
Software and Systems Modeling (2023) 22:667–685
https://doi.org/10.1007/s10270-022-01069-y

SPEC IAL SECT ION PAPER

Automaton-based comparison of Declare process models

Nicolai Schützenmeier1 ·Martin Käppel1 · Lars Ackermann1 · Stefan Jablonski1 · Sebastian Petter1

Received: 1 March 2022 / Revised: 26 October 2022 / Accepted: 14 November 2022 / Published online: 5 December 2022
© The Author(s) 2022

Abstract
The Declare process modeling language has been established within the research community for modeling so-called flexible
processes. Declare follows the declarative modeling paradigm and therefore guarantees flexible process execution. For several
reasons, declarative process models turned out to be hard to read and comprehend. Thus, it is also hard to decide whether
two process models are equal with respect to their semantic meaning, whether one model is completely contained in another
one or how far two models overlap. In this paper, we follow an automaton-based approach by transforming Declare process
models into finite state automatons and applying automata theory for solving this issue.

Keywords Business process modeling · Declare · Model comparison · Declarative process management · Automata theory

1 Introduction

In business process management (BPM), two opposing
classes of business processes can be identified: routine
processes and flexible processes (also called knowledge-
intensive, decision-intensive or declarative processes) [1,
2]. For the latter, in the last years a couple of different
process modeling languages such as Declare [3], Multi-
Perspective-Declare (MP-Declare) [4], DCR graphs [5] and
the Declarative Process Intermediate Language (DPIL) [6,7]
emerged. These languages are called declarative model-
ing languages. They describe a process by restrictions
(so-called constraints) over the behavior, which must be sat-
isfied throughout process execution. Especially Declare has
become a widespread and frequently used modeling lan-

Communicated by E. Serral Asensio, J. Stirna, J. Ralyté, and J. Grabis.

B Nicolai Schützenmeier
nicolai.schuetzenmeier@uni-bayreuth.de

Martin Käppel
martin.kaeppel@uni-bayreuth.de

Lars Ackermann
lars.ackermann@uni-bayreuth.de

Stefan Jablonski
stefan.jablonski@uni-bayreuth.de

Sebastian Petter
sebastian.petter@uni-bayreuth.de

1 University of Bayreuth, Bayreuth, Germany

guage in the research area of modeling single-perspective
(i.e., focusing on the control flow) and flexible processes.

This paradigm guarantees more flexibility than the imper-
ative one, which is the modeling standard for routine
processes. But on the other hand it turned out that declar-
ative process models are for several reasons hard to read
and understand, which affects the execution, modeling and
maintenance of declarative processmodels in a negativeway:
the large degree of flexibility offers the modeler a multitude
of options to express the same fact. Hence, the same process
can be described by very different declarative processmodels
(cf. Sect. 2). In general, declarative process models possess
a high risk for over- or underspecification, i.e., the process
model forbids valid process executions or allows process exe-
cutions that do not correspond to reality, respectively. Such
a wrong specification is often caused by hidden dependen-
cies [8], i.e., implicit dependencies between activities that are
not explicitly modeled but occur through the interaction of
other dependencies. TheDeclaremodeling language relies on
linear temporal logic (LTL) [3]. Hence, constraints and pro-
cess models, respectively, are represented as LTL formulas.
Although there is a set of commonDeclare templates, this set
is not exhaustive in the sense that sometimes plain LTL for-
mulas are necessary to complete a process specification. Also
for defining customized templates for reuse (i.e., if a depen-
dency betweenmore than two activities should be expressed)
modelers are not aware of working with plain LTL. This defi-
ciency increases since a canonical standard form for LTL
formulas does not exist, so in general, these formulas are not

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-01069-y&domain=pdf

668 N. Schützenmeier et al.

unique. Enriching the predefined constraints with plain LTL
exacerbates the problem of understanding such models.

Therefore, there is a high interest to keep a process model
as simple as possiblewithout deteriorating conformancewith
reality. However, changing or simplifying such a process
model bears the risks described above, i.e., over- and under-
specification. Hence, model checking, especially comparing
models on equality, becomes an important task for modeling
and verifying declarative process models. Most of the time
this is achieved by simulating process executions of different
lengths (so-called trace length) and checking their validity.
However, this is a very time-consuming and tedious task and
can only be done for a limited number of traces and gives
no guarantee that the considered process models are equal.
Also when the process models differ, it might be interest-
ing to work out their common properties and differences and
quantify them.

This paper is a continuation of our previous work [9] that
determines an upper bound proof for the trace length for
comparing two Declare process models for equality based
on traces. This approach is mainly simulation-based. It sim-
ulates all traces with length lower than or equal to an upper
bound and compares them. In this paper, we propose an
alternative to this simulation-based approach that completely
relies on automata theory. This latter approach has the advan-
tage that the computational effort for simulating traces can
be neglected. This is a decisive advantage since this effort
might be rather high when complex process models have
to be treated. In Sect. 4.5, we recommend how to combine
both approaches, the simulation-based and the theory-based,
in order to enhance the applicability of our work. We show
that both approaches complement each other ideally. Further-
more, in this paper we propose some measures to quantify
the differences of non-equal Declare process models.

The remainder of the paper is structured as follows:
Section 2 recalls basic terminology, explains the necessary
foundations of automata theory and introduces a running
example. In Sect. 3, we give an overview of related work and
show how our work differs from existing work. In Sect. 4,
we recall the simulation-based approach from [9] and pro-
pose its advanced version. Additionally we introduce some
measures which help to measure up the similarity of Declare
models. Section 5 presents the implementation, discusses the
asymptotic behavior of the proposed algorithms and presents
a practical application of our approach. Finally, Sect. 6 con-
cludes the work and gives an outlook on future work.

2 Basic terminology and running example

In this section, we recall basic terminology and the founda-
tions of automata theory and introduce a running example.
Events, traces and event logs are introduced to provide a

common basis for the contents of both process models and
process traces. Afterward, we give a short introduction of the
Declare modeling language, since we focus on this modeling
language in the rest of the paper. We also introduce the foun-
dations of automata theory, since our approach is founded on
this theory.

2.1 Events, traces and event logs

We briefly recall the standard definitions of events, traces
and (process) event logs as defined in [10]. We start with the
definition of activities and events:

Definition 1 An activity is a well-defined step in a business
process. An event is the occurrence of an activity in a par-
ticular process instance.

This definition enables the definition of a trace, which is
a time-ordered sequence of events:

Definition 2 Let E be the universe of all events, i.e., the
set of all possible events. A trace is a finite sequence
σ = 〈e1, ..., en〉 such that all events belong to the same pro-
cess instance and are ordered by their execution time, where
n:=|σ | denotes the trace length of σ .

We say that a trace is completed if the process instancewas
successfully closed, i.e., the trace does not violate a constraint
of the process model and no additional events related to this
process instance will occur in future. Note that in case of
declarative process modeling languages like Declare the user
must stopworking on the process instance in order to close it,
whereas in imperative process models this is achieved auto-
matically by reaching an end event [3]. However, a process
instance can only be closed if and only if no constraint of
the underlying process model is violated [3]. From the def-
initions above, we can derive the definition of an event log.

Definition 3 An event log is a finite set {σ1, ..., σn} of com-
pleted traces σ1, ..., σn .

2.2 Declare and Declare constraints

Declare is a single-perspective declarative process model-
ing language that was introduced in [3]. Instead of modeling
all viable paths explicitly, Declare describes a set of con-
straints applied to activities that must be satisfied throughout
the whole process execution. Hereby, the control flow and
the ordering of the activities are implicitly specified. Each
process execution, which does not violate any of the con-
straints, is a valid execution.Declare constraints are instances
of templates, i.e., patterns that define parameterized classes
of properties [4]. Each template corresponds to a graphical
representation in order to make the model more understand-
able to the user. Table 1 summarizes the common Declare

123

Automaton-based comparison of Declare process models 669

Table 1 Semantics for Declare
constraints in LTL f

Template LTL f semantics

existence(A, n) F(A ∧ X(existence(A, n − 1))), existence(A, 1) = F(A)

absence(A, n) G(¬A ∨ X(absence(A, n − 1))), absence(A, 0) = G(¬A)

init(A) A

last(A) G(¬A → F(A))

respondedExistence(A, B) F(A) → F(B)

response(A, B) G(A → F(B))

alternateResponse(A, B) G(A → X(¬AUB))

chainResponse(A, B) G(A → X(B)) ∧ response(A, B)

precedence(A, B) F(B) → ((¬B)UA)

alternatePrecedence(A, B) precedence(A, B) ∧ G(B → X(precedence(A, B))

chainPrecedence(A, B) precedence(A, B) ∧ G(X(B) → A)

succession(A, B) response(A, B) ∧ precedence(A, B)

chainSuccession(A, B) G(A ↔ X(B))

alternateSuccession(A, B) alternateResponse(A, B) ∧ alternatePrecedence(A, B)

notRespondedExistence(A, B) F(A) → ¬F(B)

notResponse(A, B) G(A → ¬F(B))

notPrecedence(A, B) G(F(B) → ¬A)

notChainResponse(A, B) G(A → ¬X(B))

coExistence(A, B) F(A) ↔ F(B)

notCoExistence(A, B) ¬(F(A) ∧ F(B))

choice(A, B) F(A) ∨ F(B)

exclusiveChoice(A, B) (F(A) ∨ F(B)) ∧ ¬(F(A) ∧ F(B))

templates. Although Declare provides a broad repertoire of
different templates, which covers the most necessary scenar-
ios, this set is non-exhaustive and can be arbitrarily extended
by the modeler defining new templates. Hence, the user
is not aware of the underlying logic-based formalization
that defines the semantic of the templates (respectively con-
straints). Declare relies on the linear temporal logic (LTL)
over finite traces (LTL f) [3]. Hence, we can define a Declare
process model formally as follows:

Definition 4 A Declare process model is a pair (A, T)

where A is a finite set of activities and T is a finite set of
LTL constraints over A (i.e., instances of the predefined tem-
plates or LTL formulas).

