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Synthesis of rare-earth metal compounds through
enhanced reactivity of alkali halides at high
pressures
Yuqing Yin 1,2✉, Fariia I. Akbar1,3, Elena Bykova 3,4, Alena Aslandukova 3, Dominique Laniel5,

Andrey Aslandukov1,3, Maxim Bykov 6, Michael Hanfland7, Gaston Garbarino 7, Zhitai Jia2,

Leonid Dubrovinsky 3 & Natalia Dubrovinskaia 1,8

Chemical stability of the alkali halides NaCl and KCl has allowed for their use as inert media in

high-pressure high-temperature experiments. Here we demonstrate the unexpected reactivity

of the halides with metals (Y, Dy, and Re) and iron oxide (FeO) in a laser-heated diamond anvil

cell, thus providing a synthetic route for halogen-containing binary and ternary compounds.

So far unknown chlorides, Y2Cl and DyCl, and chloride carbides, Y2ClC and Dy2ClC, were

synthesized at ~40 GPa and 2000 K and their structures were solved and refined using in situ

single-crystal synchrotron X-ray diffraction. Also, FeCl2 with the HP-PdF2-type structure,

previously reported at 108 GPa, was synthesized at ~160 GPa and 2100 K. The results of our ab

initio calculations fully support experimental findings and reveal the electronic structure and

chemical bonding in these compounds.
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A lkali halides, particularly sodium and potassium chlorides,
are chemically very stable and are usually not considered as
precursors for the synthesis of new compounds in high-

pressure (HP) studies. Indeed, NaCl and KCl were thought to be
chemically inert over wide pressure (up to 200 GPa) and tempera-
ture (up to 3000 K) ranges1. Therefore, they have often been used as
pressure calibrants2, pressure transmitting media3, and electrical
and thermal insulators in HP experiments3–5. Recent experimental
and theoretical studies6–8 suggest, however, that the behavior of the
Na-Cl and K-Cl systems at HP is complex, and several compounds
with an unusual stoichiometry (like NaCl3, Na3Cl, Na2Cl, and KCl3)
have been reported. Still, NaCl and KCl are considered to be che-
mically stable under HP, as in the absence of ionization-promoting
species9,10, reactions are found in the presence of extra chlorine or
sodium/potassium in a diamond anvil cell (DAC)7,8.

Being formed by highly electropositive and electronegative
elements, NaCl and KCl, having a stable electron configuration,
are not expected to react with transition or rare-earth metals. In
the present work we have shown that it is not the case under
pressure, as our experiments, originally designed to study the HP
behavior of metals (Y, Dy, Re, and Ag) in an “inert” pressure
medium (NaCl) in a laser-heated diamond anvil cell (LHDAC),
resulted in the synthesis of previously unknown chlorides, Y2Cl
and DyCl, and chloride carbides, Y2ClC and Dy2ClC, at about
40 GPa and 2000 K. An iron chloride, FeCl2, with the HP-PdF2-
type structure, was found to be a product of a chemical reaction
between FeO and KCl in a LHDAC at about 160 GPa and 2100 K.

Here we report the crystal structures of the chloride phases,
Y2Cl and DyCl, and chloride carbides Y2ClC and Dy2ClC, as well
as the structure of iron chloride, FeCl2. The structures were solved
and refined using in situ high-pressure synchrotron single-crystal
X-ray diffraction in a DAC. Our ab initio calculations are in good
agreement with the experimental results.

Results and discussion
Reactivity of alkali halides and heavy metals at high pressures.
To conduct the experiments, pieces of metals (Y, Dy, Re, or Ag) or
FeO were loaded into a DAC between two layers of dried sodium
or potassium chlorides. All experiments were performed in BX90-
type DACs equipped with Boehler-Almax type diamond anvils
with culets of 250 or 120 μm11. NaCl or KCl served as pressure-
transmitting media and turned out to also act as reactants. To
facilitate a chemical reaction, the samples were laser-heated using
YAG lasers with the metals serving as the absorbers.

