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Modeling Viscosity of Volcanic Melts With Artificial Neural
Networks
D. Langhammer! (2, D. Di Genoval, and G. Steinle-Neumann!

'Bayerisches Geoinstitut, Universitiit Bayreuth, Bayreuth, Germany

Abstract Viscosity is of great importance in governing the dynamics of volcanoes, including their eruptive
style. The viscosity of a volcanic melt is dominated by temperature and chemical composition, both oxides

and water content. The changes in melt structure resulting from the interactions between the various chemical
components are complex, and the construction of a physical viscosity model that depends on composition has
not yet been achieved. We therefore train an artificial neural network (ANN) on a large database of measured
compositions, including water, and viscosities that spans virtually the entire chemical space of terrestrial
magmas, as well as some technical and extra-terrestrial silicate melts. The ANN uses composition, temperature,
a structural parameter reflecting melt polymerization and the alkaline ratio as input parameters. It successfully
reproduces and predicts measurements in the database with significantly higher accuracy than previous global
models for volcanic melt viscosities. Viscosity measurements are restricted to low and high viscosity ranges,
which exclude typical eruptive temperatures. Without training data at such conditions, the ANN cannot reliably
predict viscosities for this important temperature range. To overcome this limitation, we use the ANN to create
synthetic viscosity data in the high and low viscosity range and fit these points using a physically motivated,
temperature-dependent viscosity model. Our study introduces a synthetic data approach for the creation of a
physically motivated model predicting volcanic melt viscosities based on ANNs.

Plain Language Summary Magma viscosity is a key parameter that controls the style of a volcanic
eruption, whether it will be effusive or explosive. For this reason, any volcanic hazard mitigation plan requires
detailed knowledge of this property. Melt viscosity can vary by up to 15 orders of magnitude (a factor of a
quadrillion) with temperature and composition. Unfortunately, it is not possible to perform measurements over
this range continuously in the laboratory, but only in two distinct temperature regimes, termed high and low
viscosity ranges. In order to obtain a model to predict how composition and temperature control viscosity, we
use machine learning and train an artificial neural network on a large viscosity database. This allows us to
calculate high- and low-temperature viscosity data that we call synthetic. Since most magmas are erupted at
temperatures between the high- and low-temperature ranges, we combine the synthetic data and a physically
motivated equation to describe the dependence of viscosity on temperature. This model can compute viscosities
in the region without measurements, including typical eruption temperatures of volcanoes. Our model serves
the scientific community studying volcanic eruption mechanisms and its future prediction on a data driven
basis.

1. Introduction

The shear viscosity (1) of volcanic melts is of great importance for the transport dynamics of magmas and the
eruptive styles of volcanoes (Cassidy et al., 2018; Colucci & Papale, 2021; Di Genova et al., 2017; Dingwell, 1996;
Gonnermann & Manga, 2007; Papale, 1999), making n an important quantity for physical volcanology. Melt
viscosity depends dominantly on chemical composition (x) and temperature (7). Previous work has often used
a T-dependent expression to fit data from # measurements to a specific anhydrous composition. Common
examples are the Vogel-Fulcher-Tamman (VFT) (Fulcher, 1925; Tammann & Hesse, 1926; Vogel, 1921) and
MYEGA (Mauro et al., 2009) models. With a critical influence of water on eruption dynamics (Gonnermann
& Manga, 2013) and its strong control on viscosity, the dependence of # on H,O is often considered separately
in models. Such models are typically built by empirical modifications of the fitting parameters to include H,O
dependence (e.g., Dingwell et al., 1998; Giordano et al., 2009; Langhammer et al., 2021; Misiti et al., 2011;
Robert et al., 2015; Vetere et al., 2006; Whittington, Hellwig, et al., 2009).

LANGHAMMER ET AL.

1 of 14


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0238-324X
https://orcid.org/0000-0001-7455-6149
https://doi.org/10.1029/2022GC010673
https://doi.org/10.1029/2022GC010673
https://doi.org/10.1029/2022GC010673
https://doi.org/10.1029/2022GC010673
https://doi.org/10.1029/2022GC010673
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2022GC010673&domain=pdf&date_stamp=2022-12-01

~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Geochemistry, Geophysics, Geosystems

10.1029/2022GC010673

Software: D. Langhammer, D. Di
Genova, G. Steinle-Neumann
Supervision: D. Di Genova, G.
Steinle-Neumann

Validation: D. Langhammer, D. Di
Genova

Visualization: D. Langhammer, D. Di
Genova, G. Steinle-Neumann
Writing — original draft: D.
Langhammer, D. Di Genova, G.
Steinle-Neumann

Writing - review & editing: D.
Langhammer, D. Di Genova, G.
Steinle-Neumann

In contrast to the individual melt fits, global models predict viscosity based on x, T (Giordano et al., 2008; Hui
& Zhang, 2007), and pressure P (Duan, 2014). These three global models are based on empirical descriptions
and are fitted on large data sets. The complex and non-linear relation between chemical components, melt struc-
ture and viscosity prevents the use of a model approach based on physical principles. But advances in machine
learning algorithms, specifically artificial neural networks (ANNs), provide an alternative route to describe the
composition—viscosity relation. Using a large database, ANNSs can find highly non-linear mappings between input
and output without prior knowledge of the mathematical form of this connection (Aggarwal, 2018). Recently,
Tandia et al. (2019) have shown the capabilities of ANN to accurately fit and predict melt » for a database of
technical glasses. Based on this success, Cassar (2021) and Le Losq et al. (2021) produced ANN architectures
using gray box approaches, trained on mostly technical glasses and the K,0-Na,0-Al,0,-SiO, (KNAS) system,
respectively. In contrast to a black box approach, which directly maps the input parameters to the desired quantity
(here 7), their gray box approaches predict input parameters of certain viscosity equations (e.g., VFT or MYEGA)
which are then used to compute #. This approach permits a physical interpretation of the predictions, within the
constraints of the model.