LTL makes it possible to define conditions or rules about
the future of a system. In addition to the common logical
connectors (¬,∧,∨,→,↔) and atomic propositions, LTL
provides a set of temporal (future) operators. Letφ1 andφ2 be
LTL formulas. The future operators F,X,G, U and W have
the following meaning: formula Fφ1 means that φ1 some-
times holds in the future, Xφ1 means that φ1 holds in the
next position, Gφ1 means that φ1 holds forever in the future
and φ1Uφ2 means that sometimes in the future φ2 will hold
and until that moment φ1 holds. The weaker form of the until
operator (U), the so-called weak until φ1Wφ2 has the same

meaning as the until operator, whereby φ2 is not required to
hold. In this case, φ1 must hold forever.

For amore convenient specification, LTL is often extended
to past linear temporal logic (PLTL) [11] by introducing
so-called past operators, which make it possible to define
conditions or rules about the past but do not increase the
expressiveness of the formalism [12]. The past operators
O,Y and S have the following meaning: Oφ1 means that
φ1 sometimes holds in the past, Yφ1 means that φ1 holds
in the previous position and φ1Sφ2 means that φ1 has held
sometimes in the past and since that moment φ2 holds.

For a better understanding, we exemplarily consider the
response constraint G(A → FB). This constraint means
that if A occurs, B must eventually follow sometimes in
the future. We consider, for example, the following traces:
T1 = 〈A, A, B,C〉, T2 = 〈B, B,C, D〉, T3 = 〈A, B,C, B〉
and T4 = 〈A, B, A,C〉. The traces T1, T2 and T3 satisfy the
response constraint as each occurrence of activity A is fol-
lowed by an occurrence of activity B. Note that T2 fulfills
this constraint trivially because activity A does not occur at
all (so-called vacuously satisfied). However, T4 violates the
constraint, because after the second occurrence of A no exe-
cution of B follows.

We say that an event activates a constraint in a trace if its
occurrence imposes some obligations on other events in the
same trace. Such an activation leads either to a fulfillment

123

670 N. Schützenmeier et al.

or to a violation of a constraint. Consider, for example, the
response constraint response(A, B). This constraint is acti-
vated by the execution of activity A. In T4, for instance, the
response constraint is activated twice. In case of the first acti-
vation, this leads to a fulfillment because B occurs. However,
the second activation leads to a violation because B does not
occur subsequently.

In our research, we use Declare as a representative for
declarative process modeling languages. Declare is rather
prominent in the process modeling community and is inves-
tigated thoroughly what is supporting our decision. In prin-
ciple, our approach would allow to exchange the declarative
process modeling language. In order to do so, the language
constructs of that language would have to be transformed to
finite state automatons as will be shown in Sect. 4.1. Hav-
ing settled this transformation, our methods can further be
applied as shown in this paper.

2.3 Automata theory

Our approach is mainly based on deterministic finite state
automatons (FSA). We aim to map the underlying Declare
process models to finite state automatons in order to extract
information, which can be used to make statements about the
process models. Therefore, we briefly introduce the basic
concepts and algorithms of automata theory. For further
details cf. [13]. We start with the formal definition of a deter-
ministic finite state automaton:

Definition 5 A deterministic finite-state automaton (FSA)
is a quintuple M = (�, S, s0, δ, F) where � is a finite (non-
empty) set of symbols, S is a finite (non-empty) set of states,
s0 ∈ S is an initial state, δ : S×� → S is the state-transition
function and F ⊆ S is the set of final states.

As we want to deal with words and not only single sym-
bols, we have to expand the definition:

Definition 6 Let � be a finite (non-empty) set of symbols.
Then, �∗:={a1a2 . . . an | n ∈ N0, ai ∈ �} is the set of all
words over symbols in �. For each word ω ∈ �∗, we define
the length of ω as

|ω|:=

⎧
⎪⎨

⎪⎩

0 ω = ε (ε denotes the empty string),

1 ω ∈ �,

|a| + |b| ω = ab with a ∈ � and b ∈ �∗.

Definition 7 For a FSA M = (�, S, s0, δ, F), we define the
extended state-transition function δ̂ : S × �∗ → S,

(s, ω) �→

⎧
⎪⎨

⎪⎩

s ω = ε,

δ(s, ω) ω ∈ �,

δ(δ̂(s, a), b) ω = ab with a ∈ � and b ∈ �∗.

In the following, for the sake of simplicity, δ always
denotes the extended state-transition function δ̂ for words
ω ∈ �∗. The set of words that are accepted by a FSA M is
called the language of M :

Definition 8 Let M = (�, S, s0, δ, F) be a FSA. Then,
L(M):={ω ∈ �∗ | δ(s0, ω) ∈ F} ⊆ �∗ is called the lan-
guage of M .

Words that can be constructed from the same alphabet,
but are not accepted by the FSA, form the complement of the
language:

Definition 9 Let L(M) be the language of a FSA M =
(�, S, s0, δ, F). Then, L(M)C :=�∗\L(M) is called the
complement of L(M).

Remark 1 For a finite state automaton M = (�, S, s0, δ, F),
an automaton that accepts exactly the complement of L(M)

can be obtained by swapping its final states with its non-final
states and vice versa [13]. This automaton MC is called the
complementary automaton of M .

Example 1 Consider � = {A, B}. Then,

�∗ = {ε, A, B, AA, AB, BA, BB, ABB, . . . }

consists of all words including any number of As and Bs.
The set L:={Aω | ω ∈ �∗} = {A, AA, AB, AAA, . . . }
is the language of all words with A at the beginning. The
corresponding FSA is depicted on the left side of Fig. 1.
The complement LC of L consists of all words of �∗ which
do not start with A: LC = {ω1ω2 | ω1 ∈ �\{A}, ω2 ∈ �∗}.
The corresponding automaton is illustrated on the right side
of Fig. 1.

As we have to handle with automatons that consist of a
big number of states, it is desirable to decrease the number
of states in order to improve the performance. In general,
there exists a minimal automaton which accepts the same
language:

Theorem 1 Let M = (�, S, s0, δ, F) a finite state automa-
ton. Then there exists a minimal (based on the number of
states) finite state automaton Mmin = (�, Smin, s0, δmin, Fmin)

with L(Mmin) = L(M).

Proof cf. [13]. �
Remark 2 This theorem is trivially fulfilled if M is already
minimal. If M is not minimal, we use the Hopcroft algorithm
[14] to construct an equivalent minimal finite state automa-
ton.1

1 We decided for this algorithm, because it is the fastest algorithm (time
complexity O(n log log n) where n denotes the number of states of the
FSA) for this task.

123

Automaton-based comparison of Declare process models 671

Fig. 1 Finite state automaton M
with
L(M) = {Aω | ω ∈ {A, B}∗}
and complementary finite state
automaton MC with L(M)C =
{ω1ω2 | ω1 ∈ �\{A}, ω2 ∈ �∗}

Given two FSAs, we are interested in the intersection of
their corresponding languages, i.e., the set of all words that
are accepted by both. Therefore, we can use the construct of
the product automaton:

Definition 10 Let M1 = (�, S1, s01, δ1, F1) and M2 =
(�, S2, s02 , δ2, F2) two deterministic finite-state automatons
over the same set of symbols �. The product automa-
ton M = M1 × M2 is defined as the quintuple M =
(�, SM , s0M , δM , FM) where SM = S1 × S2, s0M =
(s01, s02), δM : S × � → S, ((s1, s2), a) �→ (δ1(s1, a),

δ2(s2, a)) and FM = F1 × F2.

From the definition of the product automaton M = M1 ×
M2 of two deterministic finite-state automatons M1 and M2

follows that M accepts exactly the intersection ofL(M1) and
L(M2) [13]: L(M) = L(M1) ∩ L(M2).

Furthermore, an automaton for the symmetric product of
two automatons can be calculated: given two finite state
automatons M1 and M2, an automaton that accepts exactly
the words of M1 (and not by M2) can be constructed by
calculating the automaton M1 × MC

2 , i.e., L(M1 × MC
2) =

L(M1)\L(M2). We will use this construction later in our
approach.

2.4 Running example

In the following, wewill refer extensively to the following
two examples, which reflect the different application scenar-
ios of our approach.

Example 1 The first sample process P consists of a set A of
three activities A, B and C with the following control flow:
either the three activities are executed in sequence (i.e., ABC)
or alternatively C is executed arbitrarily often but at least
once. After each execution of the sequence ABC also the
sequence BC can be executed arbitrarily often. The Declare
language offersmanifoldways formodeling this process. For
example, we can describe this process by the following two
process models:

– P1 = (A, T1), with T1 = {t1, t2, t3, t4, t5, t6, t7} con-
taining the following constraints: t1: response(A, B),

t2: precedence(A, B), t3: respondedExistence(A, B), t4:
response(A,C), t5: notChainResponse(B, B), t6:
G (A → X(B) ∧ X(X(C))) and t7: G(B → X(¬A)).

– P2 = (A, T2), with T2 = {t ′1, t
′
2, t

′
3, t

′
4} contain-

ing the following constraints: t
′
1: succession(A, B),

t
′
2: chainResponse(A, B), t

′
3: respondedExistence(A, B)

and t
′
4: chainResponse(B,C).

For a better illustration, the process models are depicted
in graphical Declare notation in Fig. 2a, b. Apart from the
respondedExistence template that occurs in both process
models, P1 and P2 seem to be completely different. Hence,
it is difficult to assess, whether the two process models really
describe the same process. We will show throughout the
paper, how our approach can be used to validate this claim.

