On strongly walk regular graphs, triple sum sets and their codes

Michael Kiermaier ${ }^{1}$ © . Sascha Kurz ${ }^{1}$. Patrick Solé ${ }^{2}$. Michael Stoll ${ }^{1}$. Alfred Wassermann ${ }^{1}$

Received: 26 April 2022 / Revised: 9 September 2022 / Accepted: 10 September 2022 /
Published online: 15 November 2022
© The Author(s) 2022

Abstract

Strongly walk regular graphs (SWRGs or s-SWRGs) form a natural generalization of strongly regular graphs (SRGs) where paths of length 2 are replaced by paths of length s. They can be constructed as coset graphs of the duals of projective three-weight codes whose weights satisfy a certain equation. We provide classifications of the feasible parameters of these codes in the binary and ternary case for medium size code lengths. For the binary case, the divisibility of the weights of these codes is investigated and several general results are shown. It is known that an s-SWRG has at most 4 distinct eigenvalues $k>\theta_{1}>\theta_{2}>\theta_{3}$, and that the triple $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ satisfies a certain homogeneous polynomial equation of degree $s-2$ (Van Dam, Omidi, 2013). This equation defines a plane algebraic curve; we use methods from algorithmic arithmetic geometry to show that for $s=5$ and $s=7$, there are only the obvious solutions, and we conjecture this to remain true for all (odd) $s \geq 9$.

Keywords Strongly walk-regular graphs • Triple sum sets • Three-weight codes
Mathematics Subject Classification Primary 05E30 • Secondary 11D41 • 94B05

1 Introduction

A strongly regular graph (SRG) is a regular graph such that the number of common neighbors of two distinct vertices depends only on whether these vertices are adjacent or not. They arise in a lot of applications, see e.g. [8]. As first observed in [14], there is a strong link to projective two-weight codes, see [11] for a survey. The notion of SRGs has been generalized to distanceregular graphs or association schemes. Noting that the number of common neighbors of two vertices equals the number of walks of length two between them, strongly walk-regular graphs

[^0](SWRG) were introduced in [32]. A graph is an s-SWRG if the number of walks of length s from a vertex to another vertex depends only on whether the two vertices are the same, adjacent, or not adjacent. Note that SRGs are s-SWRGs for all $s>1$. In [32, Theorem 3.4] it is shown that the adjacency matrix of a SWRG has at most four distinct eigenvalues and the following characterization of SWRGs is given.

Lemma 1.1 (van Dam, Omidi [32, Proposition 4.1]) Let Γ be a k-regular graph with four distinct eigenvalues $k>\theta_{1}>\theta_{2}>\theta_{3}$. Then Γ is an s-SWRG for $s \geq 3$ if and only if

$$
\begin{equation*}
\left(\theta_{2}-\theta_{3}\right) \theta_{1}^{S}+\left(\theta_{3}-\theta_{1}\right) \theta_{2}^{s}+\left(\theta_{1}-\theta_{2}\right) \theta_{3}^{s}=0 \tag{1}
\end{equation*}
$$

Moreover, it is known that s has to be odd. All known examples for s-SWRGs with $s>3$ satisfy $\theta_{2}=0$ and $\theta_{3}=-\theta_{1}$, where Eq. (1) is automatically satisfied for all odd $s \geq 3$.

Mimicking the mentioned link between SRGs and projective two-weight codes, a construction of SRWGs as coset graphs of the duals of projective three-weight codes was given recently in [27]. The eigenvalues of such graphs are integral and depend on the weights of the three-weight code, so that Eq. (1) turns into a number theory question. In [27], a construction of SWRGs from triple sum sets (TSS) is given.

Several research papers consider the feasible parameters of SRGs, see e.g. [6] for a large table together with references summarizing the state of knowledge. We remark that the smallest cases, where the existence or non-existence of a SRG is unclear, consist of 65 or 69 vertices. The corresponding parameters cannot be attained by two-weight codes since these always give graphs where the number of vertices is a power of the field size. Still, the existence of projective two-weight codes is an important source for the construction of SRGs, see e.g. [21], where several new examples have been found. An online database of known two-weight codes can be found at [12]. Due to a result of Delsarte [14, Corollary 2] the possible weights of two-weight codes are quite restricted, see Lemma 2.2.

Given the relation between the weights of a projective three-weight code and the eigenvalues of the coset graph of its dual, corresponding solutions of Eq. (1) can be easily enumerated. However, not all cases are feasible, i.e., attainable by a projective three-weight code. The aim of this paper is to study feasibility for the smallest cases. For binary codes we give results for lengths smaller than 72 and for ternary codes for lengths up to 39 . Within that range only very few cases are left as open problems. This extends and corrects first enumeration results from [27]. Similar results for some special rings instead of finite fields are obtained in [26].

The remaining part of this paper is organized as follows. The necessary preliminaries are introduced in Sect. 2 followed by the enumeration results in Sect. 3. In Sect. 4 it is shown that for $s=5$ and $s=7$ the only rational solutions of Eq. (1) are given by the parametric solution $\theta_{2}=0, \theta_{3}=-\theta_{1}$. For $s=5$, this reduces to the determination of the set of rational points on an elliptic curve and for $s=7$, it leads to a curve of genus 2 .

The computational results from Sect. 3 for the case $q=2$ suggest that projective threeweight codes of length n whose weights satisfy $w_{1}+w_{2}+w_{3}=3 n / 2$ possess a high divisibility of the weights and the length by powers of two. In Sect. 5 this is shown, see Lemma 5.11 and the following theorems for the details. In Appendix A we collect generator matrices for the mentioned feasible parameters from Sect. 3.

2 Preliminaries

In this article, $q \geq 2$ will always be the power of some prime p.

A linear q-ary code C of length n and dimension k is called an $[n, k]_{q}$ code. The number of positions which are not all-zero is called the effective length of C. If the length equals the effective length, C is called full-length. Two positions $i, j \in\{1, \ldots, n\}$ of C are called projectively equivalent if there is a $\lambda \in \mathbb{F}_{q}^{*}$ with $c_{i}=\lambda c_{j}$ for all codewords $c \in C$. The code C is called projective if it is full-length and there are no projectively equivalent positions. For a general full-length code, the position multiplicity type is the sequence $\left(m_{i}\right)$ where m_{i} denotes the number of projective equivalence classes of size i.

2.1 Restrictions on the weights

If there is only a single non-zero weight, C is called a constant weight code. The linear constant weight codes are completely classified.
Lemma 2.1 (Bonisoli [2]) Let C be a full-length $[n, k]_{q}$ code of constant weight w of dimension $k \geq 1$. Then $q^{k-1} \mid w$, and C is isomorphic to the u-fold repetition of the q-ary simplex code $\operatorname{Sim}_{q}(k)$ of dimension k with $u=w / q^{k-1}$. In particular, $n=u \cdot \frac{q^{k}-1}{q-1}$.

If C has exactly two different non-zero weights, C is called a two-weight code.
Lemma 2.2 (Delsarte [14, Corollary 2]) Let C be a projective two-weight code over \mathbb{F}_{q}, where $q=p^{e}$ for some prime p. Then there exist suitable integers u and t with $u \geq 1, t \geq 0$ such that the weights are given by $w_{1}=u p^{t}$ and $w_{2}=(u+1) p^{t}$.

If C has exactly three different non-zero weights, C is called a three-weight code. Furthermore, C is called Δ-divisible for some integer $\Delta \geq 1$ if all weights of C are divisible by Δ.
Lemma 2.3 Let C be a linear projective $[n, k]_{q}$ three-weight code. Then $n \leq \frac{q^{k}-1}{q-1}-2$.
Proof Let G be a generator matrix of C. Since C is projective, G neither has a zero column, nor a pair of projectively equivalent columns. So each of the $\frac{q^{k}-1}{q-1}$ projective equivalence classes of non-zero vectors in \mathbb{F}_{q}^{k} appears at most once as a column of G, showing that $n \leq \frac{q^{k}-1}{q-1}$. In the case $n=\frac{q^{k}-1}{q-1}, C$ is the simplex $\operatorname{code} \operatorname{Sim}_{q}(k)$ of dimension k over \mathbb{F}_{q}, which is a code of constant weight q^{k-1}. In the case $n=\frac{q^{k}-1}{q-1}-1, C$ is the simplex code $\operatorname{Sim}_{q}(k)$ punctured in a single position, so C has only the two weights q^{k-1} and $q^{k-1}-1 .{ }^{1}$ This contradicts the assumption that C is a three-weight code.

2.2 Weight enumerators and the MacWilliams identity

The weight distribution of C is the sequence of numbers $\left(A_{i}\right)$ where A_{i} denotes the number of codewords of weight i. It can also be denoted as $\left(0^{A_{0}} 1^{A_{1}} 2^{A_{2}} \ldots\right)$, where entries with $A_{i}=0$ may be omitted. The weight distribution is often given in polynomial form as the (univariate) weight enumerator $W_{C}(x)=\sum_{i} A_{i} x^{i}$ or the homogeneous weight enumerator $W_{C}(x, y)=\sum_{i} A_{i} x^{n-i} y^{i}$.

The weight distribution of the dual code C^{\perp} will be denoted by $\left(B_{i}\right)$. We always have $A_{0}=B_{0}=1$. Furthermore, $B_{0}=0$ if and only if C is full-length and $B_{0}=B_{1}=0$ if and only C is projective. For the number B_{2} of general full-length codes, the following statement can be checked.

[^1]Lemma 2.4 Let C be a full-length q-ary linear code of length n and $\left(m_{i}\right)$ the position multiplicity type of C. Then

$$
\begin{aligned}
\sum_{i} i m_{i} & =n \quad \text { and } \\
\sum_{i}(q-1)\binom{i}{2} m_{i} & =B_{2}
\end{aligned}
$$

The weight distributions of C and C^{\perp} are related via the MacWilliams identities [24]

$$
\begin{equation*}
\sum_{j=0}^{n-v}\binom{n-j}{v} A_{j}=q^{k-v} \cdot \sum_{j=0}^{v}\binom{n-j}{n-v} B_{j} \quad \text { for } 0 \leq v \leq n . \tag{2}
\end{equation*}
$$

or in homogeneous polynomial form as

$$
W_{C^{\perp}}(x, y)=\frac{1}{\# C} \cdot W_{C}(x+(q-1) y, x-y) .
$$

In fact, the B_{i} are uniquely determined by the A_{i}, as can be seen by the following variant of the MacWilliams identities. Based on the i-th q-ary Krawtchouk polynomial

$$
K_{i}(x)=\sum_{v=0}^{i}(-1)^{v}\binom{x}{v}\binom{n-x}{i-v}(q-1)^{i-v},
$$

we have

$$
B_{i}=\frac{1}{\# C} \cdot \sum_{j=0}^{n} K_{i}(j) A_{j}
$$

For a binary projective $[n, k]_{2}$ code, the system of the four equations with $i \in\{0,1,2,3\}$ can be rewritten to

$$
\begin{align*}
\sum_{i>0} A_{i} & =2^{k}-1, \tag{3}\\
\sum_{i \geq 0} i A_{i} & =2^{k-1} n, \tag{4}\\
\sum_{i \geq 0} i^{2} A_{i} & =2^{k-2} \cdot n(n+1), \tag{5}\\
\sum_{i \geq 0} i^{3} A_{i} & =2^{k-3} \cdot\left(n^{2}(n+3)-6 B_{3}\right) . \tag{6}
\end{align*}
$$

In this special form of the left hand side, they are also called the first four (Pless) power moments, see [25]. Given the length n, the dimension k, and the weights w_{1}, w_{2}, w_{3} of a projective three-weight code, we can compute $A_{w_{i}}$ and B_{3} :

$$
\begin{align*}
& A_{w_{1}}=\frac{2^{k-2} \cdot\left(n^{2}-2 n w_{2}-2 n w_{3}+4 w_{2} w_{3}+n\right)-w_{2} w_{3}}{\left(w_{2}-w_{1}\right)\left(w_{3}-w_{1}\right)} \tag{7}\\
& A_{w_{2}}=\frac{2^{k-2} \cdot\left(n^{2}-2 n w_{1}-2 n w_{3}+4 w_{1} w_{3}+n\right)-w_{1} w_{3}}{\left(w_{2}-w_{3}\right)\left(w_{2}-w_{1}\right)} \tag{8}\\
& A_{w_{3}}=\frac{2^{k-2} \cdot\left(n^{2}-2 n w_{1}-2 n w_{2}+4 w_{1} w_{2}+n\right)-w_{1} w_{2}}{\left(w_{3}-w_{1}\right)\left(w_{3}-w_{2}\right)} \tag{9}
\end{align*}
$$

$$
\begin{align*}
3 B_{3}= & \frac{n^{2}(n+3)}{2}-\left(w_{1}+w_{2}+w_{3}\right) n(n+1) \\
& +2\left(w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}\right) n-4 w_{1} w_{2} w_{3}+w_{1} w_{2} w_{3} \cdot 2^{2-k} \tag{10}
\end{align*}
$$

All A_{j} except $A_{0}=1$ and $A_{w_{1}}, A_{w_{2}}, A_{w_{3}}$ are equal to zero, so that the B_{i} with $i \geq 4$ are uniquely determined using the remaining MacWilliams identities, i.e., those for $v \geq 4$. Note that (10) implies that the product $w_{1} w_{2} w_{3}$ has to be divisible by 2^{k-2}. We remark that we will obtain stronger divisibility conditions in Sect. 5. Of course, similar explicit expressions can also be determined for field sizes $q>2$. However, we will mostly restrict our theoretical considerations to $q=2$ in the remaining part of the paper.

For a linear $\left[n_{1}, k_{1}\right]_{q}$ code C_{1} and a linear $\left[n_{2}, k_{2}\right]_{q}$ code C_{2}, the direct sum of C_{1} and C_{2} is defined as

$$
C_{1} \oplus C_{2}=\left\{\left(c_{1}, c_{2}\right) \mid c_{1} \in C_{1}, c_{2} \in C_{2}\right\} .
$$

It is a linear $\left[n_{1}+n_{2}, k_{1}+k_{2}\right]_{q}$ code. Its weight enumerator is given by

$$
W_{C_{1} \oplus C_{2}}(x)=W_{C_{1}}(x) \cdot W_{C_{2}}(x) .
$$

2.3 The coset graph triple sum sets

A coset of a linear code C is any translate of C by a constant vector. A coset leader of a fixed coset is any element that minimizes the weight. The weight of a coset is the weight of any of its coset leaders. With this, the coset graph Γ_{C} of a linear code C is defined on the cosets of C as vertices, where two cosets are connected iff they differ by a coset of weight one. To ease notation, we speak of the eigenvalues of a graph Γ meaning the eigenvalues of the corresponding adjacency matrix. For a projective code C the eigenvalues of the coset graph $\Gamma_{C^{\perp}}$ of its dual code are completely determined by the occurring non-zero weights w_{i} of C, see [7, Theorem 1.11.1]:

Theorem 2.5 Let C be a projective $[n, k]_{q}$ code with distinct weights $w_{0}=0, w_{1}, \ldots, w_{r}$. Then, the coset graph $\Gamma_{C^{\perp}}$ of its dual code C^{\perp} is $n(q-1)$-regular and the eigenvalues are given by $n(q-1)-q w_{i}$ for $i \in\{0, \ldots, r\}$.

