution to the viscosity due to the acceleration must
be canceling the contribution due to the history of the
velocity profile. Otherwise, the viscous force at these times
would differ.
The temporal part CbðtÞ for the bulk flow [see Eq. (5)]

can be understood as the variation of the strength of the
viscous force over time. Results are shown in Fig. 2(a).
Clearly, Cb achieves larger values than at the quasisteady
state for times around t↑, and smaller (negative) values than
in equilibrium (Cb ¼ 0) for times around t↓. The accel-
eration is responsible for the overshoot and the undershoot
around the times t↑ and t↓ because a is the only field that
flips its sign during the increase and during the decrease of
the current. Note that if a does not contribute to the bulk
viscous force, then the negative values ofCb would indicate
an unphysical negative viscosity.
We next compare the MD data to our expression for

the viscous force fb, Eq. (2), to obtain the kernel param-
eters; see the Supplemental Material [20] for details.

FIG. 2. (a) Temporal dependency of the bulk viscous force Cb
as a function of time t in molecular dynamics simulations (thick
black line) and theoretically (violet) for the bulk flow. The
vertical dotted lines indicate the times t↑; tc, and t↓. The time
t3 ¼ 5.5τ is highlighted with a yellow circle. The light gray line
fluctuating around the horizontal line is the difference between
simulation (thick black) and theory (violet). (b) Bulk viscous
force fvis as a function of x at time t3 ¼ 5.5τ according to MD
(yellow) and theory (violet). The force points along the x axis.
The colored arrows indicate the direction of the corresponding
force at selected positions. The contributions of the velocity
(green) and of the acceleration (blue) to the total signal (violet)
are also shown in (a) and (b). The bottom panels (c) and (d) show
the same data as the top panels, but using overdamped Brownian
dynamics instead of MD. In BD only the velocity field contrib-
utes to the viscosity.
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The amplitudes are cvb=ðϵσ3τÞ¼0.63, cab=ðϵσ3τ2Þ ¼ 0.044,
and the memory times are τvb=τ ¼ 0.043, τab=τ ¼ 0.56. The
partial contributions of the velocity and the acceleration
fields to Cb and fvis are shown in Figs. 2(a) and 2(b),
respectively. The sum of both contributions agrees quanti-
tatively with the MD data.
To assure that the overshoot and the undershoot in Cb are

indeed due to the acceleration field, we performed over-
damped Brownian dynamics (BD) simulations for exactly
the same flow (using BD custom flow [15,20] and the usual
assumption that the random force does not depend on the
external force [23]). Since the system is overdamped, the
acceleration does not play any role, and indeed, there is no
overshoot or undershoot in Cb [Fig. 2(c)]. Both Cb and
fvis are well reproduced theoretically using only the
velocity field, Figs. 2(c) and 2(d), with kernel parameters
cvb=ðϵσ3τÞ ¼ 0.117 and τvb=τ ¼ 0.041.
Shear flow.—We next consider a flow in which∇ · v ¼ 0

and ∇ · a ¼ 0 but ∇ × v ≠ 0 and ∇ × a ≠ 0. Hence, only
shear effects contribute to the viscous force, i.e., fvis ¼ fs.
Using custom flow we set the density profile to be
homogeneous and the current to be a shear wave pointing
in the y direction with modulation along the x direction,

ρðr; tÞ ¼ ρ0; ð8Þ

Jðr; tÞ ¼ Jðx; tÞ ¼ J0 sin ð2πx=LxÞJtðtÞêy; ð9Þ

with ρ0σ
3 ¼ 0.15625, Lx=σ ¼ 4, and J0τσ2 ¼ 0.01.

Figure 1(c) shows the external force required to produce
the flow along with results for ρ, v, a, and fvis at the same
four different times as in the previous flow. A visual
inspection of the data does not reveal the acceleration
contribution since (i) for times t1 ¼ 0.5τ and t3 ¼ 5.5τ
the curves are different (suggesting either a large memory
time of the velocity contribution or a strong effect of the
acceleration) and (ii) fvis does not flip the sign after the one-
body current vanishes. Also, in contrast to the bulk flow, no
apparent over- or undershoot is present in CsðtÞ, i.e., the
temporal part of fvis [see Fig. 3(a) and Eq. (5)]. For the
shear flow we find that the amplitudes cvs=ðϵσ3τÞ ¼ 0.56
and cas=ðϵσ3τ2Þ¼0.059, and the memory times τvs ¼ 0.24τ,
τas ¼ 0.23τ yield quantitative agreement between simula-
tion data and our theory for both the temporal, Fig. 3(a),
and the spatial dependence of fvis, Fig. 3(b). In contrast to
the bulk flow, the memory times of a and v are now
comparable, which partially hides the effect of the accel-
eration. To demonstrate the importance of awe use only the
velocity contribution and obtain cvs=ðϵσ3τÞ ¼ 0.56 and
τvs=τ ¼ 0.13 as the optimal kernel parameters. The resulting
curve for Cs [see Fig. 3(a)] deviates from the MD data
around the times t↑ (curve above MD data) and t↓ (curve
below MD data). This indicates that a indeed contributes
since its sign change around these times can correct these
deviations.

To further ascertain the reality of the acceleration con-
tribution, we use the obtained parameters for the amplitudes
and the memory times to describe a variation of the flow.
Instead of decreasing the one-body current after tc, we keep
the amplitude of the current unchanged and let the shear
wave travel in the positive x direction. Specifically, after time
t ¼ 2τ > t↑ we replace the x coordinate in Eq. (9) by x − vst
with constant velocity vs ¼ 4τ=σ. Hence, the acceleration
field is shifted by π=2 with respect to the velocity field; see
Fig. 3(c). The phase difference between v and a has an effect
on the viscous force; see Fig. 3(d). Using the kernel
parameters for the previous flow and both the velocity
and the acceleration contributions we reproduce the simu-
lation data. In contrast, using the parameters obtained only
with the velocity contribution results in a clear phase
shift compared with the MD data. See the Supplemental
Material [20] for more details.

FIG. 3. (a) Temporal dependency of the shear viscous force Cs
as a function of time t in MD simulations (thick black line) and
theoretically (violet) for the shear flow. The light gray line
fluctuating around the horizontal line is the difference between
simulation (thick black) and theory (violet). (b) Shear viscous
force fvis as a function of x at time t3 ¼ 5.5τ according to MD
(yellow) and theory (violet). The force points along the y axis.
(c) Illustrative velocity (green) and acceleration (blue) profiles vs
x for the traveling shear wave (t ¼ 2.7τ). Note that a and v are not
in phase. (d) Viscous force vs x for the traveling shear wave
according to MD (thick black) and theory (violet) (t ¼ 2.7τ). The
colored arrows indicate the direction of the corresponding field at
the selected positions. The theoretical contributions of v (green)
and a (blue) to the total signal (violet) are also shown in panels
(a), (b), and (d) together with the theoretical predictions using
only the velocity field (dashed green line). The colored circles
over the x axis in (d) indicate the position of the minimum of fvis
according to MD (gray), and theory using both contributions
(violet) or only the velocity contribution (green).
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Our results demonstrate the existence of shear and bulk
acceleration viscous forces generated by inhomogeneities
of the acceleration field. These forces act in addition to the
usual viscous response associated with the velocity field. In
our examples the contribution of the acceleration to the
viscous force is quantitatively significant. Acceleration
viscous forces might be also relevant in flows with rapid
temporal changes of the velocity field such as in shock
waves [24–28], turbulent flows [29–31] including atmos-
pheric and oceanic flows [32], inertial microfluidics
[33–35], the description of flows at the nanoscale [36–38],
mudflows [39], single-bubble sonoluminescence [40,41],
and viscous cosmological models [12,42].
We did not use a thermostat due to the low heat production

in both flows (the temperature increase was less than 2%
from the initial to the final state [20]). However, custom flow
can be used with thermostats [16], and it would be interest-
ing to compare the effect of the acceleration viscosities in
thermalized and nonthermalized flows.
We use here a rather simple kernel as compared with

other approaches [43–46]. The use of simple memory
kernels that decay exponentially in time is only possible
because we use all physically relevant variables, i.e., both v
and a. Since a and v are related to each other, it should be
possible to describe fvis using only v or a together with a
complicated kernel. Such a kernel would be tailored to the
specific flow instead of being general to every situation. For
example, it might be possible to describe the viscous force
of the bulk flow using only v and a complex memory kernel
with a negative tail.
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The Supplementary Material contains the expression
for the temporal contribution of the current, (A), the de-
scription of the calculation of the kernel parameters (B),
details about molecular (C) and Brownian (D) dynamics
simulations, summaries of the custom flow method (E),
the splitting of internal forces into viscous and structural
contributions (F) and power functional theory (G), as
well as supplementary data on the shear flow in Brown-
ian dynamics (H) and on the traveling shear wave (I).

A. Time evolution of the current

The temporal contribution to the current, shown in
Fig.1(a) of the main text, is set to

Jt(t) =





0.5 [1− cos (πt/t↑)] , 0 < t ≤ t↑
1, t↑ < t ≤ tc
0.5
[
1 + cos

(
π t−tc
t↓−tc

)]
, tc < t ≤ t↓

0, t↓ < t,

(S1)

with t↑ = 1τ , tc = 5τ , and t↓ = 6τ .

B. Calculation of the kernel parameters

To obtain the memory times and the amplitudes of
the viscosity kernels we proceed as follows. For the bulk
and the shear flows considered here, the one-body density
is by construction time-independent ρ(r, t) = ρ(r) and
the one-body current J factorizes into time- and space-
dependent parts J(r, t) = Jr(r)Jt(t). Hence, the time
derivative of the current also factorizes into time- and
space-dependent parts

J̇(r, t) = Jr(r)J̇t(t), (S2)

and it has the same spatial form Jr(r) as the current
itself. Since the expressions for the shear fs and bulk fb
viscous forces are linear in both v = J/ρ = JtJr/ρ and

a = v̇ where here v̇ = J̇/ρ = J̇tJr/ρ [see Eqs. (1) and
(2) of the main text], the viscous forces also factorize into
time- and space-dependent parts:

fα(r, t) = Cα(t)fr,α(r), α = b, s, (S3)

where the space-dependent parts are

fr,b =
1

ρ
∇
[
ρρ∇ ·

(
Jr

ρ

)]
, (S4)

fr,s = −1

ρ
∇×

[
ρρ∇×

(
Jr

ρ

)]
, (S5)

and the temporal parts are

Cα(t) =

t∫

0

dt′
(
Kv
α(t− t′)Jt(t′) +Ka

α(t− t′)J̇t(t′)
)
,

(S6)
with α = b for bulk and α = s for shear. The kernels are

KΓ
α (t) =

cΓα
τΓ
α

exp(−t/τΓ
α ), (S7)

with the superscript Γ labeling either the acceleration
Γ = a or the velocity Γ = v contributions. The fac-
torization of the viscous force into temporal- and spatial
parts, Eq. (S3), which facilitates the analysis of the data,
is not general and holds only if the one-body current
also factorizes. Custom flow is therefore an essential tool
here since it allows to carefully prescribe the features of
the flow. We show in Supplementary Fig. 1 the space-
dependent parts of the bulk and shear viscous forces at
different times according to simulations. As expected,
the curves for different times collapse into a single curve.

