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Abstract

Colloidal particles are nano- to micron-sized particles subject to thermal motion. Despite of being
made of millions of atoms, colloidal particles share with atoms and molecules the ability to form
similar states of matter such as fluids, solids, and liquid crystalline phases. However, in contrast
to molecular systems, colloidal systems can be strongly affected by the Earth’s gravitational field
over vertical length scales of just a few millimeters.

Sedimentation equilibrium experiments, in which a colloidal suspension reaches equilibrium
in a cuvette of a few centimeters height, are ideal candidates to study bulk behaviour and phase
transitions. Sedimentation experiments in colloidal science are relatively simple and allow a direct
observation of the thermodynamically stable phases of a given colloidal suspension. However,
gravity can have a profound effect on the system which needs to be considered for the correct
interpretation of the experimental results.

The effect of gravity in sedimentation is particularly relevant if the colloidal particles have
different buoyant masses, as it is the case in colloidal mixtures. There, the gravitational field
couples differently to each of the species, generating new and counterintuitive phenomenology.
For example, several layers of different bulk phases are often found in experiments. Even the
same bulk phase can reenter the stacking sequence.

This Thesis is devoted to understanding the interplay between gravity and bulk phenomena in
colloidal sedimentation. The gravitational field is incorporated on top of a bulk description via
sedimentation path theory, which approximates each horizontal slab of the sedimented sampled
by an equilibrium system with the corresponding colloidal concentrations. Using sedimentation
path theory and density functional theory, we reinterpret theoretically the findings of iconic
sedimentation experiments by van der Kooij and Lekkerkerker in rod-plate colloidal mixtures.
We demonstrate that the interplay between gravity and a relatively simple bulk phase diagram
is enough to reproduce the complex stacking sequences found in the experiments, including the
relative thicknesses of the layers. We also consider plate-sphere mixtures and show how the
values of the macroscopic thicknesses of the individual layers in a stacking sequence can be used
to estimate microscopic information of the mixture such as the buoyant masses. The ratio between
the buoyant masses of the species and the sample height are two key parameters that control the
sedimentation-diffusion-equilibrium of the system.

Beyond binary mixtures, we extend sedimentation path theory to mass-polydisperse colloidal
systems. That is, a colloidal system in which all the particles are identical except for their
buoyant masses, which follow a given distribution. Using statistical mechanics we map the
mass-polydisperse system to an effective monodisperse system. The mapping is exact within
the local equilibrium approximation of sedimentation path theory. We apply the theory to mass-
polydisperse colloidal systems of spheres and rods, and demonstrate that mass-polydispersity can
play an important role in experiments near density matching.
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Kurzfassung

Kolloidale Teilchen sind Nano- bis Mikrometer groß und unterliegen thermischen Bewegung.
Obwohl sie aus Millionen von Atomen bestehen, haben kolloidale Teilchen mit Atomen und
Molekülen gemeinsam, dass sie ähnliche Aggregatzustände wie Flüssigkeiten, Feststoffe und flüs-
sigkristalline Phasen bilden. Im Gegensatz zu molekularen Systemen können kolloidale Systeme
jedoch über vertikale Längenskalen von nur wenigen Millimetern stark durch das Gravitationsfeld
der Erde beeinflusst werden.

Sedimentationsgleichgewichtsexperimente, bei denen eine kolloidale Suspension in einer
Küvette von wenigen Zentimetern Höhe ein Gleichgewicht erreicht, sind ideale Kandidaten für die
Untersuchung von Phasenübergängen. Sedimentationsexperimente in der Kolloidforschung sind
relativ einfach und ermöglichen eine direkte Beobachtung der thermodynamisch stabilen Phasen
einer bestimmten kolloidalen Suspension. Allerdings kann die Schwerkraft einen tiefgreifend-
en Einfluss auf das System haben, der für die korrekte Interpretation der Versuchsergebnisse
berücksichtigt werden muss.

Die Wirkung der Schwerkraft bei der Sedimentation ist besonders relevant, wenn die kolloidalen
Teilchen unterschiedliche Auftriebsmassen haben, wie es bei kolloidalen Mischungen der Fall
ist. Hier koppelt das Gravitationsfeld unterschiedlich an die einzelnen Spezies, was zu neuen
und kontraintuitiven Phänomenen führt. So werden in Experimenten häufig mehrere Schichten
unterschiedlicher Phasen gefunden. Sogar ein und dieselbe Phase kann mehrmal in der Schichtung
auftreten.

Diese Dissertation widmet sich dem Verständnis des Zusammenspiels von Schwerkraft und
thermodynamischen Phänomenen bei der kolloidalen Sedimentation. Das Gravitationsfeld wird
mittels der Sedimentationspfadtheorie integriert, die jede horizontale Schnitt der sedimentierten
Probe durch ein Gleichgewichtssystem mit den entsprechenden kolloidalen Konzentrationen
approximiert. Mit Hilfe der Sedimentationspfadtheorie und der Dichtefunktionaltheorie inter-
pretieren wir theoretisch die Ergebnisse der ikonischen Sedimentationsexperimente von van der
Kooij und Lekkerkerker in kolloidalen Stäbchen-Plättchen-Gemischen neu. Wir zeigen, dass das
Zusammenspiel von Schwerkraft und einem relativ einfachen Phasendiagramm ausreicht, um
die in den Experimenten gefundenen komplexen Schichtungen zu reproduzieren, einschließlich
der relativen Dicke der Schichten. Wir betrachten auch Plättchen-Kugel-Gemische und zeigen,
wie die Werte der makroskopischen Dicken der einzelnen Schichten verwendet werden kön-
nen, um mikroskopische Informationen des Gemischs wie die Auftriebsmassen zu schätzen.
Das Verhältnis zwischen den Auftriebsmassen der Teilchenarten und die Probenhöhe sind zwei
Schlüsselparameter, die das Sedimentations-Diffusions-Gleichgewicht des Systems steuern.

Über binäre Mischungen hinaus erweitern wir die Sedimentationspfadtheorie auf massenpoly-
disperse kolloidale Systeme. Das heißt, ein kolloidales System, in dem alle Teilchen identisch sind,
mit Ausnahme ihrer Auftriebsmassen, die einer bestimmten Wahrscheinlichkeitsverteilung folgen.
Mit Hilfe der statistischen Mechanik bilden wir das massenpolydisperse System auf ein effektives
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monodisperses System ab. Die Abbildung ist im Rahmen der lokalen Gleichgewichtsannäherung
der Sedimentationspfadtheorie exakt. Wir wenden die Theorie auf massenpolydisperse kolloidale
Systeme aus Kugeln und Stäbchen an und zeigen, dass Massenpolydispersität in Experimenten
nahe der Dichtegleichheit von Teilchen und Lösungmittel eine wichtige Rolle spielen kann.
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1 Introduction

This Thesis addresses the equilibrium behaviour of colloidal mixtures under gravity. We study the
formation of layers of different bulk phases that occur due to the interplay between gravity and
bulk phenomena, and investigate the dependence of the sequences of layers on the composition of
the mixture and the height of the colloidal sample. Furthermore, we examine the influence of
mass-polydispersity on colloidal systems under gravity by extending sedimentation path theory
from binary mixtures to mass-polydisperse suspensions.

In this first introductory chapter, we give a brief account of the phenomenology of colloidal
mixtures of anisotropic particles and theoretical methods for the description and investigation of
colloidal suspensions.

1.1 Colloidal particles

Colloids are particles on the scale of nano- to micrometer suspended in a solvent which is usually a
fluid such as water or organic solvents. Colloidal particles are large compared to the characteristic
atomic length scale and can therefore by treated classically. On the other hand, colloidal particles
are small compared to the characteristic length scale of granular particles and are therefore subject
to thermodynamic fluctuations due to random collisions with the solvent molecules. This random
motion of colloidal particles was first observed by Brown [5] in 1827, and the phenomena was
later explained by Einstein [6] and Sutherland [7] in 1905. Due to the separation of length scales
between the colloidal particles and the solvent particles, a vast number of solvent particles collide
at any given time from all directions with the colloidal particles. The sum of all these collisions
gives rise to a quasi-random force on the colloidal particles.

Colloids are omnipresent in our everyday life, for instance in the form of gels, emulsions,
such as milk or hand cream, pigmented ink or clay. Due to their size, colloidal particles can be
experimentally observed using optical confocal microscopy [8, 9]. Colloids can be used as a
classical model for atoms since under certain circumstances they behave like “big atoms” [10] and
give direct insight into the self-assembly of materials via computer simulations or experimentally.

Theoretically, colloids can be modeled with a wide range of different interparticle interaction
potentials. A notable example is the hard core potential [11].

With hard core interparticle interaction, particles are forbidden to overlap. Otherwise the
particles do not interact. Systems of hard particles are athermal since there is no finite interaction
energy scale, and are thus purely entropically driven. Hard interaction potentials are well studied
model colloidal systems [11] and are useful to separate the effect of mutual exclusion of the
particles from that of long range interaction.
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1.1.1 Anisotropy

Many colloidal particles are anisotropic in either their shape, e.g. rods, or their interaction potential,
e.g. patchy colloids. An illustrative selection of scanning electron microscope images of experi-
mental colloidal spheres, spheroids, rods and rod-like particles is presented in Fig. 1.1. Anisotropic
colloidal particles show rich bulk phenomenology with several liquid-crystalline phases. In ma-
terial science, nanoparticles such as metal nanorods, nanowires, nanoplates, nanocubes and
nanocages are used to engineer the self-assembly of functional materials [12]. In biology, there
are filamentous viruses, which resemble hard rod-like colloidal particle [13]. Another example
for shape anisotropic colloidal particles in nature is the aqueous suspensions of clay [14]. The
existence of a liquid-crystalline order of the plate-like clay was demonstrated using polarized-light
microscopy and small-angle X-ray scattering [15, 16].

SEM images of amorphous polystyrene
spheres (a) and spheroids (b–d) of various as-
pect ratios. Insets show transmission images
(TEM). Adapted from Ref. [17] published un-
der CC-BY license.

SEM images of anisotropic silica particles with different
1-heptanol/ethanol mixing ratios (v/v): (a) 3:8, (b) 4:7,
(c) 5:6, (d) 6:5, (e) 7:4, (f) 8:3. Adapted from Ref. [18]
published under CC-BY-NC license.

Figure 1.1: Scanning electron microscope (SEM) images of isotropic and anisotropic experimental
colloidal particles.

For technical applications, various types of anisotropic colloidal particles are of special interest.
This includes shape anisotropy, such as rods, plates and wires, and anisotropic interparticle
interaction potentials, such as electric or magnetic dipoles [19–22].

Most applications of liquid crystals have in common that they exploit the ability of anisotropic
particles to form spatially and/or orientationally ordered phases. Hard anisotropic particles are
purely entropically driven, thus the transition into ordered phases is due to an increase in the
particle concentration (lyotropic liquid crystal). The formation of ordered phases is a balance
between orientational and positional entropy. In very dilute systems, the anisotropic particles are
free to move and rotate, and particles infrequently interact. The system forms then a homogeneous
isotropic (I) phase with every position and orientation of the particles being equally likely,
see Fig. 1.2(a). In denser systems, the anisotropic particles are packed more closely together. If
the particles were randomly oriented they would interfere with each other and positional freedom
and therefore entropy would drastically decrease. The particles would essentially be stuck. To
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Figure 1.2: Schematics of a selection of the different liquid crystalline phases formed by
anisotropic particles: isotropic (I), nematic (N), smectic-A (SmA), columnar (C),
crystal AAA, ABAB and ABC. The local director is indicated by the vector 𝒏. The
planes in which the system is ordered are marked by dashed lines.

increase their positional entropy, the particles have to roughly align themselves with each other
along a common direction, known as the director, in order to pack more efficiently. This decreases
the orientational entropy in favour of an increase in positional entropy. For high enough particle
concentration this trade-off is beneficial to the overall entropy of the system and the particles
transition into the nematic phase. The nematic (N) phase exhibits orientational order (the particles
are roughly aligned) but not positional order (particles are randomly positioned without overlaps),
see Fig. 1.2(b). At even higher concentrations anisotropic particles can develop, in addition to
orientational order, positional order in one or two spatial directions, depending on their shape.
Prolate particles, such as rods tend to transition into a smectic phase with order in one dimension
(1D) since particles form layers. If the layers are perpendicular to the director, the phase is called
smectic-A (SmA) [see Fig. 1.2(c)]. Other configurations like the Sm-C, in which the direction is
not perpendicular to the layers are also possible. Within the 1D layers of a smectic phase there
is no positional order. Oblate particles, such as plates or disk tend to form columnar phases, in
which particles arrange in columns along the director, see Fig. 1.2(d). At higher concentration the
particles can develop crystalline phases, which are ordered in all three spatial dimensions. Several
different crystalline phases exist. For example, with the layers of particles aligned (particle on
top of particle) like in AAA phase, or with the layers shifted with respect to each other, like in a
ABAB or ABC phase, see Fig. 1.2(e-f).

Which of these phases can be observed in a system of colloidal particles depends on their
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shape. Thin hard spherocylinders with width-to-length aspect ratio 1:10 for instance exhibit
I-N-SmA-AAA-ABC transitions with increasing concentration, whereas for aspect ratio 2:5 the
sequence is I-SmA-ABC [23]. Moreover, there exist numerous other liquid crystal phases, such
as biaxial nematic, cubatic, cholesteric [24], blue phases [25], several other smectic and crystal
phases [26], which we do not cover here, since they do not emerge in the colloidal systems that
we study in the following. We refer the read to Ref. [27] for a detailed description of mesophases
in liquid crystalline systems.

Although in this Thesis we focus on hard shape-anisotropic colloidal particles, there is a large
field of colloids which are anisotropic in their soft interparticle interaction potential such as e.g.
patchy colloids [28, 29]. Patchy colloidal particles are anisotropically patterned with attractive
interaction sites, modified geometry (such as indentations), or both. Patchy particles can have
different types of patches and also different numbers of patches. Due to the patches, the particles
can form chains with different junctions and thus show interesting phase behaviour with reentrant
phases [30] and formation of networks [31].

1.1.2 Polydispersity

Systems of colloidal particles are always polydisperse to a certain degree, specially those formed
by natural colloids. Polydispersity means that the colloidal particles in the system have different
shape or size, or in general different interparticle interactions. Examples are systems of hard
colloidal spheres with varying diameter, and rods or plates with varying length-to-diameter ratios.
In colloidal experiments some degree of polydispersity is inevitable [32, 33]. Due to synthesis,
the colloidal particles have never identical shape and size [34].

Polydispersity has a strong effect on the phase behaviour of colloidal suspensions. It was shown
that the crystal phase of hard spheres ceases to be stable beyond a critical degree of polydispersity
of the order of 20% [35]. The crystal nucleation in polydisperse hard sphere colloids is suppressed
due to increase of the surface free energy was observed [36]. For a system of hard spherocylinders
in the limit of infinite aspect ratio and polydispersity in the length of the particles, it was found
that the smectic phase becomes increasingly destabilized up to a degree of polydispersity above
which the smectic phase is no longer stable [37]. In polydisperse mixtures of uniaxial rodlike
and platelike hard parallelepipeds, polydispersity stabilizes the biaxial phase compared to the
corresponding monodisperse mixture [38]. In a monolayer suspension of platelets with a high
degree of polydispersity in the diameter, an increase in the isotropic-nematic transition packing
fraction as well as the formation of a smectic phase was observed [39]. Thus it is important
to understand the effect of polydispersity on colloidal systems in order to interpret colloidal
experiments correctly.

In sedimentation-diffusion-equilibrium experiments an additional aspect of polydispersity is
revealed. Not only do particles in polydisperse systems have different sizes, but as a consequence
they also have different buoyant masses, which affects their behavior under gravity. This makes it
more challenging to interpret experiments and to uncouple these two aspects of size polydispersity
under gravity. In Ref. [3] we design a model with particles which are only polydisperse in their
buoyant masses but not in their size or shape (mass-polydispersity). This circumvent the coupling
between size- and mass-polydispersity and tries to isolate the effects of gravity on polydisperse
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systems. A mass-polydisperse colloidal suspension can experimentally realized by e.g. core-shell
colloids with differently sized cores and shells, but the same overall particle size.

1.2 Sedimentation

On Earth the gravitational field is omnipresent in experiments. To minimize the effective influence
of gravity, experiments can be done in a reference frame accelerated by gravity. For instance,
short time microgravity experiments in free fall towers (< 9 s), during parabolic flights (∼ 20 s)
or in sounding rockets (∼ 15min) [40, 41]. Longer microgravity experiments of up to days can
be carried out on the ISS [42]. All other experiments in colloidal science on Earth are inevitably
subject to gravity.

Whether or not gravity has a significant influence on sedimentation experiments can be de-
termined by comparing the gravitational length with the length scale of the experiment. The
gravitational length is the characteristic length scale by which a particle is lifted due to thermal
fluctuations. Comparing the change in potential energy due to lifting one particle a distance 𝜉 in
the gravitational field with the thermodynamic energy scale 𝑘B𝑇 , leads to the gravitational length

𝜉 =
𝑘B𝑇
𝑚𝑔

. (1.1)

Here, 𝑔 is the gravitational acceleration, 𝑘B is the Boltzmann’s constant, 𝑇 is absolute temperature
and 𝑚 is the buoyant mass of the colloidal particle. For molecules, 𝑚 is simply the molecular
mass.

In molecular systems the gravitational length is typically of the order of meters to kilometers in
Earth’s gravitational field and therefore much larger than standard experimental setups. Thus,
the effect of gravity is negligible in sedimentation of molecular systems which are dominated
by the free diffusion of the molecules rather than by sedimentation under gravity. For colloids,
however, the gravitational length is often of the order of micro- to centimeter and it is therefore
comparable to the experimental length scales. Thus, gravity cannot be ignored and we observe
the settling of colloidal particles towards the bottom of the experiments. For macroscopic objects
of sizes larger than millimeters, the gravitational length is below nanoscopic. As we are used to
from everyday objects, they do not freely diffuse in air or water, but either settle under gravity or
float at an interface. Thermal fluctuations do not play any role for macroscopic objects.

In 1926 Jean Baptiste Perrin received the Nobel Prize in physics for discovering the balance
between diffusion of particles in the solvent and settling towards the bottom under gravity [43].
Thus, in equilibrium there is a buoyant mass density gradient with decreasing mass density towards
the top of the solution, the so-called sedimentation-diffusion-equilibrium.

This mass density gradient is for instance exploited in differential centrifugation analysis to
separate the components of a mixture. As discussed, for molecular mixtures the gravitational
length is larger than the vertical height of the experimental test tube and hence no significant
separation between molecules of different masses can be achieved. Thus, ultra-centrifuges, which
are capable of generating acceleration fields of up to 106𝑔, must be used. The field was pioneered
by Theodor Svedberg, who received the Nobel Prize in chemistry in 1926, the same year as Perrin,
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for his use of ultracentrifuges in the research on colloids and proteins [44, 45].
For many colloidal suspensions however, Earth’s gravity is sufficient to observe density gra-

dients in cuvettes with heights of centimeters. Colloidal systems can transition from isotropic
or disordered phases into ordered phases at higher densities. Thus due to the density gradient,
a vertical stacking of layers of different bulk phases, the so-called stacking sequence, can be
observed in the vessel (see an example in Fig. 1.3), using for instance crossed polarizers in case of
anisotropic colloids. The stacking of several phases under gravity does not imply their coexistence
in bulk. There, phases spontaneously separate without any external field. The formation of stack-
ing sequences under gravity arises from a delicate interplay between gravity and bulk behavior.
Perrin showed in his pioneering work [43] that in sedimentation experiments, the density profile
can provide the full equation of state for monocomponent systems. This was used to study the
equation of state in both isotropic [46, 47] and anisotropic [48, 49] colloidal systems.

Figure 1.3: Sedimentation experiments on a colloidal mixture of rods and plates (pictures taken
between crossed polarizers) by van der Kooij and Lekkerkerker [50]. The liquid
crystal phases found in the samples are isotropic (𝐼), rod-rich nematic (𝑁r), plate-rich
nematic (𝑁p), presumably smectic (𝑆) and columnar (𝐶). The stacking sequences
from top to bottom of the samples as reported in Ref. [34] are given below each sample.
Adapted with permission from Ref. [34], Copyright 2000 American Chemical Society.

In mixtures, gravity is especially important since there are two or more, in general different,
gravitational lengths. Thus, it is crucial to disentangle the effects of gravity from those due to
bulk phenomena in order to understand sedimentation in colloidal mixtures. There is a rich
phenomenology of vertical stacked layers of different bulk phases in mixtures. For example,
up to six different phases were observed in mixtures of positively charged colloidal plates and
nonadsorbing polymers [51]. In mixtures, the same phases can reenter the stacking sequence, e.g.
a floating nematic layer between two isotropic layers occurs in platelet-sphere mixtures [52]. The
iconic experiments on colloidal mixtures of plates and rods by van der Kooij and Lekkerkerker [34,
50] reported the occurrence of stacking sequences with up to five bulk phases, including isotropic,
nematic, smectic and crystalline phases. In binary mixtures of patchy colloids, twenty different
stacking sequences were found and the size of the particles was identified as a control parameter
to influence the stacking sequence under gravity [53]. The effects of the sample height on the
stacking sequence was investigated by Geigenfeind and de las Heras [54] in mixtures of patchy
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particles using sedimentation path theory. The height was identified as a vital control parameter
in sedimentation-diffusion-equilibrium of colloidal mixtures. In binary mixtures of thick and
thin hard rods, the occurrence of an isotropic layer sandwiched between two nematic layers was
observed and up to sixteen distinct stacking sequences, including several with five phases, were
found [55]. Savenko and Dijkstra investigated hard spherocylinders with a aspect ratio of 5.0
in a semi-infinite system under gravity and compared the stacking behavior with Monte Carlo
simulations [48]. Sedimentation in a binary mixture of hard tetramers and hard spheres was
proposed as a route to colloidal photonic crystal fabrication of an analogue of the Laves phase [56,
57].

1.3 Theoretical treatments of colloidal systems

We provide next the theoretical foundation used in our analysis for sedimentation-diffusion-
equilibrium experiments and our formulation of sedimentation path theory for mass-polydisperse
systems under gravity.

1.3.1 Sedimentation Path Theory

In the following we discuss how to incorporate the effect of gravity into an already existing bulk
theory. To achieve this we use a local equilibrium approximation, which assumes that every
horizontal slice at the sedimented sample at elevation 𝑧 can be described by a bulk equilibrium
system with the same packing fractions as the slice in the sedimenting system. This approximation
is accurate if all correlation length are small compared to the gravitational lengths of every species.
This is the case in many colloidal systems where the gravitational length is often of the order of
millimeter. Thus, we can couple every slice in sedimentation with the aforementioned bulk theory
via a local chemical potential [58]

𝜇𝑖(𝑧) = �̄�𝑖 − 𝑚𝑖𝑔
(

𝑧 − ℎ
2

)

, (1.2)

for each species 𝑖with buoyant mass𝑚𝑖. Here �̄�𝑖 is the chemical potential of species 𝑖 in the middle
of the sample (𝑧 = ℎ∕2), ℎ is the height of the sample (0 ≤ 𝑧 ≤ ℎ) and 𝑔 is the gravitational
acceleration. The average packing fraction �̄�𝑖 of species 𝑖 over the whole sample is controlled by
�̄�𝑖 that can also be understood as the chemical potential of species 𝑖 in the absence of gravity.

Binary mixtures

In binary mixtures, i.e. 𝑖 ∈ {1, 2}, (and also in multicomponent mixtures) we can eliminate the
dependency of 𝜇𝑖(𝑧) on 𝑧 in Eq. (1.2). We obtain [58]

𝜇2(𝜇1) = 𝑠𝜇1 + 𝑎, (1.3)
which is the equation of a straight line in the plane of 𝜇1 and 𝜇2, with a slope given by the buoyant
mass ratio 𝑠 = 𝑚2∕𝑚1 = 𝜉1∕𝜉2 and intercept 𝑎 = �̄�2 − 𝑠�̄�1. Thus, we conclude that we can
effectively describe sedimentation-diffusion-equilibrium in colloidal mixtures by straight segments
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Figure 1.4: (a) Model for a bulk phase diagram in the plane of chemical potentials of the two
species, 𝜇1 and 𝜇2. The bulk binodal (black-solid line) between phases 𝐴 and 𝐵 ends
at a critical point (empty circle). The sedimentation paths are represented by segments
of straight lines. The gray path that crosses the binodal corresponds to a stacking
sequence 𝐴𝐵 (from top to bottom, indicated by the grey arrow), as schematically
depicted. Examples of sedimentation paths that (i) either start (red) or end (yellow) at
the binodal, (ii) paths tangent (blue) to the binodal, and (iii) paths crossing (orange) the
critical point. This sedimentation paths form the boundaries between different stacking
sequences. The stacking sequence can be altered by an infinitesimal displacement of
any of such sedimentation paths. (b) Corresponding stacking diagram in the plane of
average chemical potentials �̄�1 and �̄�2 with colored regions for the different stacking
sequences. The boundary lines between sequences are the sedimentation binodals of
type I (solid lines) or type II (dotted-blue line), and the terminal lines (dashed-orange
line). Adapted from Ref. [1].

of lines, parameterized by the elevations 𝑧, in the plane of chemical potentials. Accordingly, we
call these line segments the sedimentation paths.

If we know the bulk phase diagram in the plane of chemical potentials of a binary mixture,
then we also know for each point (𝜇1, 𝜇2) the stable bulk phase. Each time the sedimentation path
crosses a bulk binodal in the plane of chemical potentials, the sedimented system undergoes a
phase transition and the value of the parameter 𝑧 at which the crossing occurs is the elevation
at which the system develops an interface in the sample. The stacking sequence of the system,
i.e. the order in which the layers appear from top of the sample to the bottom, can be read off the
sedimentation path by noting which phase regions the path crosses in the bulk phase diagram.
Sedimentation paths that pass through, e.g. a triple or critical point, or sedimentation paths that
do not cross, but touch the bulk binodal are special. Only a slight variation in either the position 𝑎
or the slope 𝑠 of the sedimentation path can lead to the path crossing the binodal and therefore
changing the stacking sequence.

There are three types of special sedimentation paths which form the three types of sedimentation
binodals [54], see Fig. 1.4(a). The first type of special sedimentation paths are those which either
start or end at a bulk binodal (red and yellow paths in Fig. 1.4) and constitute the sedimentation
binodal of type I. Sedimentation binodals of type II are formed by sedimentation paths tangent to
a bulk binodal (blue path in Fig. 1.4). Lastly, sedimentation paths that cross an ending point of a
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binodal, e.g. a triple or a critical point (orange path in Fig. 1.4) form the so-called terminal lines.
All these sedimentation binodals constitute the stacking diagram which is analogue to the

bulk phase diagram, but for stacking sequences instead of bulk phases. Since stacking sequences
consist of the vertically arranged sequences of phases, the stacking diagram can be computed,
within the local equilibrium approximation, from the bulk phase diagram. Just like the bulk phase
diagram, the stacking diagram can be represented in different planes. One representation for the
stacking diagram of a binary mixture is in the plane of average chemical potentials �̄�1 and �̄�2.
We obtain it by indicating the midpoint (�̄�1, �̄�2) of each of the special paths of type I and II, and
terminal lines, as discussed above, in a diagram. The lines we obtain separate different stacking
sequences in the plane of �̄�1 and �̄�2 for fixed buoyant masses 𝑚1, 𝑚2 and total system height ℎ.
By computing the average packing fractions �̄�1 and �̄�2 for each species along these special paths
we can transform the stacking diagram into the plane of average packing fractions. The plane
of �̄�1 and �̄�2 is more relevant for experimentalists, since they can directly prepare solutions with
given particle concentrations [59].

Mass-polydisperse systems

Besides binary mixtures, we also consider systems with a continuous distribution of buoyant
masses as described by the parent distribution 𝑓P(𝑚). That is, the probability of finding a particle
with a buoyant mass in the range 𝑚 to 𝑚 + d𝑚 in the system is given by 𝑓P(𝑚) d𝑚. Analogous to
Eq. (1.2), the local chemical potential at elevation 𝑧 for particles with buoyant mass 𝑚 is then
given by

𝜇𝑚(𝑧) = 𝜇0𝑚 − 𝑚𝑔𝑧, (1.4)
here 𝜇0𝑚 is the chemical potential of the species with buoyant mass 𝑚 at elevation 𝑧 = 0. The
set of constant offsets 𝜇0𝑚 in 𝜇𝑚(𝑧) is a priori unknown and must be determined via an iterative
numerical procedure to match the prescribed parent distribution 𝑓P(𝑚) and average density across
all species. The latter is given by

�̄� = 1
ℎ ∫

ℎ

0
d𝑧 ∫ d𝑚𝜌𝑚(𝑧). (1.5)

Here 𝜌𝑚(𝑧) is the density profile of particles with buoyant mass 𝑚 along the vertical axis 𝑧.
Again, we treat the system using locally the equilibrium approximation, which assumes that each

horizontal slice is a bulk equilibrium system. For a single horizontal slice, the ideal contribution
to the Helmholtz free energy for a continuous distribution of different particles is exactly known

𝐹 id[𝜌𝑚] = 𝑘B𝑇 ∫ d𝑚𝜌𝑚
(

ln
(

𝜌𝑚
)

− 1
)

. (1.6)

More details on Density Functional Theory (DFT) are given in Section 1.3.2. The expression in
Eq. (1.6) includes the entropy of mixing between the particles with different buoyant masses 𝑚.
Furthermore, we exploit that the interparticle interaction is independent of the buoyant mass of
the particles. Thus, the excess contribution to the free energy is only a functional of the density
across all buoyant masses, 𝜌, and not a functional of the individual density for each buoyant
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mass 𝜌𝑚. Hence, the excess free energy 𝐹 exc satisfies the relation
𝐹 exc[{𝜌𝑚}] = 𝐹 exc[𝜌], (1.7)

where the right hand side is the free energy functional of a one-component system with density 𝜌.
This insight enables us to derive, within the local equilibrium approximation, the exact expression
of the effective chemical potential of mass-polydisperse suspension in sedimentation [3]

𝜇eff (𝑧) = 𝑘B𝑇 ln
(

∫ d𝑚𝑒𝛽(𝜇0𝑚−𝑚𝑔𝑧)
)

, (1.8)

at elevation 𝑧 from the individual chemical potentials given according to Eq. (1.4). Here, 𝛽 =
1∕(𝑘B𝑇 ). The system at a given elevation 𝑧 behaves like a monodisperse bulk system with
chemical potential equal to 𝜇eff (𝑧). The density of the system at elevation 𝑧 across all buoyant
masses,

𝜌(𝑧) = 𝜌EOS(𝜇eff (𝑧)), (1.9)
is given by the bulk equation of state (EOS) 𝜌EOS(𝜇) and the effective chemical potential in
Eq. (1.8). The density of particles with buoyant mass 𝑚 at elevation 𝑧 follows as

𝜌𝑚(𝑧) = 𝜌(𝑧)𝑒𝛽(𝜇0𝑚−𝑚𝑔𝑧−𝜇eff (𝑧)). (1.10)
For a detailed derivation see Section II of Ref. [3] as reproduced below in Section 4.3.

Using Eqs. (1.8) to (1.10), we are able to obtain the mass resolved vertical density profiles
𝜌𝑚(𝑧) under the influence of a gravitational field from a bulk equation of state 𝜌EOS(𝜇) in the
absence of gravity. The type of particle and their interaction only enters into our theory via the
bulk equation of state. Our theory for mass-polydisperse systems can thus be applied to any type
of colloidal particles and any method of obtaining an EOS.