Triple sum sets (TSS) have been introduced in [13] as generalization of partial difference sets. A set $\Omega \subseteq \mathbb{F}_{q}^{k}$ is called a triple sum set if it is closed under scalar multiplication and there are constants σ_{0} and σ_{1} such that each non-zero $h \in \mathbb{F}_{q}^{k}$ can be written as $h=x+y+z$ with $x, y, z \in \Omega$ exactly σ_{0} times if $h \in \Omega$ and σ_{1} times if $h \in \mathbb{F}_{q}^{k} \backslash \Omega$.

If $\Omega \subseteq \mathbb{F}_{q}^{k}$ and $0 \notin \Omega$, then we denote by $C(\Omega)$ the projective code of length $n=$ $\# \Omega /(q-1)$ obtained as the kernel of the $k \times n$ matrix H whose columns are the projectively non-equivalent elements of Ω. Thus, H is the parity check matrix of the linear code $C(\Omega)$. In order to ease the notation, we abbreviate $\Gamma_{C(\Omega)}$ as $\Gamma(\Omega)$. In [27, Theorem 2] it was shown that Ω is a TSS if and only if $\Gamma(\Omega)$ is a 3-SWRG. (Actually, [27, Theorem 2] states the equivalence of $\Gamma(\Omega)$ being an s-SWRG and Ω being an s-sum set, where the element h in the definition of a TSS is a sum of s elements from Ω.)

Lemma 2.6 Let $s \geq 2$ be an integer. The following equation holds for all $\theta_{1}, \theta_{2}, \theta_{3}$ over any commutative ring:

$$
\begin{align*}
& \left(\theta_{2}-\theta_{3}\right) \theta_{1}^{s}+\left(\theta_{3}-\theta_{1}\right) \theta_{2}^{s}+\left(\theta_{1}-\theta_{2}\right) \theta_{3}^{s} \\
& \quad=\left(\theta_{1}-\theta_{2}\right)\left(\theta_{1}-\theta_{3}\right)\left(\theta_{2}-\theta_{3}\right) \cdot \sum_{h+i+j=s-2} \theta_{1}^{h} \theta_{2}^{i} \theta_{3}^{j} \tag{11}
\end{align*}
$$

A coding-theoretic characterization of triple sum sets is given as follows, see [13, Theorem 2.1] or [27, Theorem 5].
Theorem 2.7 If $\Omega \subseteq \mathbb{F}_{q}^{k}$ so that $C(\Omega)^{\perp}$ has length n and attains exactly three non-zero weights w_{1}, w_{2}, and w_{3}, then Ω is a TSS iff $w_{1}+w_{2}+w_{3}=\frac{3 n(q-1)}{q}$.

Proof Using Eq. (11) from Lemma 2.6 for $s=3$, (1) becomes

$$
\left(\theta_{1}-\theta_{2}\right)\left(\theta_{1}-\theta_{3}\right)\left(\theta_{2}-\theta_{3}\right)\left(\theta_{1}+\theta_{2}+\theta_{3}\right)=0
$$

Theorem 2.5 shows that the eigenvalues are pairwise different and we conclude that (1) is satisfied iff $\theta_{1}+\theta_{2}+\theta_{3}=0$. Plugging in the formula for the eigenvalues from Theorem 2.5 gives the condition $w_{1}+w_{2}+w_{3}=\frac{3 n(q-1)}{q}$.
As mentioned in the introduction, all known examples for s-SWRGs satisfy $\theta_{2}=0$ and $\theta_{3}=-\theta_{1}$, i.e., they are s-SWRGs for all odd $s \geq 3$. So, starting from projective three-weight codes to construct SWRGs it is sufficient to study those that satisfy the weight constraint $w_{1}+w_{2}+w_{3}=3 n(q-1) / q$. We do so in Sect. 3. We would like to point out that there are (many) binary projective three-weight codes with $w_{1}+w_{2}+w_{3} \neq 3 n(q-1) / q$. As an example, consider the binary $[6,5]_{2}$ parity check code. It is a projective three-weight-code with weight distribution is $\left(0^{1} 2^{15} 4^{15} 6^{1}\right)$. The sum of its weights is 12 , but $\frac{3}{2} n=9$.

2.4 The geometric point of view to linear codes

For a vector space V, let $\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$ be the set of all subspaces of dimension k. If V is of finite dimension $v, \#\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$ equals the Gaussian binomial coefficient $\left[\begin{array}{l}v \\ k\end{array}\right]_{q}$. Conveniently, we will identify a vector space V with the set $\left[\begin{array}{l}V \\ 1\end{array}\right]_{q}$ of points contained in V.

A multiset on a base set S is a mapping $M: S \rightarrow \mathbb{Z}_{\geq 0}$, assigning a multiplicity to each element in S. For $T \subseteq S$, we set $M(T)=\sum_{s \in T} M(s)$. The cardinality of M is $\# M=M(S)$, which is the sum of the multiplicities of all elements. In enumerative form, a multiset may be written by statements of the form $M=\left\{\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}\right\}$, with the obvious interpretation. If N is a multiset on a base set T and ϕ is a predicate on T, we may also use multiset-builder notations like $M=\{\{t \in N \mid \phi(t)\}\}$.

We will make use of the geometric description of linear codes as in [16]. There is a bijective correspondence of (semi-)linear equivalence classes of linear full-length $[n, k]_{q^{-}}$ codes C and (semi-)linear equivalence classes of spanning multisets \mathcal{C} of n points in $\mathrm{PG}(V) \cong$ $\mathrm{PG}(k-1, q)$, where V is a \mathbb{F}_{q}-vector space of dimension k. For a concrete assignment, let G be a generator matrix of C and v_{1}, \ldots, v_{n} the columns of G and consider the multiset $\mathcal{C}=\left\{\left\{\left\langle v_{1}\right\rangle, \ldots,\left\langle v_{n}\right\rangle\right\}\right\}$ of points in $V=\mathbb{F}_{q}^{k}$. In this way, a codeword $c=x G$ is represented by the hyperplane $H=x^{\perp}$ (in fact, H represents all the $q-1$ codewords which are projectively equivalent to c). The weight of c has a natural geometric description, namely $w(c)=n-$ $\mathcal{C}(H)$, where the hyperplane H is identified with the set of points contained in H. In other words, $w(c)$ is the number of points in \mathcal{C}, counted with multiplicity, which are not contained in H. The code C is projective if and only if \mathcal{C} is a proper set.

The following codes have an easy geometric description:
(i) The q-ary simplex code $\operatorname{Sim}_{q}(k)$ of dimension $k \geq 1$ corresponds to the set of all points contained in a vector space of (algebraic) dimension k. It is a projective linear $\left[\left(q^{k}-1\right) /(q-1), k\right]_{q}$ constant code weight code with weight enumerator $W_{\operatorname{Sim}_{q}(k)}(x)=$ $1+\left(q^{k}-1\right) x^{q^{k-1}}$.
(ii) The q-ary first order Reed-Muller code $\mathrm{RM}_{q}(k)$ of dimension $k \geq 2$ corresponds to an affine subspace of dimension $k-1$, that is the set of points contained in $A=V \backslash W$, where V is an \mathbb{F}_{q}-vector space of dimension k and W is a subspace of codimension 1. It is a projective linear $\left[q^{k-1}, k\right]_{q}$ two-weight code with weight enumerator $W_{\mathrm{RM}_{q}(k)}(x)=$ $1+\left(q^{k}-q\right) x^{(q-1) q^{k-2}}+(q-1) x^{q^{k-1}}$. In the geometric description, the space W is known as the hyperplane at infinity of A. It corresponds to the $q-1$ codewords of weight q^{k-1}.

For a fixed point P in V, we consider the standard projection $\pi_{P}: V \rightarrow V / P, x \mapsto x+P$. It is extended to the multiset \mathcal{C} of points as

$$
\pi_{P}(\mathcal{C})=\left\{\left\{\pi_{P}(Q) \mid Q \in \mathcal{C} \text { with } Q \neq P\right\}\right\} .
$$

We have $\# \pi_{P}(\mathcal{C})=\# \mathcal{C}-\mathcal{C}(P)$.
The projections $\pi_{P}(\mathcal{C})$ with $P \in\left[\begin{array}{l}V \\ 1\end{array}\right]_{q}$ correspond to the subcodes C^{\prime} of C of codimension one. A codeword $c \in C$ with corresponding hyperplane $H<V$ is contained in C^{\prime} if and only if $P \in H$.

Let C be a projective $[n, k]_{q}$-code with weight enumerator $W_{C}(x)=\sum_{i} A_{i} x^{i}$ and \mathcal{C} a corresponding point set. If the complement $\mathcal{C}^{\mathcal{C}}=\left[\begin{array}{c}\mathbb{F}_{q}^{k} \\ 1\end{array}\right]_{q} \backslash \mathcal{C}$ is spanning (or equivalently, $A_{q^{k-1}}=0$), we call its corresponding $\left[\frac{q^{k}-1}{q-1}-n, k\right]_{q}$-code C^{\complement} the anticode of C. In this way, the anticode of C is defined up to isomorphism. Its weight enumerator is $W_{C^{\mathrm{C}}}(x)=$ $1+\sum_{i>0} A_{q^{k-1}-i} x^{i}$.

3 Feasible parameters of projective three-weight codes satisfying $w_{1}+w_{2}+w_{3}=3 n(q-1) / q$

As outlined in Sect. 2 we can construct 3-SWRGs from projective $[n, k]_{q}$ three-weight codes if the weights satisfy $w_{1}+w_{2}+w_{3}=3 n(q-1) / q$. So, here we study the feasible sets of parameters $n, k, w_{1}, w_{2}, w_{3}$ such that a corresponding projective three-weight code exists. In Sect. 3.1 we consider the admissible parameters for all lengths $n<72$ in the binary case and in Sect. 3.2 we consider the admissible parameters for all lengths $n \leq 39$ in the ternary case.

In that range we can simply loop over all weight-triples (w_{1}, w_{2}, w_{3}) with $1 \leq w_{1}<w_{2}<$ $w_{3} \leq n$ satisfying $w_{1}+w_{2}+w_{3}=3 n(q-1) / q$. For $q=2$, (10) implies that the product $w_{1} w_{2} w_{3}$ is divisible by 2^{k-2}, which restricts the possible choices for the dimension k. For $q=3$ we may use the trivial bounds $1 \leq k \leq n$. Then, the MacWilliams identities uniquely determine the values of all $A_{i} \mathrm{~s}$ and $B_{i} \mathrm{~s}$. As a first check we test if all of these values are nonnegative integers. As a consequence of [33, Theorem 1], any full-length Δ-divisible $[n, k]_{q}$ code is the $\Delta / \operatorname{gcd}\left(\Delta, q^{k-1}\right)$-fold repetition of some code. As projectivity forbids proper repetitions, we can restrict ourselves to the cases where $\operatorname{gcd}\left(\Delta, q^{k-1}\right)=\operatorname{gcd}\left(w_{1}, w_{2}, w_{3}, q\right)$ is a power of p. Examples where we can apply this criterion to exclude the existence of codes are $q=2, n=36,\left(w_{1}, w_{2}, w_{3}\right)=(12,18,24)$, and $k \in\{6,7,8\}$. The corresponding values of $\left(A_{w_{1}}, A_{w_{2}}, A_{w_{3}}\right)$ are $(2,56,5),(10,104,13)$, and $(26,200,29)$. For $q=3$, this criterion
can be applied to the parameters $n=24, k=4$ and weight triple $w=(14,16,18)$ as well as $n=36, k \in\{5,6\}$ and weight triple $w=(18,24,30)$. In order to find examples, we have used the software package LinCode [4] to enumerate matching codes or tried to reduce the problem complexity by prescribing automorphisms and applying exact or heuristic solvers for the resulting integer linear programs.

Summarizing the above, we call parameters ($q, n, k, w_{1}, w_{2}, w_{3}$) admissible if
(i) $1 \leq w_{1}<w_{2}<w_{3} \leq n$ and $w_{1}+w_{2}+w_{3}=3 n(q-1) / q$ and
(ii) $\operatorname{gcd}\left(w_{1}, w_{2}, w_{3}, q\right)$ is a power of p and
(iii) $w_{1} w_{2} w_{3}$ is divisible by 2^{k-2} (if $q=2$) or $1 \leq k \leq n$ (if $q=3$) and
(iv) all A_{i} and B_{i} with $i \in\{0, \ldots, n\}$ are non-negative integers and
(v) $B_{1}=B_{2}=0$.

3.1 Feasible parameters for projective binary three-weight codes with $w_{1}+w_{2}+w_{3}=3 n / 2$

In Table 1 we list the admissible parameters for projective binary three-weight codes with $w_{1}+w_{2}+w_{3}=3 n / 2$. For each length $4 \leq n<72$ we list the admissible dimensions k, weight triples $w=\left(w_{1}, w_{2}, w_{3}\right)$, and the weight distribution in the form $\left(A_{w_{1}}, A_{w_{2}}, A_{w_{3}}\right)$. The last column contains known results about the existence of codes with these parameters. For some cases we can state the number of isomorphism types of those codes. The 8-divisible [$n, k]_{2}$ codes with length at most 48 are classified in [1] and the projective codes are extracted in [18]. If not mentioned otherwise, the remaining complete classification results are obtained with the software package LinCode [4]. For the parameters marked with ≥ 1 we constructed at least one code by prescribing an automorphism group, see [5].

We mark the non-existence results with the keyword "None" in the comment column of Table 1 and give a reference to the used method. One frequently showing up is the following.