The process to calculate the kernel parameters uses
two steps. In step one, at every time t we compare the
simulation data for fvis to Eq. (S3) using the expressions
in Eqs. (S4) and (S5) for the spatial part of the viscous
forces. As a result, we obtain the curve Cα(t) in sim-
ulations. In the second step, the kernel parameters are
obtained by finding the values of cΓα and τΓ

α in Eq. (S6)
that best reproduce the curve Cα(t) that results from
step one.

C. Molecular dynamics simulations

We use molecular dynamics (MD) to simulate a
dynamical ensemble of ∼ 106 instances of a three-
dimensional system consisting of N = 50 particles inter-
acting via the purely repulsive Weeks-Chandler-Andersen
interparticle-interaction potential [1]

φ(rij) =





4ε

[(
σ
rij

)12
−
(
σ
rij

)6]
if rij ≥ rc

0 otherwise.
(S8)
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Supplementary Figure 1. Space-dependent parts of (a) the
bulk fr,b and (b) the shear fr,s viscous forces as a function of
the x-coordinate obtained with MD simulation data. Three
different times are shown, as indicated by the color of the
lines. The arrows indicate the direction of the vector field at
the selected positions.

Here, rij = |ri−rj | is the distance between particle i and

j, and rc = 2
1
6 σ is the cutoff radius, which is located at

the minimum of the Lennard-Jones potential. We work
in units of the length scale σ, the energy scale ε, and the
mass of one particle m. Hence, the derived time scale is
τ =

√
mσ2/ε.

The equations of motion for the ith particle are

dri
dt

=
pi
m
, (S9)

dpi
dt

= −∇iu(rN ) + fext(ri, t), (S10)

where ri denotes the position of the ith particle, and
pi = mvi its momentum, with vi its velocity. The to-
tal force acting on the particle is made of an external
contribution fext(ri, t), and an internal one, −∇iu(rN ).
Here, ∇i is the partial derivative with respect to ri and
u(rN ) = 1

2

∑
i

∑
j 6=i φ(rij) is the total interparticle po-

tential energy with, rN = {r1 . . . rN} the complete set of
particle positions.

We integrate the many-body equations of motion in
MD using the standard velocity-Verlet algorithm with
time step dt = 10−4τ . The simulation box is a cuboid
with lengths Lx = 4σ, Ly = 10σ and Lz = 8σ and peri-
odic boundary conditions. To spatially resolve the one-
body fields we discretize the system in the x-coordinate
with bins of size 0.05σ.

The particle positions are initialised randomly with the
constraint that no interparticle interaction occur. The
particle velocities are initialised following a Maxwell-
Boltzmann distribution with absolute temperature T .
For the initial equilibration of the shear flow (homoge-
neous density) we let the system evolve for 1 τ without
external force. To initialize the compressible flow (inho-
mogeneous density profile), we use custom flow to grow
the density inhomogeneity and then let the system equi-
librate for 4 τ such that memory effects decay. The start-
ing temperature, calculated from the kinetic energy using
the equipartition theorem, is set to kBT/ε = 0.59 (com-
pressible flow) and kBT/ε = 0.486 (shear flow). Here, kB

is the Boltzmann constant. The temperatures of the final
equilibrium states are kBT/ε = 0.60 and kBT/ε = 0.492
for the compressible and the shear flows, respectively.
These values are slightly higher than the initial values due
to the heating induced by the external driving. Since the
temperature increase was small (below 2%) we did not
use a thermostat. Note however that custom flow can
also be implemented together with a thermostat [2].

The one-body fields of interest are resolved in space
and in time. For example, the one-body density and
current profiles are given by

ρ(r, t) =

〈
N∑

i=1

δ (r− ri)

〉
, (S11)

J(r, t) =

〈
N∑

i=1

δ(r− ri)vi

〉
, (S12)

with δ(r) being the three dimensional Dirac delta distri-
bution, and r being the position vector. The statistical
average, denoted by the brackets 〈·〉 is done at each time
t over different realizations of the initial conditions (the
positions and the velocities of the particles at the initial
time t = 0). Specifically, we average over 2 · 106 different
realizations (initial states).

D. Brownian dynamics simulations

For the overdamped Brownian dynamics simulations
we use the standard Euler algorithm to integrate the
equation of motion of the ith particle

ri(t+ dt) = ri(t) +
dt

γ
[−∇iu(rN ) + fext(ri, t)] + ηi(t),

(S13)

where ηi is a delta-correlated Gaussian random displace-

ment with standard deviation
√

2dtkBT/γ in accordance
with the fluctuation-dissipation theorem and γ is the fric-
tion coefficient against the (implicit) solvent. We hence
use in Eq. (S13) the standard assumption that the ran-
dom force does not depend on the external force [3].
The integration time step is set to dt = 10−4τb with
τb = σ2γ/ε the BD unit of time. In BD we work in units
of σ, ε, and γ. We average over 4 · 106 trajectories, i.e.
twice than in MD, due to the larger statistical noise gen-
erated by the random force. The velocity of particle i
at time t, required to e.g. sample the current following
Eq. (S12), is calculated as the central derivative of the
position vector [4]:

vi(t) =
ri(t+ dt)− ri(t− dt)

2dt
. (S14)

All further parameters of the simulation, i.e. tempera-
ture, number of particles, and target fields, are the same
as in MD.

Since the external driving is time-dependent, the over-
damped approximation that underlies Eq. (S13) might
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not be accurate. However, we use here overdamped BD
only as a reference system in which inertial effects are
eliminated by construction. This allows us to highlight
the inertial effects that occur in MD.

E. Custom flow

Custom flow is a numerical method that finds the ex-
ternal force corresponding to prescribed density, velocity,
and acceleration fields (the target fields). A complete de-
scription of the method is given in Refs. [2, 4]. Here, we
only summarize the main ideas of custom flow in molecu-
lar dynamics. The external force is found iteratively. At
each iteration, the external force is the same as in the
previous iteration plus a term that aims to correct the
differences between sampled and target fields,

f
(k+1)
ext (r, t) = f

(k)
ext(r, t) +

m

ρ(r, t)∆t

(
J(r, t)− J(k)(r, t)

)
.

(S15)

Here, k is the iteration index. Hence, f
(k)
ext(r, t) and

J(k)(r, t) denote the external force and the current sam-
pled at iteration k, whereas ρ(r, t) and J(r, t) are the tar-
get fields. The convergence of the iteration scheme (S15)
is achieved when the external forces at iterations k + 1
and k coincide within a given tolerance (in practice less
than ten iterations are usually enough to achieve conver-
gence). The whole iteration scheme needs to be repeated
at time intervals separated by ∆t which we set to be
∆t = 10dt, i.e., ten times bigger than the time step of
the simulation dt. At each time, we initialize the external
force according to

f
(0)
ext(r, t) =

mJ̇(r, t)

ρ(r, t)
, (S16)

which follows from the exact one-body force balance
equation (S30) by making the internal force fint and the
transport term ∇ · τ zero everywhere.

Using Eq. (S15), custom flow MD minimizes the dif-
ference between target and sampled one-body currents.
This results in very accurate (essentially noise free) sam-
pled currents. The noise, which in standard MD simu-
lations usually occurs in the sampled fields, appears in
custom flow in the external force which is tailored to the
initial set of microstates (we use 2 · 106 different initial
states), see Supplementary Figure 2. For a better vi-
sual representation we show in the main paper and also
in Supplementary Figure 2 smooth external force profiles
which result from removing the high Fourier modes of the
raw signal. Both, the external force that follows directly
from custom flow and its smoothed version produce very
similar dynamics [2].

Supplementary Figure 2. External force fext produced by MD
custom flow (solid thick lines) as a function of x for (a) bulk
and (b) shear flows at times 0.5τ (red) and 5.5τ (yellow).
The smoothed external forces, obtained by removing the high
frequency modes, are also shown with dashed lines. Custom
flow minimizes the statistical noise that usually occurs in the
sampled fields like the density and the velocity profiles. As a
result, the external forces obtained with custom flow appear
to be noisy. The colored arrows indicate the direction of the
force at the selected positions.

F. Viscous and structural internal forces

In non-equilibrium, the total internal force fint, which
is solely generated by the interparticle interactions, con-
tains structural and flow contributions [5]. The struc-
tural part is able to e.g. sustain gradients in the den-
sity profile, whereas the flow contribution represents
the viscous response of the system. The total internal
force is easily accessible in computer simulations since
fint(r, t) = Fint(r, t)/ρ(r, t) with Fint being the internal
force density

Fint(r, t) = −
〈

N∑

i=1

δ(r− ri)∇iu
(
rN
)
〉
. (S17)

To extract the viscous forces from the total internal force,
we use that the viscous forces are sensitive to the direc-
tion of the flow. Hence, reversing the direction of the
flow, i.e., v → −v and a → −a while keeping the den-
sity profile unchanged, flips the sign of the viscous forces
and leaves the structural forces unchanged [5]. The sign
change of fvis by reversing the direction of the flow is
apparent in Eqs. (1) and (2) of the main text.

Hence, the total viscous force of the system can be
calculated as [5]

fvis(r, t) =
fint(r, t)− f rint(r, t)

2
, (S18)

where f rint(r, t) indicates the internal force in the reverse
system, i.e. a system with flow velocity −v(r, t), accel-
eration −a(r, t), but the same density profile ρ(r, t) as
the original forward system [in which the flow is given by
+v(r, t) and +a(r, t) and the internal force is fint(r, t)].

Using Eq. (S18) to measure the viscous force is always
possible if the density profile is time-independent, such
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as e.g. steady states and the full non-equilibrium flows
designed here. If the density varies in time, then tempo-
ral changes of the density profile affect the flow (via the
continuity equation). In such cases finding the reverse
system to unambiguously measure the viscous force is in
general not possible. This again highlights the impor-
tance of custom flow that allows us to generate flows in
which the viscous response can be unambiguously mea-
sured.