However, with a scarcity of n data, this approach cannot be used for volcanic melts. The problem of sparse
data is even more pronounced when considering the effect of water on 7 (Duan, 2014; Giordano et al., 2008;
Hui & Zhang, 2007), ignored by all previous ANN-based models (Cassar, 2021; Le Losq et al., 2021; Tandia
et al., 2019). Therefore, we do not follow the previous ANN studies with a gray box approach, but use a black
box to utilize as many data as possible; this approach maps the input (composition x and T, where we treat H,O
on equal footing with the oxide components) directly to viscosity. We train an ANN using a database of viscos-
ities for volcanologically relevant melts which we collected from the literature. We use 3,482 data points from
153 data sets (not counting variable H,O content) for melts covering virtually the entire compositional space
of magmas on Earth and some analogs of extraterrestrial melts (Figure 1). We show that our ANN is not only
capable of fitting given data, but also of predicting n with high accuracy for the viscosity ranges in which meas-
urements are performed.

To generate models that inter- and extrapolate in a physically sound way, which cannot be guaranteed using the
black box approach, we combine the ANN with a “synthetic data” approach: For a composition of interest, we
generate sets of #—T values from an ANN in two distinct # intervals in which viscosity measurements can be
performed either by concentric cylinder (i.e., low viscosity, Lz, range: 1073 Pa s < 7 < 10° Pa s) or micropene-
tration/parallel plate viscometry (i.e., high viscosity, Hz, range: 10% Pa s < < 10'3 Pa s). These isochemical 5
values are then fit using the MYEGA equation (Mauro et al., 2009) for T dependence. Our approach combines

the accuracy of the neural network trained on a large data set of 5 values

and the physical basis of the MYEGA equation. An application/calculator

20 O Anhydrous traiminglvalidation sats O Anhydrous test sets of our model is available at https://share.streamlit.io/domlang/visc_calc/
X Hydrous training/validation sets X Hydrous test sets main/final_script.py, the code and model can be found at https://github.com/
_script.py, ps:/ig
9 Oo So DomLang/Visc_Calc.
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X ° o ° o
£ 201 o° o 2. Artificial Neural Networks
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SN 15 Og® % 9 ANNSs broadly refer to algorithms for pattern recognition, and here we make
g : % e LIS ® use of a simple architecture called a dense feed-forward multilayer perceptron
S04 @ DBy OE &q % (Aggarwal, 2018). It consists of three layer types: input, hidden and output
o . . . .
Qﬂo g g S - @ Beg®o (Figure 2). The layers contain so-called neurons, each storing a single numer-
o . . .
] o O¥OR® Q © 8 ical value. Each neuron of a layer is connected to every neuron in the follow-
51 5 om, 8.0 ® 8 . i . . .
@% &% o o 0 ing layer, hence dense, and every connection has a weight associated with
ol o o° @)Ooo ) it. The neuron values are propagated along these connections, and weights
20 =0 o0 70 50 are optimized during the learning process, analogous to variable parame-
Si0; in wt% ters when fitting an equation to data. The neurons of the input layer store

the input data (Section 3.1) which are propagated through all neurons of the

Figure 1. Total alkaline and silica content (Le Bas et al., 1986) for all data
set in the database. Blue symbols indicate training/validation data sets and red
symbols the test sets. Anhydrous data sets are shown by circles and hydrous
ones by crosses. Values and references for the training/validation sets are given

in Table 1 and for the test sets in Table 2.

hidden layers until the output () is calculated. The output is compared to
the corresponding measurement using a loss function (Abadi et al., 2015),
for which we use the mean squared error. The loss function is minimized,
going backwards through the network, tuning the weights. Furthermore,
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Input Hidden Layers Output non-linearity is added using so-called activation functions (Aggarwal, 2018)

which can be applied to the values of each neuron before they are propagated
further through the network. This way the hidden layers become a non-linear
mapping between input and output.

3. Database

We compile a database of 3,482 tuples (7, x, ) for relevant melts from the
literature. Of these, 2,538 are data from measurements of only anhydrous
samples, while 193 data sets with the remaining 942 data contain H,O.
The data span a large chemical domain in the total alkaline-silica diagram
(Figure 1). The database is separated into a training/validation (Table 1) and
a test set (Table 2) with 3,194 and 288 data points, respectively. The training/
validation set contains 144 rock types which yield a total of 320 composi-
tions, counting each H,O content as a unique composition. Of these, 142 are
anhydrous and 178 hydrous. The test set contains 15 rock types and again
taking into account differing H,O contents, 29 unique measured composi-
tions. Of these, 14 are anhydrous and 15 hydrous data sets. The test sets are
chosen such that they probe a reasonable chemical domain to check the reli-

Figure 2. Sketch of a feed-forward multilayer perceptron. Circles are ability of the predictions made by the ANN.

neurons storing single values. Each line connecting the neurons has a weight

(regression parameter) and activation function associated with it. The black Silica content and the empirical parameter termed structure modifier content
dots indicate that the number of neurons can be arbitrary. The number of (SM, in mol%) (Giordano & Dingwell, 2003a) for one choice of the training

hidden layers can vary; here, we illustrate two layers used for our artificial

neural network.

and validation sets (Section 3.2) and for the test set are shown in Figure 3.
The distributions for training and validation sets are very similar which indi-
cates that the validation set tests the interpolation, not extrapolation, capa-
bilities of a trained ANN. The SiO, content of data ranges from ~37 wt%
(~40 mol%) to ~80 wt% (~85 mol%) and the H,O content from 0 wt% to ~6 wt% (~16 mol%). Measured 7 for
the Ly range from ~10~! to ~10° Pa s and for the Hz range from ~10® to ~10'* Pa s. Temperature spans approx-
imately 1180-2020 K and 590-1270 K in the Ly and Hy ranges, respectively (Figure 4).