To construct the stacking diagram for mass-polydisperse systems we follow a similar route as
in the case of binary mixtures laid out above in Section 1.3.1. There are two modifications we
need to consider. First, since the reference bulk system is monodisperse, two phases coexist at a
single value of the chemical potential instead of along a binodal curve as it is the case in mixtures.
Second, the sedimentation path is no longer a segment of a straight line, but in general a curve
𝜇eff (𝑧), see Eq. (1.8). The other ideas regarding the construction of the stacking diagram still
apply. To construct the stacking diagram in the plane of sample height ℎ and average packing
fraction �̄� for a given parent distribution 𝑓P(𝑚), we fix ℎ and find the corresponding �̄� such that
the sedimentation path 𝜇eff (𝑧) either starts (𝑧 = 0), ends (𝑧 = ℎ), or is tangential to the bulk
binodal (i.e. the chemical potential of coexistence), see Fig. 1.5(a). From that we obtain two or
three points (�̄�, ℎ) in the stacking diagram. (If there is not tangent to 𝜇eff (𝑧) within 0 ≤ 𝑧 ≤ ℎ
there are only two distinct points.) We repeat this procedure for every sample height ℎ that we are
interested in and every phase transitions that the system exhibits in bulk to fill-in the remaining
stacking diagram. These sets of points form the sedimentation binodals, see Fig. 1.5(b). As in the
case of binary mixtures, there are again three types of sedimentation binodals. The ones formed
by paths that start, end or are tangential to the bulk binodal. Thus, for each phase transition there
are up to three sedimentation binodals, which makes the stacking diagram particularly rich for
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Figure 1.5: Construction of a stacking diagram for an illustrative mass-polydisperse colloidal
systems. (a) Scaled sedimentation paths 𝛽𝜇eff (𝑧) as a function of the elevation 𝑧∕ℎ.
The coexistence chemical potentials between phases𝐴 and𝐵, and𝐵 and𝐶 are marked
by solid horizontal lines. The sedimentation paths that end, start, and are tangent to
the bulk binodals are indicated with solid-, dashed- and dotted-lines, respectively. (b)
Corresponding stacking diagram in the plane of average packing fraction �̄�∕𝜂cp and
sample height ℎ∕𝜉. The position of the six sedimentation paths in (a) is marked in (b)
using the corresponding labels 1 to 6. The sedimentation binodals have the same line
style as the sedimentation paths they represent. Adapted from Ref. [3].

systems with multiple phase transitions in bulk.

1.3.2 Theoretical description of bulk phenomena

In the previous sections, we showed how to incorporate gravity on top of an existing bulk theory
to study sedimentation-diffusion-equilibrium in binary mixtures and mass-polydisperse colloidal
systems. What remains to be dealt with is the theoretical description of bulk, i.e. a infinitely
large system (in the thermodynamic limit) without any external fields, such as gravity. For many-
body systems of interacting particles with a large number of particles this is a non-trivial task.
The position and the momentum of each particle constitute to 2𝐷𝑁 degrees of freedom for a
𝐷-dimensional system with 𝑁 isotropic particles. In practice, we are unable to solve the coupled
equations of motion of 2𝐷𝑁 variables. Fortunately, there exist several theoretical approaches to
describe bulk systems.

Bulk equation of state

Using a known analytic equation of state (EOS) is the simplest approach. The equation of
state can be obtained for example by liquid state integral equation theory [60–62], computer
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simulations [63–65] and using empirical expressions [66–68].
We chose this route in Ref. [2] and use the Hall EOS [69] for hard spheres. It describes the

liquid
𝑧liquid =

1 + 𝜂 + 𝜂2 − 0.67825𝜂3 − 𝜂4 − 0.5𝜂5 − 1.7𝜂6

1 − 3𝜂 + 3𝜂2 − 1.04305𝜂3
(1.11)

as well as the crystalline phases

𝑧crystal =
1 + 𝜂 + 𝜂2 − 0.67825𝜂3 − 𝜂4 − 0.5𝜂5 − 6.028𝑒𝜁 (7.9−3.9𝜁 )𝜂6

1 − 3𝜂 + 3𝜂2 − 1.04305𝜂3
(1.12)

of hard spheres. Here, 𝑧 = 𝛽𝑃∕𝜌 is the compressibility factor, where 𝑃 is the osmotic pressure, 𝜌
is the bulk density, 𝜂 is the packing fraction of spheres, and 𝜁 = 𝜂cp − 𝜂 with 𝜂cp =

√

2𝜋∕6 the
close packing fraction of hard spheres. Hall’s EOS [69] is an empirical EOS with coefficients
chosen to fit data from computer simulations. Nevertheless, it is similar to other well known
analytic EOS for hard sphere such as those by Carnahan and Starling [70], and by Thiele [71],
which are not empirical.

Hall’s EOS is formulated in terms of pressure as a function of packing fraction. To convert it
to packing fraction as a function of chemical potential, as it is used in Eq. (1.9), see Ref. [72].
The resulting state function is shown in Fig. 1.6.

Figure 1.6: Packing fraction 𝜂 relative to close
packing 𝜂cp as a function of scaled
chemical potential 𝛽𝜇 for hard spheres
according to Hall’s EOS [69]. The liq-
uid (L) to crystal (S) phase transition is
shifted to 𝛽𝜇 = 0 without loss of gen-
erality.

Density Functional Theory

Another widely used approach to describe a bulk system is to obtain the bulk equation of state via
Density Functional Theory (DFT). Since we are not interested on the detailed dynamics of every
single particle in the system, but only the average behaviour of the inhomogeneous system, we
resort to a description of the statistical system based on a one-body quantity, the density profile,
which is a function of only a single positional coordinate in 𝐷 dimensions for isotropic particles.
With anisotropic particles additional orientational variables characterizing the orientation of the
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particle are required.
DFT was developed to find the equilibrium density profile of a many-body system by Kohn,

Sham and Hohenberg [73, 74] in quantum systems for zero temperature in 1964 and 1965. The
theory was extended to finite temperature by Mermin [75] in the same year. Evans introduced
DFT for classical inhomogeneous many-body systems [76] in 1979. DFT is usually formulated in
the grand canonical ensemble with its thermodynamic variables being temperature 𝑇 , volume 𝑉
and chemical potential 𝜇. The central quantity of DFT is the one-body density profile, which for
isotropic particles is

𝜌(𝒓) =

⟨ 𝑁
∑

𝑖
𝛿(𝒓 − 𝒓𝑖)

⟩

, (1.13)

where 𝒓𝑖 is the position of particle 𝑖 and ⟨.⟩ is the grand canonical average. The grand canonical
potential Ω([𝜌]; 𝑇 , 𝑉 , 𝜇) as a functional of the density profile is then given by

Ω[𝜌] = 𝐹 [𝜌] + ∫ d𝒓 𝜌(𝒓)(𝑉ext(𝒓) − 𝜇). (1.14)

Here 𝐹 [𝜌] is the Helmholtz free energy functional and 𝑉ext(𝒓) is an external potential. DFT states
that Ω[𝜌] follows a variational principle and that it is minimal at the equilibrium density 𝜌0(𝒓).
This can be formally expressed by the Euler-Lagrange equation

𝛿Ω[𝜌]
𝛿𝜌(𝒓)

|

|

|

|𝜌=𝜌0
= 0, (min), (1.15)

associated to the functional. Furthermore, Ω[𝜌0] yields the value of the equilibrium grand
canonical potential Ω0, i.e.,

Ω[𝜌0] = Ω0. (1.16)
Inserting Eq. (1.14) into the minimization principle, Eq. (1.15), yields the Euler-Lagrange equation
for the free energy functional

𝛿𝐹 [𝜌]
𝛿𝜌(𝒓)

|

|

|

|𝜌=𝜌0
= 𝜇 − 𝑉ext(𝒓). (1.17)

The intrinsic Helmholtz free energy 𝐹 [𝜌] can be split into an ideal contribution 𝐹 id[𝜌] and an
excess contribution 𝐹 exc[𝜌]. The ideal contribution is the free energy of an ideal gas with the
same density 𝜌(𝒓) as the interacting system, given exactly by

𝐹 id[𝜌] = 𝑘B𝑇 ∫ d𝒓 𝜌(𝒓)
(

ln
(

Λ𝐷𝜌(𝒓)
)

− 1
)

, (1.18)

with the thermal de Broglie wavelength Λ =
√

2𝜋ℏ2∕(𝑚𝑘B𝑇 ), reduced Planck constant ℏ and
particle mass 𝑚. For an ideal system, inserting the ideal free energy in Eq. (1.18) into the
Euler-Lagrange Eq. (1.17) for the free energy yields

𝜌(𝒓) = Λ−𝐷 exp
(

𝛽(𝑉ext(𝒓) − 𝜇)
)

. (1.19)
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That is, the density of an inhomogeneous ideal gas in presence of an external field and in the
grand canonical ensemble.

For some systems with non-vanishing interparticle interaction , there exist exact expressions
for the excess free energy 𝐹 exc[𝜌], but generally 𝐹 exc[𝜌] is unknown and approximations are used.
An example for an exact expression is the one-dimensional system of hard rods of length 𝜎 where
𝐹 exc[𝜌] is exactly given by

𝐹 exc[𝜌] = −𝑘B𝑇 ∫ d𝑥 𝜌(𝑥)ln
(

1 − ∫

𝑥+𝜎

𝑥
d𝑥′ 𝜌(𝑥′)

)

, (1.20)

as shown by Percus [77]. We note that in Eq. (1.20) a weighted density in the form of

𝑛(𝑥) = ∫ d𝑥′𝑤(𝑥, 𝑥′)𝜌(𝑥′), (1.21)

where𝑤(𝑥, 𝑥′) is the weight function, appears. The concept of weighted densities was generalized
by Nordholm, Johnson, and Freasier for inhomogeneous hard sphere fluids in three dimensions in
the Weighted Density Approximation (WDA) [78]. In 1989 Rosenfeld proposed the Fundamental
Measure Theory (FMT) [79] for hard sphere fluids which uses as weight functions fundamental
geometrical measures of the spheres such as the volume, the surface area, and the radius. Although
FMT does not give the exact excess free energy for dimensions larger than one, it is the still the
state of the art approximation to 𝐹 exc[𝜌]. Nevertheless, for homogeneous phases the use of simpler
functionals, one of which we explore in the next section, can also give accurate results [80] and
correctly describe the topology of the bulk phase diagram [81].

Onsager Theory

To describe mixtures of anisotropic particles we need to generalize the one-body density to
𝜌(𝒓) → 𝜌𝑖(𝒓,𝝎) (1.22)

by introducing a dependence on the orientation of the particle, as given by the direction of the
unit vector 𝝎, and also on the species of the particle, labeled by the index 𝑖. Thus 𝜌𝑖(𝒓,𝝎) gives
the number of particles of species 𝑖 per infinitesimal volume and solid angle element at position 𝒓
and with orientation 𝝎, and it is normalized to the total number of particles of species 𝑖. That is

∫ d𝒓 ∫ d𝝎 𝜌𝑖(𝒓,𝝎) = 𝑁𝑖. (1.23)

For a multicomponent mixture of anisotropic particles, the ideal free energy is given exactly by

𝛽𝐹 id[{𝜌𝑖}] =
∑

𝑖 ∫ d𝒓 ∫ d𝝎 𝜌𝑖(𝒓,𝝎)
[

ln
(

𝜌𝑖(𝒓,𝝎)Λ3
𝑖
)

− 1
]

, (1.24)

where the sum runs over all species and Λ𝑖 is the thermal wavelength of species 𝑖. Since we
consider here only phases without positional order, we integrate over all positions 𝒓 and introduce
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the orientational distribution function 𝜓𝑖 of species 𝑖 via 𝜌𝑖(𝒓,𝝎) = 𝜌𝑖𝜓𝑖(𝝎) and normalization
∫ d𝝎𝜓𝑖(𝝎) = 1. Hence, 𝜌𝑖 is the bulk number density of species 𝑖. We obtain

𝛽𝐹 id[{𝜌𝑖}]
𝑁

=
∑

𝑖
𝑥𝑖 ∫ d𝝎𝜓𝑖(𝝎)

[

ln
(

𝜓𝑖(𝝎)𝜌𝑖Λ3
𝑖
)

− 1
]

, (1.25)

where 𝑁 is the total number of particles in the system and 𝑥𝑖 is the composition of species 𝑖.
Onsager showed that for hard particles the excess free energy functional 𝐹 exc[{𝜌𝑖}] can be

approximated via the excluded volume between two particles as [82]
𝛽𝐹 exc[{𝜌𝑖}]

𝑁
= 1

2
𝜌
∑

𝑖,𝑗
𝑥𝑖𝑥𝑗 ∫ d𝝎 ∫ d𝝎′ 𝜓𝑖(𝝎)𝜓𝑗(𝝎′)𝑉 ex

𝑖,𝑗 (𝝎,𝝎
′), (1.26)

with total density 𝜌 =
∑

𝑖 𝜌𝑖 and 𝑉 ex
𝑖,𝑗 (𝝎,𝝎

′) being the excluded volume between particles of
species 𝑖 and 𝑗 with orientations 𝝎 and 𝝎′, respectively. The excluded volume between two
particles is the volume that is inaccessible to one particle due to the presence of the other particle,
see Fig. 1.7. For some particles shapes analytic expressions for the excluded volume can be
obtained by geometrical considerations [83]. Monte Carlo simulations can also be used to obtain
accurate numerical estimates [84, 85].

Figure 1.7: Schematic of the excluded area for two
identical rectangles, labeled 𝑖 and 𝑗,
with relative orientations 𝜃 = 0 and
𝜃 > 0. This is the two-dimensional
analog to the excluded volume be-
tween two cylinders or two rectangular
cuboids. The excluded area depends on
the particle dimensions and the relative
orientation of the two particles.

In Refs. [1, 2], we model mixtures of rods and plates using hard cylinders for both species
to compare with the experiments by van der Kooij and Lekkerkerker [34, 50] on mixtures of
boehmite rods and gibbsite plates. The analytical expression for the excluded volume between
two cylinders 𝑖 and 𝑗 with diameters 𝑑𝑖, 𝑑𝑗 and lengths 𝑙𝑖, 𝑙𝑗 , respectively, reads [82, 83]

𝑉 ex
𝑖,𝑗 (𝜃) =

𝜋
4
(𝑙𝑖𝑑2𝑖 + 𝑙𝑗𝑑

2
𝑗 ) +

(𝜋
4
𝑑𝑖𝑑𝑗 + 𝑙𝑖𝑙𝑗

)

(𝑑𝑖 + 𝑑𝑗) sin 𝜃+
𝜋
4
(𝑙𝑖𝑑2𝑗 + 𝑙𝑗𝑑

2
𝑖 )| cos 𝜃| + (𝑙𝑖 + 𝑙𝑗)𝑑𝑖𝑑𝑗𝐸(sin 𝜃).

(1.27)

Here 𝜃 is the polar angle between the main axes of particles 𝑖 and 𝑗, 𝐸(sin 𝜃) is the elliptic integral
of the second kind

𝐸(sin 𝜃) = ∫

𝜋∕2

0
d𝜑

√

1 − sin2 𝜃 sin2 𝜑, (1.28)
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and 𝜑 is the relative azimuthal angle between particles 𝑖 and 𝑗. We use prolate cylinder to model
hard rods and oblate cylinders for hard disks in the following.

As shown by Parsons [86] and Lee [87], the original excess free energy expression in by
Onsager [82] can be improved upon replacing the prefactor 1∕2 in front of the second virial
coefficient in Eq. (1.26) by Ψ(𝜂), the excess free energy per particle of a reference system. Using a
system of hard spheres as a reference system and the corresponding equation of state by Carnahan
and Starling [70] yields

Ψ(𝜂) =
4 − 3𝜂

8(1 − 𝜂)2
. (1.29)

Here 𝜂 = 𝜌
∑

𝑖 𝑥𝑖𝑣𝑖 =
∑

𝑖 𝜂𝑖 is the total packing fraction across all species and 𝑣𝑖 is the particle
volume of species 𝑖. The rescaled 𝐹 exc[𝜌] improve substantially the agreement of the transition
densities compared to computer simulations [88]. In the low density limit (𝜂 → 0) the original
Onsager expression, based on the second virial coefficient, is recovered since Ψ(𝜂 → 0) = 1∕2.
The Parsons-Lee rescaling [86, 87] effectively replaces the virial coefficients higher than the
second coefficient by those of the reference system [11, 89, 90].

1.3.3 Phase coexistence and bulk phase diagrams

We are interested in the stacking behavior of mixtures under gravity. To use sedimentation
path theory to describe the sedimentation-diffusion-equilibrium of mixtures, we first need the
bulk phase diagram, as we discussed in Section 1.3.1. To construct the bulk phase diagram,
we need to find the points where two or more phases coexist in bulk. At phase coexistence,
thermal, mechanical, and chemical equilibrium must be satisfied. That is, the temperature, the
(osmotic) pressure and the chemical potential must be the same in all coexisting phases [91].
It is practical to work in a statistical ensemble which already has two of the three conditions
satisfied by construction. We choose the isothermal–isobaric (or Gibbs) ensemble and work at
fixed temperature and pressure in order to have thermal and mechanical equilibrium satisfied by
construction. From the Helmholtz free energy functional 𝐹 [𝜌] we then obtain the Gibbs free
energy 𝐺 per particle by

𝐺[𝜌]
𝑁

=
𝐹 [𝜌]
𝑁

+ 𝑃
𝜌
. (1.30)

In a binary mixture with 𝑁𝑖 particles of species 𝑖 ∈ {1, 2} and total number of particles 𝑁 =
𝑁1 +𝑁2, the chemical equilibrium can be expressed as a common tangent condition in the plane
of composition of the mixture 𝑥 = 𝑁1∕𝑁 and Gibbs free energy per particle 𝑔b = 𝐺∕𝑁 . Thus
two compositions 𝑥1 and 𝑥2 coexist if there is a common tangent to the function 𝑔b(𝑥) through
the points (𝑥1, 𝑔b(𝑥1)) and (𝑥2, 𝑔b(𝑥2)).

Repeating the common tangent construction for every pressure 𝑃 in a given range yields the
phase diagram in the plane of composition and pressure. From evaluating the common tangent at
𝑥 = 1 and 𝑥 = 0, we obtain the coexisting chemical potentials 𝜇1 and 𝜇2, respectively. For each
value of the pressure we obtain a point in the plane of 𝜇1 and 𝜇2, and thus the full phase diagram
in the plane of chemical potentials can be constructed.

We have summarized the main methods used in this Thesis from the theoretical treatment of
bulk binary mixtures, the incorporation of gravity using sedimentation path theory, and extensions
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to mass-polydisperse colloidal systems. Next, we give a summary of the publications that form
the core of this Thesis highlighting the phenomenology as well as the use of the theories and
methods described in this section.
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2 Overview of the publications

Figure 2.1: Relations between the four publications of this cumulative Thesis. In Refs. [1] and
[2], we use DFT to obtain the phase diagram for colloidal mixtures of plates and
rods, and plates and spheres, respectively, and sedimentation path theory to compute
the stacking sequences and the stacking diagram. In Refs. [3] and [4], we use mass-
polydisperse sedimentation path theory to treat a mass-polydisperse suspension of
hard spheres and spherocylinders, respectively, using preexisting analytic equations
of state.

This chapter gives an overview of the four publications contributing to this cumulative Thesis.
Our work is dedicated to the study of sedimentation-diffusion-equilibrium in suspensions of
colloidal particles under a gravitational field.

First, we start motivated by the iconic experiments on colloidal plate-rod mixtures by van der
Kooij and Lekkerkerker [34, 50] and reinterpret their findings in the light of sedimentation path
theory. We reproduce theoretically their results, but also compute the stacking diagram for the
experimental plate-rod mixture in the entire plane of particle concentrations, complementing
therefore their experimental study. Furthermore, we infer the topology of the bulk phase diagram
from four experimental samples reported by van der Kooij and Lekkerkerker [34]. That is, we
estimate the positions of the bulk binodals for the transition into columnar and smectic phases from
the experimental samples using the corresponding sedimentation paths in the plane of chemical
potential. We investigate the evolution of the stable layers in the samples with increasing height
for a given partial concentration, and find the introduction and subsequent disappearance of a
floating plate-rich nematic.
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Next, we solve the inverse problem, i.e. extracting microscopic properties of the colloids from
macroscopic images of sedimentation-diffusion-equilibrium experiments. Using sedimentation
path theory, we estimate the buoyant mass and concentration of the colloids in experiments of
a colloidal mixture of spheres and plates [52]. Solving the inverse problem helps in selecting
experimental interesting ranges of particle buoyant masses and colloidal concentration for future
sedimentation experiments. We study the effect of an inflection point in the bulk binodal on the
stacking diagram and find an 𝐼𝑁𝐼𝑁 stacking sequence with two floating layers.

Motivated by our study of the range of buoyant masses that can correspond to a single stack-
ing sequence in Ref. [2], we extend sedimentation path theory from binary mixtures to mass-
polydisperse colloidal systems with an arbitrary distribution of buoyant masses of the colloids.
Using statistical mechanics, we are able to map the mass-polydisperse system to an effective
monodisperse system with a non-linear local chemical potential in the vertical coordinate. From
theoretical considerations we are able to formulate constraints on the possible set of stacking
sequences. We find that the topology of the stacking diagram for systems close to density matching
is sensitive to mass-polydispersity. However systems far from density matching are insensitive to
mass-polydispersity. Although several effects in colloidal systems are due to polydispersity [35–
39], we conclude that for systems far from density matching the sedimentation behavior is nearly
unaffected by polydispersity in the buoyant mass. This helps to clarify the different roles that
polydispersity has in bulk and in sedimentation.

Last, we apply the extended sedimentation path theory to colloidal hard spherocylinders. To
study the effect of particle elongation on the sedimentation behavior, we compute the stacking
diagram for monodisperse and mass-polydisperse spherocylinders for different aspect ratios. We
find complex stacking sequences with up to seven layers and reentrant stacking sequences.

2.1 Gravity-induced phase phenomena in plate-rod colloidal
mixtures

In this publication [1], we revisit from the perspective of sedimentation path theory the iconic
sedimentation-diffusion-equilibrium experiments on colloidal plate-rod mixtures by van der Kooij
and Lekkerkerker [34, 50]. They found several complex stacking sequences, including one with
five layers of different bulk phases. Sedimentation path theory was introduced by de las Heras
and Schmidt [58] for binary mixtures and the underlying ideas are outlined in Section 1.3.1. It is
based on the concept of sedimentation paths, which are segments of a straight line in the plane
of chemical potentials. The bulk behavior of the binary mixture is treated by DFT and Onsager
theory with Parsons-Lee rescaling, as discussed in Section 1.3.2.

Through this approach we reinterpret the findings by van der Kooij and Lekkerkerker in
mixtures of plates and rods, arguably one of the best known experiments in this field. We are able
to quantitatively reproduce the stacking sequences that they observe in their cuvettes of isotropic,
nematic plate-rich and nematic rod-rich phases. We compute the stacking diagram in the plane of
chemical potential and also in the, experimentally relevant, plane of average colloidal packing
fractions for several sample heights. The stacking diagram predicts the stacking sequence for any
packing fraction of plates and rods, and helps to purposely design experiments with the goal of
investigation multi-layer stacking phenomena.
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Furthermore, we also address the inverse problem of inferring the bulk phase diagram using the
experimentally observed stacking sequences. As discussed in Section 1.2, in mono-component
systems, the bulk equation of state can be read off a single sedimentation-diffusion-equilibrium
experiments. For multi-component mixtures this is no longer possible and a single experiment
does not suffice. Nevertheless, we demonstrate how to extract the complete topology of the bulk
phase diagram using the macroscopic thicknesses of each layer in only four experimental samples.

We compute the stacking diagrams for two different buoyant mass ratios, which give rise to
topologically different stacking diagram. We study how a family of samples with fixed concentra-
tion of plates and rods evolves as we vary the sample height. We find different stacking sequences
by varying the height, such as e.g. a floating nematic plate-rich layer sandwiched between isotropic
layers that vanish with increasing the sample height. Our predictions regarding the effect of the
sample height can be tested experimentally since controlling the height is in principle doable
experimentally.

The richness in the sedimentation behaviour observed in the experiments by van der Kooij and
Lekkerkerker [34] with up to five layers of different bulk phases was initially attributed to polydis-
persity of the colloidal particles [34, 50]. However, we have demonstrated with sedimentation
path theory that the observed stacking behaviour is a gravity induced effect and could also be
observed in a purely monodisperse mixture of plates and rods.

2.2 Sedimentation of colloidal plate-sphere mixtures and
inference of particle characteristics from stacking
sequences

In this manuscript [2], we investigate the effect of gravity on a plate-sphere colloidal mixture.
We use a Onsager-like density functional with Parsons-Lee rescaling to describe the bulk and
sedimentation path theory to incorporate gravity, see Section 1.3.2, respectively. We compare with
corresponding sedimentation-diffusion-equilibrium experiments [52] and are able to reproduce
theoretically a sequence with a floating nematic layer between two isotropic layers as in the
experiments. The authors of Ref. [52] find an inflection point in the bulk binodal, but they model
the binary mixture with infinitely thin plates, which could be the reason for such an inflection
point. However, we confirm in Ref. [2] the existence of an inflection point in our approach with
plates of finite thickness. The presence of an inflection point in bulk enriches the stacking diagram
by introducing additional stacking sequences with reentrant and alternating layers of bulk phases.

We present the stacking diagram for several sample heights and both the buoyant mass ratio in
the experiment [52] as well as a buoyant mass ratio close to the slope at the inflection point of the
bulk binodal. Close to the inflection point we find a four layer stacking sequence (𝐼𝑁𝐼𝑁) with
floating nematic and isotropic layers.

Furthermore, we use the macroscopic layer thicknesses of an experimental sample in Ref. [52]
showing a floating nematic layer to obtain microscopic information about the particles. We are
able to infer the buoyant mass of the plates and that of the spheres for a given concentration
of colloids and vice versa. The thickness of the layers and the shape of the colloidal particles
is the only information that we use from the experiments. We identify regions in the plane of
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buoyant mass and average packing fraction of both species where no floating nematic layer (𝐼𝑁𝐼)
can occur, and regions where no 𝐼𝑁𝐼 sequence with the experimental layer thicknesses can
be observed. For all the samples which show the experimental 𝐼𝑁𝐼 stacking sequence, the
average packing fraction of plates falls into a narrow interval of less than ±9%. Our findings
aid in designing new experiments and determine theoretical bounds for the buoyant mass and
concentration of particles for a given stacking sequence. The methodology we have developed can
be applied to other colloidal mixtures to extract microscopic particle properties from macroscopic
observations in sedimentation experiments.

Moreover, we also study the evolution of the stacking sequence with increasing sample height
and find non-trivial behavior where new layers are introduced at the top as well as the bottom of
the sample. Our theoretical predictions can be experimentally realized by using a stock solution
of colloids and filling multiple samples to different heights, granting deep insights into the
sedimentation behavior.

2.3 Sedimentation path theory for mass-polydisperse colloidal
systems

Natural as well as synthesized colloidal particles always have some degree of polydispersity.
Thus, polydispersity is inherent to essentially all colloidal experiments. Several works [35, 37,
38, 92–96] have considered the effects of polydispersity on bulk behavior. However the effects
of polydispersity on sedimentation are not well known. Sedimentation path theory, a vehicle to
implement gravity on top of bulk behavior, has so far only been used to study sedimentation in
colloidal binary mixtures [1, 2, 52–58, 97].

In this publication [3], we extend sedimentation path theory to mass-polydisperse colloidal
systems. That is, the colloids have different buoyant masses, but are indistinguishable in their
interparticle interactions. This model helps to isolate the interplay between polydispersity and
gravity from that of the effects of polydispersity in bulk. Furthermore, our model can represent
real experimental systems, e.g. core-shell colloids with different shell thickness, but the same
overall size.

Using statistical mechanics, we reduce the mass-polydisperse system to an effective monodis-
perse system with a local chemical potential which is non-linear in the vertical coordinate along the
sample. Thus, in mass-polydisperse systems the sedimentation paths are no longer straight lines
but curves, although the curve must be a convex function of the vertical coordinate. The curvature
in the sedimentation path enriches the stacking behavior with an increased maximum number of
layers in the stacking sequences and the occurrence of reentrant and floating layers of bulk phases.
Within the local equilibrium approximation, our expression for the local chemical potential is an
exact result and no further approximation need to be made to describe mass-polydisperse. The
effective monodisperse system can be treated by standard bulk theories. In our study, we use
existing analytic bulk equations of state for simplicity. However any bulk theory or equation of
state can be used. Thus our theory for mass-polydisperse systems is general and can be used in
the study of any colloidal system.

In Ref. [4], we illustrate the construction of the effective sedimentation path and the stacking
diagram for mass-polydisperse systems using a model equation of state. Furthermore, we study
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the sedimentation of mass-polydisperse colloidal hard-spheres for various parent distributions of
the buoyant mass. In systems near density matching, i.e. with a parent distribution centered around
natural buoyancy and thus particles with positive and negative buoyant mass, mass-polydispersity
has a major impact on the system. Near density matching the topology of the stacking diagram can
change with small modifications in the parent distribution. On the other hand, we identify a host
of parent distributions for which the degree of mass-polydispersity has negligible effect on the
stacking diagram. For these parent distributions the dominant characteristic is the average buoyant
mass, and the system behave like an effective monodisperse system with the corresponding average
buoyant mass.

2.4 Effect of sample height and particle elongation in the
sedimentation of colloidal rods

Hard spherocylinders are arguably one of the most important models for anisotropic colloidal
particles. Whereas several works investigated the bulk phase behavior of hard spherocylinders [98–
105], not many studies have considered the effects of gravity on colloidal spherocylinders [48].

In this manuscript [4], we apply the extension of sedimentation path theory to mass-polydisperse
systems to a colloidal system of monodisperse as well as mass-polydisperse hard spherocylinders.
We use an algebraic equation of state for hard spherocylinders proposed by Peters et al. [23] to
treat the bulk. To investigate the effects of particle elongation, we compute the stacking diagram
of monodisperse systems of hard spherocylinders for four different characteristic aspect ratios.
We compare with a theoretical stacking diagram for the aspect ratio 𝐿∕𝐷 = 5.0 by Savenko
and Dijkstra [48] and find semiquantitative agreement. The small difference can be attributed to
differences in the underlying bulk equation of state.

Furthermore, we study the evolution of stable layers with increasing sample height and find
simultaneous growth of a top and a bottom layer. To highlight the increased complexity of
the stacking diagram for mass-polydisperse system as compared to a monodisperse system, we
compute the stacking diagram for a mass-polydisperse system close to density matching. Due
to the mass-polydispersity, colloidal particles with positive as well as negative buoyant masses
are present in the system. The two competing effects of settling and creaming up dominate the
stacking behavior of the system. We find stacking sequences with up to seven layers, where parts
of the sequence occur twice, but inverted. Additionally, we observe reentrant stacking sequences,
due to the curvature of the sedimentation binodals.

Colloidal suspensions near density matching are experimentally relevant to try to minimize
the effects of gravity on the colloidal particles [106, 107]. On the other hand, a controlled
density mismatch can be desirable, e.g. in microgravity experiments [108–110]. Close to density
matching, mass-polydispersity, which is to some degree unavoidable in experiments, plays an
especially important rule and needs to be considered in the interpretation of experiments, as we
have demonstrated in Refs. [3, 4].
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2.5 Author contributions

I helped to design the research concepts, created a complete first version (including both figures
and text) and contributed to the final version and the revision of all the publications that form this
cumulative Thesis [1–4].

In Ref. [1] I implemented DFT for a colloidal mixture of rods and plates using an Onsager-like
free energy functional and constructed the bulk phase diagram of the mixture. Furthermore, I
used sedimentation path theory to obtain the density profiles, the stacking sequences, and the
stacking diagrams for the experimental samples reported by van der Kooij and Lekkerkerker [50].

In Ref. [2] I performed DFT minimizations for a colloidal mixture of plates and spheres
in order to obtain the bulk phase diagram. Using sedimentation path theory I computed the
stacking diagram for the mixture. I developed a method to solve the inverse problem of extracting
microscopic information from macroscopic pictures of colloidal stacking sequences.

In Ref. [3] I extended sedimentation path theory from binary colloidal mixtures to mass-
polydisperse colloidal systems. I applied our novel theory to a model system and to colloidal hard
spheres. I designed an algorithm to obtain the stacking diagram for mass-polydisperse colloidal
suspensions.