To create the reverse system we follow two indepen-
dent methods which give the same results. The first
method simply uses custom flow to prescribe the re-
spective reverse flow and find the corresponding external
force. The second method makes use of symmetry argu-
ments to compute the reverse flow from the forward flow
and hence obtain f rint from fint. This second possibility,
which we describe in detail in what follows, is possible
only due to the specific characteristics of the flows. In
the general case the first method is required to find the
reverse system.

Bulk flow. Let us consider a virtual flow in which
we reverse at each time t only the x-component of every
particle in the original flow, i.e. we perform the operation
xi(t) → −xi(t) while keeping the other two components
unchanged. Hence, the x-component of the current in
this virtual system, Jvx , is

Jvx =

〈
N∑

i=1

δ(x− (−xi))
d(−xi)
dt

〉

= −
〈

N∑

i=1

δ(x+ xi)v
x
i

〉
= −Jx(−x, t). (S19)

By construction, the bulk flow has the symmetry
Jx(x, t) = Jx(−x, t). Hence, in combination with
Eq. (S19) above we conclude that Jvx (x, t) = Jrx(x, t).
Also by construction, the other components of the cur-
rent vanish and the density profile has also the same sym-
metry ρ(x, t) = ρ(−x, t). Therefore, we can construct
the reverse system of the bulk flow by simply using the
trajectories of the forward system and performing the
operation xi(t)→ −xi(t).

Hence, for the bulk flow the x-component of the inter-
nal force density in the reverse system is

F rint,x(x, t) =

〈
N∑

i=1

δ(x+ xi)
∂φ(rij)

∂(−xi)

〉
(S20)

= −
〈

N∑

i=1

δ(x+ xi)
∂φ(rij)

∂xi

〉
(S21)

= −Fint,x(−x, t), (S22)

where we have used that the interparticle distance rij is
not affected by the transformation xi → −xi. Due to the
spatial symmetry of the density profile ρ(x, t) = ρ(−x, t),
the internal force fint has the same symmetry as the in-
ternal force density Fint, i.e. frint,x(x, t) = −frint,x(−x, t)
because Fint = fint/ρ. Therefore, for the bulk flow the

viscous part of the total internal force, see Eq. (S18),
can be obtained from the forward bulk flow as a simple
arithmetic mean

fvis,x(x, t) =
fint,x(x, t) + fint,x(−x, t)

2
. (S23)

Shear flow. Here, the flow is directed along the y-
axis and the density is homogeneous ∇ρ = 0. Therefore,
by construction, the y-component of the internal force is
only of viscous nature (no structural term). We arrive
at the same conclusion by considering a virtual flow in
which we reverse at each time the y-component of all
particles, i.e. yi(t)→ −yi(t). Hence, the y-component of
the current in the virtual system Jvy is

Jvy (x, t) =

〈
N∑

i=1

δ(x− xi)
d(−yi)
dt

〉
(S24)

= −
〈

N∑

i=1

δ(x− xi)vyi

〉
= −Jy(x, t), (S25)

which is precisely the y-component of the current in the
reverse system Jry (x, t) = Jvy (x, t). Given that the other
two components of the current vanish and that the den-
sity profile is stationary, we conclude that the reverse
system can be obtained from the forward flow by simply
using the operation yi(t) → −yi(t) and performing the
desired averages.

The y-component of the internal force density in the
reverse system is therefore

F rint,y(x, t) =

〈
N∑

i=1

δ(x− xi)
∂φ(rij)

∂(−yi)

〉
(S26)

= −
〈

N∑

i=1

δ(x− xi)
∂φ(rij)

∂yi

〉
(S27)

= −Fint,y(x, t). (S28)

Hence, using Eq. (S18), the viscous part is

fvis,y(x, t) =
fint,y(x, t) + fint,y(x, t)

2
= fint,y(x, t).

(S29)

That is, as expected, the flow-direction of the internal
force in a shear flow contains only viscous terms pro-
vided that there is no density inhomogeneity in the flow
direction.

G. Power functional theory

Power functional theory (PFT) is a variational theory
that describes the dynamics of interacting many-body
overdamped [6] and inertial [7] systems at the level of
one-body fields. A variational principle produces by con-
struction the exact one-body force balance equation of
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the system. For a classical system of particles following
the equations of motion (S9) and (S10), the exact one-
body force balance equation reads [7]

mJ̇(r, t) = ρ(r, t) [fext(r, t) + fint(r, t)]+∇·τ (r, t), (S30)

where the last term involves the divergence of the second
rank kinetic stress tensor τ and it describes transport
effects that arise due to the one-body description of the
dynamics. In thermal equilibrium this term reduces to
diffusive transport ∇ · τ = −kBT∇ρ. In simulations, τ
can be sampled via

τ (r, t) = −m
〈

N∑

i=1

δ(r− ri)vivi

〉
, (S31)

where vivi indicates the dyadic product of the velocity
of particle i with itself.

Within PFT each term of the force balance equa-
tion (S30) is generated via a functional derivative of a
corresponding functional generator with respect to the
time derivative of the current or alternatively with re-
spect to the acceleration field. The density profile ρ, the
current J (or the velocity v = J/ρ), and the time deriva-

tive of the current J̇ (or the acceleration a = v̇ = J̇/ρ,
where the second equality holds only if ρ̇ = 0 like in the
present work) are the natural functional dependencies of
the generator functionals. One important task in PFT
is to find an approximated functional that generates via
functional differentiation the internal force field.

The simplest approximation based on an expansion in
terms of the acceleration gradient ∇a that is (i) com-
patible with the symmetry requirements of the viscous
force (the force must flip sign under flow reversal) and
that (ii) respects the rotational invariance of the system
under global rotations is

Gb[ρ,v,a] =

∫
dr

∫ t

0

dt′Kv
b (t− t′)ρ′(∇ · v′)(∇ · a)ρ

+

∫
dr

∫ t

0

dt′Ka
b (t− t′)ρ′(∇ · a′)(∇ · a)ρ,

(S32)

Gs[ρ,v,a] =

∫
dr

∫ t

0

dt′Kv
s (t− t′)ρ′(∇× v′) · (∇× a)ρ

+

∫
dr

∫ t

0

dt′Ka
s (t− t′)ρ′(∇× a′) · (∇× a)ρ,

(S33)

where we have omitted the dependencies of the one-body
fields, e.g. ρ = ρ(r, t), primed fields are evaluated at t′,
e.g. ρ′ = ρ(r, t′), and the spatial integral runs over the
whole system. Analogue expressions arise in overdamped
Brownian dynamics based on an expansion in terms of
the velocity gradient ∇v [8].

The shear fs and bulk fb viscous forces shown in Eqs.
(1) and (2) of the main text are then generated via the

Supplementary Figure 3. (a) Temporal dependency of the
shear viscous force Cs as a function of time t in Brownian dy-
namics simulations (thick black line) and theoretically (green)
for the shear flow described in the main text. The vertical dot-
ted lines indicate the times t↑, tc, and t↓. The time t3 = 5.5τ
is highlighted with a yellow circle. The light grey line fluc-
tuating around the horizontal line is the difference between
simulation (thick black) and theory (violet). (b) Shear vis-
cous force fvis as a function of x at time t3 = 5.5τ according
to BD (yellow) and theory (green). The force points along
the y-axis. The colored arrows indicate the direction of the
force at the selected positions.

functional derivative

fα(r, t) = − δGα

δJ̇(r, t)
= −1

ρ

δGα
δa(r, t)

, α = b, s, (S34)

where the derivative is taken at time t with respect to ei-
ther J̇ or a and considering that the fields ρ(r, t′),v(r, t′),
and a(r, t′) are kept fixed at their real physical values for
all previous times t′ < t. Hence, the functional derivative
in Eq. (S34) acts only on the unprimed terms a(r, t) of
Eqs. (S32) and (S33) but not on the primed a′ = a(r, t′)
ones.

H. Shear flow in Brownian dynamics

As in the case of the compressible flow, we have also
analysed the shear flow using Brownian dynamics sim-
ulations. Since the acceleration field does not play any
role in overdamped Brownian dynamics, the velocity field
alone reproduces the complete shear viscous force. We
show in Supplementary Fig. 3 the temporal part Cs(t)
of the viscous force vs time, and the viscous force vs
the x-coordinate for a given time obtained in Brownian
dynamics simulations along with the corresponding theo-
retical predictions [kernel parameters cvs/(εσ

3τ) = 0.081
and τvs /τ = 0.059]. The parameters of the flow are iden-
tical to those used in MD (see main text).

I. Traveling shear wave

For the traveling shear wave, the current follows up to
t = 2τ the same time evolution as in the shear case, see
Eqs. (8) and (9) of the main text. After t = 2τ , the shear
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Supplementary Figure 4. Density (a), velocity (b), and acceleration (c) profiles vs the x-coordinate for the shear flow with a
traveling wave. Three different times 0.5 τ (red), 1.5 τ (blue), and 2.3 τ (yellow) are shown. Solid lines are simulation data
sampled using custom flow and thin black-dashed lines are the corresponding target fields. The inset in (a) shows the temporal
dependency of the current with the three different regimes highlighted using different color and the selected times indicated by
colored circles. The amplitude of the current increases until t/τ = 1 (red) and then it remains constant until the simulation
ends. The shear wave is stationary at first (blue) and then it starts to travel for t/τ > 2 (yellow). Panels (d),(e), and (f) show
the shear viscous force at different times (as indicated) obtained in simulations (thick solid lines) along with the theoretical
prediction using the acceleration and the velocity contributions (violet) and also using only the velocity contribution (dashed
green). The individual contributions of the velocity (solid green) and of the acceleration (blue) to the total signal (violet)
are also shown. Once the shear wave is traveling (f) there is a clear phase shift between the simulation data (yellow) and the
prediction using only the velocity (dashed green). Using both contributions (violet) the simulation data is correctly reproduced.
The color arrows indicate the direction of the respective vector field at the selected positions.

wave starts to move with constant velocity vs = 4σ/τ and
constant amplitude, i.e.