Lemma 3.1 ([15, Proposition 5], cf. [28]) Let C be an [$n, k, d]_{2}$-code with all weights divisible by $\Delta=2^{a}$ and let $\left(A_{i}\right)_{i=0,1, \ldots, n}$ be the weight distribution of C. Put

$$
\begin{aligned}
\alpha & :=\min \{k-a-1, a+1\}, \\
\beta & :=\lfloor(k-a+1) / 2\rfloor, \text { and } \\
\delta & :=\min \left\{2 \Delta i \mid A_{2 \Delta i} \neq 0 \text { and } i>0\right\} .
\end{aligned}
$$

Then the integer

$$
T:=\sum_{i=0}^{\lfloor n /(2 \Delta)\rfloor} A_{2 \Delta i}
$$

satisfies the following conditions.
(i) T is divisible by $2^{\lfloor(k-1) /(a+1)\rfloor}$.
(ii) If $T<2^{k-a}$, then

$$
T=2^{k-a}-2^{k-a-t}
$$

for some integer t satisfying $1 \leq t \leq \max \{\alpha, \beta\}$. Moreover, if $t>\beta$, then C has an $[n, k-a-2, \delta]_{2}$-subcode and if $t \leq \beta$, it has an $[n, k-a-t, \delta]_{2}$-subcode.
(iii) If $T>2^{k}-2^{k-a}$, then

$$
T=2^{k}-2^{k-a}+2^{k-a-t}
$$

Table 1 Admissible and realizable parameters of binary projective three-weight codes

n	k	$\left(w_{1}, w_{2}, w_{3}\right)$	$\left(A_{w_{1}}, A_{w_{2}}, A_{w_{3}}\right)$	isom. types
4	3	$(1,2,3)$	$(1,3,3)$	1
8	4	$(2,4,6)$	$(1,11,3)$	1
8	5	$(2,4,6)$	$(5,19,7)$	1
8	6	$(2,4,6)$	$(13,35,15)$	1
12	5	$(4,6,8)$	$(6,16,9)$	4
12	6	$(4,6,8)$	$(18,24,21)$	2
16	5	$(6,8,10)$	$(6,15,10)$	5
16	6	$(6,8,10)$	$(22,15,26)$	1
16	7	$(6,8,10)$	$(54,15,58)$	None Lem. 3.1
16	5	$(4,8,12)$	$(1,27,3)$	1
16	6	$(4,8,12)$	$(5,51,7)$	1
16	7	$(4,8,12)$	$(13,99,15)$	2
20	5	$(8,10,12)$	$(5,16,10)$	3
20	6	$(8,10,12)$	$(25,8,30)$	None Lem. 3.1
24	5	$(10,12,14)$	$(3,19,9)$	1
24	6	$(10,12,14)$	$(27,3,33)$	None Lem. 3.1
24	6	$(8,12,16)$	$(6,48,9)$	8
24	7	$(8,12,16)$	$(18,88,21)$	52
24	8	$(8,12,16)$	$(42,168,45)$	66
24	9	$(8,12,16)$	(90, 328, 93)	13
24	10	$(8,12,16)$	$(186,648,189)$	2
24	11	$(8,12,16)$	$(378,1288,381)$	1
32	6	$(12,16,20)$	$(6,47,10)$	≥ 1
32	7	$(12,16,20)$	$(22,79,26)$	≥ 1
32	8	$(12,16,20)$	(54, 143, 58)	≥ 1
32	9	$(12,16,20)$	(118, 271, 122)	≥ 1
32	10	$(12,16,20)$	(246, 527, 250)	≥ 1
32	6	$(8,16,24)$	$(1,59,3)$	1
32	7	$(8,16,24)$	$(5,115,7)$	1
32	8	$(8,16,24)$	(13, 227, 15)	2
32	9	$(8,16,24)$	$(29,451,31)$	1
32	10	$(8,16,24)$	(61, 899, 63)	None Lem. 3.1
40	6	$(18,20,22)$	$(25,3,35)$	None Lem. 3.1
40	6	(16, 20, 24)	$(5,48,10)$	≥ 1
40	7	(16, 20, 24)	$(25,72,30)$	≥ 1
40	8	(16, 20, 24)	$(65,120,70)$	≥ 1
40	9	$(16,20,24)$	$(145,216,150)$	≥ 1
40	10	$(16,20,24)$	(305, 408, 310)	Open
48	6	(22, 24, 26)	$(18,15,30)$	1
48	6	(20, 24, 28)	$(3,51,9)$	1
48	7	(20, 24, 28)	$(27,67,33)$	≥ 209586
48	8	(20, 24, 28)	$(75,99,81)$	≥ 86

Table 1 continued

n	k	$\left(w_{1}, w_{2}, w_{3}\right)$	$\left(A_{w_{1}}, A_{w_{2}}, A_{w_{3}}\right)$	isom. types
48	9	(20, 24, 28)	$(171,163,177)$	Open
48	7	$(16,24,32)$	$(6,112,9)$	8
48	8	$(16,24,32)$	$(18,216,21)$	66
48	9	$(16,24,32)$	$(42,424,45)$	≥ 7
48	10	$(16,24,32)$	$(90,840,93)$	≥ 2
48	11	$(16,24,32)$	$(186,1672,189)$	≥ 2
48	12	$(16,24,32)$	$(378,3336,381)$	≥ 1
52	6	$(24,26,28)$	(13, 24, 26)	1
56	6	$(26,28,30)$	$(7,35,21)$	1
56	7	$(24,28,32)$	$(28,64,35)$	≥ 1
56	8	$(24,28,32)$	(84, 80, 91)	≥ 1
56	9	$(24,28,32)$	$(196,112,203)$	≥ 1
56	10	$(24,28,32)$	$(420,176,427)$	Open
58	8	$(24,31,32)$	(76, 128, 51)	None Cor. 5.7
64	7	$(28,32,36)$	$(28,63,36)$	≥ 1
64	8	(28, 32, 36)	$(92,63,100)$	≥ 1
64	9	(28, 32, 36)	(220, 63, 228)	≥ 1
64	10	$(28,32,36)$	$(476,63,484)$	Open
64	11	$(28,32,36)$	(988, 63, 996)	None codetables
64	7	(24, 32, 40)	$(6,111,10)$	≥ 1
64	8	$(24,32,40)$	(22, 207, 26)	≥ 1
64	9	(24, 32, 40)	(54, 399, 58)	≥ 1
64	10	$(24,32,40)$	$(118,783,122)$	≥ 1
64	11	$(24,32,40)$	(246, 1551, 250)	42
64	12	(24, 32, 40)	(502, 3087, 506)	1
64	13	$(24,32,40)$	$(1014,6159,1018)$	None [19]
64	7	$(16,32,48)$	$(1,123,3)$	≥ 1
64	8	(16, 32, 48)	$(5,243,7)$	≥ 1
64	9	$(16,32,48)$	$(13,483,15)$	≥ 1
64	10	$(16,32,48)$	$(29,963,31)$	≥ 1
64	11	$(16,32,48)$	$(61,1923,63)$	1 [22]
64	12	$(16,32,48)$	$(125,3843,127)$	None Theorem 3.2
64	13	$(16,32,48)$	$(253,7683,255)$	None Theorem 3.2
64	14	$(16,32,48)$	$(509,15363,511)$	None Theorem 3.2
64	15	$(16,32,48)$	(1021, 30723, 1023)	None Theorem 3.2
68	9	(30, 32, 40)	(64, 299, 148)	None Theorem 3.2

for some integer t satisfying $0 \leq t \leq \max \{\alpha, \beta\}$. Moreover, if $a=1$, then C has an $[n, k-t, \delta]_{2}$ subcode. If $a>1$, then C has an $[n, k-1, \delta]_{2}$ subcode unless $t=a+1 \leq$ $k-a-1$, in which case it has an $[n, k-2, \delta]_{2}$ subcode.

A special and well-known subcase of Lemma 3.1 is that the number of even weight codewords in a $[n, k]_{2}$ code is either 2^{k-1} or 2^{k}, see Lemma 5.1. As an example, for $n=32, k=10$, and weight triple $w=(8,16,24)$ we obtain $\left(A_{w_{1}}, A_{w_{2}}, A_{w_{3}}\right)=(61,899,63)$. Applying Lemma 3.1 gives $\Delta=8, a=3, \alpha=4, \beta=4, \delta=16$, and $T=900$. As required by Part (i), T is divisible by 4 . However, Part (iii) gives $t=5$, which contradicts $0 \leq t \leq \max \{\alpha, \beta\}$, so that a code cannot exist.

Bounds for the largest possible minimum distance for given length and dimension are well studied in the literature, see e.g. the online tables [17]. For length $n=64$ and dimension $k=11$ the largest possible minimum distance is known to be either 26 or 27 , which rules out the existence of a projective code with weight triple $w=(28,32,36)$. We use the comment "codetables" in this case. For $n=64$ and $w=(24,32,40)$ we use a classification result from [19], i.e., every 13 -dimensional 8 -divisible binary linear code with non-zero weights in $\{24,32,40,56,64\}$ has to contain a codeword of weight 64 . Anticipating the results from Sect. 5 we also apply Corollary 5.7, which shows that the length n has to be divisible by 4. The case $n=58$ is excluded by that criterion. For length $n=64$ and weight triple $w=(16,32,48)$, the dimension can be at most 11 by Theorem 3.2. Just four cases remain undecided. They occur for length $n \in\{40,48,56,64\}$ and are marked by "Open". For each feasible case we give a suitable generator matrix as an example in Appendix A.

Based on [23, Thm. 4] (for the projective case an alternative proof is found in [20, Sec. 4]), we derive the following classification result on three-weight codes.

Theorem 3.2 Let $\Delta=2^{a}$ with $a \geq 3$ an integer and let C be afull-length $[n, k]_{2}$ three-weight code with the non-zero weights $\Delta, 2 \Delta$ and 3Δ and length $3 \Delta \leq n \leq 4 \Delta$. Then $k \leq 2 a+3$. In the case of equality, we have that $n \in\{4 \Delta-1,4 \Delta\}$, C is projective and falls into one of the following two cases.
(i) For $n=4 \Delta-1, C$ is isomorphic to the direct sum of the binary simplex code of dimension $a+1$ and the binary first order Reed-Muller code of dimension $a+2$. The weight enumerator of C is

$$
W_{C}(x)=1+(6 \Delta-3) x^{\Delta}+\left(8 \Delta^{2}-8 \Delta+3\right) x^{2 \Delta}+(2 \Delta-1) x^{3 \Delta} .
$$

(ii) For $n=4 \Delta, C$ is isomorphic to the code with the generator matrix

$$
\left(\begin{array}{ccc|c}
& & & \\
& R_{a+2} & & \\
1 & \cdots & 1 & \\
\hline & & R_{a+2} & \\
1 & \cdots & 1
\end{array}\right) \in \mathbb{F}_{2}^{(2 a+3) \times 4 \Delta},
$$

where

$$
\left(\begin{array}{ccc}
& & \\
& R_{a+2} & \\
1 & \cdots & 1
\end{array}\right) \in \mathbb{F}_{2}^{(a+2) \times 2 \Delta}
$$

denotes a generator matrix of the binary first order Reed-Muller code of dimension a +2 , such that the all-one word is the last row of the generator matrix. The weight enumerator of C is

$$
W_{C}(x)=1+(4 \Delta-3) x^{\Delta}+\left(8 \Delta^{2}-8 \Delta+3\right) x^{2 \Delta}+(4 \Delta-1) x^{3 \Delta} .
$$

Proof After appending zero positions, we may consider C as a code of length 4Δ. Let $\mathbf{1}$ be the all-one word of length 4Δ. The code $\bar{C}=C+\langle\mathbf{1}\rangle$ is a Δ-divisible binary linear code of effective length 4Δ containing the all-one word $\mathbf{1}$. By [23, Thm. 4], $\operatorname{dim}(\bar{C}) \leq 2 a+4$, and in the case of equality we may assume $\bar{C}=\mathrm{RM}_{2}(a+2) \oplus \mathrm{RM}_{2}(a+2)$, up to isomorphism. So $k=\operatorname{dim}(C) \leq 2 a+3$, and in the case of equality, C is a codimension 1 subcode of \bar{C} not containing 1 .

We switch to the geometric description of linear codes. The corresponding point set of $\bar{C}=\mathrm{RM}_{2}(a+2) \oplus \mathrm{RM}_{2}(a+2)$ has the form $\overline{\mathcal{C}}=A_{1} \cup A_{2}$ with $A_{1}=V_{1} \backslash W_{1}$ and $A_{2}=V_{2} \backslash W_{2}$, where V_{1} and V_{2} are vector spaces over \mathbb{F}_{2} of dimension $a+2$ having trivial intersection, and $W_{1}<V_{1}, W_{2}<V_{2}$ are codimension 1 subspaces. ${ }^{2}$ The ambient vector space is $V=V_{1} \oplus V_{2}$. The codeword $\mathbf{1} \in \bar{C}$ corresponds to a hyperplane H_{0} of V not containing any point of $\overline{\mathcal{C}}$. By the dimension formula, $\operatorname{dim}\left(H_{0} \cap V_{1}\right) \geq a+1$, which forces $H_{0} \cap V_{1}=W_{1}$. In the same way, $H_{0} \cap V_{2}=W_{2}$ and therefore, $W_{1}+W_{2}<H_{0}$. Since $W_{1}+W_{2}$ has codimension 2 in V, there are only $\left[\begin{array}{l}2 \\ 1\end{array}\right]_{2}=3$ hyperplanes of V containing $W_{1}+W_{2}$. Two of these are $V_{1}+W_{2}$ and $W_{1}+V_{2}$ which do contain points of $\overline{\mathcal{C}}$, so H_{0} is the third one.

As C is a subcode of \bar{C} of codimension 1, a corresponding point set \mathcal{C} of C is given by the multiset image $\pi_{P}(\overline{\mathcal{C}})$ of the projection $\pi_{P}: V \rightarrow V / P, x \mapsto x+P$ with respect to a suitable point $P \in\left[\begin{array}{l}V \\ 1\end{array}\right]_{q}$. Since $\mathbf{1} \notin C$, we have that $P \notin H_{0}$, so P must be contained in one of the other two hyperplanes containing $W_{1}+W_{2}$. Without restriction, we may assume $P \in V_{1}+W_{2}$. Together with $P \notin H_{0}$, this implies $P \in\left(V_{1}+W_{2}\right) \backslash\left(W_{1}+W_{2}\right)$.

Case 1: $P \in \overline{\mathcal{C}}$, so $P \in V_{1} \backslash W_{1}$. We get that $\pi_{P}\left(A_{1}\right)$ is the set of all points in a subspace of algebraic dimension $a+1, \pi_{P}\left(A_{2}\right)$ is again an affine subspace of dimension $a+2$, and $\left\langle\pi_{P}\left(A_{1}\right)\right\rangle \cap\left\langle\pi_{P}\left(A_{2}\right)\right\rangle=\{\mathbf{0}\}$. Therefore, $C \cong \operatorname{Sim}_{2}(a+1) \oplus \mathrm{RM}_{2}(a+2)$. The weight enumerator is computed as $W_{C}(x)=W_{\operatorname{Sim}_{2}(a+1)}(x) \cdot W_{\mathrm{RM}_{2}(a+2)}(x)$.