3.1. General Data Preparation

In the training/validation set (Table 1) we initially consider anhydrous and hydrous data sets separately. They are
each shuffled and then split into a training and validation set, according to ratios and procedures given in more
detail in Section 3.2. The anhydrous and hydrous sets are then combined to finally yield training and validation
sets containing both anhydrous and hydrous compositions. Since the number of hydrous data points is relatively
small, this procedure ensures that there are sufficient hydrous data in the training set.

The input parameters and corresponding viscosity measurements of the training set are used for the regression
during the learning process. After each learning cycle, the validation set is used to predict log 7. As these data
have not been used to train the neural network, the validation set evaluates the ANN's ability to generalize, that
is, predict 7. The loss function calculated from the validation set (validation loss) is also used to avoid overfitting.
Overfitting is typically characterized as an increasing or constant validation loss, while the training loss keeps
decreasing. This indicates that the ANN's ability to predict unknown values from input data remains constant
or worsens despite an improving fit. The improvement in the fit is explained by the ANN learning the data by
heart. To prevent overfitting and improve the ANN's ability to generalize, regularization methods such as dropout
(Srivastava et al., 2014) can be used (Section 3.2).

As input parameters, we use mole fractions of Si0,, TiO,, Al,O,, FeO, Fe,0,, MnO, MgO, CaO, Na,0, K,O,
P,0,, H,0, temperature T in K, the SM parameter (Giordano & Dingwell, 2003a), and the alkali ratio K,0/
(K,0O + Na,0). Contrary to the global viscosity models by Hui and Zhang (2007) and Giordano et al. (2008)
that consider the iron content in the melt as FeO only, we differentiate between FeO and Fe,O,. This distinction
is important as Fe,O, acts as a network former, leading to an increase in melt viscosity, while FeO acts as a
network modifier and has the opposite effect on viscosity (Bouhifd et al., 2004; Chevrel et al., 2013; Dingwell &
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Table 1
Data Sets Used in the Training and Validation Process, Listed With Decreasing SiO, Content

Name in Name in
References SiO, TA H,0 source References SiO, TA H,0 source
Hofmeister et al. (2014) 80.25 3.82 Moldavite Giordano et al. (2006) 60.71 4.42 MST
Giordano et al. (2006) 79.43 391 MDV Giordano et al. (2000) 60.46 15.21 0.00-3.75
Le Losq and Neuville (2013) 78.92 7.13 NAKS83.8.0 Giordano et al. (2009) 5890 14.57 Mercato 1500
Di Genova et al. (2017) 78.87  6.29 F Giordano et al. (2009) 58.84 14.61 0.004.24 Mercato 1600
Hess et al. (1995) and Dingwell 78.60 8.80 0.00-3.35 HPGS8 Whittington et al. (2001) 58.82 16.75 0.004.27 Phonolite
et al. (1996)
Di Genova et al. (2017) 77.86 6.39 G Giordano et al. (2009) 58.80 14.77 Mercato 1400
Le Losq and Neuville (2013) 77.82 8.99 NAKS83.8.2 Liebske et al. (2003) 58.69 4.87 0.00-1.96 Andesite
Di Genova et al. (2017) 77.63  6.06 A Vetere et al. (2006) 57.95 5.19 2.73 MD25
Di Genova et al. (2017) 7756  7.15 C Vetere et al. (2006) 5795 5.19 5.60 MD12
Di Genova et al. (2017) 7728 632 B Robert et al. (2019) 5732 15.27 Jd100
Di Genova et al. (2017) 7725  7.58 H Robert et al. (2019) 57.12  17.92 Jd625
Di Genova et al. (2017) 76.83  7.22 D Sehlke and Whittington (2015) 57.1 0.60 NVP
Le Losq and Neuville (2013) 76.81 10.00 NAKS83.8.4 Liebske et al. (2003) 56.65 4.79 Unzen-A
Stabile et al. (2016) 76.62  9.71 Ebu-N-red Liebske et al. (2003) 56.65 4.79 Unzen-3
Romine and Whittington (2015) 76.53 850 0.00-0.34 NCA Liebske et al. (2003) 56.65 4.79 Unzen-2
Stabile et al. (2016) 76.40  7.28 Ebu-N Liebske et al. (2003) 56.65 4.79 Unzen-4
Di Genova et al. (2017) 76.24  6.82 I Liebske et al. (2003) 56.65 4.79 Unzen-5
Le Losq and Neuville (2013) 76.10 10.75 NAKS83.8.6 Langhammer et al. (2021) 56.55 9.08 0.00-1.59 Lat-DSC
Goto et al. (2005) 76.03  7.02 0.00-0.58 Robert et al. (2019) 5598 17.26 Jd75
Stabile et al. (2016) 75.92 10.19 Ebu-B-red Robert et al. (2019) 55.86 19.79 Jd375
Hess et al. (1995) 75.60  8.50 SMg Robert et al. (2019) 54.85 18.81 Jd50
Stabile et al. (2016) 7539 11.28 Ebu-C Robert et al. (2019) 54.51 21.64 Jdo
Di Genova et al. (2017) 75.33 8.21 E Robert et al. (2013) 5442 482 0.00-3.76 sba
Stabile et al. (2016) 7530 10.49 Ebu-B Giordano et al. (2009) 53.90 13.01 Pompei TR
Stabile et al. (2016) 75.15 11.79 Ebu-C-red Giordano et al. (2006) 53.53  5.09 MRP
Le Losq and Neuville (2013) 75.11 11.70 NAKS83.8.8 Romano et al. (2003) 53.52 12.57 0.00-3.32 V_1631_ W
Hess et al. (1995) 74.60 13.60 5K Vetere et al. (2007) 53.47 838 0.004.75 Vul
Friedman et al. (1963) 74.16 850 0.00-1.25 Sehlke and Whittington (2015) 53.3 0.35 IcP-HCT
Hess et al. (1995) 74.10 13.40 5Na Romano et al. (2003) 53.14 13.05 3.07 V_1631_G
Hess et al. (1995) 74.10  8.40 5Ca Robert et al. (2019) 53.12  20.64 Jd25
Di Genova et al. (2017) 7375  6.72 J Robert (2014) 53.08 476 0.00-2.92 fuld
Whittington et al. (2004) 73.61 8.86 0.00-3.41 DK89 Hofmeister et al. (2016) 53.08 4.76 Bas-and
Stabile et al. (2016) 73.40 20.77 NFS-red Sehlke and Whittington (2016) 53.02 3.23 CHW
Hofmeister et al. (2014) 72.99 14.64 Vase Sehlke and Whittington (2016) 52.19 1.82 KREEPe
Hofmeister et al. (2014) 7291 15.71 1960 Robert et al. (2015) 5146 399 0.00-3.02 sb
Hofmeister et al. (2014) 72.59 16.85 1895 Sehlke and Whittington (2016) 5128 1.92 SHG
Whittington, Bouhifd, and 72.31 9.49 HP96 Giordano and Dingwell (2003a) 51.20 11.65 Ves_W_tot
Richet (2009)
Hofmeister et al. (2014) 72.19 3.62 Indoch Sehlke and Whittington (2016) 50.65 0.35 KREEP
Hess et al. (1995) 72.10 16.70 10Na Whittington et al. (2000) 50.56 10.05 0.00-2.27 Tephrite
Di Genova et al. (2017) 7122 6.17 L Hofmeister et al. (2016) 50.40  2.79 P-MPRB
Hess et al. (1995) 71.20 18.20 10K Hofmeister et al. (2016) 50.40 2.79 MORB
LANGHAMMER ET AL. 4of 14
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Table 1
Continued