J(r, t) = J0 sin

(
2π(x− vst)

Lx

)
êy, t > 2τ, (S35)

where, as in the non-traveling shear case, Lx/σ = 4 and
J0τσ

2 = 0.01. Representative states for each of the
regimes of the traveling shear flow are shown in Sup-
plementary Fig. 4. The density (a) remains constant in
space at every time. The amplitudes of the velocity (b)
and of the acceleration (c) increase until t = 1τ . To
relax memory effects, the velocity profile remains sta-
tionary from 1τ to 2τ . Hence, the acceleration vanishes
everywhere in that time period. Then, the traveling wave
begins to move and the velocity field changes its phase
with constant speed. Therefore, the acceleration field
has a constant instantaneous phase shift of π/2 with re-
spect to the velocity field. This is different from what we

considered in the static shear wave and allows us to test
our model for the shear viscous force. The shear viscous
forces at three different times are shown in panels (d),(e),
and (f) of Supplementary Fig. 4. We show the data sam-
pled in molecular dynamics simulations along with the
theoretical predictions which we calculate with the same
kernel parameters previously obtained for the static shear
wave flow. The agreement between simulation and the-
ory is excellent, not only before the wave starts to travel
(d,e), which was expected from the static shear case, but
also during the traveling wave (f). The phase shift be-
tween v and a has an effect on the viscous force that is
theoretically reproduced. In contrast, if we use only the
velocity dependent part of the viscous force and the same
kernel parameters as for the static case, there is a phase
shift between the theoretical predictions and the simula-
tion data. The acceleration field is therefore required to
describe the data accurately.
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Abstract
We introduce a method to sample the orientational distribution function in computer
simulations. The method is based on the exact torque balance equation for classical many-body
systems of interacting anisotropic particles in equilibrium. Instead of the traditional counting of
events, we reconstruct the orientational distribution function via an orientational integral of the
torque acting on the particles. We test the torque sampling method in two- and
three-dimensions, using both Langevin dynamics and overdamped Brownian dynamics, and
with two interparticle interaction potentials. In all cases the torque sampling method produces
profiles of the orientational distribution function with better accuracy than those obtained with
the traditional counting method. The accuracy of the torque sampling method is independent of
the bin size, and hence it is possible to resolve the orientational distribution function with
arbitrarily small angular resolutions.

Keywords: torque balance, orientational distribution function, torque sampling,
reduced variance, liquid crystals

(Some figures may appear in colour only in the online journal)

1. Introduction

The spatial and orientational order in classical equilibrium
many-body systems is the result of a delicate balance between
forces and torques of internal, entropic (diffusive), and
external origin. One-body distribution functions, obtained as
statistical averages resolved in either space, orientation or both
of these, are essential for the description and understanding
of the organization of many-body systems at the microscopic
level. For example, the density profile, which is an average
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over a statistical ensemble of the number of particles at a given
position, provides information about the spatial structure of the
many-body system. Traditionally, the density profile in com-
puter simulations has been obtained by discretizing the simula-
tion box and counting the number of particles in each element
of the grid. Since the structure of the many-body system is the
result of a force balance, an alternative to counting events in
order to obtain the density profile consists of reconstructing
it from the spatially resolved force contributions [1, 2]. The
density profiles obtained via force-sampling methods have a
reduced variance as compared to those obtained via the tradi-
tional counting method. Moreover, the density at a given posi-
tion is constructedwith information from thewhole system.As
a result the error in the density profile does not depend on the
size of the elements of the grid [1, 2]. The density profile can
therefore be resolved with arbitrarily high spatial resolution
without increasing the computational cost. This is particularly
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useful for sampling two- [2] and three-dimensional [3] density
profiles. Force-based estimators can be also used to improve
the sampling of the radial distribution function [1, 4, 5], and
that of the correlation functions required in the Green–Kubo
expressions relevant for mobility profiles [6].

It is interesting to note that force-sampling methods can
be derived from the general and versatile mapped averaging
framework [7–11], in which approximate theoretical results
are used to reformulate an ensemble average with reduced
variance. Reduced-variance estimators were first introduced in
classical and quantum Monte Carlo simulations [12, 13]. An
account of reduced-variance estimators that make use of force
sampling methods is given in a recent review [14].

Beyond constructing statistical estimators with low vari-
ance in equilibrium systems, the internal force can be used to
derive force-based density functional theories [15, 16], and it
plays a fundamental role in the construction of exact sum rules
using the symmetries of the system [17–19]. Moreover, the
use of the thermodynamic force can also improve the accur-
acy of adaptive resolution schemes [20] in which the simu-
lation box is split in regions that can be treated with differ-
ent levels of resolution [21–23]. Another potential application
of force sampling methods is to improve the convergence of
Kirkwood–Buff [24] integrals in molecular simulations [25].

Moreover, the knowledge of the internal force field is not
only beneficial in equilibrium systems. The adiabatic approx-
imation, which substitutes the non-equilibrium internal forces
by those in an equilibrium system, is at the core of popular
dynamical theories such as dynamic density functional theory
(DDFT) [26–30]. Sampling the internal forces in many-body
non-equilibrium simulations and comparing them to those in
equilibrium systems is therefore crucial to develop and test
the accuracy of dynamical theories that go beyond the adia-
batic approximation such as superadiabatic-DDFT [31] and
power functional [32–34] theories. Knowledge of the non-
equilibrium internal forces facilitates also the construction of
the external force field that generates a desired dynamical
response via custom flow methods [35, 36], and serves to gain
insight into physical processes such as the occurrence of vis-
cous forces generated by the acceleration field [37].

In systems with translational and rotational degrees of free-
dom, such as liquid crystals, it is not only the forces but also the
torques that are crucial in the determination of the equilibrium
and non-equilibrium properties of the many-body system. The
force balance equation is complemented and coupled with a
torque balance equation. Together, the force and the torque
balance equations determine in equilibrium the positional and
the orientational order of the system.

Here, we demonstrate that torque sampling, i.e. the ana-
logue to force sampling in systems with orientational degrees
of freedom, significantly improves the sampling of the orient-
ational distribution function in computer simulations as com-
pared to traditional counting methods. As a proof of concept,
we sample the torques using several differing types of dynam-
ics (overdamped Brownian and Langevin dynamics), dimen-
sionality (two- and three-dimensional systems), interparticle
interaction potential (rectangular and Gay–Berne particles),
type of orientational order (uniaxial and tetratic), and overall

density. In all cases, torque sampling outperforms the tradi-
tional counting method.

2. Theory

We consider here classical systems of N identical interact-
ing particles governed by either Langevin or overdamped
Brownian dynamics. Exact one-body force and torque balance
equations hold in equilibrium, and can be used to calculate
one-body distribution functions from the forces and torques
acting in the system. We start by revisiting the force bal-
ance equation in a many-body system with only translational
degrees of freedom.

2.1. Force balance equation for isotropic particles

In many-body systems with only translational degrees of free-
dom, such as a system of isotropic particles (e.g. a fluid of
Lennard-Jones particles), the exact one-body force density
balance equation in equilibrium reads [15, 38]

0=−kBT∇ρ(r)+F(r). (1)

The first term on the right hand side of equation (1) stems
from the (ideal gas) diffusion, with kB being the Boltzmann
constant, T is absolute temperature, ∇ is the derivative with
respect to the spatial coordinate r, and ρ(r) is the one-body
density distribution which is given by

ρ(r) =
⟨∑

i

δ(r− ri)
⟩
, (2)

where the angles denote a statistical average over an equilib-
rium ensemble, δ(·) is the Dirac distribution, ri is the posi-
tion of particle i, and the sum runs over all the particles in the
system.

The second term on the right hand side of equation (1) is
the force density profile, given by

F(r) =
⟨∑

i

δ(r− ri)fi(rN)
⟩
, (3)

where fi is the sum of the internal and the external forces act-
ing on particle i in microstate rN = r1 . . .rN with N particles.
That is

fi(rN) =−∇i u(rN)+ fext(ri), (4)

where ∇i is the derivative with respect to ri, and u(rN) is
the total interparticle interaction potential. In equilibrium,
the (imposed) external force fext(r) must be conservative and
hence

fext(r) =−∇Vext(r), (5)

with Vext(r) an imposed external potential. The force profile
follows directly from the force density profile via normaliza-
tion with the density profile, i.e. f(r) = F(r)/ρ(r).
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The sum of the ideal, internal, and external force densit-
ies vanishes everywhere in space since the system is in equi-
librium. Otherwise there would be a net flow of particles.
In equilibrium, the exact force density balance equation,
equation (1), holds in systems following either Newtonian
dynamics, Langevin dynamics, or overdamped Brownian
dynamics.

Both, the density profile ρ(r) and the force density pro-
file F(r), can be easily sampled in computer simulations
via equations (2) and (3), respectively. Sampling ρ(r) via
equation (2) is the traditional method of counting of events
of particle occurrences at space points.

The exact force density balance equation, equation (1), can
also be used to calculate the density profile ρ(r) via the forces
instead of the direct traditional counting method. Inverting
equation (1) results in

ρ(r) = ρ0 +(kBT)
−1∇−1 ·F(r), (6)

with ρ0 a constant and ∇−1 the inverse ∇ operator. In effect-
ively one-dimensional systems (e.g. planar geometry), the pro-
files depend only on one space coordinate and hence the
∇−1 operator reduces to a simple spatial integral. Differ-
ent approaches can be used to solve equation (6) in more
general geometries [2]. The unknown integration constant ρ0
in equation (6) can be determined via normalization of the
density

ˆ

drρ(r) = N, (7)

where the integral is over thewhole system volume. Results for
the density profile calculated via force sampling, equation (6),
carry a statistical uncertainty smaller than that of the standard
counting method [2] since (i) force sampling avoids the inher-
ent ideal gas fluctuations, and (ii) uses non-local information,
the forces in the whole system, to determine the density profile
at each space point.

2.2. Torque balance equation for anisotropic particles

For anisotropic particles, the one-body density distribution
depends not only on the space coordinate r but also on the
orientation, which is denoted here by the unit vector û:

ρ(r, û) =

⟨∑

i

δ(r− ri)δ(û− ûi)

⟩
. (8)

In addition to the exact equilibrium one-body force density
balance equation,

0=−kBT∇ρ(r, û)+F(r, û), (9)

there exists an exact one-body torque density balance
equation:

0=−kBTR̂ρ(r, û)+T(r, û). (10)

Here, F(r, û) and T(r, û) are the force density and the
torque density, respectively. Both, F(r, û) and T(r, û), contain

external and internal (inter-particle) contributions and they
depend in general on position and orientation. As before, ∇
is the gradient operator acting on the position, and R̂ is the
orientational counterpart acting on the orientation û, i.e.

R̂= û×∇û, (11)

with ∇û the derivative with respect to the Cartesian coordin-
ates of û.