In Ref. [4] I applied sedimentation path theory for monodisperse and mass-polydisperse colloidal
systems to hard spherocylinders. I implemented the bulk equation of state for hard spherocylinders
proposed by Peters et al. [23] and obtained the stacking diagram for monodisperse and mass-
polydisperse systems of spherocylinders with different aspect ratios and sample heights.
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3 Conclusion and outlook

In this Thesis we have investigated the description of colloidal sedimentation-diffusion-equilibrium
experiments via sedimentation path theory. We have applied the theory in conjunction with DFT
to binary colloidal mixtures of plates and rods, as well as mixtures of plates and spheres. Without
incorporating polydispersity into our theory, we were able to reproduce the experimentally
observed stacking behaviour which, so far, was attributed to polydispersity. Furthermore, we
identify the sample height as a key variable alongside the average colloidal concentration in both
binary mixtures. Sedimentation path theory is equivalent to the approach taken by, e.g. Savenko
and Dijkstra [48], and Piazza [111], of using a local equilibrium approximation together with the
equilibrium condition

d𝑃 (𝑧)
d𝑧

= −𝑚𝑔𝜌(𝑧). (3.1)
However, working with the local chemical potential, as in sedimentation path theory, can be
more convenient, since the chemical potential varies linearly with the vertical coordinate 𝑧. In
addition, the stacking diagram can be easily constructed from the bulk phase diagram in the plane
of chemical potentials using the crossings of segments of straight lines with the bulk binodals.

Sedimentation path theory assumes local equilibrium of each horizontal layer of the system.
This is a an accurate approximation if the gravitational length of the system is large compared to
the characteristic correlation length scale. However, for large colloidal particles or systems with
longer correlation lengths, such as gels or aggregates [112], the local equilibrium approximation
breaks down and a microscopic theory for the whole system is needed.

Furthermore, we have neglected surface effects in our approach. This includes the sample-air
interface on top of the sample as well as the interaction of the sample with the wall of the cuvette.
For instance, in experiments a clear formation of a meniscus at the top of the sample due to surface
tension can be observed [34, 50]. A theory which encapsulates the sample as a whole including
all interfaces would be needed to describe such phenomena. For macroscopic samples this is
challenging due to the large number of colloidal layers and thus computer simulations of realistic
macroscopic colloidal systems under gravity are demanding due to the large number of particles.
Other phenomena such as wetting [113–116] and the effect of surface tension [117–120] are also
neglected in sedimentation path theory. Incorporating these surface effects into sedimentation
path theory would allow us to capture experiments on sedimentation-diffusion-equilibrium more
accurately.

Active colloids [121] are currently receiving much research interest, including among other
topics the formation of active nematics [122], active turbulence [123], and sedimentation of
active particles [124, 125]. Expanding our investigation of sedimentation in colloidal suspensions
to non-equilibrium systems, and in particular to active particles, could give rise to interesting
phenomena.

With the extension of sedimentation path theory to mass-polydisperse colloidal systems, we
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have predicted interesting stacking behaviour due to mass-polydispersity, such as reentrant layers
in the stacking sequences [3] cand reentrant stacking sequences in the stacking diagram [4]. With
our model for mass-polydispersity, we have been able to disentangle the effects of polydispersity
due to a polydisperse buoyant mass of the particles from the effects of polydispersity on the bulk
behaviour. We are currently working on two closely related projects that we describe briefly in
the following.

3.1 Stacking diagram of hard spheres: a comparison with
experiments

On an ongoing collaboration with Matthias Schmidt1, Danial de las Heras1, and Stefan U. Egel-
haaf2, we compute the stacking diagram for a mass-polydisperse system of hard spheres in the
plane of sample height ℎ and average packing fraction �̄�, see Fig. 3.1. We compare the mass-
polydisperse system with a monodisperse system with the same buoyant mass as the mean buoyant
mass of the mass-monodisperse system.

Since the system consists purely of particles with positive buoyant mass, we only observe the
stacking sequence top liquid and bottom crystal𝐿𝑆, besides the pure liquid𝐿 and crystal 𝑆 stacks.
The stacking diagram contains two sedimentation binodals corresponding to the sedimentation
paths that either end or start at the liquid-crystal bulk binodal. By increasing the sample height,
the sedimentation binodals open, moving away from each other. Hence, the stacking sequence
𝐿𝑆 grows at the expenses of the pure stacks 𝐿 and 𝑆, whose occurrence is restricted to either
very dilute or very dense samples, respectively (in the limit of high values of the samples height).

We compare our predictions with available experimental data on sedimentation of (quasi) hard
sphere suspensions by Paulin and Ackerson [126], Pusey and van Megen [127], and Ackerson
et al. [128]. The height and the packing fraction of the experimental samples, together with
sketches showing the vertical position of the liquid-crystal interface are shown in Fig. 3.1. We
also show sketches of our theoretical predictions including the position of the interfaces. In all
cases, we estimate the experimental gravitational lengths by calculating an approximate value of
the buoyant masses using the particle size and the mass densities of the solvent and of the colloids,
which results in 𝜉 = 3.1 µm for the sample by Paulin and Ackerson [126], 𝜉 = 16 µm for the
samples by Pusey and van Megen [127], and 𝜉 = 47 µm for the samples by Ackerson et al. [128]

For the samples reported by Paulin and Ackerson [126] and Ackerson et al. [128] there is an
excellent qualitative agreement between the experiments and our theoretical predictions regarding
both the stacking sequence and the position of the interface. Experiments and theory agree over
a significant range of packing fractions from 𝜂∕𝜂cp ≈ 0.06 to 0.66 and different values of the
sample height (scaled with the gravitational length) ranging from ℎ∕𝜉 ≈ 380 to ℎ∕𝜉 ≈ 7400.

We find significant quantitative but also qualitative deviations between the theory and the iconic
experiments by Pusey and van Megen [127]. For a packing fraction of �̄�∕𝜂cp = 0.53 the reported
experimental stacking sequence is a pure liquid stack (sample 2 in Fig. 3.1), whereas the theory
predicts a top liquid bottom crystal stacking sequence 𝐿𝑆. Given that the sample height is three

1University of Bayreuth
2Heinrich Heine University Düsseldorf
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Figure 3.1: Stacking diagram of a mass-monodisperse system of hard spheres using the Hall EOS
in the plane of sample height ℎ relative to the gravitational length 𝜉 and packing
fraction 𝜂 relative to close packing 𝜂cp. Note the gaps in the vertical axis. The solid
(dashed) line is the sedimentation binodal of the sedimentation paths that end (start)
at the bulk liquid-crystal transition. The crosses represent the stacking diagram for a
mass-polydisperse system with a Gaussian parent distribution 𝑓P of mean 𝑚 = 1 and
cut at 𝑚 = 0.1 and 𝑚 = 1.9 (see inset). The results for eight experimental samples
are indicated by closed circles, together with sketches of the experimental and the
theoretical stacking sequences: sample 1 by Paulin and Ackerson [126] (spheres of
diameter 1.0 µm in a mixture of decaline and tetralin), samples 2 to 5 by Pusey and
van Megen [127] (spheres of diameter 0.64 µm in a mixture of decalin and carbon
disulphide in volume ratio 2.66:1), and samples 6 to 8 by Ackerson et al. [128] (spheres
of diameter 0.39 µm in cis-decalin).
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orders of magnitude larger than the gravitational length of the particles, we expect that almost all
the colloidal particles sediment to the bottom of the sample, leaving around 53% of the sample
as a dense crystal and the rest as a very dilute liquid. This is also predicted by our theory, see
sketch of sample 2 in Fig. 3.1. Within their experiment range from �̄�∕𝜂cp = 0.53 to 0.64 our
theoretical prediction for the percentage of crystalline sample vary only marginally from 54% to
66%. For other samples reported in Ref. [127], theory and experiment agree on the 𝐿𝑆 stacking
sequence (samples 3 to 5 in Fig. 3.1) but there is still a quantitative disagreement on the position
of the liquid-crystal interface. For example, for sample 3 the theoretical interface is above the
experimental one, and the opposite is true in sample 5. We cannot compare with the rest of the
samples in Ref. [127] since they develop an amorphous glassy phase which is not described by
the Hall bulk equation of state.

The short waiting times used by Pusey and van Megen (four days in comparison to waiting
times between thirty five and fifty days in Refs. [126, 128]) are most likely the reason behind
the differences between the theory (which assumes sedimentation-diffusion-equilibrium) and
the experiment (which focus on bulk behaviour). Samples 2 to 5 in Fig. 3.1 have not reached
sedimentation-diffusion-equilibrium. Note e.g. that sample 8 in Fig. 3.1 corresponds to a 𝐿𝑆
stacking sequence in a sample with height ℎ∕𝜉 ≈ 380 and packing fraction �̄�∕𝜂cp ≈ 0.08. It
is therefore not possible that sample 2 with packing fraction �̄�∕𝜂cp ≈ 0.53 and a much higher
sample height in terms of the gravitational length (ℎ∕𝜉 ≈ 1200) remains in a pure liquid state
in sedimentation-diffusion-equilibrium. We conclude that the experimental samples reported
by Pusey and van Megen [127] are not in sedimentation-diffusion-equilibrium, but they provide a
good representation of bulk phenomena since the internal relaxation times are much faster than the
sedimentation relaxation times. After four days, it seems that bulk phase phenomena have already
occurred and that sedimentation has only slightly perturbed the samples. This is in line with the
observation that “some overall gravitational settling of the particles has occurred, leading to a
small layer of crystals at the bottom of sample 2” by Pusey and van Megen [127]. To eliminate
the arbitrariness on selecting the waiting time required to observe bulk but not sedimentation
phenomena, it is possible to monitor the position of the liquid-crystal interface over time and then
extrapolate to time zero [126, 128, 129].

Since all of the previous experiments that we are aware of [126, 128, 129] are in the limit of
large sample height compared to the gravitational length, ℎ∕𝜉, new experiments are necessary to
make conclusions on the stacking behavior of colloidal hard spheres. Ideally these experiments
would cover the region of ℎ∕𝜉 < 120 (see lower part of Fig. 3.1), where we could accurately test
our theoretical predictions.

3.2 Shape polydisperse colloidal systems

After the extension of sedimentation path theory to mass-polydisperse colloidal systems, the
natural next step is to extend the theory to fully polydisperse systems. The generalization of
sedimentation path theory to polydisperse colloidal system is an ongoing collaboration with
Daniel de las Heras, Enrique Velasco3, and Yuri Martínez-Ratón4. The collaboration was initiated

3Autonomous University of Madrid
4Charles III University of Madrid

28



during my research stay in Madrid. Our approach to treat polydisperse colloidal systems under
gravity, which is based on a local equilibrium approximation on the direct correlation function, is
general and can be applied to any existing bulk theory for polydisperse systems.

To demonstrate our approach, we consider an illustrative colloidal system under gravity con-
sisting of hard rounded rectangular colloidal particles in two dimensions [130]. All particles have
the same fixed core dimensions, 𝐿 and 𝜎, but the thickness of the padding of the particles 𝑙 is
given by a continuous distribution, see the sketch in Fig. 3.2(a). Thus, particles with different
padding have different roundness, as well as area and mass.

The bulk of the system is treated by DFT within scaled particle theory [130]. The gravitational
potential is incorporated into the theory by a local equilibrium approximation.

We find that polydispersity in the particle shape induces new phenomena such as an inversion
of the stacking sequence by increasing the sample height, see Fig. 3.2(b).

Figure 3.2: (a) Schematics of different hard rounded rectangles with core dimensions 𝐿 and 𝜎,
and padding thickness 𝑙. Two illustrative parent distributions 𝑓P(𝑙) which represent
two different degrees of polydispersity. (b) Sketches of two samples with the same
parent distribution [orange curve in (a)] and average packing fraction, but different
sample height (sketch to scale). The larger sample shows an isotropic (𝐼) on top of a
tetratic layer (𝑇 ), and the smaller sample shows the inverted sequence.
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Gravity can affect colloidal suspensions since for micrometer-sized particles gravitational and

thermal energies can be comparable over vertical length scales of a few millimeters. In

mixtures, each species possesses a different buoyant mass, which can make experimental

results counter-intuitive and difficult to interpret. Here, we revisit from a theoretical per-

spective iconic sedimentation-diffusion-equilibrium experiments on colloidal plate-rod mix-

tures by van der Kooij and Lekkerkerker. We reproduce their findings, including the

observation of five different mesophases in a single cuvette. Using sedimentation path theory,

we incorporate gravity into a microscopic theory for the bulk of a plate-rod mixture. We also

show how to disentangle the effects of gravity from sedimentation experiments to obtain the

bulk behavior and make predictions that can be experimentally tested. These include changes

in the sequence by altering the sample height. We demonstrate that both buoyant mass ratio

and sample height form control parameters to study bulk phase behavior.
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Colloids, i.e., nano- to micrometer-sized particles suspended
in a liquid, behave under some circumstances as big
atoms1–5. Despite their size disparity, molecular and col-

loidal systems exhibit analogous bulk phases and similar surface
phenomena such as wetting6, capillary waves at the free fluid-
fluid interface7, and the occurrence of topological defects due to
frustration8. Beyond intrinsic fundamental interest, under-
standing bulk phase behavior is a prerequisite for the design of
new materials. Sedimentation experiments, in which a colloidal
suspension is placed in a cuvette under the influence of gravity,
are ideal candidates to study the bulk behavior of colloidal sys-
tems. One famous example are the experiments on suspensions of
nearly hard colloidal spheres9 that confirmed the fluid-crystal
transition predicted decades earlier10. Sedimentation experiments
also confirmed the entropy-driven formation of liquid crystalline
phases in systems of anisotropic particles11,12, the existence of
empty liquids and equilibrium gels13, and the hexatic phase in
two-dimensional colloidal discs14. Gravity can play a major role
in the colloidal realm and can only be neglected if the relevant
length scales of the experiment (e.g., the height of the sample
inside the cuvette) are much smaller than the colloidal gravita-
tional length; the latter is the ratio between the thermal energy
and the buoyant force acting on a single particle. For typical
colloidal systems, the gravitational length is of the order of mil-
limeters, and hence it is smaller or comparable to the sample
height.

Depending on the sign of the buoyant mass the colloidal particles
sediment towards the bottom or they cream up. In both cases,
gravity creates a particle density gradient in the vertical direction.
Sedimentation-diffusion-equilibrium is reached once the gravity-
induced particle flow is balanced by the diffusive flow originated by
the density gradient and the interparticle interactions. As already
shown in Perrin’s pioneering experiments15, the resulting height-
dependent colloidal density distribution provides direct access to
the full equation of state for monocomponent systems of both
isotropic16,17 and anisotropic18,19 colloidal particles.

It is often an excellent approximation to consider that at each
height inside the cuvette, the system is well reproduced by a
corresponding homogeneous equilibrium system with a bulk
density that is identical to the local density of the inhomogeneous
system20,21. This local density approximation can be imple-
mented by considering that the chemical potential of the sample
varies linearly with the vertical coordinate. The strength of
sedimentation-diffusion-equilibrium experiments is that instead
of looking at a single state point of a bulk system (i.e., at a fixed
chemical potential), one is able to consider set of states with
varying chemical potential along the vertical axis. This result is
due to the gravity-induced varying density (or equivalently che-
mical potential) along the vertical axis. Since in many colloidal
systems the gravitational length is smaller than the typical height
of a cuvette, even sedimentation experiments with samples of few
millimeters in height provide in-depth insight into the equation
of state and bulk phase phenomenology.

In binary colloidal mixtures, gravity has stronger impact since
two, in general distinct, gravitational lengths exist. Counter-
intuitive and complex phenomenology arises, making it difficult to
draw conclusions about bulk behavior. For example, in their iconic
experiments on plate-rod mixtures, van der Kooij and
Lekkerkerker22,23, found hitherto unexpected and rich phenom-
enology of colloidal mixtures. By changing the colloidal con-
centrations the authors observed the formation of different
stacking sequences, including samples with the sequence: iso-
tropic-nematic-smectic-nematic-columnar, when scanned from
top to bottom of the sample. The two nematic layers correspond to
different bulk phases rich in either rods (top) or plates (bottom).

In mixtures, it is frequent to observe more than three layers of
different bulk phases in a cuvette at different altitudes: Up to six
different layers occur in mixtures of positively charged colloidal
plates and nonadsorbing polymers24. Even the same layer can
reenter the stacking sequence, such as e.g., a nematic sandwiched
between two isotropic layers in sphere-plate colloidal mixtures25.
Further experimental studies were aimed at colloidal rod-
plate26,27, plate-sphere28,29, rod-sphere30, and sphere-sphere31,32

mixtures, liquid crystalline binary nanosheet colloids33, mixtures
of thin and thick colloidal rods34, as well as attractive nanosized
spheres and plates35. Gravitational effects can be relevant even if
the system contains only a few colloidal layers36, as e.g in the
stratification found in drying films of colloidal mixtures37.

To draw conclusions about bulk phenomena from sedi-
mentation experiments (and vice versa), gravity needs to be
considered. However, in mixtures the dimensionality of the phase
diagram increases by one unit for each added species. Gravity
induces a height-dependent density profile for each component.
Therefore the gravity-induced one-dimensional scan along the
vertical axis of the sample gives only a one-dimensional slice of
the complete phase diagram. The full equation of state and the
phase diagram can not be extracted from a single sedimentation
profile. Wensink and Lekkerkerker20 incorporated gravity in a
mixture of plates and polymers by treating the mixture as an
effective mono-component system with the chemical potential of
the polymer fixed. This approach is limited to systems in which
the gravitational length of one species (the polymer) is much
larger than the sample height. A generalized Archimedes
principle38,39 appropriately describes the behavior a mixture in
which both species are colloidal particles and one of them is very
diluted.

An alternative approach, valid for any mixture and any col-
loidal concentration, was formally given by de las Heras and
Schmidt21. The theory is formulated in terms of sedimentation
paths, which represent how the chemical potentials of both spe-
cies vary linearly with the vertical coordinate due to gravity. The
sedimentation paths are straight lines in the plane of chemical
potentials, and the crossing between a path and a binodal indi-
cates the formation of an interface in the sample. Different
stacking sequences appear depending on which binodals are
crossed by the path. The stacking sequences are grouped in a
stacking diagram, which is the analog of the bulk phase diagram
for systems subject to gravity. So far, the stacking diagrams have
been used to theoretically study sedimentation of model colloidal
mixtures21,40–42.

We demonstrate here that this formal approach also opens the
door for the rigorous interpretation and the prediction of
sedimentation-diffusion-equilibrium experiments in colloidal
mixtures. We reinterpret the findings of the arguably best known
experimental study in the field, conducted by van der Kooij and
Lekkerkerker22,23, on plate-rod colloidal mixtures. By incorpor-
ating gravity into a microscopic theory for the bulk behavior of
the mixture we reproduce quantitatively their experimental
findings. Furthermore we address the (experimentally relevant)
inverse problem. That is, we demonstrate how to infer the bulk
phase diagram using the experimentally obtained stacking
sequences and the individual heights of their constituent layers.
We also make predictions that can be tested experimentally: a
different set of stacking sequences emerges by altering the ratio of
the buoyant masses of the colloidal particles and complex changes
in the stacking sequence occur by simply varying the height of the
sample. Both variables, the buoyant mass ratio and the sample
height, can be systematically controlled in both experimental and
theoretical work. Our demonstration of the important role played
by both the buoyant mass ratio and the sample height allows to
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design experimental and theoretical studies that exploit these
(hitherto largely unexplored) control parameters.

Results
Particle model. To model the experiments22,23 we consider a
mixture of hard rods and hard plates. Depending on composition
and packing fraction, the bulk phase is either isotropic (I),
nematic rich in plates (Np), or nematic rich in rods (Nr), see
Fig. 1. We use subscripts p and r to designate the plates and the
rods, respectively.

The gravitational lengths are ξi= kBT/(mig) with mi the
buoyant mass of species i, g the gravitational acceleration, kB
the Boltzmann constant, and T absolute temperature. The rods
are made of boehmite (mass density 3.03 g/cm3) and the plates of
gibbsite (2.35 g/cm3). The particles are sterically stabilized with a
polymer coating of a few nanometer thickness and suspended in
toluene (0.87 g/cm3). We use cylinders of lengths 200 nm and
10 nm, and diameters 20 nm and 150 nm to model the rods and
the plates, respectively. The particles match both the length-to-
width aspect ratio and the dimensions of the particles used in the
experiments22,23 within the experimental uncertainty. We sub-
tract the volume of the polymer coating from the total particle
volume to estimate the buoyant masses. Using a diameter of
15 nm for the rod’s core and a length of 8.7 nm for the plates’
core, we obtain ξr= 5.5 mm, ξp= 1.8 mm. Hence the buoyant
mass ratio is

s ¼ mp

mr
¼ ξr

ξp
� 3: ð1Þ

The values of the gravitational lengths and hence that of the
buoyant mass ratio are only rough estimates since there is a large
uncertainty in the particle dimensions (up to 25%) and in
the thickness of the polymer layer43,44. Given this uncertainty, the
buoyant mass ratio is likely between a minimum value of ~2 and
a maximum value of ~5.

Bulk. We use an Onsager-like density functional theory to study
the bulk, see Methods. To characterize the phases we use the
uniaxial order parameters Si of each species (see Methods) that
take values between−0.5 and 1. The order parameters measure
the orientational order with respect to the direction given by the
director of the dominant species, see Fig. 1. A positive (negative)
value indicates that the alignment of the particles is parallel
(perpendicular) to the director. In the isotropic phase both order
parameters vanish.

Sedimentation path theory. Gravity is incorporated by approx-
imating each horizontal slice of the system at height z by a bulk
equilibrium system with local chemical potentials μi(z) given by21

μiðzÞ ¼ �μi �mig z � h
2

� �
; i ¼ r; p; ð2Þ

with 0 ≤ z ≤ h the vertical coordinate and h the height of the
sample. This constitutes a local density approximation (LDA),
which is justified if all correlation lengths are small compared to
both gravitational lengths. The LDA is used only to incorporate
gravity and it does not affect therefore the description of the bulk.
Sophisticated bulk theories, such as fundamental measure
theory45, can be used together with sedimentation path theory to
study sedimentation of e.g., crystalline phases.

Due to the gravitational potential, the local chemical potentials
depend linearly on the vertical coordinate z. Equation (2)
formalizes the concept that a sample subject to gravity can be
understood as a set of bulk states at different chemical potentials
and distributed along the vertical axis. Geometrically, Eq. (2)
describes a line segment parametrized by z in the plane of
chemical potentials. We refer to such lines as sedimentation
paths21,41. The constant terms migh/2 in Eq. (2) conveniently
translate the origin of chemical potentials such that the values of
the midpoint of the path are ð�μr; �μpÞ. Eliminating z for the
mixture in Eq. (2) yields

μpðμrÞ ¼ sμr þ a; ð3Þ
which constitutes the equation of a line segment with a slope
given by the buoyant mass ratio s=mp/mr= ξr/ξp and intercept
a ¼ �μp � s�μr. The buoyant masses play therefore a vital role since
they determine both the slope s (buoyant mass ratio) and,
together with h, the length of the sedimentation path in the plane
of chemical potentials. The latter is given by βΔμi= h/ξi, with
Δμi= μi(0)− μi(h) being the differences in local chemical
potentials between the bottom and the top of the sample.

The sedimentation path provides direct information of the
sequence of layers in the sample, i.e., the stacking sequence. An
interface between two layers of different bulk phases appears in
the sample whenever a sedimentation path crosses a bulk binodal
in the plane of chemical potentials, see Fig. 2a. The crossing point
between the path and the binodal gives the z position of the
interface in the sample via Eq. (2).

Stacking diagram. Different stacking sequences occur by varying
e.g., the position, the slope, and the length of the sedimentation
path. The sequences can be grouped in a stacking diagram. The
stacking diagram admits several representations depending on
which variables are kept constant. To connect with the experi-
ments we fix the buoyant masses and the sample height h. Hence,
we work at constant sedimentation path length and fixed buoyant
mass ratio s.

From the bulk phase diagram we construct the stacking
diagram by finding the boundaries between two stacking
sequences in the stacking diagram. There exist three types of
boundaries formed by three sets of special sedimentation paths41,

Fig. 1 Model. Schematics of colloidal rods (blue) and plates (red), together
with schematics of the particles in the isotropic (I), the nematic rod-rich
(Nr) and the nematic plate-rich (Np) layers that appear in a cuvette of
height h under the gravitational field g. The blue and red arrows indicate the
nematic director for rods and plates, respectively. The sign of the uniaxial
order parameter of plates Sp and rods Sr in each phase is also indicated (the
order parameter is calculated with respect to the director of the dominant
species in each phase).
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see Fig. 2a. The first type corresponds to sedimentation paths that
either start or end at a bulk binodal (red and yellow paths in
Fig. 2). These paths represent boundaries, so-called sedimentation
binodals of type I, between stacking sequences since an
infinitesimal displacement of the path in the μ1− μ2 plane can
alter the stacking sequence by crossing the binodal. Paths that
cross an ending point of a binodal, e.g., a triple point or a critical
point (orange path in Fig. 2), also form a boundary in the stacking
diagram, known as a terminal line. Finally, paths tangent to a
binodal (blue path in Fig. 2) form the so-called sedimentation
binodal of type II which is also a boundary between different
stacking sequences. In each of the three cases, an infinitesimal
displacement of the path can alter the stacking sequence.

The coordinates of the midpoint ð�μr; �μpÞ for each special path
are then represented in the �μr � �μp plane to generate the
stacking diagram, see Fig. 2b. The experimentally relevant
variables are the colloidal packing fractions. Therefore, we
transform the stacking diagram from the �μ1 � �μ2 to the �η1 � �η2
plane of average colloidal packing fractions (percentage of the
total volume occupied by each species). To this end we average
the packing fraction of each species, i.e., ηi= ρivi, along the
sedimentation path. Here vi is the particle volume of species i.
We compute ηi for each set of μi along the path (see Methods)
and transform the stacking diagram from the �μr � �μp to the
�ηr � �ηp plane. In both planes each point of the stacking diagram

represents a sedimentation path and therefore directly

corresponds to an experimental sample in sedimentation-
diffusion-equilibrium.

Comparison with experiments. In the experiments22, stacking
sequences with isotropic (I), nematic rod-rich (Nr), and nematic
plate-rich (Np) layers are reported. The samples, reproduced in
Fig. 3, were initially prepared with packing fractions ð�ηr; �ηpÞ =
(0.02,0.18) (a), (0.10,0.08) (b), and (0.10,0.01) (c).

To compare with the experiments, we find the paths for which
the average packing fractions ð�ηr; �ηpÞ and sample height match
the experimental values. The height is measured form the pictures
knowing that the width of the cuvettes is 10 mm. The buoyant
mass ratio, and hence the slope of the path, is the same for all
samples. There is an uncertainty of ~25% in the experimental
particle dimensions22,23,44 (note small deviations in the diameter
of the rods and the height of the plates greatly affect the particle
volumes and therefore the packing fractions). Also, solvent
evaporation can occur experimentally, affecting the packing
fractions25. Hence, to find the paths we fix the composition of the
mixture to the experimentally reported value and allow a
variation in the total packing fraction. This is equivalent to
assuming that an unknown percentage of the solvent has been
evaporated (alternatively we could allow a variation in the particle
sizes). The best agreement between theory and experiment occurs
assuming that 25%(a), 50%(b) and 60%(c) of the solvent
evaporated during the long equilibration times. These values are
consistent with the position of the meniscus in Fig. 3 (the sample
heights are (a) 23 mm, (b) 18 mm, and (c) 17 mm) if the samples
were filled to the same height initially. The density and nematic
order parameter profiles along the sedimentation paths are shown
in Fig. 3. Due to gravity the profiles are inhomogeneous (also
within a layer of a given mesophase) in contrast to what happens
in a bulk state in absence of gravity. The stacking sequence can be
read off directly from the nematic order parameter profiles. In
the isotropic layers both order parameter vanish, Sr= Sp= 0. In
the nematic layers rods and plates orient themselves perpendi-
cular to each other (see schematics in Fig. 1): the dominant
species has a positive order parameter Si > 0 (particles aligned
along the director) and the minority species has a negative order
parameter Sj < 0 (particles perpendicular to the director).

Despite the complexity of the experiments and the simplicity of
the theory, the agreement of the respective results is excellent. All
three stacking sequences, namely (from top to bottom) INp

Fig. 3a, INrNp Fig. 3b and INr Fig. 3c are reproduced. Both the
phase identity of each layer and their order in the sequence are
correctly predicted. Even the vertical positions of the interfaces
between layers agree semi-quantitatively. The density profiles
show that the Np and Nr phases are rich in plates and rods,
respectively. Interestingly, the isotropic phase can be either
dominated by plates, Fig. 3a, or by rods, Fig. 3b, c. This affects the
order that the isotropic layer occupies in the stacking sequence
for other values of the buoyant mass ratio as we will see below.
The experimental results and the theoretical predictions differ in
two aspects. In Fig. 3b the theory overestimates the thickness of
the Nr layer. The experimentally reported packing fraction of rods
is larger than that of plates and the theory predicts almost perfect
demixing between the species, see the packing fraction profiles in
Fig. 3b. As a result the predicted Nr layer is thicker than the Np

layer. The opposite, however, is observed in the experiments. The
other discrepancy between theory and experiments is the
prediction of a thin Np layer at the bottom of sample 3 which
is not observed experimentally, see Fig. 3c. This could be due to
interfacial effects that are not considered in the sedimentation
path theory approximation. The surface tension associated with
the emergence of the new interface might prevent such slim layer

Fig. 2 Sedimentation path theory. aModel bulk phase diagram in the plane
of chemical potentials μ1− μ2. Phases A and B coexist along a binodal (solid
line) that ends at a critical point (empty circle). The line segments are
sedimentation paths. The gray path that crosses the binodal corresponds to
a stacking sequence AB (from top to bottom), as schematically
represented. The gray arrow indicates the direction of the paths from top to
bottom of the sample. Examples of all types of paths that form the
boundaries between different stacking sequences are shown: (i) paths that
either start (red) or end (yellow) at the binodal, (ii) paths tangent (blue) to
the binodal, and (iii) paths crossing (orange) the critical point. An
infinitesimal displacement of any of such paths can alter the stacking
sequence. b Corresponding stacking diagram in the plane of average
chemical potentials �μ1 � �μ2. Each colored region is a different stacking
sequence, as indicated. The boundary lines between sequences are
sedimentation binodals of type I (solid lines) or type II (dotted-blue line),
and terminal lines (dashed-orange line).
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to appear in the experiments. Also, for other values of the
buoyant mass ratio within the experimental uncertainty, the
bottom Np layer is not present (see Supplementary Fig. 1).
Nevertheless, the discrepancies found are certainly not surprising
given the simple microscopic theory we use to describe the bulk,
the experimental uncertainties in both particle dimensions and
masses, as well as other bulk factors not taken into account such
as polydispersity.

Recall that we adjust only the amount of solvent evaporated to
find the best agreement between theory and experiment. Any
value of the buoyant mass ratio within the experimental
uncertainties reproduces the experimental stacking sequences
using only the evaporation as a free parameter in the theory (see
Supplementary Fig. 1).

Bulk and stacking diagrams. We discuss now the intricate
connection between the stacking sequences under gravity and the
bulk phase diagram of the mixture. The bulk phase diagram
according to our microscopic theory is shown in Fig. 4a, b in the
planes of chemical potentials and packing fractions, respectively.
To reassure the validity of the theory, we compare the chemical
potentials of the I−Np and I−Nr transitions in mono-
component systems (i.e., μr→−∞ or μp→−∞) with those of
parallel hard spherocylinders46,47 and hard cut spheres48

according to simulations, see the violet arrows in Fig. 4a. We
expect that both spherocylinders and cut spheres behave similarly
to our cylindrical particles at the relatively low density of the
isotropic-nematic transition and large particle anisotropies con-
sidered here.

The sedimentation paths of the samples in Fig. 3 are depicted
in Fig. 4a. The stacking sequences can be read off by simply
following the direction, and observing the binodals or the phase
regions crossed by each path. For example, the stacking sequence
of sample 1 is INp from top to bottom since the path crosses only
the I−Np binodal.