Case 2: $P \notin \overline{\mathcal{C}}$, so $P \in\left(V_{1}+W_{2}\right) \backslash\left(\left(W_{1}+W_{2}\right) \cup V_{1}\right)$. A moment's reflection shows that all these choices for P lead to equivalent point sets $\overline{\mathcal{C}}$. As P is not collinear with two different points of $\overline{\mathcal{C}}$, the projection \mathcal{C} with respect to P is a proper set and therefore, C is projective. So \mathcal{C} is the disjoint union of the two affine subspaces $\pi_{P}\left(A_{1}\right)$ and $\pi_{P}\left(A_{2}\right)$ of dimension $a+1$.

The dimension formula leads to $\operatorname{dim}\left(\pi_{P}\left(V_{1}\right) \cap \pi_{P}\left(V_{2}\right)\right)=1$. There are unique points $Q_{1} \in V_{1} \backslash W_{1}$ and $Q_{2} \in W_{2}$ such that P is the third point on the line $L=Q_{1}+Q_{2}$ The affine space $\pi_{P}\left(A_{2}\right)$ has the hyperplane at infinity $\left(W_{2}+P\right) / P$, which contains the single point $\left(Q_{1}+P\right) / P=\left(Q_{2}+P\right) / P=L / P$ of the affine space $\pi_{P}\left(A_{1}\right)$. So the point $\pi_{P}\left(V_{1}\right) \cap \pi_{P}\left(V_{2}\right)=L / P$ is contained in $\pi_{P}\left(A_{1}\right)$ and in the hyperplane at infinity of $\pi_{P}\left(A_{2}\right)$. This leads to the generator matrix stated in the theorem.

By construction, the code corresponding to the point set \mathcal{C} is a projective $\left[2^{a+1}, 2 a+3\right]_{2-}$ code with (at most) the weights $\Delta, 2 \Delta$ and 3Δ. Equations (7), (8) and (9) evaluate to the stated weight enumerator of C.

Looking at the feasible cases in Table 1, we notice that all of them satisfy $w_{2}=n / 2$, which corresponds to $\theta_{2}=0, \theta_{3}=-\theta_{1}$ for the eigenvalues of s-SWRGs, see Eq. (1). While we conjecture that all integral solutions of Eq. (1) satisfy this extra constraint for all $s \geq 5$, see Sect. 4, the condition $\theta_{1}+\theta_{2}+\theta_{3}=0$, i.e., $w_{1}+w_{2}+w_{3}=3 n(q-1) / q$, is sufficient for $s=3$. So, it is an interesting open question, if 3-SWRGs obtained from the coset graph of the dual code of a projective three-weight code also have to satisfy this extra condition. To stimulate research into this direction we propose:

[^2]Table 2 Parameters of potential counterexamples to Conjecture 3.3

n	w_{1}	w_{2}	w_{3}	$y=2^{k-2}$	A_{1}	A_{2}	A_{3}	B_{3}
112	50	54	64	128	48	336	127	322
116	54	56	64	128	256	56	199	440
120	54	62	64	64	72	120	63	1180
124	56	64	66	64	72	119	64	1296
140	64	72	74	64	71	120	64	1840
202	96	103	104	64	67	128	60	5396
212	96	110	112	256	297	640	86	1860
212	96	110	112	512	649	896	502	1090
240	110	122	128	256	288	480	255	2450

Conjecture 3.3 Let C be a projective $[n, k]_{2}$ three-weight code with non-zero weights $w_{1}<$ $w_{2}<w_{3}$ satisfying $w_{1}+w_{2}+w_{3}=\frac{3 n}{2}$. Then $w_{2}=\frac{n}{2}$.

We remark that the MacWilliams identities, using the non-negativity and integrality constraints, are not sufficient to prove Conjecture 3.3. As an example, the values $\left(n, w_{1}, w_{2}, w_{3}\right) \in\{(58,24,31,32),(68,30,32,40)\}$ go in line with these conditions for $q=2$ but are excluded with more sophisticated methods, see the details stated above. Given the results obtained so far we can state that Conjecture 3.3 is true for all $n<72$. The next case, where all non-negativity and integrality constraints for the B_{i} are satisfied, is given by $\left(n, w_{1}, w_{2}, w_{3}\right)=(100,46,48,56)$. Here we have $k=7, A_{w_{1}}=32, A_{w_{2}}=145$, $A_{w_{3}}=78$, and $B_{3}=580$. However, we can apply Lemma 3.1 to conclude the non-existence of a binary linear code with these parameters. More precisely, Lemma 3.1.(iii), applied with $a=1$ and $T=224$, yields a contradiction since $T-2^{k}+2^{k-a}=96$ is not a power of two. In Table 2 we list all parameters $\left(n, w_{1}, w_{2}, w_{3}, y=2^{k-2}, A_{1}, A_{2}, A_{3}, B_{3}\right)$ up to $n=256$, where all B_{i} are integral and non-negative and also Lemma 3.1 does not yield a contradiction, i.e., the parameters of potential counterexamples to Conjecture 3.3.

3.2 Feasible parameters for projective ternary three-weight codes with $\mathbf{w}_{1}+\mathrm{w}_{2}+\mathrm{w}_{\mathbf{3}}=\mathbf{2 n}$

In Table 3 we list the admissible parameters for projective ternary three-weight codes with $w_{1}+w_{2}+w_{3}=2 n$. For each length $3 \leq n \leq 39$ we list the admissible dimensions k and weight triples (w_{1}, w_{2}, w_{3}), and the weight distribution in the form $\left(A_{w_{1}}, A_{w_{2}}, A_{w_{3}}\right)$. The last column contains known results about the existence of codes with these parameters. For some cases we can also state the number of isomorphism types of those codes. If not mentioned otherwise, the classification results are obtained with the software package LinCode [4]. For the parameters marked with ≥ 1 we constructed at least one code by prescribing an automorphism group, see [5].

We also list those non-existence results where more sophisticated methods are necessary. We mark the non-existence results with the keyword "None" in the comment column of Table 3 and give a reference to the used method.

For $n=27, k=6$, and weight triple $(9,18,27)$ we have used exhaustive enumeration using LinCode to exclude the existence of the corresponding code. It would be nice to also have a theoretical argument. For $36 \leq n \leq 39$ four cases remain undecided, which we

Table 3 Admissible and realizable parameters of ternary projective three-weight codes

n	k	$\left(w_{1}, w_{2}, w_{3}\right)$	$\left(A_{w_{1}}, A_{w_{2}}, A_{w_{3}}\right)$	isomorphism types
3	3	$(1,2,3)$	$(6,12,8)$	1
6	3	$(3,4,5)$	$(8,6,12)$	1
9	3	$(5,6,7)$	$(6,8,12)$	1
9	4	$(3,6,9)$	$(6,66,8)$	1
18	4	$(9,12,15)$	$(8,60,12)$	4
18	5	$(9,12,15)$	$(44,150,48)$	213
18	6	$(9,12,15)$	$(152,420,156)$	52
27	4	$(15,18,21)$	$(6,62,12)$	2
27	5	$(15,18,21)$	$(60,116,66)$	≥ 2695546
27	6	$(15,18,21)$	$(222,278,228)$	6
27	5	$(9,18,27)$	$(6,228,8)$	1
27	6	$(9,18,27)$	$(24,678,26)$	None exhaustive enumeration
36	5	$(21,24,27)$	$(72,90,80)$	≥ 1
36	6	$(21,24,27)$	$(288,144,296)$	≥ 1
36	7	$(21,24,27)$	$(936,306,944)$	Open
39	5	$(21,27,30)$	$(42,188,12)$	Open
39	6	$(21,27,30)$	$(156,494,78)$	Open
39	7	$(21,27,30)$	$(498,1412,276)$	Open

mark with the keyword "Open". For each feasible case we give a suitable generator matrix in Appendix A.

Similar to Conjecture 3.3, the numerical data suggests the conjecture $w_{2}=\frac{2}{3} n$. Based on our computational data, we dare to state the following q-ary version of Conjecture 3.3.

Conjecture 3.4 Let C be a projective $[n, k]_{q}$ three-weight code with non-zero weights $w_{1}<$ $w_{2}<w_{3}$ satisfying $w_{1}+w_{2}+w_{3}=3\left(1-\frac{1}{q}\right) n$. Then $w_{2}=\left(1-\frac{1}{q}\right) n$. Moreover, $w_{1}=w_{2}-t$ and $w_{3}=w_{2}+t$, where t is a power of the characteristic p of \mathbb{F}_{q}.

For $q=2$, Conjecture 3.4 follows from Conjecture 3.3 by Lemma 5.10. We further remark that the precondition $w_{1}+w_{2}+w_{3}=3\left(1-\frac{1}{q}\right) n$ cannot be dropped, as seen by the binary $[7,4]_{2}$ Hamming code, which is a three-weight code with weight distribution $\left(0^{1} 3^{3} 4^{3} 7^{1}\right)$.

4 Plane curves given by the sum of all monomials of given degree

In this section, we present some results on rational (or integral) solutions of the equation

$$
\begin{equation*}
\sum_{h+i+j=s-2} \theta_{1}^{h} \theta_{2}^{i} \theta_{3}^{j}=0 \tag{12}
\end{equation*}
$$

which for pairwise distinct $\theta_{1}, \theta_{2}, \theta_{3}$ is equivalent to (1) by Lemma 2.6. We restrict to the case that s is odd. When s is even, then there are no nontrivial real solutions, so a fortiori no rational solutions.

We denote by C_{s-2} the plane projective curve defined by (12), and we will rename the variables $\theta_{1}, \theta_{2}, \theta_{3}$ in this section as x, y, z. As already mentioned, C_{1} is the line $x+y+z=0$,
and there are many rational points on this curve. In general, it is not hard to see that C_{d} is smooth over \mathbb{Q}, so the curve is in particular geometrically irreducible and has genus $g\left(C_{d}\right)=(d-1)(d-2) / 2$.

For $d=3$ (corresponding to $s=5$), C_{3} is a curve of genus 1 with some rational points, so it is an elliptic curve. A standard procedure (implemented, for example, in Magma [3]) produces an isomorphic curve in Weierstrass form. It turns out that C_{3} is isomorphic to the curve with label 50a1 in the Cremona database (http://www.lmfdb.org/EllipticCurve/Q/50/ $a / 350 . a 3$ in the LMFDB [30]). In Cremona's tables or under the link above, one can check that this curve has exactly three rational points. This proves the following.

Lemma 4.1

$$
C_{3}(\mathbb{Q})=\{(1:-1: 0),(-1: 0: 1),(0: 1:-1)\} .
$$

The curve C_{5} is a plane quintic of genus 6 . Note that there is an action of the symmetric group S_{3} on three letters on every curve C_{d} by permuting the coordinates. We can restrict this action to an action of the subgroup A_{3} generated by a cyclic permutation. The quotient C_{5}^{\prime} of C_{5} by this action of A_{3} is a curve of genus 2 . We can compute a singular plane model of C_{5}^{\prime} by taking the image of C_{5} under the map

$$
\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}, \quad(x: y: z) \mapsto(x y z:(x y+y z+z x)(x+y+z):(x-y)(y-z)(z-y)) .
$$

A procedure implemented in Magma [3] then produces the hyperelliptic equation

$$
H_{5}: y^{2}=-3 x^{6}+8 x^{5}-28 x^{4}-30 x^{3}+40 x^{2}+16 x-15
$$

for C_{5}^{\prime}. A 2-descent as described in [29] (and implemented in Magma) shows that the MordellWeil rank of the Jacobian J of H_{5} is at most 1. Since one finds a point on J of infinite order (with Mumford representation $\left(x^{2}-x+2,7 x+7\right)$), the rank is indeed 1 . Using the Magma implementation of Chabauty's method combined with the Mordell-Weil sieve (see [10]), one quickly finds that the only rational point on this hyperelliptic curve is $(-1,0)$. This point must be the image of the three obvious rational points on C_{5}. Since any other rational point would have to map to a different point on H_{5}, this proves the following.

Lemma 4.2

$$
C_{5}(\mathbb{Q})=\{(1:-1: 0),(-1: 0: 1),(0: 1:-1)\} .
$$

The combination of Lemmas 4.1 and 4.2 with Lemma 1.1 leads to the following theorem.
Theorem 4.3 Let Γ be a k-regular graph with four distinct eigenvalues $k>\theta_{1}>\theta_{2}>\theta_{3}$ and let $s \in\{5,7\}$. Then Γ is an $s-S W R G$ if and only if $\theta_{2}=0$ and $\theta_{3}=-\theta_{1}$.

Considering larger odd d, we can say the following. The quotient $C_{7}^{\prime \prime}$ of C_{7} by the full S_{3} action is an elliptic curve, which is isomorphic to the curve with label $10368 w 1$ in the Cremona database (http://www.lmfdb.org/EllipticCurve/Q/10368/j/110368.j1 in the LMFDB [31]). Unfortunately, this curve has rank 2 and therefore has infinitely many rational points. So we cannot use this approach to determine the set of rational points on C_{7}.

The quotient $C_{9}^{\prime \prime}$ of C_{9} by the S_{3}-action is a smooth plane quartic curve, isomorphic to the curve with equation

$$
\begin{aligned}
& x^{4}+2 x^{3} y+x^{2} y^{2}-x y^{3}-y^{4}+2 x^{3} z-4 x^{2} y z-3 x y^{2} z \\
& \quad+2 y^{3} z+4 x^{2} z^{2}-3 x y z^{2}+3 y^{2} z^{2}+3 x z^{3}-4 y z^{3}+z^{4}=0 .
\end{aligned}
$$

A point search finds the two rational points ($-5: 1: 4$) and ($-1: 1: 0$). The first is the image of the three obvious rational points on C_{9}, whereas the second point does not lift to a rational point on C_{9}. Let J be the Jacobian of the curve. Then $\# J\left(\mathbb{F}_{3}\right)=3^{3}$ and $\# J\left(\mathbb{F}_{7}\right)=11 \cdot 31$, so $J(\mathbb{Q})$ has trivial torsion subgroup. Therefore, the point in $J(\mathbb{Q})$ given by the difference of the two rational points has infinite order. It might be possible to use the methods of [9] to determine the rank of $J(\mathbb{Q})$. If the rank turns out to be ≤ 2, then an application of Chabauty's method might show that the two known rational points are the only ones.

