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Abstract

Scientific progress relies on the reproducible preparation and accurate characterization
of novel materials. In today’s laboratories, research would not be possible without
harnessing the power of modern computers. Still, chemists spend a lot of time manually
carrying out repetitious tasks and analyzing data. As a Ph.D. candidate, I utilized
modern frameworks to automate experimental setups and streamline the subsequent
data analysis. By doing so, I made previously impossible projects viable and expanded
the methods present in our group.

All of the projects I worked on revolved around heat transport and its resulting effects.
I established two new characterization methods investigating thermal diffusivity and
passive cooling behavior. The thorough investigation of thermal properties enables the
design of materials for thermal management. In addition, I refined a time-temperature
integrator, allowing its evaluation based on single photographs taken with a smartphone
camera. Thus, monitoring temperature events is possible either to control the thermal
management systems or to detect events when management strategies are infeasible. In
the following paragraphs, I will shortly present the results of each project.

Passive daytime cooling is a promising candidate to reduce global CO2 emissions. It
is based on devices with tailored optical properties to direct heat flow. A method is
required to compare the characterization results of passive cooling materials measured
at different times and locations. My colleagues and I developed an indoor measurement
instrument able to characterize the cooling performance of investigated samples with
outstanding reproducibility. It is a cornerstone for future research because it enables
the characterization of new materials independent of weather and climate. We used
our instrument to demonstrate the potential application of post-consumer waste as a
passive cooling material. Polymer-coated aluminum laminate spontaneously cools below
ambient temperatures. Our simulations estimate that large-scale employment can reduce
the energy consumption of a four-story building by tens of GJ per year.

Besides tailoring the radiative properties, another possibility to manipulate heat transport
is to control the thermal conduction of materials. Lock-in thermography is an established
method to characterize the thermal diffusivity of 2D and 3D samples. However, little
work has been done on the characterization of 1D samples. We created a measurement
setup for fibers with diameters of a few micrometers and exhaustively investigated
the impact of different measurement parameters. We proved that the investigation of
samples smaller than the pixel resolution of the deployed camera system is possible, even
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if the investigated fiber is not aligned with the detector orientation. Furthermore, we
investigated the effect of different heating powers and how they introduce measurement
errors. Our results facilitate the robust measurement of micrometer-sized fibers and
filaments.

Fiber-reinforced composites are an example of a system benefitting from the characteri-
zation of single fibers. In cooperation with the engineering department, we investigated
different fiber types embedded in a polymer matrix. The composite material exhibits
anisotropic properties by aligning the fibers in one direction. Our research shows how the
thermal properties of the composite material correlate with these of the fibers and their
mechanical strength. We attribute the correlation of thermal and mechanical properties
to the microstructure of the fibers.

Structures on yet smaller length scales are the basis for my final two publications.
They introduce monitoring systems for temperature events. In the first project, we
demonstrated the fabrication of a colloidal crystal assembled from a continuous gradient
of different nanoparticles. The resulting structure is a time-temperature integrator, i.e., it
records the thermal history by irreversibly changing its optical properties. In a follow-up
publication, we built upon this concept and created an array of colloidal crystals with
different compositions. By automating the fabrication process, we could measure large
amounts of data that we analyzed with an artificial neural network. The evaluation of
the sensor is based solely on photographs and is thus accessible to non-specialists. Our
sensor enables a fast and tamper-proof way of analyzing the thermal history of an object.
Possible applications include monitoring perishable goods such as food and medicine
and technical applications for batteries.
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Zusammenfassung

Wissenschaftlicher Fortschritt basiert auf der reproduzierbaren Herstellung und genauen
Charakterisierung neuer Materialien. Heutzutage wäre Forschung ohne die Leistung
moderner Computer undenkbar. Nichtsdestotrotz verbringen Chemiker viel Zeit damit,
manuell monotone Aufgaben zu bearbeiten und Daten zu analysieren. Als Doktorand
habe ich moderne Frameworks eingesetzt, um Messaufbauten zu automatisieren und
die anschließende Datenanalyse zu vereinfachen. Dadurch habe ich vorher unmögli-
che Projekte machbar gemacht und die in unserer Gruppe vorhandenen Methoden
erweitert.

Die von mir bearbeiteten Projekte drehten sich um Wärmetransport und den damit
verbundenen Auswirkungen. Ich habe zwei neue Messapparate entwickelt, um die ther-
mische Diffusivität und das passive Kühlverhalten zu charakterisieren. Eine umfassende
Charakterisierung der thermischen Eigenschaften ermöglicht es, Materialien für das
Wärmemanagement zu entwickeln. Außerdem habe ich Zeit-Temperatur-Integratoren
weiterentwickelt und es ermöglicht, ihre Auswertung anhand einzelner Fotos eines Smart-
phones durchzuführen. Dies ermöglicht die Überwachung von Temperaturereignissen,
um das eingesetzte Wärmemanagement zu kontrollieren oder Systeme zu überprüfen,
bei denen Wärmemanagement nicht praktikabel sind. In den folgenden Absätzen werde
ich kurz die Ergebnisse meiner Projekte vorstellen.

Passive Tageskühlung ist ein vielversprechender Kandidat, um die globalen CO2-Emis-
sionen zu verringern. Sie basiert auf Systemen mit maßgeschneiderten optischen Ei-
genschaften, die den Wärmefluss gezielt lenken. Um das optimale Material zu finden,
wird eine Methode benötigt, um Messergebnisse von verschiedenen Orten und Zeiten
vergleichbar zu machen. Daher haben meine Kollegen und ich ein Laborinstrument
entwickelt, das die Kühlleistung mit herausragender Reproduzierbarkeit messen kann.
Es legt den Grundstein für zukünftige Forschung, weil es die Charakterisierung neuer
Materialien unabhängig von Wetter und Klima ermöglicht. Wir haben unser Instrument
benutzt, um die potenzielle Anwendung von Post-Consumer-Abfällen als passive Küh-
lelemente zu demonstrieren. Polymerbeschichtetes Aluminiumlaminat kühlt spontan
unter Raumtemperatur. Unsere Simulation zeigen, dass eine großflächige Anwendung
den Energiebedarf eines vierstöckigen Gebäudes um einige Dutzend GJ pro Jahr senken
kann.

vii



Neben Strahlungseigenschaften ist die gezielte Kontrolle von Wärmeleitung eine weitere
Möglichkeit, den Wärmefluss zu manipulieren. Lock-in-Thermografie ist eine etablierte
Methode, um die thermische Diffusivität von 2D- und 3D-Proben zu bestimmen. Bis
jetzt wurde die Charakterisierung von 1D-Materialien jedoch wenig untersucht. Wir
haben einen Messaufbau für Fasern mit wenigen Mikrometern Durchmesser entwickelt
und ausführlich den Einfluss unterschiedlicher Messparameter untersucht. Wir konnten
zeigen, dass die Charakterisierung von Proben kleiner als der Pixelgröße der Kamera
möglich ist, selbst wenn die Faser nicht parallel zum Detektor ausgerichtet ist. Außerdem
haben wir experimentell den Einfluss unterschiedlicher Laserleistungen und die damit
verbundenen Messungenauigkeiten untersucht. Unsere Ergebnisse sind ein Beitrag zur
robusten Messung mikrometergroßer Fasern und Filamente.

Faserverbundwerkstoffe sind ein Beispiel für Systeme, die von einer besseren Charak-
terisierung von Fasern profitieren. In Kooperation mit dem Lehrstuhl für Polymere
Werkstoffe haben wir unterschiedliche Fasern und ihre Matrixkomposite untersucht.
Wenn die Fasern orientiert sind, haben die Komposite anisotrope Eigenschaften. Unsere
Forschung hat gezeigt, wie die thermischen Eigenschaften der Komposite mit denen der
Fasern und deren mechanischen Eigenschaften korrelieren. Wir führen die Korrelation
der thermischen und mechanischen Eigenschaften auf die Mikrostruktur der Fasern
zurück.

Strukturen auf noch kleineren Längenskalen sind die Grundlage meiner letzten beiden
Veröffentlichungen. Sie stellen Sensoren für Temperaturereignisse vor. Im ersten Projekt
haben wir die Herstellung eines Kolloidkristalls demonstriert, der aus einem kontinuierli-
chen Gradienten einer binären Nanopartikelmischung besteht. Die entstehende Struktur
ist ein Zeit-Temperatur-Integrator, d. h., dass sie die thermische Historie aufzeichnet,
indem sie irreversibel ihre optischen Eigenschaften ändert. In einer Folgeveröffentli-
chung haben wir auf diesem Konzept aufgebaut und eine Matrix von Kolloidkristallen
unterschiedlicher Zusammensetzungen präsentiert. Durch die Automatisierung des Her-
stellungsprozesses konnten wir große Mengen an Daten messen, die wir mit Hilfe eines
künstlichen neuronalen Netzwerks analysiert haben. Die Auswertung unseres Sensors
basiert ausschließlich auf Fotos und ist somit auch Fachfremden zugänglich. Unser Sensor
ermöglicht eine schnelle und manipulationssichere Auswertung der thermischen Historie.
Mögliche Anwendungen sind die Überwachung verderblicher Güter wie Lebensmittel
und Medikamente sowie der technische Einsatz für Batterien.
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Part I

Fundamentals





Introduction 1
1.1 Motivation

Humans strive to understand the world and harness this knowledge to improve their
lives. As scientists, we are responsible for gathering and widening our understanding.
We propose models to describe nature, conduct experiments based on these models,
and finally analyze the data to reject or validate our models. It is detrimental that the
experiments and subsequent data analysis are reliable. It is even better if the whole
process takes the shortest time possible. Utilizing computers allows us to reach these
goals.

Since the first general computers were developed during the 1940s, they have been
indispensable tools for scientists.[1] Many routine characterization methods in chemistry
labs rely on specialized software.[2–6] Consequently, a growing amount of chemists
demand teaching basic programming principles in undergraduate study programs.[7–10]
Chemistry 4.0 and the general trend towards more digitalization are clear indications that
the boundaries between chemistry and computer science will dilute even further. Recent
advances include remote-controlled laboratories,[11] automatic synthesis robots,[12,13]
and even fully autonomous laboratories.[14,15]While these technologies have an immense
potential, they have a high barrier to entry. Still, it is possible to automate many
experiments and data evaluation tasks on a small scale. This allows more thorough
investigations, eventually leading to new insights.

During my Ph.D., I employed programming skills in various ways, from digital communi-
cation with laboratory instruments to the automatic evaluation of measurement data. I
aimed to make new measurement techniques possible and to accelerate existing ones. In
the following Section 1.2, I will briefly introduce heat transport because it accompanies
all of my research projects. Afterward, Chapter 2 explains the most important concepts
that I worked with, namely daytime passive cooling, lock-in thermography, and machine
learning. It lays out the basic principles and gives an overview of current measurement
implementations. In Chapter 3, I will discuss the publications included in this thesis
and how I contributed to them. Finally, the remaining chapters contain all publications
discussed in this thesis.
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1.2 Heat Transport

Heat is an ambiguous term and is used in many different situations. In thermodynamics,
heat describes the energy transfer from one system to another.[16,17] Therefore, it is
helpful to have a brief look at temperature and thermal energy before talking about heat
in more detail.

Every system consists of particles, e.g., molecules, atoms, ions, or electrons. Even if a
system is stationary at a macroscopic scale, its particles possess kinetic energy. Depending
on the system and the particle of interest, this kinetic energy can take the form of random
translational, vibrational, or rotational movement. This microscopic kinetic energy is the
thermal energy of the system. On a macroscopic scale, we use temperature to measure
the average kinetic energy of a system’s particles relative to their center of mass.[17] The
faster the particles move, the higher the system’s temperature. Consequently, the lowest1
conceivable temperature, absolute zero, is reached when all particles are completely
stationary. However, absolute zero does not occur naturally. Even deep space has a
temperature of 2.8 K due to the cosmic background radiation. The coldest observed place
in the universe is the Boomerang Nebula with an estimated temperature of 0.3–1.0 K.[20]
Artificially, the temperature can be reduced even further. In 2021, researchers were able
to cool a sample to only 38× 10−12 K for a duration of two seconds.[21]

Convection

Radiat
ion

Conduction

Figure 1.1.: Heat transport mechanisms.

Keeping samples at temperatures far below
or above their surroundings is exceptionally
challenging because the sample will inter-
act with its surroundings. An interaction be-
tween two systems with different thermal en-
ergies eventually leads to both systems hav-
ing the same temperature. They equilibrate
by transferring heat from the high-energy sys-
tem to the low-energy system. This transfer
of thermal energy is possible via three dif-
ferent mechanisms: conduction, convection,
and radiation (Figure 1.1). In the follow-
ing paragraphs, each transfer mechanism is
explained shortly.

Imagine putting two rods in a warm water bath, one made of metal and the other made
of a polymer. After leaving the rods in the water for a while, we touch them and can feel
1Due to the definition of temperature also containing entropy, negative absolute temperatures are possible
and have been demonstrated experimentally.[18,19] Nevertheless, these systems have higher thermal
energy than objects with positive absolute temperatures and consequently transfer heat to them.
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the warmth of the bath. Although both rods have the same temperature, the metal one
seems to be warmer. In this example, we experience thermal conduction. Conduction
occurs between systems that are in direct contact with each other. The collision between
particles leads to the transfer of kinetic energy. First, the random motion of the water
molecules heats the rods that finally warm our hands.

Thermal conduction is not identical for all materials. The metal rod feels warmer because
it is a good thermal conductor, i.e., it transfers more heat. In this specific case, the
conduction through the polymer is based on phonons, i.e., the vibration of the polymer’s
atoms. The atoms themselves are stationary, and as a result, the heat transfer is slow. In
contrast, thermal conduction in metals is mainly based on electrons. The delocalized
electrons of the outer shell can move through the metal and carry the heat faster.[17,22]

A mathematical description of conduction is Fourier’s law. It describes the conductive
heat transfer, q⃗, as[23,24]

q⃗ = −κ∇⃗T (1.1)

with κ being the thermal conductivity, and ∇⃗T the temperature gradient. There are two
important features: (1) Heat flows in the opposite direction of the temperature gradient,
i.e., from high to low temperature. (2) The heat flow is directly proportional to the
temperature gradient. The constant2 of proportionality is the thermal conductivity, κ. In
our example above, the metal has a higher thermal conductivity than the polymer, thus,
feeling warmer.

Fourier’s law describes heat flow for steady-state phenomena, i.e., when the temperatures
stay constant. However, in most situations the temperature changes with time. We
need additional characteristics to describe the heat flow, most importantly the thermal
diffusivity.[16] Usually, good thermal conductors are also good thermal diffusers. In fact,
both quantities are related via

α=
κ

ρc
, (1.2)

where α is the thermal diffusivity, ρ the density, and c the specific heat capacity. The
product of ρ and c is the volumetric heat capacity that is almost constant for solids
and liquids (≈ 2× 106 J m−3 K−1). Hence, plotting κ against α follows a linear trend
(Figure 1.2), and we can intuitively predict which materials are good thermal diffusers.
An exception are gases that have a volumetric heat capacity three orders of magnitude
lower than solids (≈ 2× 103 J m−3 K−1). Therefore, gases can be good thermal diffusers
2Here, I assume an isotropic thermal conductivity. In general, κ is a second-rank tensor.
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Figure 1.2.: Thermal diffusivities and conductivities of common materials. The volumetric heat
capacity of solids and liquids is approximately constant and differs significantly from the one of
gases. Data was taken from [25, 26].

without being good thermal conductors. The question arises of how to understand the
difference between thermal diffusion and conduction.

We saw earlier that good thermal conductors are materials that can transport a lot of
heat in steady-state conditions. Thermal diffusivity determines how fast these conditions
are reached. Gases are very poor thermal conductors because the number of particles
per unit volume is much lower than that of solids or liquids. On the other hand, their
mean free path is significantly larger and thus, the temperature gradient establishes
itself very quickly. This means that although a gas will extract very little energy from a
thermal reservoir, this energy will disperse through the gas quickly.

In reality, the heat transfer in gases is higher than expected by conduction alone. Convec-
tion through the gas phase leads to additional heat transfer. If we think back to our two
rods inside the warm water bath, we can feel the warmth even if we move our hands
above the container without touching the rods. The air directly above the water is heated
due to conduction. The rising temperature leads to a lower density of the air, and it rises
upwards. Heat transfer by a moving medium is called convection.

There are two types of convection: natural and forced convection. Natural convection
happens on its own due to temperature-induced density differences. This is the case
in the example above. As the name suggests, forced convection is due to an externally
applied velocity to the medium. Examples include cooling electronics via fans or heating
with warm water in radiators. An important parameter for convective heat transport is
the heat transfer coefficient between a solid and a liquid.[27] It determines how high the
thermal resistance between both materials is and depends on many factors, e.g., the
surface geometry, the fluid’s material properties, and the flow rate. Even when including
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Figure 1.3.: Emission spectrum of a perfect black body. With increasing temperature, the
overall power increases, and the emission maximum shifts to lower wavelengths. At sufficiently
high temperatures, the thermal radiation reaches the visible spectrum.

convection in our model, gases show a higher heat transfer than expected because there
is a third heat transfer method.

The last type of heat transfer is radiation. All materials emit thermal radiation. Radiation
differs from conduction and convection because the heat transfer medium is electromag-
netic radiation instead of matter. Common examples are standing next to a campfire or
sitting outside and feeling the warmth of the sun. The emitted power, P, is described by
the Stefan-Boltzmann law:[17,28]

P = σAϵT4. (1.3)

Here, σ is the Stefan-Boltzmann constant, A the surface area of the body, and ϵ its
emissivity. The emissivity is a dimensionless number between zero and one and indicates
how similar a body’s behavior is to the ideal black body with an emissivity of one. For this
ideal black body, Planck’s law describes the emitted radiation per unit area, E, as[27,29]

E(λ, T ) =
2πhc2

λ5

1

exp
�

hc
kBTλ

�

− 1
(1.4)

with h being Planck’s constant, c the speed of light, λ the wavelength, and kB Boltzmann’s
constant. The wavelength of the thermal radiation is distributed over a wide spectrum.
Its maximum strongly depends on the temperature, and at room temperature, it lies in
the invisible infrared (IR) regime. With increasing temperature, the overall emission
rises quickly (∝ T4), and the maximum is shifted to lower wavelengths (Figure 1.3).
Hence, hot objects irradiate a red glow, and increasing the temperature further will
eventually lead to a white perception.

1.2 Heat Transport 7



1.3 Thermal Management

Understanding the fundamentals of heat transport is essential to manipulate the heat flow.
Thermal management is an active area of research and important on many length scales
from buildings[30–33] over clothing[34–36] to integrated electronics.[37–39] The demands
are as different as the application areas and include thermal insulation, heat dissipation,
limiting the temperature to a narrow window, and efficient use of waste energy. The
following section showcases some examples of thermal management research.

Energy use in buildings accounted for 29 % of global energy consumption in 2018,
with thermal energy being 50–60 % thereof.[40] To achieve climate neutrality, reducing
the energy usage of buildings is critical. In addition, living in energy-efficient homes
is advantageous for human health. The increased healthy lifespan is a personal as
well as societal benefit, adding several hundred million euros per year to a country’s
economy.[41] Considering the thermal energy, the perfect house needs neither active
cooling nor heating and is thus net-zero. Passive houses are one standard for buildings
with ideal heat management.[42] Achieving this goal is only possible with an architectural
design incorporating highly insulating materials.

Traditional building materials for thermal insulation are polymer foams, most promi-
nently polyurethane and polystyrene.[43] While the thermal conductivity of bulk polysty-
rene is reasonably low (0.15 W m−1 K−1),[44] it can be lowered much further by changing
its morphology. Foams drastically reduce possible conduction pathways by introducing
pores filled with gas. The foam’s thermal conductivity will be a value between that of the
solid and gaseous phases. Commercial polystyrene foams have thermal conductivities
between 0.03 and 0.04 W m−1 K−1,[43] close to the value of air (0.026 W m−1 K−1).[25]

Besides the decreased conduction pathways, a closed-cell pore prevents convection
through the wall. Nanopores can even lead to the Knudsen effect. Suppose the size of
the air pockets is at the same order of magnitude as the mean free path of the individual
molecules. In that case, the thermal conductivity of air inside the pores is reduced
below its usual value. Aerogels are one material class utilizing the Knudsen effect.
Cellulose-based aerogels for construction purposes usually have cell sizes far beyond
one micrometer (Figure 1.4). Consequently, their thermal conductivity is very low, with
values reaching a minimum of 0.015 W m−1 K−1.[45]

Completely removing the gas phase is the only option to reduce the thermal conductivity
even further. Vacuum insulation panels consist of an open-celled foam as a core and a
surrounding air-tight material. By evacuating the foam, the thermal conductivity reaches
values as low as 0.002 W m−1 K−1.[47] A major drawback of vacuum insulation panels is
their delicacy. If they are punctured, air fills the inner core, and they lose their superior
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(a)

(b)

(c)

(d)

Figure 1.4.: Scanning electron images of foams with a solid content of (a, b) 1.04 vol% and
(c, d) 0.60 vol%. Both aerogels have a thermal conductivity lower than air. Image reproduced
with permission from [46].

insulation capacity. Even if they are not damaged, gas diffuses back into the foam over
time and slowly increases the thermal conductivity. Vacuum insulation panels are not
widespread due to the mentioned problems and their high costs.

A sustainable alternative is insulation based on natural or recycled materials. One exam-
ple being both natural and recycled is sheep wool.[48] Many sheep are bred exclusively
for their milk or meat and their wool is a byproduct that must be disposed of. Using the
wool as building insulation utilizes this byproduct and prevents waste. Its insulation
properties are as good as traditional building materials reaching thermal conductivities
as low as 0.034 W m−1 K−1.[49] Other examples of sustainable insulation include cork,
cotton fibers, textile waste, and ground tire rubber.[31]

Well insulated buildings can easily keep indoor temperatures high but they struggle with
overheating issues in hot climates and need additional active cooling components.[50]
One way to eliminate this remaining energy use is passive daytime cooling.[33] The
concept is based on transferring heat to outer space via radiation and is explained in
Section 2.1.

Manipulating the radiative properties is also relevant for personal heat management. IR
transparent clothing allows the body to transfer heat to its surroundings.[51] However,
this concept is limited to a narrow range of temperatures. If the ambient temperature
is very high or low, equilibration with the surroundings will lead to an uncomfortable
body temperature. For these temperatures, fabrics blocking the IR radiation are better
suited. Jiang et al. reported a material that is opaque in the IR range due to its high
emissivity.[52] As a downside, it still allows thermal equilibration between the fabric and
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the surroundings, potentially leading to discomfort. An alternative is to create opaque
fabrics by increasing their reflectivity. Gao et al. presented such a material made of
polyimide and silver nanowires.[53] Their product is mainly suited for keeping the body
warm. Therefore, it consists of a nonwoven with low thermal conductivity to further
increase the insulation properties.

Increasing the thermal insulation ability is a general approach to creating novel clothing
materials. Commercial materials such as Kevlar® and Nomex® are famous materials
that can withstand high temperatures.[54,55] They are suitable for professional equipment,
e.g., for firefighters. But their stiffness and heaviness render these materials inappropriate
for everyday clothing. One strategy to increase thermal insulation without sacrificing
comfort is controlling the fabric’s weaving pattern and the fibers’ shape.[56–58] Both
determine the size of air gaps between the fabric and thus the thermal conductivity.

A natural example of trapping air inside fibers is polar bear fur. The freezing temperatures
in the arctic led to the evolution of hollow fibers with good thermal insulation. Different
artificial hollow fibers have been reported that mimic these properties.[59,60] As with
building materials, aerogels are another option to include air in fabrics to decrease the
thermal conductivity significantly.[61]

All fabrics mentioned so far have static properties. But since ambient temperatures can
change in a matter of hours, responsive fabrics are desirable. An early example of a
commercial application is Nike Sphere React.[62] The T-shirt made of a shape memory
material reacts to humidity. When the wearer sweats due to exercise or hot weather,
additional pores in the fabric open. The increased convection has a cooling effect on
the wearer. The same idea can be used to create fabrics with automatically adjusting
thickness.[63] For this, a memory shape polymer is sandwiched between two fabric layers.
In its initial state, the polymer pushes the outer layers apart. The infiltrating air lowers
the thermal conductivity of the composite material. When the wearer starts to sweat, the
humidity increases, and the polymer flattens. Consequently, the thermal conductivity
increases, and heat can escape (Figure 1.5).

Another option for personal heat management are active components. They are either
based on Joule heating or the thermoelectric effect.[53,64] Both methods effectively regu-
late the micro-climate around the body. Regardless, they are not widespread yet because
they include active electric components needing a power supply. This increases produc-
tion costs, limits design possibilities, and makes washing difficult. Further improvements
in this material class might eventually lead to general adoption, as is the case with other
electronic components.

In many other areas, integrated circuits are vital to our technological progress. The
miniaturization of computing equipment allows great computational power, e.g., for
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Figure 1.5.: Working principle of a smart textile. (a) The overall thickness of the textile governs
the effective thermal conductivity. (b) The memory shape polymer changes depending on the
humidity. Image reproduced with permission from [63].

smartphones, laptops, and data centers. Concentrating large processing capabilities in
small spaces leads to a lot of concentrated waste heat. This negatively impacts device
performance, demanding effective cooling solutions. Usually, the heat is dissipated to
the surrounding by a heat sink with a large surface area. A major problem is the contact
resistance between electronic components and heat sinks. Microscopic surface roughness
decreases thermal conduction pathways and leads to high thermal barriers.[37,38]

Thermal interface materials decrease the thermal contact resistance between two mate-
rials. These materials must fulfill three major requirements: (1) They must have high
thermal conductivity to efficiently transport the heat from the source to the sink. (2) They
must have a low mechanical shear rate to fill microscopic gaps. (3) They must have a
high electrical resistance to prevent shorting the electrical components. The last two
requirements make polymers the perfect candidates because many polymers can deform
easily and have high electrical resistance. However, their thermal conductivity is low, as
discussed above. Mixing polymers with high thermal conductors creates composites with
good thermal conductivities. Examples include metal- and boron-based materials.[65–67]
Another option to increase the thermal conductivity of polymers is to control the polymer
chain orientation. Xu et al. stretched polyethylene films, leading to the formation of
oriented nanofibers. Their material had a thermal conductivity of the same order of
magnitude as metals (62 W m−1 K−1).[68] This facilitates a fast heat transfer between
the heat source and sink.

Besides integrated circuits, rechargeable batteries are another cornerstone of modern
machinery, including handheld devices, cars, and ships. The thermal demands of batteries
are very different from other electronic equipment. There is a very narrow, optimal
temperature window for the operation of batteries. If they are too cold, the chemical
reactions inside the battery slow down, and both charging and discharging power
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decrease, or the battery might stop working completely.[69] On the other hand, at high
temperatures batteries can overheat. In the worst case, the battery reacts uncontrollably
and spontaneously ignites.[39] The optimal temperature range for lithium ion batteries is
15–35 ◦C.[70,71] One particular research focus is the heat management for batteries for
electric vehicles. They experience cold and hot temperatures alike while their efficiency
is detrimental for commercialization.[39]

In addition to optimizing the internal battery cell architecture, there are four major
thermal management systems for batteries based on air, liquids, thermoelectric devices,
or phase change materials.[71] Air transfers heat through forced convection. While
air management systems are easy to design, cheap, and lightweight, the heat transfer
coefficient of air is low. This makes cooling/warming in extreme conditions difficult.
Liquids such as water or oil offer a solution with better heat transfer but with the added
risk of leaks. Peltier elements with thermoelectric properties are solid-state materials,
eliminating the possibility of leaks. An applied current transfers heat from one side to the
other. Reversing the current changes the heat transfer direction. Peltier elements can be
used independently but are commonly combined with air or liquid as a transfer medium to
prevent inhomogeneous temperature distributions. All three heat management methods
depend on active components. The necessary fans, pumps, heaters, and coolers consume
power. This reduces the energy available to the end user.

Passive thermal management for batteries is based on phase change materials and does
not require energy. Instead of transporting all excess energy from the battery to the
surroundings or vice versa, phase change materials undergo a phase transition at a
temperature close to the operating temperature of the battery. Upon heating, the energy
is reversibly stored inside the phase change material.[72] Therefore, it can be used for
heating and cooling without needing active components. The biggest concerns with
phase change materials are their low thermal conductivity and limited storage capacity.
Solving these problems is a current research focus. Adding heat pipes to transfer the
thermal energy between the battery and phase change material is a promising candidate
for eliminating the conductivity issues.[73,74]

The presented topics are merely scratching the surface of heat transport research. They
clearly demonstrate that further development of materials and the required characteri-
zation are important. During my Ph.D., one main focus was to improve characterization
techniques. The second major focus was designing a heat monitoring system and its
application-ready readout. The following section will introduce the topic.
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1.4 Heat Monitoring

The last section showcased advances and ongoing research in the field of thermal manage-
ment. To evaluate if the suggested strategies work, heat monitoring is necessary. During
the scientific evaluation, the temperature of a system can be continuously monitored
with temperature sensors. The three most common approaches are thermo-resistive
devices, thermocouples, and thermography systems.[75,76] They enable detailed insight
into the temperature evolution with local resolution.

The electrical resistance of materials changes with temperature. By knowing the tem-
perature coefficient of the temperature change, the electrical resistance can be directly
related to the temperature. Measuring the electrical resistance with high accuracy
is easy and thus allows accurate temperature determination. Uncertainties of typical
systems range from ±1 K for cheap systems down to below ±1 mK for high-precision
systems. Most commonly used are platinum wires with resistances of 100Ω or 1000Ω

because they show a linear temperature dependence in a wide range of temperatures
(−260–960 ◦C).[77]

Thermocouples are another option based on electric measurements. They consist of two
different materials with one junction as the reference and one as the sensor. The voltage
across the device depends on the temperature difference between the two junctions.[78]
Thus, thermocouples measure the temperature difference between two locations instead
of the absolute temperature at one location. To get absolute readings, they are usually
combined with thermo-resistive devices. The advantage of thermocouples is their low
cost, high robustness, small size, and wide temperature range. Depending on the
material, they can measure temperatures ranging from −270 ◦C up to 3000 ◦C. As
shown in Table 1.1, common materials operate at lower temperatures.[75]

Table 1.1.: Commonly used thermocouples.

Type Materials Range / ◦C

T copper / constantan −262–850

J iron / constantan −196–700

E chromel / constantan −268–800

K chromel / alumel −250–1100

N nicrosil / nisil 0–1250

B platinum & 30 % rhodium / platinum & 6 % rhodium 100–1750

S platinum & 10 % rhodium / platinum 0–1500

R platinum & 13 % rhodium / platinum 0–1600

1.4 Heat Monitoring 13



A last typical example of temperature sensors are thermography systems. They are
explained in Section 2.2 in more detail. In contrast to thermo-resistive devices and
thermocouples, they measure temperature non-invasively and at a distance. This
makes them especially suited for the temperature detection of large surfaces or medical
applications.[79–81]

Having complete data for the whole system is essential for a better understanding
but places high demands on the monitoring system. Although cheaper manufacturing
leads to more active monitoring, as evidenced by the growing popularity of the Internet
of Things, the additional data create a need for data collection and analysis.[82] For
many applications, simple and autonomous sensors are preferred. This is especially
important when the readout must be faster or is done by non-specialists. In the following
paragraphs, I will present example applications for passive sensors and current research
efforts.

An estimated 17 % of all produced food are not consumed but discarded.[83] The needed
resources to produce this food corresponds to 8–10 % of global greenhouse gas emissions.
Still, the World Health Organization estimates that 600million foodborne illnesses occur
every year, resulting in more than 400 000 deaths.[84] Temperature is the most important
factor contributing to food spoilage.[85] Simple, low-cost, autonomous sensors on food
packaging can contribute to lowering food waste and preventing foodborne diseases.
They indicate the shelf-life of products better than generic ‘best-before’ dates.

Research on time-temperature integrators for food products has been carried out for
several decades.[86] Their working principle differs from the continuous temperature
sensors presented above. Instead, time-temperature integrators change irreversibly
above a specific temperature. On the one hand, this makes it impossible to get detailed
information of the thermal history. On the other hand, the readout is significantly simpler,
and information about the peak temperature is usually sufficient for food applications.

Optical indicators that record time-temperature events can be realized with different
mechanisms. A change in color or color intensity can be induced by chemical, physical,
or biological reactions.[87,88] An example of a chemical system are diacetylenes. Upon
increasing the temperature, they polymerize, forming an extended, linear π-system.
The degree of polymerization and the interaction with the sidechains govern the optical
absorption.[87] Several commercial products based on polydiacetylenes have been devel-
oped. The labels are stored at low temperatures (−24 ◦C) before application to ensure a
low reactivity.[87] As soon as they are brought in contact with the food packaging at a
higher temperature, the color starts to change. Elevated temperatures will lead to faster
reaction rates and, thus, a faster change.[89]
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Figure 1.6.: Plasmonic nanorods as a time-temperature integrator. (a) Transmission electron
microscopy images of the pristine gold nanorods. (b) Extinction spectra during the epitaxial
growth of silver on the gold nanorods. (c) Photograph of nanorods after different time intervals.
Image reproduced with permission from [94].

Spiro aromatic compounds are a second example of chemical systems used as time-
temperature integrators in food packaging. Exciting these molecules with UV light will
lead to a ring opening and the formation of a zwitterionic component. The reaction prod-
uct is unstable and will slowly revert back to the original spiro component. The open and
closed variants have different optical properties and can thus be easily distinguished.[90]
One characteristic of this system is its reversibility. While this might facilitate recycling,
it also opens the door to tampering with the indicator state and might be a possible
security risk. Nevertheless, commercial systems based on spiro components exist. They
usually employ a UV-resistant window to prevent accidental or malicious resetting of
the sensor.[87]

Physical systems rely on phase changes or diffusion to indicate time and temperature. In
diffusion-based systems, a colored substance slowly diffuses from one side of the sensor
to the other. Since diffusion depends on temperature, the position of the colored fluid
relates to time and temperature.[91,92] Commercial solutions based on fatty acid esters
are available and used to monitor the temperature of perishable products.[93]

In the scientific community, research focuses on plasmonic and photonic systems. Zhang
et al. presented plasmonic gold nanorods exhibiting red color.[94] By adding silver
nitrate and ascorbic acid, the gold rods are slowly coated in a layer of silver. The
epitaxial overgrowth changes the color of the system from red over yellow to green
(Figure 1.6). Like with the polymerization systems above, the reaction kinetics change
with temperature. The current color of the dispersion indicates the temperature history of
the whole system. The visual readout is easy and straightforward, but the incorporation
of solution chemistry poses a challenge to adoption.