Supplementary Table 1 provides information on all experiments
carried out in this work. Silver was not found to react with NaCl
after heating up to ~1950 K at ~44 GPa (Supplementary Fig. 1).
Experiments with other metals, for example upon heating Dy in
NaCl at ~40 GPa (Supplementary Fig. 2), optical observations
provided early signs of chemical reactions. Raman spectroscopy
was also helpful in some cases in giving a clear indication of a
sample change after heating, like in the experiment with Re laser-
heated in NaCl at ~38 GPa (Supplementary Fig. 3). However quite
often Raman spectra did not yield any information on the phonon
modes of the newly formed solids because of strong luminescence
signals coming from the laser-heated spots.

The most reliable and accurate data on chemical reactions were
obtained from XRD studies, when a chemical alteration of the
sample is manifested in changes in the diffraction pattern and the
products of the reactions, their chemical composition and
structures, can be characterized using single-crystal X-ray diffrac-
tion data. Figure 1 shows powder diffraction patterns of the Y-NaCl
sample before and after laser-heating up to ~2000 K at ~41 GPa.
The pattern obtained before laser-heating displays only the
presence of hcp-Y and B2-NaCl in the sample. After heating,

additionally to the hcp-Y in B2-NaCl reflections, extra diffraction
lines were observed (Fig. 1). The 2D XRD patterns in the insert in
Fig. 1 show the appearance of numerous diffraction spots after laser
heating, characteristic of single crystals. We used our approach to
the high-pressure XRD data analysis12–16 and the DAFi program17,
which we specially developed to process single-crystal XRD data
from microcrystals. Processing these data revealed the formation of
the previously known fcc-YC compound18, a new HP phase of
Y3C4 (to be published elsewhere), and new yttrium chloride and
yttrium chloride carbide (Y2Cl and Y2ClC), which are discussed in
detail in this work. Similarly, chemical reactions were detected in
the Dy-NaCl, FeO-KCl, and Re-NaCl systems (Supplementary
Table 1 and Supplementary Figs. 1–3), and the new phases, DyCl,
Dy2ClC, and FeCl2, were identified. Unfortunately, despite all our
efforts, the new phases in the Re-NaCl system could not be
recognized, although we observed the signs of chemical reactions
both in Raman spectra and the XRD data (Supplementary Fig. 3).
The crystal structures, solved and refined at HP for all phases
detected in the Y-NaCl, Dy-NaCl, and FeO-KCl systems after laser
heating, are described in detail below.

Structures of chlorides Y2Cl, DyCl, and FeCl2. The yttrium-
chlorine compound, Y2Cl, synthesized at ~41 GPa and ~2000 K
(Supplementary Table 1) crystallizes in a structure with the tet-
ragonal space group I4/mcm (#140). Y atoms occupy the 8 h
Wyckoff site with the atomic coordinates (0.659(7) 0.159(7) 1/2)
while the Cl atoms occupy the 4a (0 0 1/4) site (Fig. 2a, see also
the CIF deposited at CSD 2184741 and Supplementary Data 1).
The lattice parameters are a= 6.128(3) Å and c= 5.405(7) Å at
41(1) GPa. The full experimental crystallographic data, including
the crystal structure, data collection and refinement details of
Y2Cl at 41(1) GPa are provided in Supplementary Table 2.