Example 2 In the second scenario, we consider two process
models Q1 = ({A, B,C},S1) and Q2 = ({A, B,C},S2)

where

S1 = {existence(A,1), exclusiveChoice(A,B)} and S2

= {existence(B, 2)}.

Obviously, these process models describe different pro-
cesses, since activity A has to be executed at least once in
Q1, whereas in Q2 it does not have to be executed.Hence, Q2

accepts the trace 〈BB〉 (as the only constraint of Q2 demands
for a double execution of activity B) and Q1 does not because
an execution of activity A is missing. We will use this exam-
ple in order to demonstrate how our approach can be used
for analyzing differences of Declare process models. Both
process models are depicted in graphical Declare notation in
Fig. 3a, b.

3 Related work on process model similarity

Determining similarity and common properties of process
models is a very important issue in industry and research
[15,16]. It is on the one hand necessary to identify dupli-
cate models [17] and different model variants [18], which
might be produced when process models are changed or

123

672 N. Schützenmeier et al.

(a) (b)

Fig. 2 Graphical ConDec representation of Declare models P1 and P2

(a) (b)

Fig. 3 Graphical ConDec representation of Declare models Q1 and Q2

emerged. This work relates to the stream of research onmod-
eling and checking declarative process models. Difficulties
in understanding and modeling declarative processes are a
well-known problem in the current research. Nevertheless,
there are only a handful of experimental studies that deal
with the understandability of declarative process models. In
[19], a study reveals that single constraints can be handled
well bymost individuals,whereas sets of constraints establish
a serious challenge, i.e., Declare models consisting of more
than a handful constraints might get very hard or even not
at all understandable for humans. Furthermore, it has been
stated that individuals use the composition of the notation
elements for interpreting Declare models. Similar studies
[8,20] investigated the understandability of hybrid process
representations which consist of graphical- and text-based
specifications.

For different model checking tasks of both multi-
perspective and single-perspective declarative process mod-
els, there are different approaches. In [21], an automaton-
based approach is presented for the detection of redundant
constraints and contradictions between the constraints,which
does not fill the gap of different process models on equal-
ity or differences. In [22,23], the problem of the detection
of hidden dependencies is addressed. Hidden dependencies
are dependencies between activities which are not modeled
explicitly but result of the combination of certain differ-
ent constraints. In [22], the extracted hidden dependencies

are added to the Declare models through visual and textual
annotations to improve the understandability of the models.
In [24], the authors transform the common Declare tem-
plates in a standardized form called positive normal-form,
with the aim of simplifyingmodel comparisons. But also this
approach reaches its limits because the positive normal-form
is not unique, and hence, different positive normal-forms can
describe the same model. The authors in [25] investigate the
single elements of process models in order to detect corre-
sponding or equivalent elements in different process models.
Hence, equivalent elements, e.g., activities or actors, can be
identified but there is still the need of combining all these
elements as they represent a whole process model.

There is also some effort in transforming Declare pro-
cessmodels into different representations for deeper analysis.
In [26], formulas of linear temporal logic over finite traces
are translated to both nondeterministic and deterministic
finite automatons, which were not investigated yet in order
to compare the underlying process models. In [27] Büchi
automatons are generated from LTL formulas. In [28],
Declare templates are translated into deterministic finite
automatons, which are used for implementing a declarative
discovery algorithm for the Declare language. Also these
efforts do not deliver a possibility to compare the process
models.

The standard procedure for comparing the desired behav-
ior with the expected behavior provided in a process model

123

Automaton-based comparison of Declare process models 673

includes the generation of exemplary process executions
[29], which are afterward analyzed in detail with regard
to undesired behavior such as contradictions, deadlocks or
deviations from the behavior in reality. Therefore, process
execution traces up to a certain length are simulated and
investigated. This procedure has the weakness that the cal-
culation has to be stopped at some trace length due to
computing power and storage requirements. Hence, a 100%
statement about equality or inequality cannot be manifested
as theremight be undetected inconsistences in traces of larger
lengths. In [9], we handled this issue by computing a theo-
retical upper bound for the trace length in order to make it
possible to decide about equality with certainty. The under-
lying paper extends this method by presenting an alternative
approach for the automaton comparison and giving mea-
sures, which help to make statements about differences of
non-equal process models.

In [30], the authors define the equality between two pro-
cess models (regardless of whether they are imperative or
declarative) on the base of all viable process execution paths.
Often, for a better understanding of a model, also counterex-
amples are explicitly constructed to verify whether a model
prevents a particular behavior [31]. For generating exemplary
process executions, it is necessary to execute declarative pro-
cessmodels. In [32], bothMP-Declare templates andDeclare
templates are translated into the logic language Alloy2 and
the corresponding Alloy framework is used for the execu-
tion. For generating traces directly from a declarative process
model (i.e. MP-Declare as well as Declare) the authors in
[33].

In [31], based on a given process execution trace (that
can also be empty), possible continuations of the process
execution are simulated up to an a-priori defined length.
The authors emphasize the usefulness of model checking
of (multi-perspective) declarative processes by simulating
different behavior. However, the length of the look-ahead is
chosen arbitrarily and, hence, can only guarantee the correct-
ness of a model up to a certain trace length. In summary, the
need for a generally applicable algorithm to determine the
minimum trace length required to find out whether process
models are equivalent is still there, and this issue has not been
solved so far.

4 Comparing Declare process models

In this introductory part, we want to give a brief overview on
our approach. Details about the single steps for comparing
Declare process models will be explained in the correspond-
ing subsections. The overall concept is illustrated in Fig. 4.

2 https://alloytools.org/.

The input of our approach are two Declare models P1 =
(A1, T1) and P2 = (A2, T2). In a preparation phase (cf.
Sect. 4.1), we first transform each template of the Declare
models into deterministic finite state automatons (step 1 in
Fig. 4). Afterward, we construct (minimal) FSAs D1 and D2

for each process model by intersecting the automatons of the
corresponding templates (step 2 in Fig. 4, cf. Sect. 4.2).

After calculating the two product automatons D1 and
D2, we can apply our comparison algorithms (step 3 in
Fig. 4), i.e., we compare the two automatons with respect
to equality. Firstly, this is done by comparing all words of
an automaton until a particular length (so-called simulation-
based approach) that guarantees whether D1 and D2 are
equal (cf. Sect. 4.3.1). Secondly, as an alternative approach
(so-called theory-based approach3) the comparison takes
exclusively place by directly investigating the automatons
themselves (cf. Sect. 4.3.2). The simulation-based approach
and the theory-based approach complement each other. Thus,
we provide a short recommendationwhen to applywhat algo-
rithm in Sect. 4.5.

If the process models are equivalent there is no further
work to do, otherwise we analyze their differences in detail
(cf. Sect. 4.4). This encompasses checking the models for
mutual containment (step 4 in Fig. 4) and calculating the
intersection and differences of the process models (step 5 in
Fig. 4).

The resulting automatons of intersection and differences
are often difficult to interpret and compare. So it is a com-
mon approach to generate traces of certain lengths that are
accepted by the automatons and analyze and compare those
sets. Therefore, we propose and apply some measures to
quantify the differences of the process models (cf. Sect. 4.6).

4.1 Transformation of Declare templates to finite
state automatons

The first step of our approach is to transform Declare
templates into deterministic finite state automatons (step 1
Fig. 4). For the most common Declare templates, this trans-
formation was already done in [28]. However, the Declare
templates notRespondedExistence and notResponse are not
dealt with in that paper; their representations as FSAs are
shown in Figs. 5 and 6. Traces fulfilled by a Declare tem-
plate are exactly the elements of the accepted language of
the corresponding FSA. For example, trace σ1 = 〈A, A〉 ful-
fills the notResponse template,whereas traceσ2 = 〈A, A, B〉
does not. The same thing holds for the automaton, too: σ1 is
accepted andσ2 is not accepted by the corresponding automa-
ton (cf. Fig. 6).

3 We call this approach ‘theory-based’ since it is solely grounded in
automata theory.

123

https://alloytools.org/

674 N. Schützenmeier et al.

Fig. 4 Procedure for Declare model comparison

In a Declare model, multiple activities are involved within
multiple templates. One concrete template normally com-
prises one or two activities. From the viewpoint of such a
template, we have to consider those activities that are asso-
ciated with other activities as well. Since their executions
do not have an impact on the execution of the template
under considerations, we add transitions of type :otherwise
to the corresponding automaton. These transitions repre-
sent all activity executions of activities that do not occur in
the respective template. For example, in Fig. 6 the Declare
template defines a dependency between activities A and B.
When A and B are occurring, respective, state transitions
are initiated. Nevertheless, this template might be part of a
comprehensive processmodel that also contains the activities
C, D, and E . Referring to the template fromFig. 6, whenever
these three activities are occurring they are “swallowed” by
the transitions: otherwise, i.e., they do not change the state
of the FSA.

Fig. 5 notRespondedExistence(A, B)

Fig. 6 notResponse(A, B)

123

Automaton-based comparison of Declare process models 675

4.2 Transformation of Declare models to finite state
automatons

Next, Declare process models have to be transformed into
finite state automatons (step 2, Fig. 4). This procedure is
described in Algorithm 2. Hence, the process model is repre-
sented by a deterministic finite state automaton and thewords
of the automatons correspond to the valid traces of the pro-
cess model (i.e., the language of the automaton is the set of
all valid traces).