Solid-state systems are better suited for labeling because they do not pose the risk
of leaching chemicals into their surroundings. Nonwovens based on thermoplastic
polyurethane (TPU) appear white because light is scattered at the many interfaces of
the fibers. If the TPU contains aromatic disulfide groups, self-healing can occur.[95,96]
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The self-healing converts the nonwoven into a film with significantly fewer interfaces. In
turn, the scattering decreases, and the mat becomes transparent. The temperature and
time response can be modified by changing the composition of the TPU.[97]

The softening of polymers around the glass transition temperature, Tg, is a common
strategy for temperature-responsive optical sensors.[98] An example are inverse opals.
First, a colloidal crystal template of silicon oxide particles is created. Subsequently, a
precursor infiltrates the structure and polymerizes, creating a negative of the colloidal
crystal. The template particles can be removed by controlled etching. The final structure
shows the same color impression as the colloidal crystal. The polymer softens and
the structure collapses when the temperature is raised to around and above Tg. In
consequence, the reflectance shifts to lower wavelengths, and the color changes.[99] As
before, the color change rate depends on both time and temperature.

Food packaging is only one example where autonomous time-temperature integrators
are needed. Another important field of application is cool-chain monitoring in the
medical sector for drugs, vaccines, and blood packages.[100] Since the temperature
requirements are often similar to food, the same systems can be used. Other temperature
regimes are also relevant for commercial applications, such as higher temperatures used
to monitor the temperature history of batteries.[101] As discussed in Section 1.3, they
have a narrow, optimal operation range. Before presenting my contributions to thermal
management characterization and heat monitoring, I will introduce important concepts
in the Chapter 2.
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Concepts 2
2.1 Passive Daytime Cooling

With increasing global temperatures, the importance of energy-efficient cooling applica-
tions steadily increases.[102] Cooling an object describes the energy transfer from the
object to a heat sink. As described in Section 1.2, there are three transfer mechanisms:
conduction, convection, and radiation. Traditional air conditioning moves heat from the
inside of a building to its immediate surroundings via conduction and convection. Espe-
cially in densely populated areas, air conditioning is a cause of local overheating.[103,104]
One way to combat urban heat islands is to transfer the heat to a heat sink far away.
Passive cooling materials achieve this by radiating heat to outer space.

At temperatures around 300 K, the thermal radiation maximum is about 10µm. Coin-
cidentally, the earth’s atmosphere shows very high transmission between 8 and 13µm
(Figure 2.1). Therefore, a high emissivity material can radiate heat through the atmo-
sphere directly to deep space with a temperature of around 3 K. Space is the ideal heat
sink because it is far away and infinitely large for all practical purposes.

0 5 10 15 20 25 30
Wavelength / µm

0

500

1000

1500

2000

So
lar

irr
ad

ian
ce

/W
m
−2

µm
−1

Sun
Atmosphere

0.0

0.2

0.4

0.6

0.8

1.0

At
mo

sp
he

ric
tra

ns
m
itt

an
ce

Black body

Selective emitter

Figure 2.1.: Passive cooling basics. An ideal passive cooling material transmits thermal radiation
through the atmosphere while reflecting solar irradiation.

17



Rephaeli et al. calculated the maximum cooling power under ideal conditions to be
about 150 W m−2.[105] The commonly used AM1.5 Global Tilt spectrum imitates the
average solar irradiation in the contiguous United States and has a power of just below
1000 W m−2. For a black body with unity emissivity at all wavelengths, heat absorption
from the sun by far outweighs radiative cooling to outer space. Therefore, daytime
passive cooling demands high reflectivity in the solar spectrum.

The first patent described radiative passive cooling and its application in 1962.[106] While
Head identified the need for selective emissivity, his design simply included a sunshade to
prevent solar heat absorption. Casting a shadow on large areas is unfeasible and prevents
large-scale application. In 2014, Raman et al. presented a material with optimized
optical properties to reach sub-ambient temperatures under solar illumination.[102] After
the invention of the first working prototype, researchers designed a wide range of nanos-
tructures with good passive cooling performances.[107–112] Their fabrication depends on
precise morphology control, often based on lithography. Simpler and cheaper alternative
designs based on polymers have been proposed to improve scalability.[113–115]

To decide which material design is optimal, a comparable and robust characterization
method of the cooling performance is essential. One standard way to indicate the cooling
performance is to characterize the optical properties of the material. All research articles
mentioned above report the emission in the visible and IR spectrum.[102,107–115] Since
spectrometry is well established, results from different groups can be easily compared.
Despite the angle dependence of optical properties, they are often only reported at one
specific angle.[116,117] This makes comprehensive simulations of the passive cooling power
impossible.[118–120] For this reason, results of outdoor experiments usually accompany
optical properties.[102,108–115] In field tests, the material experiences the same conditions
like during the final application. The results indicate the actual cooling performance.
But to obtain general results, field tests must be repeated at different locations and
times to prevent local conditions, like weather, altitude, or humidity, from distorting the
results. As with the characterization of solar cells,[121] a standard laboratory technique
is desirable.

Zhou et al. developed the first indoor measurement setup to quantify shading effects
on the cooling performance.[122] They coated the bottom of a styrofoam box with black
aluminum and the walls with reflective aluminum (Figure 2.2a). Liquid nitrogen fills
the bottom part of the box to provide a heat sink for the measurement. The sample is in
a separate, insulated box above the heat sink and covered with a polyethylene (PE) foil
to prevent convection. By changing the distance between the sample and the aluminum
mirrors, different viewing angles for the sample are simulated. Increasing the angle
from 30◦ to 180◦ changed the temperature difference between the sample and reference
from 2 K to 9.5 K.[122] Their setup is very easy to replicate and demonstrates the angle
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Figure 2.2.: Schematic representation of the indoor setups reported in [122–124].

dependency well. However, it is not universally applicable because it lacks both the sun
and the selective transmittance of the atmosphere.

Park et al. followed a similar approach of using a black-coated cylinder cooled by liquid
nitrogen.[123] Instead of filling liquid nitrogen inside the cylinder, they surrounded the
cylinder walls with a container holding liquid nitrogen (Figure 2.2b). The sample is
placed on top of the cylinder, and a solar simulator illuminates it from below. Including
the solar simulator allows a comparison between daytime and nighttime performance.

A different approach compared to the two measurement setups above is to imitate
the effect of passive cooling via convection. This method does not aim to measure a
material’s cooling performance but to simulate radiative cooling in the lab, allowing
the investigation of devices. Wong et al. proposed a system where the passive cooling
device faces a temperature-controlled heat sink (Figure 2.2c).[124] The angle between
both surfaces determines the non-radiative heat transfer coefficient. In combination
with the heat sink temperature, they simulate different cooling performances. To use
the setup, prior knowledge of the material’s cooling power is necessary to determine the
correct heat sink temperature and sample angle. A follow-up study utilized the system
to investigate power harvesting from cooled surfaces.[125]

It is evident that little research has been done on characterizing passive cooling materials
under controlled conditions. Therefore, my colleagues and I invented a measurement
setup. The respective publication is shown in Chapter 5. We used our setup to investigate
the upcycling of post-consumer waste in Chapter 6.
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2.2 Lock-in Thermography

Thermography is a widespread method to determine the temperature of objects. Its basic
principle is to measure thermal radiation originating from the object under investigation.
There are two detector types: microbolometers and photodetectors.[126]Microbolometers
consist of an array of thermistors on silicon chips. The incoming thermal radiation
heats these elements and thus changes the electrical resistance accordingly. From a
previous calibration, the temperature can be obtained.[127] These detectors work at
room temperature and are easy to fabricate. Hence, they are relatively cheap.

Measured

In-phase
Quadrature

Time

True Predicted

Figure 2.3.: Schematic demonstra-
tion of lock-in amplification.

Photodetectors are more expensive but offer a better
signal-to-noise ratio. They are usually made of in-
dium antimonide or mercury cadmium telluride.[126]
Similar to photodetectors for visible light, incoming
photons create a small electrical current that is multi-
plied and detected.[128] Besides the improved signal-
to-noise ratio, the readout frequency can reach several
thousand images per second compared to the maxi-
mum of sixty for microbolometers.[126] A disadvan-
tage of photodetectors is the substantial dark current
at room temperature. Hence, they must be cooled to
around 80 K, e.g., by using a Stirling cooler.[129]

One distinct advantage of infrared thermography com-
pared to other temperature sensors is the ability to
determine temperature contactless and at large dis-
tances. This allows nondestructive measurements and
the fast investigation of large areas. Therefore, in-
frared cameras are used in many areas, e.g., the inves-
tigation of buildings,[80,130] fault detection of wind
turbines,[79,131] and medical diagnostics.[81,132] Since
the detection principle relies on thermal radiation
and not temperature itself, the sample emissivity in-
fluences the measurement result (see Equation 1.3).
Without proper correction, objects will show an in-
correct temperature. At the same time, the emissivity
dependence can be an advantage for thermography.
For example, it is possible to investigate structures
behind a silicon wafer because silicon is almost trans-
parent in the infrared regime.[126]
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Applications are divided into passive and active thermography. The former measures the
temperature of a system without interfering with it at all, while the latter records the
temperature response due to an external stimulus. My research focused on a particular
kind of active thermography, lock-in thermography. Here, a heat source excites the
sample periodically. Special data analysis allows for increasing the sensitivity beyond
the initially observed signal.

Lock-in amplification is a powerful technique to analyze periodic signals even if the
noise floor is several magnitudes larger than the signal of interest. The time-dependent
signal is transformed to the frequency domain via the discrete Fourier transform.[133]
Most noise is either constant or at a frequency different from the lock-in frequency.
Thus, only the relevant signal remains. Traditional lock-in amplification uses dedicated
hardware.[134] With the computational power available today, a measured time series
can be converted to the frequency domain digitally either in real-time or after acquisition.
The measurement signal, F(t), is multiplied with a weighting factor, K(t), and the output
signal, S, can be written as[126]

S =
1

tint

∫ tint

0

F(t)K(t)dt. (2.1)

For narrow-band, two-channel correlation, there are two sets of weighting factors,

K0◦ = 2 sin(2π flock-in t) and K90◦ = 2 cos(2π flock-in t). (2.2)

The resulting signals, S0◦ and S90◦ , are called in-phase and quadrature signal, respectively.
From these, the amplitude, A, and phase, Ψ, of the measured signal relative to the
reference can be determined as

A=
q

(S0◦)2 + (S90◦)2 (2.3)

Ψ = arctan

�

S90◦

S0◦

�

. (2.4)

Figure 2.3 demonstrates how lock-in amplification can extract relevant information from
a noisy signal. Lock-in amplification has been successfully applied to many measure-
ment problems such as high-resolution microscopy,[135] atomic force microscopy,[136],
and thermoelectric characterization of high-resistance samples.[137] In thermography,
lock-in amplification is most commonly used in nondestructive testing for mechani-
cal or electronic components.[138–142] I used quantitative lock-in thermography for the
determination of the thermal diffusivity.
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Figure 2.4.: Typical measurement geometry for lock-in thermography of thin films.

Ångström first used a periodic excitation to determine thermal properties in 1863.[143] In
his experiment, Ångström measured the temperature with thermometers and controlled
the temperature with steam and cold water. Nowadays, experimental setups consist of
IR cameras as detectors and lasers as excitation sources.[144–147] In typical transmission
geometry experiments, a thin, freestanding sample is heated by a laser from the back.
The temperature at the entire front side is recorded as a video and converted to amplitude
and phase (Figure 2.4). The sample is often placed inside a vacuum chamber to prevent
thermal losses due to convection and conduction.

The data analysis is based on the amplitude and phase of the signal at the excitation
frequency. Solving the differential heat transfer equation shows that the system behaves
as one-dimensional at a sufficiently large distance from the laser spot.[148,149] The
following steps extract the thermal diffusivity from the measurement data.

Fourier Transform The recorded temperature data is transformed to the amplitude
and phase at the lock-in frequency, flock-in.

Center Determination The coordinates of the excitation have to be either set manually
or detected automatically. They are essential for the next step.

Distance Calculation For each pixel, the distance to the center, r, is calculated using
the Pythagorean theorem.

Amplitude Linearization For two-dimensional samples, e.g., thin films, the amplitude
is multiplied with pr. Regardless of the dimensionality of the samples, the natural
logarithm of the amplitude is calculated.

Linear Regression Both the linearized amplitude and the phase follow a linear trend
with respect to r. The respective slopes are obtained by fitting the data.

Diffusivity Calculation The thermal diffusivity is the ratio between π flock-in and the
product of the slopes. If there are no thermal losses, the square of any one slope
can be used instead of their product.
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This evaluation procedure was experimentally validated for samples with different
geometries and a wide range of thermal properties.[144,150–154] The data analysis assumes
several conditions that must be fulfilled to obtain meaningful results. Samples must be
homogeneous and have sufficient absorption/emission in the visible and IR range. In the
visible range, the absorption is necessary for the excitation with the laser. In the IR range,
the emission is necessary for detection with the IR camera. Low absorptivity/emissivity
samples can be modified by adding thin layers of a high-emissivity material like carbon.
For transmission experiments as discussed above, the samples are assumed to be thermally
thin, i.e., the sample thickness is significantly smaller than the thermal decay length,

µ=
√

√ α

π flock-in
. (2.5)

At the same time, the samples must be sufficiently thick to ensure mechanical stability
and withstand high gas flow rates when applying a vacuum. Lastly, samples are assumed
to be infinitely large in the direction of heat transport, i.e., the height and width of 2D
samples and the length of 1D samples must be much larger than µ. Since the thermal
decay length depends on flock-in, it is recommended to investigate unknown samples at
different frequencies. Evaluating the resulting data will ideally show a plateau regime in
which the data evaluation is valid. If no such region can be found, either the sample or
the measurement technique must be adapted.

While previous group members established lock-in thermography for films, I focused
on measuring thin filaments. In 1998, Oksanen et al. reported the first measurements
of fibers using the lock-in principle and IR detection.[155] For their experiments, they
used a single-pixel IR detector and scanned the temperature along fiber bundles with a
diameter of several millimeters. With advances in IR detection hardware, measuring
fibers with diameters as low as 10µm was possible.[153] However, the data acquisition
took around 30 min because the measurement setup consisted of only a single-pixel
detector but the whole fiber needed to be scanned. Therefore, analyzing samples under
varying conditions or characterizing a large number of fibers was infeasible.

With the availability of IR cameras, the measurement times decreased significantly.
Thus, more thorough investigations of convective heat losses were possible.[144,154]
Researchers derived an analytical model to describe the heat distribution in thin fibers
upon periodic excitation with a laser. They utilized their model to characterize fibers
of different materials with diffusivities spanning four orders of magnitude.[154] Most
importantly, they found that the surrounding atmosphere greatly influences the apparent
thermal diffusivity.[144] Consequently, the highest quality results are obtained when the
measurements are performed in a vacuum.
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During the last 15 years, several alternative measurement methods to characterize the
thermal properties of thin fibers have been proposed. They include the 3ω technique,[156]
the transient electrothermal technique (TET),[157,158] time-domain thermoreflectance
(TDTR),[159,160] and Raman thermometry.[161,162] Each has distinct strengths and weak-
nesses compared to lock-in thermography.

Measurement methods that detect electrical resistance instead of temperature (3ω, TET)
have a very good signal-to-noise ratio. In 3ωmeasurements, an alternating current heats
the sample. As a result, the electrical resistance of the sample will change. Repeating
the measurement at several frequencies allows the characterization of the thermal
properties of the sample.[156] The 3ω technique has two major drawbacks. It demands
the knowledge of the temperature coefficient of resistance to transform the electrical
signal into a thermal signal. This shifts the accuracy of the temperature measurement
from the sensor to a temperature control unit. Moreover, the relation between current
and voltage must be linear. Thus, the investigation of semiconductors and insulators is
not possible.[157]

The second technique based on the change of electrical resistance with temperature,
TET, alleviates these problems. It investigates the kinetics of the resistance change to
determine the thermal diffusivity.[157] Therefore, no temperature calibration is needed.
Insulators can be measured when they are coated with a thin conductive layer, e.g., gold.
Since the thermal properties are calculated from the change in electrical resistance, the
contact resistance between the sample and measurement electrodes strongly influences
the results. Besides, high thermal conductivity samples reach their final temperature
and thus final resistance very quickly. This can be detrimental to the measurement
accuracy.

A commonly used method for the determination of cross-plane thermal properties is
TDTR. Its primary advantage compared to other techniques is the very high spatial
resolution limited by the spot size of a laser. Therefore, investigating fibers in the
micrometer regime in both longitudinal and transverse directions is possible.[159,160]
However, the sample preparation requires a precise cut along the fiber cross-section.
This adds to the challenging measurement where two lasers must be perfectly aligned.
Lastly, the data analysis model is based on many experimental parameters that have to
be determined precisely for accurate measurements. Due to the high demands of sample
preparation, experimental procedure, and data analysis, TDTR is very time-consuming
and error-prone without extensive prior experience.

Raman thermometry is another alternative method to characterize the thermal properties
of small structures. It detects temperature-induced changes in Raman peak frequency and
shape.[161] Individual fibers as thin as 400 nm have been measured,[162] demonstrating
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the capabilities of the technique. However, as with the 3ω method discussed above, a
calibration relating the measurement signal to the temperature must be performed. If
the material of interest shows no temperature-dependent Raman signal, the sample can
be coated with a thin layer of carbon.

All presented characterization methods are appropriate for specific applications. TET
and 3ω are particularly suitable for electrically conductive samples, TDTR is able to
measure the transverse thermal properties, and Raman thermometry can characterize
very small samples. Lock-in thermography is useful due to the simple sample preparation,
measurement procedure, and data analysis. Furthermore, it can be applied at different
length scales for electrically conductive and non-conductive samples.

Xie et al. utilized TET to determine the thermal properties of carbon nanotubes before
and after current-induced thermal annealing.[163] By using in-situ characterization,
they prevented errors due to sample-to-sample variation and sample transfer. They
demonstrated the effects of the annealing step on the thermal diffusivity. Combining
their results with Raman spectroscopy unveiled a correlation between the thermal and
mechanical properties.

TDTR measurements show how mechanical strain influences the thermal conductivity of
different polymer fibers in the axial direction. While the thermal conductivity of semi-
crystalline and liquid crystalline polymers increases, amorphous polymers are unaffected
by the strain.[164] These results expand our understanding of how different molecular
arrangements influence the thermal transport properties.

A different study investigated the thermal properties of single spider silk fibers.[165]
The authors reported a surprisingly high value of more than 80 mm2 s−1, using an elec-
trothermal technique. However, this result is most likely wrong. Fuente et al. measured
identical fibers with lock-in thermography and found a much more reasonable value of
0.2 mm2 s−1.[166] This example demonstrates the difficulty of accurately determining
the thermal properties of individual fibers.

In Chapter 7, I present a lock-in thermography setup to determine the longitudinal
thermal diffusivity of single, micrometer-sized fibers. Automating the measurement and
data analysis allowed me to investigate the influence of several experimental parameters.
In a subsequent study, I employed the setup to characterize carbon fibers and relate
their mechanical and thermal properties with composites.
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2.3 Machine Learning

In science, we try to find models to predict the behavior of a system. The underlying
models are often rigorous, analytical descriptions but finding complete explanations is
sometimes hard or impossible. Statistical methods can help us to predict the behavior of
complex systems. Machine learning aims to teach machines decision-making based on
previous experiences. Machine learning is a large field of research, with whole institutes
dedicating all of their resources only to this topic. There are several different approaches
suitable to distinct problem classes. The most important categories are below.

Supervised learning This is probably the first approach that comes to mind when
thinking about machine learning. In supervised learning, a large set of labeled
training data is available. The data consists of features describing a system as the
inputs and their associated properties as outputs. The goal is to train a system to use
unseen features as the input and predict the correct output. Supervised training
itself consists of two subclasses, classification and regression. In classification
problems, the set of possible outputs is finite and small, while for regression, the
output is continuous. Examples include image classification,[167] the prediction of
nanoparticle size,[168] and more efficient quantum mechanics simulations.[169]

Unsupervised learning For these types of problems, only input data is available, and
the correct output is unknown. The system tries to find patterns or structures
inherent to the data. The final model will either predict the probability of the
observation belonging to an underlying distribution (density estimation), assign a
category to the input (clustering), or reduce the data to the most important fea-
tures without losing information (dimensionality reduction). Examples are movie
recommendation systems,[170] the detection of protein concentration,[171] and the
identification of chemical properties influencing power conversion efficiency.[172]

Reinforcement learning Here, an agent is presented with a current state and selects
an action based on it. Afterward, the agent is rewarded or penalized based on the
action and presented with a new state based on his previous action. The target
is to find an optimal policy to maximize the rewards. An early example includes
teaching computers to play tic-tac-toe.[173] More recently, this kind of machine
learning received a lot of attention for the creation of chatbots,[174] playing more
difficult games like Go,[175] and enabling self-driving cars.[176]

During the remainder of this chapter, I will focus on artificial neural networks (ANNs)
for supervised learning because they were the method of choice for the image analysis
presented in Chapter 10.
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In materials science, researchers have used ANNs for more than 30 years.[177,178] With
the newly gained general interest in machine learning, the last few years saw a surge in
publications. One possible application is the substitution of ab initio simulations. Initially,
ANNs and quantum mechanics simulations had to be combined to generate accurate
results. Still, they decreased the computational cost by orders of magnitude.[169] Later,
ANNs could predict interatomic potentials with comparable accuracies to molecular
dynamics and Monte Carlo simulations for specific systems on their own.[179] Today, the
availability of larger datasets allows models to predict potentials between any atoms.[180]
These systems will support the discovery of new materials by steering experiments to
the most promising candidates.

Besides finding new materials, neural networks also revolutionize data analysis. Often,
physical models are computationally complex and contain many free parameters. This
makes finding the correct values difficult and renders some evaluations impossible. ANNs
can find solutions to complex equations quickly. They have been successfully applied for
both time and frequency domain thermoreflectance.[181,182]

Several recent publications utilized ANNs to detect temperature with different kinds of
optical sensors. All of them focused on the analysis of spectra. Azad et al. investigated
fiber-optic sensor systems based on simulated Brillouin light scattering.[183] These sensors
allow the determination of temperature in an optical fiber with several kilometers in
length.[184] A pump and probe beam interact with each other, and the signal reaches
a maximum at a particular frequency. This Brillouin frequency shift is proportional to
the temperature. Compared to identifying the maximum with traditional curve fitting,
evaluation with an ANN is faster and more accurate.[183]

A second application of ANNs for temperature sensors are fiber Bragg gratings. Their
reflectance spectrum depends on the temperature due to the thermal expansion of the
fiber. However, the reflectance spectra of neighboring Bragg gratings overlap, especially
in high-density sensors. Conventional data analysis techniques try to identify the peak
positions from the overlapping spectra. ANNs can directly correlate the whole spectrum
to the temperature.[185] This allows resolving temperature distributions along the fiber.

For temperature detection in even smaller systems, quantum dots can be employed. Their
fluorescence signal depends on temperature.[186] By embedding quantum dots next to a
microfluidic channel, the temperature can be monitored in real-time and with very high
local precision. The analysis of the fluorescence spectra with an ANN leads to higher
accuracy than traditional analysis with errors as low as 0.1 K in a small temperature
regime and 0.4 K in a large regime between 100 K and 300 K.[187]

The given examples demonstrate the capabilities of ANNs. In the following paragraphs, I
will describe their basic principles to outline how they achieve this.
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Figure 2.5.: Schematic view of an artificial neural network. (a) Overview of the whole network
structure. (b) Detailed view of one layer.

ANNs imitate biological brains. Individual neurons are connected with each other
and send outputs depending on the inputs they receive. In contrast to their biological
counterpart, neurons in ANNs are organized in layers (Figure 2.5a). Each neuron receives
inputs from all neurons in the previous layer and sends its output to all neurons in the
following layer. Assuming a linear model, the output is simply the weighted sum of
all inputs. Since linear models can only describe a fraction of phenomena, nonlinear
models are usually employed. For these, a nonlinear activation function is applied to the
weighted inputs to create the final output (Figure 2.5b). Mathematically, the input for
a given layer l is a vector, X l . It is the concatenation of the outputs, x , of the previous
layer with N neurons,

X l =













x1

x2
...

xN













. (2.6)

For each neuron n, the input is the product of X l with a weight matrix, Wn. Finally, the
activation function, fn, is applied to obtain the output,

an = fn(Wn ◦ X l). (2.7)

The activation function can be any mathematical function. A common choice is the recti-
fied linear unit because it is nonlinear and requires very little computational power.[188]
Its definition is

ReLU(z) =max(0, z) =







0 if z < 0

z otherwise
(2.8)
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Before we can train the model by updating the weights, we need to define our goal.
Two criteria are important: (1) How well does our model describe the training data?
(2) Can the model correctly predict the results for unseen data? Both of these questions
are quantified with loss functions. Like activation functions, loss functions can be any
mathematical function. Depending on the problem statement, several loss functions are
commonly used. A simple example is the mean squared error (MSE). For a data set of
size S, predicted outputs, a, and correct labels, y , the MSE is

MSE=
1
S

S
∑

i=1

(yi − ai)
2. (2.9)

The MSE works well for continuous, numerical data, like in regression tasks. For classifi-
cation problems, the MSE is ill-suited, and other loss functions are necessary. A common
choice is the cross-entropy loss (CEL). Let us first consider only two distinct classes. The
correct data labels are one if the feature belongs to the first class and zero otherwise.
The predictions are a real number in the range [0, 1] and can be interpreted as the
probability of a feature belonging to the first class. One way to define the best result is
to maximize the probability that a label is predicted correctly by maximizing

S
∏

i=1







ai if yi = 1

1− ai otherwise
(2.10)

=
S
∏

i=1

a yi
i (1− ai)

1−yi . (2.11)

Taking the natural logarithm transforms the product into a computationally easier-to-
manage sum,

S
∑

i=1

yi log(ai) + (1− yi) log(1− ai). (2.12)

The sum can be extended to tasks with C classes via one-hot encoding, i.e., each label is
a vector of dimension C where each component, y(c), is the probability of the feature set
to belong to class c. By inverting the sign, the loss function will get smaller, the better
the predictions are. This leads to the final equation for the cross-entropy loss,

CEL= −
S
∑

i=1

C
∑

c=1

y(c)i log
�

a(c)i

�

+
�

1− y(c)i

�

log
�

1− a(c)i

�

. (2.13)
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To ensure that our predictions are compatible with one-hot encoding, we need to trans-
form our final output from arbitrary numbers to a probability density. We can do this by
using the softmax function as the activation function of our final layer,

a = softmax (z) =
1
∑N

n=1 exp(zn)













exp(z1)
exp(z2)
...

exp(zN )













. (2.14)

For the final layer, the number of neurons, N , must equal the number of classes, C .
We use the exponential function instead of the simple sum because this will cancel the
logarithm in Equation 2.13, making calculations easier.

We have defined how our network calculates outputs and how to score the results. The
next step is to train the model. Training is similar to fitting data with a given function
via gradient descent. In essence, we try to minimize the loss function. The initial weights
are random numbers, and the model uses them to calculate the result for the first input
vector. We use the predicted output to calculate the loss function with regard to the
correct label. To optimize the weights, we take the partial derivative of the loss function
regarding each weight. Depending on the sign and magnitude of the derivative, we
update the individual labels to minimize the loss function, i.e., we follow the gradient
of the loss function. Afterward, we proceed with the next feature vector and adjust the
weights again. The whole procedure is repeated until the loss function reaches a target
value or its change becomes insignificant. Ideally, we want to reach the global minimum
of the function because at that point the weights are optimal for the given network
architecture. In practice, the number of weights for typical ANNs can be millions of
parameters.[167] This makes it very tedious to find the global minimum. Luckily, finding
the optimal parameters is not necessary because local minima usually are sufficient for a
good prediction quality.

To visualize gradient descent, we can imagine a surface in multi-dimensional space
where the height corresponds to the magnitude of the loss function. The algorithm
starts at an arbitrary point and follows the gradient towards the minimum (Figure 2.6).
Effective and efficient learning depends on how accurate and fast we find the minimum.
Several hyperparameters govern the learning process. The size of the steps is determined
not only by the derivative but also by the learning rate. Training will be faster with
higher learning rates, but too high rates can lead to uncontrolled behavior. Since we
expect to get progressively closer to the minimum, the needed steps should decrease
gradually. It can be useful to dynamically adjust the learning rate to prevent taking too
large steps and skipping over minima. Two hyperparameters are used to change the
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Figure 2.6.: Optimization path taken by gradient descent for a given loss function and different
learning rates. A high rate (orange) can lead to uncontrolled behavior. Small rates (red) take
longer to converge but can be more accurate.

learning rate during training, the weight decay and the momentum. The weight decay
systematically decreases the learning rate over time and is independent of the current
state of the network. The momentum uses the history of previous optimization steps to
calculate the next step. By doing so, oscillations of gradient updates are reduced, and
the path is smoothed.

Another technique to achieve better training results is to standardize the inputs. It
prevents very large numbers that could lead to difficult optimization and, in the worst
case, even overflow errors. One normalization method is to compute the z-score that
transforms the feature vectors to have zero mean and unit variance by applying[189,190]

xnorm =
x − x̄
σ

, (2.15)

where x̄ is the mean value and σ the standard deviation.

After we trained the network to achieve the best results on our training data, the final
step is to investigate how well the model predicts unseen data. A second data set, the
validation set, is necessary. The validation loss measures the generalization performance
of the model. If the validation loss is significantly higher than the training loss, the model
is overfitting the training data.
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We can train the model with additional features to improve its generalization. However,
adding training data is often not possible because acquiring the data is time-consuming.
Another option to improve generalization is to introduce dropout layers. In these layers,
a certain percentage of neurons is randomly deactivated. Thus, the model has less
information available, and each node depends less on specific inputs. This has a compa-
rable effect to adding random noise to the training data. Dropout layers are only used
during training and deactivated for the final model execution. I used these regularization
techniques in Chapter 10 to evaluate time-temperature integrators.
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Outline 3
3.1 Synopsis

My research as a Ph.D. candidate focused on two main aspects: method development
and data-driven analysis. By utilizing them individually or in combination, I contributed
to the fields of thermal transport characterization and heat monitoring (Figure 3.1).
Three main projects form the basis of my thesis. In the first project, I developed an indoor
measurement instrument to characterize passive daytime cooling materials. In a follow-
up study, the device is used to characterize the performance of a passive cooling system
based on upcycled materials. My second project centers around lock-in thermography
and fiber measurements in particular. I investigated in detail how different measurement
parameters influence the evaluation results. Equipped with this knowledge, I studied
carbon fibers and compared the thermal properties of pure fibers with their composites.
My final project covered heat monitoring with the application of time-temperature
integrators. After examining a gradient system, we applied the new insights to create an
array-based sensor. I developed an artificial neural network to evaluate the data and
predict time and temperature simultaneously.

Thermal transport characterization Heat monitoring
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Time-temperature
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Figure 3.1.: Graphical overview of my main research projects. I developed methods and used
advanced data analytics techniques to work on three projects contributing to the fields of thermal
transport characterization and heat monitoring.

33



Heat management with passive cooling materials can contribute to lower power consump-
tion while maintaining and even elevating our living conditions.[41,102,117] The cooling
performance is usually characterized by outdoor measurements whose results depend
on the climate and weather at the respective research facility. Therefore, comparing dif-
ferent materials measured at different times or locations is impossible, and reproducible
characterization methods are needed.[122,123] In Chapter 5, my colleagues and I designed
a measurement apparatus that mimics outdoor conditions inside a laboratory.

The sample is placed inside a closed chamber below a black-coated aluminum dome
(Figure 3.2). Liquid nitrogen surrounds the dome and cools it to 80 K. The radiative
heat transfer between the sample and the heat sink simulates radiation to outer space.
Several layers of polyethylene foil prevent convection between the sample and the dome.
In addition, a temperature-adjustable gas flow flushes this layered convection shield and
thus enables setting the ambient temperature. Lastly, a solar simulator at the top of the
dome illuminates the sample. The light intensity is adjustable and allows investigation
of the influence of yet another environmental parameter on the cooling performance.

Liquid
nitrogen

Gaseous
nitrogen

Solar simulator

Warm air

Sensor wires

Radiation shield

XPS insulation

PE container

Liquid nitrogen

Al dome

Sample

PE cover

Figure 3.2.: Indoor characterization setup for daytime passive cooling materials.

Graphite is a material with a high emissivity across a large wavelength regime. It
is a capable passive cooling material at night, but its cooling power is outweighed
by solar absorption during the daytime. We used it as an example material to show
both the temperature difference to ambient conditions and the cooling power with
varying intensities of our solar simulator. In a second demonstration, we compared
the theoretically expected temperature for a polydimethylsiloxane (PDMS) film with
indoor measurements at different ambient temperatures. Although an offset is visible,
the trends agree well (Figure 3.3). Overall, the results show that our setup is suited to
investigate the impact of ambient conditions on the passive cooling performance of novel
materials.
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Figure 3.3.: Experimental and simulated temperature difference for a PDMS film at different
ambient temperatures.

A validation experiment compares our indoor measurements to field tests and found a
qualitative agreement. Quantitative differences are mainly attributed to the absence
of atmospheric absorption in our indoor setup. A possible solution is to adjust the
transmission of the convection shield to simulate atmospheric transmission. In our
publication, we showed first measurements that allow us to distinguish the selectivity of
PDMS samples.

In summary, we designed a measurement instrument for passive cooling characterization
under controlled laboratory conditions. This enables the reproducible and, thus, compa-
rable measurement of new material systems. The influence of environmental parameters,
namely the illumination intensity and ambient temperature, can be investigated. Our
setup can be the foundation of future research and material development.