Name in Name in
References Si0, TA H,0 source References Si0, TA H,0 source
Hess et al. (1995) 7120  8.20 10Mg Misiti et al. (2009); Giordano 50.17 4.63 0.004.16 SPZ,STB

et al. (2006)

Hess et al. (1995) 70.60  8.20 10Ca Sehlke and Whittington (2016) 50.06  3.51 Mu-Fe
Langhammer et al. (2021) 70.50 9.90 0.00-3.55 Rhyl4-DSC Sehlke and Whittington (2016) 49.95 0.87 Lme
Di Genova et al. (2013) 69.21 10.87 0.00-3.55 PS-GM Al-Mukadam et al. (2020) 49.90  0.00 Di
Stabile et al. (2016) 69.14 24.61 NFS Sehlke and Whittington (2016) 49.65  0.57 KOM
Giordano et al. (2006) 68.80 10.19 CL_OF Robert et al. (2015) 4940 370 0.00-2.7 fu06
Le Losq and Neuville (2013) 68.71 11.81 NAK75.12.0  Giordano and Dingwell (2003a) 4920 9.20 Ves_G_tot
Hofmeister et al. (2016) 68.41 7.02 Rhyo-dac Giordano et al. (2006) 49.07 4.83 STR
Le Losq and Neuville (2013) 68.28 12.49 NAK?75.12.2 Langhammer et al. (2021) 48.95 5.57 0.00-2.4 Basl-DSC
Le Losq and Neuville (2013) 67.48 13.61 NAK?75.12.5 Giordano et al. (2009) 48.74 10.83 Pollena GM
Le Losq and Neuville (2013) 66.96 14.53 NAK75.12.7 Giordano et al. (2009) 48.05 11.00 Pollena TR
Le Losq and Neuville (2013) 66.85 14.28 NAK?75.12.6 Morrison et al. (2019) 47.99 1.35 NOR
Stabile et al. (2016) 66.26 27.28 KFS Giordano et al. (2009) 4784 857 0.00-445 1906GM
Giordano and Dingwell (2003a) 66.00 6.00 0.00-1.98 UNZ Hofmeister et al. (2016) 4745 401 OIB1
Le Losq and Neuville (2013) 65.75 15.80 NAK?75.12.10  Giordano and Dingwell (2003b) 47.03 5.69 0.00-231 ETN
Alidibirov et al. (1997) 6528 5.63 Sehlke and Whittington (2016) 46.96 0.58 EUC
Le Losq and Neuville (2013) 64.90 16.40 NAK?75.12.12  Morrison et al. (2019) 4691 1.78 ANOR
Whittington et al. (2001) 64.45 10.07 0.004.92 Trachyte Sehlke and Whittington (2016) 46.60 2.24 NAK
Stabile et al. (2016) 64.44  27.56 KFS-red Morrison et al. (2019) 4599 4.05 JSC-1a
Hess et al. (1995) 6430 26.20 20K Giordano et al. (2006) 45776 3.72 SLP
Hofmeister et al. (2016) 64.04 6.05 Dac-and Morrison et al. (2020) 4476  7.19 NYI-1948
Giordano et al. (2004) 63.88 12.49 0.00-3.86 MNV Whittington et al. (2000) 4357 855 0.00-2.06 NIQ
Hess et al. (1995) 6320  7.50 20Mg Sehlke and Whittington (2016) 42.16 052 LM
Whittington, Hellwig, et al. (2009) 63.12  6.25 0.00-5.04 BRD Robert et al. (2019) 40.51 21.63 Nel00
Hess et al. (1995) 6290  7.40 20Ca Robert et al. (2019) 4033 2555 Ne625
Richet et al. (1996) 6240 4.45 0.00-3.46 Andesite Morrison et al. (2020) 39.61 10.61 NYI-1977
Hess et al. (1995) 62.40 26.90 20Na Robert et al. (2019) 3941 24.03 Ne75
Romano et al. (2003) 6126 12.62 0.00-3.78 AMS_BI Robert et al. (2019) 39.34  27.09 Ne375
Neuville et al. (1993) 61.17 524 Andesite Sehlke and Whittington (2016) 39.13 11.05 NYI
Hellwig (2006) 61.05 5.81 0.004.94 Dacite Robert et al. (2019) 37.87 26.18 Ne50
Giordano et al. (2004) 60.74 11.60 0.00-3.41 IGC Robert et al. (2019) 37.28 27.51 Ne25

Note. Oxide compositions and H,O are given in wt%. The H,O content is given as the range found in the respective reference. TA = Na,O + K,O states the total alkali
content (wt%). The first column gives the reference from which the data are taken, the last column indicates the sample name used in the respective publication. Detailed
oxide compositions of the melts listed here are given in Data Set S1.