In any case, searching for rational points does not exhibit any other points than the obvious ones when $d \geq 3$ is odd. This leads to the following conjecture, which generalizes the results of Lemmas 4.1 and 4.2.

Conjecture 4.4 If $d \geq 3$ is odd, then

$$
C_{d}(\mathbb{Q})=\{(1:-1: 0),(-1: 0: 1),(0: 1:-1)\} .
$$

Equivalently, all solutions $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ in integers of (1) with $s \geq 5$ odd and $\theta_{1}>\theta_{2}>\theta_{3}$ satisfy $\theta_{2}=0$ and $\theta_{3}=-\theta_{1}$.

5 Divisibility for binary linear codes with few weights

In this section we want to study the divisibility properties of the weights and the length of the binary linear codes with few weights. A first but very powerful tool are the MacWilliams identities. In Eqs. (3)-(6), the code has been assumed to be projective, i.e. $B_{2}=0$. For the more general situation, we prepare

$$
\begin{align*}
\sum_{i>0} A_{i} & =q^{k}-1, \tag{13}\\
\sum_{i \geq 0} i A_{i} & =q^{k-1} n, \tag{14}\\
\sum_{i \geq 0} i^{2} A_{i} & =q^{k-1}\left(B_{2}+n(n+1) / 2\right), \tag{15}\\
\sum_{i \geq 0} i^{3} A_{i} & =q^{k-2}\left(3\left(B_{2} n-B_{3}\right)+n^{2}(n+3) / 2\right), \tag{16}
\end{align*}
$$

for an $[n, k]_{q}$ code C with $B_{1}=0$.
Lemma 5.1 (Folklore) Let C be an $[n, k]_{2}$ code and C_{2} the subset of all codewords of even weight. Then C_{2} is a linear subcode of C of dimension k or $k-1$.

Proof Consider the \mathbb{F}_{2}-linear map $f: C \rightarrow \mathbb{F}_{2}, c \mapsto \sum_{i=0}^{n} c_{i}$. Then $C_{2}=\operatorname{ker} f$ is a linear subspace of C. By the rank-nullity theorem, the codimension of C_{2} in C equals $\operatorname{dim} \operatorname{ker} f \in\{0,1\}$.

We call C_{2} the even-weight subcode of C. A direct consequence of Lemma 5.1 is the following.

Lemma 5.2 Let C be an $[n, k]_{2}$ code of dimension $k \geq 2$. Then C has a non-zero even weight.
Lemma 5.3 Let C be a linear binary $[n, k]_{2}$ three-weight code. Then $k \geq 2$. If C is projective, then $k \geq 3$.

Proof if $k \leq 1$, then C consists of at most a single non-zero codeword, so C cannot have three different weights.

Assume that C is projective of dimension $k=2$ and let G be a generator matrix of C. Then G neither has a zero column, nor a repeated column. Therefore, each of the $2^{k}-1=3$ possible column vectors in $\mathbb{F}_{2}^{2} \backslash\{\boldsymbol{0}\}$ appears at most once as a column of G, implying that $n \leq 3$. As C has three different non-zero weights, $n \geq 3$, so together we get $n=3$ and each of the 3 non-zero vectors appears exactly once as a column of G. Therefore, C is isomorphic to the simplex code $\operatorname{Sim}_{2}(2)$, which is a constant weight code. This is a contradiction.
Remark 5.4 There are indeed (many) non-projective binary three-weight codes of dimension 2. An example for the smallest possible length $n=3$ is given by the generator matrix $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right)$, which spans a code with the weight distribution $\left(0^{1} 1^{1} 2^{1} 3^{1}\right)$.

Lemma 5.5 Let C be a projective full-length $[n, k]_{2}$ three-weight code with non-zero weights w_{1}, w_{2} and w_{3}, such that n is even and exactly one weight is odd. W.l.o.g. let w_{2} be the odd weight.

Then $w_{2}=\frac{n}{2}$ and the even-weight subcode C_{2} of C has effective length n and is a 2 -fold replication of a projective $\left[\frac{n}{2}, k-1\right]_{2}$ two-weight code with non-zero weights $\frac{w_{1}}{2}$ and $\frac{w_{3}}{2}$.
Proof Let $A_{w_{i}}$ be the number of codewords of weight w_{i} in C. Furthermore, let (B_{i}) be the dual weight distribution of C and $\left(B_{i}^{\prime}\right)$ the dual weight distribution of C_{2}. Since C is projective, we have $B_{1}=B_{2}=0$. We set $y=2^{k-2}=\frac{1}{4} \# C$. By Lemma 5.3, $y \in \mathbb{Z}$. Since w_{2} is the only odd weight, Lemma 5.1 gives $A_{w_{2}}=2 y$. Now Eq. (4) applied to C yields

$$
w_{1} A_{w_{1}}+w_{3} A_{w_{3}}=2 y\left(n-w_{2}\right) .
$$

From Lemma 5.1 we conclude that C_{2} is a two-weight code of dimension $k-1$ and effective length $n^{\prime} \leq n$ with non-zero weights w_{1} and w_{3}. Since C is projective, we have $n^{\prime} \in\{n-1, n\}$. Noting that $A_{w_{1}}$ and $A_{w_{3}}$ are also the numbers of codewords of weights w_{1} and w_{3} in C_{2}, the application of Eq. (14) to the full-length code arising from C_{2} after (possibly) removing the zero position yields

$$
\begin{equation*}
w_{1} A_{w_{1}}+w_{3} A_{w_{3}}=n^{\prime} y . \tag{17}
\end{equation*}
$$

Hence $n^{\prime} y=2 y\left(n-w_{2}\right)$ and thus $n^{\prime}=2\left(n-w_{2}\right)$ is even. By the assumtion that n is even, $n^{\prime}=n-1$ is not possible. Therefore $n^{\prime}=n$ and $w_{2}=\frac{n}{2}$. So C_{2} is full-length and hence $B_{1}^{\prime}=0$. Now the difference of Eq. (15) for C and C_{2} with $w_{2}=\frac{n}{2}, A_{w_{2}}=2 y$ and $B_{2}=0$ gives

$$
\frac{n^{2}}{4} \cdot 2 y=2 y \cdot \frac{n(n+1)}{2}-y\left(B_{2}^{\prime}+\frac{n(n+1)}{2}\right),
$$

which simplifies to $\frac{n^{2}}{2}=\frac{n(n+1)}{2}-B_{2}^{\prime}$ and further to $B_{2}^{\prime}=\frac{n}{2}$. As C is projective, the position multiplicities of the codimension 1 subcode C_{2} are at most 2 . Denoting the number of position pairs of multiplicity 2 by m, Lemma 2.4 yields $m=B_{2}^{\prime}=\frac{n}{2}$. Therefore, all positions of C_{2} appear with multiplicity 2 and thus, C_{2} is the two-fold repetition of a projective two-weight code with non-zero weights $\frac{w_{1}}{2}$ and $\frac{w_{3}}{2}$.
Remark 5.6 As seen in the above proof, in the situation of Lemma 5.5 we have $A_{w_{2}}=2 y$. Moreover, we can use Eqs. (13) and (14) to compute the frequencies

$$
A_{w_{1}}=\frac{(2 y-1) w_{3}-y n}{w_{3}-w_{1}} \quad \text { and } \quad A_{w_{3}}=\frac{y n-(2 y-1) w_{1}}{w_{3}-w_{1}}
$$

depending on the weights w_{1} and w_{3}.

From now on, we add the extra constraint $w_{1}+w_{2}+w_{3}=\frac{3 n}{2}$.
Corollary 5.7 Let C be a projective $[n, k]_{2}$ three-weight code with non-zero weights w_{1}, w_{2} and w_{3} satisfying $w_{1}+w_{2}+w_{3}=\frac{3 n}{2}$. Then n is a multiple of 4 .

Proof Since $\frac{3 n}{2}=w_{1}+w_{2}+w_{3}$ is an integer, n has to be even, so that we assume $n \equiv 2$ $(\bmod 4)$. Then $\frac{3 n}{2}=w_{1}+w_{2}+w_{3}$ is odd. By Lemma 5.2, C has an even weight, so exactly one weight of C is odd. Without restriction, let w_{2} be the odd weight. Lemma 5.5 yields $w_{2}=\frac{n}{2}$. From $w_{1}+w_{2}+w_{3}=\frac{3}{2} n$ we may further assume $w_{1}<w_{2}<w_{3}$, so $w_{1}=\frac{n}{2}-t$ and $w_{3}=\frac{n}{2}+t$ for some positive integer t. Since w_{1} and w_{3} are even, t has to be odd. Moreover, Lemma 5.5 says that $\frac{w_{1}}{2}$ and $\frac{w_{3}}{2}$ are the weights of a projective binary two-weight code. By Lemma 2.2 the weight difference $\frac{w_{3}}{2}-\frac{w_{1}}{2}=t$ has to be a power of 2 . Since t is odd, we conclude that $t=1$, so

$$
w_{1}=\frac{n}{2}-1, \quad w_{2}=\frac{n}{2} \quad \text { and } \quad w_{3}=\frac{n}{2}+1 .
$$

Writing $y=2^{k-2}$, the frequencies from Remark 5.6 evaluate to

$$
\begin{equation*}
A_{w_{1}}=y-\frac{n}{4}-\frac{1}{2}, \quad A_{w_{2}}=2 y \quad \text { and } \quad A_{w_{3}}=y+\frac{n}{4}-\frac{1}{2} . \tag{18}
\end{equation*}
$$

Plugging these expressions into Eq. (5) leads to

$$
n^{2} y+2 y+\frac{n^{2}}{4}-1=n(n+1) y
$$

and further to the quadratic equation

$$
n^{2}-4 n y+(8 y-4)=0
$$

with the two solutions $n \in\{2,4 y-2\}$. Since the length of a three-weight code is at least 3, necessarily $n=4 y-2$. Now Eq. (18) yields $A_{w_{1}}=0-$ a contradiction.

Using the abbreviation $y=2^{k-2}$, we prepare Eqs. (7)-(10) in the special case $w_{1}=\frac{n}{2}-t$, $w_{2}=\frac{n}{2}$ and $w_{3}=\frac{n}{2}+t$.

$$
\begin{align*}
& A_{w_{1}}=\frac{n(4 y-n-2 t)}{8 t^{2}} \tag{19}\\
& A_{w_{2}}=4 y-1-\frac{n(4 y-n)}{4 t^{2}} \tag{20}\\
& A_{w_{3}}=\frac{n(4 y-n+2 t)}{8 t^{2}} \tag{21}\\
& 3 B_{3}=\frac{n(n-2 t)(n+2 t)}{8 y} \tag{22}
\end{align*}
$$

Lemma 5.8 Let C be a projective $[n, 3]_{2}$ three-weight code with non-zero weights $w_{1}<$ $w_{2}<w_{3}$ satisfying $w_{1}+w_{2}+w_{3}=\frac{3 n}{2}$. Then C has length $n=4$, weight distribution $\left(0^{1} 1^{1} 2^{3} 3^{3}\right)$ and is isomorphic to the code spanned by the generator matrix

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) .
$$

Proof By Lemma 2.3, $n \leq 5$, and by Corollary 5.7, $4 \mid n$. Therefore $n=4$. The code C is isomorphic to a systematic code, which has a generator matrix of the form $\left(I_{3} \mid v\right)$, where I_{3} denotes the 3×3 unit matrix and v is a vector in \mathbb{F}_{2}^{3}. As C is projective, $w(v) \geq 2$. Furthermore, $w(v)=3$ is not possible, as C would have only the two weights 2 and 4 . So $w(v)=2$. We note that the three possibilities for v lead to equivalent codes, and that the resulting code has the stated weight distribution.

We remark that geometrically, the above $[4,3]_{2}$ code corresponds to the complement of a triangle in the projective plane $\operatorname{PG}(2,2)$.

Theorem 5.9 Let C be a projective $[n, k]_{2}$ three-weight code with non-zero weights $w_{1}<$ $w_{2}<w_{3}$ satisfying $w_{1}+w_{2}+w_{3}=\frac{3 n}{2}$. Then n is a multiple of 4 , and one of the following cases occurs.
(i) $k \geq 4, n \geq 8$ and all weights of C are even.
(ii) The code C has the parameters $[4,3]_{2}$ and is isomorphic to the code in Lemma 5.8.

Proof By Corollary 5.7, n is a multiple of 4 .
In the case that n has only even weights, the largest weight is at least 6 , so $n \geq 8$. Moreover, $k \geq 4$ by Lemma 5.8.

Now we assume that C has an odd weight. As $\frac{n}{2}$ is even, C has at least two odd weights by Lemma 5.5 . Since $w_{1}+w_{2}+w_{3}=n$ is even, we get that C has exactly two odd weights, say w_{1} and w_{3}. Let C_{2} be the even-weight subcode of C. The code C is projective and by Lemma 5.1, the codimension of C_{2} in C is 1 . Therefore, the maximum position multiplicity of C_{2} is at most 2 , and the effective length n^{\prime} of C_{2} is either $n-1$ or n. Since w_{2} is the only even weight of C, the subcode C_{2} is a code of constant weight w_{2} and frequency $A_{w_{2}}=\# C_{2}-1=2^{k-1}-1$. From Lemma 2.1 we conclude that $w_{2}=u \cdot 2^{k-2}$ and $n^{\prime}=u \cdot\left(2^{k-1}-1\right)$ with an integer $u \in\{1,2\}$, where $u \leq 2$ follows from the maximum position multiplicity.

Let us first investigate the case $u=2$. Here, $n^{\prime}=2^{k}-2$ and $n \in\left\{2^{k}-2,2^{k}-1\right\}$. Let G be a generator matrix of C. Since C is projective, G neither has a zero column, nor a repeated column. So each of the $2^{k}-1$ non-zero vectors in \mathbb{F}_{2}^{k} occurs exactly once as a column in G, possibly with the excection that a single vector might not occur at all. In the case $n=2^{k}-1$, all vectors occur as a column in G, so $C=\operatorname{Sim}_{2}(k)$, which is a code of constant weight 2^{k-1}. In the case $n=2^{k}-2, C$ is the simplex code $\operatorname{Sim}_{2}(k)$ punctured in a single position, so C has the two weights 2^{k-1} and $2^{k-1}-1 .^{3}$ This contradicts the assumption that C is a three-weight code.