In a follow-up study, we utilized our indoor setup to investigate the potential upcycling
of aluminum-plastic laminates (APLs). Due to their excellent barrier properties, they
are widely used for packaging applications in the food and medical industry.[191–194]
However, the recycling of APLs is difficult, and the two most common post-consumer
strategies are energetic recycling and the deposition in landfills.[195,196]

We investigated the reflectance spectrum in the visible range of APLs from packaging
materials for three different goods: chips, coffee, and facemasks. With their inherent high
solar reflectance, APLs are a prime candidate for passive cooling applications. Besides
a high solar reflectance, emission in the infrared regime is needed for passive cooling.
The emissivity depends on the outermost material and its thickness. Fourier-transform
infrared spectroscopy reveals different properties for the three APLs. While the chip bag
has a relatively low emissivity, the bag of the face masks shows promising properties.
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We measured all three pristine samples in our indoor setup to investigate the interplay
between solar reflectance and infrared (IR) emission on the cooling performance.

All three samples showed a cooling effect in the dark, but with illumination, only the
face mask bag kept a temperature below the ambient (Figure 3.4). With the ability to
adjust the light intensity, we could determine at which intensity the solar absorption
outweighed the cooling power of the APLs. This revealed a relative intensity of 50 % for
the chip bag and 75 % for the coffee bag as the turnover points.

Polymer Adhesive 

Aluminium 

(a)

(b)

Figure 3.4.: (a) Cooling performance of different APLs with and without illumination as
determined by our indoor setup. (b) Structure of an APL consisting of three different materials.

An additional layer with high IR emission can increase the cooling performance. By
doctor blading PDMS on the APLs, the emission in the IR regime is significantly improved
for all three samples. Consequently, the cooling performance increases, and all samples
reach temperatures below ambient even under full illumination. In contrast to commonly
reported materials, the fabrication of APL-based devices does not depend on sophisticated
nano- or microstructuring. Thus, APLs have the potential to contribute to the widespread
application of passive daytime cooling.

Calculating the yearly energy savings for a standard building highlights the potential
benefits of our upcycling approach. We used hourly weather data to simulate the energy
savings for a typical midrise apartment building at 1020 locations across the USA and
270 locations across China. Depending on the location, APL-based passive cooling foils
can save up to 106 GJ per building and year if the foils are applied throughout the
entire year (Figure 3.5). In cold regions, the passive cooling leads to negligible power
savings and sometimes even to additional energy needed for heating. More sophisticated
application of the APLs as retractable covers will increase power savings throughout all
locations since the cooling can be stopped during cold seasons.
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Figure 3.5.: Potential yearly energy savings for a typical apartment house located in different
regions across the USA and China.

Passive daytime cooling centers around heat transport through radiation, while another
transportation mode is conduction. Thermal conduction is essential for heat management
involving insulation as well as heat spreading. Materials based on fibers are interesting
due to their flexibility as fabrics or nonwovens and their added mechanical strength in
composites. However, the characterization of single fibers is challenging, and measure-
ment methods often rely on electrically conductive samples or complex measurement
instruments. In Chapter 7, I present a lock-in thermography setup suitable to measure
fibers with diameters ranging from several to hundreds of micrometers.

My colleagues and I designed an experimental setup with a sample holder facilitating
the easy change of fibers (Figure 3.6). In addition, we developed software interfaces
between the different instruments to enable automatic measurements once the laser is
focused on the fiber. Previously, every experiment had to be started manually by changing
parameters at various instruments. This approach was error-prone and time-consuming,
rendering comprehensive measurement series unfeasible. Combining the semi-automatic
measurement procedure with an almost fully automated data evaluation process, we
could systematically investigate the influence of various experimental parameters on the
resulting thermal diffusivities.

Before carrying out the experiments, we validated the measurement and evaluation with
commonly found materials. The results agreed well with literature values. Subsequently,
we investigated the influence of four experimental parameters: laser power, focal distance,
optical magnification, and fiber alignment. During the validation, we could see a strong
decreasing trend of the thermal diffusivity with increasing laser power. The trend was
only apparent for some fibers, well reproducible, and most pronounced when including
the amplitude for the evaluation (Figure 3.7). At higher powers, a plateau was visible,
and one might erroneously conclude that this indicates the true value.
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Figure 3.6.: Schematic image of the experimental setup for single fiber lock-in thermography.
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Figure 3.7.: Apparent thermal diffusivity of a single, 30µm PEEK fiber measured at varying
laser powers.

Further measurements and comparisons between fibers with small and large diameters
revealed that, in fact, the diffusivity obtained at the smallest powers is correct. We
attribute this power dependence to the high temperature fluctuations that thin fibers
experience even if the laser power is below 1 mW. Our assumption is supported by the
varying apparent thermal diffusivity with changing the focal distance where the same
trend can be observed. The maximum linearized amplitude is an indicator of the periodic
temperature fluctuation. Plotting it against the apparent thermal diffusivity for varying
powers and focal distances reveals a good overlap (Figure 3.8).

Few previous publications measured single fibers via lock-in thermography.[144,154] Their
setup consisted of a single optical system to investigate fibers that were in part smaller
than the pixel resolution. This poses the question if these measurements are to be trusted
and how the relative size of the fiber influences the results. We compared two lenses with
a magnification of 1× and 8× resulting in pixel sizes of 10µm and 1.3µm, respectively.
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Figure 3.8.: Slope of the amplitude and phase of the same fiber at different laser powers and
focal distances.

We found no difference between the thermal diffusivities calculated from the different
measurements. Thus, we could verify previous studies.

Another interesting aspect of single fiber measurements is the fiber’s alignment relative to
the camera’s pixel grid. Our evaluation software can automatically detect the orientation
of the fiber and correct the data accordingly. For fibers with a size smaller than a single
pixel, discrete jumps in the data are visible. They originate from the fiber traversing from
one pixel line to the next. We could show that this seemingly unusable data leads to the
same thermal diffusivity as a perfectly aligned fiber. Therefore, the tedious alignment of
a fiber is not necessary when using our evaluation software.

In summary, we showed that lock-in thermography is a robust and powerful evaluation
technique. With the software that we created and made publicly available, measurement
series under different conditions are feasible, and the evaluation is highly automated. I
applied single-fiber lock-in thermography in a project investigating carbon fibers.

Carbon fibers play an important role commercially, with applications ranging from
thermal insulation over heat spreading to increasing mechanical stability.[53,197,198]
Their thermal and mechanical properties depend on the source material and processing
conditions. The influence of production temperature on morphology and mechanical
strength has been investigated extensively.[199] However, no study regarding the impact
on thermal properties has been conducted. In Chapter 8, we investigated four different
kinds of carbon fibers with varying tensile moduli.

An initial morphological characterization showed that one type, HR40, has a higher crys-
tallinity than the other investigated fibers. HR40 also possesses the highest mechanical

3.1 Synopsis 39



strength with a tensile modulus of 390 GPa. Without single fiber measurement tech-
niques, the thermal conductivity of the carbon fibers can only be estimated. By varying
the fiber content of laminates and assuming a linear mixture model, extrapolation leads
to the best estimate of the single fiber conductivity (Figure 3.9a).

(a)

(b)

Figure 3.9.: (a) Thermal conductivity of carbon fiber laminates and extrapolation to the pure
fiber. (b) Comparison between extrapolated and directly measured thermal conductivities.

In our study, we compared these results with single-fiber lock-in thermography. The
results agree reasonably well, but the direct measurements show a thermal diffusivity
in better agreement with the morphological investigation and mechanical properties
(Figure 3.9b). This demonstrates that lock-in thermography is suitable for verifying
models calculating the thermal properties of a composite based on the constituents’
values, and potentially even leads to the development of improved models. Alternatively,
the results for single fibers can be used with existing models to predict compound
properties.

Predicting the thermal properties of fiber-incorporating materials allows the development
of materials suited for heat management. As with passive daytime cooling, the aim is to
keep the temperature in a well-defined range. Heat monitoring is needed to control if
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these management strategies are successful or to inspect systems where management
approaches are impractical or impossible. My final two publications introduce time-
temperature integrators based on photonic systems.

The periodic arrangement of particles in colloidal crystals leads to pronounced structural
colors. Changing colors due to changes in the lattice constant are clearly visible to
the naked eye. This facilitates the application of colloidal crystals as optical sensors
for a multitude of physical and chemical quantities, including temperature.[200–202]
In Chapter 9, we introduced a new method to create a time-temperature integrating
colloidal crystal based on a continuous gradient of a nanoparticle mixture. Integrators
are irreversible sensors, i.e., they record the history of a system instead of the current
state. Time-temperature integrators in particular record temperatures above a certain
threshold and will not revert to their initial state even if the temperature falls again.
This makes them ideal for indicating if a system stayed within the maximum allowed
temperature regime and how substantial potential deviations were.

Colloidal crystals based on polymer particles lose their structural color at a sufficiently
high temperature. This film-formation process starts around the glass transition temper-
ature, Tg. The sintering kinetics are narrowly centered around Tg for systems based on
a single polymer. This limits applications to a small range around a specific temperature.
Mixing particles with identical sizes but different Tg changes the kinetics of the sintering
kinetics. We created mixtures of low- and high-Tg particles and could show that a readout
is possible in a 50 K range depending on the composition.

Infusion-withdrawal-coating allows the creation of a continuous gradient of binary
nanoparticle compositions on a single substrate. The process starts with a flask filled
with a dispersion of a single kind of particle. A syringe pump slowly removes the
dispersion from the flask and thus leads to the formation of a colloidal crystal on a
substrate inside the flask. At the same time, a second syringe pump introduces a second
particle type (Figure 3.10). Due to the identical size and slow deposition, the different
particles still form a colloidal crystal and show the same stopband position over the
whole substrate. Using simple simulations and electron microscopy images, we proved
that both particle types mix randomly and no phase segregation occurs. This allows the
creation of a sample with a single stopband but varying film formation kinetics across its
length.

Heating the gradient crystal to a given temperature leads to the film formation starting
at the end where the majority of particles have a low Tg. The discoloration continuously
moves along the gradient with longer sintering time (Figure 3.11). This allows us to
access the full potential of the binary mixture and evaluate temperature events over a
greater range than possible with a single particle type. While we based the evaluation of
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Figure 3.10.: Infusion-withdrawal-coating creates a colloidal crystal with a continuous gradient
of the particle mixture. The color indicates the composition and is not related to the optical
impression of the system.

the sintering kinetics on spectroscopic measurements, we gave a short outlook that the
optical evaluation of colors based on microscopic images might be feasible.
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Figure 3.11.: (a) Microscopy images of the gradient colloidal crystal after different times.
(b) Corresponding stopband intensity at different positions and times.

The gradient structures that we created were scientifically impressive but not suited for
large-scale production. The infusion-withdrawal technique is very slow, and creating a
single substrate takes several hours. Furthermore, the majority of the particle dispersion
is neither deposited on the substrate nor suitable for reuse because of the mixture of
particles now present in the dispersion. A solution to these shortcomings is printing as a
commercially scalable process to create colloidal crystals.[203,204]
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Figure 3.12.: Drop-casting of a single spot and final sample. Each spot has a distinct composition
of nanoparticles.

For our next project, we created arrays of spots where each spot has a distinct mixture of
particles with a different Tg. Our printing procedure is based on drop-casting single spots
and utilizes a metal rod mounted to a 3-axis stage (Figure 3.12). The automation of
the setup cut down the sample creation time by several hours. Thus, we could measure
samples back-to-back. In addition to the increased fabrication speed, the array-printing
procedure substantially decreased the required dispersion volume. Only a minuscule
amount of dispersion is needed for each spot, and the remainder is not contaminated with
other particles and is thus reusable. The last major advantage is the possibility of using
dispersions with arbitrary compositions. Only two components with a monotonically
changing ratio could be used for the gradient. In contrast, we used ternary mixtures of
four different particle types for the array printing.

The gradient samples showed that image analysis is a feasible detection mechanism.
Thus, we analyzed our arrays with an off-the-shelf smartphone camera. This has two
major advantages: (1) We were able to characterize the intensity evolution of all spots
simultaneously by capturing a series of images showing the whole substrate. (2) The
evaluation of our sensors is widely accessible because no specialized hardware like
spectrometers is needed.

Because our system shows a highly complex sintering behavior, an analytical description
is not feasible. Instead, empirical or statistical methods should be used. Machine learning
is a powerful method to predict the properties of unknown data and has been applied to
different sensors in the past.[171,187,205,206] With the automated fabrication and simple
characterization, our system is ideally suited for machine learning. We used supervised
learning to train a model that can independently predict time and temperature.

We validated the trained model over the whole parameter space with a second data set
containing samples at each temperature and time. The results resemble the training
data very well and indicate the high generalizability of our model (Figure 3.13). While
the predictions are not perfect, the validation across all possible parameters allows
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of our array-based time-temperature integrator.
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stating individual errors and shows where the system needs to be optimized. Only
the two highest investigated temperatures show systematic errors. Their prediction
quality can be further increased by adding additional particle types with higher Tg to
the system. A higher resolution can be achieved by increasing the number of mixtures
on the substrate.

The combination of automated fabrication and image analysis based on machine learning
allows the application of a photonic system as temperature sensors. The readout is simple
and can be done by non-specialists. Possible further optimizations of our system include
the miniaturization of the individual spots to increase the information density. In addition,
the fabrication can be sped up by either using a stamp or moving from drop-casting to
inkjet printing.

In conclusion, I developed two measurement instruments to characterize thermal trans-
port properties. The passive cooling measurement setup allows the reproducible compar-
ison between materials aiming to reduce energy consumption for cooling. At the same
time, the ability to easily characterize thin fibers allows designing materials with specific
thermal properties. Both characterization methods facilitate the design of materials
for heat management applications and will be the foundation for further research. In
addition, my advanced data analytics skills allowed me to establish photonic systems as
possible heat monitoring systems. They are needed to validate that the heat management
strategies worked as expected.

In the next section, I briefly outline my contributions to the presented publications.
Finally, the second part of my thesis contains all publications.
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3.2 Contribution to Joint Publications

Chapter 5: A Tailored Indoor Setup for Reproducible Passive Daytime Cooling
Characterization

Qimeng Song, Thomas Tran, Kai Herrmann, Tobias Lauster, Maximilian Breitenbach,
and Markus Retsch

We published this article in Cell Reports Physical Science, 2022, 3(8), 100986.

Qimeng Song and I were leading the conceptualization and investigation. I designed the
measurement apparatus, established the communication between hardware components,
analyzed the data, and visualized the data. Qimeng Song used the setup to characterize
the steady-state temperatures and cooling powers. Maximilian Breitenbach was involved
in the investigation by supporting Qimeng Song with the measurements. Kai Herrmann
contributed formal analysis and validation by doing the theoretical calculations. Tobias
Lauster contributed validation and resources, creating samples. Markus Retsch led
supervision, project administration, and funding acquisition. All authors contributed to
the original draft writing.

Chapter 6: Upcycling chips-bags for passive daytime cooling

Qimeng Song, Thomas Tran, Kai Hermann, Holger Schmalz, and Markus Retsch

We submitted this article to a peer-reviewed journal.

Qimeng Song led the investigation and wrote the original draft. He created the samples
and carried out the optical and thermal characterization. I visualized the data together
with him. Additionally, I contributed to the investigation and formal analysis. I did the
energy-saving simulations to show the potential impact of passive cooling materials in
the United States and China. Kai Herrmann carried out investigations regarding the
cooling power predictions by utilizing theoretical models. Holger Schmalz performed
the Raman experiments and analyzed the resulting data. Markus Retsch supervised the
project. All authors contributed to the editing of the draft.
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Chapter 7: Characterizing the Thermal Diffusivity of Single, Micrometer-Sized
Fibers via High-Resolution Lock-In Thermography

Thomas Tran, Charly Kodisch, Marius Schöttle, Nelson W. Pech-May, and Markus Retsch

We published this article in The Journal of Physical Chemistry C, 2022, 126(32),
14003–14010.

I lead the project, including conceptualization, investigation, software development, and
formal analysis. I designed the vacuum chamber after discussions with Marius Schöttle
and all remaining parts of the hardware setup. I developed all software parts, i.e., the
automatic measurement and evaluation scripts. Charly Kodisch was involved in the
investigation by preparing samples and measuring the fiber diameters. I measured all
thermal diffusivities and visualized the data in cooperation with Marius Schöttle. Nelson
W. Pech-May and Markus Retsch supervised the project. Markus Retsch acquired the
necessary funds and provided resources. All authors contributed to the original draft
writing.

Chapter 8: Relationship Between the Tensile Modulus and the Thermal
Conductivity Perpendicular and in the Fiber Direction of PAN-Based Carbon Fibers

Simon Bard, Thomas Tran, Florian Schönl, Sabine Rosenfeldt, Martin Demleitner,
Holger Ruckdäschel, Markus Retsch, and Volker Altstädt

We submitted this article to a peer-reviewed journal.

Simon Bard was responsible for the original draft and project administration. He created
the composite materials and characterized them. I investigated the thermal properties
of the single fibers and analyzed the resulting data. Sabine Rosenfeldt did the scattering
experiments. I visualized the data for all experiments. Florian Schönl was responsible
for the data curation and validation. All authors took part in the writing process.
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Chapter 9: Time-Temperature Integrating Optical Sensors Based on Gradient
Colloidal Crystals

Marius Schöttle, Thomas Tran, Tanja Feller, and Markus Retsch

We published this article in Advanced Materials, 2021, 33(40), 2101948.

Marius Schöttle led the conceptualization, investigation, formal analysis, and data
curation. This included sample creation and characterization regarding optical properties
and sintering behavior. He also wrote the original draft. I supported the investigation
and formal analysis by creating software solutions for analyzing the time-dependent
optical data. Tanja Feller was involved in the investigation by doing SEM measurements.
Markus Retsch supervised the project and acquired the funds.

Chapter 10: Machine Learning Enabled Image Analysis of Time-Temperature
Integrating Colloidal Arrays

Marius Schöttle, Thomas Tran, Harald Oberhofer, and Markus Retsch

Accepted for publication in Advanced Science.

Marius Schöttle and I were responsible for the conceptualization, investigation, formal
analysis, and data curation. Marius Schöttle focused on chemical synthesis, sample
creation, and traditional analysis, i.e., UV-Vis spectroscopy, SEM and DSC measurements.
Mymain tasks were software development and image-based analysis. In detail, I prepared
the image data for the neural network, trained and validated the network. Marius
Schöttle and I wrote the original draft and visualized the data together. Harald Oberhofer
and Markus Retsch supervised the project, reviewed and edited the manuscript.
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5.1 Summary

Passive daytime cooling materials can lower global energy consumption owing to their
autonomous cooling capability. Although a significant number of passive cooling materi-
als have been developed recently, their performance characterization is still challenging.
Field tests experience high variability due to uncontrollable changes in environmental
conditions. Here, we design an indoor setup to characterize the performance of passive
cooling materials reproducibly and independently of weather and season. Outdoor
measurement conditions are approximated using a liquid-nitrogen-cooled aluminum
dome, a solar simulator, and a wavelength-selective inverse sky-window filter. In contrast
to outdoor measurements, the results of various reference materials show remarkable
precision and repeatability. Additionally, the impact of solar light intensity and tem-
perature on the passive cooling performance can be experimentally investigated. Our
setup is a first step in the development of a standardized test method to bring accuracy,
reproducibility, and comparability to the emerging field of passive cooling materials.

5.2 Introduction

Passive daytime cooling has emerged as a strong candidate to alleviate the global energy
demand for cooling.[1,2] It conveys heat from a material to outer space through the
atmospheric window (8–13µm) without external energy consumption. For an ideal
daytime passive cooling performance, low absorption in the solar range (0.3–2.5µm)
and high emission over the mid-infrared (MIR) region is stringently required. In the
last few years, advanced fabrication techniques have led to various novel materials,
including photonically structured materials,[3–5] hybrid composites,[6–9] highly porous
materials,[10–13] and hierarchically structured materials.[14–17] These classes of materials
promote the development of devices for daytime passive cooling applications.

Two essential techniques are usually used to evaluate a material’s passive cooling perfor-
mance: optical spectroscopy and field testing.[2,18] The former determines the spectral
absorption of a material in both the solar and MIR regions. Utilizing a theoretical model
based on energy balance considerations, the net passive cooling power of a material
can be calculated. Li et al. introduced a simple figure of merit to fairly assess the
performance of distinct cooling materials based on their optical properties.[19] However,
the comprehensive optical properties, including angle and temperature dependence,
of a material, are rather hard to access, especially for complex materials, e.g., multi-
layer composites, self-adaptive metamaterials,[20,21] and materials with irregular surface
topography, making it difficult to achieve a precise comparison.
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During field testing, the steady-state temperature of a sample and its cooling power at
ambient temperature are obtained. However, outdoor measurements are impressionable
and uncontrollable, and the outcome strongly depends on measurement conditions,[22,23]
e.g., geographical location, solar intensity, ambient temperature, humidity, wind speed,
and air pressure. The uncontrollable and unsteady atmospheric conditions limit the
comprehensive characterization of passive cooling materials firstly, and replication of
the measurement results secondly. Due to this challenge, different materials cannot be
compared reasonably. Therefore, a comparable and standardized test method is urgently
required to push the development of passive daytime cooling materials forward. In
contrast to outdoor environments, an indoor setup is independent of weather conditions
and provides a stable and controllable environment for passive cooling characterization.
A simple indoor setup for passive cooling characterization was reported by Zhou et al.[24]
By using liquid-nitrogen-cooled black aluminum foil as a heat sink, the nighttime passive
cooling behavior of a PDMS film was imitated. However, their indoor setup did not
include a light source. The characterization was thus limited to nighttime conditions.
A similar setup was also constructed by Park et al. in a glovebox.[25] With applying a
solar simulator, the characterization can be performed in the presence of solar light.
Very recently, a hybrid refrigerative thermoelectric cooling system was built by Wong et
al. to simulate the radiative cooling effect artificially under controlled conditions.[26]
Their sophisticated setup achieved a reasonable accuracy (deviation of 17 %–33 %). Still,
a repeatable and comprehensive characterization method for passive daytime cooling
materials remains an enormous challenge.

In this work, we present a tailored indoor setup for comprehensively characterizing
the performance of daytime passive cooling materials. The setup allows measurements
with and without illumination of the sample, analogous to daytime and nighttime field
testing, respectively. It consists of a liquid-nitrogen-cooled, hemispherical aluminum
(Al) dome as a heat sink and an air mass (AM) 1.5 solar simulator as a light source.
To the best of our knowledge, our method is the first indoor setup for the experimen-
tal characterization of passive cooling materials in both nighttime and daytime, with
outstanding repeatability showcased for three distinct materials, namely, a silver (Ag)
mirror, a polydimethylsiloxane (PDMS) film, and a graphite coating. Furthermore, our
setup can experimentally determine the impact of environmental changes, such as the
ambient temperature or solar irradiation intensity, on the material’s cooling performance.
Such a parametric investigation is unfeasible with field tests due to uncontrollable envi-
ronmental conditions. Lastly, our indoor setup is robust and simple to build, opening
a promising pathway to quantitatively compare passive cooling materials designed in
different research groups.
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5.3 Results and Discussion

5.3.1 Indoor setup design

The most important aspects of passive cooling field testing that a feasible indoor setup
must capture are (1) radiative heat transfer from the sample to outer space; (2) illumi-
nation of the sample by the sun; and (3) measurement at moderate temperatures. The
realization of these key measurement aspects can each be attributed to distinct parts of
the proposed setup.

Radiative heat transfer

The samples emit hemispherically to outer space, which acts as a heat sink, with a
temperature of ∼3 K. To imitate this behavior, we utilize a hemispherical Al dome
with a diameter of 60 cm. The high thermal diffusivity of Al ensures a homogeneous
temperature distribution across the entire surface. The inner surface of the dome was
coated with graphite to enhance its broadband absorption, thus resembling space as a
heat sink for radiative heat transport. A polyethylene (PE) container is imposed on the
hemisphere, creating a reservoir around the Al dome. Liquid nitrogen is filled inside this
reservoir and cools the dome down to ∼80 K. The entire setup is thermally insulated
using extruded polystyrene foam (XPS, Styrodur, BASF) with a thickness of 8 cm to
prevent cold loss. A schematic of the indoor setup is shown in Figure 5.1. Detailed
dimensions and a photograph are in Figure 5.S1. During the measurement, a small steady
influx of liquid nitrogen compensates for all remaining heat losses to the environment.
The sample is placed in a homemade measurement cell constructed by XPS under the
center of the dome. Low-density polyethylene (LDPE) foils were applied above the
sample to prevent convection.

Solar illumination

The average solar irradiation is generally presented by the AM 1.5 spectrum with a
power of ∼1000 W m−2, which is well established in the characterization of photovoltaic
devices.[18] In the laboratory environment, a solar simulator was placed directly on the
top of the dome to provide AM 1.5 solar light with an illumination area of 5× 5cm2.
The hole in the dome accounts for 0.8 % of the total area seen by the sample and is thus
negligible. The similarity between the light of the solar simulator and the sun is shown
in Figure 5.S2. The light hits the sample at an angle of 8◦ to prevent back reflection into
the solar simulator.
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Figure 5.1.: Indoor setup design and repeatability. (A and B) Schematic of the indoor setup for
characterizing passive daytime cooling. A liquid-nitrogen-cooled aluminum dome imitates outer
space, while a solar simulator illuminates the sample. A convection shield in combination with
XPS minimizes non-radiative heat transfer between the dome and sample. Detailed schematic of
the sample holder (B). A warm gas flow between the convection shield and the sample holder
allows controlling the temperature inside the measurement cell. (C and D) The steady-state
temperature of an Ag mirror measured (C) w/o and (D) w/ solar light. Results show outstanding
precision that cannot be achieved with outdoor measurements.

Sample temperature

The most challenging part of the indoor setup is to keep the sample at moderate temper-
atures while cooling the dome down to liquid nitrogen temperatures. The significant
temperature difference across the short distance between the cooled dome and the
sample holder naturally leads not only to the desired radiative heat transfer but also
to undesired convection and conduction. Conduction is minimized by employing XPS
insulation in combination with air gaps between the sample and the dome. Several LDPE
foils (thickness∼15µm), possessing a high solar and IR transparency, act as a convection
barrier between the sample and the cold air inside the dome. These PE layers reduce the
solar radiation intensity in the sample by 25 %, due to absorption, reflection, and scatter-
ing. Furthermore, the reduction of the transmittance is angle-dependent (Figure 5.S3).
Previous reports showed that angles < 60◦ have a dominant contribution to the emission
of passive cooling materials.[4,27,28] Therefore, the convection shield made from XPS and
LDPE has a cone-shaped inner part, with a zenith angle of 60◦ to reduce the thermal
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loss (conduction and convection) area while marginally blocking the pathway of thermal
radiation from the sample. Conductive heat transport from each gas compartment to
the next would eventually cool the air below the convection shield. A heated flow of
dry air offsets this effect. The constant airflow and the stable laboratory environment
(Figure 5.S4) ensure highly stable and reproducible experiments. Moreover, controlling
the temperature by tuning the airflow temperature allows for experimentally setting
the ambient temperature and elaborating the temperature-dependent performance of
passive cooling materials.

5.3.2 Performance assessment

We investigated the repeatability of the indoor setup without (w/o) and with (w/)
solar light. Multiple measurements of the steady-state temperature of an Ag mirror
on different days are shown in Figures 5.1C and 1D. An SD of ±0.24K and ±0.26 K

was obtained from nine measurements over three consecutive days w/o and w/ light,
respectively. This minor deviation shows that our indoor setup possesses outstanding
repeatability in both nighttime and daytime-like measurements. When shining solar
light with one sun power on the Ag mirror, the temperature increased by about 6 K.
Since a LDPE foil is applied to the measurement cell to prevent convection, we thus
attribute the temperature increase to the greenhouse effect caused by the parasitic solar
light absorption of the Ag mirror and sample holder. This phenomenon has also been
observed in outdoor measurements.[29,30]

For outdoor measurements, an intuitive definition of the ambient temperature is the air
temperature, which can be measured simultaneously with the sample temperature. For
indoor measurements, however, the environment temperature results from the interplay
between the cold dome and the warm gas flow. The large temperature gradient between
the sample holder and the dome surface prevents a meaningful ambient temperature
measurement in the vicinity of the actual sample. Therefore, an alternative way to define
the ambient temperature is needed. Ag possesses a low emissivity in both the solar
and IR region and, therefore, closely resembles the ambient temperature inside of the
measurement cell without any major radiative heat losses or gains. We confirm this
assumption by comparing the Ag mirror temperature with the ambient temperature in a
field test (Figures 5.2A and 2B), where both temperatures almost overlap. The ambient
temperature for the indoor setup is thus defined as the temperature obtained with an
Ag mirror.

To verify the reliability of the indoor setup, we analyzed three reference materials: an
Ag mirror, a PDMS film on an Ag mirror, and a graphite-coated silicon wafer. The chosen
materials possess very different optical properties. Ag has a very low emissivity in both
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Figure 5.2.: Performance assessment. (A and B) Outdoor rooftop measurement for the reference
materials at (A) nighttime and (B) daytime. The measurement was carried out under a clear sky,
on June 17–18, 2021 in Bayreuth, Germany. (C–E) Indoor measurements of the (C) Ag mirror,
(D) PDMS film, and (E) graphite coating. The turn-on point of the solar simulator was defined as
0 min. The dashed lines indicate the respective ambient temperatures for measurements w/o and
w/ light. (F and G) The steady-state temperature of the reference materials in the (F) outdoor
and (G) indoor measurements, respectively.
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the visible and MIR regions, as outlined above. Furthermore, it has been widely applied
to the backside of daytime passive cooling devices to minimize solar absorption.[6,31]
PDMS is a good passive cooling material due to its inherent selective emissivity in
the MIR region. By combining the PDMS film and an Ag mirror, a practical daytime
passive cooler is easily constructed.[24,32] As the last sample, we use a graphite coating
exhibiting broadband absorption in the solar and MIR regions. The spectral emissivity
of all reference materials is shown in Figure 5.S5.

Measurements of the reference materials were carried out w/o and w/ light irradiation
(Figures 5.2C–2E). For measurements w/o light, a steady-state temperature of 17.2 ◦C,
7.5 ◦C, and 7.4 ◦C was observed for the Ag mirror, the PDMS film, and the graphite coat-
ing, respectively. The PDMS film and graphite coating show a steady-state temperature
∼ 10 K lower than the Ag mirror. This is caused by the emissivity dependence of the
radiative heat transfer. In contrast to the PDMS film and graphite coating, the Ag mirror
shows negligible emissivity in the MIR region.

Subsequently, the solar simulator was used to simulate daytime measurements. After the
reference materials reached a steady-state temperature in the dark, the solar simulator
with one sun power was switched on. The temperature of all reference samples increased,
and a new steady-state temperature was reached within 1 h. Compared with the Ag
mirror (+6.3 K) and the PDMS film (+2.6 K), the temperature increase of the graphite
coating was substantial (+18.8 K). The temperature increase of the Ag mirror can be
explained by the absorption of the sample holder and the greenhouse effect. The different
light response of the reference materials occurs because graphite has a significantly higher
absorption in the solar regime. In addition, more than a 10 K difference in the steady-
state temperature was observed between the Ag mirror and the PDMS film. The much
lower final temperature of PDMS film demonstrates the good passive daytime cooling
performance of the PDMS film agreeing with field testing in the literature.[24,29]

To compare the results of the indoor experiment with the conventionally used field
testing, outdoor measurements of the reference materials (Figures 5.2A and 2B) were
conducted in both nighttime (23:00–05:00) and daytime (11:00–15:30). The setup for
the outdoor measurements is shown in Figure 5.S6. The PDMS film and graphite coating
show similar steady-state temperatures at nighttime, ∼ 2.5K lower than the Ag mirror
(Figure 5.2F). During the daytime, the Ag back mirror of the PDMS sample reflected
most solar irradiation, while the PDMS transferred heat to outer space via IR radiation.
Therefore, the PDMS film keeps its sub-ambient temperature even with an average solar
intensity of around 850 W m−2. In contrast, the graphite coating absorbed considerable
solar energy and warmed up to ∼ 60 ◦C.
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Indoor measurements were performed with the respective ambient outdoor tempera-
tures, 17 ◦C and 40 ◦C (Figure 5.2G). We observe that the absolute values of steady-state
temperature for the reference materials obtained from indoor and outdoor measurements
do not agree with each other. A daytime sub-ambient cooling by 6.2 K was observed from
an outdoor measurement of a PDMS film, while 12.1 K was obtained from the indoor
setup. We attribute this difference to two main contributions. First, the black-coated Al
dome represents a broadband black body. More radiative heat can be transferred to it
compared with the higher selectivity of the atmospheric window in outdoor measure-
ments. Hence, the sub-ambient cooling power is increased. Second, the irradiance in the
outdoor measurement is 900 W m−2, while the irradiance in the indoor measurement
is only 750 W m−2. Consequently, the absorbance in the visible spectrum leads to a
higher heat input for the outdoor case. Considering these effects, the values agree
reasonably well. The reproducible values of the indoor setup allow for better comparison
between different measurements as displayed in the literature. PDMS samples measured
at different locations and times show an even larger range of temperature reductions.
For instance, Zhou et al. observed a sub-ambient cooling of 11 K at Buffalo, NY, USA
(February 2018).[24] Zhu et al. reported 3.3 K at Nanjing, China (November 2019),[33]
and our previous study showed 7.4 K at Bayreuth, Germany (April 2020).[29] The dis-
parity in the investigation of similar PDMS films from different groups is attributed to
the distinct measurement conditions, e.g., ambient air temperature, humidity, and solar
irradiation. Even subsequent measurements with the same setup from one group at a
fixed location are prone to fluctuations, due to the equilibration time and the natural
changes in temperature, humidity, and solar radiation. Consequently, multiple tests
are typically run simultaneously to allow for comparability among different samples.
In contrast, the proposed indoor setup enables measurements with a predetermined
condition and, thus, allows a quantitative comparison of measurements from different
days.