As aDeclare processmodel, P consists of a set of different
Declare templates T = {t1, . . . , tn}, a trace σ that satisfies
P is a trace, that satisfies all templates:

σ satisfies P ⇐⇒ σ satisfies t1 ∧ · · · ∧ tn (1)

By using the concept of the product automaton (cf.
Sect. 2.3), the following conclusion can be derived:
A trace σ satisfies a Declare model P = (A, T) if and only
if σ ∈ L(M1)∩ · · · ∩L(Dn) = L(D1 ×· · ·× Dn) where Di

is the corresponding FSA of ti .

Remark 3 The resulting product automaton D1 × · · · × Dn

consists of |S1|·· · ··|Sn| states. In order to potentially decrease
the number of states, we can use theHopcroft minimalization
algorithm [14] after each intersection of two automatons Di

and Dj . This means that the minimization algorithm will be
called n − 1 times during the calculation.

Note that the minimization algorithm does not change
the effectiveness of our approach. Minimization just helps
to decrease the number of states in order to reduce storage
space needed for our computations and to speed up the algo-
rithm.

4.3 Checking Declare models for equality

Based on the previous results, it is now possible to construct
algorithms for checking equality of two Declare process
models P1 = (A1, T1) and P2 = (A2, T2) (step 3 in
Fig. 4). Therefore, we check the corresponding finite state
automatons for equality, i.e., we check whether they accept
the same language. This can either be achieved by consid-
ering the words until a particular length accepted by the
automatons which guarantees to decide the equality of the
automatons (simulation-based approach). This approach was
already proposed in our previous work [9]. Alternatively we
can check the equality by directly investigating the automa-
tons themselves (theory-based approach), which is one of
the new contribution of this article. In the following, we
describe the two approaches. Note that both approaches are
also applicable for checkingmore than twomodels for equal-
ity: respectively twomodels can be compared in pairs in order
to get information about more models.

4.3.1 Simulation-based approach

This approach constructs traces of a particular length and
compares them. The essential part of the simulation-based
approach is to determine anupper bound, i.e., amaximal trace
length until which the traces must be simulated in order to
decide with certainty whether two Declare models are equal.
Therefore, we formulate and prove a theorem that determines
this upper bound.

Theorem 2 Let D1 and D2 be two FSAs with m states and
n states. Then, L(D1) = L(D2) if and only if {ω ∈ L(D1) |
|ω| < mn} = {ω ∈ L(D2) | |ω| < mn}
Proof We prove the two directions of the implication. As
L(D1) = L(D2), the equality holds for all subsets. That
implies especially that {ω ∈ L(D1) | |ω| < mn} = {ω ∈
L(D2) | |ω| < mn}.

We prove the opposite direction by contrapositive. So sup-
pose L(D1) �= L(D2) and let a be a word of minimal length
with a /∈ L(D1) ∩L(D2) = L(D1 × D2). We further define
D:=D1 × D2 as the product automaton of D1 and D2.

We assume by contradiction that |a| ≥ mn. We define
X :={δ(q0, b) | b prefix of a}. Since |X | ≥ mn + 1 and
|SD| = mn, there exist two prefixes u and u′ of a with
δD(q0, u) = δD(q0, u′). We assume without any loss of gen-
erality that u is a prefix of u′. So there are two words v and
z so that uv = u′ and u′z = a. It follows that uvz = a.

As u �= u′, v is not empty. The equation δD(δD(q0, u), v)

= δD(q0, u) says that v leads D through a loop from state
δD(q0, u) into itself. So we have found a word uz with
δD(q0, uz) = δM (q0, a) with |uz| < |a|. This is a contradic-
tion to the minimality of a. �

�
The interpretation of this theorem for our purposes is the

following: in order to check the underlying Declare models
for equality we have to calculate the upper bound b:=|D1| ·
|D2| where |Di | denotes the number of states of automaton
Di . Afterward, all words up to length b have to be simulated
and checked whether D1 and/or D2 accepts them (this can
be done via a trace generator for Declare process models
[32,33] or by deriving allwords directly from the automaton).
If they both accept the same set of words, i.e., {ω | |ω| ≤
b and D1 accepts ω} = {ω | |ω| ≤ b and D2 accepts ω}, the
automatons are equal. Otherwise, they are not equal.

4.3.2 Theory-based approach

Instead of simulating traces, the theory-based approach deals
exclusively with the automatons themselves and does not
require the simulation of traces. This procedure is illustrated
in Algorithm 1. The algorithm returns true if two FSAs are
equivalent and false otherwise. At first, the two automatons

123

676 N. Schützenmeier et al.

are minimized (if not already done), afterward we calculate
the symmetric product D of the two automatons D1 and D2

(cf. Alg. 1, line 3) as described in Sect. 2.3. If the resulting
automaton has no accepting states (cf. Alg. 1, line 4–5), the
FSAs are equivalent.

Algorithm 1: areEqual
Input: Finite state automatons D1 = (�, S1, s01 , δ1, F1) and

D2 = (�, S2, s02 , δ2, F2)
Output: True if the automatons are equivalent, otherwise False

1 D1 ← minimize(D1)

2 D2 ← minimize(D2)

3 D ← symmetricDifferenceProduct(D1, D2)

4 if FD = ∅ then
5 return True
6 else
7 return False
8 end

Algorithm 2: calculateProductAutomaton
Input: Declare Process Model P = (A, T)

Output: Representing FSA
1 U ← ∅, i ← 1
2 for t ∈ T do
3 (A, St , s0t , δt , Ft) ← transform t to minimal FSA
4 ti ← (A, St , s0t , δt , Ft)
5 U ← U .add((A, St , s0t , δt , Ft))
6 i ← i + 1

/* Calculating set U of automatons for T
*/

7 end
8 for j = 1, . . . , i − 1 do
9 t j+1 ← minimization(product(t j , t j+1))

/* Calculating minimal product automaton
of P */

10 end
11 D ← t j+1
12 return D

4.3.3 Example

We now apply the two approaches for checking equality
to the process models P1 and P2 of the running example.
First, we must transform each constraint of the process mod-
els into a finite state automaton. Afterward, the automatons
of the constraints of each process model are intersected
and minimized, to represent each process model as a sin-
gle automaton. Calculating the automatons D1 and D2 leads
to the same automaton, which is depicted in Fig. 7. Note
that the minimization step has an impressive effect: With-
out minimization, the product automatons have |St1 | · |St2 | ·
|St3 | · |St4 | · |St5 | · |St6 | · |St7 | = 1296 states (process model

Fig. 7 Minimized automaton for P1 and P2

Fig. 8 Symmetric difference of the automatons of P1 and P2

P1) and |St ′1 | · |St ′2 | · |St ′3 | · |St ′4 | = 108 states (process model

P2), respectively, since the number of states of the product
automatons is the product of the numbers of states of the sin-
gle template automatons. The minimized automatons only
contain 5 states (cf. Fig. 7). In case of the simulation-based
approach, Theorem 2 tells us that we must simulate all traces
up to length |S1| · |S2| = 5 · 5 = 25 (without minimization
it would be necessary to consider all traces up to a length of
|S1| · |S2| = 1296 · 108 = 139.968). Generating all traces
for both process models until the determined upper bound
and comparing them reveals that the two process models are
indeed equal. In the theory-based approach it is not neces-
sary to determine an upper bound and simulate traces. It is
sufficient to create the (minimal) symmetric difference prod-
uct of both automatons. The results of this construction are
depicted in Fig. 8, which shows that this automaton does not
contain an accepting state. Hence, the automatons and thus
the process models are identical.

4.4 Analyzingmutual containment and differences
between Declare models

In case that two process models are not equal, it is inter-
esting to identify and also to interpret their differences. The
following two questions arise:

Q1 Is one model contained within the other one, i.e., {σ |
σ satisfies P1} ⊂ {σ | σ satisfies P2} (i.e., all traces
accepted by one model are accepted by the other one)
or vice versa (Mutual Containment)?

Q2 What are the common properties of the models, i.e.,
which traces are accepted by both models and where are

123

Automaton-based comparison of Declare process models 677

the differences between the models, i.e., which traces are
accepted by P1 but not by P2 and vice versa?

Answer to question 1

Let D1 be the corresponding finite state automaton of P1
and D2 be the corresponding finite state automaton of P2.
For checking mutual containment (step 4 in Fig. 4), we first
check whether {ω | D1 accepts ω} ⊂ {ω | D2 accepts ω},
i.e., whether the first Declare model is completely contained
in the second one. If the result is true, we get the information
thatL(D1) is contained inL(D2) and thus P1 is contained in
P2. Otherwise we check the opposite containment relation,
i.e., {ω | D2 accepts ω} ⊂ {ω | D1 accepts ω}. If none of
the models is contained in the other one, they describe quite
different applications.

For checking the containment of L(Di) in L(Dj), we
calculate the product automaton P of Di and Dj . This
automaton accepts exactly the intersection between L(Di)

and L(Dj). We check whether the intersection P is equal to
Di . If they are equal, L(Di) is a subset of L(Dj).

Answer to question 2

For answering the second question, we construct automatons
describing the intersection L(D2) ∩ L(D1) and the differ-
encesL(D1)\L(D2) andL(D2)\L(D1) (step 5 in Fig. 4).We
calculate the product automaton of D1 and D2 in order to get
an automaton for the intersection. For calculating the differ-
enceL(Di)\L(Dj), we first calculate the product automaton
of Di and the complement of Dj (cf. Sect. 2.3). The resulting
automaton accepts the set

{σ | σ satisfies P1 and σ does not satisfy P2}.

In case the results of the above case analysis—which
are automatons that reflect common or different parts of
languages—are not illustrative enough, we provide a practi-
cal approach to illustrate these partial languages.We simulate
traces up to different lengths. These traces present either com-
mon or varying parts of the two Declare process models. By
producing traces of different lengths, the domain experts get
an impression of the common parts and the differences of the
Declare process models to be compared. Besides, the gen-
erated traces can be analyzed afterward by applying various
measurements (cf. Sect. 4.6).