Yttrium atoms form 32.4.3.4 nets in the ab plane (Fig. 2b). The
nets are stacked along the c direction with a ½ period and rotated
by 90° from one another (Fig. 2b). The chlorine atoms are located
in the centers of square antiprisms formed between the layers of Y
atoms (Fig. 2c). The Y-Cl distances within the antiprisms (~2.67 Å)

Fig. 1 Chemical reactions between yttrium and NaCl detected from X-ray
diffraction. Powder X-ray diffraction patterns of the Y-NaCl sample before
(black) and after (red) laser-heating at ~2000 K and 41 GPa. Insert shows
2D XRD patterns of the same sample before and after laser heating. The
previously known (fcc-YC) and unknown (Y2Cl, Y2ClC, and Y3C4)
compounds were identified using single-crystal XRD data; the ticks here are
added according to their calculated powder XRD patterns.
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are compatible with those known for other yttrium chlorides at
ambient conditions (YCl19,20, Y2Cl321, YCl322–2.70–2.75 Å). The
striking difference is in the Cl-Cl and Y-Y distances (~2.70 Å and
~2.75 Å, correspondingly) of Y2Cl compared to the known yttrium
chlorides with predominantly ionic bonding between Y and Cl and
metal-metal bonding within metal frameworks (for example,
3.30–3.72 Å for Cl-Cl and 3.27–3.96 Å for Y-Y in YCl and
Y2Cl3)21,23. This indicates that the “metallic radius”24 in Y2Cl is
different (smaller) from those in other yttrium chlorides. This
might contribute to the reduction in enthalpy, making Y2Cl a
favored phase at HP. In fact, the Y2Cl compound was predicted to
be metallic at 20 GPa25, and in metallic hcp yttrium at 40 GPa26 the
unit cell volume per atom is ~19.9 Å3 that allows one to calculate
the shortest Y-Y contact to be ~2.7 Å, which matches our
measurements. Our ab initio calculations (Methods section) well
reproduced the experimental crystal structure of Y2Cl at 40 GPa
(Supplementary Table 2) and confirmed its dynamical stability
(Supplementary Fig. 4).

The structure of dysprosium chloride, DyCl, has a hexagonal
unit cell with the lattice parameters a= 3.079(19) Å and
c= 7.621(5) Å at 40(1) GPa (Fig. 2d, e, see also the CIF deposited
at CSD 2184740 and Supplementary Data 2), and the space group
symmetry P63/mmc (#194) with the Dy atoms occupying the 2a
Wyckoff site (0 0 1/2), and Cl atoms occupying the 2c site (1/3 2/3
3/4) (Table S3). In this NiAs (B8) type structure, the Cl atoms
form a hexagonal close packing (hcp), in which Dy atoms occupy
the centers of the edge-sharing octahedra. Although there are
other rare-earth (RE) chlorides known at atmospheric pressure
(RE= Sc, Y, Gd, and La)23,27,28, they possess ZrCl-type structure,
which is different from that of the HP Dy and Y chlorides.

The calculated structural parameters are in good agreement
with the experimental results (Supplementary Table 3). DyCl is
dynamically stable at our experimental pressure (~40 GPa) and its
metallic nature at 40 GPa is confirmed with the Dy-d electrons
dispersed at the Fermi level due to Dy-Dy metallic bonding
(Supplementary Fig. 5).

The HP phase of FeCl2 crystalized at 160(1) GPa in the HP-
PdF2 type structure with the Pa�3 (#205) space group and the

lattice parameter a= 4.829(11) Å (Fig. 2f). Fe atoms occupy the
4b Wyckoff site, while Cl atoms occupy the 8c site, and form
vertex-sharing Cl6 octahedra with Fe atoms in the centers. The
Fe-Fe, Fe-Cl, and Cl-Cl distances at 160(1) GPa are 3.41 Å,
1.98 Å, and 2.61 Å, respectively.

Our theoretical calculations reproduced the experimental
crystal structure of FeCl2 at 150 GPa (Supplementary Table 4)
and confirmed its dynamical stability down to a pressure of
90 GPa (Supplementary Fig. 6). The measured unit cell volume
and the pressure-volume points from theoretical calculations are
shown in Supplementary Fig. 7. The calculated bulk modulus of
K0= 96.9(14) GPa (K′= 4.45(2); V0= 185.5(4) Å3) was deter-
mined by fitting the third-order Birch-Murnaghan equation of
state to the calculated P-V data (Supplementary Fig. 7). The
calculated band structure along specific high-symmetry directions
suggests that the cubic FeCl2 phase is a typical example of normal
semimetals29, in which electron and hole pockets coexist on the
Fermi surface (Supplementary Fig. 8).