5.3.3 Cooling power characterization

Besides the sub-ambient temperature that a passive cooling material can reach, its net
cooling power is another important parameter for quantifying the cooling performance.
The standard technique to measure the net cooling power is using a feedback-controlled
electrical heater underneath the sample to maintain the ambient temperature. As a result,
the recorded input heating power is equivalent to the net cooling power.[4] However, the
cooling power obtained from outdoor measurements, in most cases, fluctuates over time
due to the unstable conditions, mainly solar intensity, wind speed, and cloud coverage.
Hence, such outdoor measurements are typically carried out for many hours and merely
reach a temporary steady-state condition, making quantification of the cooling power
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C D

A B

Figure 5.3.: Comparison with numerical calculations. (A and B) Temperature tracking (A) and
net cooling power measurement (B) of a PDMS film (∼ 88.4µm) via the indoor setup. (C and
D) A steady net cooling power could be obtained within 30 min. Numerically calculated net
cooling power as a function of emitter temperature with different non-radiative heat transfer
coefficients (hc) for (C) a thin PDMS film (∼ 19.2µm) and (D) a thick PDMS film (∼ 88.4µm),
based on the configuration of the indoor setup. The respective experimental values are measured
and plotted to estimate hc for our setup. Values of 11.6 and 11.2 W m−2 K−1 were obtained for
the thin and thick PDMS samples, respectively. For the experiments, the setpoint was 19.5 ◦C
and solar light was excluded.

difficult.[7,11,34] By contrast, a steady net cooling power can be measured with the
presented indoor setup in a matter of minutes. The ambient temperature is set to the Ag
mirror temperature determined under the same measurement condition. We assume that
at this temperature, no non-radiative losses, i.e., convection and conduction, occur. As
shown in Figures 5.3A and 5.3B, the net cooling power of a PDMS film (∼ 88.4µm) was
obtained within 30 min. The PDMS film exhibits a net cooling power of about 200 W m−2

at an ambient temperature of 19.5 ◦C, w/o solar light. Compared with the net cooling
power of the PDMS-based passive cooling devices reported in the literature, i.e., up to
∼ 130 W m−2,[31] the value obtained from the indoor setup is relatively high. This is
attributed to the absence of atmospheric thermal radiation outside of the sky-window
range in the indoor setup.[35] Nevertheless, characterizing the passive cooling power
with the indoor setup allows for a precise and defined measurement with a reasonably
fast equilibration time.

For materials exposed to the clear sky, the net cooling power can be calculated with
the radiative model, Pcool = Pmat − Psun − Patm − Pnonrad. Here, Pmat is the thermal
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irradiation power of the emitter, Psun is the solar power absorbed by the material, Patm
is the absorbed power from the atmosphere, and Pnonrad is the absorbed power due to
conduction and convection. Pnonrad can be expressed as Pnonrad = hc ·(Tatm−Tmat), where
hc is the non-radiative heat transfer coefficient. For the indoor setup, the inner space
is filled with nitrogen and the path between the sample and the dome is short. Thus,
Patm can be omitted and the equation can be simplified to Pcool = Pmat − Psun − Pnonrad
and Pcool = Pmat − Pnonrad for daytime and nighttime, respectively. It needs to be noted
that hc varies from measurement to measurement, because of the distinct measurement
conditions, and the estimation of hc has been widely conducted,[4,36] whereas, it should
not depend on the material optical properties.

To better understand our indoor setup and verify that hc is indeed independent of
the optical properties for all indoor setup measurements, we calculated the theoretical
net cooling powers of PDMS films with various optical properties and compared them
with the actual indoor measurements. The hc-dependent net cooling power of PDMS
films with two different thicknesses, 88.4 and 19.2µm, was calculated via the radiative
cooling model based on the indoor setup configuration. The model was thoroughly
discussed in our previous work, which demonstrated the thickness dependence on
optical properties and passive cooling performance.[29] The complex refractive index of
PDMS films used in the calculation was obtained from the literature.[37,38] To determine
hc of our indoor setup measurements, the net cooling powers of the PDMS samples were
measured at five different temperatures. We observed a linear relationship between
the sample temperature and the cooling power that agreed with the expected trend
obtained from the numerical calculations (Figures 5.3C and 5.3D). Based on the linear
fitting of the measurement points, we estimate hc of the indoor measurements to be 11.6

and 11.2 W m−2 K−1 for the measurements of thin and thick PDMS films, respectively
(Figure 5.S7). The consistent hc value obtained from the indoor measurements with
different samples proves the stability and reliability of the indoor setup. In addition,
we observed a slight offset between the measured and calculated net cooling power.
We attribute this to the approximations in the theoretical model, the adopted complex
refractive index value from the literature,[29] and the uncertainty of the measurement.

5.3.4 Variation of environmental parameters

Solar irradiance and ambient temperature vary with time and location. They strongly in-
fluence the cooling capacity of passive daytime cooling devices. As shown in Figures 5.4A
and 5.4B, solar irradiance changes from 0 to ∼ 950W m−2 during a summer day and
ambient air temperature changes between about −10 ◦C to about 35 ◦C over a year in

5.3 Results and Discussion 71



C D

A B

Figure 5.4.: Variation of environmental parameters (A) Solar irradiance over four days in
Bayreuth, Germany. (B) Ambient air temperature of different months in Bayreuth, Germany,
over the last three years. The error bars represent the standard deviation of the data. (C) Impact
of solar intensity on the passive cooling performance of a graphite coating. The temperature
difference (Tgraphite − Tamb) and net cooling power (Pcool) show a linear trend when increasing
the solar light intensity from 0 % to 100 % of one sun (∼ 100W m−2). (D) The impact of
ambient temperature (Tamb) on the cooling performance of a PDMS film. Both the simulation
and experiment show that Tamb enhances the cooling performance leading to a decrease in the
temperature difference (TPDMS − Tamb).

Bayreuth, Germany. How do temperature and solar radiance influence the cooling perfor-
mance? In our indoor setup, the solar irradiance can be changed between 0 and 100 %

of one sun via the solar simulator. We, therefore, examined the sub-ambient cooling
as well as the net cooling power of a graphite coating at various solar intensities, from
0 % to 100 %. As illustrated in Figure 5.4C, the temperature difference (Tgraphite − Tamb)
increased from about −10 K to 10 K with increasing solar intensity from 0 % to 100 %.
Concomitantly, the net cooling power declined gradually. Moreover, the temperature
difference and the net cooling power showed a linear trend with respect to the solar
intensity.

The temperature controllable gas flow allows tuning of the ambient temperature in the
measurement cell between 10 ◦C and 35 ◦C (Figure 5.S8). The temperature dependence
of blackbody radiation is well known. An increasing emitter temperature enhances
the thermal irradiation, and, therefore, the cooling performance. We measured the
steady-state temperature of a PDMS film (88.4µm) at various ambient temperatures.
We found that with increasing the ambient temperature, the cooling performance was
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also enhanced, as indicated by the increased sub-ambient cooling (Figure 5.4D). The
sub-ambient cooling rose from 8.7 K to 11.0 K, with increasing the ambient temperature
from 12.6 ◦C to 27.5 ◦C. We confirmed this temperature dependence by a numerical
calculation with hc = 11.2W m−2 K−1. Despite the offset between the experimental and
theoretical values (∼ 9K), the trends agree well.

In general, passive cooling materials can be divided into two groups. The first group is
selective emitters, which emit only at the atmospheric window (8–13µm). These emitters
transfer heat directly to outer space without interference from the atmosphere. The
second one is broadband emitters. Broadband emitters emit not only at the atmospheric
window but also outside, resulting in heat exchange with the atmosphere itself.[39] It is
controversial which kind of emitter is better suited for passive cooling applications.[31,40]
In its current form, our setup is best suited to compare emitters of the same type, i.e.,
compare broadband with broadband and selective with selective emitters. However, the
discrimination between broadband and selective emitters is limited due to the lack of
an atmospheric window. Directly simulating the atmosphere within the indoor setup is
rather challenging.

Instead of equipping the indoor setup with a direct MIR filter with a transmission similar
to the atmosphere to further imitate the field testing, an inverse MIR filter that emits
only in the atmosphere window regime can be introduced. By placing the inverse MIR
filter, which possesses ambient temperature, between the sample and the cold dome
during the measurement, only the spectral radiation outside the atmosphere window
regime can reach the cold dome (Figure 5.5A). The filter will block the rest. Selective
emitters can thus be distinguished from broadband emitters by comparing the proportion
of cooling power loss in a two-step measurement without and with the inverse MIR filter
installed. The radiation in the atmosphere window regime contributes distinctly to the
radiative cooling ability of broadband emitters and selective emitters.

We demonstrate such an inverse MIR filter by coating an LDPE foil with a thin layer
of PDMS. A thin PDMS film with the desired thickness on an LDPE foil ensures a high
absorption in the regime of 8–13µm and simultaneously high transmission in the re-
maining spectral range (Figure 5.5B). The cooling power of PDMS films with different
thicknesses, i.e., 712 nm and 8.6, 13.1, and 88.4µm, is determined w/o and w/ the
PDMS-PE filter to prove the concept (Figures 5.5C and 5.S9). The optical properties
of the PDMS films show that with increasing film thickness, they gradually transition
from a selective to a broadband emitter (Figure 5.S10). Consequently, the cooling power
without the MIR filter increased gradually. This is in good agreement with our previous
work based on outdoor measurements.[29] The cooling power reduces dramatically when
applying the PDMS-PE filter. The decrease varies for the differently thick PDMS films. To
highlight the cooling power difference caused by the PDMS-PE filter, the relative power
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Decreasing selectivity

Figure 5.5.: Distinguishing broadband and selective emitters. (A) An MIR filter consisting
of PDMS on PE is inserted between the sample and the convection shield. (B) The absorp-
tion spectrum of the PDMS-PE filter is comparable with the transmission of the atmosphere.
(C) Cooling power measurements of differently thick PDMS samples with and without the filter.
With increasing thickness, the cooling power rises. The introduction of the MIR filter results
in a significant reduction of cooling power. (D) The relative cooling power loss decreases with
increasing PDMS film thickness. The loss correlates with the emission selectivity of the samples.

loss was calculated as power loss= (Pw/o − Pw/)/Pw/o and is shown in Figure 5.5D. The
increasing thickness of the PDMS films reduces the cooling power loss, which indicates
that the PDMS-PE filter affects selective emitters more importantly than broadband
emitters. Besides, we also calculated the cooling power loss of the PDMS films w/and
w/o atmosphere with outdoor conditions (Figure 5.S11). Despite the deviation of the
absolute value between the experiment and the simulation, the trend agrees well. The
deviation is mainly attributed to the imperfect match between the PDMS-PE filter and
the atmosphere. The inverse MIR filter design can assess the influence of the sky-window
transmission on the cooling power but is not suitable to compare the temperature re-
duction with outdoor measurements. A direct temperature comparison required a filter
matching the sky-window properties.

Although it is hard to imitate the atmosphere in the indoor setup, with the inverse
MIR filter, the indoor setup can distinguish between selective and broadband emitters.
The possibility to add a tailor-made filter to our setup further expands the scope for
its applicability to characterize passive daytime cooling materials close to field testing
conditions. Further additions may include filters that account for a specific relative
humidity or cloud coverage. Another class of filters may address the angular dependence
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of the thermal emission of a given material by controlling the view factor of the dome in
dependence on the polar angle. Such a measurement capability is highly demanded to
characterize emissive materials with diffusive reflectance properties. For instance, the
heat management properties of smart textiles can be investigated with such a sample-
dome layout, when operated at body heat and room temperature, respectively.[41]

In summary, we constructed a versatile indoor setup to thoroughly characterize the perfor-
mance of passive cooling materials for both daytime and nighttime. Our setup combines
a liquid-nitrogen-cooled Al dome with a solar simulator. Unlike conventional outdoor
measurements, our setup allows controlling the measurement conditions, leading to
outstanding reproducibility and time-saving measurements. Characterizing materials
in a laboratory environment makes measuring and comparing materials independent
of weather, time, and location. Additionally, the impact of solar intensity and ambient
temperature on the cooling performance can be practically studied. Such comprehen-
sive investigations are impossible for outdoor measurements due to the uncontrollable
atmospheric conditions. We are convinced that our test setup is a first step toward a
standardized passive cooling test routine. A standardized method to practically compare
the cooling performance of various innovative materials from research groups all over
the world is, however, a gatekeeper to turning passive cooling into a widespread and
applied technology.

5.4 Experimental Procedures

5.4.1 Resource availability

Lead contact

Further information and requests for resources should be directed to and will be fulfilled
by the lead contact, Markus Retsch (retsch@uni-bayreuth.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All data from this study are available from the corresponding author upon reasonable
request.
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5.4.2 Preparation of reference materials

Ag mirrors

Ag with a thickness of 100 nm was thermally evaporated on a silicon wafer (r = 2.5cm),
followed by a deposition of 10 nm silicon oxide (SiO2) with a sputter coating step.

PDMS films

PDMS films with different thicknesses (88.4, 13.1, and 8.6µm and 712 nm) were pre-
pared on top of the Ag mirrors. For this, a prepolymer of PDMS (Sylgard 184, Dow
Chemical) was mixed with a curing agent in a ratio of 10:1 (by weight) and degassed in
a desiccator under vacuum. Subsequently, films with a thickness of 88.4 and 13.1µm
were prepared via spin-coating (1000 and 3000 rpm) on the Ag mirror. For films with
a thickness of 8.6 and 13.1µm, the prepolymer/cross-linker mixture was diluted to
75 wt% and 25 wt% solutions, respectively, with n-hexane. The films were then prepared
via spin coating (3000 and 4000 rpm) on the Ag mirror. The PDMS layers were cured at
room temperature for 48 h.

Graphite coating

The graphite coating is prepared by spray coating graphite (Cramolin, ITW Spraytec,
Germany) onto a precleaned silicon wafer (r = 2.5 cm), followed by evaporation of the
solvent at ambient temperature.

The layer thickness of the reference samples, namely PDMS films and graphite, was de-
termined by using a three-dimensional (3D) laser scanning microscope (LEXT OLS5000,
Olympus). A thickness of 88.4µm, 13.1µm, 8.6µm, 712 nm, and 3.2µm was obtained
for the four PDMS films and the graphite coating, respectively.

PDMS-PE window

A prepolymer of PDMS (Sylgard 184, Dow Chemical) was mixed with a curing agent in
a ratio of 10:1 (by weight) and degassed in a desiccator under a vacuum. The resulting
mixture was diluted to a 50 wt% solution with n-hexane. A PDMS thin film was spin-
coated (3500 rpm) on an LDPE foil (thickness of around 15µm), which was evenly
attached to a silicon wafer (r = 7.5 cm). A PDMS-PE window was obtained by detaching
the PDME-PE foil from the silicon wafer.
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5.4.3 Optical characterization with UV-Vis and FTIR spectroscopy

Broadband optical properties of the reference materials were characterized by ultraviolet-
visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. UV-Vis reflectance
of the reference materials was measured with a UV-Vis spectrometer (Cary 5000, Agilent
Technologies) equipped with an integrating sphere accessory (Labspheres). A Spectralon
diffuse reflectance standard (Labspheres) was used as a reference. The FTIR spectroscopy
measurements were carried out on an IR spectrometer (Vertex 70, Bruker) coupled with
a gold-coated integrating sphere accessory (A562, Bruker). A gold mirror was used as a
reference. The absorptance (emittance) was calculated as absorptance (emittance) = 1 -
reflectance. We assume that the transmission can be neglected because of the Ag layer
at the back.

5.4.4 Transmittance characterization of the convection shield

We used a pyroelectric sensor (FieldMaxII, Coherent) to measure the power of the
solar simulator irradiation. Triplicate measurements were performed with and without
the convection shield between the simulator and the sensor. The transmittance was
calculated as 1− Pw/ shield/Pw/o shield.

5.4.5 Indoor measurements

Daytime measurements are imitated by applying solar light provided by a solar simulator
(AX-LAN400, Sciencetech, Canada) with an illumination area of 5×5cm2. For nighttime
measurements, the solar simulator was turned off. For all indoor measurements, dried
air was warmed up by a water bath with a controlled temperature and flushed the area
between the convection shield and measurement cell. Liquid nitrogen was filled into the
setup to cool down the Al dome. Before filling the liquid nitrogen into the setup, the
inner space of the dome is flushed with N2 to remove air. Thus, no pronounced water
condensation was observed on the convection shield. The temperature of the dome
is maintained during the entire measurement by continuously filling liquid nitrogen
into the setup. The sample temperature is measured with a thermocouple (type T)
and collected by a digital multimeter (DAQ6510, Tektronix, Germany) every 5 s. To
determine the steady-state temperature, data from the last 5 min of the measurement
were averaged.

For the indoor measurements with the PDMS-PE window, the prepared PDMS-PE foil
was placed above the sample holder at a distance of around 5 mm.
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Repeatability test

An Ag mirror was used to check the repeatability of the setup. The temperature of the
airflow was controlled by setting the water bath to 40 ◦C. The steady-state temperature
of the Ag mirror was measured three times per day on three different days, w/ and w/o
one sun power of solar light (∼ 1000W m−2).

Solar intensity dependence test

The graphite coating was measured to highlight the influence of solar intensity on the
cooling performance. The temperature of the airflow was set to 40 ◦C. The intensity
of the solar light was varied from 0 % to 100 % of one sun power (∼ 1000W m−2).
The steady-state temperature and the cooling power of the graphite coating were then
obtained under each condition. The net cooling power was measured by actively heating
the graphite coating to keep it at the same temperature as an Ag mirror under the same
conditions (water bath temperature and solar irradiance).

Ambient temperature dependence test

A PDMS film (88.4µm) was applied to prove the temperature dependence of the thermal
irradiation. The temperature of the airflow was set to 35 ◦C, 40 ◦C, 50 ◦C, and 60 ◦C.
Subsequently, the steady-state temperature of the Ag mirror and the PDMS film was
measured w/o the solar light.

5.4.6 Rooftop measurements

Rooftop measurements for daytime and nighttime were carried out on the roof of a four-
floor building (June 17–18, 2021, University of Bayreuth, Bayreuth, Germany) under
a clear sky. The reference samples were each placed in identical homemade sample
holders. The holders were thermally insulated by Styrofoam and covered with Mylar Al
foil. Convective heat transfer was prevented by applying an LDPE foil, with a thickness of
approximately 15µm. The emitter temperatures were measured by Pt100 temperature
sensors and recorded with a digital multimeter (DAQ6510, Tektronix, Germany) every
5 s. Temperatures between 1:00–1:30 and 13:00–13:30 were averaged to obtain steady-
state temperatures. One sample holder covered with Al foil but without LDPE foil was
used to obtain the ambient temperature. The solar irradiance data were collected from
the weather station at the University of Bayreuth (Ecological-Botanical Garden, 400 m

away from the rooftop measurement).
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5.4.7 Numerical calculations

The numerical calculations for theoretically estimating the steady-state temperature
and cooling power of the PDMS films are based on a model that is described in our
previous study.[29] The broadband optical properties of the PDMS film are obtained from
the literature.[37,38,42] The sample was tilted 8◦ to avoid direct reflection of the solar
light. For simplicity, this has been neglected in numerical calculations. A polar angle
θ of 60◦ and an azimuthal angle of 360◦ was applied to the calculation based on the
configuration of the indoor setup. We assume that no thermal radiation was emitted by
the liquid-nitrogen-cooled dome.

To calculate the cooling powers of PDMS films with different thicknesses, i.e., 88.4, 13.1,
8.6µm and 712 nm, with the outdoor condition, a polar angle θ of 90◦ and an azimuthal
angle of 360◦ were applied. The ambient temperature of the emitter is set to 18.5 ◦C,
which is the preset temperature of PDMS films for indoor cooling power measurement.
For emitters with a temperature as same as ambient temperature, the nighttime cooling
power is calculated as Pmat − Patm. Pmat is the total power emitted by the sample. Patm
is the absorbed power from the atmosphere. The cooling power loss is calculated as
(Pmat − Patm)/Pmat.
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Figure 5.S1.: Indoor setup design. (A) Detailed dimensions and (B) photograph of the indoor
setup. Related to Figure 5.1 and Indoor Setup Design.

Figure 5.S2.: Comparison between the solar light from the sun (AM 1.5) and the solar simulator.
The intensity shown is relative to the total intensity of the light source, i.e., the integral from 0
to infinity is 1 for each individual curve. Related to Indoor Setup Design.
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Figure 5.S3.: Angle-dependent optical properties in (A) UV/Vis and (B) IR regime for a single,
15µm thick PE window used in the convection shield. Related to Indoor Setup Design.

C D

A B

Figure 5.S4.: Laboratory conditions. (A) Ambient temperature, (B) air pressure, (C) dew point,
and (D) relative humidity in the laboratory over a week. Related to Indoor Setup Design.
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Figure 5.S5.: Optical properties of the reference materials used in this work, i.e., PDMS, Ag,
and graphite, in the UV/Vis and MIR region. Related to Figure 5.2 and Performance Assessment.
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Figure 5.S6.: Outdoor setup design. (A) Photograph and (B) schematic of the setup for outdoor
measurements. Related to Figure 5.2 and Performance Assessment.
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Figure 5.S7.: Determination of hc for the thin (A) and thick (B) PDMS samples in the indoor
setup measurement. The linear fit shows how the slope of the simulated cooling power behaves
for different values of hc. Calculating the slope of the experimental cooling powers leads to hc
values of 11.6 and 11.2 W m−2 K−1 for the thin and thick PDMS samples, respectively. Related to
Figure 5.3 and Cooling Power Characterization.
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Figure 5.S8.: Tunable ambient temperature of the indoor setup. (A) Schematic of a part of
the indoor setup. (B) Ambient temperature of the indoor setup as a function of water bath
temperature. Related to Figure5.4 and Variation of Environmental Parameters.
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Figure 5.S9.: Cooling power measurements with and without a MIR filter for PDMS samples
with a thickness of (A) 712 nm, (B) 8.6µm, (C) 13.1µm, and (D) 88.4µm. The MIR filter is
inserted into the indoor setup after temperature and cooling power reach a steady state. The
insertion of the MIR filter leads to a significant decrease in cooling power for all samples.

Figure 5.S10.: Absorption spectra for PDMS films of different thicknesses and the MIR filter.
Decreasing thickness leads to higher emission selectivity.
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Figure 5.S11.: Simulation results for PDMS samples with different thicknesses in outdoor
conditions. (A) Absolute contributions to the cooling power. (B) Cooling power loss. The loss is
calculated as (Pmat − Patm)/Pmat.
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6.1 Abstract

Plastic pollution has caused numerous environmental issues in recent decades. As one
of the most commonly used packaging materials, aluminum-plastic laminates (APL)
are particularly challenging for recycling purposes due to their sophisticated materials
components. This work reveals a new strategy to upcycle such post-consumer APL
packaging waste, e.g., chips-bags, for passive daytime cooling applications. This opens an
attractive route to reuse APLs while at the same time reducing global energy consumption
and carbon emissions. The mirror-like appearance of the APLs possesses a strong solar
reflection, up to 86 %. By coating, this reflective layer of the APL waste with a high
emissive polydimethylsiloxane layer, a simple but effective passive daytime cooling foil
is constructed, which shows promising passive cooling performance theoretically and
practically. More importantly, the passive cooling foil based on APL waste is flexible and
can be applied to any target object, protecting it from harsh sunlight. The low-cost APL
waste-based passive cooling foil proposed in this work will significantly contribute to
both energy and environmental issues that humans face today.

6.2 Introduction

aluminum-plastic laminates (APL) have been massively used as packaging materials
to extend the shelf-life of products like chips, roasted, and powdered coffee, as well
as milk and juices.[1] Besides, APL has extended its applications dramatically in the
pharmaceutical packaging of FFP2masks and rapid tests over the last few years because of
the COVID-19 pandemic. With aluminum as a barrier layer, the APL provides satisfactory
product protection from various deteriorating factors, including oxygen, moisture, and
light.[2] However, the complex construction, consisting of aluminum and multiple layers
of polymer, makes this sort of packaging foil exceedingly challenging to recycle.[1,3–5]
Consequently, most APL waste is treated by incineration or discarded in landfills, causing
severe environmental sustainability issues, including the release of greenhouse gas
emission, air pollution, and soil infertility.[6,7]

The industrial recycling of APL faces several challenges, such as the segregation of the
different layers as well as cleaning and sorting issues.[4,5] One technique for recovery
of aluminum and individual polymer components is chemical delamination, where the
individual polymer layer is dissolved with the corresponding solvent.[8,9] Besides, thermal
and catalytic pyrolysis have also been developed to extract aluminum and energy from
APLs.[10,11] More recently, various innovative strategies for APL recycling have been
reported. For instance, thermal delamination[12] and enzymatic bioleaching recycling
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methods.[13] Despite the progress in material and energy extraction from APL, it is
still considered unrecyclable due to its low recycling efficiency. The European plastic
strategy aims for all used packaging to be recyclable or reusable by 2030.[14] For this
to be successful and to reduce the impact of APL waste on the environment, advanced
strategies for cost-effective recycling or repurposing of APL are urgently desired.

Another rising concern is global warming, caused by the overuse of fossil fuels and result-
ing greenhouse gas emissions.[15] As one of the consequences, the frequency of intense
heat waves has increased worldwide, threatening human and ecological health.[16–18]
Passive daytime radiative cooling (PDRC) is regarded as a promising strategy to combat
global warming by reducing the energy demand for cooling.[19,20] By emitting thermal
irradiation to cold outer space (3 K) through the atmospheric transparency window
(8–13µm), terrestrial materials with engineered optical properties autonomously cool
down to subambient temperatures in the nighttime, without external energy input. By
minimizing the absorption of a material in the solar regime (0.3–2.5µm), the passive
cooling properties can be preserved during the daytime, even under direct sunlight illu-
mination. A passive cooling device can be readily constructed by combining a highly solar
transparent and emissive layer, like polydimethylsiloxane (PDMS), with a back reflector,
e.g., silver (Ag) or aluminum (Al).[21,22] To circumvent the usage of the metallic back
reflector, in recent years, advanced structured materials have been fabricated to strongly
scatter sunlight,[23] including micro-/nanoporous materials,[24,25] and nanoparticles-
based composites.[26,27] Though an increasing number of passive cooling devices with
remarkable daytime cooling performance have been reported, the transition from fun-
damental scientific studies to a widely distributed cooling technology is still missing.
Scalability, practicality, durability, and manufacturing costs are insurmountable problems
restricting this technique from practically transitioning to real-life applications. Consid-
ering that the amount of energy saved with PDRC is proportional to the applied area, it
is imperative to design a cost-effective, scalable, and easily applicable PDRC foil.

In our contribution, we outline a comprehensive upcycling strategy to repurpose APL
waste and to access PDRC foils in a cost-effective manner. This combination has a
twofold beneficial consequence for the environment due to the reduction of APL waste,
and the fabrication of PDRC foils with already available materials. Optical property
characterization elucidates that the plain APL possesses a substantial solar light reflection
(up to 86 %), owing to the presence of the Al layer, which makes APL a promising
candidate for the back reflector of the PDRC material. By adding an emissive layer, e.g.,
PDMS, to enhance the radiative heat release, the cooling capacity of APL waste-based
foils is theoretically and experimentally demonstrated. Moreover, the cooling foil is
scalable, flexible, and can be readily applied to various surfaces, protecting the target
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object from harsh sunlight and heat. Our approach is the first step toward a widespread
and low-cost utilization of optically engineered passive cooling foils.

6.3 Results and Discussion

APL is generally constituted by several polymer layers and aluminum laminated with
adhesives, as illustrated in Figure 6.1a. A scanning electron microscope (SEM) image
of a cross-section of APL used for a chip bag shows its multilayer structure. A thickness
of about 18.9, 2.7, 1.7, 3.2, and 31.2µm is observed for respective layers (from the
top, goods contacting side, to bottom, ink side). By using confocal Raman spectroscopy,
we determined the chemical composition of each layer. The Raman spectra show that
both polymer layers are polypropylene (PP) for the tested APL.[28] APL shows a mirror-
like appearance due to the presence of Al laminated at the core, demonstrating its
potential as a back reflector. To reveal the capability of APL as a back reflector for PDRC,
we examined the solar reflectance of APL from various packaging bags, as shown in
Figure 6.1d and Figure 6.S1. As representative samples, APLs from bags originally used
for potato chips, coffee, and face masks are mainly focused on in this work due to their
widespread usage in the market. An impressive solar reflectance is observed for most
of the APLs. As shown in Figure 6.1d, an average solar reflectance of 0.86, 0.81, and
0.83 was obtained from the chip, coffee, and mask bags, respectively. The decent solar
reflectance verifies that APL holds considerable potential as the back reflector for passive
daytime cooling materials. Moreover, APLs, especially the chip bag and the mask bag,
exhibit a constant reflectance at a large incident angular range (Figure 6.1e). This stable
and high solar reflectance allows them to face and reflect the sun at various angles. Even
when substantially wrinkled, as expected from waste stream collection, the APL foils
retain their high solar reflectance (Figure 6.S2.

For PDRC materials, absorption in the solar range determines the energy uptake from
the sun in the daytime, while mid-infrared (MIR) emissivity controls the radiative
heat release. Therefore, both aspects of the material need to be optimized to achieve
a net passive cooling performance in the daytime. In the market, various polymers
have been utilized to compose the APL, including PP, low-density polyethylene (PE),
and polyethylene terephthalate (PET).[7] APL varies in composition and layer thickness
depending on the end-use product, resulting in different MIR emissivities. To reveal
the MIR emissivity of the tested plain packaging bags, we measured their absorptance
(1− reflection) spectra at a wavelength range of 2–18µm by using Fourier-transform
infrared spectroscopy (FTIR) (Figure 6.2a). Average MIR absorptances of 0.23, 0.51,
and 0.70 were obtained for the plain chip bag, coffee bag, and mask bag, respectively,
which are related to the layer composition (Figure 6.S3 and 6.S4) and thickness. The
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Figure 6.1.: a) Schematic of the multilayer structure of an APL used for packaging. b) SEM
image of the cross-section of an APL from a chip bag. c) Raman spectra of the cross-section of
the APL. d) Solar reflectance of the goods contacting side of the APLs collected from different
packaging bags: chip bag, coffee bag, and FFP2 mask bag, with an incidence angle of 8◦. The
AM 1.5 solar spectrum is plotted as the background.[29] e) Average solar reflectance of the goods
contacting side of the chip bag, coffee bag, and FFP2 mask bag at different incidence angles.

impact of the layer thickness on material optical properties in both the solar and MIR
ranges has been investigated in a previous study.[30]

To experimentally demonstrate the capability of the plain APL for PDRC, the passive
cooling performance of the APLs, i.e., chip bag, coffee bag, andmask bag, was determined
with a homemade indoor setup. Figure 6.2b shows the schematic of the indoor setup, and
detailed information on the design is presented in our previous work.[31] Compared to
conventional field testing under uncontrollable weather conditions, indoor measurements
ensure reproducible measurements under controlled and stable conditions, providing
better cooling performance evaluation, especially for comparing different samples. In
addition, various parameters, such as solar intensity and ambient temperature, are
independent and can be tuned individually with the designed indoor setup. By contrast,
the study of the influence of a single parameter on material cooling performance is not
possible for conventional field testing due to the time-varying weather conditions.

The indoor measurement was first carried out without (w/o) solar light. A steady-
state temperature of 18.4, 16.4, and 13.8 ◦C was observed for the chip bag, coffee bag,
and mask bag, respectively (Figure 6.2c–e). Compared to the ‘ambient temperature’
(20.7 ◦C), obtained with an Ag mirror under identical measurement conditions without
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measurements. Continuous temperature measurements of the APL bags with stepwise increase
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mask bag. f) Optical properties of PDMS (thickness ≈200µm) coated APL bags. g) Steady-state
temperature of plain and PDMS-coated laminated Al packaging bags with and without 100 %
solar light. The dotted line indicates the ambient temperature.
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solar light, all the APLs show varying degrees of passive cooling performance. The mask
bag provides the best subambient cooling, 6.9 K, followed by the chip bag (2.3 K) and
coffee bag (4.3 K), owing to the higher emittance in the MIR regime. Subsequently,
AM 1.5 solar light was applied to the samples by a solar simulator to imitate the cooling
performance characterization in the daytime. To reveal the impact of the solar radiation
intensity on the passive cooling performance, the solar intensity was increased stepwise
from 0 % to 25 %, 50 %, 75 %, and 100 % of one sun power (1000 W m−2), after the
sample’s temperature reaches a steady state. Note that our previous study showed that
the intensity of the light reaching the sample is about 75 % of the initial power due to
the absorption, scattering, and reflection of the convection shield in the indoor setup.[31]
As shown in Figure 6.2c–e, the solar illumination increases the temperature of all APL
samples until a steady state is reached. Moreover, the solar energy uptake exceeds the
radiative heat loss at a certain level of solar intensity for the chip bag and coffee bag.
As a result, the steady-state temperature is higher than the ambient temperature, for
instance, 50 % solar intensity for the chip bag and 75 % solar intensity for the coffee
bag, which follows the degree of emittance of those sample in the sky-window range.
This observation implies that a net heat loss can only be achieved under a certain solar
intensity level for the chip bag and the coffee bag due to their inherently low MIR
emittance. By contrast, the mask bag allows net passive cooling even under a sunlight
power of 100 %.