4.5 Simulation-based versus theory-based approach

The simulation-based approach and the theory-based
approach lead to equal results from a qualitative perspec-
tive: they decide whether two process models are equal or

not. Nevertheless, the calculation of the results is quite dif-
ferent and the intermediate results can be used for quite
different considerations of the process models. Also the
effort to reach results is totally different for both approaches.
The simulation-based approach is pretty time- and cost-
consuming. However, its results are very illustrative since
it delivers concrete process traces that are produced by
one or by two process models to be compared. In con-
trast, comparing two process models, i.e., comparing their
corresponding automatons, is quite economical with the
theory-based approach. Without huge calculations, similari-
ties and dissimilarities of process models to be compared can
be calculated. Albeit, results produced by this approach are
kind of abstract since only automatons are produced reflect-
ing the similarities and dissimilarities.

Based on the observations from above, we recommend
the following processing. First, we would apply the theory-
based approach in order to receive a general overview on the
equality of two process models. The main advantage of this
proceeding is the low effort this approach is requesting and
the clear results concerning similarities and dissimilarities.
Depending on further users’ interest, the simulation-based
approach can be applied afterward. This will add concrete
results, i.e., process traces, to the formerly performed theory-
based approach and so will illustrate the abstract results of
the first approach. Nevertheless, this processing is just a rec-
ommendation. Finally, users of our algorithm have to find out
their preferred usage that heavily depends on whether they
need more or less illustrative feedback and whether they can
spend more or less computing time. Although we do not give
more than a recommendation how to apply the simulation-
based and the theory-based approach, our experience reveals
that both approaches complement each other and together
provide promising insights into the similarity issue ofDeclare
process models. As stated in the related work, there are no
alternative approaches in literature that deliver comparable
results.

4.6 Measuring the similarity of declarative process
models

As mentioned at the beginning of Sect. 4, we want to
measure the similarity of two non-equal Declare process
models. There are twogeneral approaches: (i) considering the
automatons as graphs and applying metrics from graph the-
ory and (ii) comparing the automatons on word level. Since
in our research domain the second strategy is still neglected,
we fill this gap by offering a couple of measurements that are
based on the length of traces (Sect. 4.6.1). In Sect. 4.6.2, we
propose an additional measure, the Damerau–Levenshtein
distance, which does not focus on the trace lengths but on
the structure of the traces, i.e., regarding the traces as strings
and computing their edit distances.

123

678 N. Schützenmeier et al.

4.6.1 Density and similarity based on trace length

In automata theory, the length of words is not limited at all.
However, in business process management we only consider
traces of limited length because the number of steps or activ-
ities executed for a process is of limited size. Hence, the
following measures for comparing process models are based
on trace length. Therefore, we first note that for a trace of
length n over m activities, there are mn possible traces. Now
we can define the n-density of a process model:

Definition 11 For a Declare process model M over m activ-
ities, we call

λn(M):=|{σ of length n | σ satisfies M}|
mn

∈ [0, 1]

the n-density of M .

As {σ of length n | σ satisfies M} is a subset of all traces
of length n, λn(M) takes a value between 0 and 1. In other
words, λn(M) describes the percentage of traces of length n
which satisfies a process model M compared to all potential
traces. This measure yields an estimation of how many pro-
cess traces (of a certain length n) are covered by a process
model. The bigger this number, the more flexible a process
model is; vice versa, the smaller this number, themore restric-
tive a process model is. Therefore, the density measure puts
the coverage of a process model into perspective.

For two Declare process models M1, M2 and n ∈ N, the
corresponding n-densities λn(M1) and λn(M2) can be cal-
culated by simulating all traces up to length n and checking
whether they satisfy M1, M2 or none of them. The elements
of the respective sets then are counted and hence deter-
mine the n-densities. These values can also be used to get
a rough feeling about how far the models differ from each
other: if the values differ extremely, e.g., λn(M1) = 0.1 and
λn(M2) = 0.7, M1 and M2 cannot have a lot of properties
in common (they overlap in at most 10% of the traces and
differ in 60%).

Note that a similar n-density does not necessarily mean
that themodels are similar. Even in the case λn(M1) = 0.5 =
λn(M2), it could be possible that the sets of traces covered by
the two models are completely disjoint. Figure 9 depicts all
possible cases. The above row shows the case when the sum
of the single coverage of the two process models together
is not more than 100%. Thus, the two process models can
be completely disjoint, can be overlapping or one model can
fully encompass the other one. The lower row of Fig. 9 shows
the case when two process models together cover more than
“100% of process traces”, i.e., we again just sum up the cov-
erage of the two processmodels and so can get a value greater
than 100%. Then, the twomodels might overlap or onemight
completely encompass the other one. They cannot be disjoint
anymore.

We can extend the definition of the n-density to the min-
max-density, which considers all traces with length between
min andmax . The explanatory power of thismeasure is simi-
lar to n-density; however, it broadens the scope of observation
to a range of trace lengths. The principle proposition of this
measure is the same as for the n-density: it unveils the flexi-
bility of a process model.

Definition 12 For a Declare process model M over m activ-
ities we call

λmax
min (M):=

∑max
i=min |{σ of length i | σ satisfies M}|

∑max
i=min m

i
∈ [0, 1]

the min-max-density of M .

Another measure to compare two process models directly
is the n-similarity:

Definition 13 For two Declare process models M1 and M2

over the same (finite) set of activities, we call

n(M1, M2):= min
j∈{1,2}

{ |{σ of length n | σ satisfies M1 and M2}|
|{σ of length n | σ satisfies Mj }|

}

∈ [0, 1]

the n-similarity of M1 and M2.

Themaindifferenceof similaritymeasures to densitymea-
sures is that the latter compares the coverage of a process
model to the whole space of potential process traces. The
former takes into account the percentage of traces which are
accepted by both models and compares it with the cover-
age of these models. Consider for example that M1 accepts
100 traces of length n, M2 accepts 200 traces of length n
and the set of traces of length n which both models accept
consists of 50 traces. Then
n(M1, M2) = min{ 50

100 ,
50
200 } =

min{0.5, 0.25} = 0.25. This means that 25% of the traces
of the “larger” model (i.e., the model which accepts more
traces) are accepted by both models, whereas 50% of the
more restrictive process model are covered by both models.

The measure n-similarity provides insights on the over-
lapping of process models to be compared. The bigger this
number is, the more the two models are overlapping. A mea-
sure of 0 means that the two models are disjoint; a measure
of 1 means that they are equal. All numbers between 0 and
1 depict the percentage of common process traces relatively
to the less restrictive process model.

Analogously to the min–max density, we define the min–
max similarity, which describes similarity of two process
modelswith regard to a range of trace lengths. It just broadens
the scope of comparison to a range of process traces.

Definition 14 For two Declare process models M1 and M2

over the same (finite) set of activities, we call

max
min (M1, M2):= min

j∈{1,2}

{ ∑max
i=min |{σ of length i | σ satisfies M1 and M2}|
∑max

i=min |{σ of length n | σ satisfies Mj }|

}

∈ [0, 1]

123

Automaton-based comparison of Declare process models 679

Fig. 9 Illustration of coverage for process models

the min-max-similarity of M1 and M2.

Altogether the two measures density and similarity pro-
vide an estimation of how flexible the process models are
and howmuch they overlap. This information helps a process
modeler to assess whether to apply one or the other process
model. For example, when both process models have about
the same density (coverage) and the similarity is pretty high,
(s)he “arbitrarily” chooses one of the two process models to
be employed, i.e., (s)he chooses that model that looks more
familiar or clearer.

4.6.2 Similarity based on Damerau–Levenshtein distance

While in the last subsection, we focus on trace lengths, we
now analyze the structure of traces in order to discuss sim-
ilarity of process models. Comparing or determining the
similarity of traces can be done by using metrics that cal-
culate the edit distance between them, i.e., they count the
(minimal) number of operations like insertions, deletions,
substitutions and transpositions that are needed to transform
one trace into another. In context of process traces, however,
it is important to take into account that some activities in
the process may occur in parallel. Assume, for instance, that
in a trace σ1 = 〈A,C, D, B〉 the activities C and D were
executed in parallel (i.e., potentially at the same time). Then,
σ1 could also be rewritten as 〈A, D,C, B〉. This transposed
trace does—in principle—represent “the same” execution.
Hence, we use the Damerau–Levenshtein distance metric
[34], since it does not penalize transpositions so harshly than
other metrics based on edit distance. However, in general a
transposition cannot be free of any penalization since inmany
cases the order of execution is crucial. So the Damerau–
Levenshtein distance is a good compromise to take into
account parallel executions but also not to neglect violations
of an execution order.

Definition 15 Let σ1 and σ2 be two traces, i ∈ N≤|σ1|, j ∈
N≤|σ2| and d a recursive function defined as follows:

dσ1,σ2 (i, j):=min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = j = 0

dσ1,σ2 (i − 1, j) + 1 if i > 0

dσ1,σ2 (i, j − 1) if j > 0

dσ1,σ2 (i − 1, j − 1) + 1σ1(i) �=σ2(j) if i, j > 0

dσ1,σ2 (i − 2, j − 2) + 1 if i, j > 1 ∧ σ1(i)

�= σ2(j − 1) ∧ σ1(i − 1)

= σ2(j)

,

where 1 denotes the indicator function (1x takes the value
1, if x is true, otherwise 0). We call Lev(σ1, σ2) =
dσ1,σ2(|σ1|, |σ2|) the Damerau–Levenshtein distance
between σ1 and σ2.