Virgo, 1987; Kolzenburg et al., 2018; Liebske et al., 2003; Stabile et al., 2021; Vetere et al., 2008). For samples
with only the total iron content FeO,, reported, we distribute it evenly between FeO and Fe,O, with a factor
of 1.11 to account for the higher molar weight of Fe,O, (Langhammer et al., 2021). SM reflects the degree of
structural polymerization on #, and the alkali ratio is known to significantly affect the viscosity of SiO,-rich
systems (Di Genova et al., 2017; Le Losq & Neuville, 2013; Stabile et al., 2016). Cr,O, is only used during the
conversion from wt% to mole fractions. It is omitted during the training as the vast majority of compositions
contain <0.02 wt%.
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Table 2

Data Sets Used for Testing the Artificial Neural Network, Listed With Decreasing SiO, Content

References SiO, TA H,0 Name in source
Hofmeister et al. (2014) 79.63 8.59 Haplogranite
Webb (2021) 67.02 11.81 h16b
Webb (2021) 63.28 11.46 h22b
Hofmeister et al. (2016) 62.16 5.84 Dacite
Webb (2021) 61.81 9.24 hS5a
Misiti et al. (2006) 59.90 12.55 0.18-5.81 AMS
Langhammer et al. (2021) 57.72 11.62 0.004.78 Tra3-DSC
Misiti et al. (2011) 56.08 8.88 0.00-3.28 FR
Webb (2021) 55.27 6.50 h34
Sehlke and Whittington (2015) 55.06 0.12 Enstatite Basalt
Sehlke and Whittington (2015) 55.02 6.47 NVP-Na
Webb (2021) 54.35 4.48 h10
Hofmeister et al. (2016) 53.02 3.23 Dolerite
Al-Mukadam et al. (2020) 49.90 0.00 Di, DSC derived viscosities
Webb (2021) 42.74 8.71 NIQ

Note. Oxide compositions and H,O are given in wt%. H,O is given as the range found in the respective reference.
TA = Na,O + K,O states the total alkali content (wt%). The first column gives the reference from which the data are taken,
the last column indicates the sample name used in the respective publication. Detailed oxide compositions of the melts listed
here are given in Data Set S2.

To improve convergence and stability of the training process we scale the input data as follows (Montavon
et al., 2012): (a) mole fractions of composition lie in the interval [0, 1], (b) T is normalized by dividing all values
by the largest T within the data set (2023 K for Ne375, Table 1). (c) We modify the definition of SM using mole
fractions, also leading to values in the interval [0, 1]. (d) Finally, for every value of each input parameter x, the

z-score (Cassar, 2021) is calculated as input according to

Training

500

Counts

0 -

500 -

1000 ~

Training

401 Validation|

Counts

Validation [

Counts

40 60 80
SiO, in mol%

20

SM

40

Figure 3. Histograms indicating the data distribution for one choice of the
training, validation and test sets in terms of SiO, content (left column) and
structure modifier structural parameter (right column).

I Tt
i.j ~ s (1
L on
Mi = —NZFIXi.ja )
2 _ Low 2
o; = —sz=,(x,-,j — M) 3)

Here, x,; and z,; denote the jth value of the ith input parameter (e.g., SiO,
content), x denoting the old, and z the z-score used as input for the ANN. y; is
the average and 67 the variance of the input. The scaling achieves an average
of 0 and variance of 1 for the new input z,. Values for 4 and o2 can be found
in Table S1 in Supporting Information S1.

3.2. Training Procedure

Critical parameters for training an ANN (hyperparameters) are the number of
hidden layers and neurons per layer which, through the associated weights,
define the number of adjustable parameters, the learning rate which defines
the step size during training, and the dropout value. The dropout randomly
sets outputs of a layer to zero at a probability given by the dropout value.
This simulates various different ANNs during a training session and reduces
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2227 1394 977

Tin°C overfitting (Srivastava et al., 2014). As a measure for the quality of the ANN

560 441 352 282 . .
. . A we use the root-mean-square-error (RMSE), commonly used in other publi-

147 I cations. To search the space of hyperparameters, we use Bayesian optimiza-
12 4 3 tion as a stochastic algorithm (Aggarwal, 2018; Snoek et al., 2012) to find
T5 architectures with low validation errors. In this step, we perform the shuffling
» 10 L
o described above and combine 90% of the anhydrous and hydrous data sets
i 81 r each to the training set and the remaining 10% to the validation set.
<
2 69 I In the Bayesian optimization, we fix several hyperparameters: (a) We use two
o a- L hidden layers. Several tests have shown little improvement when using three
2 layers, and increasing the number of layers further increases the complexity
27 I which is not desired in our case given the scarcity of data. (b) We apply
O Training and Validation data he Ad .. Ki & Ba. 2014 1 ith includi h
0 0 Test data - the Adam optimizer (Kingma a, ) as an algorithm, including the
: . , , , amsgrad flag (Reddi et al., 2019). (c) For activation in all hidden layers, we
6 8 12 14 16 . .
10000/T in 1/K use the leaky ReLU function defined as
. . . f(x) =ax for0 > x, 4)
Figure 4. Viscosity (log #) values from the data sets used here as a function
of inverse temperature (10,000/7). Data shown in blue are used in the training/ f(x)=x for0 < x )

validation process (Table 1), red circles mark the test set (Table 2).