To enhance the radiative heat release by increasing the MIR emittance, we introduced
PDMS onto the APLs. PDMS, a widespread and easily processable polymer, has been
widely used as standard material for fabricating passive daytime cooling devices, ensuring
a direct comparison between the APL waste-based cooling foil and PDMS-based cooling
devices reported in the literature. Furthermore, its optical transparency is ideal for
retaining the reflective properties of the APL support structure and its flexibility ensure
a good adhesion to the APL foil. In particular, a PDMS layer (≈200µm) was coated
onto the APLs via the doctor blading technique. The IR absorption spectra illustrate
the significant enhancement of the APLs in the MIR region (Figure 6.2f). An average
emittance of up to 0.94was obtained for all PDMS-coated APLs. The cooling performance
of plain APLs and PDMS-coated APLs, determined by the indoor setup, is summarized in
Figure 6.2g. Compared to plain APLs, a promising PDCR performance is obtained with
all PDMS-coated APLs. A subambient cooling was observed with all PDMS-coated APLs
for both dark and light conditions. Furthermore, no pronounced difference was observed
between the PDMS-coated chip bag, coffee bag, and mask bag for measurements in the
dark. However, with the presence of 100 % solar light, the PDMS-coated chip bag shows
a slightly lower temperature, owing to its high solar reflectance (Figure 6.1d) compared
to the coffee and mask bag.
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Apart from the steady state temperature reduction measurements, the indoor setup also
allows for determining the net cooling power. To measure the net cooling power of the
plain and PDMS-coated APLs, the samples were heated to the ‘ambient’ temperature.
The required heating power at this temperature represents the net cooling power of
the emitter. An observation similar to the steady-state temperature measurements was
obtained for the cooling power measurements (Figures 6.S6 and 6.S8). Solar illumination
decreases the net cooling power of all tested samples. The plain chip bag and coffee
bag only possess net cooling power below a certain level of solar intensity. In contrast,
the plain mask bag shows net cooling power even under illumination with full power.
The solar light intensity follows a linear dependency for the steady-state temperature
(Figure 6.S5), and the net cooling power (Figure 6.S7), indicating the stable and constant
measurement conditions. In addition, the PDMS coating dramatically enhances the net
cooling power for all APLs. Due to the absence of the atmospheric window in the indoor
setup, the net cooling power measurements only allow an indirect comparison to the
outdoor field tests. To illustrate the cooling performance of PDMS-coated APLs more
clearly, we normalized the cooling power of the plain and PDMS-coated APLs by the
cooling power measured with a standard passive daytime cooling sample namely a PDMS-
coated Ag mirror (Figure 6.S9). Compared to this standard passive cooling sample, a
comparable cooling power can be observed for all PDMS-coated APLs in the dark. With
the full power of solar light, the PDMS-coated APLs could still provide up to 25 % of the
net cooling power of the reference material.

To further verify the potential of APL waste as PDRC material for energy saving, we
determined the cooling performance of plain and PDMS-coated APLs with field testing
under a clear sky in Bayreuth, Germany. Figure 6.3a illustrates the schematic of the
homemade setup, and a photograph of the setup is shown in Figure 6.S10. During the
measurement, the samples were placed into identical sample holders surrounded by
styrofoam to block undesired thermal conduction. A highly transparent, low-density
polyethylene (LDPE) foil suppresses convective heat losses. Besides the tested sample
APLs, the temperature of the ambient and a graphite sample were also collected for
comparison. Figures 6.3b, c shows the real-time temperature of the tested plain and
PDMS-coated APLs under direct sunlight. Due to substantial solar reflectance, the plain
APLs exhibit a much lower temperature than graphite. The temperature difference was
18.1, 19.7, and 21.2 K between graphite and the chip bag, coffee bag, and mask bag,
respectively, under average solar irradiation of 866.2 W m−2. The significant temperature
difference confirms the potential of APLs as a back reflector for PDRC. However, due
to inadequate radiative heat release, the temperature of all tested packaging bags is
slightly higher than the ambient. With the introduction of the PDMS coating, thermal
radiation is greatly facilitated for all APLs. This leads to coinciding ambient and sample
temperatures under average solar irradiation of 847.8 W m−2. In addition, a temperature
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difference of about 22.5 K between graphite and the PDMS-coated APLs is obtained.
Despite the deviation of the absolute value between the indoor measurement and the
field testing, the trend agrees well. The deviation is mainly attributed to the absence
of the atmosphere for the indoor setup and the inconsistent conditions between indoor
and outdoor measurements, such as solar intensity and humidity.

The cooling foils based on APL waste are flexible, possess excellent mechanical strength,
and can be scaled up. In the first step to accessing large area foils, stitching multiple pack-
aging bags via plastic joining techniques, including welding and adhesive bonding,[32]
are expected to be suitable processes that need to be adapted to APL waste. Concomitant
with the areal scale-up, a consistent high solar reflectance of the patches also needs to be
realized. These engineering challenges are beyond the scope of this work. In the second
step, an emitter layer, such as PDMS, can be coated with well-established processing
techniques, like blade coating and roll-to-roll coating.[33] Figure 6.3d shows a whole
piece of a chip bag coated with PDMS via blade coating. Such low-cost, flexible, and
free-standing cooling foils can be practically applied to any target surface. To emphasize
this point, we applied the PDMS-coated chip bag to a standard transparent container
using double-sided adhesive tape. Subsequently, we monitored the temperature inside
the cooling foil-covered container (C1) under direct sunlight. The inside temperature of
an identical container (C3) and a plain chip bag-covered box (C2) were also recorded for
comparison. Figure 6.3e shows the schematic and a photograph of the measurement. All
samples were placed on an Al foil-covered styrofoam plate to avoid undesired thermal
conduction. In Figure 6.3f, we plotted the continuous inner temperature of different
containers and the temperature difference relative to C3, along with the solar irradiation
during the measurement. With reflecting most of the solar light, the plain chip bag-
coated container (C2) shows a much lower temperature than the bare container (C3),
which exhibits a substantial amount of greenhouse warming. The average temperature
difference is 7.2 K from 11:30 to 13:30, under an average solar irradiation of 668 W m−2.
Furthermore, the cooling foil-covered container (C1) maintained its temperature close
to the open air temperature and is much lower than C2 and C3 due to the high solar re-
flection and superior heat release via MIR radiation. The average temperature difference
between C1 and C3 is 12.6 K. The much lower temperature achieved with APL-based
cooling foil proves that it can effectively protect the target object from overheating under
intensive solar light. In addition, the protection will be more pronounced when applying
the cooling foil on surfaces of solar light-absorbing materials.

To theoretically quantify the cooling performance of the plain and PDMS-coated APLs,
i.e., chip bag, coffee bag, and mask bag, we calculated their net cooling power for both
daytime, and nighttime (Figures 6.S11 and 6.S12), based on the radiative model,[34]
Pcool = Pmat − Psun − Patm − Pnonrad. Here, Pmat is the emitter thermal irradiation power,
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Figure 6.3.: a) Schematic of the setup used for outdoor measurements. Outdoor measurements
for b) plain and c) PDMS-coated APL bags. The measurement was carried out under a clear sky on
18.06.2022 in Bayreuth, Germany. d) Schematic of the blade coating technique and photographs
of the entire piece of the PDMS-coated chip bag, goods contacting side (left) and ink side (right).
Application of the APL waste-based cooling foil on a target surface. e) Schematic and photograph
of temperature measurements for different samples. C1, transparent PET box covered with
PDMS-coated chip bag; C2, transparent PET box covered with plain chip bag; C3, transparent
PET box. f) Temperature tracking of different samples and temperature differences shown in e).
The measurement was carried out under a clear sky on 24.03.2022 in Bayreuth, Germany.
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Psun is the solar power absorbed by the emitter, Patm is the emitter absorbed power from
the atmosphere, and Pnonrad is the absorbed power caused by conduction and convection,
which is defined as Pnonrad = hc · (Tatm − Tmat), and hc is the nonradiative heat transfer
coefficient. Solar irradiation varies over the daytime. An average solar irradiation of
500 W m−2 is thus applied to the daytime calculations (see the Supporting Information
for calculation details). For the plain APLs, a net cooling power of −33.7, −12.3, and
38.3 W m−2 are expected for the chip, coffee, and mask bags, respectively. Because
of the distinct inherent optical properties, only the mask bag exhibits decent PDRC
performance due to its high emissivity in the MIR regime. Still, a promising PDRC
performance is obtained for all APLs when coated with PDMS. The net cooling power for
the PDMS-coated chip, coffee, and mask bag is 71.3, 45.1, and 50.4 W m−2, respectively.
Moreover, when the net cooling power is zero, a subambient cooling of 4.9, 3.1, and 3.5 K

could be expected for the PDMS-coated chip bag, coffee bag, and mask bag, respectively,
with hc = 10 W m−2 K−1. In the nighttime, without the uptake energy from solar light,
cooling performance, in terms of net cooling power and subambient cooling, is greatly
enhanced for all cooling foils (Figures 6.S11 and 6.S12). The combination of indoor
testing with controlled parameters, the outdoor field tests under realistic conditions, and
the theoretical description all confirm the adequate optical properties of upcycled APL
waste to be reused as (daytime) passive cooling material.

In this work, PDMS is introduced as an exemplary emitter to enhance the thermal
radiation of the plain APLs. Various other emitters could be applied to APLs, too,
as long as they possess low solar absorption and high mid-infrared emissivity. Gen-
erally, PDRC emitters can be classified into two categories: broadband emitters and
selective emitters. Figure 6.4a plots the absorptance/emittance spectra of an ideal broad-
band emitter (Eλ>4µm = 1, Eλ<4µm = 0) and a selective emitter (E8µm<λ<13µm = 1,
Eλ<8µm ∨ λ>13µm = 0) both with zero solar absorption. The ideal broadband emitter has
unit emittance over the entire MIR range, while the ideal selective emitter exhibits unit
emittance only in the atmosphere window (8–13µm). To reveal the impact of the emitter
selectivity on the PDRC performance of APL waste-based cooling foils, we calculated the
net cooling power as a function of average emissivity for both APL-supported broadband
emitters and selective emitters. For simplicity, the absorptance of the APL support layer
has been taken as constant (14 %), and its emissivity in the mid-infrared range was
excluded from the calculation. Due to the fact that the solar intensity varies over the
daytime, the influence of solar intensity on cooling performance is also considered in
the calculation. As shown in Figure 6.4b, in the nighttime, at an emitter temperature of
26.85 ◦C (300 K), an increase of the average emissivity of the entire cooling foil from 0

to 1 increases the net cooling power from 0 to 215 and 132 W m−2 for the broadband
emitter and selective emitter modified APL, respectively. During daytime, the APL cool-
ing foil reduces the net cooling power by absorbing about 14 % of solar energy. With
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a solar radiation of 1000 W m−2, a selective emitter-modified APL cannot exhibit a net
passive cooling performance. To achieve a net cooling performance with broadband
emitter-modified APL, the average MIR emissivity of the emitter layer should be larger
than 0.73. With an average emissivity of 1, a net cooling power of 51.5 W m−2 can
be achieved by the cooling foil under a solar illumination of 1000 W m−2. Since solar
light intensity varies over the daytime and barely exceeds 900 W m−2 we firmly believe
that all APL-based cooling foils will ensure an appealing PDRC performance throughout
the entire day. Furthermore, these calculations confirm the solar radiance-dependent
measurements (Figure 6.1c-–e) and demonstrate that a reflectance of ≈ 86% of the APL
waste foil is sufficient for passive daytime cooling depending on the interplay between
solar radiance and emissivity of the emitter layer.

The upcycling of APL waste for the fabrication of passive daytime cooling foils will
significantly alleviate the predicament of the current recycling of aluminum-laminated
packing foils. In addition, the APL-based passive daytime cooling foils are low-cost,
scalable, and flexible, allowing their widespread worldwide application. To predict
the energy-saving potential of APL-based cooling foils on building energy efficiency,
we predicted the year-round cooling energy consumption for the United States and
mainland China using EnergyPlus (Version 9.6.0).[36–38] For the simulations, 1020 and
270 locations across the United States and mainland China, respectively, were included
in the calculations. The optical properties of the traditional material (acquired from
EnergyPlus) and APL-based cooling foils that are input into the model are listed in
Table 6.1. The energy-saving is obtained by comparing the energy consumption between
the traditional material and APL-based cooling foil-covered outer walls and roof of a
building. An energy-saving map is created for the United States and mainland China,
respectively, as shown in Figure 6.4d. APL-based foils allow promising energy savings in
most areas, with expectedly higher energy savings in the hotter southern areas. With
the upcycling of APL waste for PDRC, we believe that a substantial amount of cooling
energy can be saved annually, while simultaneously avoiding the large-scale fabrication
of additional APLs for this sustainable cooling technology.

6.4 Conclusions

This work introduced a promising strategy to turn postconsumer APL waste into high-
value PDRC applications. We experimentally and theoretically verified the potential of
laminated Al foils for passive daytime cooling. Due to the inherent presence of the Al
layer, APLs enable a high solar reflection, up to 86 %. Using the laminated Al foil as the
back reflector and PDMS as an infrared emittance enhancer, a simple but effective passive
daytime cooling foil is fabricated, exhibiting remarkable cooling performances. Moreover,
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Figure 6.4.: a) Optical properties of an ideal broadband emitter and selective emitter. The
gray dotted line indicates the solar absorption of the APL foil. AM 1.5 solar spectrum[29]
and atmosphere transparency[35] are plotted as background. Predicted net cooling power for
APL supported b) broadband emitter and c) selective emitter with varying solar intensity and
emissivity. The ambient temperature is 300 K. The average solar reflectance of the cooling foils
is assumed as 0.86. The dotted lines indicate zero net cooling power. d) Predicted annual energy
savings across the United States and mainland China with APL-supported broadband emitter
coating on walls and roofs for a typical midrise apartment building.
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such flexible cooling foils can be readily applied on any target surface, protecting it from
harsh sunlight. We believe sustainable, low-cost, and scalable APL waste-based passive
daytime cooing foils can significantly contribute to environmental protection while
ensuring a substantial reduction in global energy consumption for cooling applications.

6.5 Experimental Section

Sample Fabrication –Laminated Al Foil

Various laminated Al packaging bags were collected from plastic waste, followed by
cleaning with standard detergent and adequate water. Subsequently, the samples were
rinsed with ethanol and Milli-Q water and dried for further application.

PDMS-Coated Laminated Al Foil

A prepolymer of PDMS (Sylgard 184, Dow Chemical) was mixed with a curing agent in
a ratio of 10:1 (by weight) and degassed in a desiccator under a vacuum. Subsequently,
films with a thickness of around 200µm were prepared via doctor blading on the
laminated Al foil. The PDMS layer was cured at room temperature for 48 h.

All the samples were cut to a size of dia. = 5 cm for the indoor and rooftop measure-
ments.

SEM

The cross-section of a chip bag was prepared by cryo-fracturing and cutting at RT with a
razor blade. SEM images were taken with a Zeiss Ultra plus (Carl Zeiss AG, Germany) at
an operating voltage of 3 kV and with in-lens detection.

Raman Spectroscopy Measurement

A confocal WITec Alpha 300 RA+ Raman imaging system equipped with a UHTS 300
spectrometer and a back-illuminated Andor Newton 970 EMCCD camera together with
the WITec Suite FIVE 5.3 software package was employed for Raman spectroscopy
measurements. Typically, laser intensities of 2–5 mW and an integration time of 0.5 s

(grating: 600 gmm−1) were employed. Single spectra were acquired with an excitation
wavelength of λ= 532 nm, and 50 measurements were accumulated for a spectrum. For
line scans, a 100× objective (Zeiss EC Epiplan-Neofluar 100×, NA = 0.9) was used, and
the step size was 0.2µm. All spectra were corrected for cosmic ray spikes and subjected to
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a background removal routine. The WITec TrueMatch Raman spectra database software
in combination with a self-created polymer database was applied to identify the polymer
layer based on the obtained spectra.

Optical Properties Characterization with UV–Vis and FTIR Spectroscopy

Solar reflectance was measured by using a UV–vis spectrometer (Cary 5000, Agilent
Technologies), equipped with an integrating sphere accessory (Labspheres), with a fixed
incident angle of 8◦. A Spectralon diffuse reflectance standard (Labspheres) was applied
as the reference. Angular reflectance measurements were carried out with samples placed
inside the integrating sphere at various angles with respect to the incident light. The
optical property of samples in the MIR regime was determined with an FTIR spectroscopy
(Vertex 70, Bruker) equipped with a gold-coated integrating sphere accessory (A562,
Bruker). A gold mirror was applied as the reference. The absorptance (emittance) was
calculated with absorptance (emittance) = 1− Reflectance. Transmission is assumed to
be negligible due to the presence of the Al layer.

Indoor Measurement for Cooling Performance Characterization

For all indoor measurements, dried air was warmed up by a water bath to 40 ◦C and
flushed in the area between the convection shield andmeasurement cell with a volumetric
flow rate of 80 Lmin−1. The Al dome was cooled with liquid nitrogen to about −190 ◦C.
Before filling the liquid nitrogen into the setup, the inner space of the dome is flushed
with nitrogen to avoid water condensation. The temperature of the dome is maintained
constant during the entire measurement by continuously filling liquid nitrogen into the
setup. A thermocouple (type T) is used for recording the temperature, and data are
collected by a digital multimeter (DAQ6510, Tektronix, Germany) every 5 s.

For the measurements with different solar intensities AM 1.5 solar light is provided by
a solar simulator (AX-LAN400, SCIENCETECH, CANADA) with an illumination area
of 5× 5cm2. The solar intensity was changed stepwise from 0 % to 25 %, 50 %, 75 %,
and 100 % of one sun (≈1000 W m−2) after the sample temperature reached a steady
state.

The cooling power measurement was conducted with a homemade feedback heater.
Samples were placed on the feedback heater and heated to a predetermined temperature.
The required heating power represents the cooling power of the sample.
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Rooftop Measurement

Rooftop measurements for the plain and PDMS coated APLs were carried out on the
roof of a three-floor building (18.06.2022, University of Bayreuth, Bayreuth, Germany)
under a clear sky. All the test samples were each placed in identical homemade sample
holders. The holders were thermally insulated by Styrofoam and covered with Mylar
aluminum foil. A LDPE foil with a thickness of ≈15µm is applied to prevent convective
heat transfer. The temperatures of the samples were determined by Pt-100 temperature
sensors and recorded with a digital multimeter (DAQ6510, Tektronix, Germany) every
5 s. One sample holder covered with Al foil instead of LDPE foil was used to obtain the
ambient temperature. The solar irradiance data were collected from the weather station
at the University Bayreuth (Ecological-Botanical Garden, 400 m away from the rooftop
measurement).
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6.8 Supplemental Information

6.8.1 Numerical Simulation

Calculation of average solar reflection and MIR absorptance/emittance

Average solar reflectance (R̄solar) is calculated by:

R̄solar =

∫ 2.5µm
0µm Isolar(λ) · Rsolar(λ)dλ
∫ 2.5µm

0µm Isolar(λ)dλ
(6.1)

Where λ is the wavelength, Isolar(λ) is the ASTM G173 Global solar intensity spectrum,[1]
and Rsolar(λ) is the surface spectral reflectance.

Average absorptance/emittance (ϵ̄) is calculated by:

ϵ̄ =

∫ 30µm
0µm IBB(T,λ) · ϵ(T,λ)dλ
∫ 30µm

0µm IBB(T,λ)dλ
(6.2)

Where IBB(T,λ) is the spectral emittance of a blackbody at temperature T (T = 300 K is
applied to all ϵ̄ calculations) and ϵ(T,λ) is the surface spectral emittance.

Calculation of net cooling power

Cooling power calculation:

The net cooling power Pcool is defined as

Pcool = Pmat − Psun − Patm − Pnonrad (6.3)
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Pmat is the power radiated by the material, which is given by

Pmat = 2π

∫ π/2

0

sinθ cosθdθ

∫ ∞

0

Ib(λ, Tmat) · ϵmat(λ,θ )dλ (6.4)

Ib =
2hc2

λ5
· 1

e
hc
λkBT − 1

(6.5)

Where h is Planck’s constant, kB is Boltzmann’s konstant and c is the light speed.

Psun =

∫ ∞

0

IAM1.5(λ) · ϵmat(λ)dλ (6.6)

Patm = 2π

∫ π/2

0

sinθ cosθ

∫ ∞

0

Ib(λ, Tatm) · ϵatm(λ,θ )dλdθ (6.7)

Where ϵatm(λ,θ ) = 1−τatm(λ, 0)
1

cosθ ,[2] with τatm(λ, 0) being the spectral transmittance
of the atmosphere.[3]

Nonradiative power exchange is calculated with:

Pnonrad = hnonrad · (Tatm − Tmat) (6.8)

Where hnonrad is the non-radiative heat transfer coefficient.

ϵmat(4µm < λ) = 1 and ϵmat(8 < λ < 13µm) = 1, else ϵmat = 0, is applied for the net
cooling power calculation of APLs-supported broadband emitter and selective emitter,
respectively. We assume that the emissivity of the broadband and selective emitter and
APLs-based cooling foil are directional-independent.

Simulation of energy saving for China and US

We used EnergyPlus v9.6.0 for the evaluation of annual energy consumption.[4] The
modeled building is based on a midrise apartment building defined by the American
National Standards Institute.[5] We created two versions of this building: One with
traditional materials as included in EnergyPlus and one with our material properties for
the wall and roof, as shown in Table 6.1.

Table 6.1.: Material properties used for energy saving simulations.

Absorptance Traditional material Our material
Visible (0.37µm< λ < 0.78µm) 0.7 0.152
Solar (0.3µm< λ < 2.5µm) 0.7 0.14
Thermal (2.5µm< λ) 0.9 1
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The weather for the USA is the Typical Meteorological Year 3 data set.[6] It includes
hourly data for 1020 locations across the USA for a 1-year period. For China, the Chinese
Standard Weather Data collected by the China Meteorological Bureau[7] has been used,
consisting of data for 270 locations. For each location, two yearly simulations were run:
one with the traditional and one with ideal APL-based cooling foil. Afterward, the total
yearly energy consumption was averaged for all locations in each state or province. The
energy saving is the difference between the averaged data of the traditional materials
and our materials.

6.8.2 Supporting Figures

Figure 6.S1.: Solar reflectance of various packaging laminated Al foils: a) juice package,
b) cleaning tissue package, c) snacks package, d) Cashew nuts bag, and d) rapid antigen test
bag.
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Figure 6.S2.: Diffuse solar reflectance of a chip bag before (flat chip bag) and after wrinkling
(wrinkled chip bag). The insets show the photography of the flat and wrinkled chip bag.

Figure 6.S3.: FTIR absorption spectra of the chip bag, coffee bag and FFP2 mask bag.
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Figure 6.S4.: a) Average solar reflectance b) average MIR absorptance/emittance of different
PALs: chip bag, coffee bag, and FFP2 mask bag. Plain Al foil is plotted as a reference.

Figure 6.S5.: Steady-state temperature of different APLs: chip bag, coffee bag, and FFP2 mask
bag, as a function of solar intensity.
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Figure 6.S6.: Cooling power measurements of different laminated Al packaging bags: a) chip
bag, b) coffee bag, and c) FFP2 mask bag, with increasing solar intensity from 0 % to 100 % via
the indoor setup.

Figure 6.S7.: Cooling power of different APLs: chip bag, coffee bag, and FFP2 mask bag, as a
function of solar intensity.
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Figure 6.S8.: Cooling power measurements of different PDMS-coated APLs: a) chip bag,
b) coffee bag, and c) FFP2 mask bag, with increasing solar intensity from 0 % to 100 % via the
indoor setup.

Figure 6.S9.: Cooling power of different plain and PDMS coated APLs normalized by the
cooling power of a PDMS-coated (∼100µm) Ag mirror (w/o solar light), for both w/o and w/
100 % solar light.

Figure 6.S10.: a) Schematic and b) photography of the homemade setup for field testing.
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Figure 6.S11.: Predicted net cooling power of the plain APLs, a, d) chip bag, b, e) coffee bag,
and c, f) mask bag for both nighttime and daytime with various non-radiative heat transfer
coefficients, 0, 5, 10 and 15 W m−2 K−1. An average solar intensity of 500 W m−2 is applied for
daytime calculation.

Figure 6.S12.: Predicted net cooling power of the PDMS coated APLs, a, d) chip bag, b, e) coffee
bag, and c, f) mask bag for both nighttime and daytime with various non-radiative heat transfer
coefficient, 0, 5, 10 and 15 W m−2 K−1. The average solar intensity of 500 W m−2 is applied for
daytime calculation.
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7.1 Abstract

Many advanced materials consist of fibers. They are used as nonwovens, fabrics, or in
composite materials. Characterization of individual fibers allows us to predict resulting
material properties. We present a measurement setup and analysis software to charac-
terize individual, micrometer-sized fibers fast and reliably. The setup is based on the
lock-in thermography principle. Thermal diffusivity values of seven reference samples
agree very well with previously reported values. We use our setup to investigate critical
measurement parameters like excitation frequency, excitation power, pixel size, and fiber
orientation. Our results show that fibers with subpixel diameters can be measured even
if they are not aligned. However, special care has to be taken to choose an adequate
excitation power. Measurements at high intensities can underestimate thermal diffusivity
even though the raw data looks reasonable. By automatically measuring at different
excitation powers, our setup solves this issue.

7.2 Introduction

Fiber-based materials play an important role in a range of heat management applications,
such as thermal insulation,[1,2] heat dissipation,[3,4] heat spreading,[5] and thermoelectric
power generation.[6,7] Fibers can be used without additional material as nonwovens
or fabrics, or in composite materials with an enclosing matrix. The effective thermal
properties depend on the interplay between the individual fiber properties and their
arrangement in a composite material, nonwoven, or knitted structure. In either case, a
precise knowledge of the thermal properties is essential to understanding and designing
advanced materials with heat control. Knowing the properties of single fibers enables the
design of the resulting material properties of fabrics and composite materials, taking into
account appropriate models.[8–10] Measuring individual fibers gets excessively difficult
the smaller the fiber diameter is.

Early experimental setups to determine the thermal properties of fibers utilized steady-
state measurements.[11–15] These techniques measure either the temperature difference
along the fiber or the corresponding heat flux. A significant disadvantage of steady-state
methods is the measurement time. The sample must be in thermal equilibrium before
relevant data can be recorded. A second disadvantage is heat losses. They must be either
prevented or taken into consideration for the data evaluation. Therefore, experimental
setups are challenging to create and operate.

An alternative to steady-state methods are transient or periodic techniques. In transient
measurements, a single heating event is recorded. Afterward, an appropriate model
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analyzes the resulting data. Vignoles et al. presented a transient method to characterize
fibers.[16] They compared different evaluation models and showed a good agreement
between all models. However, they exclusively measured a 450µm thick silica fiber
bundle with a low diffusivity (≈0.2 mm2 s−1). The signal-to-noise ratio for fibers with
high thermal conductances might be too small to evaluate because only a single heating
event is considered. Recently, dual laser flash Raman spectroscopy was introduced to
characterize the thermal diffusivity of individual nanowires.[17,18] They achieved a better
signal-to-noise ratio by averaging multiple, identical heating events.

Periodic state techniques provide an even higher signal-to-noise ratio. Besides averaging
multiple heating events, the signal occurs with a defined excitation frequency. Hence, a
Fourier transformation can eliminate noise very effectively. Wang et al. presented a 3ω
method adapted to micrometer-sized wires.[19] They apply an alternating current to the
wire. As a result, the temperature and thus the electrical resistance changes periodically.
The resistance change can be detected as a voltage change at the third harmonic, 3ω.
While their measurement setup characterizes single wires well, it works exclusively for
electrically conducting materials. More general methods employ external heat sources.
They can be either dedicated heating wires[8] or lasers.[20,21] Contactless measurements
are possible by using infrared (IR) detectors or cameras

Lock-in thermography is a nondestructive characterization method used for qualitative
and quantitative analysis.[22] A light source periodically heats the sample to determine
the thermal diffusivity quantitatively. An IR camera detects temperature fluctuations.
The time–temperature data is converted to an amplitude, T̃0, and phase signal, Ψ, by
applying a Fourier transformation. At a sufficient distance from the excitation spot, ln(T̃0)
and Ψ follow a linear trend with respect to the distance. In combination with the lock-in
frequency, the respective slopes lead to the thermal diffusivity. This evaluation method
has been proven for films as well as fibers.[21,23–25] By changing the excitation frequency,
materials with diffusivities spanning several orders of magnitude can be measured.[26]

Major technological advances in thermography lead to higher magnifications and temper-
ature sensitivities rendering this technique powerful and adaptable to characterize heat
transport and temperature distributions on small length scales. We revisit the valuable
contributions of lock-in thermography to characterize individual fibers. In particular,
we focus on the interplay between measurable pixel size, fiber orientation, and fiber
diameter, and their influence on the measured thermal diffusivity. We also outline how
even small excitation powers lead to a considerable temperature rise and the resulting
effect on the measurement.

In addition to investigating the measurement technique itself, we introduce an evaluation
software that enables fast and easy characterization of single, micrometer-sized fibers.
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Different experimental parameters, namely the lock-in frequency and excitation power,
can be changed automatically. Subsequently, our software package analyzes the data
with minimal user input required increasing the reproducibility of the data evaluation.
Overall, our work highlights the valuable insights that lock-in thermography can provide
to the quantitative heat transport characterization of small objects – even on length-scales
that are smaller than the actual pixel resolution.

7.3 Methods

7.3.1 Measurement Principle

Lock-in thermography has been widely used to accurately determine the thermal diffusiv-
ity of solids. In particular, for a thin filament of radius r, which is heated periodically by
a focused laser modulated at frequency f , one-dimensional heat diffusion occurs outside
the illuminated region.[20] By solving the heat diffusion equation, the corresponding
surface temperature oscillation can be written as[20,26]

T̃ (ẑ, t) = T0 exp(−γẑ)exp(i · 2π f t) (7.1)

with

γ= γr + iγi (7.2)

γr =
1p
α
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h0

ρcpr

�2

+ (π f )2, (7.4)

where α is the thermal diffusivity, ẑ is the relative distance to the center of the laser
beam, i =

p−1 is the imaginary unit, T0 is a term that depends on the heating power,
the shape of the laser beam and the size of the fiber;[26] t is the time, h0 is the radiative
heat loss coefficient, ρ is the material density, and cp is the specific heat. We can write
the amplitude, T̃0, and phase, Ψ, of the periodic signal as

T̃0 = T0 exp(−γrẑ) (7.5)
Ψ = −γiẑ − arctan(γi/γr). (7.6)
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If heat losses are negligible, both the slope of the linearized amplitude and phase with
respect to ẑ are identical and depend only on the excitation frequency and the thermal
diffusivity

∂ ln T̃0

∂ ẑ
= −γr =
√

√π f
α

(7.7)

∂Ψ

∂ ẑ
= −γi =
√

√π f
α

. (7.8)

If heat losses are non-negligible, the product of the slopes can be used to determine the
thermal diffusivity

γrγi =
π f
α

. (7.9)

In our experimental setup, heat losses by convection are negligible because the sample is
kept in a high vacuum (< 10−2 mbar) during the measurements. Since only the slopes
of ln T̃0 and Ψ are needed, we can use the excitation point of the laser as the coordinate
origin. This method is known in the literature as the slope method and has been confirmed
for various samples.[20,21,25–27] We refer to ln T̃0 as the linearized amplitude.

7.3.2 Measurement Setup

Figure 7.1a shows a schematic overview of our measurement setup. Single fibers are
attached to 3D-printed sample fixtures. A 20 nm thick carbon layer is deposited on the
front and back of the sample (EM ACE600, Leica Microsystems GmbH). To measure
the thermal diffusivity of an individual fiber, the fixture is placed inside an aluminum
vacuum chamber (p < 10−2 mbar) utilizing a sample holder (Figure 7.1b,c). Using a
dedicated fixture for each sample makes swapping samples easy and fast. Photographs
and laser microscope images of the samples are shown in Figure 7.S1. The vacuum
chamber is on top of a three-axis translation stage and a tip-tilt rotation stage. This
enables focusing and alignment of the fiber. A point laser (51nano-N-520-0.9-O05-P-
12-4-28-0-150, Schäfter+Kirchhoff GmbH) enters the vacuum chamber through an
optically transparent N-BK7 glass window in the back at an angle of about 5◦. A coating
on the camera lens blocks the laser from reaching the detector. Using an angled point
laser prevents the reflection of the laser at the camera lens from creating a secondary
heating spot on the fiber. A signal generator (DG1022A, RIGOL Technologies Co., Ltd.)
controls the maximum power of the laser by applying a direct current (DC) voltage.
The maximum power of 0.9 mW corresponds to a voltage of 2.5 V. At the same time, a
control interface (BreakOut-Box, Infratec GmbH) modulates the power periodically. The
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Figure 7.1.: Measurement setup. (a) A modulated laser heats the sample. An IR camera detects
the resulting temperature distribution. A computer converts the signal to amplitude and phase
data. (b) The sample is positioned inside a vacuum chamber at a pressure of < 10−2 mbar. A
glass window is in the back of the chamber, and in the front is an IR-transparent sapphire window.
(c) The fiber is attached to a 3D-printed sample fixture and is thermally excited by the laser in
the center.
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duty cycle is set to 30 % to decrease the DC heating of the fiber.[28] The total thermal
load on the fiber is determined by the laser power, the duty cycle, and the focused laser
area. We will address the influence of laser power and focal area in a dedicated section.
The control interface is synchronized with an IR camera (Image IR 9430, InfraTec
GmbH) at the front of the vacuum chamber and a computer. InfraTec’s IRBISactiveonline
software handles the synchronization. The camera is set to a frame rate of 500 frames
per second and detects the sample temperature through a sapphire window. We use a 1×
and an 8× microscope lens resulting in pixel resolutions of 10 and 1.3µm, respectively.
Measurements are taken with the 8× lens if not stated otherwise.

For each measurement, the equilibration time is 60 s or 50 periods, whichever is longer.
The measurement time is always set to 60 s corresponding to the analysis of 30000

images. For frequency-dependent measurements, the excitation frequency is varied
logarithmically between 0.1 and 125 Hz. For power-dependent measurements, powers
are varied linearly between 0.108 mW and 0.9 mW.