We use the inverse of the scaled measure (for scaling
we use the maximum size between the two traces that are
compared), so that a higher value implies a higher similarity
among the traces, i.e.

Levinv(σ1, σ2):=1 − Lev(σ1, σ2)

max (|σ1|, |σ2|)

For determining the similarity between the processmodels
based on a set of traces, we first generate for each process
model all traces of a length within an a-priori defined range
[n;m]. In the following, we denote the set of such traces
pi , i.e., with length ≥ n and ≤ m of a process model P , as
Sn,m
P = {p1, . . . , p|Sn,m

P |}. This set can be considered as a
process event log.

Afterward, we pair each generated trace σ ∈ Sn,m
M1

of the
processmodelM1 with themost similar trace (with respect to
the Damerau–Levenshtein distance) μ ∈ Sn,m

M2
of the traces

of the process model M2 [35]. Once the pairs are formed, we
calculate the mean Damerau–Levenshtein distance between
them [34]:

Definition 16 Let n,m ∈ N≥0 and Levinv be the inverse
and scaled Damerau–Levenshtein distance. For two Declare

123

680 N. Schützenmeier et al.

process models M1 and M2, we call

�m
n (M1, M2):=

∑|Sn,m
M1

|
i=1 max{Levinv(pi , k)|k ∈ Sn,m

M2
}

|Sn,m
M1

|

the m-n-process event-log-similarity of M1 and M2.

That means that we measure the similarity of all traces
with a particular length between two process models.
It is important to mention that the min–max-event-log-
similarity is in general not symmetric, i.e., �m

n (M1, M2) �=
�m
n (M2, M1) . This fact can be interpreted as follows: The

effort to transform the process model M1 into M2 may differ
from the effort to transform M2 into M1. Depending on the
aim of analysis, we calculate �m

n (M1, M2), �m
n (M2, M1) or

both.
The Damerau–Levenshtein distance directly exhibits on

the level of text strings, i.e., traces, how similar two pro-
cess models are. As with the various measures about density
introduced in Sect. 4.6.1, the Damerau–Levenshtein distance
is more an indicator than a concrete marker for a statement
about similarity. It provides an attested impression of how
similar two process models are by comparing traces of these
models. Similarity on this level cannot automatically lead to
statements about similarity on a conceptual and logical level
since small differences on the trace level can lead to great
differences on a logical level, and vice versa. However, a
domain expert has to assess whether these similarities show
the same tendency or are just accidentally similar.We recom-
mend to apply this measure also as an indicator for potential
similarities of process models.

4.6.3 Example

Wenow apply the previously definedmeasures to the process
models Q1 and Q2 of the running example (Sect. 2.4). All
values are depicted in Table 2.

For n = 0, there is only the empty trace which is accepted
neither by Q1 nor by Q2. That is why the densities of both
process models are 0 for n = 0. Nevertheless, we count the
empty trace as one potential trace. Thus, there is a 1 in the
denominator of the fraction in the upper four rows in the col-
umn for n = 0. As Q2 requires the execution of minimal two
Bs, it does not accept a trace of length 1 and only accepts one
trace of length 2, namely 〈BB〉. This restriction causes that
the density of Q1 is larger than the density of Q2 for n = 1, 2.
For n = 3, we see that Q1 and Q2 accept the same number of
traces and hence have the same density λn . We observe that
for n ≥ 4 the values of the density measures (λn, λn0) for Q1

are lower than for Q2. This can be interpreted that there is
a significant difference between the process models and that
process model Q2 describes a more flexible process, since it
offers more process execution variants, which is confirmed

Table 2 Measures for process models Q1 and Q2 of the running exam-
ple

n 0 1 2 3 4 5 6 7

λn(Q1)
0
1

1
3

3
9

7
27

15
81

31
243

63
729

127
2187

λn(Q2)
0
1

0
3

1
9

7
27

33
81

131
243

473
729

1611
2187

λn0(Q1)
0
1

1
4

4
13

11
40

26
121

57
364

120
1093

247
3280

λn0(Q2)
0
1

0
4

1
13

8
40

41
121

172
364

645
1093

2256
3280

n(Q1, Q2) 0 0 0 0 0 0 0 0

n
0(Q1, Q2) 0 0 0 0 0 0 0 0

�n
0 (Q1, Q2) – – 0 0.33 0.5 0.6 0.67 0.71

�n
0 (Q2, Q1) – – 0 0.29 0.43 0.51 0.56 0.6

by Fig. 10: the difference between these measures of Q1 and
Q2 increases for greater n.

The similarity measures
n(Q1, Q2) and
n
0(Q1, Q2)

are 0 for all n ∈ N, which implies that Q1 and Q2

do not accept common traces. This is caused by the fact
that the existence(A, 1) and exclusiveChoice(A, B) con-
straints of Q1 prohibit the execution of activity B and the
existence(B, 2) implies an—at least—double execution of
activity B. Hence, activity B may not occur in the execution
of Q1, whereas the execution of Q2 requires the execution
of B. Taking the observations regarding densities and sim-
ilarities together, we can conclude that we are in the upper
left case of Fig. 9, i.e., the two processes are disjoint—with
respect to execution traces—and differ broadly with respect
to their flexibility.

Table 2 also reveals that the measure 0-n-process event-
log-similarity is indeed asymmetric. The graphical curves
depicted in Fig. 10 confirm this observation. We can also
observe that with increasing trace length the similarity val-
ues of the 0-n-process event-log-similarity increase and for
all n ≥ 3 �n

0 (Q1, Q2) > �n
0 (Q2, Q1) holds. This is

again caused by the two constraints existence(A, 1) and
exclusiveChoice(A, B) of Q1 which prohibit the execution
of activity B. Hence, from each accepted trace t1 of Q1 an
accepted trace t2 of Q2 can be derived by replacing any two
symbols of t1 by Bs (as two Bs are mandatory for Q2). The
other way around, for transforming a trace t2 of Q2 into a
trace t1 of Q1, all Bs can be exchanged by As. Hence, a trace
t1 of Q1 can be derived from a trace t2 of Q2 by replacing
each B by A. As t2 includes at least two Bs, at least two
operations are needed. As some traces of Q2 include more
than two Bs, more than two operations are needed, which
implies a higher inverse Damerau–Levenshtein distance and
hence a lower 0-n-process event-log-similarity.

123

Automaton-based comparison of Declare process models 681

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Trace length n

λn(Q1)
λn(Q2)
λn
0 (Q1)

λn
0 (Q2)

Fig. 10 Measure curves for Q1 and Q2 of the running example

5 Implementation and evaluation

In this section, we give an introduction to our implementation
and evaluate our approach from two angles: First, we deter-
mine the time complexity of our approach (cf. Sect. 5.1).
Analyzing the asymptotic behavior has the advantage that
the results are independent of the deployed hardware and
more general than calculating particular example processes.
Afterward, we conduct a small comparative study of declara-
tive mining approaches on real-life event logs to demonstrate
the applicability of our approach in a practical scenario (cf.
Sect. 5.3).

5.1 Implementation

As a proof of concept, the algorithm visualized in Fig. 4
has been implemented in Java and can be used through a
command-line interface. All steps are arranged in a config-
urable and automated pipeline. Besides the sources and a
pre-compiled runnable JAR file also some sample models
are publicly available.4

As mandatory inputs, the user has to provide two models
as text files of the following structure:

A, B,C, D; precedence(A, B); ini t(C)

Activities have to be encoded in the shape of a comma-
separated list of characters—the alphabet—at the beginning
of each text file, followed by an arbitrary number of Declare
constraints in the commonly used textual representation:
< constraintTemplateName>(< activity1>[,< activity2>]).
Activities need to be part of the alphabet.

In order to run the application, providing the model files
is sufficient. However, it is possible to output the automa-

4 https://github.com/mkaep/comparing-declare-models.

tons derived from the Declare models using the parameter
--dfa-output < path>. With –max-word-length < number>,
it is possible to configure the maximum trace length used for
computing similarity measures for the given models by com-
paring the traces that are conform to each model respectively
(cf. Sect. 4.6.1). By omitting this parameter, a default value
is used.

5.2 Time complexity analysis

We discuss the time complexity of both the simulation-based
and the theory-based approach. They both have the first step
of constructing the minimized product automaton from the
constraints of a process model in common. For the mini-
mization, we use the Hopcroft algorithm [14], that has a time
complexity ofO(n log log n) where n denotes the number of
states of the automaton.

In the following, we regard two process models M1 =
(A1, T1) and M2 = (A2, T2), where T1 = {t1, . . . , tn} and
T2 = {t ′1, . . . , t

′
m}. For a template t ∈ T , we denote the

number of states of the corresponding template automaton
by |St |. Hence, the minimal product automatons of M1 and
M2 can be calculated in:

R:=O
(
n−1∑

i=1

(
O

(|Sti | · |Sti+1 |
)

+O
(|Sti | · |Sti+1 | · log log (|Sti | · |Sti+1 |

))))

+ O
(
m−1∑

i=1

(
O

(
|St ′i | · |St ′i+1

|
)

+O
(
|St ′i | · |St ′i+1

| · log log
(
|St ′i | · |St ′i+1

|
))))

Simulation-based The most computational intensive task is
the generation and checking of the traces. In dependency of
the applied technique (i.e., SAT solving), the time complex-
ity differs. We denote the time complexity in dependency
of the considered process model M and the maximal trace
length n with γ (n,M). SAT solving for propositional logic
is known to be NP-complete (Cook–Levin theorem [36]).
Hence, the time complexity for generating and validating
traces is exponential and also dominates the time complex-
ity of the simulation-based algorithm. Note that in this case
determining the time complexity does not primarily eval-
uate the algorithm itself rather than the applied SAT solver.
Hence, we have in summary the following asymptotic behav-
ior for the simulation-based algorithm, where the first term
describes the time complexity of constructing the corre-
sponding minimal product automatons. The second and the
third terms describe the time complexity for generating and

123

https://github.com/mkaep/comparing-declare-models

682 N. Schützenmeier et al.

Table 3 Statistic of the used event logs

Helpdesk BPIC12 BPIC13

#Traces 4580 13,087 1487

#Events 21,348 262,200 6660

#Activities 14 24 4

AVG trace length 4.66 20.04 4.48

Max. trace length 15 175 35

Min trace length 2 3 1

#Trace variants 226 4366 183

checking the traces until the upper bound b:

O (R + γ (b,M1) + γ (b,M2)) .