Table 3

Range of Explored Hyperparameters and Final Results From the Baysian

Optimization

We use the default value of @ = 0.3 (Abadi et al., 2015). In the in- and
output-layers identity is used as activation. (d) As batch size, we use the
complete training set (full batch).

For other hyperparameters we vary the range (Table 3): (a) The number of neurons in the hidden layers explored
is 1 — 256 per layer, with final values of 256 for the first and 208 for the second layer. The value of 256 in the first
layer corresponds to the upper bound; due to the small number of data available and only small improvements
during test runs with an increased threshold, we choose to use 256, nevertheless. This avoids increasing the
complexity and computational expense while retaining an accurate model, as shown in the following sections. (b)
For the learning rate we use 0.057317962127906, after exploring 0.00001 — 0.5. (c) From a range of 0.0 — 0.5,
the chosen dropout value is 0.16569639948335368.

Using the ANN hyperparameters chosen by the Bayesian optimization, we apply a 20-fold cross-validation
process. All anhydrous and hydrous data sets in the training/validation database (Table 1) are shuffled separately
and split into 20 sets each; one of each is combined to create 20 sets that contain anhydrous and hydrous data
(superset). The ANN is trained 20 times, using 19 of the supersets for training and one as validation. The valida-
tion superset is exchanged until each superset was used for validation once. These architectures are used to predict
all n values of the test set, and we present and discuss results for the ANN with the lowest RMSE.

Neural networks are built using TensorFlow (Abadi et al., 2015) and the Bayesian optimization is performed with
the KerasTuner (O’Malley et al., 2019), using Python as programming language. Data is managed and prepared
using the Pandas (Reback et al., 2021) and NumPy (Harris et al., 2020) packages.

4. Training Results and Evaluation

The SiO, distribution for the training and validation set belonging to the network that displays the lowest
RMSE when predicting the test set is very similar (Figure 3). Their RMSE values are 0.09 and 0.12, respec-
tively (Figure 5). Therefore we expect the ANN to be trained to interpolate
rather than extrapolate. This in turn leads us to recommend the use of this
model only within the, albeit extensive, chemical bounds given by the train-
ing/validation data set (Figure 1). The models of Hui and Zhang (2007) and

Giordano et al. (2008) applied to the training/validation sets in our database

Hyperparameter Range Result ] . )
produce RMSE values of 1.36 and 1.18, respectively (Figure S1 in Support-
Neurons in Layer 1 1-256 256 ing Information S1).
Neurons in Layer 2 1-256 208 o
Learni 0.00001-0.5 0.05731796 For the test sets, we compare measured 7 to predictions of our ANN and
carning rate ’ ’ ’ the global models of Hui and Zhang (2007) and Giordano et al. (2008) in
Dropout 0.0-0.5 0.1656964 Figure 6. The ANN predictions show the lowest RMSE with 0.45, compared
LANGHAMMER ET AL. 7 of 14
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@ 15 Trailning ' ' ' ' ' — —" to 0.89 and 1.23 for the models by Hui and Zhang (2007) and Giordano
z 101 _ | et al. (2008), respectively.
IS =5 : gz
s == ::,—” | Both literature models show significantly larger deviations than the ANN
i ’’’’’ ::——"' prediction for specific data sets. The model by Hui and Zhang (2007) over-
g 01 Sme= - - estimates viscosity measurements for the enstatite and a Na,O-rich basalt

' ' ' ' ' ' ' ' (NVP-Na) by Sehlke and Whittington (2015) and for the diopside (Di) deter-
- 15 Validation P mined from calorimetry experiments by Al-Mukadam et al. (2020). The
= - . . . ..
< 104 Pt caie L model by Giordano et al. (2008) underestimates viscosities for these samples
= - ::, - as well as for a haplogranite (Hofmeister et al., 2014). The two compositions
T 57 o :::——’/ I by Sehlke and Whittington (2015)—models for basalts on Mercury—show a
=) o] ot - L high content in CaO and MgO as does the Di by Al-Mukadam et al. (2020)
2 =5 T T T T T T T (Data Set 2), outside typical terrestrial compositions. It may therefore not be
-2 0 2 4 6 8 10 12 14

log Nm with nin Pa s

Figure 5. Calculated (log #,) versus measured (log #,,) viscosities of the
training (top) and validation sets (bottom) for the artificial neural network
yielding the lowest root-mean-square-error (RMSE) when applied to the

test sets. The black solid line indicates the one to one correspondence, and
dashed lines +1 log-unit deviation from identity. RMSE values are 0.09 for the

training and 0.12 for the validation set.

5. Synthetic Models

surprising that the models by Hui and Zhang (2007) and Giordano et al. (2008)
fail to reliably predict their #, while the training/validation set of our ANN
contains two similar compositions from Sehlke and Whittington (2015) and
further planetary tholeiitic melts (Sehlke & Whittington, 2016).

The high # for the fully polymerized haplogranite by Hofmeister et al. (2014)
is not reproduced well by the model of Giordano et al. (2008) which also shows
a poor fit for a similar model haplogranite (HPGS8) by Hess et al. (1995).

Eruptive T of most magmas lie between the Hy and Lz range. At these 7, volcanic melts tend to crystallize faster

than the timescale of the 7 measurement. Therefore an interpolation—or extrapolation if data only exist at Hy—

between these ranges is required to determine #. This is done by fitting # data using models such as the MYEGA

and VFT equations (Figure 7), sometimes modified to include a H,O dependence. Contrary to MYEGA fits to

experimental data, viscosities directly determined from the ANN in the range 10° Pa s < 5 < 108 Pa s show strong

deviations from expected behavior for some melt compositions (Figure 7). This is not surprising given the fact
that the ANN is not trained in this # range due to the experimental gap discussed in the Introduction.