The one-body torque density is accessible in computer sim-
ulations via

T(r, û) =

⟨∑

i

δ(r− ri)δ(û− ûi)ti(rN, ûN)

⟩
, (12)

with ûN = û1 . . . ûN and ûi = (sinθi cosφi,sinθi sinφi,cosθi)
being the orientation of particle i. Here, θi and φi are the polar
and azimuthal angles of particle i, respectively. The torque on
particle i is ti, given by

ti
(
rN, ûN

)
=−R̂i u

(
rN, ûN

)
− R̂iVext (ri, ûi) , (13)

with R̂i = ûi×∇ûi . Note that both the total interparticle
potential u(rN, ûN) and the external potential Vext(r, û) are
allowed to carry a dependence on the particle orientation. The
one-body torque density is therefore the sum of internal and
external contributions

T(r, û) = Tint(r, û)+Text(r, û), (14)

with

Tint(r, û) =−
⟨∑

i

δ(r− ri)δ(û− ûi)R̂iu
(
rN, ûN

)
⟩
,

(15)

Text(r, û) =−
⟨∑

i

δ(r− ri)δ(û− ûi)R̂iVext (ri, ûi)

⟩
. (16)

Using equation (8) the external contribution is simply

Text(r, û) =−ρ(r, û)R̂Vext(r, û). (17)

Further details regarding the derivation of the one-body
torque density balance in equilibrium are given in appendix A.

In general, the force and the torque density balance
equations are linked via the one-body density distribution.
Here, we focus only on the role of the torque balance equation.
For this we consider in what follows systems that are homo-
geneous in space and therefore cases in which the force bal-
ance equation does not play any role. In such systems ρ(r, û) =
ρbf(û), with ρb being the bulk density, and f(û) being the ori-
entational distribution function. That is, f(û)dû is the probab-
ility of finding a particle with orientation ûwithin a solid angle
dû. The orientational distribution function is therefore normal-
ized such that

ˆ

dûf(û) = 1. (18)
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Using the traditional sampling method, the orientational dis-
tribution function can be sampled in computer simulations as

f(û) =
1
N

⟨∑

i

δ (û− ûi)

⟩
(19)

=
1
N

⟨∑

i

1
sinθi

δ (θ− θi)δ (φ−φi)

⟩
. (20)

The prefactor 1/N ensures the proper normalization of the ori-
entational distribution function.

For spatially homogeneous systems, the one-body torque
density balance equation (10) simplifies to

0=−kBTρbR̂f(û)+T(û). (21)

Isolating the ideal gas term of equation (21) and integrat-
ing appropriately we obtain an expression for the orientational
distribution function

f(û) = f0 +(ρbkBT)
−1R̂

−1 ·T(û). (22)

Here, R̂
−1

is formally the inverse operator of R̂ and f0 is
an integration constant that ensures the proper normaliza-
tion of the orientational distribution function. For both, two-
dimensional systems and uniaxial three-dimensional systems,

the inverse operator R̂
−1

reduces to a simple angular integral,
see appendix B.

Obtaining the orientational distribution function via the
one-body torque density balance has the advantage of treat-
ing the ideal gas part explicitly and hence, it avoids the corres-
ponding fluctuations present in the counting method. The only
source of statistical inaccuracies is in the sampled one-body
torque density which is integrated over in order to obtain the
orientational distribution function. As it turns out, this process
reduces the statistical noise significantly.

3. Results

As a proof of concept, we test the validity of the torque
sampling method with two different systems: (i) two-
dimensional rectangular particles following Langevin dynam-
ics and (ii) three-dimensional Gay–Berne particles following
overdamped Brownian dynamics.

3.1. Two-dimensional system of rectangular particles

We consider a two-dimensional system of particles with rect-
angular shape undergoing Langevin dynamics (implemented
according to [39]). The interaction between two particles is

modeled via a purely repulsive potential ϕ(r) = ϵ
(
σ
r

)12
. Here,

r is the minimum distance between the two particles, σ is our
length scale, and ϵ is our energy scale. The potential acts only
between the two closest points (one on each particle) located
on the particles’ perimeter. The interparticle potential gener-
ates both an internal force and an internal torque. Details about

the calculation of the forces and the torques, as well as about
the integration of the equations of motion are given in the
appendix C.

We study a system of N= 64 rectangular particles with
length L/σ = 10 and width D/σ = 2 in a square box of length
100σ and periodic boundary conditions. We set the temperat-
ure to kBT/ϵ= 1 and the integration time step to∆t/τ = 10−3

with τ = σ
√
m/ϵ and m the mass of one particle. We sample

every 10∆t. Since the system is very diluted, the equilibrium
bulk state is isotropic. We induce orientational order via the
external potential Vext(φ)/ϵ=−0.5cos2φ, with the angle φ
measured anticlockwise with respect to the x−axis. A charac-
teristic snapshot of the system is shown in figure 1.

We initialize the particles randomly and equilibrate the sys-
tem with a simulation lasting 103τ . After equilibration we
sample the orientational distribution function via the count-
ing and the torque sampling methods. The results are shown in
figure 1 for three different sampling times: 10τ panel (a), 103τ
panel (b), and 105τ panel (c). Due to the head-tail symmetry of
the particles we represent the orientational distribution func-
tion in the interval φ ∈ [0,π] only. Torque sampling provides
at each time a profile which is closer to the ‘true’ equilibrium
profile than the one provided by the counting method. The
‘true’ equilibrium profile feq(φ) is defined here as the arith-
metic mean of the profiles obtained with the counting and the
torque sampling methods in a long simulation (total simula-
tion time 107τ ). For all sampling times the statistical noise in
the profiles using the counting method is significantly larger
than that using the torque sampling method.

To quantify the accuracy of each method, we define an
error parameter as the integrated square difference between
the ‘true’ equilibrium profile and the sampled profile

∆=

ˆ π

0
dφ [ fs(φ)− feq(φ)]

2
. (23)

Here, f s is the profile sampled using the counting or the torque
sampling methods. As can be seen in figure 1(e) the error of
the torque sampling method is for all sampling times below
the error of the counting method. For this particular bin size
(10−4π) one has to sample about ten times longer using the
counting method than using the torque sampling method to
reach the same accuracy.

In figure 1(f) we investigate the effect of varying the bin
size at a fixed sampling time (102τ ). By decreasing the bin
size we increase the level of detail with which we resolve the
orientational distribution function. However, decreasing the
bin size obviously increases the number of bins and, as a dir-
ect consequence, the error in the traditional counting method
also increases. Note that in the counting method the number of
events that contribute to each bin is proportional to the bin size.
On the other hand, the error in the torque sampling method
is essentially independent of the bin size. The error does not
increase by decreasing the bin size because the orientational
distribution function is not determined by the local number of
events. Instead, at each orientation the orientational distribu-
tion function is obtained via an orientational integral over the
torque density. Analogue behavior occurs also when sampling
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Figure 1. Orientational distribution function sampled with the counting method (orange) and the torque sampling method (blue) for three
different sampling times: (a) 10τ , (b) 103τ , and (c) 105τ . The black dashed line is the ‘true’ equilibrium profile obtained by sampling over
107τ and taking the arithmetic mean of the counting and the torque sampling methods. The bin size is 10−4π. The inset in (c) is a close
view of the encircled region. (d) A characteristic snapshot of the system: N= 64 particles with rectangular shape subject to a weak external
potential that orients the particles along the x−axis. A log− log plot of the error ∆ as a function of the sampling time (e) and the error ∆ as
a function of the bin size (f) using the counting (orange squares) and the torque sampling (blue circles) method. In panel (e) the bin size is
fixed to 10−4π and the dashed lines are linear fits. In panel (f) the sampling time is fixed to 102τ and the solid lines are guides for the eye.

the density profile using the force sampling method in systems
with only translational degrees of freedom [1, 2, 14].

3.2. Tetratic order

Instead of sampling the complete, angle-resolved, orienta-
tional distribution function, it is common to sample only a
reduced set of orientational order parameters (moments of the
distribution). However, having access to the complete orient-
ational distribution function can help to fully understand the
type of order in the system. To illustrate this, we investig-
ate a densely packed system of N= 290 particles with length
L/σ = 4 and width D/σ = 2 in a square box of length 75σ.
The equilibration time was 104τ . Due to their small length-
to-width aspect ratio, the particles form in bulk at moderate
densities a tetratic phase [40–42]. In the tetratic phase the
particles are equally likely oriented along two directions per-
pendicular to each other. We add an external potential of the
formVext(φ)/ϵ=−0.5sin2(φ−φ0)withφ0/π = 1/4 and set
the temperature to kBT/ϵ= 1. The external potential breaks
the symmetry of the tetratic phase by favoring the orientation
along the bottom-right to top-left diagonal of the square sim-
ulation box.

A snapshot of the system is shown in figure 2(a). The
particles are colored according to their orientation. The result-
ing orientational distribution function is shown in figure 2(b)
for a short sampling time of 1τ and in figure 2(c) for a sampling
time of 105τ . Clearly more particles are aligned along the
bottom-right to top-left diagonal (φ/π = 0.75) than along the

other diagonal (φ/π = 0.25) due to the external potential. In
this example, the uniaxial order parameter or even the com-
bination of both the uniaxial and the tetratic order paramet-
ers would not give enough information about the orientational
order in the system.

The distributions sampled with torque sampling are always
smoother than those sampled with the counting method. How-
ever, torque sampling sometimes produces artifacts for very
short sampling times (of the order of 1τ ), like the negat-
ive values around φ/π = 0 shown in figure 2(b). It might be
possible to eliminate these artifacts by either using a com-
bination of linear estimators [43] or the mapped averaging
framework [10]. The artifacts are at least partially due to local
angular currents originated by fluctuations that do not vanish
(on average) due to the short sampling times. The occurrence
of these angular currents is apparent when comparing the ori-
entational distribution functions sampled at short, figure 2(b),
and long, figure 2(c), sampling times (cf the evolution of the
value of the orientational distribution functions at the peaks).
For longer sampling times, figure 2(c), the angular current
averages to zero for all orientations, and the distribution func-
tion calculated with torque sampling is free of artifacts. The
profile obtained with torque sampling is more precise than that
obtained via counting. Even at very long sampling times, e.g.
105τ in 2(c), torque sampling outperforms counting. This is
particularly clear when looking at the numerical angular deriv-
ative of the distribution function, see inset of figure 2(c).

Sampling the torques is not only useful to improve the
sampling of the orientational distribution function but it also

5
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Figure 2. (a) Characteristic snapshot of a Langevin dynamics simulation of N= 290 rectangular particles in a square box of side length
Lbox/σ = 75 subject to an external potential that favors particle orientations along the bottom-right to top-left diagonal of the box. The
particles are colored according to their orientation φ, measured with respect to the x-direction, see colorbar. Orientational distribution f(φ)
obtained via counting (orange lines) and torque sampling (blue lines) using a bin size of 10−3π and for two sampling times: 1τ (b) and 105τ
(c). The inset in (c) shows the numerical angular derivative of the orientational distribution function f ′(φ) = df/dφ using the central
difference.