Since the last terms are the predominately ones, the time
complexity of the simulation-based algorithm is exponen-
tial. However, if we are only interested in the minimal upper
bound, the time complexity is R.
Theory-based For two finite state automatons, the theory-
based algorithm has time complexity R + O(m · n) where
m and n are the number of states of the minimal product
automatons of M1 and M2. The first term describes again
the construction of the minimal product automatons and the
second term describes the time complexity of the symmet-
ric difference construction.We observe that the theory-based
algorithm ismuch faster than the simulation-based algorithm
as the dominating term m · n is quadratic and not exponen-
tial. Analyzing Differences If the two process models are not
equal and we are interested in analyzing the differences (cf.
Sect. 4.6), it is necessary to calculate all traces up to a desired
length l. This task requires as mentioned above an exponen-
tial time complexity of γ (l,M1) + γ (l,M2).

5.3 Practical application

For evaluating how our approach performs on real-life
data, we conduct a small comparative study of declarative
mining algorithms. We apply two Declare Miner (Uncon-
strainedMiner [28] and DeclareMapsMiner [37]) to extract
declarative process models from real-life event logs. After-
ward, we use our approach (and metrics) for a comparison
of the mined models. We performed our study on 3 real-life
event logs from different domains with diverse characteris-
tics (cf. Table 3) extracted from the 4TU Center for Research
Data.5

We configured both Declare Miner in that way, that all
supported Declare templates (cf. Table 1) of our approach
weremined.Additionally,we set the threshold for confidence
and support that a constraintmust satisfy to≥ 0.9. Setting the

5 https://data.4tu.nl/.

Table 4 Measures of the λn metric

Event log Miner 0 1 2 3 4 5

Helpdesk MapsMiner 0
1

0
14

0
142

0
143

1
144

2
145

Helpdesk UncMiner 1
1

1
14

1
142

0
143

1
144

7
145

BPIC13 MapsMiner 0
1

0
4

1
42

1
43

3
44

6
45

BPIC13 UncMiner 1
1

0
4

1
42

1
43

3
44

6
45

BPIC12 MapsMiner 0
1

0
24

1
242

19
243

362
244

6860
245

BPIC12 UncMiner 1
1

5
24

80
242

3654
243

81,923
244

890,237
245

Table 5 Measures of the λn0 metric

Event log Miner 0 1 2 3 4 5

Helpdesk MapsMiner 0
1

0
15

0
211

0
2955

1
41,371

3
579,195

Helpdesk UncMiner 0
1

1
15

2
211

2
2955

3
41,371

10
579,195

BPIC13 MapsMiner 1
1

1
5

2
21

3
85

6
341

12
1365

BPIC13 UncMiner 0
1

0
5

1
21

2
85

5
341

11
1365

BPIC12 MapsMiner 0
1

0
25

1
601

20
14,425

382
346,201

7242
8,308,825

BPIC12 UncMiner 1
1

6
25

86
601

3740
14425

85,663
346,201

975,900
8,308,825

Table 6 Measures of the �n
0 (UncMiner , MapsMiner) metric

Event log 0 1 2 3 4 5

Helpdesk 0 0 1 1 2
3

3
6

BPIC13 0 0 0 1 1 2
7

BPIC12 0 0 0 0.3 0.4 0.3

support lower than 1.0 is necessary, since all real-life event
logs contain noise. On the other hand, a smaller threshold
leads to a significant increase of constraints (several thousand
constraints), which resulted for all used event logs in a broken
model, i.e., the model was so restrictive that it prevents any
process execution.

We could directly observe that the mined process models
differwith regard to the number of constraints (cf. Table 7). In
all cases, the UnconstrainedMiner detects a larger number of
constraints. Hence, the UnconstrainedMiner bears a higher
risk for a brokenmodel. In all cases, themodelswere different
and no one was included in the other one. So we calculated
the metrics proposed in the previous section to quantify the
difference between the models. The measurements are listed
in Tables 4, 5 and 6. Since the metrics require a simulation of
all traces up to a given length, the calculation of the metrics
is faced with the same problem as of any simulation-based
approach. The scalability wall prevents a (fast) simulation of
long traces. Hence, we set an upper bound of 5 for calcu-
lating the simulation based metrics. We argue that this limit
is already sufficient, since larger traces would be very cum-
bersome for a manual investigation by a domain expert and
even these short traces allow to derive a tendency. Note that
this scalability problem only holds for the calculation of the
simulation based metrics, while the equality check based on

123

https://data.4tu.nl/

Automaton-based comparison of Declare process models 683

Table 7 Statistics of the mined
process models

Event log #Constraints MapsMiner #Constraints UnconstrainedMiner

Helpdesk 94 363

BPIC13 9 34

BPIC12 13 67

automatons is not affected. Hence, we can conclude that our
approach enables the comparison of large declarative mod-
els as they occur on real data. The analysis of the outputted
traces up to length 5 reveals that the models are not bro-
ken, but even very restrictive, due to the small amount of
allowed process executions. Nevertheless, even these small
number provide useful insights for a domain expert. In all
cases, we could observe that albeit neither the processmodels
are identical nor one is a subset of the other, the intersection
of allowed traces between the models was not empty. Hence,
the mined models possess similarities and allow in partial
the same behavior. We could also derive from the measures
n-density and 0-n-density that the models of the MapsMiner
are more restrictive. Eventually it could also determined that
the UnconstrainedMiner allows in all cases an empty trace,
while the MapsMiner prevents this behavior.

6 Conclusion and future work

In this paper, we presented two different approaches for com-
paring two Declare process models for equality by using
finite state automaton constructions and minimization. The
first approach, the simulation-based approach, makes use
of a calculated upper bound, which was proved. The corre-
sponding algorithm shows an exponential time complexity,
whereas the second approach, the theory-based algorithm,
performs quadratic and hence surpasses the simulation-based
approach. On the other side, the simulation-based approach
is needed in order to make statements about common prop-
erties and differences of models, which are not completely
identical.

In future work, our approach will be extended to other
process modeling languages, especially declarative multi-
perspective languages likeMP-Declare [4].WhereasDeclare
mainly considers the control flow perspective [10], MP-
Declare can also dealwith human and technical resources like
performing actors or used artifacts (e.g., computer programs,
tools). Furthermore, we aim to make our approach applica-
ble for so-called imperative process modeling languages like
the Business Process Model and Notation (BPMN) [38] in
order to construct a tool, which can compare a plethora of
different process modeling languages. Finally, the approach
will be integrated in a graphical user friendly interface.

Another important point in our future workwill be to elab-
orate and discuss the applicability of our approach to other

domains, e.g. organizational models or sequence diagrams.
As organizational models are “static” in a way, there might
be no direct application of our approach, whereas investi-
gating sequence diagrams might lead to promising results as
there are already efforts of transforming them into finite state
automatons [39].

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Fahland, D., Mendling, J., Reijers, H.A., Weber, B., Weidlich,
M., Zugal, S.: Declarative versus imperative process modeling
languages: the issue of maintainability. In: Business Process Man-
agement Workshops, pp. 477–488. Springer (2010)

2. Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber, B., Wei-
dlich, M., Zugal, S.: Declarative versus imperative process model-
ing languages: the issue of understandability. Springer (2009)

3. Pesic, M.: Constraint-based workflow management systems: shift-
ing control to users. Ph.D. thesis, Industrial Engineering and
Innovation Sciences (2008)

4. Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking
based on multi-perspective declarative process models. Expert
Syst. Appl. 65, 194–211 (2016)

5. Hildebrandt, T.T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Con-
tracts for cross-organizational workflows as timed dynamic condi-
tion response graphs. J. Log.Algebraic Program. 82(5–7), 164–185
(2013)

6. Zeising, M., Schönig, S., Jablonski, S.: Towards a common plat-
form for the support of routine and agile business processes. In:
Collaborative Computing: Networking, Applications and Work-
sharing (2014)

7. Schönig, S., Ackermann, L., Jablonski, S.: Towards an implemen-
tation of data and resource patterns in constraint-based process
models. In: Modelsward (2018)

8. Abbad Andaloussi, A., Burattin, A., Slaats, T., Petersen, A.C.,
Hildebrandt, T.T., Weber, B.: Exploring the Understandability of a
Hybrid Process Design Artifact Based on DCRGraphs, pp. 69–84.
Springer, Cham (2019)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

684 N. Schützenmeier et al.

9. Schützenmeier, N., Käppel, M., Petter, S., Jablonski, S.: Upper-
boundedmodel checking for declarative processmodels. In: Serral,
E., Stirna, J., Ralyté, J., Grabis, J. (eds.) The Practice of Enterprise
Modeling, pp. 195–211. Springer, Cham (2021)

10. van de Aalst, W.M.P.: Process Mining: Discovery, Conformance
and Enhancement of Business Processes. Springer, Wiesbaden
(2011)

11. Zuck, L.: Past temporal logic. Ph.D. thesis, Weizmann Institute,
Israel (1986)

12. Laroussinie, F., Markey, N., Schnoebelen, P.: Temporal logic with
forgettable past. In: Proceedings of 17th Annual IEEE Symposium
on Logic in Computer Science (2002)

13. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata
Theory, Languages, and Computation. Pearson/Addison Wesley,
Boston (2007)

14. Hopcroft, J.: An n log n algorithm for minimizing states in a finite
automaton. In: Kohavi, Z., Paz, A. (eds.) Theory of Machines and
Computations, pp. 189–196. Academic Press, Cambridge (1971).
https://doi.org/10.1016/B978-0-12-417750-5.50022-1

15. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.:
Process equivalence: comparing two process models based on
observed behavior. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.)
Business Process Management, pp. 129–144. Springer, Berlin
(2006)

16. Becker, M., Laue, R.: A comparative survey of business process
similarity measures. Comput. Ind. 63(2), 148–167 (2012). https://
doi.org/10.1016/j.compind.2011.11.003. (Managing Large Col-
lections of Business Process Models)

17. La Rosa, M., Dumas, M., Ekanayake, C., García-Bañuelos, L.,
Recker, J., Hofstede, A.: Detecting approximate clones in business
process model repositories. Inf. Syst. 49, 102–125 (2015). https://
doi.org/10.1016/j.is.2014.11.010

18. Tealeb, A., Awad, A., Galal-Edeen, G.: Context-based variant gen-
eration of business process models, vol. 175, pp. 363–377 (2014)

19. Haisjackl, C., Barba, I., Zugal, S., Soffer, P., Hadar, I., Reichert,
M., Pinggera, J., Weber, B.: Understanding declare models: strate-
gies, pitfalls, empirical results. Softw. Syst. Model. 15(2), 325–352
(2016)

20. Andaloussi, A.A., Buch-Lorentsen, J., Lopez, H.A., Slaats, T.,
Weber, B.: Exploring the modeling of declarative processes using a
hybrid approach. In: Proceedings of 38th International Conference
on Conceptual Modeling 2019, pp. 162–170. Springer (2019)

21. Ciccio, C.D., Maggi, F.M., Montali, M., Mendling, J.: Resolving
inconsistencies and redundancies in declarative process models.
Inf. Syst. 64, 425–446 (2017)

22. Smedt, J.D., Weerdt, J.D., Serral, E., Vanthienen, J.: Discover-
ing hidden dependencies in constraint-based declarative process
models for improving understandability. Inf. Syst. 74(Part), 40–52
(2018)

23. De Smedt, J., De Weerdt, J., Serral, E., Vanthienen, J.: Improv-
ing understandability of declarative process models by revealing
hidden dependencies. In: Advanced Information Systems Engi-
neering, pp. 83–98. Springer (2016)

24. Schützenmeier, N., Käppel, M., Petter, S., Schönig, S., Jablonski,
S.: Detection of declarative process constraints in LTL formulas.
In: EOMAS-15th International Workshop 2019, Selected Papers,
LNBIP, vol. 366, pp. 131–145. Springer (2019)

25. Dijkman, R., Dumas, M., García-Bañuelos, L., Käärik, R.: Align-
ing business process models, pp. 45–53 (2009). https://doi.org/10.
1109/EDOC.2009.11

26. Shi, Y., Xiao, S., Li, J., Guo, J., Pu, G.: Sat-based automata con-
struction for LTL over finite traces. In: 27th Asia-Pacific Software
Engineering Conference (APSEC) (2020)

27. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In:
Berry, G., Comon, H., Finkel, A. (eds.) Computer Aided Verifica-
tion. Springer, Berlin (2001)

28. Westergaard, M., Stahl, C., Reijers, H.: UnconstrainedMiner: effi-
cient discovery of generalized declarative process models. BPM
reports. BPMcenter.org (2013)

29. Corea, C., Nagel, S., Mendling, J., Delfmann, P.: Interactive and
minimal repair of declarative process models, pp. 3–19 (2021).
https://doi.org/10.1007/978-3-030-85440-9_1

30. Hidders, J., Dumas, M., van der Aalst, W.M.P., ter Hofstede,
A.H.M., Verelst, J.: When are two workflows the same? In: Pro-
ceedings of the 2005 Australasian Symposium on Theory of
Computing-Volume 41, CATS ’05, pp. 3–11. Australian Computer
Society, Inc., Sydney (2005)

31. Käppel, M., Schönig, S., Ackermann, L., Jablonski, S.: Language-
independent look-ahead for checkingmulti-perspective declarative
process models. Softw. Syst. Model. 20, 1379–1401 (2021)

32. Ackermann, L., Schönig, S., Petter, S., Schützenmeier, N., Jablon-
ski, S.: Execution of multi-perspective declarative process models.
In: OTM 2018 Conferences (2018)

33. Skydanienko, V., Francescomarino, C.D., Maggi, F.: A tool for
generating event logs from multi-perspective declare models. In:
BPM (Demos) (2018)

34. Boytsov, L.: Indexing methods for approximate dictionary search-
ing: comparative analysis. ACM J. Exp. Algorithmics 16, 1 (2011).
https://doi.org/10.1145/1963190.1963191

35. Camargo, M., Dumas, M., González-Rojas, O.: Learning accu-
rate LSTM models of business processes. In: Hildebrandt, T., van
Dongen, B.F., Röglinger, M., Mendling, J. (eds.) Business Process
Management, pp. 286–302. Springer, Cham (2019)

36. Cook, S.A.: The complexity of theorem-proving procedures. In:
Proceedings of the Third Annual ACM Symposium on Theory of
Computing, STOC ’71. ACM, New York (1971)

37. Maggi, F.M.: Declarative process mining with the declare compo-
nent of prom. In: Fauvet, M., van Dongen, B.F. (eds.) Proceedings
of the BPM Demo sessions 2013, Beijing, China, August 26–30,
2013, CEUR Workshop Proceedings, vol. 1021. CEUR-WS.org
(2013)

38. OMG: Business Process Model and Notation (BPMN), Version
2.0. http://www.omg.org/spec/BPMN/2.0 (2011)

39. Duan, Z., Yu, B., Zhang, C., Tian, C., Ding, M.: A test case gener-
ation approach based on sequence diagram and automata models.
Chin. J. Electron. 25, 234–240 (2016). https://doi.org/10.1049/cje.
2016.03.007

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Nicolai Schützenmeier is a research
assistant with the Institute for
Computer Science at University
of Bayreuth (Germany). He
received the master’s degree at
University of Bayreuth. His
research is focused on BPM, espe-
cially declarative process models
and their mathematically and the-
oretical foundations. Based on his
work, he published scientific
papers in this area in international
conferences.

123

https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1016/j.compind.2011.11.003
https://doi.org/10.1016/j.compind.2011.11.003
https://doi.org/10.1016/j.is.2014.11.010
https://doi.org/10.1016/j.is.2014.11.010
https://doi.org/10.1109/EDOC.2009.11
https://doi.org/10.1109/EDOC.2009.11
https://doi.org/10.1007/978-3-030-85440-9_1
https://doi.org/10.1145/1963190.1963191
http://www.omg.org/spec/BPMN/2.0
https://doi.org/10.1049/cje.2016.03.007
https://doi.org/10.1049/cje.2016.03.007

Automaton-based comparison of Declare process models 685

Martin Käppel is a research assis-
tant with the Institute for Com-
puter Science at University of
Bayreuth (Germany). He received
the master’s degree (with hon-
ours) at University of Bayreuth.
His research is focused on Pro-
cess Mining, especially predictive
business process monitoring and
the development of Small Sam-
ple Learning methods for BPM.
Based on his work, he published
scientific papers in international
conferences and journals.

Lars Ackermann is an Assis-
tant Professor of Computer Sci-
ence with the Institute for Com-
puter Science at University of
Bayreuth (Germany). He received
the master’s degree (with hon-
ours) in Computer Science and
the doctoral degree from Univer-
sity of Bayreuth. He has an estab-
lished background in BPM/
Process Mining and has been
working in this field for several
years. He published extensively in
the research area of business pro-
cess management and information

systems, both in international conferences and journals.

Stefan Jablonski is a Full Pro-
fessor of Computer Science with
the Institute for Computer Science
at University of Bayreuth (Ger-
many). He is head of the chair for
Databases and Information Sys-
tems. His major research interests
include Business Process Manage-
ment, flexible process enactment
technologies and metamodelling.
He has been participating in
numerous national and interna-
tional BPM research as well as
industrial projects.

Sebastian Petter is a PhD stu-
dent at the University of Bayreuth
(Germany). He is working as
research assistant at the Chair for
Databases and Information Sys-
tems with a focus on process man-
agement and its fusion with rec-
ommendation systems. Sebastian
holds a master’s degree from the
University of Bayreuth.

123

	Automaton-based comparison of Declare process models
	Abstract
	1 Introduction
	2 Basic terminology and running example
	2.1 Events, traces and event logs
	2.2 Declare and Declare constraints
	2.3 Automata theory
	2.4 Running example

	3 Related work on process model similarity
	4 Comparing Declare process models
	4.1 Transformation of Declare templates to finite state automatons
	4.2 Transformation of Declare models to finite state automatons
	4.3 Checking Declare models for equality
	4.3.1 Simulation-based approach
	4.3.2 Theory-based approach
	4.3.3 Example

	4.4 Analyzing mutual containment and differences between Declare models
	Answer to question 1
	Answer to question 2

	4.5 Simulation-based versus theory-based approach
	4.6 Measuring the similarity of declarative process models
	4.6.1 Density and similarity based on trace length
	4.6.2 Similarity based on Damerau–Levenshtein distance
	4.6.3 Example

	5 Implementation and evaluation
	5.1 Implementation
	5.2 Time complexity analysis
	5.3 Practical application

	6 Conclusion and future work
	References