5.1. Creating a Synthetic Model

Mimicking the fitting of experimental data, we create a set of synthetic data
from the ANN in the Hn and L# ranges and fit the physically motivated

1759 0 uzo7 ED S 2 MYEGA equation (Mauro et al., 2009),
150/ O GRDO8 g & /,/ < T T
B O odR-% " logn = A+ (12 — A)=Sexp [(L—l) <—g—1>], 6)
w 12.51 2 - T 12-A T
&
i 10.01 r to them. The viscosity at infinite 7, A := log #_, melt fragility m and glass
8 754 s I transition temperature 7, (for log n = 12) are fitting parameters. We fix
g //’ // A = —2.9 (Zheng et al., 2011), following our previous work and discussion
2 507 e Sl I (Langhammer et al., 2021), creating a two-parameter model equation for a
251 > L specific composition that can be used to calculate  over a wide T range.
0.0+ L Determining the Hy and Lz intervals for which synthetic data are created

0.0 25 5.0 7.5 10.0 12.5

lognm fornin Pa s

15.0

17.5

is an important step in the process, as this choice strongly influences the
model parametrization. We examine the distributions of log # for the whole
database (Figure 8) to choose appropriate intervals for the Hy and Ly

Figure 6. Comparison of calculated (log #,) and measured (log #,,) viscosities
for the artificial neural network (ANN, red crosses, RMSE = 0.45), the model
by Giordano et al. (2008) (GRDO8, blue diamonds, RMSE = 1.23) and Hui
and Zhang (2007) (HZ07, green squares, RMSE = 0.89) for melts in the test
sets. The one to one correspondence is shown by the solid black line, dashed
lines indicate a +1 log-unit deviation from identity.

ranges. In the Hy region, the data density is highest at log # between 10
and 11, and we create synthetic data in 1-log around the maximum, that is,
in the interval [9.5, 11.5] with a step size of log 1 = 0.5. Data coverage in
the Ly region varies with SiO, content, and we split the data sets at 60 wt%
Si0,. With broad maxima for log 5 between 0.5 and 1.5 (SiO, < 60 wt%)
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Figure 7. Viscosity (log #) as a function of inverse temperature (10,000/7)

for some anhydrous compositions in the training/validation database (a and b)
and the test set (c). Measurements are shown by filled circles, viscosity values

predicted from the artificial neural network by crosses, where bold crosses

indicate the 7 range for the synthetic data approach. Solid (dashed) lines show

MYEGA fits to the experimental (synthetic) data. Data references can be

found in Tables 1 and 2. The horizontal lines indicate 10'? Pa s.

and log » between 2.5 and 3.5 (SiO, > 60 wt%), we create synthetic data
in the log 7 intervals [0, 2] and [2, 4.5], respectively, again in steps of log
n = 0.5. Such a split is not necessary in the Hy range due to very similar
distribution of data (Figure 8).

Technically, we use the ANN in conjunction with the bisection method
to calculate T for the previously discussed log # values to a precision of
1075, The log n — T dependence is fit using the MYEGA model (Equation 6
with A = =2.9). A web application which follows this scheme and calcu-
lates the MYEGA parameters and a viscosity value for a desired T can be
found at https://share.streamlit.io/domlang/visc_calc/main/final_script.py. It
is important to mention, that if the composition which is entered into the
app only reports FeO,,, /2
and Fe,0; = FeOmml%. On the other hand, if the compositions reports
the total iron as Fe,O,, it must be split according to FeO = W and
Fe,0, = Fe,0;,,,/2. Fitting parameters m and T, can be used for further
calculations. A Table S2 to calculate # values from the fit parameters m and

T, for various temperatures is supplied in Supporting Information.

one must split it according to FeO = FeO,,

5.2. Testing Synthetic Models

A comparison between the MYEGA fit to ANN viscosities (synthetic model)
and experimental data for the compositions in the training/validation set
(Figure 9a) already used in Figure 7 and discussed in Section 4 shows that
the experimental measurements agree well with the ANN predictions where
they overlap, both in the Ly and Hy ranges. The synthetic fit describes the
experimental 7 dependence of # measurements reasonably well, except for
Mercato 1600 (Giordano et al., 2009) that shows a more Arrhenian behav-
ior in experiments. This discrepancy stems from the fact that, with a SiO,
content of 58.84 wt%, the synthetic model is based on ANN viscosities in
the log 7 interval [0, 2], while experiments cover log # in a range 2 — 4.6.
However, the direct ANN predictions reproduce measured 7 for Mercato
1600 quite well (Figure 7b).

A similar behavior can be seen for samples from the test set in Figure 9b. The
viscosity for three of the four compositions is described well, but values for
the Dacite by Hofmeister et al. (2016) are predicted lower than the measure-
ments by 0.9 — 0.7 log-units (decreasing with 7T) in the Hy range, while 7 of
two Fe-free synthetic dacites in the training/validation set (Hellwig, 2006;
Whittington, Hellwig, et al., 2009) are reproduced well. Evaluating the same
compositions with the global model by Giordano et al. (2008) reveals that it
has a similar problem predicting # for the Dacite by Hofmeister et al. (2016)
although to a slightly smaller extent (0.7 — 0.5 log-units). As our model
reproduces the experimentally measured # for the Dac-and by Hofmeister
et al. (2016) with a similar iron content well, the reason for this specific
discrepancy remains unclear.