7.3.3 Data Analysis

The amplitude and phase of the temperature are calculated in real-time. As shown in
Figure 7.2a, the fiber only occupies part of the image. Thus, the camera view is cropped
to a smaller area. We developed software to analyze the resulting amplitude and phase
images semiautomatically.[31] Figure 7.S2 shows the workflow from sample preparation
to data analysis utilizing our software. First, the software detects the position of the fiber
and laser excitation. Pixels outside the fiber area are not used for the data evaluation. For
the remaining pixels, the distance to the laser spot is calculated. The natural logarithm
of the amplitude and the phase are plotted against the distance to the center (Figure 7.2b
and Figure 7.S3). Afterward, linear regression determines the slope of the data in the
linear regime. The respective slopes sufficiently far from the laser excitation are evaluated
according to the theoretical model described above. Determining the boundaries of the
linear regime is the only part requiring user interaction. From the slopes, the thermal
diffusivity is calculated according to eqs 7.7 to 7.9. In addition to detecting the fiber
position, the software automatically detects the fiber’s orientation and aligns the fiber
accordingly. As shown in Figure 7.S4, by rotating the image, the slope of the amplitude
and phase match those of a straight fiber.
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(a)

Figure 7.2.: Typical data and resulting diffusivities. (a) Raw amplitude data of a 100µm
quartz fiber detected by the camera. The raw amplitude image is cropped. The fiber (bright
area) and laser spot (red circle) are detected using the cropped data. (b) For each pixel, the
natural logarithm of the amplitude is plotted against the distance to the laser spot. The linear
slope (red line) is calculated in the grey area. (c) From the amplitude and phase slope, the
resulting diffusivities for different measurements are evaluated. By repeating the measurement
at a constant laser power (0.9 mW) but at different frequencies, a plateau can be seen. (d) At a
frequency of 2 Hz, a 139µm quartz fiber was excited with different laser powers. Regardless of
laser power, the same diffusivity is measured. The gray shaded area shows the range of values
found in the literature.[29,30] (e) For a 30µm PEEK fiber at 1 Hz, the thermal diffusivity decreases
with increasing laser power. This change is caused mainly by the amplitude slope. The gray
dashed line shows a value reported previously.[26]
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Table 7.1.: Measurement Results for Thermal Diffusivities of Different Fibers and Comparison
to Literature Valuesa

material thickness / µm excitation thermal diffusivity / mm2 s−1

frequency / Hz 1× lens 8× lens lit.

quartz
139 2 0.76± 0.01 0.77± 0.02 0.68b - 0.8c
100 2 0.80± 0.06 0.80± 0.04 0.68-0.8
78 2 0.81± 0.01 0.77± 0.02 0.68-0.8
70 2 - 0.78± 0.02 0.68-0.8

PEEK 210 1 - 0.46± 0.02 0.5d
30 1 0.50± 0.01 0.52± 0.02 0.5

titanium 128 3 - 9.38± 0.46 8.85e
a The given errors are standard deviations of multiple measurements. All values agree
well with the literature. b Reference [29]. c Reference [30]. d Reference [26]. e

Reference [33].

7.4 Results and Discussion

7.4.1 Instrument Validation

To validate our setup, we characterized three different materials: amorphous quartz,
polyether ether ketone (PEEK), and titanium. Each sample was measured at different
frequencies at constant power. Figure 7.2c shows typical data for a 100µm quartz fiber.
At high frequencies, diffraction effects of the microscope lens lead to an overestimation
of the thermal diffusivity.[32] At moderate frequencies, a plateau is visible, while at low
frequencies, the values diverge from the actual value due to heat losses. This matches
very well with the experimental results of Mendioroz et al.[26] Evaluating only the
amplitude/phase leads to an under-/overestimation of the thermal diffusivity. This
matches the expectation from the theoretical model and experimental values reported in
the literature.[21] Heat losses are compensated using the product, and the correct value is
obtained. Table 7.1 compares the measured values for the reference materials with values
reported in the literature. The deviation is at most 6 % for all materials. Considering
the standard deviations of our measurements and the differences to literature values,
we estimate an uncertainty of 5 %. These results validate the measurements with our
instrument.

7.4.2 Influence of Laser Power and Focal Distance

For each sample, measurements with varying power at a frequency in the plateau regime
are conducted. As expected, the resulting diffusivities show a constant value for a 139µm
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quartz fiber matching the values found in the literature[29,30] (Figure 7.2d). However, a
30µm PEEK fiber with a lower material diffusivity shows a power dependency. The trend
is mainly driven by the amplitude slope while the phase slope stays almost constant
(Figure 7.2e).

We propose that the power dependency is due to temperature effects. To confirm
our hypothesis, we investigated the raw data of measurements at a wide range of
laser powers between 0.05 mW and 0.9 mW more closely. The absolute value of the
amplitude decreases with decreasing laser power (Figure 7.3a). This matches the
expectation that a lower excitation power heats the fiber less during one period. However,
subtracting the maximum amplitude from each measurement clearly shows that the
slope of the amplitude changes (Figure 7.3c), compromising the thermal diffusivity
evaluation. Individually, each measurement looks reasonable and shows a linear regime,
but overall, a trend of the slopes becomes visible. For the phase, no such trend can be
observed (Figure 7.3e). We rationalize this observation by effects introduced by the high
temperature fluctuations of the fiber (Figures 7.S5 and 7.S6).

At the highest laser power of 0.9 mW, the peak-to-peak amplitude during one period is
up to 43 K. A power of 0.108 mW leads to an amplitude of only 1.4 K (Figure 7.S5a,b).
Meanwhile, the average absolute temperature is 22 ◦C throughout the whole fiber at a
power of 0.108 mW, but it changes from 45 ◦C at the center to 34 ◦C at 0.3 mm for the
highest power (Figure 7.S5c,d). As the thermal diffusivity decreases with increasing
temperature,[34] this will lead to an additional downward trend. Since thick fibers have a
higher heat capacity, the temperature change is attenuated and small even for high laser
powers. A 210µm thick PEEK fiber shows an amplitude of 1.4 K and a homogeneous
average temperature of around 25 ◦C throughout the whole fiber even at the highest laser
power (Figure 7.S6). Hence, no trend in the thermal diffusivity is visible (Figure 7.S7a).
In contrast, a 5µm thin carbon fiber shows a clear trend comparable to the thin PEEK
fiber (Figure 7.S7b). Accordingly, our results on different fiber diameters and laser
incidence powers suggest that reliable thermal diffusivity values can be obtained when
the temperature rise is below 4 K (Figure 7.S6), provided that a good signal-to-noise
ratio is achieved in the measurement.

Moving the fiber in and out of the focal plane of the laser at a constant laser power
achieves a comparable effect to the power dependence (Figure 7.3h). Moving the sample
by 4 mm changes the laser spot size from 10µm to about 266µm (Figure 7.S8). The
resulting amplitude and phase data (Figure 7.3b,d,f) resemble the power sweep. Heating
the fiber with a narrowly focused laser leads to the highest temperature amplitude.
Consequently, the apparent thermal diffusivity has a minimum when the laser is at the
focal point of the laser (Figure 7.S9). The laser spot size increases when moving the
fiber out of the focal point. This leads to two effects: (1) The light hitting the fiber
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Laser

1.200 V

Translation stage

Figure 7.3.: Influence of the laser power and focal distance on the thermal diffusivity of a
30µm PEEK fiber. Raw data at (a, c, e) different laser powers and (b, d, f) different distances
from the focal point. (g) Slopes of the phase and amplitude against the maximum linearized
amplitude. While the phase slope stays almost constant, the amplitude slope changes significantly.
A steeper slope correlates with higher temperature differences leading to lower apparent thermal
diffusivities. (h) Schematic drawing of the measurement setup. Applying different voltages
changes the laser power. Moving the fiber in and out of the focal point of the laser achieves a
comparable effect.
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is distributed over a larger area. (2) After exceeding the fiber diameter, a part of the
laser passes the fiber without contributing to the thermal excitation. As a result of both
effects, the maxima in the linearized data are less sharp, and the temperature difference
decreases from 2.7 to 0.5 K at a laser power of 0.180 mW.

Figure 7.3g shows the slopes of the linearized amplitude and phase versus the maxi-
mum linearized amplitude for each measurement. The maximum linearized amplitude
indicates the temperature difference during one measurement period. The trends of the
power sweep and focus sweep agree well. While the phase slope stays almost constant,
the amplitude slope decreases with higher temperature amplitudes.

A third possibility to observe this effect is changing the duty cycle since the duty cycle
has been shown to influence the absolute temperature during a lock-in measurement.[28]
Figure 7.S10 shows a thick and thin PEEK fiber measured with different duty cycles.
Again, the thick fiber shows no trend while the thin fiber shows a decreasing apparent
thermal conductivity with increasing temperature.

7.4.3 Comparison of Different Magnifications

Researchers used the same detection hardware for all experiments when characterizing
fibers via lock-in thermography in previous publications.[8,20,21,26] In contrast, our camera
system can be equipped with different lenses to access pixel resolutions down to 1.3µm.
Consequently, we can now elucidate any potential influence of the camera resolution on
the quantification of thermal diffusivity. At the same time, we address whether tilting a
fiber relative to the pixel orientation significantly influences the evaluation. Figure 7.4
shows the thermal diffusivities measured with a 1× and 8× microscope lens for a thick
and thin fiber. The thick quartz fiber is clearly visible with both lenses as it spans 14 pixel
lines even for the 1× lens. For evaluating the thin PEEK fiber, 17 pixel lines were used
for the 8× lens and only a single pixel line for the 1× lens (Figure 7.S11). The results
for both lenses overlap, showing that either lens can be used to measure either fiber.
Note that the slight power trend for the thin PEEK fiber is reproducible.

Next, we investigate a 5µm carbon fiber. This fiber is half the camera’s pixel size when
equipped with the 1× lens. Intuitively, an evaluation of the fiber seems questionable due
to its subpixel diameter. The fiber is aligned to a single pixel line. The measurement
data shows the expected shape (Figure 7.5a,b), and the resulting thermal diffusivity
agrees well with the 8× lens (Figure 7.5c–e).

When tilting the fiber at an angle of 3.2◦ (Figure 7.S12), the linearized amplitude data
of the 1× lens shows discrete steps (Figure 7.5a). These arise from the fiber moving
from one pixel line to the next in the original data. Nevertheless, the slope and hence
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Figure 7.4.: Comparison of the two different lenses with a thick quartz fiber and a thin PEEK
fiber. Amplitude of the (a, b) quartz fiber and (c, d) PEEK fiber with the 1× and 8× lens. (e)
Resulting thermal diffusivity versus nominal laser power. The respective thermal diffusivities of
both lenses agree very well.

Figure 7.5.: Measurements of a 5µm carbon fiber measured while straight and tilted. (a, b)
Raw data for the 1× lens. The fiber size is half the pixel size. (c) Both the 1× and 8× lens lead
to comparable results for the straight and tilted fiber. (d, e) Raw data for the 8× lens. Since the
pixel size is smaller than the fiber diameter, both the straight and tilted fiber look identical.

the thermal diffusivity is not affected. Repeating the measurement five times for each
configuration shows a maximum spread of 0.85 mm2 s−1 and a maximum deviation
from the mean of 6.2 % (Figure 7.5c). This proves that measuring fibers with subpixel
diameters is possible even if they are not perfectly aligned. Thus, our measurements
confirm the results from previous publications in which fibers have been characterized
even if their size was of subpixel resolution. Furthermore, our results are encouraging
that lock-in thermography may be suitable to access the submicrometer range as long as
the temperature excitation is sufficiently small.
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7.5 Conclusions

We revisit lock-in infrared thermography to characterize individual, micrometer-sized
fibers. Utilizing high-resolution thermography, we demonstrate that fibers with subpixel
sizes can be accurately measured. In addition, tilted fibers can be evaluated straightfor-
wardly without compromising the quantitative evaluation. Measuring with a minimum
external heat load is of paramount importance to obtain the true thermal diffusivity of
a specific fiber. This becomes particularly relevant for fibers of very thin cross sections
and low intrinsic thermal conductivity. Measures to adjust the excitation energy are
the laser power and the focused area. Considering these measurement parameters, we
confirm the reported literature values for a range of reference materials. Furthermore, we
provide a measurement and data evaluation platform with a high degree of automation.
This software is openly available and allows for fast and accurate determination of the
thermal diffusivity of fibers. Considering the advantages of lock-in thermography, we
are convinced that this method will strongly contribute to developing advanced fibers
for heat management applications.
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7.8 Supplemental Information

7.8.1 Materials

Quartz fibers with diameters of 139µm and 100µm, titanium fibers, and polyether
ether ketone (PEEK) fibers were purchased from GoodFellow GmbH. Quartz fibers with
diameters of 78µm and 70µm were created in-house by heating and stretching quartz
glass rods. Carbon fibers with a diameter of 5µm were supplied by Toho Tenax Co., Ltd.
(IMS65).

7.8.2 Determination of Fiber Diameter

Each fiber was investigated with a 3D laser measuring microscope (LEXT OLS5000-SAF,
OLYMPUS EUROPA SE & CO. KG). We obtained images of 1200µm×490µm size with a
50× lens. The diameter of each fiber was measured at three positions (left, center, right)
and averaged.
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7.8.3 Supplemental Figures
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Figure 7.S1.: (a-c) Photographs of three samples with different thicknesses. (a) 139µm quartz
fiber, (b) 30µm PEEK fiber, (c) 5µm carbon fiber. (d-i) Laser microscopy images for different
fibers.
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Figure 7.S2.: Flowcharts of (a) the measurement procedure and (b) the analysis software.
Round rectangles are parts requiring human interaction, while sharp rectangles are fully auto-
matic.
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(a) (b)

Figure 7.S3.: Phase data for a 100µm quartz fiber. (a) The fiber and laser positions are identical
to the corresponding amplitude measurements. Highlighted pixels are used for evaluation. (b) For
each pixel, the distance to the laser excitation is determined. A clear linear trend (red line) of
the phase is visible in the evaluated area (gray).

(a) (b)

(d)(c)

Figure 7.S4.: (a, b) 2D amplitude images of a 100µm quartz fiber. When the fiber is straight,
the software detects only the fiber and laser position. When the fiber is tilted, an additional tilt
correction is applied. Here, the software determined an angle of 4◦. (c) Linearized amplitude
data, and (d) phase data. The data for the straight and tilted fiber overlap leading to the same
slopes and thus the same thermal diffusivities.
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Figure 7.S5.: Temperature evolution of a 30µm thick PEEK fiber with an excitation frequency
of 1 Hz. Temperature change during one period at (a) 0.108 mW and (b) 0.9 mW. Average
temperature during one period at (c) 0.108 mW and (d) 0.9 mW.
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Figure 7.S6.: (a) Absolute temperature at the center of a 30µm and 210µm thick PEEK fiber
during one 1 Hz period with a laser power of 0.9 mW. (b) Resulting peak-to-peak amplitude of
the respective measurements. While the temperature of the thick fiber stays almost constant, the
thin fiber heats up considerably during one period.
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Figure 7.S7.: Thermal diffusivity at different laser powers for (a) a 210µm thick PEEK fiber
at 1 Hz and (b) a 5µm thick carbon fiber at 10 Hz. For the thin fiber, a decrease in apparent
thermal diffusivity is visible with increasing laser power.
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Figure 7.S8.: Laser spot size. (a) The laser spot size was measured with a beam profiler
(DataRay BR2, DataRay Inc.). The size is given by the diameter of the laser at 13.5 % power.
(b) At the focal point, the size of the laser is 10µm. With increasing absolute distance, the spot
size increases linearly up to a size of 266µm at 4 mm.
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Figure 7.S9.: Focus sweep with the (a) 8× and (b) 1× lens. A laser power of 0.18 mW was
used. The thermal diffusivity determined by the amplitude shows a clear minimum at the focal
point. For the phase, no trend is visible.
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Figure 7.S10.: Effect of different duty cycles. Measurement results of (a) a 210µm thick PEEK
fiber at 1 Hz and 0.9 mW and (b) a 30µm thick PEEK fiber at 1 Hz and 0.36 mW. For the thin
fiber, a decreasing trend is visible.
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(a)

(d)(c)

(b)

Figure 7.S11.: (a-b) Measurement data for a 139µm quartz fiber. The slopes of the 1× and
8× lens are identical. (c-d) Measurements for a 30µm PEEK fiber. Again, the slopes are identical.
Note that only a single pixel line was evaluated for the 1× lens.

(a)

(d)(c)

(b)

Figure 7.S12.: 2D amplitude images of a 30µm PEEK fiber of (a, b) aligned and (c, d) tilted
fibers. The scale bars for the 1× lens in (a) and (c) are 2000µm, for the 8× lens in (b) and (d)
250µm.
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8.1 Abstract

A thorough knowledge and understanding of the structure-property relationship between
thermal conductivity and C-fiber morphology is important to estimate the behavior of
carbon fiber components, especially under thermal loading. In this paper, the thermal
conductivities of different carbon fibers with varying tensile modulus were analyzed
perpendicular and parallel to the fiber direction. Besides the measurement of carbon
fiber reinforced polymers, we also measured the thermal conductivity of single carbon
fibers directly. The measurements clearly proved that the thermal conductivity increased
with the tensile modulus both in fiber and perpendicular direction. The increase is most
pronounced in fiber direction. We ascribed the increase in tensile modules and thermal
conductivity to increasing anisotropy resulting from the orientation of graphitic domains
and microvoids.

8.2 Introduction

Carbon fibers are usually made from cellulose, polyacrylonitrile (PAN), or mesophase
pitch. Fibers with the precursor cellulose have low thermal and electrical conductivity
due to the lattice defects in the carbon structure. Therefore, they are mainly used
as insulating materials.[1] Fibers made from PAN or pitch play a more important role
economically and are used in aircraft, wind turbine blades, and vehicles.

High temperature treatment of PAN precursors leads to dehydrogenation, cyclization
reactions, N2-elimination, and carbonization. Overall, these reactions lead to the high
thermal stability and good mechanical properties of the resulting carbon fibers, especially
if the fibers were aligned during the stabilization process. Microscopically, the high
temperature processing leads to semicrystallinity due to the formation of graphitic
domains. The fibers made from polyacrylonitrile have a circumferentially orthotropic
structure, i.e., their properties depend on the direction in which they are measured. Heat
transport takes place mainly within the graphitic basal planes, which are held together
by covalent bonds. Only weak Van der Waals forces act between the basal planes, which
reduces transversal heat transport.[2,3]

The anisotropic fiber morphology has a considerable influence on the fiber properties.
The anisotropic behavior was extensively studied and compared to micromechanical
models in other publications of the author.[4–6] The anisotropy affects tensile strength
and Young’s modulus, thermal expansion, and electrical and thermal conductivity.[7–10]
Morgan[10] showed that the property profile can be adjusted by the temperature during
the production of the fibers. The higher the oven temperature, the more the layers orient
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themselves in the longitudinal direction of the fibers. This results in a more aligned
structure, which significantly increases the anisotropy. As expected, this has an effect on
the respective morphology of the carbon fiber.

In the PAN-based carbon fibers, there is mostly a random distribution of the individual
layers, while more ordered structures result in the pitch-based ones. Qin et al.[11]
investigated the effect of temperature treatment on the morphology of PAN-based carbon
fibers and the effects on elemental composition, porosity and mechanical properties,
tensile strength, and tensile modulus. In their work, the fibers were high-temperature
treated over a range of 1300 ◦C to 2700 ◦C. They showed that the carbon content
of the fibers increases with increasing processing temperature, while the remaining
elements such as nitrogen and hydrogen are split off. In particular, the step from 1300 ◦C
to 2000 ◦C stands out, where the nitrogen content is reduced from 4.96 % to 0.12 %,
resulting in a carbon yield of 99.4 %. This results in an increased porosity of the fiber,
since the elimination of nitrogen leads to the formation of pores and voids in the fiber.
These are only eliminated with a further increase in temperature by rearrangements
in the lattice structure. With the increase in temperature, an increasing orientation of
the crystalline domains becomes apparent. In the case of the PAN-based carbon fibers, a
largely unordered structure can be seen for the temperature treatment up to 1300 ◦C
(see Figure 8.1). When treated up to 2700 ◦C, a clear orientation and growth of the
graphitic lamellae can be seen.

Production temperature increase

Through-plane
cross section

In-plane
cross section

Individual
fiber

Figure 8.1.: Scheme of fiber microstructure based on PAN with increasing production tempera-
ture.

The different fiber morphologies also affect the mechanical and thermal properties, as
shown by Qin et al.[11] Their findings show that especially the tensile modulus increases
with increasing temperature as a result of the increased alignment and growth of the
crystallites. However, when the tensile strength is considered, it shows a decrease with
increasing high-temperature treatment. The reason for this is the orientation of the
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graphene layers. With increasing temperature, the amount of entanglement and covalent
cross-linking decreases, resulting in a decreased shear modulus. In addition, there is an
increase in the microporosity within the fiber, mainly due to cleavage of the chemically
bound nitrogen and consequent formation of defects in the crystal structure.[8,10,11]

Due to the morphology induced anisotropy of the fibers, there are significant differences
between the thermal conductivity longitudinal (0◦) and transversal (90◦) to the main
fiber axis. In this regard, Zhang[3] suggests that the transverse thermal conductivity is
generally equivalent to about 1 % of the longitudinal thermal conductivity. Our findings
in other publications show that this can only be seen as a rough estimation.[5] The
literature review summarized in Tabelle 8.1 shows that the relation between thermal
conductivity in fiber direction, κ∥, and in transverse direction, κ⊥, (the anisotropy factor)
varies between different fibers.
Table 8.1.: Overview of thermal conductivities for PAN and pitch-based carbon fibers parallel
and perpendicular to the longitudinal fiber axis.

Precursor κ∥ κ⊥ Tensile Classification Sourcemodulus
W m−1 K−1 W m−1 K−1 GPa

PAN (n. a.) 17 (n. a.) (n. a.) (n. a.) [12]
PAN (n. a.) 10-20 (n. a.) (n. a.) (n. a.) [13]
PAN (n. a.) 5 (n. a.) (n. a.) (n. a.) [14]
PAN (n. a.) 16 3 (n. a.) (n. a.) [10]
PAN (T700S-12K) 10.2 1.3 230 HT [15]
PAN (Toray T300) 7 2 230 HT [2]

n. a. = not available HT = high tenacity

From the literature, it is well-known that the conditions during production of the fiber
(mainly the temperature) lead to different morphology and different mechanical proper-
ties. So far, the effect on thermal conductivity in fiber and transverse direction has not
been studied. The aim of this work is to investigate the influence of the morphology of
carbon fibers with varying tensile modulus on the thermal conductivity of composites
with a resin matrix made thereof.

8.3 Materials and methods

8.3.1 Materials

The resin tetraglycidylmethylenedianiline (TGMDA, Epikote™ RESIN 496, Hexion Inc.,
Columbus, OH, USA) is four-functional with an epoxy equivalent of 115 geq−1. The used
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hardener was diethyltoluenediamine (DETDA, XB3473™, hydrogen equivalent weight
43 geq−1).

The used carbon fibers were HTS40 (Toho Tenax, Chiyoda, Japan), A49 (Dowaksa,
Tucson, AZ, USA), IMS65 (Toho Tenax, Chiyoda, Tokyo, Japan), and HR40 (Mitsubishi,
Tokyo, Japan). Further properties can be found in Tabelle 8.2.

Table 8.2.: Manufacturer data of fibers used in the underlying research.

Fiber Manufacturer Tensile strength Tensile modulus
MPa GPa

HTS40 Toho Tenax 4620 239
A49 DowAksa 2900 250
IMS65 Toho Tenax 6000 290
Pyrofil HR40 Mitsubishi 4610 390

8.3.2 Resin preaparation and curing

TGMDA and DETDA were mixed stoichiometrically (72:28m/m). Degassing followed at
10–20mbar. The samples were cured in a laboratory oven at 120, 160, and 200 ◦C, at
each temperature for 1 h with a heating rate of 10 K min−1. A postcuring at 220 ◦C for
2 h followed.

8.3.3 Prepreg production and consolidation

The department of Polymer Engineering owns a industry-like processing line to produce
prepregs (pre-impregnated fibers). The procedure is as follows: 12 K unidirectional
carbon fiber rovings were pre-spread with rollers. A carrier paper was coated with a
resin film at room temperature. In the last step, the fibers were compressed with the
resin film to the final prepreg with calander rolls (25 ◦C). The prepregs were stored in a
fridge at (−20 ◦C) before further processing. By hand lay-up the prepregs were stacked
and air was removed. It followed a sealing in vacuum bags and curing under atmospheric
pressure of 5 bar in a laboratory press at 120, 160, and 200 ◦C, at each temperature for
1 h with a heating rate of 10 K min−1. Post-curing at 220 ◦C for 2 h before cooling at a
rate of 5 K min−1 followed.
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8.3.4 Determination of fiber volume content

Thermogravimetric analysis (TGA) was conducted with the TG 209 F1 Libra (Netzsch-
Gerätebau GmbH, Selb, Germany).

The fiber volume content was determined by TGA according to DIN 16459:2019-12.[16]
In the suggested routine, fibers were dried for 2 h at 120 ◦C in the TGA. Then the fibers
were heated in the TGA from 20 ◦C to 800 ◦C, with a heating rate of 2 K min−1 under
a nitrogen flux of 85 mLmin−1. Samples cut from the laminates and samples cut from
neat resin plates were dried for 2 h in the TGA, then heated up to 450 ◦C with a heating
ramp of 10 K min−1. Finally, an isothermal step for 170 min at 450 ◦C was performed.
All samples were handled with gloves to prevent possible contamination.

In the TGA, the fibers showed only a slight weight loss of 1.0(1)%, which could be
attributed to the oxidation of the sizing. During the drying step, no significant weight
loss could be detected.

The fiber volume content, Φ, could then be calculated as

Φ=
mf

ρf
�

mf
ρf
+ 1−mr

ρr

� , (8.1)

where mf is the mass of the fibers, ρf is their density, and ρr represents the density of
the resin. The mass of the fibers was calculated by

mf =
ml −mr
1−mr

, (8.2)

where ml is the remaining mass of the laminate after the cycle, and mr is the remaining
mass of the resin.

The method was successfully verified and tested in comparison to the determination of
the fiber volume content via density measurements.[5]

8.3.5 Thermal conductivity measurements of composites

The thermal conductivity was measured by the laser flash method (LFA) with LFA447
(Netzsch GmbH, Selb, Germany). Five shots were used with a duration of 30 ms each,
the signal was fitted with the Proteus Analysis Software (Netzsch GmbH, Selb, Germany)
by the Cape–Lehman algorithm. The tested samples had a diameter of 12.7 mm.

The density was measured with the AG245 (Mettler-Toledo International Inc., Columbus,
Ohio, USA) using Archimedes’ principle. The thermal heat capacity was measured
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with the DSC 1 (Mettler-Toledo International Inc., Columbus, OH, USA), according to
ASTM E1269–11, with a heating rate of 20 K min−1.[17]

8.3.6 Nanostructural analysis of PAN fibers

For volume-averaged nanostructural analysis, small-angle (SAXS) and wide-angle X-ray
(WAXS) scattering were performed on a bundle of parallelly aligned fibers using a Double
Ganesha AIR system (SAXSLAB/Xenocs), equipped with a rotating copper anode (Micro-
MAx 007HF, Rigaku Corporation, wavelength of λ = 0.154 nm). Data were recorded
with a position-sensitive detector (Pilatus 100K for WAXS, PILATUS 300K for SAXS;
Dectris). Two-dimensional scattering patterns were converted into one-dimensional
intensity profiles of I(q) vs q, where q is given as

q =
4π
λ

sin
θ

2
, (8.3)

with the scattering angle θ . X-ray diffractograms (XRD) of the carbon fiber bundles were
recorded in Bragg-Brentano geometry as coupled θ -2θ scans using an Empyrean system
(PANalytical, Almelo, Netherlands) equipped with a sealed X-ray tube (Cu-Kα), a PIXEL
solid state detector, and a spinning stage.

8.3.7 Thermal conductivity measurements of single fibers

Thermal diffusivity of single fibers was determined via lock-in thermography in ac-
cordance with our previous publication.[18] All measurements were done in a vacuum
(p < 5× 10−2 mbar). A laser beam (Genesis MX 532-1000 SLM OPS, Coherent, Dieburg,
Germany, λ = 532nm) periodically heated the sample with a frequency of 2 Hz for
HTS40, A49, and IMS65 fibers and 20 Hz for HR40 fibers. A higher frequency was
chosen for HR40 fibers to decrease the thermal diffusion length and thus ensure the
assumption of an infinite sample dimension. The laser power was set to 0.1 mW to heat
the samples as little as possible while maintaining a suitable signal-to-noise ratio. An
infrared (IR) camera (Image IR 9430, InfraTec GmbH, Dresden, Germany) equipped
with an 8× microscope lens monitored the sample temperature for 60 s at 200 fps. The
pixel resolution of this setup is 1.3µm. Measurements were performed using Infratec’s
IRBIS active online software. The slope of the logarithm of the amplitude vs the distance
from the excitation, mA, and the phase vs the distance, mΦ, were evaluated between 0.2
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and 0.8 mm. The thermal diffusivity, α, was calculated utilizing the slope method,[19]
i.e.,

α=
π f

mΦmA
. (8.4)

For each fiber type, 3 fibers were measured 3 times each.

The volume of at least 400 mg of fibers was measured with a pycnometer (Ultrapyc
1200e, Anton Paar QuantaTec Inc., Boynton, Florida, USA) by analyzing 100 runs. The
weight of the samples was determined with an analytical balance (CP324S, Sartorius
Lab Instruments GmbH & Co. KG, Göttingen, Germany). Heat capacity was measured
via differential scanning calorimetry (Discovery DSC 2500, TA instruments, New Castle,
USA) of 3 samples for each fiber type following the ASTM E1269–11 standard.[17]

8.4 Results and discussion

8.4.1 Morphology of fibers

The amount and spatial distribution of non-graphitizing and graphitizing carbons highly
depends on the processing temperature. With increasing temperature, the graphitic
domains grow and the layers orient parallel and equidistant to each other. While atoms
are connected by strong covalent bonds inside a layer, only Van der Waals forces act
perpendicular to the layers. As a result, physical properties such as the tensile modulus
and thermal conductivity depend on the measurement direction. In pyrolytic graphite,
the thermal conductivity parallel to the graphitic layers is about 2000 W m−1 K−1, while it
is only 5 W m−1 K−1 perpendicular to the layers.[20] In general, both tensile modulus and
thermal conductivity are expected to increase with increasing processing temperature.
Tensile moduli for the investigated fibers are provided by the manufacturers (Tabelle 8.2),
but neither thermal conductivity nor processing conditions are given.

To investigate the fiber morphology, we performed nanostructural analysis using scanning
electron microscopy (SEM), small (SAXS) and wide (WAXS) angle X-ray scattering, as
well as X-ray diffraction (XRD). SEM images (Abbildung 8.2a-d and Figure 8.S1a-b) of
the fiber cross sections reveal a coarse grained pattern suggesting a porous structure.
The structure is most dense for HTS40 and IMS65. A49 and HR40 have a less dense,
more granular appearance. The increase in roughness seems to be unrelated to the
increase in tensile modulus. The 2D-SAXS patterns (Abbildung 8.2e-f, Figure 8.S1c-
d) of all fibers exhibit a comparable, barbell form. We attribute this pattern mainly
to a preferential orientation of nano- and microvoids along the fiber axes. Assuming
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Figure 8.2.: Comparison of the fiber nanostructure. (a-d) SEM images of the cross sections of a
high and low tensile modulus fiber with different magnifications. (e-f) WAXS and (g-h) SAXS
scattering patterns of corresponding fiber bundles.

a Gaussian distribution, azimuthal averaging shows an orientation with a standard
deviation of 15◦ to 19◦ (Figure 8.S2). The radially averaged data (Figure 8.S3) reveals
a power law behavior of q−1 at an intermediate q-range with q being the scattering
vector. This is characteristic for one-dimensional objects and suggests spindle-like voids.
At lower values of q, a behavior of q−4 is visible. The crossing point between the two
regimes, corresponds to a correlation length, lp. Assuming

q · lp = 2π, (8.5)
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the correlation length is approximately 25 nm for HTS40 and IMS65, 30 nm for A49 and
45 nm for HR40. The second change of the power law behavior at q ≈ 0.14Å−1 hints to
a feature size of about 4.5 nm. Assignment to pores or crystallites is inconclusive.

The WAXS data (Abbildung 8.2g-h and Figure 8.S1e-f) show that voids seen in SAXS
coexist with an ordered arrangement of graphitic domains. As a simple model, we can
imagine the fibers consisting of graphitic bands and voids (Abbildung 8.1). The fibrilar
graphitic bands align parallel to the fiber orientation and are separated by the voids.
Thus, we attribute the sharp, anisotropic Bragg spot at around 1.8Å−1 to the average
thickness of the crystalline bands. The reflex at about 3.0Å−1 is isotropic and hints
to a turbostratic orientation of the individual layers inside the crystalline bands. XRD
measurements (Figure 8.S4) confirm these values and give additional insights into the
graphitic structure. The (002) reflex position shifts with increasing tensile modulus from
25.2◦ (HTS40) to 26.1◦ (HR40). This indicates that the interlayer distance decreases
sligthly from 0.35 nm (HTS40) to 0.34 nm (HR40). At the same time, the ratio of the
reflex area to its height changes considerably. While HTS40, A49, and IMS65 have a
ratio of about 2.8◦, it is 5.6◦ for HR40. This indicates that there are bigger crystalline
domains in the HR40 fibers. The area ratio of the (002) and (10) reflexes changes
from roughly 36 (HTS40, A49, IMS65) to 57 (HR40), suggesting different shapes of the
graphitic domains. A precise determination of the crystal size is not possible, because
the anisotropy constant in the Debye-Scherrer equation is unknown for our samples. We
roughly estimate the crystalline domain size to be 4 nm (HTS40, A49, IMS65) and 8 nm

(HR40). Despite the absolute value being only a rough estimation, we can definitely say
that HR40 has larger crystalline domains.

8.4.2 Thermal conductivity of laminates

The thermal conductivity, κ, can be calculated from the heat capacity, cp, density, ρ, and
thermal diffusivity, α, by the following equation:

κ= ρ · cp ·α. (8.6)

Abbildung 8.3a shows the transverse thermal conductivity of the fiber composites as a
function of fiber type and fiber volume content. The fiber HR40 with a tensile modulus
of 390 GPa also exhibits the highest transverse thermal conductivity, followed by IMS65
with a tensile modulus of 290 GPa. The two fiber types A49 and HTS40 with tensile
moduli of 239 and 250 GPa, respectively, show only minor differences in tensile modulus
and thermal conductivity. The overall trend is that the increasing tensile modulus
of the fibers is accompanied by an increase in transverse thermal conductivity. This
matches our expectations and can be described by the equation of Lewis and Nielsen[21]
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(Abbildung 8.3a). An increased tensile modulus indicates higher processing temperatures.
As shown in Abbildung 8.1, this correlates with larger crystalline domains in the through-
plane cross sections facilitating better heat flow.
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Figure 8.3.: Thermal conductivity in (a) transverse and (b) fiber direction versus fiber volume
content depending on tensile modulus. In transverse direction, the thermal conductivity follows
the model proposed by Lewis and Nielsen.[21] In longitudinal direction, the thermal conductivity
follows a linear mixing model.[22]

At the same time, we expect a greater thermal conductivity parallel to the fiber direction.
In addition to their increased size, the crystallites orient along the fiber. Therefore, the
thermal conductivity is much higher in the longitudinal direction than in the transverse
direction. This becomes clearly visible in Abbildung 8.3b. The thermal conductivity in
the fiber direction of the high-modulus carbon fiber is 46 W m−1 K−1 at a fiber volume
content of 65 % by volume, while in the transverse direction it is only 1.8 W m−1 K−1.
In addition, a clear correlation of the tensile modulus and the thermal conductivity
is evident here. The higher the tensile modulus, which likely occurs due to higher
production temperatures, the greater the thermal conductivity in the fiber direction.
As expected from our structural analysis of the fibers, the largest difference is visible
between HR40 and the remaining fiber types.