Figure 3. Components of the torque balance equation (normalized
with the bulk density ρb) as a function of the angle in the tetratic
configuration with an external field shown in figure 2. The torques
point in the z-direction. Positive (negative) torques try to rotate the
particles anticlockwise (clockwise), as indicated at selected angles
by the color arrows. The external potential favors particle
alignments along the bottom right to top left diagonal (φ/π = 0.75)
of the simulation box. The bottom left to top right diagonal is
located at φ/π = 0.25. Shown are the internal torque density (red),
the diffusive torque density (blue), the external torque density
(yellow), and the total torque density (black).

helps to understand the underlying physics. As an illustra-
tion, we show in figure 3 the components of the torque bal-
ance equation in the system with tetratic ordering and an
external potential. The torques point along the z-direction.
That is, positive (negative) torques tend to rotate the particles
anticlockwise (clockwise), increasing (decreasing) therefore
the value of φ. The diffusive torque (blue) always favors
an isotropic state by trying to remove the inhomogeneities
in the orientational distribution function. In the current con-
figuration, the diffusive torque tries to orient the particles
away from the diagonals. The behavior of the internal torque
depends on several factors such as the interparticle poten-
tial, the temperature, and the density. In the current example,

the internal torque (red) favors tetratic ordering by trying to
align the particles along the diagonals. The imposed external
torque (yellow) tries to orient the particles along the bottom-
right to top-left diagonal (φ/π = 0.75) and it also tries to
orient the particles away from the other diagonal at φ/π =
0.25. As dictated by the torque balance equation, the sum
of all three components (diffusive, internal, and external)
vanishes since the system is in equilibrium, see figure 3
(black line).

3.3. Three-dimensional Gay–Berne fluid

We further test the method in a three-dimensional system of
N= 500 Gay–Berne particles [44] confined in a box of size
lengths Lx/σ0 = 10, Ly/σ0 = 10, and Lz/σ0 = 25 with peri-
odic boundary conditions. We use the parameters σ0 and ϵ0
of the Gay–Berne potential as our length and energy scales,
respectively. All details about the interparticle potential are
presented in appendix D. We set the length-to-width ratio
of the particles to three. The particles follow overdamped
Brownian dynamics. Time is measured in units of τ0 =
γσ2

0/ϵ0, with γ the translational friction coefficient against
the implicit solvent. The particles are subject to an external
potential Vext(θ)/ϵ0 =−0.5cos2(θ), with θ the polar angle.
Hence, the external potential favors uniaxial alignment of the
particles along the z-axis. The temperature is set to kBT/ϵ0 =
0.5. For details regarding the implementation of the over-
damped Brownian dynamics see appendix E.

The orientational distribution functions obtained via torque
sampling and counting are shown for different sampling times
in figure 4. Again, torque sampling provides profiles with
better accuracy than counting. The differences between both
methods aremore acute for small values of the polar angle. The
area of the bins on the unit sphere decreases close to the poles.
Therefore, less events contribute to each bin, which produces
large fluctuations of the profile obtained with the counting
method. However, the profile obtained with torque sampling
is unaffected by this problem since the error is independent of
the bin size.

6
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Figure 4. Overdamped Brownian dynamics simulation of N= 500 Gay–Berne particles in a three-dimensional box with periodic boundary
conditions. Orientational distribution function f as a function of the polar angle θ obtained via counting (orange line) and torque sampling
(blue line) using a bin size of ∆θ = 10−3π/2 for different sampling times: 103τ0 (a), 104τ0 (b), and 105τ0 (c). The inset in panel (c) is a
close view of the region of small polar angles as indicated.

4. Conclusion

Reduced-variance estimators can be constructed using force
sampling methods [14] to measure e.g. the density profile and
the radial distribution function in computer simulations with
better accuracy than the traditional counting method. We have
shown here that in equilibrium systems of interacting aniso-
tropic particles, reduced-variance estimators can be also con-
structed via torque sampling. By sampling the torques and
using the exact torque balance equation of equilibrium many-
body systems, we have developed a method to accurately
reconstruct the orientational distribution function. Although
the cases that we have studied here are arguably toy models,
they do cover a wide range of situations, including two- vs
three-dimensional systems, dilute vs dense systems, uniaxial
vs tetratic orientational order, and Langevin vs overdamped
Brownian dynamics. In all cases, torque sampling has outper-
formed counting.

Force sampling works equally well in Brownian dynamics,
molecular dynamics, andMonte Carlo simulations [2]. Hence,
although we have used here Brownian and Langevin dynam-
ics, the torque sampling method is expected to also outperform
the counting method in molecular dynamics and Monte Carlo
simulations.

For small bin sizes, the statistical error for the count-
ing method diverges, while the error for the torque sampling
method is independent of the size of the bin. Hence, torque
sampling can be particularly useful in cases where a large
number of bins might be required such as for example
when investigating biaxial nematics in three-dimensional sys-
tems [45–47].

We have restricted our study to cases without positional
order such that force and torque balance equations are
decoupled. There exist several fully inhomogeneous stand-
ard situations accessible in computer simulations [48–51] in
which both the density profile and the orientational distribu-
tion profile depend on the position coordinate, i.e. ρ(r, û) =
ρ(r)f(r, û). These include, among others, the formation of
stable bulk phases with both positional and orientational
order [52–54], confinement [55–57], sedimentation [58–60],

formation of topological defects [61–64], and nucleation [65]
in liquid crystals. The force balance equation and the torque
balance equation are then coupled and jointly determine the
spatial and the orientational order of the system. The combin-
ation of force and torque sampling should be in such cases
substantially better than counting which requires filling a mul-
tidimensional histogram in both positions and orientations.

The formulation of the torque sampling method presented
here cannot be directly applied to hard particle models [66],
in which forces arise only due to particle collisions. How-
ever, the mapped averaging framework is applicable in hard
particle models [67]. Using the torque balance equation as
input for the mapped averaging framework might result in
reduced-variance estimators for the orientational distribution
function. Exact sum rules involving the torques follow from
the symmetries of the system [17] and might be also useful
in the derivation of reduced-variance estimators in computer
simulations of anisotropic particles.

The forces between individual colloidal particles are also
accessible experimentally [68]. It might therefore be possible
to use force and torque sampling methods for the determina-
tion of distribution functions in experimental systems.
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Appendix A. Force density and torque density
balance equations

The force balance and torque balance equations in the con-
text of density functional theory are shown e.g. in [69]. We
sketch here the derivation of the force density and torque
density balance equations for many-body systems of particles
following overdamped Brownian dynamics. Let Ψ(rN, ûN, t)
be the many-body probability distribution function of an
overdamped system. Then, statistical averages ⟨·⟩ within the
Fokker–Planck formalism can be computed as

⟨·⟩=
ˆ

drN
ˆ

dûN ·Ψ(rN, ûN, t), (A1)

where the integrals cover the complete space of configurations.
The velocity vi and the angular velocity ωi of particle i are
given by

γvi =−kBT∇i lnΨ−∇iu(rN, ûN)+ fext(ri, ûi, t), (A2)

γrωi =−kBTR̂i lnΨ− R̂iu(rN, ûN)+ τ ext(ri, ûi, t). (A3)

Here, γ and γr are the translational and rotational friction con-
stants against the implicit solvent, respectively, and τ ext is an
external torque field. The current J and the angular current Jω
are

J(r, û, t) =

⟨∑

i

viδ(r− ri)δ(û− ûi)

⟩
, (A4)

Jω(r, û, t) =

⟨∑

i

ωiδ(r− ri)δ(û− ûi)

⟩
. (A5)

Multiplying equations (A2) and (A3) by δ(r− ri)δ(û− ûi),
summing over all particles i, and applying the average in
equation (A1) yields directly

γJ(r, û, t) =−kBT∇ρ(r, û, t)+F(r, û, t), (A6)

γrJω(r, û, t) =−kBTR̂ρ(r, û, t)+T(r, û, t). (A7)

The above force (A6) and torque (A7) density balance
equations hold in full non-equilibrium situations. In equilib-
rium, the equations simplify further since: (i) the time depend-
ence drops from the density profile, the force density F, and
the torque density T, (ii) the external force and the external
torque are conservative, and (iii) both J and Jω vanish. Hence,
in equilibrium equations (A6) and (A7) reduce to equations (9)
and (10), respectively.

The equilibrium force and torque balance equations do not
change if the particles obey Langevin or molecular dynamics
instead of overdamped Brownian dynamics but the derivation
is slightly different. To derive the force and the torque balance

equations in Langevin dynamics or molecular dynamics, one
needs to time differentiate the current and the angular current,
both of which also vanish in equilibrium:

J̇(r, û) =
d
dt

⟨∑

i

viδ(r− ri)δ(û− ûi)

⟩
= 0, (A8)

J̇ω(r, û) =
d
dt

⟨∑

i

ωiδ(r− ri)δ(û− ûi)

⟩
= 0. (A9)

Here, the average ⟨·⟩ is again performed over the complete
configuration space which in molecular dynamics includes
integrals over the linear and angular momenta in addi-
tion to those over the positions and the orientations of the
particles. Incorporating the time derivative inside the averages
in equations (A8) and (A9) results in the force and torque bal-
ance equations. In equilibrium, the integrals over the linear and
the angular momenta can be carried out explicitly.

Appendix B. Torque sampling for single angular
dependencies

We derive here the expressions for the orientational distribu-
tion function as an angular integral over the torques in the sys-
tem. The rotational operator can be written as

R̂= û×∇û = eφ
∂

∂θ
− eθ

1
sinθ

∂

∂φ
, (B1)

with eφ and eθ being the unit vectors on the unit sphere in the
azimuthal and in the polar directions, respectively.

B.1. Two-dimensional system

In the two-dimensional system of rectangular particles, the ori-
entational distribution function depends only on the azimuthal
angle f = f(φ). Hence, using θ = π/2, the rotational operator,
equation (B1), simplifies to R̂= ez∂/∂φ, and the torque dens-
ity balance equation (21) is then

0=−kBTρbez
∂f(φ)
∂φ

+T(φ), (B2)

with T also directed along the ez direction. The orienta-
tional distribution function can be then reconstructed with the
sampled torques via

f(φ) = f0 +
1

kBTρb

ˆ

dφT(φ) · ez, (B3)

with f 0 a normalization constant such that
´

dφ f(φ) = 1.
Using equation (17) it follows that

Text(φ) =−ρbf(φ)
∂Vext(φ)

∂φ
ez, (B4)

which inserted in equation (B2) can be used to first solve
the homogeneous equation analytically and then treat the
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internal torque density as an inhomogeneity. We find that both
approaches give similar results.