The experimentally observed layers in a stacking sequence do
not represent coexisting phases in bulk21. For example, the
sequence INrNp shown in Fig. 3b should not be interpreted as a
triple thermodynamic coexistence between I, Nr, and Np bulk
phases. In reality the three phases might or might not coexist in
bulk, i.e., in the absence of gravity. This is because due to gravity,
the sample does not represent a state point in bulk but a set of
state points along the sedimentation path. Note also that for
typical colloidal particles and sample heights, the paths cover a
large region of the bulk phase diagram, see e.g., the paths in
Fig. 4a. Therefore, the observation of more than three layers in a
stacking sequence does not imply violation of the Gibbs phase
rule. Observing a single sample, we can conclude that any two
consecutive phases in the sample (e.g., INr and NrNp in the
sequence INrNp) coexist in bulk since the path crosses a bulk
binodal at the position of the interfaces between two consecutive
layers. However, one cannot conclude whether or not two non-
consecutive layers (e.g., I and Np in the sequence INrNp) coexist
in bulk.

As discussed above, it is useful to group the stacking
sequences in a finite height stacking diagram41. Figure 4 shows
the stacking diagrams for samples with heights h= 5 mm (c,d)
and 18 mm (e,f) in the plane of average chemical potentials
(c,e) and average packing fractions (d,f) along the path. In bulk
three binodals meet at a triple point, see Fig. 4a. The stacking
diagrams contain sedimentation binodals of type I due to paths
that either start or end at a bulk binodal plus one terminal line
due to paths crossing the bulk triple point. Six different

Fig. 3 Comparison with experiments. Vertical profiles of the packing
fractions ηi and the nematic order parameters Si with i= r, p for rods
(solid-blue lines) and plates (dashed-red lines), respectively. Three
different samples labeled as 1, 2, and 3 (indicated by the colored circles)
are shown. Schematics of the samples showing the isotropic (I), nematic
rod-rich (Np) and nematic plate-rich (Np) layers are represented in the
insets. The average packing fractions (�ηr; �ηp) are (0.027, 0.24) (a),
(0.20, 0.16) (b), and (0.25, 0.025) (c). The corresponding experimental
samples (pictures taken between crossed polarizers) by van der Kooij
and Lekkerkerker22,23 are also shown (adapted with permission23,
Copyright 2000 American Chemical Society). The meniscus is
highlighted with a white line. The bright areas are due to light being
polarized in layers with orientational order. The scale bar (green)
is 5 mm.
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sequences occur: I, Np, Nr, INp, INr, and INrNp. If present in the
sequence, the Np layer is always the bottom layer due to
the slope of the path (buoyant mass ratio) being steeper than
the slope of each bulk binodal. This behavior is not surprising
since the plates are heavier than the rods and hence dominate
the bottom phases. The total mass density profile, i.e., the sum
of the mass density of the particles and the solvent (see
Methods), monotonically increases towards the bottom of the
sample in all cases (also if the buoyant masses are negative in
which case the particles cream up). This is consistent with
Archimedes’ principle, although it should be noticed that
denser particles can also float on top of a lighter fluid38,39.
Analog to bulk points at which several phases coexists, such as
triple points, there exist points in the stacking diagram at which
several stacking sequences meet (due to e.g., the crossing of two
sedimentation binodals). A discussion about these points is
provided in Supplementary Note 1.

The length of the path in the μr− μp plane is relevant to
determine the stacking sequence. For example, varying the length

of path 2 in Fig. 4a can alter the stacking sequence from INrNp to
I, INr, Nr, NrNp, or Np. Therefore the stacking diagrams are
calculated at fixed sample height since the length of the path is
proportional to h. It is worth noting that for infinitely small
sample height the sedimentation path has vanishing length and it
is a point in the plane of chemical potentials. Hence, the stacking
diagram for h→ 0 coincides with the bulk phase diagram. In
Fig. 4 it is apparent how the stacking diagram tend to the bulk
diagram by decreasing h. By increasing h the regions with a single
layer sequence shrink in size at the expenses of the regions with
multiple layer sequences that are enlarged. This reflects that the
longer the path is the more likely it crosses additional binodals.
To highlight the importance of the sample height, we indicate by
colored circles pairs of illustrative samples with the same colloidal
packing fractions but different heights in Fig. 4d and f. In all cases
the stacking sequences change upon changing the sample height.
For example, for packing fractions ð�ηr; �ηpÞ ¼ ð0:225; 0:05Þ the
stacking sequence changes from INp if h= 5 mm to INrNp if
h= 18 mm. Therefore, the stacking sequence is not only

Fig. 4 Bulk and stacking diagrams. Bulk phase diagram in the plane of chemical potentials of rods μr and plates μp (a) and also in the plane of packing
fractions of rods ηr and plates ηp (b). The chemical potentials are scaled with the inverse temperature β= 1/(kBT). Solid lines are the binodals. The stable
phases are isotropic (I), nematic plate-rich (Np), and nematic rod-rich (Nr). The violet arrows in (a) mark the I− Np and I−Nr transitions of pure systems
of plates (horizontal arrow) and rods (vertical) obtained by simulations46–48. The line segments are the sedimentation paths of samples 1, 2, and 3. The
green arrow illustrates the direction of the paths from top to bottom. The shadow region in (b) is the two phase region and the dashed lines are the tie lines
of the triple point. Stacking diagrams for heights h= 5 mm (c, d) and 18mm (e, f) in the plane of average chemical potentials of the sedimentation paths for
rods �μr and plates �μp (c, e) and average packing fractions of rods �ηr and of plates �ηp in the samples (d, f). Black solid (white dashed) lines are sedimentation
binodals (terminal lines). Each stacking sequence is denoted from top to bottom and colored differently (except for the white regions that represent
sequences with only one layer). The midpoint of the path for sample 2 is marked with a black cross in (a). The position of this sample is also marked in the
stacking diagrams with crosses in (e) and (f). The colored squares indicate the points at which four stacking sequences meet due to the crossing between
two sedimentation binodals (violet squares) or the intersection of sedimentation binodals and a terminal line (yellow squares). The colored circles in (d)
and (f) mark samples with the same colloidal packing fractions in both stacking diagrams.
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determined by the colloidal concentration since the occurring
layers also depend on the sample height.

For this buoyant mass ratio (s=mp/mr= 3) the topologies of
the stacking and the bulk diagrams are the same in the sense that
there is a one-to-one correspondence between bulk regions and
stacking sequences for any sample height. For example, the triple
point region I+Np+Nr in Fig. 4b and the region of the stacking
sequence INrNp in Fig. 4d, f correspond to each other, although
they are different objects. Recall that bulk phases and stacking
sequences differ substantially since (i) the order of the layers plays
a role in the stacking diagram but not in bulk, and (ii) bulk phases
are homogeneous while layers in a stacking diagram are not, see
density profiles in Fig. 3. This one-to-one correspondence is not a
general feature since the topology of the stacking diagram
changes with the buoyant mass ratio.

Inferring bulk behavior from sedimentation experiments.
Above we have incorporated gravity into a theoretical calculation
of bulk phase behavior and compared with experimental samples.
Here, we address the experimentally relevant inverse problem.
van der Kooij and Lekkerkerker reported also four samples
containing layers with liquid-crystalline positional order23. These
stacking sequences, reproduced in Fig. 5a, contain plate-rich
columnar (C) and (most likely23) rod-rich smectic (X) layers. In
addition to the orientational order, in the columnar (smectic)
mesophase the particles are positionally ordered along two (one)
spatial directions. Complex stacking sequences with five distinct
layers such as INrXNpC occur. The experimental particles are
highly polydisperse which heavily alters the bulk transition den-
sities of phases with positional order49,50. Therefore, attempting
to extend the density functional to incorporate smectic and
columnar phases51,52 is not a promising route to reproduce the
experimental results involving phases with positional order.
Instead, we use the experimental sequences to construct the bulk
binodals of phases with positional order. Roughly speaking, we
disentangle the effects that gravity has on the samples to find the
bulk behavior (in absence of gravity).

The slope of the paths remains unchanged and their lengths are
obtained by measuring the sample height from the experimental
pictures, Fig. 5a. We then construct a bulk phase diagram, see
Fig. 5b, with the approximated location of two new binodals,
Np− C and Nr− X. We assume the simplest form for the
binodals, i.e., horizontal or vertical lines, which is justified since
(i) the binodals connect pure transitions in the monocomponent
systems to other binodals and (ii) at high density the mixture is
expected to be completely segregated. Then, we find the binodal
location in the bulk phase diagram together with the position of
the sedimentation paths such that both the experimental stacking
sequences and the thicknesses of the individual layers are best
reproduced. The resulting theoretical stacking sequences are
depicted in Fig. 5a for direct comparison with the experiments.
All the experimental sequences are reproduced and we can infer
the topology of the bulk phase diagram from the given set of
sedimentation experiments. Note that any change in the bulk
topology (e.g., interchanging the position of the predicted
Nr−Np− X and Np− X− C triple points) produces a different
set of stacking sequences. The thicknesses of the individual layers
can be also reproduced quantitatively in most cases. Small
deviations occur, especially if the sedimentation path is close to a
bulk triple point, due to the simple approximation we use for the
binodals. Near triple points the curvatures of the binodals can be
large, c.f. the I−Np−Nr triple point in Fig. 5b, and a straight line
is a crude approximation. Nevertheless, with a larger number of
samples it might be possible to reproduce the curvature of the
bulk binodals and gain further insight into the phase transition.

Note that the curvature of a binodal in the μr− μp plane is given
by the ratio between the density jumps of each species at the
phase transition.

Isotropic and columnar phases do not coexist in bulk,
Fig. 5b. However, in samples 5 and 6 in Fig. 5a (sequences

Fig. 5 Positionally ordered phases. a Experimental samples and
corresponding theoretical predictions of sequences containing isotropic (I),
nematic plate-rich (Np), and nematic rod-rich (Nr) fluid layers as well as
layers with positional order: C (columnar plate-rich) and X (smectic rod-
rich). The white line indicates the position of the meniscus. The
photographs of the experimental samples (adapted with permission23,
Copyright 2000 American Chemical Society) were taken from crossed
polarizers. The scale bar (green) is 5 mm. b Bulk phase diagram in the plane
of chemical potential of rods μr and plates μp for the region next to the triple
point. The chemical potentials are scaled with the inverse temperature
β= 1/(kBT). Solid lines are the binodals involving isotropic and nematic
phases obtained with density functional theory. Dotted lines are the
inferred location of the Np− C (horizontal line) and Nr− X binodals.
Schematics of particle arrangement in the C and X phases are shown. The
sedimentation paths correspond to the samples shown in (a). The orange
arrow in sample 8 indicates the direction of the paths from top to bottom.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00706-0 ARTICLE

COMMUNICATIONS PHYSICS |           (2021) 4:202 | https://doi.org/10.1038/s42005-021-00706-0 | www.nature.com/commsphys 7

47



INrNpC and INrXNpC, respectively) both an isotropic and a
(non-adjacent) columnar layer are present. This illustrates
that simultaneously occurring layers in a stacking sequence do
not need to imply bulk coexistence between the respective
phases.

Changing the buoyant mass ratio. The topologies of the bulk
and the stacking diagrams in Fig. 4b and d are the same (there is a
one-to-one correspondence between bulk regions and stacking
sequences) for the particular value of the buoyant mass ratio
s=mp/mr= 3. Changing the buoyant mass ratio does not alter
the bulk phase diagram but it can modify the topology of the
stacking diagram. A change in the buoyant masses can be
achieved experimentally by changing the material (inner core53,
coating54) of the colloidal particles, and also by changing the
solvent density.

To illustrate the effect of changing the buoyant mass ratio, we
calculate first the stacking diagram for the idealized case of

samples with infinite height21. In this limit a sedimentation
path is a straight line (not a segment) that can be described with
two variables: slope s and intercept a in Eq. (3). A stacking
diagram in the s− a plane can be calculated, see Fig. 6a, by
locating the paths that form the boundaries between different
stacking sequences21. These are: paths tangent to bulk binodals,
paths that cross triple points, and paths that are parallel to the
binodals in the limits μi→ ±∞. The stacking sequences for
finite samples are then given by those in the infinite sample
height limit and also by their subsequences formed by removing
layers at the top/bottom of the sequence. It becomes apparent
from the case of infinite height that the precise value of s is not
critical in the sense that it is possible to vary s in a certain range
without altering the sequences qualitatively. For example, no
qualitative change occurs for buoyant mass ratios s ≳ 2, see
Fig. 6a. This is particularly relevant considering that due to the
experimental uncertainties22, we estimate that the buoyant
mass ratio lies within the confidence interval s ∈ [2, 5] (see
Supplementary Fig. 1).

Fig. 6 Changing the buoyant mass ratio. a Stacking diagram for samples in the limit of infinite height and positive buoyant mass of rods (mr > 0) in the
plane of slope s=mp/mr and intercept a of the sedimentation paths. Each region represents a sequence, labeled from top to bottom (the reverse
sequences appear if mr < 0). The white arrows highlight the slopes s= 0.5 and 3 used here. Bulk phase diagram if the plane of chemical potential of rods μr
and plates μp (b) with the paths of samples 1 to 5 with s= 0.5 and height h= 20mm (solid lines). The chemical potentials are scaled with the inverse
temperature β= 1/(kBT). The stable phases are isotropic (I), nematic rod-rich (Nr), and nematic plate-rich (Np). The green arrow in sample 5 indicates the
direction of all paths from top to bottom. Stacking diagrams for heights h= 20 mm (c, d) and 50 mm (d, e) in the plane of average packing fractions of rods
�ηr and plates �ηp (c, e) and average chemical potentials of rods �μr and plates �μp (d, f). Black solid lines are sedimentation binodals of type I (paths that either
end or start at a binodal), black-dashed lines are terminal lines (paths crossing the triple point), and black-dotted lines are sedimentation binodals of type II
(paths tangent to binodals). Each sequence is denoted from top to bottom and colored differently (except for the white regions that represent sequences
with only one layer). The inset in (f) is a close view of a small region. The samples 1 to 5 in (b) are also shown in (c) and (d), as indicated. The blue
triangles indicate points at which three stacking sequences meet due to the bifurcation of a sedimentation binodal of type II from one of type I. The colored
squares in panels (c, d, e, f) indicate the points at which four stacking sequences meet due to the crossing between two sedimentation binodals (violet
squares) or the intersection of sedimentation binodals and a terminal line (yellow squares). Two sedimentation binodals cross (violet squares) whenever a
sedimentation path in bulk simultaneously start and end at a binodal, as illustrated by two gray-dashed paths in (b).
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The value s=mp/mr= 1 corresponds to the equality of
buoyant masses of plates and rods and hence delimits which
species is heavier: rods (s < 1) or plates (s > 1). Interestingly, the
stacking diagram for infinite height, Fig. 6a, reveals that which
species is the heavier does not play a decisive role since no
qualitative change occurs at s= 1.

A buoyant mass ratio in the interval s∈ [0, 1.75] produces
richer phenomenology than s= 3 (three vs. two distinct stacking
sequences). We select a value in that interval, s= 0.5, and
calculate the experimentally relevant stacking diagrams for finite
height. Selected paths with slope s= 0.5 are represented in
Fig. 6b. The paths correspond to a suspension in toluene of the
same rods as before but lighter plates with gravitational length
ξp= 11 mm. The slope is such that there are paths tangent to the
I−Np bulk binodal. Those paths create a new boundary in the
stacking diagram that increases significantly the number of
stacking sequences. We show stacking diagrams in Fig. 6c, d for
samples with h= 20 mm and in Fig. 6e, f for samples with
h= 50 mm. Both cases are much richer than the stacking
diagrams for s= 3.0, cf. Fig. 4. The one-to-one correspondence
between bulk regions, Fig. 4b, and stacking sequences, Fig. 6c, e, is
lost, emphasizing that bulk and stacking diagrams are fundamen-
tally different objects.

Moreover, the topology of the stacking diagram changes by
increasing the sample height due to the occurrence of the
complex stacking sequence INpINr in samples with h= 50 mm,
Fig. 6e, f. Such a four-layer sequence only occurs for significantly
long paths. The path needs to cross the bulk I−Np binodal twice
(only possible if s∈ [0, 1.64]) and the I−Nr binodal, see the bulk
diagram in Fig. 6b. This gives a lower limit of h≳ 48 mm for the
occurrence of the four-layer sequence if s= 0.5. The topological
change of the stacking diagram is driven by a change in the
sample height. The complex sequence INpINr illustrates that the
same phase (I) can reenter the sequence25 even though there is no
I− I demixing in bulk. Instead, the path crosses the I−Np

binodal twice.

Parametric study of stacking sequences and different repre-
sentations of the stacking diagram. We investigate five selected
samples with the same height, h= 20 mm, and packing fraction
of plates, �ηp ¼ 0:23, but different packing fraction of rods. Their
paths are depicted in Fig. 6b and the corresponding state points in
the stacking diagram are indicated in Fig. 6c, d. The density and
uniaxial profiles are shown in Fig. 7 together with schematics of
the stacking sequences.

By increasing �ηr we observe five different stacking sequences
INp, INpI, NpI, NpINr and NpNr. These sequences include the
formation of bottom isotropic layers, Fig. 7a, b, a floating
isotropic layer between two nematic layers, Fig. 7d, and a floating
nematic between two isotropic layers, Fig. 7b. The inversion of
the sequence INp to NpI, see Fig. 7a, c, also occurs by increasing
�ηr. Such inversion was experimentally observed in a polydisperse
suspension of plates55 by changing the colloidal concentration,
and attributed to a pronounced fractionation with respect to plate
thickness. The total colloidal packing fraction (or number
density) in the isotropic layers is always smaller than it is in
the nematic layers, see the density profiles of Fig. 7. However,
depending on the bulk region covered by the path, the mass

Fig. 7 Changing the concentration of rods. Packing fraction ηi (i= r, p for
rods and plates, respectively) and total mass density ρm profiles, uniaxial
order parameter Si, i= r, p profiles, and schematics as a function of the
vertical coordinate z for samples of height h= 20mm, fixed concentration
of plates �ηp ¼ 0:23 and varying concentration of rods �ηr ¼ 0:006 (a),
0.025 (b), 0.075 (c), 0.12 (d), and 0.20 (e). The slope of the sedimentation
path is s= 0.5. The corresponding sedimentation paths are depicted in
Fig. 6b. The samples are also marked in the stacking diagrams of Fig. 6c, d
using the same labels as here (colored squares with a number from 1 to 5).
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density can be greater in the isotropic layer than in the nematic
layer which facilitates the occurrence of bottom isotropic layers.
In all cases the total mass density (see Methods) increases
monotonically towards the bottom of the sample, see Fig. 7.

A detailed investigation of this complex evolution of sequences
can be performed with a representation of the stacking diagram in
the plane of packing fraction of rods and vertical coordinate, see
Fig. 8a. The diagram indicates the occurrent layer at a given
vertical position and concentration of rods. Both the height
h= 20 mm and the plate concentration ηp= 0.23 are fixed.
Figure 8a shows the introduction of the bottom isotropic layer
closely followed by the elimination of the top isotropic layer by
increasing �ηr. Then, an Nr layer is introduced which eventually
replaces the I layer at the bottom entirely. At high packing
fraction of rods, only nematic layers appear and the thickness of
the Nr layer increases by increasing �ηr, as expected.

The stacking diagram in the plane of sample height and vertical
coordinate at fixed concentrations, �ηr � 0:18 and �ηp � 0:05, is
shown in Fig. 8b. This stacking diagram is relevant for
experimental realizations since it represents the creation of
several samples that differ only in the sample height. For
h= 47 mm we observe the sequence NpI which upon increasing h
transforms first into a floating isotropic NpINr, followed by the
four-layer sequence INpINr. Finally at h= 53.7 mm the two
isotropic layers merge into a single layer due to the elimination of
the Np layer, which gives rise to the sequence INr. See schematics
of the evolution in Fig. 8c. Such complex behavior involving four
different sequences is observed by varying the sample height only
by 17%, from 47mm to 55 mm. Interestingly, in the h− z plane,
Fig. 8b, the lower I−Np boundary is parallel to the top sample-
air boundary, whereas the upper I−Np boundary is horizontal.

It is worth pointing out that varying the sample height at fixed
concentrations not only changes the length of the sedimentation
path but also its position in the μr− μp plane. This change gives
rise to the observed nontrivial dependence of the stacking
sequence on the sample height.

Discussion
To demonstrate the validity of the concept of sedimentation
paths21 we have studied sedimentation-diffusion-equilibrium of a
colloidal plate-rod mixture and found excellent quantitative
agreement with the well-known experiments conducted by van

der Kooij and Lekkerkerker22,23. We have shown how to sys-
tematically analyze and interpret the stacking sequences observed
experimentally, group these sequences in a stacking diagram, and
predict the stacking diagram from the bulk phase diagram of the
system. Moreover, we have also shown how to infer the bulk
phase behavior of the mixture from the experimental results
under gravity and have also predicted both a different set of
stacking sequences and a complex evolution of the sequences by
simply changing the height of the samples. All predictions can be
verified experimentally by altering the buoyant masses of the
particles and systematically varying the height of the samples.

Some gravity-induced effects, like the formation of a sequence
with five layers, were attributed to polydispersity22 since the
occurrence of more than three layers was understood as an
apparent violation of the Gibbs phase rule. However, due to
gravity it can only be guaranteed that any two consecutive layers
that share an interface in the sample coexist in bulk. Hence, as
pointed out in other works21,40, the occurrence of say five layers
in a stacking sequence does not imply the existence of a quintuple
point in the bulk phase diagram. Such multi-phase bulk coex-
isting points can exist in binary mixtures56,57 for specific inter-
particle interactions but are unrelated to the occurrence of several
layers in sedimentation.

Even though polydispersity is almost unavoidable in experi-
ments, our theory reproduces here the observed stacking
sequences semi-quantitatively. Adding polydispersity to sedi-
mentation path theory is, in principle, possible provided that the
theoretical description of the bulk also incorporates poly-
dispersity, e.g., via a distribution of particle sizes49,58.

Our results indicate a nontrivial dependence of the stacking
sequences on the sample height. Controlling and varying the
sample height is, in principle, simple in experimental realizations
and it opens a route to find interesting phenomenology and
gain insight into the bulk phase behavior. Analytical
ultracentrifugation59, in which centrifugal forces change the
strength of gravity, can be also described with our theory.
Changing the strength of gravity is an alternative method to vary
the length of the sedimentation path leaving the buoyant mass
ratio unaltered.

The topology of the stacking diagrams can change with the
buoyant mass ratio. However no qualitative change occurs here
around a buoyant mass ratio s of unity (which delimits which
species is the heavier). This is likely the case in other asymmetric

Fig. 8 Effect of sample height. a Stable layer at elevation z as a function of the packing fraction of rods �ηr for samples with fixed height h= 20mm and
packing fraction of plates �ηp ¼ 0:23. b Stable layer at elevation z as a function of the total sample height h for samples with fixed concentrations
ð�ηr; �ηpÞ ¼ ð0:177;0:051Þ. The vertical dotted white lines indicate the position in the diagrams of selected samples, labeled by colored squares. c Schematics
of four selected samples of different heights but identical colloidal concentrations that develop qualitatively different stacking sequences. The layers are
isotropic (I), nematic plate-rich (Np), and nematic rod-rich (Nr).
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mixtures. Symmetric mixtures are a special case where s= 1 can
play a special role.

The stacking diagram admits several representations. We have
shown two experimentally relevant representations in the plane of
vertical interface position between layers, z, and either average
packing fraction, �η, or the overall sample height, h. Although
these axes are motivated by sedimentation experiments, the z− h
plane can be also conceived as a transformation of the bulk phase
diagram in the plane of chemical potentials: The vertical position
is a linear parameterization of the chemical potential, Eq. (2), and
the change in overall height moves nontrivially the path in the
plane of chemical potentials implicitly via the constraint of fixed
average packing fractions. The inversion of this non-linear inte-
gral relationship between average chemical potentials, i.e., the
position of the sedimentation path, and the average packing
fraction might be another route to obtain the bulk phase diagram
from sedimentation experiments.

We expect similar gravity-induced phenomena to occur in
other types of mixtures over length scales of a few centimeters
provided that the size of at least one species is of the order of
100 nm or larger and there is a significant density difference
between the solvent and the particles. For colloidal particles of a
few nanometer and micro-emulsions, gravitational effects will be
apparent at lengths scales comparable to the gravitational length,
which can be of the order of meters. Gravity-induced density
gradients also occur in sufficiently large molecular systems and
can be also described with sedimentation path theory.

The sedimentation path theory excludes surface effects that
occur at the interfaces between two layers and also between the
suspension and the bottom/top of the cuvette. Surface effects can
be incorporated via a full, spatially resolved, density functional
minimization of the inhomogeneous mixture in a gravitational
field (see Methods) and might introduce small changes in the
position of the boundary lines in the stacking diagram.

The sedimentation path theory and the methodology presented
here are general and constitute the basis for carrying out and
interpreting sedimentation experiments on both colloid-colloid
and polymer-colloid mixtures60. Carrying out new experiments to
investigate the role of the sample height and that of the buoyant
mass ratio would be particularly valuable and enlightening.

Methods
Bulk phase behavior. We use classical density functional theory (DFT)61 to obtain
the bulk phase diagram of the plate-rod mixture. The total free energy F is the sum
of the ideal and the excess part (F= Fid+ Fexc). The ideal contribution to the
intrinsic Helmholtz free energy at temperature T for a mixture is given exactly by

βFid ¼ ∑
i

Z
dr

Z
dωρiðr;ωÞ ln ρiðr;ωÞΛ3

i

� �� 1
� �

; ð4Þ

where β= 1/(kBT) with Boltzmann’s constant kB, the sum runs over both species,
Λi is the thermal wavelength of species i= r, p, and ρi(r, ω) is the one-body density
profile of species i at position r and orientation specified by the unit vector ω. Since
we consider only phases without positional order we average out all positions r and
introduce the angular distribution function ψi of species i via ρi(r, ω)= ρiψi(ω) and
normalization ∫dωψi(ω)= 1. Hence, ρi is the number density of species i and we
obtain

βF id

N
¼ ∑

i
xi

Z
dωψiðωÞ ln ψiðωÞρiΛ3

i

� �� 1
� �

; ð5Þ

where N is the total number of particles in the system and xi is the composition of
species i.

We use an extended Onsager approximation for the excess (over ideal)
contribution to the free energy

βFexc

N
¼ ΨðηÞρ∑

i;j
xixj

Z
dω

Z
dω0ψiðωÞψjðω0ÞVex

i;j ðω;ω0Þ; ð6Þ

with total density ρ=∑iρi and Vex
i;j ðω;ω0Þ being the excluded volume (i.e., the

volume inaccessible to one particle due to the presence of another particle) between
particles of species i and j with orientations ω and ω0 , respectively. Both rods and
plates are modeled as hard cylinders (see Fig. 1) for which analytical expressions for

the excluded volume exists62,63. To speed up the computation, the azimuthal angle
φ of both species is averaged over in advance and only the polar dependence,
Vex

i;j ðθ; θ0Þ, is retained. Accordingly, we consider only the polar dependence of the

angular distribution function
R 2π
0 dφψiðωÞ ¼ 2πψiðθÞ. This prevents the study of

biaxial phases that, on the other hand, are not stable for the particle aspect ratios
considered here64 and are also not observed in the experiments22,23.

Following Parsons65 and Lee66, we replace the prefactor 1/2 in front of the
second virial coefficient in Onsager’s original expression62 by

ΨðηÞ ¼ 4� 3η

8 1� η
� �2 ; ð7Þ

in Eq. (6), which corresponds to the excess free energy per particle of a system of
hard spheres according to the Carnahan-Starling equation of state67. Here
η= ρ∑ixivi=∑iηi is the total packing fraction across all species with vi being the
particle volume of species i. The scaling, Eq. (7), does not alter the topology of the
phase diagram and serves to improve substantially the agreement of the transition
densities compared to computer simulations64. In the low density limit (η→ 0) the
original Onsager expression, based on the second virial coefficient, is recovered
since Ψ(η→ 0)= 1/2.

Minimization. We perform a free minimization of the functional discretizing ψi(θ)
on a one dimensional grid with 160 bins and calculate the uniaxial order parameter
of species i according to

Si ¼
Z

dθ
3cos2ðθÞ � 1

2
ψiðθÞ; ð8Þ

where the angle θ is measured with respect to the director of one of the species.

Bulk coexistence. The bulk phase diagram is obtained via numerical minimization
of the Gibbs free energy per particle

gb ¼
F
N
þ P

ρ
; ð9Þ

where P is the osmotic pressure and the total number density is ρ= ρr+ ρp with ρi
the number density of species i= r, p. Mechanical and thermal phase equilibria are
fulfilled in the Gibbs ensemble by construction (P and T are fixed). To find che-
mical equilibrium and hence phase coexistence we search for a common-tangent
construction on gb(xr), with xi= ρi/ρ the composition of species i. The common
tangent is equivalent to the equality of chemical potentials of both species in the
coexisting phases since gb= μrxr+ μpxp, with μi the chemical potential species i.
Hence, for fixed values of P, T, and xr (which also fixes xp since xp= 1− xr), we
numerically minimize the Gibbs free energy per particle with respect to the total
density and the orientational distribution functions of both species and then search
for a common tangent.

Average packing fractions along a path. To obtain ηi along a sedimentation path
we minimize the grand canonical potential Ω per unit of volume

Ω

V
¼ F

V
� ρ∑

i
μixi; ð10Þ

at fixed chemical potentials, μi, with respect to the variables ψi, xi and ρ.
Given the coordinates �μi of a path, it is straight forward to obtain the

corresponding �ηi. The opposite procedure, which we use to find the paths that
correspond to the experimental samples in Fig. 3, is however involved. Provided
with the average packing fractions of a given sample, �ηi we numerically solve a set
of non-linear equations to find the corresponding sedimentation path in the plane
of chemical potentials.

Full minimization of the grand potential. As an alternative to the sedimentation
path theory, it would be possible find the solution to the full inhomogeneous
system by minimizing the grand potential functional

Ω½fρig� ¼ F½fρig� �∑
i

Z
dr

Z
dωρiðr;ωÞðVext

i ðr;ωÞ � μiÞ; ð11Þ

with respect to the density profiles of both species ρp(r, ω) and ρr(r, ω). Here,
F[{ρi}] is the intrinsic free energy functional of the inhomogeneous system. For a
gravitational field, the external field is simply Vext

i ¼ migz.
Within the sedimentation path theory, instead of minimizing Eq. (11), we

minimize at each value of z along the sedimentation path a corresponding bulk
system, Eq. (10), with a height dependent chemical potential given by Eq. (2). The
linear dependence of the local chemical potential with the vertical coordinate, Eq.
(2), is a direct consequence of the linear dependency of the external potential on z.
Note, however, that the dependence of the local chemical potentials on other
variables such as the composition is more complex since it ultimately depends on
the interparticle interactions via the free energy F.
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Total mass density. The total mass density profile, ρm(z) is the sum of the mass
density of each species plus the density of the solvent. Using the buoyant masses
mi, the total mass density is simply68

ρmðzÞ ¼ ∑
i
miρiðzÞ þ ρs; ð12Þ

where ρi(z) is the number density of species i at position z and ρs is the mass
density of the solvent.

Data availability
All the data supporting the findings are available from the corresponding author upon
reasonable request.
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Gravity-induced phase phenomena in plate-rod colloidal mixtures
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I. SUPPLEMENTARY NOTE 1: BIFURCATION
OF STACKING SEQUENCES

We discuss here the analogue to thermodynamic bulk
coexistence for the stacking diagram. Two phases coexist
in bulk along a binodal line and three phases coexist at
a triple point. Fine tuning the interparticle potential,
e.g. changing the colloidal shape in hard models, it is
even possible to find higher order points at which more
than three phases coexist in binary systems [1, 2]. In
the stacking diagram, the analogue of bulk two-phase
coexistence occurs along any of the boundary lines of the
stacking diagram. At these lines, and within our LDA
approach, one stacking sequence bifurcates from another
one. That is, one layer of the sequence either starts to
grow or vanishes when the boundary line is crossed in the
stacking diagram (depending on which direction the line
is crossed).

There are points in the stacking diagram at which three
sequences bifurcate. These points arise from paths that
are tangent to a bulk binodal and that simultaneously
start or end at the point of tangency. At these points
a sedimentation binodal of type II (paths tangent to a
bulk binodal) bifurcates from a sedimentation binodal
of type I (paths starting or ending at the bulk binodal).
These points are marked by blue triangles in the stacking
diagrams of Fig. 6 of the main text.