It remains to consider $u=1$. Here, $w_{2}=2^{k-2}$ and $n^{\prime}=2^{k-1}-1$, which is odd. Since n is even, necessarily $n^{\prime}=n-1$, so $n=2^{k-1}$ and $w_{2}=\frac{n}{2}$. Combined with $w_{1}+w_{2}+w_{3}=\frac{3 n}{2}$ we can write $w_{1}=\frac{n}{2}-t$ and $w_{3}=\frac{n}{2}+t$ for some positive integer t. Together with the abbreviation $y=2^{k-2}$, Eqs. (19)-(21) can be simplified to

$$
\begin{aligned}
& A_{w_{1}}=\frac{y(y-t)}{2 t^{2}} \\
& A_{w_{2}}=4 y-1-\frac{y^{2}}{t^{2}} \\
& A_{w_{3}}=\frac{y(y+t)}{2 t^{2}} .
\end{aligned}
$$

[^3]Now we use $A_{w_{2}}=2^{k-1}-1=2 y-1$ to conclude $y=2 t^{2}$ (or $y=0$, which is impossible). As y is a power of 2 , so is t. From $w_{1}=t(2 t-1)$ odd we get that t is is odd. Together, this forces $t=1$, which gives $y=2$ and therefore $k=3$. Therefore, C is isomorphic to the code in Lemma 5.8.

Lemma 5.10 Let C be a projective $[n, k]_{2}$ three-weight code with non-zero weights $w_{1}<$ $w_{2}<w_{3}$ satisfying $w_{1}+w_{2}+w_{3}=\frac{3 n}{2}$ and $w_{2}=\frac{n}{2}$. Then $w_{1}=w_{2}-t$ and $w_{3}=w_{2}+t$ where t is a power of 2 . Moreover, $2 t \mid n$, and t is the largest integer Δ such that C is Δ-divisible.

Proof Equations (19) and (21) give $A_{w_{3}}-A_{w_{1}}=\frac{n}{2 t}$, so $2 t \mid n$. Therefore $t \left\lvert\, w_{2}=\frac{n}{2}\right.$, implying that t is the greatest common divisor of $w_{1}=w_{2}-t, w_{2}$ and $w_{3}=w_{2}+t$, so $\Delta=t$. Since C is projective, C cannot be the proper repetition of some code. Now as a consequence of [33, Theorem 1], the number $\Delta=t$ must be a power of 2 .

Lemma 5.11 Let C be a projective $[n, k]_{2}$ three-weight code with non-zero weights $w_{1}<$ $w_{2}<w_{3}$ satisfying $w_{1}+w_{2}+w_{3}=\frac{3 n}{2}$ and $w_{2}=\frac{n}{2}$. Let $a \geq 0$ be the largest integer such that C is 2^{a}-divisible. Then $k \leq 8 a+9$.

Proof As before, we will use the abbreviation $y=2^{k-2}$ and write $w_{1}=\frac{n}{2}-t$ and $w_{3}=\frac{n}{2}+t$ with an integer $t \geq 1$. By Lemma 5.3, $y \in \mathbb{Z}$. By Lemma 5.10, $t=2^{a}$ is the largest integer Δ such that C is Δ-divisible. There is an odd integer z and a non-negative integer x with $n=2^{x} \cdot z$. Since C is projective, $n \leq 2^{k}-1$. Together with $2 t \mid n$, we get $a+1 \leq x \leq k-1$.

Plugging $t=2^{a}, n=2^{x} z$ and $y=2^{k-2}$ into Eqs. (19)-(22) we get

$$
\begin{align*}
& A_{w_{1}}=\frac{z \cdot\left(2^{k-a-1}-2^{x-a-1} z-1\right)}{2^{a+2-x}}, \tag{23}\\
& A_{w_{2}}=2^{2(x-a-1)} z^{2}+2^{k}-2^{x+k-2 a-2} z-1, \tag{24}\\
& A_{w_{3}}=\frac{z \cdot\left(2^{k-a-1}-2^{x-a-1} z+1\right)}{2^{a+2-x}}, \tag{25}\\
& 3 B_{3}=\frac{z \cdot\left(2^{x-a-1} z-1\right) \cdot\left(2^{x-a-1} z+1\right)}{2^{k-x-2 a-1}} . \tag{26}
\end{align*}
$$

First case: $k \geq x+2 a+2$. Equivalently, $k-x-2 a-1 \geq 1$, so the denominator of the right hand side of Eq. (26) is even. By $B_{3} \in \mathbb{Z}$, the numerator is even, too. Since z is odd, this implies $a=x-1$. Now $0<w_{1}=\frac{n}{2}-t=2^{x-1} z-2^{a}=2^{a}(z-1)$ yields $z>1$. Equation (26) with $a=x-1$ yields

$$
3 B_{3}=\frac{z \cdot(z-1) \cdot(z+1)}{2^{k-3 x+1}} .
$$

From our precondition $k \geq x+2 a+2=3 x$ we have $k-3 x \geq 0$, so $2^{k-3 x}$ is an integer. Since $\operatorname{gcd}(z-1, z+1)=2$, we have that $2^{k-3 x}$ either divides $z-1$ or $z+1$. Therefore, $z=s \cdot 2^{k-3 x}+\alpha$ for some integer s and $\alpha \in\{-1,1\}$. By $z>1, s \geq 1$. Now Eq. (23) yields

$$
0<\frac{2^{a+2-x}}{z} \cdot A_{w_{1}}=2^{k-x}-\left(s \cdot 2^{k-3 x}+\alpha+1\right) \leq 2^{k-x}-s \cdot 2^{k-3 x}
$$

so that $s<2^{2 x}$ and hence $s \leq 2^{2 x}-1$.

Using Eq. (24) we get

$$
\begin{aligned}
0< & s\left(A_{w_{2}}+1\right) \\
= & s\left(z^{2}+2^{k}\right)+s \cdot z \cdot 2^{k-x} \\
\leq & \left(2^{2 x}-1\right)\left(\left(s 2^{k-3 x}+\alpha\right)^{2}+2^{k}\right)-s\left(s 2^{k-3 x}+\alpha\right) 2^{k-x} \\
= & \left(2^{2 x}-1\right)\left(s^{2} 2^{2 k-6 x}+2 \alpha s 2^{k-3 x}+1+2^{k}\right)-s\left(s 2^{k-3 x}+\alpha\right) 2^{k-x} \\
= & s^{2} 2^{2 k-4 x}+2 \alpha s 2^{k-x}+2^{2 x}+2^{k+2 x}-s^{2} 2^{2 k-6 x}-\alpha s 2^{k-3 x+1}-1-2^{k} \\
& -s^{2} 2^{2 k-4 x}-\alpha s 2^{k-x} \\
= & \alpha s\left(2^{k-x}-2^{k-3 x+1}\right)+\left(2^{2 x}+2^{k+2 x}\right)-s^{2} 2^{2 k-6 x}-\left(1+2^{k}\right) \\
\leq & 2 s \cdot 2^{k+2 x}+2 s \cdot 2^{k+2 x}-s 2^{2 k-6 x} \\
= & s\left(2^{k+2 x+2}-s^{2 k-6 x}\right),
\end{aligned}
$$

where in the second last step $s \geq 1$ has been used. Therefore $k+2 x+2>2 k-6 x$ and hence

$$
k \leq 8 x+1=8(a+1)+1=8 a+9 .
$$

Second case: $k \leq x+2 a+1$. Equation (19) implies

$$
0<\frac{8 t^{2}}{n} A_{w_{1}}=4 y-n-2 t<4 y-n
$$

We have $2^{x} \mid n$ and from $x \leq k-1$ also $2^{x} \mid 2^{k}=4 y$. Therefore $2^{x} \mid 4 y-n>0$ and thus $4 y-n \geq 2^{x}$.

By Eq. (20),

$$
\begin{aligned}
0 & <4 t^{2} A_{w_{2}} \\
& =4 t^{2}(4 y-1)-n(4 y-n) \\
& \leq 4 t^{2} \cdot 4 y-n \cdot 2^{x} \\
& =2^{k+2 a+2}-2^{2 x} z \\
& \leq\left(2^{k+2 a+2}-2^{2 x}\right)
\end{aligned}
$$

and thus $k+2 a+2>2 x$ and $k \geq 2 x-2 a-1$. Combined with $k \leq x+2 a+1$, finally

$$
k=2 k-k \leq 2(x+2 a+1)-(2 x-2 a-1)=6 a+3<8 a+9 .
$$

By Lemmas 5.11 and 2.3, the following numbers $K(r)$ and $N(r)$ are well-defined.
Definition 5.12 Let $a \geq 1$ be an integer. We define $K(a)($ resp. $N(a))$ as the largest dimension (resp. length) of a projective $[n, k]_{2}$ three-weight code C with non-zero weights $w_{1}<w_{2}<$ w_{3} satisfying $w_{1}+w_{2}+w_{3}=\frac{3 n}{2}$ and $w_{2}=\frac{n}{2}$ such that C is not 2^{a}-divisible.

Theorem 5.13 Let $a \geq 1$ be an integer. Then

$$
2 a+1 \leq K(a) \leq 8 a+1 \quad \text { and } \quad 2^{2 a+1}-2^{a+1} \leq N(a) \leq 2^{K(a)}-3 .
$$

Proof $K(a) \leq 8(a-1)+9=8 a+1$ by Lemma 5.11 and $N(a) \leq 2^{K(a)}-3$ by Lemma 2.3.
For the lower bounds, let $C=\operatorname{Sim}_{2}(a) \oplus \mathrm{RM}_{2}(a+1)$. It is a projective three-weight code of length $n=\left(2^{a}-1\right)+2^{a}=2^{a+1}-1$, dimension $k=a+(a+1)=2 a+1$ and weights $w_{1}=2^{a-1}, w_{2}=2^{a}$ and $w_{3}=3 \cdot 2^{a-1} .4$ Since C does not have the weight $2^{k-1}=2^{2 a}$, the anticode C^{\complement} is defined. It is a projective three-weight code of the same dimension k, length $n^{\complement}=\left(2^{k}-1\right)-n=2^{2 a+1}-2^{a+1}$ and the three non-zero weights

$$
\begin{aligned}
& w_{1}^{\complement}=2^{k-1}-w_{3}=2^{2 a}-3 \cdot 2^{a-1}=2^{a-1}\left(2^{a+1}-3\right) \\
& w_{2}^{C}=2^{k-1}-w_{2}=2^{2 a}-2^{a}=2^{a-1}\left(2^{a+1}-2\right) \text { and } \\
& w_{3}^{\complement}=2^{k-1}-w_{1}=2^{2 a}-2^{a-1}=2^{a-1}\left(2^{a+1}-1\right)
\end{aligned}
$$

so C^{\complement} is 2^{a-1}-divisible, but not 2^{a}-divisible. Furthermore

$$
w_{1}^{\complement}+w_{2}^{\complement}+w_{3}^{\complement}=3 \cdot 2^{2 a}-3 \cdot 2^{a}=\frac{3}{2} n^{\complement} \quad \text { and } \quad w_{2}^{\complement}=\frac{n^{\complement}}{2}
$$

Therefore, $K(a) \geq k=2 a+1$ and $N(a) \geq n^{\complement}=2^{2 a+1}-2^{a+1}$.
For small values of a, we can determine the exact values of $N(a)$ and $K(a)$.
Theorem 5.14 (a) $K(1)=3$ and $N(1)=4$.
(b) $K(2)=6$ and $N(2)=56$.
(c) $K(3)=11$ and $N(3)=2024$.

Proof The case $a=1$: The values $K(1)=3$ and $N(1)=4$ are a direct consequence of Theorem 5.9. ${ }^{5}$

The case $a=2$: Using $K(2) \leq 17$ from Theorem 5.13 and $t=2^{a}=4$ from Lemma 5.10, we determined all feasible parameters computationally. The ones with $k \geq 7$ are listed below.

$n k$	w_{1}	w_{2}	w_{3}
2448	120	122	124
1167	56	58	60
1127	54	56	58
167	6	8	10

The last code has already been excluded in Sect. 3 via Lemma 3.1. Of the first three codes, the anticodes would have the parameters $[11,8,4],[11,7,4]$ and $[15,7,6]$. The application of the Hamming bound to the punctured parameters $[10,7,3],[10,6,3]$ and $[14,7,5]$ shows that these codes do not exist.

Among all feasible parameters with $k \leq 6$, the ones with the largest possible length are $n=56, k=6, w_{1}=26, w_{2}=28$ and $w_{3}=30$. These parameters are realized by the anticode of the binary $[7,6]_{2}$ parity check code.

The case $a=3$: Similar as before, based on $K(3) \leq 25$ and $t=8$ we were able to determine all feasible parameters computationally. There is only a single feasible parameter set with $k \geq 12$, which is $n=4040, k=12, w_{1}=2016, w_{2}=2020$ and $w_{3}=2024$. The anticode would have the parameters [55, 12, 24], which does not exist according to the online tables [17].

[^4]Among all parameters with $k \leq 11$, the ones with the largest possible length are $n=2024$, $k=11, w_{1}=1008, w_{2}=1012$ and $w_{3}=1016$. These parameters are realized by the code $\left(C^{\perp}\right)^{\complement}$, where C is the binary [23,12]2 Golay code. The code C^{\perp} has the weight enumerator $1+506 x^{8}+1288 x^{12}+253 x^{16}$.

Theorem 5.14 indicates that in general, neither the lower nor the upper bound of Theorem 5.13 are sharp. We leave it as a research problem to improve the bounds and further investigate the asymptotic growth.

Funding Open Access funding enabled and organized by Projekt DEAL.
Data Availability The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A: Generator matrix of projective three-weights codes satisfying $w_{1}+w_{2}+w_{3}=3(q-1) n / q$

In this appendix we list examples of generator matrices corresponding to the feasible cases listed in Sect. 3.