B.2. Three-dimensional uniaxial system

We consider now the three dimensional system of Gay–Berne
particles with a uniaxial distribution function, i.e. f = f(θ)
and an external potential Vext(θ) that depends also only on
the polar angle. Hence the rotational operator, equation (B1),
is R̂= eφ∂/∂θ, which inserted in the torque density balance
equation yields

0=−kBTρb
∂f(θ)
∂θ

eφ +T, (B5)

where T= (Tint(θ)+ Text(θ))eφ, from which we obtain

f(θ) = f0 +
1

kBTρb

ˆ

dθT(θ). (B6)

The normalization constant f 0 is here such that
´

dûf(θ) = 1.
Again, it is possible to first analytically solve the homogeneous
differential equation of (B5) by writing the external torques
explicitly

Text(θ) =−ρb f(θ)
∂Vext(θ)

∂θ
eφ, (B7)

and treat the internal part as the inhomogeneous part.

Appendix C. Interparticle interaction between two
rectangles and Langevin dynamics

Two rectangles interact via a purely repulsive pair-potential of
the form

ϕ(r) = ϵ
(σ
r

)12
, (C1)

with r being the minimum distance between the two rect-
angles. Depending on the positions and the orientations of the
particles, there are two possible scenarios, see figure 5: (i) the
minimum distance is between a corner of one particle and a
point located on an edge of the other particle, or (ii) the min-
imum distance is between two corners. We introduce a cut-off
distance of rc = 2L+ 3σ between the centers of mass of the
particles. The potential generates a contact force between the
two particles. The effect of the contact force between the two
closest points is equivalent to apply both a force and a torque
on the center of masses of the particles.

The force acting on the center of mass of particle i due to
particle j is given by

fij =−∂ϕ

∂r
r
r
=−fji, (C2)

and the torque acting on particle i due to particle j is given by

tij =−ûi×
∂ϕ

∂ûi
= rci × fij. (C3)

Figure 5. The minimum distance between two rectangles r is either
between a corner and an edge (a) or between two corners (b). The
effect of the contact force acting on the points of minimum distance
(top panels) is equivalent to the effect of the same force and a torque
acting on the center of mass (bottom panels).

Here, r is the vector joining the closest points between
particles i and j and ûi denotes the orientation of particle i.
The vector rci joins the center of mass of particle i with the
point of application of the force.

To calculate the minimum distance between two particles
we calculate all possible corner-corner and corner-edge dis-
tances and select the minimum of all of them.

Verlet-type integration algorithm for Langevin
dynamics.

We calculate the trajectories following the integration
scheme for Langevin dynamics presented in [39] for isotropic
particles. The translational equations of motion for particle i
are given by

ṙi =vi, (C4)

mv̇i =fi− γvi+ frandi . (C5)

Here ri, vi, and fi are the position, the velocity, and the total
force (internal plus external) of particle i (the overdot indic-
ates the time derivative), m is the mass of one particle, γ is the
translational friction coefficient, and f randi is a delta-correlated
Gaussian random force (described in detail in appendix E).
These equations are integrated with the following Verlet-type
scheme [39]
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ri(t+∆t) = ri(t)+ b∆tvi(t)

+
b∆t2

2m

[
fi(t)+ f randi (t+∆t)

]
, (C6)

vi(t+∆t) = avi(t)+
∆t
2m

[afi(t)+ fi(t+∆t)]

+
b∆t
m

f randi (t+∆t), (C7)

with the parameters a= (1−α)/(1+α), b= 1/(1+α) and
α= γ∆t/(2m).

The equations of motion for the angular degrees of freedom
in our two-dimensional system of rectangular particles follow-
ing Langevin dynamics are given by

φ̇i = ωi, (C8)

Iω̇i = ti− γrωi+ t randi . (C9)

Here φi, ωi, and ti are the azimuthal angle, the angular velo-
city, and the torque (internal and external) of particle i, γr is
the rotational friction coefficient, trandi is a random torque (see
details in appendix E), and I= m(L2 +D2)/12 is the moment
of inertia around the axis normal to the particle that passes
through the center of mass (the particles are assumed to have a
homogeneous mass distribution). The torques and the angular
velocity point along the z-direction (normal to the particles).
Equations (C8) and (C9) have the same mathematical struc-
ture as equations (C4) and (C5). We therefore apply the same
integration scheme as for the positional degrees of freedom,
replacing the mass m by the moment of inertia I and the trans-
lational friction γ by the rotational friction γr. For simplicity
we set γr = γσ2. The value of the friction constants does not
affect the equilibrium properties.

Appendix D. Gay–Berne potential

We use the same implementation of the Gay–Berne potential
as that in [44]. The interaction potential between two particles
is

ϕ(r, û1, û2) = 4ϵ(r, û1, û2)

[(
σ0

r−σ(r, û1, û2)+σ0

)12

−
(

σ0

r−σ(r, û1, û2)+σ0

)6
]
.

(D1)

with r the vector joining the centers of mass of the particles,
û1 and û2 unit vectors along the long axes of the particles, and
the functions ϵ(r, û1, û2) and σ(r, û1, û2) are given by

ϵ(r, û1, û2) = ϵ0 (ξ+ξ−)
−1/2

(σ∗(χ ′))
2
, (D2)

σ(r, û1, û2) = σ0 (σ
∗(χ))−1/2

, (D3)

with

χ=
l2 − 1
l2 + 1

, (D4)

χ ′ =

√
d− 1√
d+ 1

, (D5)

σ∗(ξ) = 1− ξ

2

[
(r+u )

2

ξ+
+

(r−u )
2

ξ−

]
, (D6)

ξ± = 1± ξû1 · û2, (D7)

r±u = r · û1 ± r · û2. (D8)

Here, ξ takes the values χ or χ ′ and the parameters ϵ0 and
σ0 set the energy and the length scales. We select a length-to-
width ratio l= 3, and set the energy ratio between the side-by-
side and the tip-to-tip configurations to d= 5.

Appendix E. Overdamped Brownian dynamics with
orientational degrees of freedom

The equations of motion of particle i are

γvi = f randi (t)−∇iu(rN, ûN)−∇iVext (ri, ûi) , (E1)

γrωi = t randi (t)− R̂i u
(
rN, ûN

)
− R̂iVext (ri, ûi) , (E2)

Here, f randi and t randi are delta-correlated Gaussian random
forces and torques, respectively, with zero means and vari-
ances

⟨
f randi (t)f randk (t ′)

⟩
= 2kBTγ1lδikδ(t− t ′), (E3)

⟨
t randi (t)t randk (t ′)

⟩
= 2kBTγr(1l− ûû)δikδ(t− t ′). (E4)

Here, the angles denote an average of the noise, 1l is the iden-
tity matrix, ûû indicates the dyadic product, and δik is the Kro-
necker delta. The angular velocity is

ωi = ûi×
.

ûi . (E5)

Using the vector triple product and the fact that ûi·
.

ûi= 0 due
to ûi · ûi = 1, it follows directly that

.

ûi= ωi× ûi. (E6)

Hence, the equations of motion can be integrated in time using
the standard Euler algorithm via
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ri(t+∆t) = ri(t)+
∆t
γ

[
−∇iu(rN, ûN)−∇iVext (ri, ûi)

]

+ηi(t) (E7)

ûi(t+∆t) = ûi(t)+
∆t
γr

[
−R̂i u

(
rN, ûN

)
− R̂iVext (ri, ûi)

]

× ûi(t)+Γi(t). (E8)

Here, ηi is a Gaussian random displacement with zero mean
and standard deviation

√
2kBT∆t/γ, and

Γi =

√
2kBT∆t

γr
(U1

i ŵ
1
i +U2

i ŵ
2
i ) (E9)

is a random rotation. Here, U1
i and U2

i are Gaussian ran-
dom numbers with zero mean and unit width, and ŵ1

i = ex×
ûi/|ex× ûi|, ŵ2

i = ŵ1
i × ûi, and ûi are orthonormal to each

other. We renormalize ûi after each time step such that it
remains a unit vector.

We arbitrarily relate the rotational friction coefficient to the
translational friction coefficient via γr = γσ2. Also, we use
a single translational friction coefficient γ for displacements
parallel and perpendicular to the main axis of the particle. The
values of the friction coefficients do not play any role in the
equilibrium distribution functions. The Euler integration time
step is ∆t= 10−4τ and we sample every 10−2τ . Although
we have used here a simple Euler scheme to integrate the
equations of motion, it would be useful to extend the recently
developed adaptive Brownian dynamics [70] algorithm to sys-
tems with orientational degrees of freedom to speed up the
simulations.
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[29] Español P and Löwen H 2009 Derivation of dynamical density
functional theory using the projection operator technique
J. Chem. Phys. 131 244101

11



J. Phys.: Condens. Matter 35 (2023) 235901 J Renner et al

[30] te Vrugt M, Löwen H and Wittkowski R 2020 Classical
dynamical density functional theory: from fundamentals to
applications Adv. Phys. 69 121

[31] Tschopp S M and Brader J M 2022 First-principles
superadiabatic theory for the dynamics of inhomogeneous
fluids J. Chem. Phys. 157 234108

[32] Schmidt M and Brader J M 2013 Power functional theory for
Brownian dynamics J. Chem. Phys. 138 214101

[33] de las Heras D and Schmidt M 2020 Flow and structure in
nonequilibrium Brownian many-body systems Phys. Rev.
Lett. 125 018001

[34] Schmidt M 2022 Power functional theory for many-body
dynamics Rev. Mod. Phys. 94 015007

[35] de las Heras D, Renner J and Schmidt M 2019 Custom flow
in overdamped Brownian dynamics Phys. Rev. E
99 023306

[36] Renner J, Schmidt M and de las Heras D 2021 Custom flow in
molecular dynamics Phys. Rev. Res. 3 013281

[37] Renner J, Schmidt M and de las Heras D 2022 Shear and bulk
acceleration viscosities in simple fluids Phys. Rev. Lett.
128 094502

[38] Hansen J-P and McDonald I R 2013 Theory of Simple Liquids
With Applications to Soft Matter (London: Elsevier Science
& Technology Books)

[39] Grønbech-Jensen N and Farago O 2013 A simple and effective
Verlet-type algorithm for simulating Langevin dynamics
Mol. Phys. 111 983

[40] Martínez-Ratón Y, Velasco E and Mederos L 2005 Effect of
particle geometry on phase transitions in two-dimensional
liquid crystals J. Chem. Phys. 122 064903