Bifurcation of four stacking sequences occurs at two
types of special points in the stacking diagram. First,
there are points where three sedimentation binodals and
a terminal line meet. This occurs whenever a path either
starts or ends at the triple point, which is always possible
if a triple point exists in bulk, see the yellow squares in
the stacking diagrams of Figs. 4 and 6 of the main text.
The second special point occurs if two sedimentation bin-
odals cross each other (violet squares in the stacking dia-
grams of Figs. 4 and 6 of the main text), which happens
whenever a path simultaneously starts and ends at bulk
binodals in the bulk phase diagram. See examples of
such paths in Fig. 6b of the main text. Hence, the oc-
currence of these points highly depends on the topology

of the bulk phase diagram, the precise curvature of the
bulk binodals, and both the slope and the length of the
sedimentation path. In the present system the number of
such special points depends on the slope of the path. For
s = 3 two sedimentation binodals cross at a point only
once vs twice for the case s = 0.5. Due to the decreased
slope of s = 0.5 and the curvature of the binodal there
is an additional special point generated by the path that
both start and end at the I−Np binodal in bulk, see Fig.
6b of the main text.

Five sequences bifurcating from one point is also a pos-
sible scenario for finely tuned combinations of the sam-
ple height and the slope of the path. For example, for
a specific value of the height h ≲ 50mm and the slope
s = 0.5 the sequence INpINr in Fig. 6f of the main
text disappears, leading to the bifurcation of five stack-
ing sequences. This highly special point corresponds to
the path that is tangent to the I −Np binodal and that
both starts at the I −Np binodal and ends at the I −Nr

binodal. In general, bifurcation of six stacking sequences
from a point in the stacking diagram is also possible if
three boundary lines intersect in the stacking diagram.

According to our local density approximation, the bi-
furcation of a sequence into another sequence occurs via
the formation of a new infinitely thin layer. However, sur-
face effects might prevent the formation of such a layer
due to the energetic cost of the new interfaces that must
be formed. Considering surface effects two scenarios are
possible: The creation of a new layer can proceed contin-
uously (via the formation of microdroplets instead of a
complete layer) or discontinuously (a complete new layer
appears abruptly once the thickness is large enough to
compensate for the surface tensions of the associated in-
terfaces). A set of sedimentation-diffusion-equilibrium
experiments performed near the bifurcation points or
boundary lines of the stacking diagram would be very
valuable to shed light on this fundamental process. Also,
a study of the time evolution from an initially homoge-
neous sample to the final equilibrium sequence can help
to understand how stacking sequences evolves into each
other.
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2

Supplementary Figure 1. Vertical profiles of the packing fractions ηi and the nematic order parameters Si (with i = {r, p}) for
rods (solid-blue lines) and plates (dashed-red lines) in three different samples, labeled as 1,2, and 3 (as indicated by the colored
circles). The layers are isotropic (I), rod-rich nematic (Nr), and plate-rich nematic (Np). The buoyant mass ratio is fixed to
s = 2.1 in (a) and s = 5.0 in (b) which are the limiting cases of the experimental uncertainty. In both cases we change s by
varying the gravitational length of the plates ξp while keeping that of the rods constant, ξr = 5.5mm. Schematics of the samples
are represented in the insets. The amount of solvent evaporated (only parameter used to find the best agreement between theory
and experiments) is 22% (a) and 30% (b) in sample 1, 48% (a) and 47% (b) in sample 2, 60% (a) and 50% (b) in sample 3.
The corresponding experimental samples (pictures taken between crossed polarizers) by van der Kooij and Lekkerkerker [3, 4]
are shown in (c) (adapted with permission from [4], Copyright 2000 American Chemical Society). The meniscus is highlighted
with a white line for clarity. The bright areas are due to light being polarized in layers with orientational order. The scale bar
(green) is 5mm.
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Sedimentation of colloidal plate-sphere mixtures and inference of particle characteristics
from stacking sequences
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(Received 22 December 2021; accepted 9 February 2022; published 8 March 2022)

We investigate theoretically the effect of gravity on a plate-sphere colloidal mixture by means of an
Onsager-like density functional to describe the bulk, and sedimentation path theory to incorporate gravity.
We calculate the stacking diagram of the mixture for two sets of buoyant masses and different values of
the sample height. Several stacking sequences appear due to the intricate interplay between gravity, the
sample height, and bulk phase separation. These include the experimentally observed floating nematic se-
quence, which consists of a nematic layer sandwiched between two isotropic layers. The values of the
thicknesses of the layers in a complex stacking sequence can be used to obtain microscopic information
of the mixture. Using the thicknesses of the layers in the floating nematic sequence we are able to in-
fer the values of the buoyant masses from the colloidal concentrations and vice versa. We also predict
new phenomena that can be experimentally tested, such as a nontrivial evolution of the stacking sequence
by increasing the sample height in which new layers appear either at the top or at the bottom of the
sample.

DOI: 10.1103/PhysRevResearch.4.013189

I. INTRODUCTION

With remarkable exceptions [1–3], experiments on col-
loidal science are performed on Earth. Hence, the colloidal
particles are subject to a gravitational field that can have
a strong effect on the system. The effect of gravity is par-
ticularly strong if the suspension contains particles with
significantly different buoyant masses, such as e.g., the case of
strongly polydisperse and multicomponent colloidal systems.
On the other hand, theoretical studies of colloidal systems are
often focused on bulk properties and disregard the effect of
gravity on the system.

This paper aims at bridging the gap between
sedimentation-diffusion-equilibrium experiments and
theoretical studies of bulk phenomena in colloidal
plate-sphere mixtures. Experimental works include studies
on the structure [4] and the rheology [5] of mixtures of
silica nanospheres and kaolinite plates, the observation of a
slowdown of the crystallization transition of spheres due to the
addition of plates [6], the occurrence of isotropic-columnar
coexistence in charged mixtures of gibbsite plates and silica
spheres [7,8], enhanced density fluctuations of the spheres
due to the addition of plates in dilute suspensions [9], the
formation of an arrested glass state in gibbsite platelets

*Matthias.Schmidt@uni-bayreuth.de
†delasheras.daniel@gmail.com; www.danieldelasheras.com

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

and silica sphere mixtures [10], and several sedimentation
experiments in which a floating nematic layer sandwiched
between two isotropic layers [11–13] was observed. From a
theoretical point of view, the bulk properties of plate-sphere
mixtures have been investigated via free-volume theory [14],
density functional theory in the Onsager approximation
with [15–17] and without [18] rescaling of the second virial
coefficient as well as using fundamental measure density
functional theory [15,19–21], with explicit approximations to
the configurational partition function [22], and via a density
expansion on the work required to insert particles to the
mixture [23].

The effect of gravity on a colloidal plate-sphere mix-
ture has received little theoretical attention, with notable
exceptions that have analysed the floating nematic stacking
sequence [11,24,25]. We use here sedimentation path the-
ory [26] to connect bulk and sedimentation phenomena in
colloidal plate-sphere mixtures. The theory is based on the
so-called sedimentation paths, which are straight lines in the
plane of chemical potentials. The paths represent the linearly
varying local chemical potentials along the vertical axis in
a sample that is subject to gravity. An interface between
two layers of different bulk phases appears in a cuvette if a
sedimentation path crosses a bulk binodal. Several stacking
sequences can occur by varying the control parameters of the
mixture such as the colloidal concentrations and compositions
but also as a result of changing the sample height [27,28]. The
set of stacking sequences for a given mixture can be grouped
in a stacking diagram, which depicts all possible stacking
sequences in the plane of experimentally relevant quantities,
such as the overall packing fraction for each species. The
stacking diagram is in sedimentation-diffusion-equilibrium,
the analog of the bulk phase diagram in equilibrium.

2643-1564/2022/4(1)/013189(13) 013189-1 Published by the American Physical Society
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The stacking diagrams of several colloidal mixtures have
been calculated with sedimentation path theory using both
the infinite sample height limit [26,29–32] and also the case
of finite sample height [27–29]. The later allows to carry
out a direct comparison with experimental findings. Excellent
agreement of results from the sedimentation path theory and
the experimental observations by van der Kooij and Lekkerk-
erker [33,34] has been recently found in mixtures of plates
and rods [28].

Here, we use sedimentation path theory to study theoreti-
cally the effect of gravity on a colloidal plate-sphere mixture
and compare with corresponding sedimentation experiments
[11]. In the experiments [11] only isotropic and uniaxial
phases were reported. We hence restrict the bulk study to
phases without positional order using a simple microscopic
density functional theory. The isotropic-nematic bulk binodal
has an inflection point in the plane of chemical potentials. The
occurrence of an inflection point affects the sedimentation-
diffusion equilibrium by enriching the set of possible stacking
sequences. We study how the stacking diagram changes by
varying both the buoyant masses of the species and the height
of the sample. We also demonstrate how to use the macroscop-
ically observed stacking sequences in the experiments to infer
microscopic information about the colloidal particles, such as
their buoyant masses. Our methodology is general and can be
used in other colloidal mixtures to both obtain the stacking
diagram and infer particle characteristics from macroscopic
stacking behavior.

II. THEORY

A. Plate-sphere particle model

Lyotropic liquid crystals are often modelled using hard
particles [35] for which the pairwise interparticle potential
is infinite if two particles overlap and zero otherwise. We
use here a mixture of hard plates and hard spheres to model
the experimental colloidal particles of Ref. [11]. In the ex-
periments only isotropic (I) and uniaxial nematic (N) bulk
phases were reported. Hence, we restrict the bulk study to
phases without positional order. The nematic phase is rich
in the anisotropic particles, i.e., the plates. A schematic of
both phases is shown in Fig. 1. The uniaxial order parameters
Sp of the plates (see Appendix A) characterizes the isotropic
(Sp = 0) and the nematic (Sp > 0) phases. In what follows, we
use subscripts p and s to designate the plates and the spheres,
respectively.

The gravitational length of species i = p, s is ξi =
kBT/(mig) with mi the buoyant mass of the species, g the
gravitational acceleration, kB Boltzmann’s constant, and T ab-
solute temperature. In the experimental study [11], the plates
were made of gibbsite (mass density 2.42 g/cm3) and the
spheres of alumina-coated silica (2.30 g/cm3). The particles
were sterically stabilized with a polymer coating of a few
nanometer thickness and suspended in an aqueous solvent
(1.00 g/cm3). Here we use cylinders of diameter 184 nm and
thickness 2 nm together with spheres of diameter 74 nm to
model the cores of the plates and of the spheres, respectively.
The core dimensions are relevant to calculate the buoy-
ant masses, and thus the gravitational lengths. The effective

FIG. 1. Dimensions of the hard spheres (green) and hard cylin-
ders (orange) used to model the colloidal plate-sphere mixture,
together with a sketch of a cuvette of height h under a gravitational
field g. The stacking sequence is a floating nematic phase INI ,
i.e., top isotropic, middle nematic, and bottom isotropic. Both the
stacking sequence and the thickness of the layers are consistent with
one of the experimental samples reported in Ref. [11]. Schematics
of the particles in the isotropic (no orientational order Sp = 0) and
in the uniaxial nematic (orientational order Sp > 0) phases are also
shown.

dimensions of the coated particles are obtained by adding
10 nm to the core dimensions, as estimated experimentally
by neutron scattering [11]. Hence, we use plates of diameter
194 nm and spheres of diameter 84 nm for the hard particle-
particle interactions, see Fig. 1. Gibbsite plates are usually
polydisperse. For example, in a similar system, the uncertainty
in the thickness of the plates is approximately 20% [33,34].
We therefore use the effective plate thickness as an adjustable
parameter to match the properties of the isotropic-nematic
transition of the monocomponent system of plates between
theory and experiments. In the experimental study [11] the
packing fractions at the isotropic-nematic coexistence in a
pure system of plates are 0.045 and 0.049, respectively. We
study the bulk of the mixture with an Onsager-like [36] classi-
cal density functional theory [37], see details in Appendix A.
We find an effective plate thickness of 2 nm to be the optimal
value such that the average between the isotropic and the
nematic coexisting densities of a pure system of plates are the
same in the theory and in the experiments. The theory however
overestimates the density jump at the transition: The predicted
coexisting isotropic-nematic packing fractions are 0.042 and
0.052.

We estimate the buoyant masses using only the volumes
of the cores. That is, we neglect the effects of the poly-
mer coating since its mass density (1.02 g/cm3) is close to
the density of the aqueous solvent. With the above values
of the mass densities and particle dimensions of plates and
spheres, we obtain the gravitational lengths ξp = 5.34 mm and
ξs = 1.49 mm. Hence, the buoyant mass ratio in our system is

s = ms

mp
= ξp

ξs
≈ 3.58. (1)
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Our estimate of the gravitational length of the plates
(5.34 mm) is larger than that in Ref. [11] (2.92 mm) due to the
adjustable value of the plate thickness. Recall that the effective
plate thickness is the only adjustable parameter that we use in
our theoretical study. The remaining particle dimensions as
well as the mass densities are directly taken as reported in the
experimental study [11].

B. Sedimentation path theory

To incorporate gravity we employ a local density approxi-
mation (LDA) that approximates each horizontal slice of the
system at height z by a bulk equilibrium system with local
chemical potentials μi(z) given by [26,27,29]

μi(z) = μ̄i − mig

(
z − h

2

)
, i = p, s. (2)

Here 0 � z � h is the vertical coordinate measured from
the bottom of the sample, h is the height of the sample,
μ̄i with i = p, s are the chemical potentials in the absence
of gravity, and migz are the gravitational potentials (linear
in z). The LDA is justified if all correlation lengths are small
compared to both gravitational lengths, which is the case
in many colloidal systems including the current one. Note
that the LDA is used here only to incorporate gravity to
the underlying bulk theory. Hence, the LDA does not affect
the theoretical treatment of the bulk. The description of the
bulk can be done with a simple Onsager theory like we
use here, but also with more sophisticated density functional
theories [35,38] and other approaches such as perturbation
theory [39].

Equation (2) describes a line segment in the plane of chem-
ical potentials. The position (i.e., the statepoint) along the line
segment is parameterized by z. We refer to such line segments
as sedimentation paths [26,27]. Eliminating z for the binary
mixture in Eq. (2) yields

μs(μp) = sμp + a = s(μp − b), (3)

which is the equation of a line segment in the plane of
μp and μs with slope given by the buoyant mass ratio s =
ms/mp = ξp/ξs, intersect a = μ̄s − sμ̄p, and root b = μ̄p −
μ̄s/s [see Fig. 2(a)]. The midpoint of the sedimentation path
is (μ̄p, μ̄s ), conveniently translated by the constant terms
migh/2 in Eq. (2). The length of the path in the plane of
μp and μs is β�μi = h/ξi, with �μi = μi(0) − μi(h) and
β = 1/(kBT ).

The significance of the sedimentation path is that whenever
a path crosses a bulk binodal, an interface between the two
bulk phases that coexist at the binodal appears in the cuvette,
see Fig. 2(a). The crossings between the sedimentation path
and the binodal provide therefore the sequence of layers in
the sample, i.e., the stacking sequence. Moreover, the value of
the parameter z at the crossing dictates the vertical position of
the interface in the sample.

C. Stacking diagram

Depending on the position, the slope, the length, and the di-
rection of the sedimentation path, different stacking sequences

FIG. 2. (a) Model bulk phase diagram in the plane of chemical
potentials μ1 and μ2. The phases A and B coexist along a binodal
(black-solid line) that ends at a critical point (empty circle). The
line segments are finite sedimentation paths. The gray path crosses
the binodal and corresponds to a stacking sequence AB (from top
to bottom). The grey arrow indicates the direction of all paths from
top to bottom. Illustrative examples of paths that form boundaries
between different stacking sequences are depicted: (i) paths that start
(red) or end (yellow) at the binodal, (ii) paths tangent (blue) to
the binodal, and (iii) paths that cross (orange) the critical point. A
displacement of any of such paths can alter the stacking sequence.
The dotted-gray line is a sedimentation path in the limit of infinite
height (a and b are the intersects of the path with the μ2 and the μ1

axes, respectively). (b) Stacking diagram, plane of average chemical
potentials μ̄1 and μ̄2, of the bulk phase diagram depicted in (a). Each
region is a different stacking sequence, as indicated. The boundary
lines between sequences are sedimentation binodals of type I (solid
lines) or type II (dashed-blue line), and a terminal line (dotted-orange
line). A sedimentation path in (a) is a point in (b) given by the
coordinates of the average chemical potentials along the path. See,
e.g., the grey circle in (b) that corresponds to the gray sedimentation
path (finite height) in (a).

can occur. The stacking sequences can be grouped in a stack-
ing diagram. Similar to the bulk phase diagram, the stacking
diagram admits several representations that differ in the vari-
ables that are kept constant. To compare with experiments we
fix the buoyant mass ratio s and the path length, i.e., we fix the
buoyant masses of both species and the sample height h.

To illustrate the construction of a stacking diagram, we plot
in Fig. 2 a hypothetical bulk diagram and its corresponding
stacking diagram. In bulk, two phases A and B coexist along a
binodal that ends at a critical point, Fig. 2(a). We construct
the stacking diagram by finding the sedimentation paths in
the bulk phase diagram that form the boundaries between two
stacking sequences in the stacking diagram. There exist three
types of boundaries [27,28]. The first type, so-called sedimen-
tation binodals of type I, corresponds to sedimentation paths
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FIG. 3. Bulk phase diagram in the plane of chemical potential of plates μp and spheres μs (a), and also in the plane of packing fractions
of plates ηp and spheres ηs (b). The solid-black line in (a) is the binodal at which the isotropic I and the nematic N phases coexist. Dotted
lines in (b) are tie lines connecting coexisting points along the binodal (solid-black line). The grey area is the two-phase region. The pink line
in (a) is a sedimentation path corresponding to the INI stacking sequence with layer thicknesses of 9.3 mm, 16.5 mm, and 9.6 mm as found
experimentally in Ref. [11]. The pink curve in (b) is the same sedimentation path in the plane of packing fractions. The pink arrows indicate
the direction of the path from the top to the bottom of the sample. Stacking diagram in the plane of average chemical potential of plates μ̄p

and spheres μ̄s [(c)–(e)], and in the plane of average packing fractions of plates η̄p and spheres η̄s [(f)–(h)] for three different sample heights:
h = 5 mm [(c),(f)], 10 mm [(d),(g)], and 30 mm [(e),(h)]. Each colored region correspond to a different stacking sequence (except the pure
sequences I and N depicted in white). The sequences are labeled from the top to the bottom of the sample. The black crosses in panels (e) and
(h) indicate the position of the sedimentation path plotted in panels (a) and (b). In the stacking diagram, sedimentation binodals of type I (type II)
are represented with solid (dashed)-black lines.

that either start or end at a bulk binodal [red and yellow paths
in Fig. 2(a)]. Paths that cross an ending point of a binodal,
e.g., a triple point or a critical point [orange path in Fig. 2(a)],
also form a boundary in the stacking diagram, known as a
terminal line. The third type, known as sedimentation binodal
of type II, corresponds to paths tangent to a binodal, see the
blue path in Fig. 2(a). An infinitesimal displacement of the
midpoint (μ̄1, μ̄2) of the path can alter the stacking sequence
in each of the three cases.

The coordinates (μ̄1, μ̄2) for each of these special paths are
then represented in a diagram to produce the stacking diagram
in the plane of μ̄1 and μ̄2, see Fig. 2(b). However, in the
experiments the relevant quantities are usually the colloidal
packing fractions. Hence, in our plate-sphere mixture we
transform the stacking diagram in the plane of μ̄p and μ̄s by
averaging the packing fraction of each species, i.e., ηi = ρivi,
along the sedimentation path to obtain (η̄p, η̄s ). Here vi is
the particle volume of species i. For this transformation we
need to compute ηi for each point (μp, μs ) along the path (see
[Appendix A]). In both planes, the μ̄pμ̄s-plane and the η̄pη̄s-
plane, each point of the stacking diagram represents a sedi-
mentation path, i.e., one sample in sedimentation-diffusion-
equilibrium.

III. RESULTS

A. Bulk and stacking diagrams

The bulk phase diagram according to our microscopic
density functional theory is shown in Figs. 3(a) and 3(b)
in the planes of chemical potentials and packing fractions,
respectively. We restrict the study to phases without positional
order. Two phases occur: isotropic (I) with no orientational
order of the plates (Sp = 0) and uniaxial nematic (N) with
plates aligned on average along the director (Sp > 0). The
mixture does not show any critical behavior, nor does it show
isotropic-isotropic demixing. Critical and triple points are
therefore not present in the bulk phase diagram. The curvature
of the binodal in the plane of chemical potentials changes,
leading to an inflection point. We see below how the inflection
point affects the sedimentation-diffusion-equilibrium of the
mixture.

A sedimentation path (h = 35 mm and s = 3.58) corre-
sponding to a floating nematic stacking sequence INI is
depicted in the chemical potential representation of the bulk
diagram, see Fig. 3(a). To illustrate the advantage of using
the chemical potentials in the description of sedimentation-
diffusion equilibrium, we also depict the path in the plane of
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packing fractions, see Fig. 3(b). The simple form of the path
in the plane of chemical potentials (line segments) is lost in
other representations of the bulk diagram. In the plane of η̄p

and η̄s the path discontinuously jumps from the isotropic to the
nematic phase, and vice-versa, along the tie lines that connect
coexisting points in bulk. For a detailed study of sedimenta-
tion paths in the plane of packing fractions see Ref. [31].

The finite height stacking diagram in the plane of chem-
ical potentials and also in the plane of packing fractions is
shown in Figs. 3(c)–3(e) and Figs. 3(f)–3(h), respectively,
for three sample heights: 5 mm, 10 mm, and 35 mm. In all
cases the buoyant mass ratio is fixed to s = 3.58. There are
five different stacking sequences, namely I , N , IN , NI , and
INI . We label the sequences from the top to the bottom of
the sample. For example, NI indicates a top nematic layer
and a bottom isotropic layer. The occurring sequences are
all possible ordered subsets of the sequence INI . We can
arrive at the sequence I by removing from the sequence INI
the two top layers, the two bottom layers, or the middle N
layer. Since no isotropic-isotropic demixing is observed, the
resulting sequence (I) through any of these routes is the same.
Note that the observation of two isotropic layers in the INI
sequence does not imply the occurrence of isotropic-isotropic
demixing in bulk.

There is no topological change by varying the sample
height from 5 mm to 35 mm. However, the region occupied by
a given stacking sequence changes with h. Hence, the stacking
sequence of two sedimentation-diffusion-equilibrium samples
that share either the same (μ̄p, μ̄s ) or the same (η̄p, η̄s) can
change with the sample height h. All regions corresponding
to stacking sequences with multiple layers grow in the plane
of μ̄p and μ̄s with increasing h. In contrast, in the plane of η̄p

and η̄s only the INI region grows in size. All the other regions
shrink with increasing h. In the limit of h → ∞ only the
stacking sequences I and INI remain. This is confirmed by the
calculation of the stacking diagram in the infinite height limit,
see Sec. III E. That only two sequences remain if h → ∞
can be also concluded from the bulk diagram in Fig. 3(a)
by lengthening the depicted sedimentation path. The resulting
path either lies entirely in the I phase or it transitions into the
N phases and hence cuts the binodal twice giving rise to the
INI sequence (note that the binodal does not end at a critical
point and that the path is an infinite line in the limit h → ∞).

B. Reading microscopic information
from experimental photographs

A prominent result of sedimentation-diffusion-equilibrium
experiments is the stacking sequence. Sometimes, the se-
quence can be easily read from direct visual inspection of the
sample using crossed polarizers. Between crossed polarizers,
isotropic layers appear dark whereas layers in which the par-
ticles posses orientational order are bright. Even two layers of
different phases with orientational order, such as, e.g., nematic
and columnar, can be differentiated by their relative brightness
and color [34,40]. We explore here the possibility of obtaining
microscopic information about the particles by using from the
experiments only the stacking sequence and the thicknesses of
the occurring layers.

The thicknesses of the layers in stacking sequences provide
information to locate the corresponding sedimentation path in
the plane of chemical potentials. To contain sufficient amount
of information and hence be useful for the analysis, such
sequences need to possess at least three layers. That is, at least
two crossings between the corresponding path and the bulk
binodal(s) are required. For example, in Fig. 3(a) we construct
the sedimentation path such that its slope is s = 3.58 and its
stacking sequence is INI with layer thicknesses of 9.3 mm
(bottom isotropic), 16.5 mm (middle nematic), and 9.6 mm
(top isotropic). The values of the thicknesses are chosen to
reproduce the experimental sample in Ref. [11] with 74 nm
spheres and average packing fractions (η̄s, η̄p) = (0.05, 0.05).

A path is defined by four values and its direction (given
by the sign of the buoyant mass of one species). For example,
a path is defined by the position of the two endpoints in the
plane of chemical potentials, or by the set of variables s,
�μp, μ̄p, and μ̄s. The slope and the value of the three layer
thicknesses in the INI sequence give in total four constrains,
and hence properly define a unique sedimentation path, see
Fig. 3(a).

To locate the path in the previous example, we used fixed
values of the buoyant masses. The buoyant masses determine
the slope and, together with the sample height, the length of
the sedimentation path. Determining experimentally the buoy-
ant masses might be a difficult task since it requires detailed
measurements of the particle dimensions and mass densities.
We show next that using as input only the experimentally re-
ported thicknesses of the layers in the INI stacking sequence,
one can infer a range of gravitational lengths (and also a range
of average colloidal concentrations) in which such sample
can exists. We therefore pretend that the gravitational lengths
are unknown, and consider a wide range of candidate values
for both ξp and ξs. For each pair of ξp and ξs, we find the
sedimentation path that produces the INI sequence with layer
thicknesses equal to those in the experiments, see sketch in
the inset of Fig. 4(a). The gravitational lengths fix the length
and the slope of the path. Hence, we only vary the position
of the path (μ̄p, μ̄s ) until the correct layer thicknesses are
reproduced. If a solution exists, the path is unique.

The results are summarized in Fig. 4. Each point corre-
sponds to a path with the sequence INI and layer thicknesses
9.3 mm, 16.5 mm, and 9.6 mm. Illustrative paths of different
slope and length in the plane of μp and μs are shown in the
inset of Fig. 4(a). All the paths give rise to the desired INI
stacking sequence with the correct layer thicknesses. Note that
paths of different lengths in the plane of chemical potentials
can represent samples with the same height if the paths have
different gravitational lengths since h = β�μiξi.

Once a sedimentation path with the right sequence and
layer thicknesses is found, we calculate the corresponding
overall packing fractions by integrating the local packing frac-
tion along the path. Figures 4(a) and 4(b) show for each pair
(ξp, ξs) the corresponding values of η̄p and η̄s (see color bars).
Above the red-dotted line it is not possible to find an INI
sequence because the paths there are too flat (small slope)
to cross the bulk binodal twice. From the slope of the bulk
binodal at its inflection point, we determine the minimum
slope for an INI sequence to occur to be smin ≈ 1.7. For slopes
s > smin it is always possible to find an INI sequence, but
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FIG. 4. Average packing fraction of plates η̄p (a) and spheres η̄s (b) indicated by the color map as a function of the gravitational lengths of
plates ξp and spheres ξs. Each point in the diagrams represents a sedimentation path that produces an isotropic-nematic-isotropic (INI ) stacking
sequence with layer thicknesses of 9.3 mm, 16.5 mm, and 9.6 mm, from top to bottom. Illustrative paths together with a sketch of the sample
are shown in the inset of panel (a). No solution exists above the red-dotted line in panels (a) and (b) due to the path being too flat to cross the
binodal twice. The inverse relations, i.e., gravitational lengths as a function of average packing fractions, are depicted in panels (c) and (d).
The samples labeled 1 – 3 correspond to the paths shown in the inset of panel (a). The samples labeled 4 – 7 are close to the boundaries of the
diagrams shown in panels (a) and (b). The black crosses in (a) and (b) indicate the value of the gravitational lengths used here.

there is a small region in which there is no INI sequence with
the desired thicknesses (region indicated as “no solution” in
Fig. 4). For the remaining values of gravitational lengths an
INI sequence with the desired thicknesses always exists. In
Fig. 4 we show only solutions for s < 10, which covers a
vast range of experimentally realisable buoyant mass ratios.
For s > 10 the path is almost parallel to the vertical region of
the binodal, which makes it difficult to numerically find the
solution. The region in which solutions with s > 10 can occur
is indicated in Figs. 4(a) and 4(b)

The inverse relation to Figs. 4(a) and 4(b) is shown in
Figs. 4(c) and 4(d). There, for each pair (η̄p, η̄s) the grav-
itational lengths, ξp and ξs, required to obtain the correct
layer heights are depicted via a color map. This representation
clearly shows that given a specific set of layer thicknesses,

not every combination of packing fractions is possible. Also,
the set of possible values of η̄p is limited to the narrow range
[0.0415, 0.052]. The possible concentration of spheres varies
in a wider range of approximately [0.05, 0.13]. We expect
these ranges to slightly increase if solutions with s > 10 are
also considered.

The four-sided shape of the point cloud in the plane of
ξp and ξs in Fig. 4(a) is deformed when transformed into
the plane of η̄p and η̄s in Fig. 4(c). A nonlinear function
governs this transformation from gravitational lengths to aver-
age packing fractions. Despite the nonlinearity, the clockwise
order of the points labeled 4 – 7 is preserved under this
transformation.

Using the experimental values for the layer thicknesses in
the INI sequence together with the values of the gravitational
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lengths known from the synthesis of the particles, we can use
Figs. 4(a) and 4(b) to infer the values of the packing fractions.
The opposite also holds: If the packing fractions are known
from the preparation of the samples, but the microscopic grav-
itational lengths are unknown, we can use Figs. 4(c) and 4(d)
to infer their values.

For the gravitational lengths calculated with our particle
model, ξp = 5.34 mm and ξs = 1.49 mm [marked in Figs. 4(a)
and 4(b) with black crosses], we predict using Figs. 4(a) and
4(b) that the average packing fractions of the sample are
η̄p = 0.047 and η̄s = 0.11. This is in almost perfect agreement
for the plates (the packing fraction used in the experimen-
tal study [11] is η̄p = 0.05). For the spheres, our predicted
concentration differs by a factor of two (in the experimental
study [11] η̄s = 0.05). The difference might be due to our
simple theoretical description of the bulk and also to intrinsic
characteristics of the experiments, such as polydispersity and
the uncertainties in the dimensions of both the particles’ cores
and the thickness of the coating polymer layer. Note that our
discrepancy of a factor of two in the packing fraction of the
spheres can be explained with a change in the diameter of the
spheres of approximately 3

√
2 ≈ 1.26. This value is compati-

ble with the variance in the distribution of the diameter of the
spheres (26%) due to polydispersity [9].

Using the stacking diagram, e.g., Figs. 3(g)–3(i), we can
choose the packing fractions that produce a given stacking
sequence for fixed buoyant mass ratio s. The type of analysis
done in Fig. 4 allows us to choose the parameters that produce
not only the sequence but also the desired layer thicknesses
within the sequence.

C. Effects of a bulk inflection point on the stacking diagram

The Onsager-like density functional theory used here
predicts that in the plane of chemical potentials the isotropic-
nematic bulk binodal presents an inflection point. The
fundamental measure theory applied to a mixture of infinitely
thin plates and spheres [15,20] also predicts the occurrence of
an inflection point [11], which therefore seems to be a robust
feature of the system.

The inflection point does not have any qualitative effects
on the stacking diagram for a slope of s = 3.58. However, for
slopes of the path comparable to the slope of the bulk binodal
at the inflection point, the inflection point induces topological
changes to the stacking diagram due to the occurrence of new
sequences.