An anisotropy factor can be calculated from the ratio of thermal conductivity in the
fiber direction and in the transverse direction. This value is 4.8(6) for the fiber with a
tensile modulus of 239 GPa and then increases to 8.3(2) (250 GPa), 8.5(2) (290 GPa),
and 29.4(26) (390 GPa). Thus, the higher the tensile modulus, the better the thermal
conductivity in the fiber direction compared to the transverse thermal conductivity. The
increase in the anisotropy factor with increasing tensile modulus is likely caused by the
crystalline domains.
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8.4.3 Thermal conductivity of single fiber measurements

Parallel to the fabrication and analysis of the fiber reinforced composites, the thermal
conductivity of neat fibers was measured in fiber direction.

We measured the thermal diffusivity of fibers by lock-in thermography as described
in literature.[18,19] Details about the measurement conditions and principle are given
in the Materials and methods section. For the fibers with the lowest tensile modulus,
HTS40, we obtained a thermal conductivity of 8.8(7)W m−1 K−1. With increasing tensile
modulus, the thermal conductivity along the fiber direction increases steadily up to a
value of 65.2(26)W m−1 K−1 for HR40 fibers (Abbildung 8.4).

To compare the measurements to the fiber composites, a linear fit for the measured
values of the composites was performed. Extrapolating the fiber volume content to 100 %

should equal the values for the isolated fibers (Abbildung 8.4). Within the experimental
uncertainties, the directly measured values of the fibers and the extrapolated values of
the composites match very well.

Overall, an increasing trend of the thermal conductivity in respect to the tensile modulus
is visible. This shows that the fiber nanomorphology, mainly determined by the interplay
between voids and graphitic domains, correlates with both the tensile modulus and the
thermal conductivity.
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Figure 8.4.: Comparison of direct measurements of the thermal conductivities of fibers and the
values derived from linear fitting of the laminates.
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8.5 Conclusions

The aim of this work was to investigate the relationship between the morphology of
carbon fibers, their tensile modulus, and their thermal conductivity in C-fiber composites
with a resin matrix. The most important findings on the influence of the morphology of
the carbon fibers under investigation on the thermal conductivity and morphology of
the C-fiber can be summarized as follows:

• The investigation of the carbon fibers by SAXS, WAXS and XRD showed differences
in the microstructure of the carbon fiber from different producers. We could link
differences in the crystalline domains with the tensile modulus provided by the
manufacturer.

• The microstructure of the fibers controls the composite thermal conductivity. The
effect is particularly pronounced in the direction of the fibers, where the thermal
conductivity with a fiber volume content of 65 %was 46 W m−1 K−1 when using the
high-modulus fibers and 7 W m−1 K−1 when using the fibers with the lowest tensile
modulus. In the transverse direction, the thermal conductivity of the composites
with 65 vol% fibers was 1.77 W m−1 K−1 and 0.96 W m−1 K−1 for the high- and
low-modulus fibers, respectively.

• The anisotropy of the carbon fibers is retained in fiber-epoxy composites. The
transverse thermal conductivity increases disproportionately with increasing fiber
volume content. It ranges below 2 W m−1 K−1 and can be described by the equation
of Lewis and Nielsen. In the in-plane direction parallel to the fibers, a linear
relationship with regard to volume content was observed. We find a maximum
anisotropy between parallel and transversal thermal conductivity for the HR40
fibers.

• The direct measurements of the thermal conductivity of individual carbon fibers
are in good agreement with the extrapolated values from the composite analysis.
This proves that a simple linear mixing model can be used to predict the thermal
conductivity along the fiber direction.
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and (e–f) SAXS scattering patterns of corresponding fiber bundles.
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9.1 Abstract

Manipulation-free and autonomous recording of temperature states for extended periods
of time is of increasing importance for food spoilage and battery safety assessment.
An optical readout is preferred for low-tech visual inspection. Here, a concept for
time–temperature integrators based on colloidal crystals is introduced. Two unique
features in this class of advanced materials are combined: 1) the film-formation kinetics
can be controlled by orders of magnitude based on mixtures of particles with distinct
glass transition temperatures. 2) A gradual variation of the particle mixture along a linear
gradient of the colloidal crystal enables local readout. Tailor-made latex particles of
identical size but different glass transition temperatures provide a homogenous photonic
stopband. The disappearance of this opalescence is directly related to the local particle
ratio and the exposure to a time and temperature combination. This sensing material
can be adjusted to report extended intermediate and short excessive temperature events,
which makes it specifically suitable for long-term tracing and threshold applications.

9.2 Introduction

Particle-based colloidal crystals (CCs) and inverse opals have been subject to extensive
research for a long time.[1] For homogeneous and patterned colloidal assembly structures
a wide range of fabrication techniques has been investigated and established, which
render such nanostructured films a mature area of research.[2] The intricate nanostruc-
ture on a length scale of a few to hundreds of nanometers raised interest in fields such
as granular mechanics,[3,4] heat transport,[5,6] phononics,[7] and catalysis,[8,9] to name
a few. By far most prominent is, however, their periodic refractive index modulation,
resulting in vivid structural colors. Consequently, colloidal crystals are predestined
for sensing, where significant color changes can often be recognized with the bare
eye.[10–12]] A shift of the optical stopband, as well as a change of the opalescence in-
tensity, can serve as an indicator for changes inflicted to the colloidal ensemble. Such
changes can be caused by temperature,[13,14] force,[15,16] humidity,[17–19] pH,[20,21] ionic
strength/complexation,[22] wettability,[23,24] or biodegradation[25] and either alter the
refractive index contrast (change in intensity), the periodicity of the structure (change
in bandgap), or both. The sensing performance can be further tuned, for example, by
the introduction of fluorescence for organic vapor detection.[26–28]

An important and general distinction of sensors is their classification into reversible and
irreversible ones. Reversible sensors indicate the actual condition of a system in real-time.
Temperature-dependent color changes of liquid crystals are a wide-spread example of
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this. In the case of monitoring certain predefined limits, irreversible sensors are more
suitable as they allow judging the history of a certain state. Irreversible sensors are
especially relevant in food or drug transportation and storage.[29,30] When the readout
response changes in a gradual and slow manner, irreversible sensors can also indicate the
degree to which a certain state has been exceeded. This provides additional information
either regarding the time or intensity that a certain state has been reached. Considering
the role of colloidal crystals in the field of irreversible sensors, the loss of opalescence at
the film-forming temperature is obvious. This process is also called dry-sintering and has
been studied already.[31–33] The onset of dry-sintering is related to the glass transition
temperature (Tg) in the case of polymer colloidal crystals. At this point, the optical
and thermal properties change abruptly, corresponding to the structural degradation
process. The concomitant loss of contrast and periodicity diminishes both photonic
opalescence and thermal insulation properties.[34,35] Introduction of additives can alter
the kinetics and reversibility of this film formation process, which allows correlating
time and temperature processes.[36] Random mixtures of two monodisperse particle
types with different glass transition temperatures allowed to change the abrupt jump in
thermal conductivity at the glass transition temperature to a gradual one.[37] An even
more elaborate microstructural design with locally controlled film formation kinetics
was introduced by Lee et al.[38] Polymer inverse opals with locally varied cross-linking
densities allowed to determine the temperature and exposure time simultaneously.

The aforementioned work is an excellent example of the emerging possibilities of future
functional materials, where unconventional properties can be realized by a local control
on the fundamental material properties. Lithographic (micro)patterning of colloidal
structures has been investigated by various groups already.[39] Much fewer systems have
been reported in the case of CCs and inverse opals, where the structure or composition
is gradually altered. First examples for tuning the lattice spacing have been realized
by means of diffusion,[40,41] compression,[42,43] wrinkling,[44,45] or an external mag-
netic field.[46] Ultracentrifugation has also been used for the preparation of colloidal
gradients.[47–49]

In this work, we demonstrate how a controlled spatial variation of the colloidal crystal
composition allows realizing a time–temperature integrator. We introduce two new
aspects to the field of colloidal materials. First, we elaborate a logarithmic dry-sintering
kinetic behavior based on random binary CCs consisting of high- and low-Tg polymer
particles. Second, we introduce a method to fabricate thin-film colloidal crystals with a
compositional gradient. The synergistic combination of composition-dependent kinetics
and local composition control results in an adjustable time–temperature integrating
sensor with a position-dependent optical readout.

9.2 Introduction 157



9.3 Results and Discussion

The dry-sintering kinetic properties of a homogeneous CC consisting of purely low-
Tg particles are well known (Figure 9.1a). We, therefore, fabricated homogeneous
colloidal crystals comprising monodisperse poly[(methyl methacrylate)-random-(butyl
acrylate)] (PMMA-r-nBA) colloids via dip-coating from aqueous dispersions. As a larger
contact area between neighboring particles is formed and the air is expelled from
the structure, the periodic variation of the refractive index is lost. Concomitantly, the
structural color vanishes and the cracks between crystalline domains become larger to
accommodate shrinkage, which can be seen in the microscopy images from top to bottom
(Figure 9.1a). Transmission UV–vis spectra (Figure 9.1b) show a slight blueshift of the
photonic stopband of approximately 10 nm and an even more pronounced decrease
of the intensity (purple to yellow color). The normalized stopband intensity can be
used as a measure for the kinetics of the film formation process (Figure 9.1c, details in
Figures 9.S1 and 9.S2, Supporting Information). We use a semi-logarithmic scale for a
clearer representation of the temporal evolution of the sintering behavior. For the specific
case shown here (Tg = 49 ◦C, sintering temperature T = 60 ◦C), the film formation
process is complete after about 4 min (normalized intensity decayed to ≈ 0). Scanning
electron microscopy (SEM) images of the colloidal crystal before and after sintering at
60 ◦C for 100 min (Figure 9.1d,g) confirm the expected loss of porosity during the film
formation.

Adding various amounts of a second latex bead of the same size but with a different
glass transition temperature (Tg = 94 ◦C, Figure 9.S3, Supporting Information) to
the dip-coating dispersion does not compromise the colloidal crystal formation, but it
strongly influences the film formation process. When 50 % high-Tg particles are added,
the hexagonal lattice structure is retained, but only half of the particles experience
deformation during sintering at 60 ◦C (Figure 9.1e,h). This leads to particle patches
with retained shape and interstitial space. The surface impression provided by SEM is
confirmed by the bulk behavior of the stopband, where a blue structural color is retained
(Figure 9.1h, inset). Heating a CC composed purely of high-Tg particles at 60 ◦C shows
no effect, and the structure remains unaltered (Figure 9.1f,i).

Analogous to the pure low-Tg system, we quantified the sintering kinetics of various
binary CC compositions by in situ UV–vis measurements at 60 ◦C. Figure 9.1k summarizes
the time-dependent decay of the normalized stopband intensity for these systems. Quite
strikingly, the binary compositions shift the film formation kinetics by orders of magnitude
to longer time scales with an increasing amount of high-Tg particles. Each individual
system follows an exponential decay at first glance. We, nevertheless, want to stress that
this optical analysis is not sufficient to unravel the detailed mechanics of this process.
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Figure 9.1.: Characterization of the film-formation of colloidal crystals at 60 ◦C. a) Optical
microscopy images show the simultaneous color fading (blue to gray) and crack formation (thin
dark lines) during the film-formation of 100 % low-Tg particles. b) In situ transmission UV–vis
spectra showing the temporal change of the photonic stopband during the film-formation process
shown in (a). c) Time-dependent decay curve calculated from the normalized stopband intensity
shown in (b) to quantify the loss of opalescence. d–f) Scanning electron microscopy images
of pristine colloidal crystals consisting of 100 %, 50 %, and 0 % low-Tg particles, respectively.
g–i) Images of the same samples after 100 min at 60 ◦C. Dense, sintered regions are color-coded
in red, original SEM images are shown in Figure 9.S4, Supporting Information. Insets show
light microscopy images, where a loss of the photonic stopband and the appearance of cracks is
visible when transitioning from a pristine to a sintered film. k) Stopband decay curves of various
compositions between 100 % and 0 % low-Tg particles. (l) and (m) show how the data in (k)
can be transformed to convert the time-dependent measurement into a composition-dependent
analysis.
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Dry-sintering of polymer colloids takes place in a number of different steps, including,
for example, contact area formation.[32] The underlying refractive index matching is
presumed to arise from viscous polymer flow of the low-Tg component and capillary
infiltration of cavities between non-sintered particles. Each step most likely shows a
unique temperature dependence, and we will therefore compare these results only
qualitatively. One may infer a jump in decay kinetics between the 50 % and 60 % low-Tg
particle composition in Figure 1k. We rationalize this by examining SEM images of all
sample compositions sintered at 60 ◦C (Figure 9.S4, Supporting Information). A gradual
change in composition results in a transition from a continuous low-Tg particle network
to isolated domains. This is most evident between 40–60 % low-Tg particles, where
the majority phase inverts. The presence of islands of one particle type is not an effect
of phase separation. In Figure 9.S5, Supporting Information, SEM images of partially
sintered CCs are compared to a 2D-simulation of a random distribution of two particle
types. An analysis of the mean absolute number of neighboring, non-sintered particles in
the first, second, and third generation is performed for both the measured and simulated
images. The relative intensities as well as the absolute values show a significant overlap
between the experimental and simulated data. This comparison confirms the statistical
distribution expected due to the same size and surface chemistry of the two particle
types.

The observed sintering behavior is rather intriguing as it allows an adjustment of the
thermal response simply by mixing particles at a defined ratio with two distinct glass
transition temperatures. The dependence of time, composition, and normalized stopband
intensity result in a wide parameter space that can be difficult to grasp. We, therefore,
introduce an alternative way to visualize the film formation kinetics (Figure 9.1l,m).
Here, the normalized intensity is plotted versus the composition and color-coded with
respect to the sintering time. Each line represents one specific composition. Figure 9.1l
connects the time-scale to the crystal composition. It also helps to understand the
representation in Figure 9.1m, from which the expected stopband intensity can be
derived for any sintering time and any particle composition. For the sake of clarity, we
point out to the reader that throughout this work, the color scheme shown in Figure 9.1k
(yellow to turquois) corresponds to a change in composition, while a time dependency
is indicated by the color scheme in Figure 9.1m (yellow to purple).

Further in situ measurements of the various particle ratios are conducted at temperatures
of 50, 70, and 90 ◦C (Figure 2a–c). As 50 ◦C is close to the lower glass transition
temperature, the observable effect is comparatively small. None of the samples showed
complete thermal degradation during 100 min of measurement time. A gradual change
from 100–50 % low-Tg particles is present beyond which none of the curves exhibit a
discernible decay. Increasing the temperature to 70 ◦C causes the low-Tg dominated
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Figure 9.2.: Three-dimensional representation of stopband decay curves. Several compositions
are measured at temperatures of 50 ◦C (a), 70 ◦C (b), and 90 ◦C (c). The dashed lines are guides
to the eye. They represent the composition-dependent intensity profile expected for the sintering
behavior after certain time steps.

samples to degrade in a matter of seconds to minutes. The perceptible change of the
profile shape at longer sintering times is shifted to the range between 70–20 %. This is
amplified when the temperature is raised further to 90 ◦C. Here, a slight degradation
even of the pure high-Tg particles sets in. In total, the temperature and time-dependent
behavior shows how binary CCs could be used as time–temperature integrators. The
combination of various compositions and their normalized intensities correlate to certain
combinations of the sintering time at a certain temperature. Limits of this particular
system are given by a lower temperature where no effect is observed at approximately
45 ◦C and an excessively fast film formation of all particles above 100 ◦C (Figure 9.S6,
Supporting Information).

To fully exploit the potential of this composition-dependent film formation behavior,
we demonstrate now how to arrange the binary particles in a gradient colloidal crystal.
For this, we took inspiration from infusion-withdrawal-coating (IWC), which has been
reported for sol–gel-derived gradients.[50–53] This method is based on dip-coating by the
use of two syringe pumps (Figure 9.3a). A glass substrate is dipped in a dispersion of one
particle type, which is extracted with a syringe pump. Simultaneously, a second syringe
pump infuses a dispersion of the second particles at a slower rate. The water level, thereby,
decreases continuously, mimicking dip-coating, while the composition changes in a slow
and gradual fashion. This time-dependent concentration change translates directly into a
compositional gradient along the coated substrate. Similar to dip-coating, this produces
a continuous thin-film with a strong iridescent color throughout the entire sample.
Figure 9.3b also shows a typical colloidal crystal with a film thickness between 4–8µm.
The periodic roughness, especially on the top half of the sample, is a consequence of
meniscus pinning and stick-slip behavior.[54] Transmission UV–vis spectra in Figure 9.3c
measured at equidistant points along the coating axis corroborate the successful colloidal
assembly. The stopband of this photonic crystal is distinct at all points. Peak intensities
vary slightly, which is attributed to the observed thickness modulation. Peak position and
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Figure 9.3.: Infusion withdrawal coating technique to fabricate gradient colloidal crystals.
a) Simultaneous infusion and extraction of the colloidal dispersion at different rates leads to a
continuous composition gradient. This gradient is coated on the submerged glass substrate by
continuous extraction of the mixed dispersion. b) Stitched light microscopy image of a colloidal
crystal prepared via infusion withdrawal coating. The overlay (white line) shows the thickness
of the colloidal film measured along the coating axis. This sample comprises a gradient of
fluorescently labeled tracer particles. c,d) Stopband absorbance and fluorescence intensity at
various gradient positions, respectively. e) Example fluorescence microscopy images taken along
the gradient. f) Change of the normalized fluorescence intensity versus gradient position. A
linear profile of the change in composition is obtained. The error bars result from measurements
on three individual samples.

FWHM by and large remain constant, emphasizing the homogeneity and high quality of
the gradient colloidal crystal. To visualize and quantify the gradual composition change,
we introduced red-fluorescent polystyrene particles to the infusion dispersion. These
fluorescent tracer beads (100 nm diameter) are small enough to theoretically occupy
octahedral gaps in the structure and were added in a trace amount of 1 wt% with respect
to the PMMA/nBA particles.

Fluorescence microspectroscopy (Figure 9.3d,e) confirms the targeted composition gra-
dient. A gradual increase of the fluorescence intensity is spectroscopically measured and
corroborated by microscopy images exhibiting a transition from black to red. Modulation
of the layer thickness can also be observed in the microscopy images. The fluorescence
intensity is expected to be proportional to the number of tracer particles and to the film
thickness. Quantification of the gradient is, therefore, performed by integration of the
fluorescence signal between 560–650 nm. The integrated fluorescence is then corrected
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to the local layer thickness by normalization to the stopband intensity measured at
the same position. The validity of this analytic procedure is assessed by measuring
homogeneously dip-coated samples with defined tracer particle concentrations between
0–1.0 wt% (Figure 9.S7, Supporting Information). The expected linear trend of the
tracer particle concentration could be reconstructed when normalizing to the stopband
intensity. This analysis confirms the direct relation between fluorescence particle con-
centration and fluorescence intensity. We use this direct relationship to measure the
normalized fluorescence integral at identical positions along three individual gradient
samples. Figure 9.3f shows that the composition profile follows a linear trend. Despite
the homogeneous photonic stopband of this binary system, we were able to prepare a
linear gradient of the tracer particle incorporation. Due to some limitations inherent to
the IWC setup, we can access gradients ranging from 0–60 % composition.

Using this approach, we prepared CCs with a gradually changing ratio of high- and low-Tg
particles. Two identical gradients are subjected to sintering temperatures of 70 and 90 ◦C,
respectively (Figure 9.4a,b). In both cases, dry-sintering and loss of structural color sets
in first at the bottom of the sample where the amount of low-Tg particles is highest. While
the temperature persists, the threshold between the colorful and degraded regions moves
along the gradient. As expected, this film-forming process proceeds faster at a higher
temperature. To better quantify these observations, we evaluate the normalized peak
intensity along the gradient sintered at 90 ◦C (Figure 9.3c). This data is obtained from
ex situ UV–vis measurements (Figure 9.S8, Supporting Information) after the gradient
structure has been subjected to the respective time and temperature. The stopband
decay correlates well with the aforementioned observations. It becomes especially clear
how sintering times on a logarithmic scale can be distinguished. The profiles at 1 and
10 min are just as well separated as those of 10 and 100 min. We further corroborate the
reproducibility of the kinetic behavior by including the expected composition-dependent
intensity decay derived from Figure 9.2c as dotted lines in Figure 9.4c. This is possible
by translating the position along the gradient into a low-Tg ratio via the results from
the fluorescence measurements. Expected and measured data overlap quite well and
substantiate the controlled and predictable sintering behavior of the nanostructure.
Measurements along the same gradient heated to 70 ◦C in Figure 9.S9, Supporting
Information, show a profile where dry-sintering is primarily observed at the bottom of
the sample where more low-Tg particles are present. This is corroborated by SEM images
of the partially sintered gradient (Figure 9.S10, Supporting Information). In this case,
distinguishing sintering times between 1, 10, and 100, and even 103 and 104 min is
possible. Further examination shows that similar intensity profiles can be reached by
various time–temperature combinations. For the case shown here, annealing at 70 ◦C
for 100 min and 90 ◦C for 1 min result in comparable measurements. This behavior
portrays the expected sensitivity to both temperature and time. We point out that a
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Figure 9.4.: Colloidal crystals with a gradual change of the ratio of high- and low-Tg particles.
(a) and (b) show identically prepared gradients and the sintering procedure at 70 and 90 ◦C,
respectively. Images are obtained via stitching of light microscopy images and ex situ during the
sintering process. The respective sintering times increase on a logarithmic scale. c) Normalized
intensity obtained from ex situ UV–vis transmission measurements along the gradient axis. The
dotted lines correspond to expected profiles originating from in situ measurements shown in
Figure 9.2c. The shaded areas arise from the errors in the linear fit in Figure 9.3f, which is
needed to correlate distance and composition. d) The inset shows green-channel images after
color-channel separation of the pictures in (b). Profile analysis normalized to the measurement
of the pristine gradient shows analogous results to the ex situ UV–vis measurements.

correction coefficient is applied to the expected data to shift the axis of the particle
composition relative to the position on the substrate in Figure 9.4c. This is necessary
due to subtle and non-systematic variations during the individual coating processes.
Such variations are likely caused by inconsistent pinning of the meniscus, variations
of the substrate wettability, and the relative humidity during coating. The correction
is done by optimizing a shift parameter to overlap the expected and measured data at
a sintering time of 1 min. In the case of the 90 ◦C measurement, the axis is shifted by
0.8 mm. This is a reasonably small variability given the dynamic position of the wetting
meniscus. Profiles of ensuing measurements at longer sintering times then all show a
good agreement between the expected and measured intensity profiles.

The simplest method of analyzing the sintering behavior is the observation of the struc-
tural color at different degrees of sintering. The sintering difference along the com-
position gradient is obvious to the bare eye (Figure 9.4a,b). Simple image analysis is
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sufficient to obtain a more quantitative analysis, which reaches a comparable significance
compared to the spectral analysis shown in Figure 9.4c. The separation of the color
channels and profile analysis of the green channel image is shown in Figure 9.4d. The
distinction of sintering times on the same logarithmic time-scale is clearly visible. To
provide a benchmark, the accuracy of temperature and time determination by green-
channel evaluation is provided in Figures 9.S11 and 9.S12, Supporting Information,
respectively. These experiments show that, depending on the absolute temperature
region, temperature steps between 5–10 ◦C can clearly be distinguished. Regarding the
temporal evaluation, approximately 1–2 steps can be resolved between each decade.
Despite the uniquely simple measurement and evaluation, reproducibility is not impaired
as shown in Figure 9.S13, Supporting Information. Identically prepared colloidal crystal
gradients show green-channel profiles with a strong overlap when subjected to the same
thermal history.

This method of evaluation requires no elaborate equipment and works with a low-level
software realization. We expect that given correct lighting conditions and a reference re-
gion on each sample, this analysis could be readily achieved bymodern smartphones. This
provides the context for a potential application of such gradient-based time–temperature
integrators. These structures operate autonomously and cannot be restored nor refreshed
once the film formation sets in and are, therefore, not susceptible to manipulation. The
distinct property of this gradient sensor is its sensitivity to prolonged moderate tempera-
ture exposures and short high-temperature excesses. The temperature can be imposed
by the environmental conditions or caused by an operating device serving as heat source.
Hence, a continuous monitoring of, for example, the thermal history of high-power
batteries is readily conceivable, where heat management is gaining increased attention.
High operating temperatures have pronounced negative effects regarding, for example,
capacity fading.[55,56] Batteries that experience excessive temperatures can addition-
ally become a safety hazard.[57] As batteries are an ubiquitous part of everyday life,
it is of great importance to make an assessment of the thermal history as simple as
possible. The colloidal gradients introduced here provide a visual way to judge on the
time–temperature history based on the position-dependent stopband intensity. Beyond a
certain threshold of local film formation, either the desired life expectancy would have
been surpassed, or an undesired high-temperature excursion appeared. In either case,
a thorough analysis of the battery state would be required before further usage. For
such potential applications the current model system needs to be improved by a specific
design of the required sensitive temperature range. This can be achieved by fine-tuning
the composition range, by realizing non-linear composition gradients, and by creating
gradient strips with particles of different, pre-defined Tg.
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9.4 Conclusion

We have demonstrated a novel approach to functional colloidal crystals, which can be
used as time–temperature integrators. Two key advancements in colloidal material
fabrication made this sensor based on structural color detection possible. First, mixing
of two equally sized, monodisperse latex particles with distinct glass transition tempera-
tures provides access to composite colloidal crystals with specific time-dependent film
formation properties. The film formation kinetics at a certain temperature can be varied
from a few seconds to hours, days, and weeks by choosing the right particle composition.
Second, the fabrication of gradient colloidal crystals allows the translation of the particle
composition to a local position. We, therefore, introduced infusion-withdrawal coating
for the fabrication of linear composition gradients at a retained optical stopband. The gra-
dient structures exhibit the expected film-formation kinetic behavior and, consequently,
change the intensity of the optical stopband locally. The gradual and local transition
can be analyzed spectroscopically or through simple image analysis and provides a sim-
ple, autonomous, and manipulation-free way to assess the colloidal gradient’s thermal
history. Our contribution demonstrates how space-specific material engineering allows
fabricating structures that exceed their individual components’ properties.

9.5 Experimental Section

Details on the particle synthesis, coating procedures, and characterization methods,
as well as details regarding the data evaluation of UV–vis spectroscopy, fluorescence
spectroscopy, and scanning electron microscopy images can be found in the Supporting
Information.
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9.8 Supplemental Information

9.8.1 Experimental Section

Materials

Methyl methacrylate (MMA), n-butyl acrylate (nBA), 3-styrenesulfonic acid sodium salt
hydrate (NaSS, ≥ 99%), and potassium persulfate (KPS, ≥ 99%) were obtained from
Sigma-Aldrich. MMA and nBA are destabilized over Alox B prior to use. Sulfate-modified,
fluorescent red polystyrene particles (100 nm diameter) were obtained from Sigma-
Aldrich as an aqueous suspension, diluted to 0.025 wt%, and sonicated for 20 minutes
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before further use. Water is taken from a Millipore Direct Q3UV unit for all experi-
ments.

Particle synthesis Monodisperse polymer colloids are prepared via an emulsifier free
emulsion polymerization. 13 mL monomer mixture (MMA/nBA, either 70:30 or 90:10)
are added to 250 mL water and heated to 80 ◦C. After stirring at 850 rpm for 60 minutes
under nitrogen flow, 10 mg NaSS and subsequently 100 mg KPS, both dissolved in 5 mL

water, are added quickly. After 15 minutes, the stirring speed is reduced to 650 rpm. The
reaction is left to proceed over-night and terminated by exposure to ambient oxygen.

Substrates Glass substrates are cleaned carefully prior to all coating procedures. Ultra-
sonication proceeds twice in 2 vol% aqueous Hellmanex III solution and once in ethanol
(p.a.). Subsequently, substrates are immediately dried under a nitrogen stream. Directly
before coating, the surface is hydrophilized via oxygen plasma treatment.

Dip-coating Homogeneous colloidal crystals are prepared via dip-coating. Several
dispersions with varying ratios of particle types are prepared. Mixtures are adjusted to
1.0 total wt % and stirred over-night to ensure statistical distribution of the two particle
types. Clean glass substrates are inserted, and dip-coating proceeds with a velocity of
0.25µm s−1 and a controlled atmosphere of 25 ◦C and 75 % relative humidity.

Infusion-withdrawal-coating Gradient colloidal crystals are prepared via an infusion-
withdrawal-coating process. A clean glass substrate is dipped in a 10 mL PTFE-beaker
filled with 8.7 mL of the starting dispersion and equipped with a stirrer bar. The stirring
speed is set to 80 rpm. Two cannulas are inserted vertically on opposite sides of the
beaker, and each is connected to a syringe pump. One injects the second dispersion at
0.6 mLh−1, the other extracts the resulting mixture at 1.1 mLh−1. Taking into account
a determined evaporation rate of 0.1 mLh−1, this ensures that the extraction rate is
twice the infusion rate. The first part of the colloidal crystal is especially subject to
pinning and defect formation. Therefore, before the infusion is started, extraction is set
to 0.5 mLh−1 for one hour. The corresponding top part of the sample is not regarded
in the evaluation. The concentration of both dispersions is 1.3 wt%, and the ambient
conditions lie between 19–21 ◦C and 25–35 % relative humidity. For the fluorescence
measurements, one PMMA/nBA type is used, and 1.0 wt% (with respect to PMMA/nBA)
red-fluorescent polystyrene particles are added to the infusion dispersion.
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Methods

Differential scanning calorimetry Measurements are conducted using a TA Instru-
ments Discovery DSC 2500. The second of two heating cycles is used for the evaluation.
Samples are measured between −20–200 ◦C at 10 K min−1 and in a nitrogen atmo-
sphere.

Imaging microscopy 2D color images and 3D reconstructed images are obtained using
a laser scanning microscope (Olympus, LEXT). High magnification images are taken
using a 50× lens with N.A. 0.95. Overview images are obtained by stitching several
domains with a 5× lens with N.A. 0.15.

UV-Vis/Fluorescence microscopy The setup is based on an Olympus IX71 inverted
microscope. Throughout all measurements, a 4× lens with N.A. 0.10 is used. UV-
Vis spectra are obtained in transmission geometry with a halogen light source. An
OceanOptics USB4000 spectrometer is coupled via fiber optics. In-situ measurements
are conducted by using an Instec HCS622HV heating stage with a silver heating block
and transmission capability to the setup. The lid of the stage is lifted briefly while the
sample is placed on the preheated silver block, and the measurement is immediately
started. Spectra are obtained every 500 ms over a period of 100 minutes. Ex-situ
measurements are performed by externally heating samples on the same heating stage
for a defined amount of time. Subsequently, a motorized µm-stage is used to automatically
measure spectra at defined positions along the samples. Fluorescence spectroscopy is
performed with the same setup but with a mercury vapor lamp in reflection geometry. A
Chroma 49005 Cy3 filter cube is used, allowing excitation between 530–560 nm and
emission detection between 590–650 nm. The integration time is set to 2 seconds, and
10 scans are measured for averaging. Gradients are measured at defined positions using
a µm-stage. Thereby, fluorescence and transmission UV-Vis spectra can be measured at
the same position.

Scanning electron microscopy Images were taken with a Zeiss Ultra plus (Carl Zeiss
AG, Germany) at an operating voltage of 3 kV and with in-lens detection after sputtering
of 2–4 nm platinum.
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Figure 9.S1.: Transmission UV-Vis spectra during the film-formation of a 100 % low-Tg colloidal
crystal at 60 ◦C. Dotted green lines show the baseline used for the evaluation. Division of the
spectrum by the baseline and subsequent normalization to the stopband intensity at 0 minutes
leads to the decay curve in Figure 9.1c.
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Figure 9.S2.: Exemplary in-situ UV-Vis measurements of samples with a) 80, b) 60, and c) 10 %
low-Tg particles at 60 ◦C. After 5 minutes, the spectra in a) show slight minima and maxima that
arise from thin-film interference. This cannot accurately be distinguished from the stopband and
is therefore not corrected. As an effect, the normalized intensity decays to a value slightly above
zero.

Figure 9.S3.: The second heating curve of DSC measurements of PMMA/nBA particles with a
monomer ratio of a) 70:30 and b) 90:10.
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Figure 9.S4.: Scanning electron microscopy images of colloidal crystals after film formation for
100 minutes at 60 ◦C. Different compositions are labeled with the amount of low-Tg particles in
the mixture.
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Figure 9.S5.: a) Scanning electron microscopy images of colloidal crystals with a different
amount of low-Tg particles after film formation. b) Simulated distributions of two different
particle types randomly mixed in a 2D-hexagonal structure. The images are calculated by
randomly assigning each particle with a black or grey color. The probability of each color is
chosen according to the particle ratio in the SEM counterpart. For the quantitative evaluation,
the positions of non-sintered particles in the SEM images and grey particles in the simulations are
examined. The mean number of neighbors is evaluated in both cases. First generation neighbors
are integrated between 0–0.3µm distance between particle centers, second generation between
0.3–0.5µm and third generation between 0.5–0.7µm. The distributions of experiments and
simulations correlate very well. Relative intensities of the three generations as well as the absolute
values are comparable. This concludes that the particles are indeed randomly distributed in the
colloidal crystals. The lack of phase separation and prevention of heterogeneous film formation
kinetics is a prerequisite for the characterization shown in this work.
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Figure 9.S6.: a) Stopband decay curves of colloidal crystals consisting purely of high- and low-
Tg particles, respectively, at 45 ◦C. b) Stopband decay curve of 100 % high-Tg particles at 100 ◦C.
These measurements show the temperature limits accessible with the present combination of
copolymer colloids.
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Figure 9.S7.: Exemplary a) baseline-corrected transmission UV-Vis and b) fluorescence emission
spectra of a PMMA/nBA colloidal crystal prepared via dip-coating with 1.0 wt% red-fluorescent
polystyrene particles. Green lines in b) show the integration boundaries required for further
evaluation. c) Determined stopband intensity and d) fluorescence integral of all measurements.
e) Normalized fluorescence integral obtained for the various percentages of tracer particles. The
green dotted line represents the linear fit used for the correlation of position and composition of
the gradient in Figure 9.3f.
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Figure 9.S8.: Baseline corrected transmission UV-Vis spectra measured ex-situ along a gradient
colloidal crystal. These show the film formation process at 90 ◦C and how the degradation
proceeds along the gradient.