The RMSE value for # in the training/validation set is 0.20 (Figure 10),
slightly worse than those from the ANN directly (0.09 and 0.12 for training
and validation, respectively). For the test set, the values are 0.45 for the ANN

predictions and 0.52 for the synthetic model, respectively. In comparison to RMSE values of 1.36 and 1.18 for
the entire database by the global models of Hui and Zhang (2007) and Giordano et al. (2008), respectively, the
synthetic model provides quite accurate results, and has a physical basis with the MYEGA equation. For the
32 compositions in the KNAS system in our training/validation database (Table 1), our model performs better
than the one by Le Losq et al. (2021), with values of RMSE = 0.29 and RMSE = 0.39, respectively (Figure S2
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200 in Supporting Information S1). The model of Le Losq et al. (2021) can not
175 4 be applied to natural volcanic melts in a meaningful way, as these typically
contain divalent cations, most importantly MgO, CaO and FeO as well as
1501 water.
® 1251 The parameters for the MYEGA model (Equation 6) do not differ signifi-
g 100 + cantly for 7, from the individual isochemical fits (Figure 11 and Figure S3 in
© 75 Supporting Information S1) and the direct ANN inversion. For a reasonable
comparison, only samples which include measurements in the Hy and Ly
501 range from the training/validation set are included in Figure 11 and Figure S3
25 4 in Supporting Information S1. RMSE values of 18.3 and 7.16 K for the direct
. ANN inversion and the synthetic model, respectively, reflect the narrow

0 2 4 6 8 10 12
logn with nin Pa s

14

Figure 8. Distribution of viscosities in the training/validation database in
the Hzy and Ly regions, binned with log # = 0.5 intervals. Data sets in both
regions are split into compositions with SiO, < 60 wt% (blue) and SiO, > 60
wt% (red). Purple indicates the overlap of distributions. The vertical dashed
lines indicate the log 5 ranges over which we create synthetic data, that is,
[9.5, 11.5] at Hy for all compositions, and at Ly [0, 2] or [2, 4.5] for melts

containing SiO, < 60 wt% and SiO, > 60 wt%, respectively.
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Figure 9. Comparison of fits to synthetic data (log # vs. 1/T) to measurements
for the compositions also used in Figure 7 (training/validation sets in panel (a),
test sets in panel (b)). Crosses are the synthetic data and lines are MYEGA fits
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(Mauro et al., 2009) to them. Circles are the respective measurements. Data

references can be found in Tables 1 and 2.

distribution in Figure 11 and Figure S4 in Supporting Information S1, and
an average difference of 67, = —0.5 K between the direct MYEGA fit and
the synthetic model (Figure S3 in Supporting Information S1) show that the
synthetic model approach used here does not introduce any bias. Values of
melt fragility m derived from synthetic data tend to be slightly overestimated
(Figure S4 in Supporting Information S1), with the average deviation from
direct MYEGA fits of ém = 1.04. A quasi-linear trend of increasing m with
structural parameter SM discussed in Langhammer et al. (2021) is repro-
duced well.

The expected reduction in viscosity due to increased water content is also
reproduced by our model. This includes both a reduction in 7, and m with
increasing H,O content (Figure S5 in Supporting Information S1).

6. Conclusion

In this work we have trained an ANN on a database containing 3,194
temperature-dependent viscosity () measurements for volcanic melts span-
ning a large chemical domain, including extraterrestrial model systems. The
neural network takes melt composition, H,O content, temperature 7, the
chemical parameters SM, reflecting melt polymerization, and the alkaline
ratio K,0/(Na,O + K,0) as input to predict 7. We show that the trained neural
network describes the data in the database very well, significantly better than
commonly used global models (Giordano et al., 2008; Hui & Zhang, 2007).
In this context, it is worth emphasizing that—contrary to such models—the
ANN relies on data only, and does not assume a functional dependence of
viscosity. As such, interactions between different compositional compo-
nents are taken into account implicitly. This suggests that despite the rela-
tively scarce viscosity data for volcanic melts the success of ANN previously
demonstrated for technical glasses (Cassar, 2021; Tandia et al., 2019) can
be transferred to volcanology. To facilitate an easy use of our trained ANN,
we make an online viscosity calculator available at https://share.streamlit.io/
domlang/visc_calc/main/final_script.py.

The lack of training data in an 5 range 10° — 10% Pa s for T characteristic for
volcanic eruptions results in unphysical behavior of 7. We therefore combine
the reliable ANN predictions of 7 in the ranges where training data is availa-
ble at high and low viscosity with a fit using the MYEGA equation to achieve
a physically sound interpolation for geologically relevant conditions. The
relevant parameters can be calculated using the web application mentioned
in the previous paragraph. An Table S2 to calculate viscosities using these
parameters and the MYEGA equation (Mauro et al., 2009) is supplied in
Supporting Information S1.
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Figure 10. Comparison of viscosity values predicted by the synthetic models (log #,) to measurements (log 7,,) of the
training/validation (top) and test (bottom) sets. The solid line shows the one to one correspondence, with the dashed lines +1
log-unit deviations from identity. The respective root-mean-square-error values are 0.2 (top) and 0.52 (bottom).
Creating more accurate and versatile neural networks for melt viscosity, and other properties in general, is only
limited by the quality and quantity of data. The time-consuming task of guessing a model equation and assuming
critical parameters for melt characteristics is partly eliminated, while physical behavior of the melt is implicitly
included in the modeling process. With more data and further analysis, these implicit physical relations may
reveal themselves and lead to a better understanding on composition-structure-property relations. Our results
hopefully encourage other researchers to further explore machine learning algorithms in the context of natural
silicate melts and volcanology.
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Figure 11. Comparison of calculated 7, values for compositions from the training/validation database. T, on the x-axis are
from isochemical MYEGA fits of the experlmental data, on the y-axis T calculated from the artificial neural network (ANN)
directly (squares), from the synthetic data approach (crosses) and from the model of Giordano et al. (2008) (GRD, diamonds)
are shown. Only samples with measurements in both the Ly and Hy ranges in Table 1 are used. Root-mean-square-error
values are 18.3 K for the ANN, 7.16 K for the fit to synthetic data, and 57.53 K for the GRD model.
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