The maximum number of layers that can appear in a stack-
ing sequence is [26]

lmax = 3 + 2(nb − 1) + ni, (4)

with nb the number of bulk binodals and ni the total number
of inflection points in all the binodals. The occurrence of
several layers in sedimentation-diffusion-equilibrium is un-
related to bulk coexistence in which the Gibbs phase rule
dictates the maximum number of phases that can coexist si-
multaneously (with the notable exceptions found recently in
colloid-polymer mixtures [41–43] in which by fine-tuning the
interparticle interactions it is possible to find bulk multiphase
coexistence involving more than three different phases). Un-
der gravity, the maximum number of layers in a sequence,

Eq. (4), is achieved if a path crosses each binodal for the
maximum number of possible times (i.e., two plus the number
of inflection points of the binodal). Whether or not a sequence
with lmax layers can actually occur depends on the position
of the binodals relative to each other in bulk. Here nb = 1
and ni = 1, which yields lmax = 4. To confirm the general
argument presented above, we see below that in our mixture
the sequence with lmax layers is ININ . This sequence occurs
in the range of buoyant mass ratios s ∈ [1.7, 2.5] provided
that the path is long enough. The slope must be larger than
the slope of the binodal at the inflection point (s � 1.7) but
also smaller than the slope of the binodal in the limit as both
chemical potentials approach infinity (s � 2.5).

We choose a buoyant mass ratio of s = 2, i.e., slightly
above the slope of the binodal at the inflection point. The
stacking diagram in the plane of average chemical potentials
and average packing fractions for sample heights 20 mm,
32 mm, and 40 mm is shown in Fig. 5. A prominent feature is
the presence of the four layer stacking sequence ININ [11,24]
for the sample heights 32 mm and 40 mm. This sequence can
only occur for sufficiently large samples (h � 30 mm) since
the sedimentation path needs to start in the I phase, enter the
N , reenter the I phase again, and finally end in the N phase.
For h = 20 mm the path is not long enough and it can either
start in the I phase but not reach the ultimate N phase (giving
rise to the sequence INI) or end in the N phase without having
started in the I phase (resulting in NIN).

Hence, from h = 20 mm to h = 32 mm a topological
change in the stacking diagram occurs. The type I sedimen-
tation binodal that separates the sequences NI from INI , and
the type I sedimentation binodal that separates NI from NIN
cross each other, c.f. panels (d) and (e) in Fig. 5. This gives rise
to the ININ sequence. The same two sedimentation binodals
no longer cross for h = 40 mm, which eliminates the sequence
NI entirely in favor of ININ , cf. panels (e) and (f) in Fig. 5.
Both topological changes can also be observed in the plane
of μ̄p and μ̄s. For h = 20 mm the two type I sedimentation
binodals (same shape as the bulk binodal) intersect each other
twice due to the inflection point, see Fig. 5(a). For h = 32 mm
one of the intersection points has moved over to the other side
of one of the points of tangency, see inset of Fig. 5(b), and
the ININ stacking sequence appears. The two intersections
between the two sedimentation binodals of type I merge ap-
proximately for h = 40 mm into a single point, see Fig. 5(c).
As a consequence the NI stacking sequence disappears. The
transition from h = 20 mm to h = 40 mm replaces therefore
the sequence IN by ININ but leaves the other sequences unal-
tered (except for changes in the shape of the regions occupied
by each sequence that are inherent to changes in the height).

Another notable feature of the stacking diagram is the pres-
ence of a reentrant IN stacking sequence. This sequence (blue
in Fig. 5) appears in significantly different and disconnected
regions of the stacking diagram corresponding to low and high
average packing fractions of colloids. The two IN regions
share in common a direct connection to both the I and the
N regions. This is clearly visible in the chemical potential
representation of the stacking diagram, see Figs. 5(a)–5(c).
Reentrant phenomena can occur in the bulk of mono- [44,45]
and multicomponent [46,47] systems, but also, as in the
present case, induced by external fields [48–50].
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FIG. 5. Stacking diagram in the plane of average chemical potential of plates μ̄p and spheres μ̄s [(a)–(c)] and also in the plane of average
packing fractions of plates η̄p and spheres η̄s [(d)–(f)] for sample heights of h = 20 mm [(a), (d)], 32 mm [(b), (e)], and 40 mm [(c), (f)].
The buoyant mass ratio is s = 2 in all cases. The crosses indicate at each height the location of the samples with average packing fractions
(η̄p, η̄s ) = (0.063, 0.14) labeled with white squares as samples 1, 2, and 3. The stacking sequences are labeled from top to bottom of the
sample. The inset in (b) is a close view of a small region of the stacking diagram. Sedimentation binodals of type I (type II) are represented
with solid (dashed)-black lines.

D. Dependency on sample height

The stacking diagram for buoyant mass ratio s = 2 shows
a strong dependency on the sample height. To further in-
vestigate the influence of the sample height on the stacking
sequence, we consider a set of samples with the same average
colloidal packing fractions, (η̄p, η̄s) = (0.063, 0.14), but dif-
ferent heights. This corresponds to an experimental setup with
a solution prepared with the desired concentrations, which is
then distributed into cuvettes filled to a different height. Only
a single colloidal solution needs to be prepared, and even if
there is a large uncertainty in the colloidal concentrations,
it is at least guaranteed that the concentrations are the same
throughout all cuvettes.

Here, we compute for each height h in a range from
2 mm to 42 mm the stable phase (I or N) that would be ob-
served in an experiment as a function of the elevation z. We
then plot the results in the plane of z and h, see Fig. 6. This
is a different representation of the stacking diagram in which

the colloidal concentrations are kept constant. Samples from
2 mm to 30 mm always show the same NI stacking sequence.
At 30 mm an additional isotropic layer evolves at the top of
the sample, followed by the emergence of a nematic layer at
the bottom of the sample from 38 mm onwards. In total two
additional layers form, one at the bottom (N) and one at the
top (I) of the sample, as compared to the initial NI sequence
for low heights.

E. Stacking diagram for samples with infinite height

So far, we have studied the stacking diagram for finite
height samples and for two fixed values of the buoyant mass
ratio, s = 3.58 and s = 2. We end the results section showing
that these two illustrative values of the buoyant mass ratio
give rise to the stacking diagrams with the two largest possible
number of stacking sequences. To this end, we use sedimen-
tation path theory for samples with infinite height [26,29]. In
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FIG. 6. Stacking diagram at fixed colloidal concentrations. Sta-
ble layer at elevation z as a function of the total sample height h
for samples with fixed concentrations (η̄p, η̄s ) = (0.063, 0.14). The
buoyant mass ratio is s = 2. The vertical-dashed lines mark the
samples 1, 2, and 3 with heights 20 mm, 32 mm, and 40 mm. The
same samples are also labeled and marked with crosses in Fig. 5.
The solid-black line indicates the sample-air interface.

the limit of infinite height, a sedimentation path is a straight
line (not a segment as in the finite case) that can therefore be
described using only the slope s, the root b [see Eq. (3) and
Fig. 2] and the direction of path.

Similarly to the finite height case, there exist special paths
that are boundaries between two different stacking sequences
[26,29]: paths tangent to a binodal, paths crossing an ending
point of a binodal, and paths parallel to the asymptotic behav-
ior of the binodal at μi → ±∞. Plotting the coordinates of the
special paths results in a stacking diagram for infinite height,
which gives a global overview of sedimentation phenomena
for all possible buoyant mass ratios.

For the plate-sphere mixture considered here, the stacking
diagram for infinite height in the plane of 1/s and βb is
shown in Fig. 7. Note that we use 1/s to represent the slope,
since paths parallel to the binodal in the limit μs → −∞ are
vertical, i.e., s → ∞. For convenience, we also indicate the
slope s in the auxiliary x axis of Fig. 7.

From s ≈ 1.7 to s ≈ 2.5 we find the four layer stacking
sequence ININ , which we investigated in detail for the illus-
trative slope s = 2 in Fig. 5. For all negative slopes (s < 0) the
sequence NI is the only possible stacking sequence. Positive
slopes up to s ≈ 1.7 exclusively produce the IN stacking
sequence. For s � 2.5 we find the stacking sequences INI and
I , depending on the root of the sedimentation path.

The stacking sequences that occur in finite samples are
always subsequences of the infinite height limit. Hence, we
conclude from Fig. 7 that s = 2 and s = 3.58 capture the
essence and all the interesting phenomenology of the binary
mixture of plates and spheres. This includes, among others,
floating nematic phases INI , a four-layer stacking sequence
ININ , and the occurrence of an IN reentrant sequence.

FIG. 7. Stacking diagram for samples in the limit of infinite
height in the plane of inverse slope 1/s and root b of the sedimen-
tation path. The auxiliary-horizontal axis indicates the value of the
slope s. Each region corresponds to a different stacking sequence
in the limit of infinite height. Sequences are labeled from top to
bottom of the sample if mp > 0 and from bottom to top if mp < 0.
Black-solid lines are sedimentation binodals formed by the paths that
are tangent to the bulk binodal. Vertical-dashed lines are asymptotic
terminal lines formed by the two sets of paths that are parallel to
the bulk binodal in the limits μs → −∞ (1/s = 0) and μs → +∞
(1/s ≈ 0.39).

IV. CONCLUSIONS

We have studied the sedimentation-diffusion-equilibrium
of a simple binary mixture with only one anisotropic species
and restricting the bulk to isotropic and uniaxial nematic
phases (i.e., no positional order). The corresponding stacking
diagram is substantially richer than the bulk phase diagram,
with stacking sequences made of up to four layers and the
occurrence of reentrant sequences. The topology of the stack-
ing diagram depends on the sample height and on the buoyant
mass ratio. An analysis of the stacking diagram in the limit
of samples with infinite height reveals that the two buoyant
mass ratios considered here, s = 2 and s = 3.58, capture most
of the sedimentation phenomenology of the mixture. Experi-
mentally, it might be possible to alter the buoyant mass ratio
by changing the material of the colloidal cores and/or the
solvent mass density. Alternatively, using magnetic colloidal
spheres [51,52] and an external magnetic field parallel to the
gravitational field should effectively have the same effect as
varying the buoyant mass ratio of the mixture.

Analysing the effect of the sample height, we have seen
that layers appear in a stacking sequence at both the top
and the bottom of the sample by increasing the height while
keeping the colloidal concentrations constant. Layers can also
disappear from the sequence in the middle of a sample [28]
such that formerly separated layers merge by changing the
sample height. The vanishing of a middle layer has not been
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observed here for the considered heights and buoyant mass
ratios. The phenomenology found here is therefore comple-
mentary to the observation in Ref. [28] and highlights again
the relevance of the sample height in sedimentation experi-
ments [27]. Moreover, it shows that a priori one does not know
where the next layer will form or vanish when transitioning
from one sequence to another.

Stacking sequences with three or more layers are often
found in sedimentation experiments on colloidal mixtures
[11,33,34,53,54]. If both the buoyant masses and the bulk
of the mixture are known, the value of the thicknesses of
the layers in one of such multi layer sample is enough to
uniquely locate the corresponding sedimentation path [11,28].
Knowledge of the particle dimensions is required to construct
a theory for the bulk. We have shown here that it is also
possible to use the layer thicknesses and the bulk diagram
to find the set of all possible sedimentation paths associated
to the sample. The set of paths can then be used to estimate
the buoyant masses via the colloidal concentrations and vice
versa. Including the dimensions of the particles as additional
free parameters (i.e., allowing the bulk behavior of the mix-
ture to change) is also possible. Then, a set of experimental
samples that differ in their sample heights could provide suf-
ficient information to estimate microscopic parameters such
as the particle dimensions and buoyant masses. The required
information from the experiments would simply consist of the
layer thicknesses, which might be directly measured from the
sample images.

The hard particle models used here for both the spheres
and the plates are monodisperse. However, size- and therefore
mass-polydispersity are inherent to essentially any colloidal
system. Several works have considered the effect of poly-
dispersity on the bulk phenomena of a system, see, e.g.,
Ref. [55] for a review. In contrast, very little is known
about the interplay between polydispersity and gravity in
sedimentation-diffusion-equilibrium. We will report on the
extension of sedimentation path theory to polydisperse col-
loidal systems in a future publication.

Sedimentation path theory is based on a local equilibrium
condition. A sample under gravity is described as a collection
of bulk systems with local chemical potentials fixed according
to the value of the vertical coordinate. The theory can be used
to describe sedimentation in any colloidal mixture, including
polymer-colloid mixtures. The addition of polymers to a col-
loidal suspension can be used to tune the bulk phase behavior
of the colloids [56,57] and therefore also the stacking diagram.

An approach conceptually similar to sedimentation path
theory that also relies on local equilibrium conditions has been
recently used to study sedimentation profiles of molecular sys-
tems in centrifugal fields [58]. Even though the gravitational
field is not constant under centrifugation, the sedimentation
paths are still lines in the space of chemical potentials. Hence,
following the ideas of sedimentation path theory it should be
possible to construct the stacking diagrams of both colloidal
[59] and molecular mixtures under centrifugation.
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APPENDIX: METHODS

Bulk phase behaviour. We use classical density functional
theory (DFT) [37] to obtain the thermodynamic bulk equilib-
rium states of our plate-sphere mixture. The total Helmholtz
free energy F is comprised of the ideal and the excess con-
tributions (F = F id + F exc). The ideal contribution to F at
temperature T for a mixture is given exactly by

βF id =
∑

i

∫
dr

∫
dωρi(r,ω)

[
ln

(
ρi(r,ω)�3

i

) − 1
]
, (A1)

where the sum runs over both species, �i is the thermal
wavelength of species i = p, s, and ρi(r,ω) is the one-body
density profile of species i at position r and orientation spec-
ified by the unit vector ω. Since we consider only phases
without positional order, we average out all positions r and
introduce the angular distribution function ψi(ω) of species
i via ρi(r,ω) = ρiψi(ω) and normalization

∫
dωψi(ω) = 1.

For spheres the general formalism simplifies by using a uni-
form angular distribution function ψs = 1/(4π ). Hence, ρi is
the number density of species i and we obtain

βF id

N
=

∑
i

xi

∫
dωψi(ω)

[
ln

(
ψi(ω)ρi�

3
i

) − 1
]
, (A2)

where N is the total number of particles in the system and xi

is the composition of species i.
For the excess (over ideal) contribution to the free energy

F exc, we use an Onsager-like approximation with Parsons-Lee
[60,61] rescaling:

βF exc

N
= 
(η)ρ

∑
i, j

xix j

∫
dω

∫
dω′

×ψi(ω)ψ j (ω
′)V ex

i, j (ω,ω′), (A3)

with total density ρ = ∑
i ρi and V ex

i, j (ω,ω′) being the ex-
cluded volume (i.e., the volume inaccessible to one particle
due to the presence of another particle) between particles
of species i and j with orientations ω and ω′, respectively.
Here 
(η) is a scalar function of the total packing fraction
η = ρ

∑
i xivi = ∑

i ηi, with vi being the particle volume of
species i.

The plates are modelled using hard cylinders (see Fig. 1).
For all types of interparticle interactions, (i.e., cylinder-
cylinder, cylinder-sphere, and sphere-sphere) there exist
analytical expressions for the excluded volumes [17,36,62].
The excluded volume between a cylinder and a sphere, and
that between two spheres are independent of the orientation
of the particles.

We restrict ourselves to uniaxial situations as reported in
the experimental study [11]. Also, in the closely related sys-
tem of hard cut spheres, the uniaxial nematic is the only stable
nematic phase for thickness-to-diameter aspect ratios � 0.1
[63] (note that in our system the aspect ratio is 0.001). Only
for aspect ratios � 0.15 the cubatic phase was found to be
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more stable than the uniaxial nematic [63]. Hence, the angular
distribution function of plates depends only on the polar angle
θ (measured with respect to the director)

ψp(θ ) = 1

2π

∫ 2π

0
dϕψp(ω). (A4)

We, therefore, average in advance the excluded volume over
the azimuthal angle ϕ and only retain the polar dependency,
V ex

i, j (θ, θ ′).
The prefactor 
(η) in front of the excess free energy in

Eq. (A3) rescales the second virial coefficient in the original
Onsager’s expression [36] by the Carnahan-Starling equa-
tion of state [64] of a reference system of hard spheres at the
same packing fraction


(η) = 4 − 3η

8(1 − η)2
. (A5)

The topology of the bulk phase diagram does not change with
the scaling, which serves to improve the agreement of the
I − N transition densities compared to computer simulations
[65]. Note that in the low density limit we recover the second
virial coefficient, like in the original Onsager expression [36],
since 
(η → 0) = 1/2. Onsager-like density functional theo-
ries rely on two-body correlations and can fail to describe the
bulk if the symmetries of the stable bulk phases are the result
of three- and higher-body correlations [66]. This is not the
case here since the excluded volume between two cylinders is
minimal if both particles are parallel to each other, i.e., like in
the uniaxial nematic phase. We therefore expect the functional
to properly describe the topology of the bulk phase diagram.

Minimization of the functional. We perform a numerical
Picard [67] iteration to minimize the total Helmholtz free
energy with respect to the discretized angular distribution
function of plates ψp(θ ) on a one dimensional grid with 160
points.

We calculate the uniaxial order parameter according to

Sp =
∫

dθ
3 cos2(θ ) − 1

2
ψp(θ ). (A6)

Bulk Coexistence. To obtain the bulk phase diagram we use
the Gibbs ensemble and numerically minimize the Gibbs free
energy per particle

gb = F

N
+ P

ρ
, (A7)

where P is the osmotic pressure and ρ = ρp + ρs is the total
number density. For phase coexistence we need mechanical,
thermal and chemical equilibrium. The first two conditions
are fulfilled in the Gibbs ensemble by construction (P and
T are fixed). To find chemical equilibrium we search for a
common-tangent construction on gb(xs), with xs = ρs/ρ the
composition of spheres. Hence, we numerically minimize the
Gibbs free energy per particle gb with respect to the total
density ρ and the orientational distribution function of plates
ψp(θ ) for fixed values of P, T , and xs, and then search for a
common tangent.

Average colloidal packing fractions in a sample. To find
the colloidal packing fractions along a sedimentation path we
work in the grand canonical ensemble since the paths are lines
in the plane of chemical potentials. We minimize the grand
canonical potential  per unit of volume



V
= F

V
− ρ

∑
i

μixi, (A8)

with respect to ψp(θ ), xi, and ρ at fixed values of the chemical
potentials. We repeat the minimization for each point along
the sedimentation path. From the values of the packing frac-
tions ηi = xiviρ at each point along the path we obtain the
average packing fractions η̄i, i = p, s in the corresponding
sample.
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ABSTRACT

Both polydispersity and the presence of a gravitational field are inherent to essentially any colloidal experiment. While several the-
oretical works have focused on the effect of polydispersity on the bulk phase behavior of a colloidal system, little is known about
the effect of a gravitational field on a polydisperse colloidal suspension. We extend here the sedimentation path theory to study
sedimentation–diffusion–equilibrium of a mass-polydisperse colloidal system: the particles possess different buoyant masses but they are
otherwise identical. The model helps to understand the interplay between gravity and polydispersity on sedimentation experiments. Since the
theory can be applied to any parent distribution of buoyant masses, it can also be used to study the sedimentation of monodisperse colloidal
systems. We find that mass-polydispersity has a strong influence in colloidal systems near density matching for which the bare density of the
colloidal particles equals the solvent density. To illustrate the theory, we study crystallization in sedimentation–diffusion–equilibrium of a
suspension of mass-polydisperse hard spheres.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0129916

I. INTRODUCTION

A certain degree of polydispersity in the size and the shape of
the particles, for example, is inherent to all natural colloids. Even
though modern synthesis techniques allow the preparation of almost
monodisperse colloidal particles,1–4 a small degree of polydispersity
is unavoidable. Understanding bulk phase equilibria in polydisperse
systems is a significant challenge.5 Polydispersity alters the rela-
tive stability between bulk phases.6–10 Phases that are metastable
in the corresponding monodisperse system can become stable due
to polydispersity. Examples are the occurrence of hexatic colum-
nar11 and smectic phases12 in polydisperse discotic liquid crystals,
as well as macrophase separation in diblock copolymer melts.13 The
opposite phenomenon can also occur. For example, crystallization
in a suspension of hard-spheres is suppressed above a terminal
polydispersity.14–16 Also, fractionation into several phases appears
if the degree of polydispersity is high enough.17–19 A smectic phase
of colloidal rods is no longer stable above a terminal polydisper-
sity in the length of the particles.20 Dynamical processes, such as
shear-induced crystallization,21 are also affected by polydispersity.

During drying, a strong stratification occurs in polydisperse colloidal
suspensions,22,23 and the dynamics of large and small particles is
different if the colloidal concentration is large enough.24,25

Sedimentation–diffusion–equilibrium experiments are a pri-
mary tool to investigate bulk phenomena in colloidal suspensions.
However, the effect of the gravitational field on the suspension is far
from trivial26–30 and it needs to be understood in order to draw cor-
rect conclusions about the bulk.31 Gravity adds another level of com-
plexity to the already intricate bulk phenomena of a polydisperse
suspension. To understand the interplay between sedimentation and
polydispersity, we introduce here a mass-polydisperse colloidal sus-
pension: a collection of colloidal particles with the same size and
shape (and also identical interparticle interactions) but with buoyant
masses that follow a continuous distribution. Since the interparti-
cle interactions are identical, mass-polydispersity does not have any
effect in the bulk phase behavior. Hence, our model isolates the
effects of a gravitational field on a polydisperse colloidal system from
the effects that shape- and size-polydispersity generate in bulk.

We formulate a theory for mass-polydisperse colloidal sys-
tems in sedimentation–diffusion–equilibrium. The theory is based
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on sedimentation path theory32,33 that incorporates the effect of
gravity on top of the bulk description of the system. Sedimentation
path theory uses a local equilibrium approximation to describe how
the chemical potential of a sample under gravity changes with the
altitude. So far, sedimentation path theory has been used to study
sedimentation in colloidal binary mixtures.28,31–39 In this work, we
extend sedimentation path theory to mass-polydisperse systems.
Using statistical mechanics, we obtain the exact expression for the
sedimentation path of the mass-polydisperse suspension combin-
ing the individual paths of all particles in the distribution. We use
a model bulk system to illustrate and highlight the key concepts of
the theory, such as the construction of the sedimentation path and
that of the stacking diagram (which is the analog of the bulk phase
diagram in sedimentation). The theory is general and can be applied
to any colloidal system in sedimentation–diffusion–equilibrium.
Moreover, the theory contains the description of a monodisperse
system as a special limit (delta distribution of the buoyant masses).
As a proof of concept, we study sedimentation of a suspension of
mass-polydisperse hard-spheres with different buoyant mass dis-
tributions. We find that mass-polydispersity plays a major role in
systems near density matching. For example, near density matching
the packing fraction and the height of the sample at which crys-
tallization is observed in sedimentation–diffusion–equilibrium are
strongly influenced by the details of the mass distribution.

II. THEORY
A. Bulk

We use classical statistical mechanics to describe the thermody-
namic bulk equilibrium of our mass-polydisperse colloidal system.
The term bulk refers here to an infinitely large system in which
boundary effects can be neglected and that is not subject to any
external field. The particles differ only in their buoyant masses. Since
the buoyant mass does not play any role in bulk, the bulk phe-
nomenology of our model is identical to that of a monocomponent
system in which only one buoyant mass is present. Only when grav-
ity is incorporated into both systems the buoyant mass becomes a
relevant parameter and the behavior of the mass-polydisperse and
the monodisperse colloidal systems will differ from each other.

The total Helmholtz free energy F is the sum of the ideal and
the excess contributions, i.e., F = Fid + Fexc. In a mass-polydisperse
system, the free energy is a functional of ρm, the density distribu-
tion of species with buoyant mass m. For simplicity, we work with
a scaled, dimensionless, buoyant mass m = mb/m0, where mb is the
actual buoyant mass of a particle and m0 is a reference buoyant mass.
Sensible choices relate m0 to, e.g., the average buoyant mass of the
distribution or its standard deviation. The concrete definition of m0
is given below in each considered system.

The ideal contribution to the free energy is a functional of ρm
and is given exactly by

F id[ρm] = kBT ∫ dm ρm(ln(ρm) − 1), (1)

where kB is the Boltzmann’s constant and T is the absolute tem-
perature. Without loss of generality, we measure ρm relative to
the thermal de Broglie wavelengths Λm =√2πh̵2/(mbkBT) with
reduced Planck’s constant h. Note that the value of Λm does not play

any role here since altering Λm simply adds a term to the free energy
that is proportional to the total number of particles with buoyant
mass m. Such term can be reinterpreted as a change of the origin of
the chemical potential of the species with buoyant mass m.

The integration over m in Eq. (1) reflects the fact that due to
the mass-polydispersity, the buoyant mass is a continuous variable.
For the sake of simplicity, we omit the positional argument r in
the density distribution as well as its corresponding space integral
that appear in bulk-phases with positional order such as crystalline
phases.

The ideal free energy [Eq. (1)] accounts for the entropy of mix-
ing of our mass-polydisperse system. The overall density across all
species ρ follows directly from the density distribution of buoyant
masses

ρ = ∫ dm ρm. (2)

Since the interparticle interaction is independent of the buoyant
masses of the particles, only the density across all species ρ enters
into the excess (over ideal) free energy. Hence, the excess free energy
functional must satisfy

F exc[ρm] = F exc[ρ]. (3)

The grand potential is also a functional of ρm given by

Ω[ρm] = F id[ρm] + F exc[ρ] − ∫ dm ρmμm, (4)

where μm is the chemical potential of the species with buoyant mass
m. In equilibrium Ω[ρm] is minimal with respect to the mass-density
distribution, i.e.,

δΩ[ρm]
δρm′

= 0. (5)

The Euler–Lagrange equation associated with Eq. (5) (see
derivation in the Appendix) reads

ln(ρm) − ln(ρ) + βμ − βμm = 0, (6)

where μ is the chemical potential of a monodisperse system with
overall density ρ [see Eq. (2)]. Hence, it follows from Eq. (6) that
the density of particles with buoyant mass m can be written as

ρm = ρeβ(μm−μ). (7)

Integrating Eq. (7) over m on both sides, and using Eq. (2) on the
left-hand side, leads to

ρ = ρ∫ dm eβ(μm−μ). (8)

Since ρ ≠ 0, we obtain

eβμ = ∫ dm eβμm , (9)

which constitutes an exact analytic expression for the chemical
potential of the monodisperse bulk system

μ = kBT ln(∫ dm eβμm), (10)
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in terms of the chemical potentials of the individual species μm in the
mass-polydisperse system. In a monodisperse system, there exists
only a single species and Eq. (10) holds trivially.

B. Particle model
To proceed, we need the bulk equation of state (EOS) of

the monodisperse colloidal system, ρEOS(μ). Given an interparti-
cle interaction potential, several methods can be used to obtain
the corresponding bulk EOS. These include, e.g., density func-
tional theory,40 liquid state integral equation theory,41–43 computer
simulations,44–46 and empirical expressions.47–49 Here, and with the
only purpose of illustrating our theory, we use a model (fabricated)
EOS that contains two phase transitions [see Fig. 1(a)]. Our model
EOS satisfies both the ideal gas limit

lim
μ→−∞ ρEOS(μ) ∼ eβμ (11)

and also the close packing limit characteristic of systems with hard
core interactions

lim
μ→∞ηEOS(μ)/ηcp = 1, (12)

where ηEOS is the packing fraction (percentage of volume occupied
by the particles) according to the EOS and ηcp is the close packing
fraction. Such EOS could represent, e.g., a lyotropic colloidal system
with two first-order bulk phase transition, say isotropic–nematic and
nematic–smectic.

Apart from the model EOS, we also illustrate and validate the
theory by studying sedimentation of a suspension of hard-spheres.
We use the analytical EOS proposed by Hall,50 which describes the
liquid (L) and solid crystalline (S) phases of a hard sphere system.

FIG. 1. Packing fraction ηEOS relative to close packing ηcp as a function of the
scaled chemical potential βμ for (a) our model equation of state and (b) the Hall
equation of state50 for hard spheres. Our model EOS (a) contains three different
bulk phases named A, B, and C that could correspond to, e.g., the isotropic, the
nematic, and the smectic phases of a lyotropic liquid crystal. The Hall EOS (b)
describes the liquid (L) and the solid crystalline (S) phases of a hard-sphere
system. The vertical dotted lines indicate the chemical potentials of the different
bulk phase transitions. Without loss of generality, we have translated the origin of
chemical potential such that it coincides with the chemical potential of (a) the A–B
and (b) the L–S transitions.

The Hall EOS was originally formulated using the compressibility
factor as a function of the density. Following Ref. 51, we numerically
integrate the analytical Hall EOS to obtain the chemical potential as a
function of the density [see Fig. 1(b) for a graphical representation].
It is sufficient to fix ρEOS(μ) up to an arbitrary additive constant in
μ. Hence, for convenience, we choose μ = 0 as the chemical potential
at the liquid–solid first order phase transition.

C. Sedimentation
To incorporate gravity into our theory, we extend sedimen-

tation path theory32,52 as formulated for finite height samples31,33

to include mass-polydispersity. As often done in colloidal sedi-
mentation, we assume that all horizontal slices of a sample in
sedimentation–diffusion–equilibrium can be described as a bulk
equilibrium state and also that they are independent of each
other. This local-equilibrium approximation is justified if the cor-
relation lengths are small compared to the gravitational lengths
ξm = kBT/(mb g), which is the case in many colloidal systems. Here,
g is the acceleration of gravity.

We work in units of the thermal energy kBT, the gravitational
constant g, and the reference mass m0 for ease of comparability
between different systems. Using m0, we define a reference gravita-
tional length ξ = kBT/(m0 g), which acts as our fundamental length
scale.

We treat the slices for each elevation z as a bulk system with
local chemical potentials for each species μm given by

μm(z) = μ0
m −mbgz. (13)

Here, μ0
m is the chemical potential of the species with buoyant mass

m at elevation z = 0. The set of constant offsets μ0
m in μm(z) is

a priori unknown and must be determined via an iterative numerical
procedure to match the prescribed mass-resolved density distribu-
tion ρm. Returning to the discussion about the thermal wavelengths,
altering the value of Λm would only introduce a constant term
ln(Λm) in Eq. (6) that can be reabsorbed in Eq. (13) as a shift of the
chemical potential μm via the offset μ0

m. The offsets μ0
m depend there-

fore on the choice of Λm. However, the sedimentation profiles ρm(z)
remain unchanged, since μ0

m are determined to match the prescribed
density distribution.

Equation (13) is the sedimentation path31–33,52 of the species
with buoyant mass m. It hence describes how the chemical poten-
tial of each species varies linearly with z in the range 0 ≤ z ≤ h, with
h the sample height. The local chemical potential for each species
either decreases (mb > 0) or increases (mb < 0) with the elevation z,
depending on the sign of the buoyant mass.

The sedimentation path of each species μm(z) is just a straight
line [see Fig. 2(a)] as in the case of monodisperse systems. Next, we
combine all paths at each elevation z to obtain an effective chemical
potential μeff(z). Inserting μm(z) in Eq. (13) into Eq. (10) yields the
sedimentation path of a mass-polydisperse system

μ eff(z) = kBT ln(∫ dm eβ(μ0
m−mbgz)). (14)

Equation (14), which has the form of a LogSumExp func-
tion, describes how the effective chemical potential of the
mass-polydisperse system varies vertically along the sample in
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FIG. 2. (a) Local chemical potentials βμm(z) as a function of the elevation z scaled with the sample height h. Each sedimentation path varies linearly with z and it is
colored according to the buoyant mass of the species m (top-left color bar). (b) Effective chemical potential βμeff(z) as a function of the scaled elevation z/h. The non-linear
sedimentation path of the mass-polydisperse system (b) is the result of combining the sedimentation paths of each species (a) according to the LogSumExp structure in
Eq. (14). The sedimentation paths are defined in the interval 0 ≤ z ≤ h, and the sample height is h = 2ξ. (c) Imposed parent distribution fP(m) and plots of the parent
distribution scaled with several values of the average packing fraction η (see color bar). The imposed fP(m) and the value of η in (c) fix the offsets βμ0

m for all buoyant
masses m, which are shown in panel (d). The pink arrows illustrate the iterative procedure to find the effective sedimentation path: for a fixed distribution fP(m) and packing
fraction η (c), we give an initial guess for the offsets μ0

m (d), calculate the individual paths μm(z) (a), and combine them to get the effective path μeff(z) (b). Using the
effective path, we obtain the density profile and then the resulting distribution of particles and the average packing fraction. With this information, we readjust the offsets
μ0

m until the output distribution and packing fraction are the desired ones.

sedimentation–diffusion–equilibrium. We give an example of
μeff(z) in Fig. 2(b). The sedimentation path is obtained from the
set of μm(z) in Fig. 2(a) via Eq. (14). The sedimentation path is
no longer a straight line even though the individual paths for each
species are lines. Since (i) the logarithm is a concave function, (ii)
the scalars exp(βμ0

m) are positive, and (iii) the exponential is a
convex function, it follows that μeff(z), as given by Eq. (14), is a
convex function of the elevation z. This is a strong constraint on
the possible shapes of μeff(z). It means that (i) μeff(z) can have only
one minimum and also that (ii) the local maxima of μeff(z) in the
interval 0 ≤ z ≤ h are either z = 0, z = h, or both of them. As we dis-
cuss below, the extrema of the path μeff(z) are important because
they determine the layers of different bulk phases that form in the
sample.