Figure 9.S9.: Measurements of the colloidal crystal gradient after different sintering times
at 70 ◦C. a) Greyscale profile analysis via green channel separation of photographs shown in
Figure 9.4a. b) Ex-situ UV-Vis results of a gradient sintered at 70 ◦C (large symbols) and 90 ◦C
(small symbols) at equivalent sintering-times. The near overlap of the time-temperature pairs
100 min / 70 ◦C and 1 min / 90 ◦C shows the mutual influence of both time and temperature on
the local film formation.
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Figure 9.S10.: Scanning electron microscope images of a colloidal crystal gradient sintered
at 70 ◦C for 100 minutes. A gradual decrease in the percentage of low-Tg particles is observed
from left to right. The random particle distribution corresponds well to the individually prepared
mixtures shown in Figure 9.S4.
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Figure 9.S11.: Temperature accuracy evaluation. Five gradient colloidal crystals are subjected
to temperatures between 60–90 ◦C and the respective profiles are determined via green-channel
image analysis. Three sintering times of a) 1 minute, b) 10 minutes and c) 100 minutes are
presented. Temperature difference of 5 ◦C and higher can be distinguished.
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Figure 9.S12.: Time accuracy evaluation. A gradient colloidal crystal is subjected to a tempera-
ture of 70 ◦C and ex-situ profiles are obtained at various sintering times. The respective time
decades (1 min, 10 min, 100 min) are well separated, inferring a temporal accuracy of a fraction
of the sintering time of interest.
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Figure 9.S13.: Reproducibility evaluation. Gradient colloidal crystals are subjected to sin-
tering temperatures of a) 60 ◦C and b) 80 ◦C and profiles are determined via green-channel
image analysis. Two samples are measured at each temperature and the resulting profiles are
presented together (shown as an overlay of dark and light curve for each sintering time). The
corresponding samples at the given sintering times are shown in c) and d), respectively. The
high agreement between the two samples at both temperatures showcases the reproducibility of
the time-temperature integrator. The green-channel profile analysis is conducted in regions of
the samples (white shaded area) unaffected by the dark-green defects.

182 Chapter 9 Time-Temperature Integrating Colloidal Gradients



Machine Learning Enabled Image

Analysis of Time-Temperature

Integrating Colloidal Arrays

10

Marius Schöttle,1, 4 Thomas Tran,1, 4 Harald Oberhofer,2, 3 and Markus Retsch1, 3, ∗

1 Department of Chemistry, Physical Chemistry I, University of Bayreuth, Univer-
sitätsstraße 30, 95447 Bayreuth, Germany

2 Department of Physics, Theoretical Physics VII, University of Bayreuth, Univer-
sitätsstraße 30, 95447 Bayreuth, Germany

3 Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Univer-
sitätsstraße 30, 95447 Bayreuth, Germany
∗ Corresponding author

Manufacturing

Training an ANNUser Readout

Wavelength Time

R
e
fle

ct
a
n
ce

R
e
d
 v

a
lu

e

Temperature Time

45 min
@

90°C

Heating

Generating Data

Published in Advanced Science, 2023, 10(8), 2205512.
Reproduced under CC-BY license from John Wiley and Sons.

183



10.1 Abstract

Smart, responsive materials are required in various advanced applications ranging from
anti-counterfeiting to autonomous sensing. Colloidal crystals are a versatile material
class for optically based sensing applications owing to their photonic stopband. A careful
combination of materials synthesis and colloidal mesostructure rendered such systems
helpful in responding to stimuli such as gases, humidity, or temperature. Here, an
approach is demonstrated to simultaneously and independently measure the time and
temperature solely based on the inherent material properties of complex colloidal crystal
mixtures. An array of colloidal crystals, each featuring unique film formation kinetics,
is fabricated. Combined with machine learning-enabled image analysis, the colloidal
crystal arrays can autonomously record isothermal heating events — readout proceeds
by acquiring photographs of the applied sensor using a standard smartphone camera.
The concept shows how the progressing use of machine learning in materials science has
the potential to allow non-classical forms of data acquisition and evaluation. This can
provide novel insights into multiparameter systems and simplify applications of novel
materials.

10.2 Introduction

Autonomous sensing has become increasingly important for various aspects of every-
day life. For example, lifetime monitoring of batteries, food, and medicine requires
tamper-proof sensors independent of an external power supply.[1–3] Color-coded systems
are advantageous since they allow user-friendly readout.[4] This prerequisite is often
realized using the responsive photonic properties of nanostructured (often polymeric)
materials.[5,6] These can react to external stimuli by changing the spacing, effective
refractive index, or via loss of order.[7–9] Beside the sensing of, e.g., pH-value[10] and
(bio-)analytes,[11] temperature monitoring plays a key role in tracking degradation and
spoilage.[12,13] Depending on the application, both reversible sensors and irreversible in-
dicators have been shown.[14,15] More intricate systems can provide further information
regarding the thermal history. Time-temperature integrators (TTIs) additionally provide
temporal readout, which is highly relevant for establishing the safety of products.[16–18]
Often, this is achieved by controlling the kinetics of the deformation process in structured
polymeric materials.[19] A system shown by Lee et al. even allows the independent evalua-
tion of time and temperature.[20] This was possible by semi-analytical characterization of
the creep-deformation process in polymeric inverse opals using local UV-vis spectroscopy.
Recently, we showed a related material class: mixed colloidal crystals.[21] These make use
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of adjustable dry-sintering kinetics[22,23] and show great potential regarding evaluation
using simple image analysis.

Sensing via RGB channels of images obtained with digital cameras greatly enhances
the applicability compared to a spectral analysis. Examination using commercial,
hand-held devices rather than expensive (micro-)spectrometers makes these appliances
much more user-friendly and more easily distributable. Research on such methods
has been shown for, e.g., pH-sensing[24] and water-content determination.[25] Other
materials for smartphone-based temperature sensing allow readout via luminescence
thermography.[26–29] Another path towards combining materials science with digital
advancements is beginning to evolve in the form of machine learning.[30] The applica-
tion of these tools stretches from the prediction of optical properties[31] to optimizing
synthetic parameters to create the desired materials.[32] For sensors, machine learning
allows automated readout of complex, multiparameter systems that often cannot be
described analytically. Examples comprise biomolecular sensing,[33] ethanol content,[34]
and temperature.[35,36]

Here, we introduce a TTI based on multicomponent colloidal crystals, using smartphone-
based image acquisition and machine learning analysis for the data evaluation. Four
monodisperse polymer particle types are synthesized with varying glass transition temper-
atures to span a quaternary phase diagram. We use a fast, automated, and reproducible
drop-casting method to fabricate colloidal crystal arrays of mixed compositions. The
composition correlates to the dry-sintering kinetics and concomitantly to the loss of
structural color. However, the quaternary particle system is too complex to allow an
analytical description. Instead, we demonstrate that an artificial neural network can
accurately measure our colloidal crystal arrays’ time and temperature history. A system
that initially is too intricate for conventional characterization is thereby made applicable
for multiparameter sensing. Our analysis demonstrates a general approach to improve
the sensing capabilities of well-established photonic structures drastically. Due to the
scalable fabrication process, the modular adjustment to other sensing tasks by a specific
particle selection, and the user-friendly, low-tech characterization method, this TTI
concept opens the pathway toward cheap multiparameter sensors.

10.3 Results and Discussion

We aim to fabricate a sensor enabling a simple readout of two independent parameters:
time and temperature. One main difficulty, thereby, is designing a system that is complex
enough to over-determine the parameter space yet remains feasible to analyze. The
concept presented here is based on an array of polymer colloidal crystals (CCs). The first
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step, therefore, is the realization of a suitable self-assembly process. Prerequisites for
sample preparation are site selectivity, reproducibility, automation, and a fast preparation
rate. Consequently, we apply a combination of array-printing and drop-casting that meets
these criteria and additionally is scalable, resource-efficient, and non-toxic.

A spring-loaded pin with a hydrophilic, round tip is dipped into a particle suspension
that adheres via wetting. When brought into contact with a glass substrate, a defined
dispersion volume is deposited and subsequently forms a CC via evaporative self-assembly
(Figure 10.1a). The interplay of capillary and Marangoni flow in these sessile droplets
at room temperature results in a pronounced coffee-stain effect (Figure 10.1b).[37]
Structural colors appear faint and far from homogeneous, and the droplet itself shows
an irregular shape. When heating the substrate to 70 ◦C, the interactions favor a homo-
geneous layer of particles, facilitated by the formation of a ’milk-skin’ like particle layer
during the accelerated evaporation.[38] Additionally, evaporation occurs at the edges
immediately after contact, forcing the assembly to occur in a well-defined circular area.
This greatly enhances the reproducibility and, thereby, the readability of the sensor
during the analysis described later. Scanning electron microscopy (SEM) images of the
surface show large domain sizes of densely packed, monodisperse particles, corroborat-
ing the vivid structural colors observed via light microscopy (Figure 10.1c). Another
significant feature of this process is efficiency, as almost none of the suspension is wasted.
Therefore, a given laboratory-scale batch of particles (typically a few 100 mL with 5 wt%

particle concentration) can theoretically be used to prepare several thousand samples.

Having established a robust array fabrication method, we now present the cornerstones
of the particulate system. The polymer latex particles used in this work consist of
random copolymers of methyl methacrylate (MMA) and n-butyl acrylate (nBA). Four
different particle types are prepared with varying comonomer volume ratios between
85:15 and 100:0 while maintaining a consistent particle diameter of 320± 5nm. Self-
assembly of all four particle types and subsequent UV-vis spectroscopy (Figure 10.1d)
show an optical stop band at 635 ± 3nm in each case. Both the assembly behavior
and the periodicity of the resulting nanostructure are thereby proven to be uniform.
The differences between the four particle types are elucidated via differential scanning
calorimetry (DSC). Heating curves show the glass transition temperature (Tg) shifting
towards higher temperatures when increasing the MMA content (Figure 10.1e). This
dependency of Tg and comonomer composition is linear (Figure 10.1f).

The key aspects of these building blocks are the same size and surface chemistry of the
particles with different thermal properties. This allows the fabrication of multicomponent
yet crystalline nanostructures from mixed particle suspensions. Depending on the
number of components in an ensemble, the film formation process can be tailored to a
specific temperature range. The thermal parameter space, we apply for sensing, can be

186 Chapter 10 Image Analysis of Colloidal Arrays



85/15

85/15

90/10

90/10

95/5

95/5

100/0

100/0

100%

100%

67%

67%

33%

33%

0%

0%

2 mm

Positions

i ii iii iv

3 µm3 µm

1 µm

Sample

10 mm

Contact

printing

(a) (b) (c)

(d) (e) (f)

(g)

(nm) (°C) (vol.%)

(W
/g

)

T
(°

C
)

g
(h) (i)

20°C

70°C

Figure 10.1.: Fabrication process of multi-spot colloidal crystal sensors. a) Snapshots of the
array-printing procedure, showing the (i) advancing, loaded tip, (ii, iii) the tip in contact with the
substrate, and (iv) the receding pin. b) Microscopy images of spots prepared at different substrate
temperatures, elucidating the importance of accelerated evaporation during self-assembly. c) SEM
images of the colloidal crystal shown in panel (b). d) UV-vis reflectance spectra of four spots
prepared from copolymer particles of identical size but different comonomer compositions. e) DSC
heating curves of the four different copolymers. f) Glass transition temperatures obtained from
panel (e), showing a linear dependence regarding the comonomer composition. g) Quaternary
phase diagram of all particle mixtures obtained from mixing the four different particle types.
h) Positions of these mixtures on the substrates. i) Microscopy image of a substrate prepared via
the array-printing of the mixed particle suspensions shown in panels (g) and (h).
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elucidated in a quaternary phase diagram (Figure 10.1g) showing all utilized particle
mixtures. The automated array-printing setup facilitates the realization of this large
parameter space. We, therefore, drop-cast a total of 20 different particle mixtures onto
defined positions on a glass substrate (Figure 10.1h). Two spots are prepared with each
composition to introduce some redundancy and improve later readout. The setup allows
reproducible fabrication of samples with circular spots of CCs, all with the same vivid,
red structural coloration due to a consistent periodicity, geometry, and effective refractive
index (Figure 10.1i). Differences can later be observed at elevated temperatures, where
the thermal response of each composition is tracked.

The question now is how to characterize such a sample appropriately. Classic laboratory
characterization methods can be divided into two groups: 1) Methods that exhaustively
cover the entire sample but can only be measured ex situ. 2) In-situ methods that are,
however, limited to one spot at a time. An example of ex situ characterization is scanning
light and electron microscopy (Figure 10.2a–d). A pristine sample (RT), as well as three
samples subjected to isothermal sintering at different temperatures between 83 and
112 ◦C for 120 min, are shown. Depending on the thermal history, specific CCs remain
(nearly) pristine, while others show various degrees of discoloration. We examine three
representative positions post-sintering via SEM to corroborate the expected structural
change (Figure 10.2b–d). The respective CCs consist of particles with 90 %, 95 %,
and 100 % MMA and show compositions of 0:1:2 (spot i), 1:1:1 (spot ii), and 2:1:0
(spot iii). When the CC consists of only high-Tg particles (spot i), the structure remains
intact after heating (blue-shaded particles). When only the minority phase is affected
by the temperature increase, and these particles deform (spot ii), an interconnected
nanostructure of periodically arranged particles remains. As the temperature persists,
these voids are slowly filled by the creeping polymer. The overall refractive index contrast
between spheres and voids is concomitantly reduced, and the saturation diminishes. If
the majority of particles are heated above their Tg (spot iii), only small islands remain
and (nearly) all symmetry and periodicity are lost. No discernable color remains.

Complementary to this ex situ evaluation, in situ UV-vis spectroscopy provides temporal
information regarding the sintering process. Three spots are measured, one after the
other (Figure 10.2e–g). The spectrum of spot i shows little to no change during 60 min

at an elevated temperature. Spot ii, however, shows a slow and consistent degradation
of the stop-band to approximately half of its previous reflectance. Spot iii shows a fast
response, with almost complete loss of any indication of a photonic stop-band during the
first 10–15 min. Quantifying the time-dependent UV-vis spectra is possible, e.g., in the
form of the normalized stop-band intensity (Figure 10.2h). However, it is unfeasible to
perform this measurement at all 40 spots at once. Spectroscopic methods, therefore, fail
to provide a holistic evaluation of the sensor’s response to thermal events. Additionally,
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while similar optical studies of inverse polymeric opals have been conducted by applying,
e.g., the Kelvin-Voigt model andWLF theory,[20] our system is difficult to be studied (semi-
)analytically.[21] Sintering of particulate systems, in general, is a multi-step process,[39,40],
and the binary and ternary mixtures increase this intricacy. Besides the polymer and
particle composition, the surface chemistry may influence the film formation kinetics.
All this renders an analytical description of the film formation increasingly difficult.
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Figure 10.2.: Thermal response of the sensors. a) Light microscopy images of samples held at
different temperatures for 120 min. The width of each image is 27 mm. b–d) SEM images of the
spots indicated in (a). The blue overlay shows intact, non-sintered particles. e–g) In-situ UV-vis
spectra of equivalent spots during the sintering process at 98 ◦C showing the gradual stop-band
degradation. These, however, have to be measured consecutively. h) Time-dependent decrease of
the normalized stop-band intensity. i) Photographs taken in situ of a sample during the sintering
process at 98 ◦C with a smartphone camera.

Machine learning lends itself as a prime candidate for evaluating the behavior of our
sensors. It can describe nonlinear behavior without requiring extensive physical modeling.
Instead, a prerequisite for machine learning is a large amount of data. We acquire the
necessary data by capturing the time-dependent optical response of the sensor using
a smartphone camera. This unconventional yet convenient method has the additional
benefit of being widely applicable and providing a user-friendly and non-expert evaluation.
Capturing the response with a smartphone combines the time-resolution of the in situ
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UV-vis spectroscopy with the ability to measure the entire sensor of scanning microscopy
(Figure 10.2i).

An evaluation of the full images is computationally expensive and includes many pixels of
the substrate background that contain no relevant information. Furthermore, slight differ-
ences between spot sizes will complicate the training process. We, therefore, determine
the mean red value of each spot by dividing every image into 40 sub-images containing
one spot each (Figure 10.3a). We use the mean brightness of the 5 %, 10 %, 15 %, 20 %,
and 25 % of pixels with the highest red value for the evaluation (Figure 10.3b). For
each substrate, 40 spots with five mean values each correspond to 200 inputs for a given
image. Compared to the RGB images with a size of 420×1060 pixels, the number of
inputs is reduced by a factor of ≈ 6700, significantly speeding up computations. The
mean red value of each spot (Figure 10.3c) changes similarly to the stop-band intensity
shown in Figure 10.2h. Spots i and ii both show little to no change during 120 min of
isothermal heating. Also, the absolute red value of the two spots is nearly identical,
corroborating the homogeneity and structural integrity of the CCs. The mean red value
of spot iii decreases continuously throughout the measurement, while spot iv shows a
fast degradation during the first 10 min. Combining these different response types to
an elevated temperature is important for making a reasonable readout possible. For
comparison, we also show analogue plots for samples measured 5 K above and below
this temperature (Figure 10.S1). The influence of the change in temperature on the
sintering kinetics is clearly visible in each decay curve. Therefore, we conclude that
thermal and temporal information is hidden in the 200 inputs and continue to establish
a model capable of deciphering the results.

Top 5% Top 10% Top 15% Top 20% Top 25%

(a) (b) (c)

Figure 10.3.: Preprocessing of the image data for the neural network. The shown image was
taken after heating the sample for 80 min at 98 ◦C. a) The digital image of the sensor is divided
into 40 sub-images containing one spot each. b) For each sub-image, the pixels with the highest
red value are used for further evaluation. c) The mean red values follow the same trend as the
stop-band decay.
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We use artificial neural networks (ANNs) with ten hidden layers to predict the time and
temperature of a single image. The design idea for our ANN is to model the distinct
sintering kinetics of each particle composition at each temperature. Therefore, the model
consists of two parts (Figure 10.4). First, the model estimates the probability of an
image being taken at a specific temperature by detecting the pattern of spots with no,
little, and high red intensities. The resulting probability density and the mean red values
are the inputs for the time prediction layer. Finally, the model reports the most probable
temperature and predicts the time as a continuous variable. A detailed description of
the network architecture and training procedure is in the Experimental Section.
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Figure 10.4.: Artificial neural network architecture. The model consists of two parts. The first
half predicts the temperature by using only the mean red values. The second half predicts the
heating time, with the inputs being the mean red values and the temperature probabilities.

We trained the ANN with nine different temperatures between 100 and 140 ◦C. Here,
we report the hot plate set point as the temperature for better readability. The set
point is slightly higher than the actual sensor temperature (Figure 10.S2). At each
temperature, we measured eight samples for 2 h at intervals of 5 s, corresponding to
> 94000 training images. Supervised training optimizes the model parameters, and
after 20 training epochs, the model assigns 96.7 % of training images to the correct
temperature (Figure 10.S3a). The predicted time also correlates very well with the
measured time. More than 80 % of training inputs deviate < 10 min from the correct
value (Figure 10.S3b). We notice that the wrong assignment of temperatures occurs
primarily at short times and that the incorrectly predicted temperature is directly below
the correct temperature (Figure 10.S3c).

Next, we investigate the generalization of our ANN by predicting the time and tem-
perature for two validation samples per temperature. Our model has never seen these
samples before and is unaware of the correct values. We can validate our system over
the whole time-temperature regime because both the sensor creation and the sensor
evaluation are automated. In total, the validation set consists of > 23000 images. As
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shown in Figure 10.5, the resulting predictions resemble the training results well. Tem-
perature predictions are correct for the most part (96.4 %). If images are mislabeled, the
temperature error is mainly only 5 K (3.3 %). Concerning the time, the majority of the
predictions closely follow the correct value (Figure 10.5b). However, some predictions
deviate from expectations. The large number of validation images allows us to inves-
tigate these deviations in more detail by grouping the time predictions by the correct
temperature.

(a) (b)

Figure 10.5.: Prediction results for two samples per temperature, corresponding to > 23000
validation images. a) Correlation of correct and predicted temperatures. Incorrect predictions
(hatched areas) are minimal and mostly show a deviation of only 5 K from the correct value.
Underestimations are shown at the top, and overestimations at the bottom. b) Correlation
between correct and predicted time values.

Figure 10.6a shows how the prediction quality varies with the correct sensor temperature.
Each point in the graphs corresponds to one validation image. For most temperatures, no
difference between the two used validation samples is visible, demonstrating that both
the creation and evaluation of our sensors are highly reproducible. While predictions at
temperatures below 135 ◦C are very accurate, some images at the highest temperatures
show incorrectly predicted time values. As the same phenomenon occurs in the training
data (although less pronounced), this is not a generalization issue but a limitation of the
applied system itself.

Without a large amount of validation data, it is impossible to identify the prediction
capabilities in the distinct areas shown above. Previous publications about TTIs validated
their system with a small number of validation samples,[15,18,20,21] thus, not covering the
whole time-temperature regime. Our large amount of validation data allows us to state
individual uncertainties for each pair of predicted temperature and time (Figure 10.7).
The mean absolute difference between the predicted and the measured time is generally
below 10 min for temperatures below 135 ◦C. For high temperatures, the uncertainty is
larger. These individual errors can be used as an output for the end user. Examples of
single images as recorded by a potential user are shown in Figure 10.6b.
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(a) (b)

Figure 10.6.: Detailed prediction results for the validation images. a) Predictions for the first
seven temperatures are very close to the true values. At higher temperatures, the time predictions
begin to deviate. b) Input images of five validation points from (a) with their corresponding
predictions.

Further examples are in Figure 10.S4–10.S6, showing how our integrators behave
with multiple temperature steps. As expected, if the sensors cool down between two
isothermal heating steps, the predicted time is the sum of the two heating durations
(Figure 10.S4). If multiple heating events in the temperature range of the sensors occur,
the prediction refers to the higher temperature and further heating at lower temperatures
does not affect the readout (Figure 10.S5). For small temperature differences, a slight
overestimation of the time is possible (Figure 10.S6). Consequently, this type of TTI
sensor is most suitable and applicable for the recording of the highest temperature events,
which are, in many cases, the most relevant ones to judge on safety or spoilage issues.

The evaluation of a single photograph takes < 1 s and is based solely on an image taken
by a smartphone camera. No knowledge of photonic systems or the underlying physical
processes is necessary to utilize our system. The software will immediately predict the
time and temperature of the photographed sensor and state the corresponding uncer-
tainty. Consequently, non-specialists can employ our system effortlessly. This concept can
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conceivably be adjusted to adapt the prerequisites to various applications. The time and
temperature ranges that can be determined are related only to the thermal properties of
the respective polymer particles. Changing the glass transition temperature of these can
easily be done by varying the monomer composition. Alternatively, high-temperature
applications can be made possible by adding inorganic components such as silica colloids
to the phase diagram. Since the process is irreversible, tamper-proof monitoring of goods
such as food or batteries becomes a simple process. Further advancements can be readily
implemented by miniaturizing the colloidal arrays down to the image resolution limit of
commercial cameras. Thereby, an even larger number of CC spots and, consequently,
particle mixtures could be examined at once. Increasing the number of CC spots will
also provide flexibility to include particle mixtures with different stop-bands allowing
for a multi-color analysis specific to certain temperature ranges.
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Figure 10.7.: Mean errors between predicted and correct time. The validation over the whole
time-temperature regime allows estimating uncertainties precisely. Lower temperatures show
a smaller deviation from the correct value. For high predicted temperatures, the uncertainty
increases.

10.4 Conclusion

We established a concept that applies a combinatorial approach to add significant func-
tionality to the well-known material class of polymer colloidal crystals. Mixed photonic
systems described by a quaternary phase diagram were assembled using a scalable and
efficient array-printing method. This allowed us to examine the thermal response of
numerous samples, which formed a solid training set for our measurement evaluation.
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The sensor state can be optically read out by digital photography using a standard
smartphone. The evaluation was performed using an artificial neural network. Using
only the photograph of a sample subjected to isothermal heating, the model correctly
predicts time and temperature independently. Our concept can be readily transferred
to specific sensing applications comprising photonic structures and integrating sensing
capabilities. The case demonstrated here is particularly simple owing to the robust
array fabrication procedure and the optical readout, which make this sensor useful for
non-expert users. Overall, we showed how the combination of materials chemistry and
advanced computational methods are starting to enable a multiparametric analysis from
complex colloidal systems.

10.5 Experimental Section

Materials Methyl methacrylate (MMA), n-butyl acrylate (nBA), 3-styrenesulfonic acid
sodium salt hydrate (NaSS, 99 %), and potassium persulfate (KPS, 99 %) were obtained
from Sigma-Aldrich. Before further use, both MMA and nBA were destabilized over Alox
B. Water of MilliQ quality was used throughout all experiments. Glass substrates were
cleaned via sonication in an aqueous 2 vol% Helmanex III solution and in ethanol.

Particle Synthesis Monodisperse particles were prepared via a surfactant-free emul-
sion polymerization. 240 mL water were heated to 80 ◦C and degassed in a 250 mL three-
necked flask for 75 min. While stirring at 600 rpm, 19 mL of the respective monomer
mixture were added, together with 10 mg NaSS dissolved in 5 mL water. After 5 min,
the polymerization was initiated by adding 200 mg KPS dissolved in 5 mL water. The
reaction was left to proceed overnight and terminated by exposure to ambient oxygen.
The different particle dispersions were each filtered over a 125µm mesh and otherwise
used directly for preparing the binary and ternary mixtures. The concentration of all
dispersions was 5.7± 0.1wt %.

Self-Assembly via Array-Printing The printing procedure was fully automated using
an XYZ stage to ensure full reproducibility. A clean glass substrate was placed on a
hot-plate set to 70 ◦C. A spring-loaded, rounded brass pin with a diameter of 5 mm was
dipped into a dispersion and then brought in contact with the substrate for a duration of
1 s. The pin was then mechanically cleaned in a water bath and dried with a non-woven
fabric. The process then repeated with the next dispersion.
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Characterization Methods Microscopy images were obtained using a laser scanning
confocal microscope (Olympus, OLS5000) with a white light source as well as a 405 nm

laser with a 5×-magnification lens and stitching of 7×18 images.

Scanning electron microscopy images were obtained with a Zeiss Leo 1530 (Carl Zeiss
AG, Germany) at an operating voltage of 1 kV and both in-lens as well as secondary
electron detection after sputtering of 2 nm platinum. Images, where a false-colored
overlay was applied, are shown in their original form in Figure 10.S7.

UV-vis spectra of drop-cast suspensions were measured on an Olympus IX71 inverted
microscope with a 10× lens in reflection geometry and a halogen light source. An
OceanOptics USB4000 spectrometer is coupled via fiber optics. In-situ measurements
were conducted using an Instec HCS622HV heating stage with a silver heating block set
to 110 ◦C. Samples were attached to the stage using double-sided carbon tape, and the
sample was heated to 98± 3 ◦C. Spectra were obtained at intervals of 2 s.

Differential scanning calorimetry was conducted using a TA Instruments Discovery DSC
2500. The second of two heating cycles was used for the evaluation. Samples were
measured between 20 and 200 ◦C at 10 K min−1 and in a nitrogen atmosphere.

The hydrodynamic diameter was measured using diluted dispersions with a Zetasizer
(Malvern) with 175◦ backscattering geometry.

Image Acquisition and Feature Extraction Each sample was placed on a black-coated
hot plate (PZ 28-2, Harry Gestigkeit GmbH). A full-spectrum lamp (Walimex pro LED
Niova 600 Plus Daylight) with a light diffuser illuminated the sample at an angle of
10◦ and a distance of 30 cm. A smartphone (Fairphone 3+) took photographs (ISO
100, 1/10647 s exposure time) of the sample at an angle of 10◦ and a distance of 10 cm

every 5 s, stored in the WebP format. The full 3000×4000 pixel images were cut into
40 squares of 75×75 pixels at pre-defined positions. The cropped images are available
online.[41] For each square, the 5 %, 10 %, 15 %, 20 %, and 25 % pixels with the highest
red value were used to determine five distinct mean values used as the input for the
ANN. Each input vector of length 200 is standardized by z-score normalization using the
mean and standard deviation of the training set.

ANN Architecture PyTorch[42] was used for the network creation and we made the
code available online.[43] To choose a suitable model structure, different architectures
were compared. Details are in the Supporting Information. The final machine learning
approach encompasses two almost identical, sequential models for temperature and time.
They consist of an initial batch normalization layer and five hidden, linear layers each.
The hidden layers have node sizes of 8192, 2048, 2048, 2048, and 512, respectively.

196 Chapter 10 Image Analysis of Colloidal Arrays



Each hidden layer uses a leaky ReLU function[44] as its activation. After the final hidden
layer, a dropout layer with a dropout probability of 50 % was introduced to improve
generalization. For the temperature module, the output layer was a softmax function
creating a probability density for the nine temperature categories. For the time module,
the output layer was a final linear layer of size one.

Training Process The time series images of eight samples per temperature were labeled
and used for training. The initial 2 min of each sample were discarded due to temperature
equilibration (Figure 10.S2). Prior to training, the time labels were scaled by min-max
normalization with a minimum time of 2 min and a maximum of 122 min. Stochastic
gradient descent was employed. Different hyperparameters were tested (Table 10.2).
The final model was trained with a batch size of 32, a learning rate of 5×10−4, a Nesterov
momentum of 0.9 and a weight decay of 1× 10−3. The loss function is the sum of the
cross-entropy loss for the temperature prediction and the mean squared error for the
time predictions. The training concluded after 20 epochs.

Statistical Analysis The errors indicated for the predicted times are mean deviations
between the correct and predicted times of the validation data. To determine those,
predictions were grouped into the temperature and time bins shown in Figure 10.7.
For each bin, the mean absolute difference between the correct and predicted value
is shown. The training set consists of 94 032 and the validation set of 23433 images.
Preprocessing of the photographs is explained in the subsection Image Acquisition and
Feature Extraction. The data and software are available online.[41,43]
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10.8 Supplemental Information

10.8.1 ANN Architecture

We compared five different model and chose the best one to be our final architecture
(Tab. 10.1).

Full images The input for this model are the RGB images of our sensors instead of
the average red values. Multiple convolutional layers preceed the fully connected
layers.

Single model Instead of splitting themodel into parts dedicated to the temperature and
time prediction, we use the outputs of the second to last layer to one independent
layer for time and temperature, each.

Small model The number of nodes of this model is reduced to 1/16th of the final
model.

Medium model The model architecture described in the main text.

Large model The number of nodes of this model is four times larger than that of the
final model.

Table 10.1.: Comparison between different network architectures. The final model is high-
lighted.

Model Traning loss Validation loss
Full images 1.38 1.62
Single model 1.45 1.48
Small model 1.52 1.54
Medium model 1.41 1.42
Large model 1.43 1.49
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Table 10.2.: Comparison between different training parameters. Shaded parameters are used
to train our model.

Batch size Learning rate Momentum Weight decay Traning loss Validation loss
32 5× 10−4 0.7 1× 10−3 1.56 1.54
32 5× 10−4 0.98 1× 10−3 1.44 1.49
32 5× 10−4 0.9 1× 10−4 1.45 1.42
32 5× 10−4 0.9 5× 10−3 1.53 1.50
16 5× 10−4 0.9 1× 10−3 1.46 1.44
64 5× 10−4 0.9 1× 10−3 1.50 1.49
32 1× 10−4 0.9 1× 10−3 1.61 1.54
32 5× 10−4 0.9 1× 10−3 1.41 1.42
32 1× 10−3 0.9 1× 10−3 1.44 1.44

10.8.2 Supporting Figures

Top 5% Top 10% Top 15% Top 20% Top 25%

(a) (b) (c)

(d) (e) (f)

Figure 10.S1.: Detection of mean red values for samples at different temperatures. (a–c) 125 ◦C,
(d–f) 115 ◦C.
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Figure 10.S2.: Sample temperature on the hotplate. The true temperature was measured by a
Pt-100 placed on top of a glass substrate. (a) During the first two minutes (shaded area), the
sample reaches thermal equilibrium. (b) Due to the experimental setup, the sample temperature
is lower than the setpoint of the hotplate.

202 Chapter 10 Image Analysis of Colloidal Arrays



(a) (b)

(c)

Figure 10.S3.: Prediction results for the training data. (a) Temperature prediction. (b) Corre-
lation between predicted and correct time. (c) Detailed view of time and temperature prediction.
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Figure 10.S4.: Prediction results with complete cooldown. The graph shows the applied
temperature profile. Evaluation of the sensor after both heating steps shows is as expected. The
sensors integrate the total time at the elevated temperature.

Figure 10.S5.: Multiple heating events inside the operating range of the sensor. The sensor
reports the highest detected temperature and the corresponding heating time.
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Figure 10.S6.: Multiple heating steps with a small temperature difference. Our sensor shows
the expected result after the first and second heating step. After the third heating step, the
predicted time slightly increases.

Spot i Spot ii Spot iii

1 µm

Figure 10.S7.: Original SEM images of partially sintered colloidal crystals shown in Fig. 10.2b–
d.
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