- $q=2, n=4, k=3, w=[1,2,3]:\left(\begin{array}{l}1000 \\ 0101 \\ 0011\end{array}\right)$
- $q=2, n=8, k=4, w=[2,4,6]:\left(\begin{array}{l}01111011 \\ 01101010 \\ 1010100 \\ 10110010\end{array}\right)$
- $q=2, n=8, k=5, w=[2,4,6]:\left(\begin{array}{l}11101110 \\ 0101000 \\ 00110000 \\ 10001000 \\ 11000011\end{array}\right)$
- $q=2, n=8, k=6, w=[2,4,6]:\left(\begin{array}{l}00110110 \\ 001010001 \\ 01010011 \\ 1001010 \\ 10010010 \\ 011111101\end{array}\right)$
- $q=2, n=12, k=5, w=[4,6,8]:\left(\begin{array}{l}100100111001 \\ 01010011100 \\ 0010001111101 \\ 0000101110010 \\ 000001101010\end{array}\right)$
- $q=2, n=12, k=6, w=[4,6,8]:\left(\begin{array}{l}100000000111 \\ 01000010010 \\ 00000001101000 \\ 0000001110011 \\ 0000100011 \\ 000001100011\end{array}\right)$
- $q=2, n=16, k=5, w=[6,8,10]:\left(\begin{array}{l}1011111000110000 \\ 111101001100101 \\ 01111111101001000 \\ 01100101001111111 \\ 10000111111101011\end{array}\right)$
- $q=2, n=16, k=6, w=[6,8,10]$:
- $q=2, n=16, k=5, w=[4,8,12]$:
- $q=2, n=16, k=6, w=[4,8,12]$:
- $q=2, n=16, k=7, w=[4,8,12]$:
- $q=2, n=20, k=5, w=[8,10,12]$:
- $q=2, n=24, k=5, w=[10,12,14]$:
- $q=2, n=24, k=6, w=[8,12,16]$:
(1000000010111100100011111 $\left(\begin{array}{l}010001010011011111001100 \\ 001000001011011010110111\end{array}\right.$ 000101011101010001111010 000011000100101000110001
000000101000011000001111
001111111011101110110001 010111110111011101101010 010110111111111010101001 100111101110111110011001 001111011101111101110010 100101111111110101011010 000000000011111111111100
100011011110010011111111 011100111001100010001101 001101100110110000010111 001010101101010101100101 011101110001000111010001 110111011011101100101110 010011010110010111010001
001111011111101100111001
011110011110001111001111 111101111000010111110101 001011101100101000011011 111110100101000000101101 001100110000101011110101 010101000001110001111011 001101010110000110101011 110000101110101110100001
001111111100001110110111
100000000001101010001011 010000000101001001000111 001000000001111000010101 000100000000011100111100 000010000101001100101010 000001000001001001111001 000000100001001010110110 000000010101000100110101 000000001101000111001001 000000000010000110111011
- $q=2, n=24, k=11, w=[8,12,16]:$
- $q=2, n=32, k=6, w=[12,16,20]$:
- $q=2, n=32, k=7, w=[12,16,20]$:
- $q=2, n=32, k=8, w=[12,16,20]$:
- $q=2, n=32, k=9, w=[12,16,20]$:
- $q=2, n=32, k=10, w=[12,16,20]$:

100000000000011011011010 010000000000010111000111 001000000000110010011101 000100000000110001110011 000010000010011001010101 000001000010011110001001 000000100000011000101111 000000010010001011100011 000000001010001010111100 000000000100001101110110 000000000001000110111011
10010000110101101100111100111000 100110011111100100111000010100011 11110111000111000110101101110110 00001111111111110001111000000000 10101010000101111011001110100100 00000100100100101101111011101101
01111000000111110000111111111110 11100110110010000111111000110000 10011111001000101101101100100100 10110110011001001011011100101000 01111100000000001111111111011111 11001111100100001110110100100010 01111110000000000000000001111110

11101100110111010010100111110011 10011000100011110110110010001101 11011101101110100001011110100111 00110101000110101101110100011001 10111111001101000110101101001111 01101010001100011111101000110001 01111110011011001001011011011011 11000100011001111011010001100101)

10000000001011011001111000001010 01000000010000011101100001101110 00100000000010010101011011001101 00010000010010101011101111110110 00001000000001011011001011100011 00000100011111001101000000111000 00000010011000110000001110110011 00000001011011000010001100011110 00000000100110011110101000101001
11111000001111110000001000000000 000001111111111110000000100000000 00011000110000111111100010000000 01101000010011010011110001000000 10110011011101000100100000100000 01100101110101001000110000010000 11010010110111000001010000001000 11100011011010100011000000000100 10101010110011101000100000000010 10011001000011101011010000000001

01111011100101011111111101101111 01001000011110111001110001101001 01010011011000001100111010110011 10011110100001010010011010110110 01000110101011010100110101011010 10011000101110001110100111100010)
11010100001101001100010111100101 01010011101101010011000101010110 11101110100111100010000010110100 11100110010010111100111001100000 11111101000001001111100001011000 01000011101110010000011101110110 10001000111111010101110011010000

10000001011111101000000101111110 01000001010000010100000101000001 00100001001000010010000100100001 00010001000100011110111011101110 00001001000010011111011011110110 0000010100000101111101011111010 00000011000000111111110011111100
00000000111111111111111100000000
10101110000101001100011100001111 01010101001101110001010100101011 10100010100110111000011100001111 00110000101001101110100101101101 11001111111111111110110110100101 01101111010110010000101010101010 10010000000000000001100010001110 01100000000000000001000110011100 01011000010100110111010100101011

- $q=2, n=40, k=6, w=[16,20,24]:$

0100111000101111011110010010110000010011 10100101000111111101111001001011000001001 1101001010000111110111101100100100000101 0110100101001011110011110110010010000011 0011010010101101111001111011000001001001 1001100001011110111100110101100000100101

- $q=2, n=40, k=7, w=[16,20,24]:$

1000011111010101011111010011111001101010 0000100101101011101110100000011011011101 0100000011110101110110010001001100101111 0001001001011101111101000000110100111011 1000011110101011011110101101111001110100 0010010000111011111010001001100011010111

- $q=2, n=40, k=8, w=[16,20,24]:$

1111100000011111011111000000111111010110 0110011000101000110100111101011011000011 1100010001110000101001111011110101000011 0001100110100010100101101111010111000011 0000011111000000111111000001000001011010 1000100011100001110010110111101011000011 0011001100100100101010011111101101000011
1111100000011111000000000001000001111001)

- $q=2, n=40, k=9, w=[16,20,24]:$
$\left(\begin{array}{l}010001010001111010010111111111011001101 \\ 1101110000010010111011001100011011000101 \\ 0000110011\end{array}\right)$ 0001001100100111100011111100111011111110 0000011101111101110100001100101000110110 1101001011110010001000001010000011100001 1000101000100000100110010000010010111111 1111110100101101100101001001011111010101 0010100010101001000010011111000010110100) 0110010000100111001101001010010010110000
- $q=2, n=48, k=6, w=[22,24,26]$:

100100010010111011001011111101000110011100111001 100010001101011101100101111110000011001110111100 100001010110101010110110111011100001000111011110 100000101111010001011111011101110000100011001111 110000010011101100101111101110011000110001100111 101000001101110110010111110011001100111000110011

- $q=2, n=48, k=6, w=[20,24,28]$:
(111011100011101101000010100000100001101111100110 001011011110010000100111110011000100111011100100 111110001110011011000100001000001010011111001101 010110110101100000001111101110000001111110001001 111101010101110110000001010000010100110111010011 100101101011001000010111011101000010111101010010)
- $q=2, n=48, k=7, w=[20,24,28]$:

100010111101100101011111000000010001010100111101 001010110111010101110100011001000101000111110001 000101111011001010111110001000100010100101111010 010100101111100011101000111010000010001111100110 010001111110010110101011100000001000101110011110 101000011111001111010001110100000100010111001101 000000000000111000000111111111111111111111111100

- $q=2, n=48, k=8, w=[20,24,28]$:

111111111000000000111111111100000000000001000000 000000000111111111111111111100000000000000100000 000011111000011111000001111111111111000000010000 001100111001100111001110001100001111111100001000 010101001010101001010000110101110011000110000100 100101010111111110010010011010010101011010000010 111101010001111011100110111000100110101000000001 101001000000010011001010111001011011011110000000

- $q=2, n=48, k=7, w=[16,24,32]$:

100101110010111001011100101110010111001011000000 110100000110111111100011001101011010010001010100 100111000010110000001001010101111011101100001111 110101101001000111010000011011111110001100010001 111010000011011111110001100110101101001000001010 100010000111110101001100010000111110101001101101 111100111100111100111100111100111100111100011110

- $q=2, n=48, k=8, w=[16,24,32]$:

100111101111101111110001110001110111101011101100 101000110000110000010010010010001000101100110000
001010011001011001001110001110001010001011101111 001010101010010101111101000010100101111010011001 100111111010111010100100100100000111101011100000 111001010001010001110110110110001001110111010000 001010011001011001110001110001111010001011101100 001111010011101100010000101111100000110110101001

- $q=2, n=48, k=9, w=[16,24,32]$:
/ 110110000011101101100000111010100001011000101111 100111011100100110001000110110010001101111001010 110000000011110011111111000001101000011011110010 100100011100101001000111001011111101001110100100 011001010101101001101010100100111101111001000001 001100011110100011000111101010100001011000101111 110011001100110011001100110010010101010101010110 101011011100011010110111000100000011101001110100
111011101011111110111010111101011100010110001011
- $q=2, n=48, k=10, w=[16,24,32]:$

100100110000001011001110110100110001111101101100 000110000011010001000000101110111111110011100111 110001010110011100100101011100100101011011000101 000001101100110001101010001110010101001111111001 011100100101100100111010100100111010010101110010 111110000111001100010010001100010010011111111000 111111100001100011000100100011000100000111111110 011110011011101000111001010111000110010010000110 001011000001111001011011111001011011000100101100 101010011001010111101011101000010100011001010110

- $q=2, n=48, k=11, w=[16,24,32]$:

100110100101001011010101010101011010100110100110 000110110011001011010101010101011010011001011001 000000001111000000000000000000111111111111000000 010011100000000000000011000011001111000000110011 001111000000000110000011000000001111110011000000 000000000000100111000000000000110011110011111100 000000000000011110000000000000001111111100110011 000000000000000000110011000000111100110011110011 000000000000000000001111000000001111001111111100 0000000000000000000000001100111100111001111110011

- $q=2, n=48, k=12, w=[16,24,32]$:

100101000010110010101011001011001101001010110111 010011000010110010101011001101010010110010101111 001111000000000000000001100110000111100111100000 000000100001100000000110000001111000000111111001 000000010001100000000111100111100110000001100010 000000001001110000000111100110011111111111111000 000000000111100000000110000001111111111000000000 000000000000001000000110000111100111100110011100 000000000000000110000111100111111000011000011000 000000000000000001100111100001100001111111100000 000000000000000000011001100001111111100001111000 000000000000000000000000011111111110011111100000

- $q=2, n=52, k=6, w=[24,26,28]:$

0110011010101010101101010010101001010101010101100000 1110110110000110011011001001100100110011001100010000 1101110001100001111000111000011100001111000011001000 0011110000011111111000000111111100000000111111000100 0000001111111111111000000000000011111111111111000010 0000000000000000000111111111111111111111111111000001

- $q=2, n=56, k=6, w=[26,28,30]:$

01011001100101011111011100100001001101100011111010000100 10001111101110110100110100101000001001111001001111101010 01110111001001000011000111011111010001111001011111010000 10011111000011000111100111111000111100000111000100100001 11011010110001000100011000011100010110111101010010111111 00000110101101000110100101000110011111110000110000100111

- $q=2, n=56, k=7, w=[24,28,32]:$

11001100110101111111011001000101111101000001100011011101 01100111011010011111101100101010111010100010110001101110 10110010101101101111100110011101011001010001011000110111 11011001010110110111110011001110101000101000101101011011 01101100101011111011101001101111010000010100010111101101 00110111010101111101100100110111101100001010001011110110) 10011011101010111110110010011011110010000111000100111011

- $q=2, n=56, k=8, w=[24,28,32]:$

00111011101011010100101010111101100110111001010100001111 01110110010110111001010001111011001101110010101100011110 11101100101101100010100111110110011011100101011000111100 11011001011011010101001011101101110111001010110001111000 10110011110110101010010011011011101110010101100111110000 01100111101101010100100110110111011100111011001011100001 11001110011010111001001001101111111001100110010111000011 10011101110101100010010111011110110011011100101010000111

- $q=2, n=56, k=9, w=[24,28,32]$:

10000000011111000000111111110000001111111100001111111111
01000010011100010000010110010100110111011110010100001010 01000010011100010000010110010100110111011110010100001010 00100010010110011100000010100111111010101001010010001100 00010010000110000110101111100000110011110000111101001000 00001010101010000110011000100101110110111001000100110010 00000110111010001011101100000001111000000001110001111100 00000001001111011110111011000001101001100001000011100010 00000000000000111111111111110000000000000011111111111111 00000000000000000000000000001111111111111111111111111111

- $q=2, n=64, k=7, w=[28,32,36]$:
(1010111010110001100001101011011110110111100111100110101000101001 0011000011000101110101110110111111101100100010100011100111100111 0111110001001111011001100101001001100110001001100101000001110111 0001110111000100110010001000100110111101001100100000001110111000 1100000111011000010011000010101011110010000100110011100000111010 0000101101001100010001110111100010010100111011100001111010010111 1111100010001110110011011010000011001110010011001000000011101111
- $q=2, n=64, k=8, w=[28,32,36]:$

1000000000111101101011011100000010010011001110100110001100100011 0100000000100011011110110010000011011010101001110101001010110010 0010000001010111010010111101000111011000000111010000110000111100 0001000000101011101001011110100011101100000011101000011000011110 0000100001010011001001001011010111000011010010011110011001101010 0000010100001111111001101001110010100111101001000000010110000011 0000001101010111001100001000101001011001001110110111100011111011 0000000011110110101101110000001001001100111010011000110010001101

- $q=2, n=64, k=9, w=[28,32,36]$:
(1000000000111101101011011100000010010011001110100110001100100011 0100000000100011011110110010000011011010101001110101001010110010 0010000000101100000100000101000011111110011010011100101001111011 0001000000101011101001011110100011101100000011101000011000011110 0000100000101000011111110011010011100101001111010010000000101101 0000010100001111111001101001110010100111101001000000010110000011 0000001100101100011010110000101101111111010011111011111010111100 0000000010001101111011001000001101101010100111010100101011001010 0000000001111011010110111000000100100110011101001100011001000111
- $q=2, n=64, k=7, w=[24,32,40]$:

0100111111000111001110101011100000010111100001010100101001011100 0010111101111100111000100110011001001110100100010010100101110010 1010010111110011100110010101110100001011110000001010110100001110 0101011011111001110011001000111010001101101000000101101010100110 1001011110101110011101010011001000101111000010001001110010111000 1111100000000000111111111100000111111111100000000000100000111111 1111100000000000000000000011111000001111111111111111100000111110

- $q=2, n=64, k=8, w=[24,32,40]:$

1011111101010110101001010001010100011100001111101000011000001101 0111111110101001010101100000101100011100001111100100010100001101 0011111111111111111100110001100011111110001000001101011100011101 1100011111111100000000001111100000011100001000111110100011110101 1110100110010010010000001100011101101111100011100010110010010111 1111010001001001001000000110011110110110110101100010110001010111 1101101000100100100100001010011111011011010110100010110000110111 0011100000000011111111001111111000000010001111100010001111100110