Via the equation of state ρEOS(μ) for the bulk density, we then
obtain the density profile across all species

ρ(z) = ρEOS(μ eff(z)) (15)

at elevation z from Eq. (14).
The density of species with buoyant mass m at elevation

z follows then by inserting Eqs. (13)–(15) into Eq. (7),

ρm(z) = ρ(z)eβ(μ0
m−mbgz−μ eff(z)). (16)

The average density of particles with buoyant mass m in a
sample with height h is then given by

ρm = 1
h∫

h

0
dz ρm(z). (17)

The value of ρm is also the density of particles with buoyant mass
m in the initial distribution, i.e., before the particles sedimented and
equilibrated.

The average packing fraction is

η = v0

h ∫
h

0
dz ρ(z), (18)

where v0 is the particle volume.
The parent distribution, which gives the overall probability of

finding a particle with buoyant mass m anywhere in the sample, can
be obtained as

f P(m) = ρm∫dm ρm
= A

N∫
h

0
dz ρm(z), (19)

with N = hA ∫dm ρm = A ∫dm∫ h
0 dz ρm(z) the total number of par-

ticles, and A being the area of a cross section of the sample. Both
η and fP(m) are directly comparable with experimental results,
since η is the concentration of particles in the stock solution (before

J. Chem. Phys. 157, 234901 (2022); doi: 10.1063/5.0129916 157, 234901-4

© Author(s) 2022

74



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

sedimentation) and fP(m) describes the mass-polydispersity of the
particles, normalized by the total concentration.

From the definitions (18) and (19), we can get back the average
density of specie m via

ρm = η
v0

f P(m). (20)

To obtain the sedimentation–diffusion–equilibrium of a mass-
polydisperse colloidal system, we start prescribing the sample height
h, the average packing fraction of the sample η, and the parent dis-
tribution fP(m). An illustrative parent distribution that contains
particles with both positive and negative buoyant masses is shown
in Fig. 2(c). These initial conditions are sufficient to find the as
yet undetermined offsets on the chemical potential for each species
μ0

m [see Eq. (13)]. We discretize fP(m) and then numerically deter-
mine μ0

m via a least square algorithm that iteratively solves for the
prescribed ηf P(m) in a sample of height h. With the offsets μ0

m, we
calculate the corresponding μeff(z) via Eq. (14). Next, we obtain ρ(z)
and ρm(z) via Eqs. (15) and (16), respectively. The profiles ρ(z) and
ρm(z) determine both η and fP(m) via Eqs. (18) and (19), respec-
tively. The least square algorithm finds then the offsets that minimize
the difference to the prescribed (target) values of η and fP(m).

For example, we show in Fig. 2(d) the offsets μ0
m corresponding

to the distribution prescribed in Fig. 2(c). We discretize in m, and
hence the number of input variables ρm and unknown variables μ0

m
is the same. The self-consistency problem of finding μ0

m is there-
fore well defined. The set of sedimentation paths μm(z) in Fig. 2(a)
are obtained with the offsets calculated in Fig. 2(d). The effective
sedimentation path μeff(z) [see Fig. 2(b)] of the mass-polydisperse
system follows then from the set of paths for each species μm(z).

The sedimentation path of the mass-polydisperse system deter-
mines the stacking sequence, i.e., the set of layers of bulk phases that
are observed in the sample under gravity. Every time the path crosses
the coexistence chemical potential of a bulk transition, an interface
between the coexisting phases appears in the cuvette. By looking at
the crossings between the sedimentation path and the bulk binodals,
we determine the stacking sequence and the position of the inter-
faces between stacks. For example, the sequence corresponding to
the path in Fig. 2(b) is BABC (from top to bottom of the sample).

Extended Gibbs phase rule. Given the convexity properties
of the sedimentation path, recall our discussion following Eq. (14),
we conclude that the maximum number of layers that can appear
in a sedimented sample of a mass-polydisperse system is 2nb − 1,
with nb the number of different stable phases in bulk. This corre-
sponds to the stacking sequence of a mass-polydisperse suspension
with positive and negative buoyant masses in which all phases occur
repeatedly except the middle layer, which corresponds to the bulk
phase stable at low chemical potential. In our model EOS, the stack-
ing sequence with the maximum number of layers is CBABC, for
which the sedimentation path is similar to the one in Fig. 2(b) but
extended such that it reenters the C region at high elevations.

If the parent distribution contains only buoyant masses of the
same sign, the maximum number of layers in a stacking sequence is
simply nb, the number of stable bulk phases.

D. Stacking diagram
Different sedimentation paths can give rise to distinct stacking

sequences. The set of all possible stacking sequences can be repre-

sented in a stacking diagram. In binary mixtures, the sedimentation
paths of both species vary linearly with z. In mass polydisperse sys-
tems, we average the linear local chemical potentials μm(z) [Eq. (13)]
of all species together, according to Eq. (14), and obtain a non-linear
effective chemical potential μeff(z). Even though the sedimentation
paths are no longer straight lines, the same ideas as in the case
of binary mixtures31,32 apply for the construction of the stacking
diagram. In short, we must find all the sedimentation paths that con-
stitute a boundary between two or more stacking sequences in the
stacking diagram. Examples of such paths are shown in Fig. 3(a). The
boundary paths are the sedimentation paths μeff(z) that either end
[paths 1 and 4 in Fig. 3(a)], start (paths 2 and 5), or are tangent (paths
3 and 6) to a bulk binodal. These paths are a boundary between
two or more stacking sequences since an infinitesimal change of
the path, in general, alters the stacking sequence. Without gravity
(i.e., in bulk), the mass-polydisperse system behaves like a mono-
component system, since the interparticle interaction potential is
independent of the buoyant mass. Thus, in bulk, there is only a sin-
gle relevant chemical potential. In the chemical potential vs height
plane, the bulk transitions are simply horizontal lines independent of
z [see Fig. 3(a)]. Hence, given that the sedimentation path is con-
vex, a path tangent to a bulk binodal is also a path for which the
minimum coincides with the chemical potential of the bulk transi-
tion, e.g., paths 3 and 6 in Fig. 3(a). For other types of bulk phase
coexistence, such as critical and triple points, the procedure to find
the boundary paths is the same as the one just described for a bulk
binodal.

Next, we find the total density profile ρ(z) and the average
packing fraction η corresponding to each of the boundary sedi-
mentation paths via Eqs. (15) and (18), respectively. To obtain the
full stacking diagram, we repeat the procedure for every sample
height h ranging from zero to the desired maximal sample height.
This provide us with the stacking diagram in the (experimentally
relevant) plane of average packing fraction η and sample height
h [see Fig. 3(b)]. Each point in the stacking diagram represents one
sedimentation path and it hence represents one specific sample in
sedimentation–diffusion–equilibrium.

For each bulk phase transition, there can be at most three
boundary lines in the stacking diagram, so-called sedimentation
binodals.31–33 The sedimentation binodals corresponding to the
paths that either start or end at the binodal are always present inde-
pendently of the parent distribution and the sample height. On the
other hand, the sedimentation binodal corresponding to paths tan-
gent to the bulk transition appears if and only if the sedimentation
path presents a minimum at intermediate values of z. It follows from
Eq. (14) that a minimum in μeff(z) not located at the bottom (z ≠ 0)
or the top (z ≠ h) of the sample can appear only if the parent distri-
bution contains both positive and negative buoyant masses. Even in
that case, there might be sample heights for which the path does not
have a minimum at intermediate elevations.

In our illustrative example, there are two bulk phase transition
(A–B and B–C) [see Fig. 1(a)] and the parent distribution is made of
particles with positive and negative buoyant masses [see Fig. 2(c)].
The stacking diagram contains six sedimentation binodals [see
Fig. 3(b)]. For sample heights h/ξ ≲ 0.4, only two types of sedimenta-
tion binodals can be observed. In this low height regime, we cannot
find sedimentation paths tangent to the binodal since μeff(z) does
not have a minimum at intermediate elevations 0 < z < h.
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FIG. 3. (a) Sedimentation paths in the plane of effective chemical potential βμeff as
a function of the elevation z/h for samples of height h = 1.7ξ and a parent distri-
bution like in Fig. 2(c). The coexistence chemical potentials for the A–B (μcoex = 0)
and for the B–C (βμcoex = 0.25) bulk transitions are indicated by solid black hor-
izontal lines. There are six sedimentation paths labeled from 1 to 6. The average
packing fraction η of each sample is such that the corresponding path either ends
at (solid paths 1 and 4), starts at (dashed paths 2 and 5), or is tangent to (dotted
paths 3 and 6) a bulk binodal (horizontal lines). The points where the paths touch
the coexistence bulk chemical potential are marked by solid circles. (b) Stack-
ing diagram in the plane of average packing fraction η/η cp and sample height
h/ξ for the model EOS in Fig. 1(a) and parent distribution as in Fig. 2(c). The
position of the six boundary sedimentation paths in (a) is marked in (b) using the
corresponding labels 1–6. The sedimentation binodals of paths that end, start, and
are tangent to the bulk binodals are indicated with solid, dashed, and dotted lines,
respectively. The stacking sequences are labeled from the top of the sample to
the bottom. Each point in the stacking diagram is a sample in sedimentation. The
sketch shows the stacking sequence BABC and relative layer thicknesses of the
sample with η/η cp = 0.45 and h/ξ = 3.5 (indicated by a black circle).

Within our local equilibrium approximation, in the limit h→ 0,
the sedimentation path reduces to a point and hence the stacking
diagram reduces to the bulk phase diagram. In a real system, confine-
ment and surface effects, such as wetting and layering, will become
relevant in the limit of short sample heights.

Mass-monodisperse system. Our method to construct the
stacking diagram for mass-polydisperse systems contains as a lim-
iting case the monodisperse system. In a monodisperse system, all
particles possess the same buoyant mass. Hence, Eq. (14) reduces to

μ eff(z) = μm(z) = μ0
m −mbgz. (21)

Thus, as expected, the sedimentation path of a monodisperse system
is the segment of a line, linear in z. In the stacking diagram, only
the sedimentation binodals of paths that start, i.e., μeff(h) = μcoex, or
end, i.e., μeff(0) = μcoex, at the bulk binodal (given by μcoex) appear.
The sedimentation path of a monodisperse system can never have a
minimum at intermediate elevations.

III. RESULTS

We next apply our theory to the arguably best studied colloidal
system to date: hard spheres. We study sedimentation of a mass-
polydisperse hard sphere system using the Hall equation of state,50

represented in the plane of μ and η in Fig. 1(b), to describe the bulk
of the system.

A. Species-resolved probability distributions
in mass-polydisperse systems

The imposed parent distribution of the mass-polydisperse
system, fP(m), describes the probability of finding a particle with
a certain buoyant mass m anywhere in the system. Experimentally,
this corresponds to the stock solution. After letting the dispersion
settle under gravity to reach sedimentation–diffusion–equilibrium,
a height-dependent density profile develops. The overall proba-
bility distribution integrated over the whole sample is still fP(m)
since particles are conserved. However, at each horizontal slice, the
mass composition is generally different from fP(m). One expects,
e.g., heavier particles to concentrate next to the bottom of the sample
as compared to lighter particles. Sedimentation path theory allows
us to carry out a detailed study of the mass distribution along the
sample.

We study first a mass-polydisperse dispersion of hard spheres
with only positive buoyant mass. The parent distribution is a Gaus-
sian centered around m = 1 and cut at m = 0 and m = 2, i.e., only
buoyant masses in the range 0 ≤ m ≤ 2 are allowed. The mean pack-
ing fraction is η/η cp = 0.6. Under gravity, the sample develops the
stacking sequence: top liquid and bottom solid (LS). We show the
probability f (m, z) of finding a particle with buoyant mass m at ele-
vation z in Fig. 4(a). The probability distribution fm(z) for a fixed
buoyant mass m and resolved in z, as well as the probability distri-
bution fz(m) for a fixed z resolved in m are shown in Figs. 4(b) and
4(c), respectively. The distributions fm(z) and fz(m) correspond to
vertical and horizontal slices of the full distribution f (m, z), respec-
tively. The distributions fz(m) are shifted and skewed [Fig. 4(c)] as
compared to the parent distribution fP(m) (black dashed line) that is
symmetric with respect to m = 1. As expected, heavier particles are
more frequently found at the bottom of the sample. This becomes
more apparent when we look at fm(z) [Fig. 4(b)]. There is a clear
depletion of lighter particles from the bottom of the sample. Interest-
ingly, the probability distribution along z of particles with m ≲ 1.01
is not monotonically increasing toward the bottom of the sample,
but has a maximum up to 0.5h above the bottom. Lighter particles
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FIG. 4. (a) Probability of finding a particle with buoyant mass m at elevation z relative to the sample height h in a hard sphere system modeled using the Hall EOS. The
light contour lines in (a) indicate points (m, z) at which the chemical potential μm(z) [see Eq. (13)] is equal to the bulk liquid–solid coexistence chemical potential. The
white arrow indicates the position of the liquid (L)–solid crystalline (S) interface. (b) Vertical slices of panel (a) for fixed buoyant mass m given by the colorbar. The inset
is a sketch of the sample. (c) Horizontal slices of panel (a) for fixed elevation z given by the colorbar. The imposed parent distribution fP(m) is a Gaussian with standard
deviation 0.4 and centered around m = 1, i.e., the reference buoyant mass m0 is the mean of the parent distribution (see black dashed line). The sample has a height
h = 80ξ with gravitational length ξ and a packing fraction η = 0.6ηcp, relative to the close packing fraction ηcp. Panels (d)–(f) are the same as panels (a)–(c), but for a
Gaussian with standard deviation 0.6 centered around 0.03 as the parent distribution fP(m) (black dashed line), slightly favoring particles with positive buoyant mass,
sample height h = 120ξ, and packing fraction η = 0.7ηcp. The crosses in (b) and (e) indicate the position of the local maxima in the probability distribution fm(z) along
elevation z for fixed buoyant mass m.

are displaced by heavier particles from the bottom as a result of a
balance between only two contributions: the gravitational energy
and the entropy of mixing. The excess free energy does not play a
role in determining the relative position of the particles according to
their buoyant masses. Interchanging heavier for lighter particles and
vice versa does not alter the overall density, and thus the excess free
energy Fexc[ρ], which is a functional of only the overall density ρ, is
not affected.

We also show in Figs. 4(d)–4(f), the mass- and height-resolved
probability distributions of a sample with a parent distribution
containing both positive and negative buoyant masses. The par-
ent distribution is a Gaussian centered around m = 0.03 and cut at
m = ±1.9. The initial packing fraction is η/η cp = 0.7 and the stack-
ing sequence is SLS. The liquid–solid interfaces occur at elevations
z/h = 0.25 and 0.8 and are visible as discontinuities of the distribu-
tion functions. On the top (bottom) of the sample, particles with
negative (positive) buoyant masses are more frequently found. This
is visible in Fig. 4(f) as a shift toward negative or positive buoy-
ant masses of the distributions belonging to the solid crystalline
layers.

B. Mass-polydispersity close to density matching
In density matching colloidal experiments, the mass density of

the colloidal particles is very close to the mass density of the sol-
vent. If the density match between particle and solvent is perfect,
the buoyant mass of the colloids vanishes, and therefore gravity has
no effect on the sample. This, in principle, would allow to carry out
a direct comparison between bulk phenomena and sedimentation
experiments. In practice, however, preparing experimentally a per-
fect density matching solution is challenging. Density matching is
typically achieved by combining solvents with different mass den-
sities in the correct proportions to match the mass density of the
particles.53–56 To sterically stabilize the colloidal particles, they are
frequently coated with a polymer layer of a different density than
that of the particle core.57–61 Due to the polydisperse nature of most
colloidal systems, the effective particle density (including both the
core and the coating layer) can vary between the particles. As a
result, not all the particles in the solution can have neutral buoy-
ancy. The buoyant mass of the particles falls within a range roughly
centered around neutral buoyancy. In general, there will be parti-
cles that have either slightly positive or slightly negative buoyant
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masses. We will see here that small deviations from density matching
can have a strong effect on sedimentation–diffusion–equilibrium
experiments.

We model a system close to density matching by a parent Gaus-
sian distribution fP(m) roughly centered around a buoyant mass
m = 0, as shown in Fig. 5(a). We study four different cases, with
the mean of the Gaussian m̄ slightly shifted in the range of ±0.02,
which is ∼10% of their standard deviations. The distributions are cut
at m = ±0.95 around their respective mean.

The stacking diagram for the case m̄ = 0 is shown in Fig. 5(b).
Near density matching, the sedimentation paths are rather hori-
zontal and sensitive to the precise form of the parent distribution.
Hence, the small deviations between the (imposed) target and the
(actual) numerical parent distributions that arise in the iterative pro-
cedure due to numerical inaccuracies can have a noticeable effect.
This is the reason behind the scattered data points (symbols) in the
sedimentation binodals of Fig. 5(b). With a symmetrical parent dis-
tribution around m = 0 (i.e., m̄ = 0) neither particles with positive
nor with negative buoyant mass are favored. Thus, only symmet-
ric stacking sequences (with respect to the midpoint of the sample
z = h/2) occur, namely L, S, and SLS. Asymmetric sequences, such
as LS or SL, do not appear.

The situation is different for m̄ = −0.02, where particles
with negative buoyant mass that cream up are predominant [see
Fig. 5(c)]. Consequently, we also observe the stacking sequence SL,
with the denser, solid phase, on top of the sample.

In Figs. 5(d) and 5(e), we show the stacking diagram for the
remaining cases m̄ = 0.01 and 0.02, respectively. For comparison,
we show always the sedimentation binodals of the buoyant neutral
suspension with m̄ = 0. The position of the sedimentation binodals
for the cases m̄ = −0.02 and 0.02 are identical, but the associated
stacking sequences are inverted. This was expected, since chang-
ing from m̄ = −0.02 to 0.02 is equivalent to inverting the direction
of gravity and thus interchanging the meaning of top and bottom
of the sample. This is also the reason why we observe the stacking
sequence LS in Fig. 5(e) in the region occupied by SL in Fig. 5(c). The
case m̄ = 0.01 shows the same characteristics as m̄ = 0.02, but with
the position of the sedimentation binodals roughly rescaled in the
h/ξ axis by a factor of 1/2, which is the ratio between the mean
of the corresponding parent distributions. Most notable, there is a
qualitative difference between the case m̄ = 0 and any other par-
ent distribution considered, namely the lack of asymmetric stacking
sequences, such as LS and SL. Mass-polydispersity therefore plays
an important role in colloidal suspensions close to density matching
and even small deviation from density matching can have drastic
effects on the stacking diagram.

C. Mass-polydispersity away from density matching
Not all types of parent distributions are as sensitive to mass-

polydispersity as those representing a system near density matching.
In many cases, the stacking diagram is robust against perturbations
of the parent distribution. To show this, we construct here four
classes of parent distributions and calculate the corresponding sed-
imentation paths. The sedimentation paths are quite similar within
each class. We hence can conclude that the corresponding stacking
diagrams are also alike. Recall that the stacking diagram is con-
structed from the set of special paths, μeff(z), that either start at, end

FIG. 5. (a) Four parent fP Gaussian distributions with slightly shifted mean m̄ in the
range 0 ± 0.02, as indicated. The standard deviation is 0.2 in all cases, and the dis-
tributions are cut at m = ±0.95 around their respective mean. The corresponding
stacking diagrams for a mass-polydisperse system of hard spheres in the plane
of average packing fraction η (relative to close packing ηcp) and sample height
h (relative to the gravitational length ξ) are shown in (b) for the parent distributions
with m̄ = 0, in (c) for m̄ = −0.02, in (d) for m̄ = 0.01, and in (e) for m̄ = 0.02. The
sedimentation binodals of paths that end, start, and are tangent to the bulk bin-
odals are indicated with solid, dashed, and dotted lines, respectively. The symbols
are the data points. The sedimentation binodals of the case m̄ = 0 are shown for
reference in all the stacking stacking diagrams. Note that for the case m̄ = 0 the
sedimentation binodals of paths that either start or end at the bulk transition coin-
cide since the parent distribution is symmetrical around m = 0. The bulk system
exhibits liquid (L) and solid crystalline (S) phases. The stacking sequences are
labeled from the top to the bottom of the sample.

at, or are tangent to the bulk binodal (see Fig. 3). Thus, if two sys-
tems share similar paths for a range of packing fractions and sample
heights, the stacking diagrams will also be similar.

The four classes of parent distributions and the correspond-
ing sedimentation paths are shown in Fig. 6. We construct several
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FIG. 6. Families of parent distributions fP(m) in the form of (a) the sum of
two Gaussians that move apart symmetrically around the buoyant mass m = 1,
(b) Gaussian with increasing standard deviation from 0.1 to 0.5, (c) χ2-distribution
with the degree of freedom increasing from 3 to 13, and (d) sum of two Gaus-
sians with mean values m = −1 and m = 1 and increasing standard deviation
from 0.1 to 0.5. The distributions in (c) have mean 0.6 and standard deviation
1. The effective sedimentation paths βμeff as a function of the scaled elevation
z/h corresponding to the families of distributions in panels (a)–(d) are shown in
panels (e)–(h), respectively. In all cases, we use the Hall EOS for hard spheres,
the packing fraction is η/η cp = 0.5, and the sample height is h/ξ = 80. The
dashed lines in panels (e)–(g) are the linear trends of the corresponding sedimen-
tation paths (displaced vertically for a better visualization). The slopes (indicated
next to each dashed line) coincide in all three cases with the mean mass of the
corresponding family of distributions, which are 1 (a), 1 (b), and 0.6 (c).

distributions within each class by varying a control parameter.
In Fig. 6(a), we increase the mass-polydispersity by interpolat-
ing between unimodal and bimodal Gaussian distributions. In
Fig. 6(b), we increase the variance of a Gaussian distribution. In

Fig. 6(c), we vary the skewness of the distribution while keeping
the first and the second moment unaltered. In all cases, the dis-
tributions contain only positive masses and varying the control
parameter has little effect on the sedimentation paths, even when
we, e.g., drastically increase the degree of mass-polydispersity (sec-
ond moment of the distribution). The corresponding sedimentation
paths, shown in Fig. 6(e)–(g), deviate only slightly from a straight
line with a slope given by the mean buoyant mass of the distribution.
Hence, in sedimentation–diffusion–equilibrium, mass-polydisperse
systems in which only positive or negative buoyant masses are
present are similar to a reference monodisperse system. [Recall that
μ(z) = μ0 −mb gz for a monodisperse system.] The monodisperse
reference system has the same particle mass as the mean of the mass
distribution of the mass-polydisperse system.

We also consider a class of parent distributions with both posi-
tive and negative buoyant masses, where we increase the variance of
a bimodal distribution [see Fig. 6(d)]. Due to the presence of buoy-
ant masses with different sign, the suspension does not behave like a
monodisperse system under gravity, and hence μeff(z) is not close to
a straight line [see Fig. 6(h)]. Still the increase in the degree of mass-
polydispersity does not affect the behavior of the system strongly
since the paths do not deviate much from each other.

IV. SUMMARY AND CONCLUSIONS

Sedimentation path theory32,33 was initially developed to study
sedimentation–diffusion–equilibrium of binary mixtures. The the-
ory describes systems that are in equilibrium under the presence
of a gravitational field and therefore cannot be used to describe
non-equilibrium phenomena, such as drying,62,63 or systems that get
arrested due to, e.g., the formation of glasses58 and non-equilibrium
gels.64 Depending, among other factors, on the buoyant mass of
the colloids, the experimental equilibration times can vary from a
few hours to several months.28 We have extended here sedimenta-
tion path theory to deal with mass-polydisperse colloidal systems,
i.e., the particles are identical except for the value of their buoy-
ant masses. We derived an exact equation for the sedimentation
path of the mass-polydisperse system [Eq. (14)] that combines all
the sedimentation paths of the individual species. The resulting
equation has the structure of the LogSumExp function, often used
in machine learning algorithms for its smooth approximation to
the maximum function.65 Adding mass-polydispersity to a binary
mixture is, in principle, a straightforward extension of the present
work.

In bulk, mass-polydispersity has no effect on the phase behav-
ior. Hence, our mass-polydisperse model allows us to highlight
the interplay between polydispersity and gravity, eliminating by
construction the complex effects that shape-polydispersity and
size-polydispersity generates in bulk.5,7–9,12,14,16,19,20,66 Beyond its
fundamental interest, a mass-polydisperse system can be specif-
ically realized experimentally by, e.g., synthesizing core–shell
nanoparticles67–70 with the same overall size but different relative
size between the core and the shell. In addition, if the degree of
size-polydispersity is small, mass-polydispersity is likely the domi-
nant effect in sedimentation–diffusion–equilibrium. This is particu-
larly relevant in colloidal suspensions near density matching53–56 in
which mass-polydispersity has a big effect on the stacking diagram
under gravity: two mass distributions that are only slightly different
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can give rise to topologically different stacking diagrams containing
different stacking sequences.

Granular media is a related system in which the particles can
be polydisperse.71–74 It would be interesting to analyze the effects
of mass-polydispersity in granular systems. For example, phase sep-
aration induced by mass-polydispersity might occur in vibrated
monolayers75,76 of granular systems.

Despite the relevance of the hard-sphere model in soft matter,
there are only a few experiments on the sedimentation–diffusion–
equilibrium of (quasi) hard-spheres. Moreover, colloids with a rela-
tively large buoyant mass are often used57,59 and the sample height is
not used as a control parameter. A systematic experimental study of
the stacking diagram of hard spheres would be valuable.

In bulk, it is sometimes possible to approximate the free
energy of a polydisperse system using only a finite number of
moments of the parent distribution.77,78 In a similar way, using the
first moment of the parent distribution, it is possible to obtain a
reasonable approximation for the effective sedimentation path of
the mass-polydisperse system and hence an approximated stacking
diagram.

Polydispersity in the size of the particles affects the bulk
behavior of the suspension and, therefore, also the sedimentation–
diffusion–equilibrium. For example, van der Kooij et al. studied
the sedimentation of polydisperse colloidal platelets.26 Their par-
ticle distribution contained platelets of different sizes but only
positive buoyant masses. By changing the overall packing fraction,
they found a striking inversion of the stacking sequence from the
expected top isotropic and bottom nematic, IN, to top nematic
and bottom isotropic, NI. Due to the geometric properties of the
sedimentation path of a mass-polydisperse system, such inversion
of the sequence cannot occur in a mass-polydisperse system that
contains particles with only positive (or only negative) buoyant
masses. As correctly pointed out in Ref. 26, the inversion must there-
fore be a consequence of the interplay between gravity- and size-
polydispersity. Sedimentation path theory could be applied on top
of a bulk theory for size-polydisperse systems in order to describe
such effects.
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APPENDIX: EULER–LAGRANGE EQUATION

Carrying out the functional derivative with respect to ρm in
Eq. (5) for the ideal free energy contribution to Ω yields

δF id[ρm]
δρm′

= kBT ln(ρm). (A1)

For the excess contribution, we find

δF exc[ρ]
δρm′

= δF exc[ρ]
δρ

, (A2)

where we have used the functional chain-rule and also the definition
of the overall density [Eq. (2)] to calculate the functional derivative

δρ
δρm
= δ

δρm
∫ dm′ρm′ = ∫ dm′δ(m −m′) = 1. (A3)

Hence, introducing the excess chemical potential μexc = δFexc[ρ]/δρ
in Eq. (A2), it follows

δF exc[ρm]
δρm′

= μ exc = μ − kBT ln(ρ). (A4)

Here, μ = μexc + kBT ln(ρ) is the total chemical potential, including
the ideal contribution kBT ln(ρ), of the corresponding monodis-
perse system with the same overall density ρ as the mass-
polydisperse system.

For the last contribution to Ω[ρm] in Eq. (4), we get

δ
δρm
∫ dm′ρm′μm′ = μm. (A5)

Hence, adding Eqs. (A1), (A4), and (A5) according to the min-
imization principle [Eq. (5)] yields the Euler–Lagrange equation
shown in Eq. (6).
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Effect of sample height and particle elongation
in the sedimentation of colloidal rods

Tobias Eckert, Matthias Schmidt and Daniel de las Heras *

We study theoretically the effect of a gravitational field on the equilibrium behaviour of a colloidal

suspension of rods with different length-to-width aspect ratios. The bulk phases of the system are

described with analytical equations of state. The gravitational field is then incorporated via sedimentation

path theory, which assumes a local equilibrium condition at each altitude of the sample. The bulk

phenomenology is significantly enriched by the presence of the gravitational field. In a suspension of

elongated rods with five stable phases in bulk, the gravitational field stabilizes up to fifteen different

stacking sequences. The sample height has a non-trivial effect on the stable stacking sequence. New

layers of distinct bulk phases appear either at the top, at the bottom, or simultaneously at the top and

the bottom when increasing the sample height at constant colloidal concentration. We also study

sedimentation in a mass-polydisperse suspension in which all rods have the same shape but different

buoyant masses.

I. Introduction

Hard particles possess an interaction potential that is infinite if
two particles overlap and zero otherwise. Hard spherocylinders,
which are cylinders capped with hemispheres at both ends, are
among the most popular hard particle models,1 partly because
computing whether two particles overlap or not is relatively
simple, and also because their phase behaviour is rich. Hard
models are suitable candidates to study the phase behaviour of
colloidal systems since the interaction between colloidal parti-
cles is often short-ranged and primarily repulsive. As revealed
by computer simulations2–5 hard spherocylinders can form
isotropic, nematic, smectic, and crystalline phases depending
on their length-to-width aspect ratio and the overall packing
fraction. The percolation,6–9 random close packing,10–12 and
random sequential adsorption13,14 of hard spherocylinders
have been subject of intense investigation due to the versatility
of the model to describe a wide range of systems ranging from
lyotropic liquid crystals to granular particles. Theoretically,
classical density functional theory15 has been widely used to
study the phase behaviour of hard spherocylinders via func-
tionals based on smoothed density approximations,16,17

weighted density approximations,18,19 and fundamental mea-
sure theory.20–22

Beyond bulk phenomena, several works have focused on
inhomogeneous systems of hard spherocylinders. Interfacial

phenomena,23–27 wetting,28–30 capillary nematization28,30–33

and smectization34,35 in planar pores, as well as confinement-
induced phenomena in different geometries36–39 have been
studied with density functional approximations and computer
simulations.

The hard spherocylinder model has been also used as a refer-
ence system to build up more complex interparticle potentials.
These include spherocylinders with dipolar,40–44 Coulombic45,46 and
patchy47–49 interactions, active spherocylinders,50–53 as well as
spherocylinders coated with soft layers.54,55 Moreover, the hard
spherocylinder model can be a reasonable approximation to the
shape and the interaction of real colloidal particles such as natural
clay rods,56 fd virus,57 rod-like boehmite particles,58 polystyrene
ellipsoids,59 silica rods,60–62 as well as PMMA rods63,64 and
ellipsoids.65,66

Sedimentation experiments, in which a colloidal suspension is
equilibrated under the influence of a gravitational field, are one of
the basic tools to investigate phase behaviour in colloidal science.
Zhang and van Duijn-eveldt56 investigated the isotropic-nematic
transition in a polydisperse suspension of natural clay rods in
sedimentation. Polydispersity induces a nematic-nematic phase
separation with strong fractionation in the rod length. Kuijk
et al.61 performed sedimentation experiments on silica rods with
different aspect ratios and constructed an approximated bulk phase
diagram by estimating the packing fractions at different heights.
Beyond isotropic, nematic, and smectic A phases, they found a
smectic B phase that preempts the formation of a full crystalline
state, likely due to polydispersity and the presence of charges.