[41] Martínez-Ratón Y and Velasco E 2009 Enhanced stability
of the tetratic phase due to clustering Phys. Rev. E
79 011711

[42] González-Pinto M, Renner J, de las Heras D,
Martínez-Ratón Y and Velasco E 2019 Defects in vertically
vibrated monolayers of cylinders New J. Phys. 21 033002

[43] Coles S W, Mangaud E, Frenkel D and Rotenberg B 2021
Reduced variance analysis of molecular dynamics
simulations by linear combination of estimators J. Chem.
Phys. 154 191101

[44] Gay J G and Berne B J 1981 Modification of the overlap
potential to mimic a linear site–site potential J. Chem. Phys.
74 3316

[45] Allen M P 1990 Computer simulation of a biaxial liquid
crystal Liq. Cryst. 8 499

[46] Berardi R, Muccioli L, Orlandi S, Ricci M and Zannoni C
2008 Computer simulations of biaxial nematics J. Phys.:
Condens. Matter 20 463101

[47] Berardi R, Lintuvuori J S, Wilson M R and Zannoni C 2011
Phase diagram of the uniaxial and biaxial soft–core
Gay–Berne model J. Chem. Phys. 135 134119

[48] Wilson M R 2005 Progress in computer simulations of liquid
crystals Int. Rev. Phys. Chem. 24 421

[49] Care C M and Cleaver D J 2005 Computer simulation of liquid
crystals Rep. Prog. Phys. 68 2665

[50] Allen M P 2019 Molecular simulation of liquid crystals Mol.
Phys. 117 2391

[51] Zannoni C 2022 Liquid Crystals and Their Computer
Simulations (Cambridge: Cambridge University Press)

[52] Veerman J A C and Frenkel D 1990 Phase diagram of a system
of hard spherocylinders by computer simulation Phys. Rev.
A 41 3237

[53] McGrother S C, Williamson D C and Jackson G 1996 A
re-examination of the phase diagram of hard
spherocylinders J. Chem. Phys. 104 6755

[54] Chiappini M, Drwenski T, van Roij R and Dijkstra M 2019
Biaxial, twist-bend and splay-bend nematic phases of
banana-shaped particles revealed by lifting the “smectic
blanket” Phys. Rev. Lett. 123 068001

[55] Wall G D and Cleaver D J 1997 Computer simulation studies
of confined liquid-crystal films Phys. Rev. E 56 4306

[56] Trukhina Y and Schilling T 2008 Computer simulation study
of a liquid crystal confined to a spherical cavity Phys. Rev.
E 77 011701

[57] Geigenfeind T, Rosenzweig S, Schmidt M and de las Heras D
2015 Confinement of two-dimensional rods in slit pores and
square cavities J. Chem. Phys. 142 174701

[58] Savenko S V and Dijkstra M 2004 Sedimentation and
multiphase equilibria in suspensions of colloidal hard rods
Phys. Rev. E 70 051401

[59] van der Beek D, Schilling T and Lekkerkerker H N W 2004
Gravity-induced liquid crystal phase transitions of colloidal
platelets J. Chem. Phys. 121 5423

[60] Viveros-Méndez P X, Gil-Villegas A and Aranda-Espinoza S
2014 Monte Carlo computer simulation of sedimentation of
charged hard spherocylinders J. Chem. Phys. 141 044905

[61] Dzubiella J, Schmidt M and Löwen H 2000 Topological
defects in nematic droplets of hard spherocylinders Phys.
Rev. E 62 5081

[62] Andrienko D, Germano G and Allen M P 2001 Computer
simulation of topological defects around a colloidal particle
or droplet dispersed in a nematic host Phys. Rev. E
63 041701
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Appendices

A Derivation of the one-body force balance equation

We derive here in detail the one-body force density balance equation for a many-
body system of uniaxial interacting particles following Newtonian dynamics. We
start by time deriving the current J

J̇(r,u, t) =

〈∑

i

δ(r− ri)δ(u− ui)v̇i

〉
+

〈∑

i

δ(u− ui)
∂δ(r− ri)

∂(r− ri)
· d(r− ri)

dt
vi

〉

+

〈∑

i

δ(r− ri)
∂δ(u− ui)

∂(u− ui)
· d(u− ui)

dt
vi

〉
. (A.1)

Multiplying by m, inserting Eqs. (7) and (8), and performing similar steps for the
partial derivatives and u̇i as those used in the derivation of the continuity equation
(26) we find

mJ̇ =

〈∑

i

δ(r− ri)δ(u− ui)fi

〉
−
〈∑

i

m∇ · viviδ(r− ri)δ(u− ui)

〉

−
〈∑

i

m(ui ×∇u) · ωiviδ(r− ri)δ(u− ui)

〉
. (A.2)

Splitting the force acting on particle i

fi = fext(ri,ui, t)−∇iU(rN ,uN ), (A.3)

into an external contribution fext(ri,ui, t) and an internal contribution−∇iU(rN ,uN ),
with U(rN ,uN ) the total potential energy, and pulling the differential operators of
the last two terms on the right hand side of Eq. (A.2) outside of the average yields

mJ̇ =

〈∑

i

δ(r− ri)δ(u− ui)fext(ri)

〉
−
〈∑

i

δ(r− ri)δ(u− ui)∇iu(r
N )

〉

−∇ ·
〈∑

i

mδ(r− ri)δ(u− ui)vivi

〉
− R̂ ·

〈∑

i

mωiviδ(r− ri)δ(u− ui)

〉
.

(A.4)

Defining the averages on the right hand side of Eq. (A.4) as the external force density
Fext(r,u, t), the internal force density Fint(r,u, t), the kinetic stress tensor τ (r,u, t),
and the coupling tensor C(r,u, t), see Table 1, we obtain the non-equilibrium one-
body force density balance equation

mJ̇ = Fext + Fint +∇ · τ −mR̂ ·C. (A.5)
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B Derivation of the one-body torque balance equation

We derive here the torque density balance equation by time deriving the angular
current Jω

J̇ω(r,u, t) =

〈∑

i

ω̇iδ(u− ui)δ(r− ri)

〉
+

〈∑

i

ωiδ(u− ui)
∂δ(r− ri)

∂(r− ri)
· (−vi)

〉

+

〈∑

i

ωiδ(r− ri)
∂δ(u− ui)

∂(u− ui)
· (−u̇i)

〉
. (B.1)

By inserting Eqs. (12) and (11) and rewriting the derivative acting on the Dirac dis-
tribution, similar to what we have done in the derivation of the continuity equation
(26), we obtain

J̇ω =

〈∑

i

ti · I−1δ(u− ui)δ(r− ri)

〉
−
〈∑

i

ωiδ(u− ui) [∇δ(r− ri)] · vi

〉

−
〈∑

i

ωiδ(r− ri) [∇uδ(u− ui)] · u̇i

〉
. (B.2)

The first term on the right hand side of Eq. (B.2) is proportional to the one-body
torque T(r,u, t) containing internal and external contributions. The gradient in the
second term can be pulled out of the average. For the third term we insert Eq. (4)
and change the order of the triple scalar product. The result is

J̇ω =T · I−1 −∇r ·Ct −
〈∑

i

(ui ×∇u) · ωiωiδ(u− ui)δ(r− ri)

〉
, (B.3)

with the superscript t in Ct denoting the transposed coupling tensor, see Table 1.

Since there is only a contribution to the average if u = ui, we can move the
rotation operator R̂ = u × ∇u outside of the average. We multiply then by the
inertia tensor I on both sides of the equation to obtain

J̇ω · I =T−∇r ·Ct · I− R̂ ·
〈∑

i

ωiωiδ(u− ui)δ(r− ri)

〉
· I. (B.4)

Inserting the definition of the angular kinetic stress tensor and splitting the torque
density into external and internal contributions, we finally arrive at the non-equilibrium
one-body torque density balance equation

J̇ω · I =Text +Tint −∇r ·Ct · I− R̂ · τω · I. (B.5)

C Inertia tensor of anisotropic particles

Here, we derive the Hamiltonian for uniaxial particles symmetric around a symmetry
axis u. In the following we omit the particle index for convenience since we focus
only on one particle. In order to describe the inertia tensor in a convenient way,
we construct a local orthonormal basis with the unit vectors u, êu̇ = u̇/|u̇|, and
êu×u̇ = u × êu̇. Note that the last two basis vectors can be chosen from the plane
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normal to u and do not necessarily have to point along u̇. Since the basis unit
vectors point along the main axes of the particle, we can write the inertia tensor as

I = I1uu+ I2êu̇êu̇ + I3êu×u̇êu×u̇, (C.1)

with Ii the moment of inertia corresponding to the respective main axis. Rotations
around the symmetry axis u do not contribute to the equations of motion. Due to
the rotational symmetry around u and the orthonormality of the local basis vectors,
it follows that I2 = I3 = I. Hence, we obtain

I = I1uu+ I(êu̇êu̇ + êu×u̇êu×u̇), (C.2)

and the inverse inertia tensor is then

I−1 =
1

I1
uu+

1

I
(êu̇êu̇ + êu×u̇êu×u̇). (C.3)

We can also rewrite the angular velocity with the local basis vectors, Eq. (3), as

ω = u× u̇ = u̇êu×u̇. (C.4)

Hence, the rotational part of the kinetic energy using Eqs. (C.4) and (C.2) is

ω · I · ω = u̇êu×u̇ · I · êu×u̇u̇ = u̇Iu̇ = u̇ · I · u̇. (C.5)

In the following, we consider a many-body system of N uniaxial particles and derive
the Hamiltonian. We start with the Lagrangian using Eq. (C.4) to obtain

L(rN , ṙN ,uN , u̇N ) =
∑

i

(
1

2
mṙ2i +

1

2
u̇i · I · u̇i − Vext(ri,ui)

)
− U(rN ,uN ). (C.6)

The canonical momenta of particle i are given by

∂L
∂ṙi

= mṙ = pi, (C.7)

∂L
∂u̇i

= u̇i · I = pu
i , (C.8)

exploiting that I is symmetric by construction. We finally perform a Legendre
transform of the Lagrangian, Eq. (C.6) using the canonical momenta, Eqs. (C.7)
and (C.8), to obtain the Hamiltonian

H(rN ,pN ,uN ,pu,N ) =
∑

i

[
1

2m
p2
i +

1

2
pu
i · I−1 · pu

i + Vext(ri,ui)

]
+ U(rN ,uN ).

(C.9)
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Zusätzlich erkläre ich hiermit, dass ich keinerlei frühere Promo-
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