- $q=2, n=64, k=9, w=[24,32,40]:$

1000110111000011000011000010010100111011001011011110011010011011 0100000100001100111100111101100111110111111011010000110000110000 0000010000010011110011110110111111011111011101100001000011000010 1011001111100111101100111100001000010001011010001000001010111101 1011001011001000101000100110111001101001101101100001110101110100 1000110001110011100101010101111101111111101111000011011010110111 0000011101110010111111011001111101010110000101001011000010011000 0001101100001001100100001001110001001010010101001010001011010000
1111101001010011010101100001011001100100001001111100000011101110

- $q=2, n=64, k=10, w=[24,32,40]$:

1000000100001100100000110000100110010001010101101110000011011001 0100000011011100000100101000010110100011101100101010001000001001 0010000111011100110001101000000001001110101001100000011000010010 0001000011001100111010000100100110000001010110000100110101110000 0000100010010010000011001001100001000000011100010011010011101111 0000010110000010001111011010100101001111011100110111111110000001 0000001100000010110110011011010100010010100100000101101110000010 0000000000111010001100001010100000100001100010101001011001101111 0000000000000001111111111111110000000111111111111111100000000010 0000000000000000000000000000001111111111111111111111100000000001

- $q=2, n=64, k=11, w=[24,32,40]$:

0000011010000001000110111110001110100101111000110010010000000000 0111001100100010000011101000001011100100101101101010001000000000 0000101110101011000110100111100101110100100101000000000100000000 0111101110001010001100101011001010000101010011010000000010000000 1001110100000110100000011010000101011011000100111001100001000000 1101010010011110010001000110111100000011001100001000100000100000 0101010001111110001011000001110100001000000011000111100000010000 0011001111111110000111000000010010111000111110111111100000001000 0000111111111110000000111111110001111000000001111111100000000100 0000000000000001111111111111110000000111111111111111100000000010 0000000000000000000000000000001111111111111111111111100000000001

- $q=2, n=64, k=12, w=[24,32,40]:$

0000110001101110000100100100100011011000011011011110100000000000 1011110000100110010000001100010000111101001110111000010000000000 1010110001001010110010000000101111110000001100101011001000000000 1111100000001100000010100100111101000011011011101000000100000000 0111000000001010110110001100011000000110111100110011000010000000 0000000100001001111110011010010101001101010101010101000001000000 0101011111010000010001111001110011000100100000101100000000100000 0011010011001000001111111001111111011111010011011100000000010000 0000101111000110000000000111101111000011001111000011000000001000 0000011111000001111111111111100000111111000000111111000000000100 000000000011111111111111111111000000000001111111111111000000000010 0000000000000000000000000000011111111111111111111111000000000001

- $q=2, n=64, k=7, w=[16,32,48]:$
(1110001110001101110111000101111010000010001011110100001100100110 0000101111010000111110100101001111100101101101100000110011100010 0010111101001001011011001011000001111100001001111100101110001001 0111101000011110000111000111110010110100101000011010110001110001 1110100001011000011101111111001010010010110001101011000111000100 0111000111000100010001111101000010111011101010000101111010010011 1111010000100011110010101111100101010110100000110101100011100010
- $q=2, n=64, k=8, w=[16,32,48]$:

1000110100011000110100010111001011100101111111000110111001010000 1101100001001100110101011110000010101100110010111001000110111001 1111011000010010001100101100111011110000010010101110010001111001 0011110110000101011101110000010101100111011010110100110100001001 0011110110000101011100101011001110111100001010110100110100000011 1000010011110110111000111011110000010101101011101000101000101001 1000010011110101000111010110011101111000000010010111101000110101
0111101100001001000111100000101011001110110100010111101000110011

- $q=2, n=64, k=9, w=[16,32,48]$:

0101011110000011010000110100011010001101001110111011100010011101 0110111110010000000011011011011011011011000101101000111101010000 1010101010100100011101000110100011010001101010111100101011010101 1010101010100001101100011010001101000110101010111100101011010101 0101010011100100011101000110100011010001100011111010111001000111 1100010100110110100010110011101111000001101111010100010110000101 1111110010011100101111001011100101110010010010000110100100100100 0001110011011000110111100000101011001110111110001101011000010001 0000000110110111001101110010111001011100110110000001101101101100

- $q=2, n=64, k=10, w=[16,32,48]:$

0010011111000000110010110100111010101001010101111111110000011000 1001000110100111000010000111101011001111000111011101101001100001 1110001110010011001001010000011111011111010001001000011011011010 1110000011100110100100010100000100010111110111111011000110101100 1101100000000001111000000000101000000000000001010000000000111100 0101010010100000111011001001001110101100010011101011010111100011 1010100110001111000111110101110001010100001100010110011100011100 1111111000011101001010100101010010001011010100101110000111100100 1111110010110110010011110000100100100001111001001100101101001001
1111110101101001001011100001010010000011110100101101011010100100

- $q=2, n=64, k=11, w=[16,32,48]$:

0100001000110000111100001111111110000000000000000000000000000000000 00100001000011000000111111111111100000000000000000000000000000000 0001000010000011111111110000111100000000000000000000000000000000 0000100001111111001100110011001100000000000000000000000000000000 0000011111010101010101010101010100000000000000000000000000000000 0000000000000000000000000000000011000011110000111111111100000000 0000000000000000000000000000000000110000001111111111110011000000 0000000000000000000000000000000000001111111111000011110000110000 0000000000000000000000000000000011111100110011001100110000001100 0000000000000000000000000000000011111111001100110000110000000011
1111111111111111111111111111111110101010101010101010101010101010

- $q=3, n=3, k=3, w=[1,2,3]:\left(\begin{array}{l}001 \\ 112 \\ 210\end{array}\right)$
- $q=3, n=6, k=3, w=[3,4,5]:\left(\begin{array}{l}111101 \\ 121011 \\ 100122\end{array}\right)$
- $q=3, n=9, k=3, w=[5,6,7]$:

[^5]- $q=3, n=9, k=4, w=[3,6,9]:\left(\begin{array}{l}100111110 \\ 010201211 \\ 22121121 \\ 112112221\end{array}\right)$
- $q=3, n=18, k=4, w=[9,12,15]:\left(\begin{array}{c}1111111110000001000 \\ 00111222111100100 \\ 120120120112210010 \\ 002000221120110001\end{array}\right)$
- $q=3, n=18, k=5, w=[9,12,15]:\left(\begin{array}{l}111111110000010000 \\ 00001221111001000 \\ 011201010012100100 \\ 1111222001200010 \\ 012021121200000001\end{array}\right)$
- $q=3, n=18, k=6, w=[9,12,15]:\left(\begin{array}{l}110011111100100000 \\ 00111122200010000 \\ 010201201111001000 \\ 1121121220200100 \\ 220001011221000010 \\ 122011022001000001\end{array}\right)$
- $q=3, n=27, k=4, w=[15,18,21]:\left(\begin{array}{l}1111111111111110000000001000 \\ 000011111222221111111000100 \\ 11220012200112001222110010 \\ 12021200120211202012120001\end{array}\right)$
- $q=3, n=27, k=5, w=[15,18,21]:\left(\begin{array}{l}01101100111111111111110101 \\ 12100011012000112202101111 \\ 210101012002010120222102222 \\ 100110102211111221112112020 \\ 002201101200222211110001221\end{array}\right)$
- $q=3, n=27, k=6, w=[15,18,21]:\left(\begin{array}{c}0001111010011001111111101 \\ 00121010100100122112121011 \\ 01220001001100121212222101 \\ 12200010011001211021221011 \\ 220002001101121100211222101 \\ 200021011010211002111212011\end{array}\right)$
- $q=3, n=27, k=5, w=[9,18,27]:\left(\begin{array}{l}111111110000000000000010000 \\ 0000000011111110000001000 \\ 0011122001112211111000100 \\ 1201202121201201201122100010 \\ 121202011212020120112200001\end{array}\right)$
- $q=3, n=36, k=5, w=[21,24,27]:\left(\begin{array}{l}1110010011110111111111011111011101011 \\ 00111110012110222211202211021010 \\ 220010022110221212212212100212210110 \\ 0222011002120212121101212201210101 \\ 10020212011122022122222021221001101\end{array}\right)$
- $q=3, n=36, k=6, w=[21,24,27]:\left(\begin{array}{l}101011111100001011001101001011101101 \\ 11010202111010010100110100102210210 \\ 21102000211110020010011000010121021 \\ 0211012002101200201001100110201202 \\ 102120210021202200100100110210101120 \\ 010221211002020210010010011122010012\end{array}\right)$

References

1. Betsumiya K., Munemasa A.: On triply even binary codes. J. Lond. Math. Soc. 86(1), 1-16 (2012).
2. Bonisoli A.: Every equidistant linear code is a sequence of dual Hamming codes. Ars Comb. 18, 181-186 (1984).
3. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3-4), 235-265 (1997).
4. Bouyukliev Iliya, Bouyuklieva Stefka, Kurz Sascha: Computer classification of linear codes. IEEE Trans. Inf. Theory 67(12), 7807-7814 (2021).
5. Braun M., Kohnert A., Wassermann A.: Optimal linear codes from matrix groups. IEEE Trans. Inf. Theory 51(12), 4247-4251 (2005).
6. Brouwer A.E.: Parameters of strongly regular graphs. https://www.win.tue.nl/~aeb/graphs/srg/srgtab. html.
7. Brouwer A.E., Cohen A.M., Neumaier A.: Distance-Regular Graphs. Springer-Verlag, Berlin (1989).
8. Brouwer A.E., Haemers W.H.: Spectra of Graphs. Springer Science \& Business Media, Berlin (2012).
9. Bruin N., Poonen B., Stoll M.: Generalized explicit descent and its application to curves of genus 3. Forum of mathematics. Sigma 4, e6 (2016).
10. Bruin N., Stoll M.: The Mordell-Weil sieve: proving non-existence of rational points on curves. LMS J. Comput. Math. 13, 272-306 (2010).
11. Calderbank R., Kantor W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18(2), 97-122 (1986).
12. Chen E.: Two-weight codes. http://moodle.tec.hkr.se/~chen/research/2-weight-codes.
13. Courteau B., Wolfmann J.: On triple-sum-sets and two or three weights codes. Discrete Math. $\mathbf{5 0}(2-3)$, 179-191 (1984).
14. Delsarte Ph.: Weights of linear codes and strongly regular normed spaces. Discrete Math. 3(1-3), 47-64 (1972).
15. Dodunekov S., Guritman S., Simonis J.: Some new results on the minimum length of binary linear codes of dimension nine. IEEE Trans. Inf. Theory 45(7), 2543-2546 (1999).
16. Dodunekov S., Simonis J.: Codes and projective multisets. Electron. J. Comb. 5, \#R37 (1998).
17. Grassl M.: Bounds on the minimum distance of linear codes and quantum codes (2007). http://www. codetables.de.
18. Heinlein D., Honold T., Kiermaier M., Kurz S., Wassermann A.: Projective divisible binary codes. The Tenth International Workshop on Coding and Cryptography 2017 : WCC Proceedings, Saint-Petersburg (2017).
19. Jaffe D.B., Ruberman D.: A sextic surface cannot have 66 nodes. J. Algebraic Geom. 6(1), 151-168 (1997).
20. Kiermaier M., Kurz S.: Classification of Δ-divisible linear codes spanned by codewords of weight Δ, arXiv preprint arXiv:2011.05872 (2021).
21. Kohnert A.: Constructing two-weight codes with prescribed groups of automorphisms. Discrete Appl. Math. 155(11), 1451-1457 (2007).
22. Kurz S.: Classification of 8-divisible binary linear codes with minimum distance 24, arXiv preprint arXiv:2012.06163 (2020).
23. Liu X.: Binary divisible codes of maximum dimension. Int. J. Inf. Coding Theory 1(4), 355-370 (2010).
24. MacWilliams J.: A theorem on the distribution of weights in a systematic code. Bell Syst. Tech. J. 42(1), 79-94 (1963).
25. Pless V.: Power moment identities on weight distributions in error correcting codes. Inf. Control 6(2), 147-152 (1963).
26. Shi M., Kiermaier M., Kurz, S., Solé, P.: Three-weight codes over rings and strongly walk regular graphs. Graphs Combin. 38(3), 23 (2022)
27. Shi M., Solé P.: Three-weight codes, triple sum sets, and strongly walk regular graphs. Des. Codes Cryptogr. 87(10), 2395-2404 (2019).
28. Simonis J.: Restrictions on the weight distribution of binary linear codes imposed by the structure of Reed-Muller codes. IEEE Trans. Inf. Theory 40(1), 194-196 (1994).
29. Stoll M.: Implementing 2-descent for Jacobians of hyperelliptic curves. Acta Arith. 98(3), 245-277 (2001).
30. The LMFDB Collaboration: The L-functions and modular forms database, home page of the 1 function $l(s, e)$ for elliptic curve with lmfdb label 50 .a3. https://www.lmfdb.org/EllipticCurve/Q/50/a/ 3, [Online; accessed 26 April 2022].
31. The LMFDB Collaboration: The L-functions and modular forms database, home page of the 1 -function $l(s, e)$ for elliptic curve with 1 mfdb label $10368 . j 1$. https://www.lmfdb.org/EllipticCurve/Q/10368/j/ 1, [Online; accessed 26 April 2022].
32. van Dam E.R., Omidi G.R.: Strongly walk-regular graphs. J. Comb. Theory A 120(4), 803-810 (2013).
33. Ward H.N.: Divisible codes. Arch. Math. (Basel) 36(1), 485-494 (1981).

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Communicated by Y. Zhou.

 Michael Kiermaier
 michael.kiermaier@uni-bayreuth.de
 1 Department of Mathematics, University of Bayreuth, Bayreuth, Germany
 2 I2M, CNRS, Aix-Marseille Univ, Centrale Marseille, Marseille, France

[^1]: ${ }^{1}$ In fact, in this case C is a MacDonald code.

[^2]: ${ }^{2}$ Remember that $V_{1} \backslash W_{1}$ is a lazy way for writing $\left[\begin{array}{c}V_{1} \\ 1\end{array}\right]_{q} \backslash\left[\begin{array}{c}W_{1} \\ 1\end{array}\right]_{q}$.

[^3]: ${ }^{3}$ In fact, in this case C is a MacDonald code.

[^4]: ${ }^{4}$ We have already seen the code C in Theorem 3.2 Case (i), with $a-1$ in instead of a.
 5 Theorem 5.9 refers to the code in Lemma 5.8. It is isomorphic to the code C^{C} considered in the proof of Theorem 5.13 in the smallest case $a=1$.

[^5]: 011011001 $\binom{110002111}{100121202}$