The gravitational field can have a strong and far from
trivial effect in sedimentation experiments, especially if the
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gravitational length is smaller or comparable to the height of
the vessel,67 which is often the case in colloidal science. To
correctly extract information about bulk phenomena from
sedimentation experiments it is essential to understand the
effect of the gravitational field on the suspension. Not much
theoretical and simulation work has been devoted to under-
stand the effects of gravity on a suspension of hard spherocy-
linders. Viveros-Méndez et al.68 studied with Monte Carlo
simulations the sedimentation of a neutral mixture of oppo-
sitely charged spherocylinders. Savenko and Dijkstra69 studied
sedimentation-diffusion-equilibrium in suspensions of hard
spherocylinders with length-to-width aspect ratio of 5 using
the macroscopic osmotic equilibrium conditions, and com-
pared the results to Monte Carlo simulations. Depending on
the average packing fraction and the height of the sample they
found a rich variety of stacking sequences with up to four layers
of different bulk phases (top isotropic followed by nematic,
smectic and finally a bottom layer of a crystal phase).

Here, we do a systematic theoretical study of the effect of
particle elongation and sample height in the sedimentation of
suspensions of colloidal hard spherocylinders in equilibrium.
We use the equations of state (EOS) proposed by Peters et al.70

to describe the bulk of the suspensions, and sedimentation
path theory71,72 to incorporate the effect of gravity. The EOS by
Peters et al.70 are based on scaled particle theory73 and
extended cell theory,74 and reproduce quantitatively the full
phase behaviour of hard spherocylinders for all aspect ratios.
We study sedimentation of monodisperse suspensions with
four characteristic values of the aspect ratio that cover the
whole range of bulk phase phenomena. We also investigate the
evolution of the stacking sequences upon varying the height of
the vessel at constant packing fraction. By increasing the
sample height new layers can appear in the sample either at
the top, the bottom, or simultaneously at the top and the
bottom of the sample. Using a recent extension of sedimenta-
tion path theory to mass-polydisperse suspensions,75 in which
the particles differ only in their buoyant mass, we study the
interplay between mass-polydispersity and gravity in suspen-
sions near density matching. Under such conditions it is
possible to find stacking sequences with up to seven layers
and, in contrast to monodisperse systems, new layers can also
appear in the middle of the sample.

II. Theory

A full account of the theory for monodisperse and mass-
polydisperse colloidal suspensions is given by Eckert et al.75

Here, we give only a brief summary of the theory.

A. Sedimentation path theory for monodisperse and mass-
polydisperse systems

Sedimentation path theory is based on a local equilibrium approxi-
mation to describe sedimentation-diffusion-equilibrium in a col-
loidal suspension under a gravitational field. In monodisperse
suspensions, the state of the sample at altitude z (measured from

the bottom of the sample) is approximated by a bulk state with an
effective chemical potential given by

meff(z) = m0 � mbgz, 0 r z r h. (1)

Here mb is the buoyant mass of the particles, g is the accelera-
tion of gravity, h is the sample height and m0 is a constant offset
of the effective chemical potential that can be interpreted as the
colloid chemical potential at position z = 0. The value of m0

determines the total colloidal density of the sample. The local
equilibrium approximation is accurate provided that all corre-
lation lengths are small compared to the gravitational length
x = kBT/(mbg), with kB being the Boltzmann’s constant and T
being the absolute temperature.

In the plane of z and meff the effective chemical potential is
just the segment of a line, see Fig. 1(a), known as the sedimen-
tation path.71,72 The sedimentation path is directly related to the
stacking sequence observed in sedimentation, i.e. the sequence
of layers of different bulk phases. An interface appears in the

Fig. 1 Sedimentation path theory. Schematic plots of the effective
chemical potential meff vs. the altitude z scaled with the sample height h
in sedimentation samples of monodisperse (a) and mass-polydisperse (b)
colloidal suspensions. The horizontal black line indicates the chemical
potential mc of a bulk transition between two phases labeled A and B.
Several representative sedimentation paths are plotted. The paths are
straight lines in monodisperse suspensions (a) and curves in mass-
polydisperse suspensions (b). The sample corresponding to the orange
dash-dotted path is sketched in the inset of (a). The blue paths form the
sedimentation binodals between two different stacking sequences. An
infinitesimal change of any of the blue paths can alter the stacking
sequence. Represented are paths that end at the bulk coexistence, i.e.
meff(z = 0) = mc (blue-solid paths marked with an encircled 1), paths that
start at the binodal, i.e. meff(z = h) = mc (blue-dashed paths marked with an
encircled 2), and a path that is tangent to the binodal (blue-dotted path
marked with an encircled 3).
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vessel when the sedimentation path crosses a bulk binodal.
That is, an interface between two bulk phases A and B at
position z0 occurs if meff(z0) = mc with mc the bulk chemical
potential of the coexisting phases, see the orange sedimentation
path in Fig. 1(a).

In a mass-polydisperse suspension there is a distribution of
colloidal particles that differ only in their buoyant masses. Such
system can be experimentally created with e.g. core–shell
colloidal particles65,76 of identical overall size and shape but
with internal cores of different sizes. The interparticle interac-
tions and hence the bulk phenomena (without gravity) are the
same as in the corresponding monodisperse suspension. This
greatly simplifies the theoretical treatment while it still high-
lights the interplay between polydispersity and gravity.

The effective chemical potential of the species of mass m in a
gravitational field is in generalization of eqn (1)
approximated by

mm(z) = m0
m � mbgz, 0 r z r h. (2)

Here m = mb/m0 is a scaled buoyant mass with mb being the
actual buoyant mass and m0 being a reference buoyant mass
such that m is dimensionless. A sensible choice is to relate m0

with either the average buoyant mass or with the standard
deviation of the parent distribution, which is the initial dis-
tribution of buoyant masses in bulk. The constant m0

m sets the
overall density of the species with mass m in the suspension.
Using eqn (2) for the chemical potential of species with mass m,
one arrives at the following exact expression for the effective
chemical potential of the suspension along the sedimentation
path75

meffðzÞ ¼ kBT ln

ð
dmebðm

0
m�mbgzÞÞ; 0 � z � h;

�
(3)

where the integral is over the whole range of masses in the
parent distribution. We therefore have successfully mapped a
mass-polydisperse system under gravity onto an effective mono-
disperse system with local chemical potential meff(z). The sedi-
mentation path is no longer a straight line, although the
LogSumExp structure of eqn (3) imposes severe restrictions to
the possible shapes of the path. In particular, it follows from
eqn (3) that meff(z) is a concave function of the altitude z and
hence it can have at most one strict minimum. If only a single
value of the buoyant mass is allowed in the parent distribution,
then the integral in eqn (3) collapses to a single buoyant mass
and the effective chemical potential reduces to the monodis-
perse case, eqn (1). That is, the mass-polydisperse system
contains the monodisperse system as the limit in which the
parent distribution is a delta distribution.

To translate between chemical potentials and densities, we
need a bulk equation of state (EOS) in the form of density
rEOS(m) as a function of the chemical potential m, which
describes the bulk phase behavior of the system, i.e. in absence
of gravity. Then, using the equation of state together with
eqn (2) and (3) we obtain rm(z), the density profile of the
species with mass m and rðzÞ ¼

Ð
dmrmðzÞ, the overall density

profile across all species.

Usually, we set an initial (desired) parent distribution of
particles and then find the offsets m0

m in eqn (3) that reproduce
the parent distribution. That is, we find the offsets m0

m such that
the overall density of species m in sedimentation, which is

1=h
Ð h
0dzrmðzÞ, is equal to the density of particles with mass m in

the parent distribution. The offsets are found numerically via a
simple iterative procedure.75

In our study of hard spherocylinders, we use the EOS
proposed by Peters et al.,70 which is depicted in Fig. 2 for four
different values of the aspect ratio L/D, where L is the length of
the cylinder and D the diameter of the spherocylinders. We
represent the EOS in the plane of m and Z, with Z = rv0 the
packing fraction and v0 the particle volume.

B. Construction of the stacking diagram

The analogue to the bulk phase diagram in presence of a
gravitational field is the stacking diagram72 that groups all
possible stacking sequences of a given colloidal suspension in
sedimentation-diffusion-equilibrium. To construct the stacking
diagram one needs to find the sedimentation binodals that
determine the boundaries between distinct stacking sequences.

In monodisperse and mass-polydisperse suspensions, the
sedimentation binodals are formed by a set of three different
types of sedimentation paths: (i) paths that end at a bulk
binodal, i.e. meff(z = 0) = mc with mc the chemical potential at
coexistence in a bulk transition, (ii) paths that start at a bulk
binodal, i.e. meff(h) = mc, and (iii) paths that are tangent to a bulk
binodal. Examples of all types of paths are shown in Fig. 1(a)
and (b) for monodisperse and mass-polydisperse suspensions,
respectively. The third type of paths (tangent to a bulk binodal)
is only present in mass-polydisperse suspensions since there
the sedimentation path can be curved. These three types of
sedimentation paths form the sedimentation binodals because
an infinitesimal change of the path can alter the stacking
sequence.

We construct the stacking diagrams in the (experimentally
relevant) plane of average colloidal packing fraction of the
sample and sample height. For a detailed account of the
construction of stacking diagrams in monodisperse and
mass-polydisperse systems see Eckert et al.75

III. Results

We start in Section III.A summarizing the main results for the
bulk of the system. The effect of the gravitational field is then
presented in Section III.B (stacking diagrams), Section III.C
(effect of sample height), and Section III.D (effect of mass-
polydispersity).

A. Bulk phase behaviour

Several theoretical and simulation techniques have been used
to study the equation of state of hard spherocylinders. These
include Monte Carlo simulations,78,79 molecular dynamics
simulations,80 Brownian dynamics simulations,51,81 scaled par-
ticle theory73,82 and cell model theory.74 We use here the EOS by
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Peters et al.70 to model the bulk properties of the system. These
closed-form equations of state are simple yet they provide an
accurate description of the full phase behaviour of hard spher-
ocylinders, depicted in Fig. 2. We show the bulk phase diagram
for rods with four different aspect ratios selected to illustrate
the entire phenomenology of hard spherocylinders.5,70 Five
different phases occur in bulk, namely isotropic (I), nematic
(N), smectic-A (S), AAA crystal (A), and ABC crystal (C). See
schematics in Fig. 2(e). For low aspect ratios, e.g. L/D = 3.0 in
Fig. 2(a), there is only a first order phase transition from
isotropic fluid to ABC crystal. Increasing the aspect ratio to
e.g. L/D = 3.7 stabilizes also a smectic phase at intermediate
densities, see Fig. 2(b). The nematic state appears at larger
aspect ratios such as L/D = 5 shown in Fig. 2(c). Finally, for
rather elongated rods, e.g. L/D = 10 in Fig. 2(d), an AAA crystal is
stable between the smectic and the ABC crystal. In all cases the
phase transitions are of first order (note the jumps in packing
fractions at the transitions in Fig. 2).

B. Stacking diagram of monodisperse spherocylinders

We next combine the bulk equations of state with sedimentation
path theory to obtain the stacking diagrams of hard spherocylin-
ders in a gravitational field. In Fig. 3 we present several stacking
diagrams in the plane of average packing fraction �Z and sample

height h (scaled with the gravitational length x) for monodisperse
colloidal suspensions of hard spherocylinders with different aspect
ratios, as indicated. In all cases, we assume a positive buoyant
mass of the spherocylinders. Each point in the stacking diagram
represents a sedimentation path and therefore a sample under
gravity (the sketched samples in Fig. 3 correspond to the points
marked by a yellow star in the stacking diagrams). Depending on
the aspect ratio, we find systems which form stacking sequences
with up to five different layers.

Since all particles share the same buoyant mass, the effective
local chemical potential meff(z) is just linear in the vertical
coordinate z and there exist only two types of sedimentation
binodals. Those are formed by the set of sedimentation paths
that either start (dashed-lines in Fig. 3) or end (solid-lines in
Fig. 3) at a bulk transition, see illustrative examples of sedi-
mentation paths in the inset of Fig. 3(a).

In the stacking diagram the two types of sedimentation
binodals have opposite slope in the plane of �Z and h. Further-
more, two sedimentation binodals of the same type never cross
each other and two sedimentation binodals of different type
cross each other at most once. This gives rise to the intertwined
pattern of the two types of sedimentation binodals that can be
seen in Fig. 2. When crossing a sedimentation binodal in the
stacking diagram, one layer either appears or disappears from

Fig. 2 Bulk phenomena. Bulk equation of state in the plane of chemical potential bm and packing fraction Z for colloidal hard spherocylinders according
to Peters et al.70 for different length-to-width aspect ratios: (a) L/D = 3.0, (b) L/D = 3.7, (c) L/D = 5.0, and (d) L/D = 10.0. The vertical dotted lines indicate
the position of the (first order) phase transitions. The occurring bulk phases are isotropic (I), nematic (N), smectic-A (S), AAA crystal (A), and ABC crystal (C).
Panel (e) shows sketches of spherocylinders forming several bulk phases: isotropic state with no positional order and no orientational order, nematic
state with no positional order and with orientational order along the director (orange arrow), smectic state with orientational order and positional order
along one direction, and AAA crystal with orientational order and positional order along the three spatial directions. Particles in the isotropic and the
nematic (the smectic and the crystal) states are colored according to their orientation (vertical coordinate). In the AAA crystal the particles in different
layers are located on top of each other whereas in the ABC crystals their location is like in a FCC crystal. Sketches created with OVITO.77
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either the top or the bottom of the sample. Four different stacking
sequences merge at the points where two sedimentation binodals
cross each other. At those crossing points, the slope of the
sedimentation binodals in the stacking diagram changes as a
direct consequence of the density jump of the associated bulk
phase transitions (recall that all bulk transition are of first order).
The change in slope is particularly noticeable if the density jump
in bulk is large, like e.g. for spherocylinders with L/D = 3.7, cf.
Fig. 2(b) and 3(b). Increasing the sample height also increases the
length of the sedimentation path, making it possible to find

sequences with more layers. The maximal number of layers in a
monodisperse suspension is always the total number of different
bulk phases. It is worth noting that due to the local equilibrium
approximation, the limit h - 0 of the stacking diagram corre-
sponds to the bulk of the system (the sedimentation path becomes
a single point in this limit).

For short spherocylinders, aspect ratio L/D t 3.1, the stable
bulk phases are isotropic (I) and ABC crystal (C).5 Under gravity,
the possible stacking sequences are: pure I, pure C and IC, see
Fig. 3(a). In bulk, i.e. in the limit h - 0 in Fig. 3, the region of

Fig. 3 Sedimentation of monodisperse rods. Stacking diagram in the plane of average packing fraction �Z and sample height h/x for a monodisperse
colloidal suspension of hard spherocylinders of different length-to-width aspect ratios: (a) L/D = 3.0, (b) L/D = 3.7, (c) L/D = 5.0, and (d) L/D = 10.0. Here x
is the gravitational length. The stacking sequences are labeled from top to bottom of the sample. The occurring layers are isotropic (I), nematic (N),
smectic-A (S), AAA crystal (A), and ABC crystal (C). The solid- and dashed-black lines are sedimentation binodals formed by those sedimentation paths
that either end or start at a bulk binodal, respectively. The dotted green lines in panel (c) are results from Savenko and Dijkstra.69 The yellow stars indicate
the position of the sample with (�Z, h/x) = (0.55, 40) in all stacking diagrams. A sketch of the corresponding stacking sequences at this state point
illustrating the relative thickness of each layer in the stacking sequence is provided within each panel. The inset in panel (a) depicts three sedimentation
paths in the plane of chemical potential m and altitude z. The vertical blue line indicates the value bmc = 26.4 of the I–C bulk transition. The path labeled
with an orange circle ends at the binodal, i.e. m(0) = mc, and the path labeled with a blue square starts at the binodal, i.e. m(h) = mc. Both paths form part of
the sedimentation binodals in the stacking diagram, as indicated by the orange circle and the blue square in panel (a). The path labeled with a star in the
inset of panel (a) corresponds to the sketched sample in (a).
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packing fractions where isotropic and columnar phases coexist
is 0.5 r Z r 0.6. Under gravity, the range of average packing
fraction �Z in which we find the stacking sequence IC broadens
significantly with increasing sample height. For example for
h/x = 50 the IC sequence appears in a range of average packing
fractions 0.21 o �Z o 0.72. This representative example illus-
trates the importance of including the effect of gravity when
analysing and interpreting sedimentation experiments in col-
loidal science.

For L/D = 3.7 the stable bulk phases are isotropic (I), smectic-
A (S), and ABC crystal (C). The stacking diagram contains six
different stacking sequences, see Fig. 2(b). Besides the pure I, S
and C stacks, we also find the sequences IS, SC and ISC. Again,
the two-phase bulk coexistence regions broaden by increasing
the sample height. However, there are now two regions of phase
coexistence in bulk, namely I + S and S + C, which give rise to
the stacking sequences IS and SC. The regions where IS and SC
are stable in the stacking diagram overlap for h/x 4 3.3,
forming the additional stacking sequence ISC. Note that there
is no isotropic–smectic–crystal triple point in bulk. The for-
mation of the three layer sequence, ISC, is purely due to the
gravitational field. Even though I, S, and C phases are stable in
bulk, not all possible combinations of layers appear in the
stacking diagram. For example, the occurrence of the sequence
IC is not possible for this aspect ratio. Only two phases that
coexist in bulk can appear consecutively in the stacking
diagram.

A nematic (N) bulk state is stable for rods with L/D = 5.0, as
depicted in Fig. 2(c). The corresponding stacking diagram,
shown in Fig. 3(c), contains up to ten different stacking
sequences. In a general monodisperse suspension with no
triple points in bulk, the amount of distinct stacking sequences
ns is given by the triangular number of the total number of
stable bulk phases nb, that is

ns ¼
Xnb
i¼1

i ¼ nbðnb þ 1Þ
2

: (4)

We also show in Fig. 3(c) results from Savenko and Dijkstra69

(green dotted lines). They used an EOS from data obtained via
computer simulations by McGrother et al.4 (For a detailed
comparison between the equation of state by McGrother et al.
and the one used here see Peters et al.70) Savenko and Dijkstra69

used a local equilibrium approximation together with the
equilibrium macroscopic condition dP(z)/dz = �mgr(z), with P
the osmotic pressure, to calculate the sedimentation of hard
spherocylinders with L/D = 5.0. Their results agree semiquanti-
tatively with our predictions. The approach by Savenko and
Dijkstra69 is equivalent to sedimentation path theory and
therefore the small differences can be attributed to differences
in the underlying bulk equation of state (note that both
approaches differ slightly in the limit h - 0). Although both
approaches are equivalent, working with the chemical potential
is in general more convenient since this quantity varies linearly
with the altitude within the local equilibrium approximation.
Therefore, the sedimentation path, the density profiles, and the

sedimentation binodals can be easily computed. Moreover, the
theory can be straightforwardly applied to binary mixtures72,83,84

and mass-polydisperse systems.75

By increasing the aspect ratio, hard spherocylinders form an
additional crystal AAA (A) phase,5 see the bulk diagram for
L/D = 10 in Fig. 2(d). This additional bulk phase increases the
complexity of the stacking diagram, see Fig. 3(d), which now
contains ns = 15 different sequences, see eqn (4). Here, the
stacking sequence INSAC is stable at large values of sample
height h and it contains, in a single sample, all the different
bulk phases that hard spherocylinders develop in bulk. The
sample sketched in Fig. 3(d) corresponds to a height h/x = 40.
We estimate that in an experimental system made of boehmite
rods with polyisobutene coating suspended in toluene85

and lengths L between 1 mm and 200 nm, the corresponding
sample heights would vary between approx. 0.2 cm and 20 cm,
respectively.

In all cases, by increasing the sample height, the range of
chemical potentials covered by the path becomes larger. Hence,
the sequence with the largest number of layers (e.g. INSAC for
L/D = 10) appears always and dominates the stacking diagram
for sufficiently large values of the sample height.

We have assumed a positive value of the buoyant mass. For
negative buoyant masses, the only change is a reversed order of
the layers in the stacking sequences. For example, the sequence
ISC (from top to bottom) in rods with positive buoyant mass,
would be CSI if the rods had negative buoyant mass.

C. Influence of the sample height on the stacking sequences

The effect of varying the sample height (at fixed average
colloidal concentration) in sedimentation of colloidal binary
mixtures can be counterintuitive with new layers appearing at
the top, at the bottom, or in the middle of the sample.67,83,84 We
study here the evolution of the stacking sequence by increasing
the sample height in monodisperse colloidal systems. We select
two illustrative average packing fractions �Z = 0.452 and 0.50 in a
suspension of elongated hard spherocylinders with L/D = 10.0,
see vertical dotted lines in Fig. 3(d). We then vary the sample
height while keeping the packing fraction constant and track
the stable layer at a given elevation z. The results are shown in
Fig. 4.

For �Z = 0.50 the system is a pure smectic-A phase in the bulk
limit h - 0, see Fig. 4(a). By increasing the sample height, a
nematic layer develops at the top of the sample, followed by a
crystal AAA layer at the bottom. Next an isotropic layer forms at
the top, and finally a crystal ABC layer appears at the bottom of
the sample. There is therefore an alternating pattern of layers
growing either at the top or at the bottom of the sample by
increasing sample height.

For Z = 0.452, see Fig. 4(b), the bulk system phase separates
into a nematic phase and a smectic-A phase. Due to the phase
separation taking place in bulk, the sedimented samples never
show a sequence with a single layer. Instead, short samples
develop the sequence NS. By increasing the sample height two
layers develop simultaneously: an isotropic layer is formed on
top of the sample and an AAA-crystal forms at the bottom. The
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simultaneous introduction of two layers at the top and at the
bottom can also be observed in the stacking diagram, see Fig. 3(d).
The dotted vertical line at �Z = 0.452 goes through the crossing
point between two sedimentation binodals. Finally, for samples
with h/x4 44.3 an ABC-crystal layer is formed at the bottom of the
sample, see Fig. 4(b). No further changes in the stacking sequence
occur for larger values of the sample height.

The evolution of the stacking sequence for two different
packing fractions shown in Fig. 4 emphasizes the importance
of the sample height as a crucial variable in colloidal sedimen-
tation studies.83 The stacking diagram results from the bulk
diagram. However, knowing how the stacking sequences evolve
by changing the sample height is not obvious from the bulk
phase diagram, and complex phenomena such as the simulta-
neous growth of two layers can occur.

D. Effects of mass-polydispersity close to density matching

We have studied the effects of mass-polydispersity (particles
with identical shape but different buoyant masses) on
sedimentation,75 and identified that mass-polydispersity can
play a crucial role in systems that are close to density matching,
i.e. close to neutral buoyancy. If the average buoyant mass is
close to neutral buoyancy, there will in general be particles in
the suspension with positive and negative buoyant masses.
Thus, there exist competing effects with some particles settling
under gravity and other particles creaming up. Close to density
matching the effective sedimentation paths are rather horizontal.75

Hence, small changes in the distribution of buoyant masses can

have a large effect on the stacking diagram, changing even its
topology.

We illustrate here the effects of mass-polydispersity by
considering a system of hard spherocylinders with aspect ratio
L/D = 5.0 and a parent distribution of buoyant masses close to
density matching. The parent distribution gives the probability
of finding a particle with buoyant mass m and it is therefore
normalized such that

Ð
dmfPðmÞ ¼ 1. We use a Gaussian with

mean 0.02 and standard deviation of 0.2, see inset in Fig. 5(a).
This distribution is close to density matching and it contains
particles with positive as well as with negative buoyant masses.
In Fig. 5(a) we show the corresponding stacking diagram in the
plane of average packing fraction �Z and scaled sample height
h/x. The stacking diagram contains 17 different stacking
sequences and it is therefore significantly richer than its
monodisperse counterpart (10 stacking sequences), cf.
Fig. 3(c) and 5(a). The sedimentation path meff(z) for mass-
polydisperse suspensions is curved and it can have a minimum
at intermediate altitudes. Hence, for each bulk phase transition
there is an extra sedimentation binodal formed by those paths for
which the minimum of meff(z) at intermediate altitudes coincides
with mc, the value of the chemical potential at bulk coexistence, i.e.
meff(z) = mc. Even though more stacking sequences develop in the
mass-polydisperse system than in the monodisperse one, it is worth
noting that there seem to exist sequences that only occur in the
monodisperse case, e.g. INSC and NSC.

The sequence with the maximum possible number of layers
CSNINSC starts to form in samples with h/x 4 395. By increas-
ing h this sequence will eventually dominate the stacking
diagram and occur for almost any average packing fraction.
All the other stacking sequences that we observe are subse-
quences of CSNINSC. However, not all subsequences occur. For
example, we observe the sequences NS and SNS, but not the
sequence SN (top smectic and bottom nematic). This is due to
the asymmetric parent distribution that in this example con-
tains a larger proportion of particles with positive buoyant mass.

On the upper left part of the stacking diagram in Fig. 5(a),
we observe a slim region with the sequence INS, followed by a
reentrant INI stacking sequence. Note that the sequence INI
already appeared for smaller sample heights and higher pack-
ing fractions. Sedimentation binodals of mass-polydisperse
suspensions can cross each other multiple times. In contrast,
we do not observe multiple crossings of the sedimentation
binodals in the case of monodisperse particles, see Fig. 3.
Another difference is that in mass-polydisperse systems, new
layers can enter the stacking sequence in the middle of the
sample and not only at the top or at the bottom. For example,
by increasing the height at constant average packing fraction
�Z = 0.52, the sequence changes from S to SNS, see Fig. 5(a). That
is, a nematic layer nucleates in the middle of the sample.

Fractionation effects such as e.g. the accumulation of short
rods in the isotropic phase occur in suspensions of hard
spherocylinders with shape polydispersity.86 In our mass-
polydisperse suspension all particles have the same shape and
hence such effects cannot occur by construction. However, we do
observe mass fractionation induced by the gravitational field. As an

Fig. 4 Effect of sample height. Stable layer at elevation z/x as a function of
the sample height h/x for colloidal hard spherocylinders with length-to-
width aspect ratio L/D = 10.0. The average packing fraction is fixed to
(a) �Z = 0.50 and (b) �Z = 0.452, indicated by vertical dotted lines in the
stacking diagram shown in Fig. 3(d). The layers are isotropic (I), nematic (N),
smectic-A (S), AAA crystal (A), and ABC crystal (C). The thick violet lines
indicate the air-sample interfaces at z = h. The sketches show all different
stacking sequences at selected heights (indicated by vertical dotted lines).
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illustration, we show in Fig. 5(b) and (c) how the distribution of
buoyant masses changes along the vertical coordinate in a given
sample with stacking sequence CSNINSC. There is a strong mass
fractionation with particles with positive (negative) buoyant mass
concentrating in the bottom (top) of the sample.

IV. Conclusions

We have calculated the stacking diagram of monodisperse
suspensions of hard spherocylinders with different aspect

ratios and studied the effect of varying the sample height.
The stacking diagrams are significantly richer than their bulk
counterparts. Increasing the sample height results in general in
complex stacking sequences with several layers of different
bulk phases. For sufficiently large values of the sample height
a stacking sequence with layers from all possible bulk phases
develops.

Multilayer stacking sequences are often found in sedimen-
tation experiments. For example, van der Kooij and
Lekkerkerker87 found a sequence with five layers in plate-rod
colloidal mixtures. This experimental observation has recently
been linked to the occurrence of bulk quintuple (five-phase)
coexistence in model plate-rod mixtures.88 The striking bulk
phase phenomenon identified by Opdam et al.88 occurs in
absence of a gravitational field.

From the viewpoint of sedimentation path theory, the occur-
rence of the experimentally observed87 sedimentation stacks is
a rather direct consequence of the influence of gravity. As we
have shown,84 systematically analysing sedimentation paths
allows to theoretically predict the number as well as the correct
ordering of the experimentally observed87 stacking sequences.
This quantitative treatment involves no need for higher
(e.g. quintuple) multiphase bulk coexistence. While every two
adjacent phases in a stacking sequence necessarily involve a
corresponding two-phase bulk binodal, non-adjacent layers
need not coexist in bulk, and in general they will not coexist
in bulk. As an illustrative example, already in a one-component
system of rods with aspect ratio L/D = 10 the stacking sequence
INSAC appears in samples of sufficient vertical height, see
Fig. 4(d), even though only two-phase coexistences (I–N, N–S,
S–A, and A–C) are stable in bulk, see Fig. 2(d). Nevertheless, it
would be very interesting to study the influence of the presence
of a bulk quintuple point on the resulting stacking sequences
that occur under gravity.

We have also studied here the effect of mass-polydispersity
in a suspension near density matching. The coupling between
mass-polydispersity and the gravitational field increases the
number of possible stacking sequences with respect to the
monodisperse case. In a real colloidal suspension with low
shape-polydispersity in e.g. the particle diameters, the effect of
mass-polydispersity might dominate over that of size-
polydispersity, especially near density matching. Nevertheless,
size-polydispersity has a strong influence in the phase beha-
viour of hard spherocylinders86,89–91 and will also have an effect
in sedimentation. An extension of sedimentation path theory to
incorporate also the effect of shape-polydispersity will be pre-
sented in future work.

It is apparent from the stacking diagrams that the sample
height plays a role as relevant as the average packing fraction in
the determination of the stacking sequence. Even though
varying the sample height should be straightforward experi-
mentally, we are not aware of experimental studies that have
systematically considered the effect of the sample height on the
phase behaviour of colloidal systems under sedimentation.

Surface and interfacial effects are not taken into account
here due to the assumed local equilibrium condition. Wetting

Fig. 5 Sedimentation of mass-polydisperse rods. (a) Stacking diagram in
the plane of average packing fraction �Z and sample height h/x of mass-
polydisperse colloidal hard spherocylinders with aspect ratio L/D = 5.0
close to density matching. The parent distribution fP of buoyant masses m,
a Gaussian with mean 0.02 and standard deviation 0.2, is shown in the
inset. Here m = mb/m0 with m0 a reference buoyant mass which corre-
sponds to 5 times the standard deviation of the parent distribution. The
stacking sequences are labeled from the top to the bottom of the sample.
The solid, dashed, and dotted lines are the sedimentation binodals formed
by the sedimentation path that either end, start, or are tangent to a bulk
binodal, respectively. (b) Probability f (m,z) of finding a particle with buoy-
ant mass m at an altitude z in a sample with h/x = 450 and �Z = 0.48, marked
with a yellow star in panel (a). The stacking sequence is CSNINSC. The
white arrows indicate the position of the interfaces. (c) Probability fz(m) of
finding a particle with mass m at fixed elevation z (see color bar). The initial
parent distribution fP is represented with a dashed-pink line.
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and layering at the bottom of the sample92–94 might be specially
relevant for low height samples and high packing fractions.
Due to the local equilibrium approximation, the theory predicts
that new layers in the stacking sequence start to develop with
an infinitesimally small thickness. The surface tension will in
reality prevent layers to be stable until a critical thickness is
reached, affecting therefore the position of the sedimentation
binodals in the stacking diagram. A full minimization of a
density functional theory for hard spherocylinders could be
used to describe surface and interfacial effects.
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14 M. Cieśla, P. Kubala and W. Nowak, Phys. A: Stat. Mech.

Appl., 2019, 527, 121361.
15 R. Evans, Adv. Phys., 1979, 28, 143.
16 A. Poniewierski and R. Hołyst, Phys. Rev. Lett., 1988, 61,

2461–2464.
17 A. Poniewierski and T. J. Sluckin, Phys. Rev. A: At., Mol., Opt.

Phys., 1991, 43, 6837–6842.

18 A. M. Somoza and P. Tarazona, Phys. Rev. A: At., Mol., Opt.
Phys., 1990, 41, 965–970.

19 E. Velasco, L. Mederos and D. E. Sullivan, Phys. Rev. A: At.,
Mol., Opt. Phys., 2000, 62, 3708–3718.

20 H. Hansen-Goos and K. Mecke, Phys. Rev. Lett., 2009,
102, 018302.
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