It is worth mentioning that at ambient conditions FeCl2 (phase I)
possesses the layered CdCl2-type structure (R�3m, #166), in which
the chlorine atoms form a cubic close packing (ccp). Fe atoms,
which fill ½ of its octahedral voids, are “sandwiched” between the
two sheets of chlorine atoms30, producing Cl-Fe-Cl layers separated
from each other. At low pressures (~0.6 GPa) phase I undergoes a
structural transition to phase II with the hexagonal CdI2-like
structure (P�3m1, #164), which is similar to that of phase I, but
in phase II the chlorine atoms form a hexagonal close packing
(hcp). This structure persists to 65 GPa31. At 108 GPa and 2000 K
Yuan et al.9 synthesized a FeCl2 phase with the same HP-PdF2
type structure, which we observed in this work at 160 GPa, but
the synthesis was realized through hydrous systems to force the
ionization of NaCl.

Structures of novel chloride carbides Y2ClC and Dy2ClC. As
shown in previous work32, carbon from diamond anvils, being
mobilized upon laser heating, can participate in chemical reactions.
In this work, this phenomenon has led to the synthesis of previously

Fig. 2 Crystal structures of novel chlorides of Y, Dy, and Fe. a Stick-and-ball model of Y2Cl structure at 41(1) GPa; b view of the Y metal framework in
Y2Cl along the c-direction; c square antiprisms geometry around the Cl center in Y2Cl. d Polyhedral model of the crystal structure of DyCl at 40(1) GPa
built of YCl6 octahedra; e view of the structure along the c-direction: Cl atoms form hexagonal close packing (hcp) and Y atoms occupy the space in
between. f Polyhedral model of FeCl2 at 160(1) GPa. Y, Dy, Fe, and Cl atoms are shown in blue, purple, tan, and red colors, respectively.
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unknown ternary compounds, Y2ClC and Dy2ClC, which are iso-
structural (space group R�3m, #166) and with similar lattice para-
meters. Y and Dy atoms occupy the Wyckoff site 6c, Cl atoms
occupy the 3a site, and C atoms occupy the 3b site. The full
experimental crystallographic data, including the crystal structure,
data collection, and refinement details for these phases are provided
in Supplementary Tables 5 and 6 (see also the CIF deposited at CSD
2184739 and 2184742) (Supplementary Data 3 for Y2ClC and
Supplementary Data 4 for Dy2ClC).

In the structure of the novel chloride carbides, the rare-earth
atoms (Y and Dy) form a distorted cubic close packing (ccp)
(Fig. 3). If one considers Cl and C as equal-size spheres, the
alternating close-packed layers of C and Cl also form a distorted
ccp. Thus, the structure can be described as one derived from NaCl
(B1) type with carbon and chlorine atoms forming the ccp, whose
octahedral voids are occupied by the rare-earth atoms. Each rare-
earth atom is connected to three Cl and three C atoms (Fig. 3d).
As shown in Fig. 3e, the metal-C contacts (Y-C ~2.30 Å, and Dy-C
~2.29 Å) are significantly shorter than the metal-Cl ones (Y-Cl
~2.59 Å, and Dy-Cl ~2.60 Å), as expected due to the smaller ionic
radius for C atoms. But the Y-Y and Dy-Dy contacts between layers
AB, CA, and BC (Fig. 3b) are relatively short (~3.15 Å), and this
distance is close to that of Dy-Dy in DyCl with a metallic bonding
character, as discussed above.

To gain a deeper insight into the properties of Y2ClC and
Dy2ClC, we performed calculations based on density functional
theory (DFT). The relaxed structural parameters (Supplementary
Tables 5 and 6) closely reproduce the corresponding experimental
values at 40 GPa. Harmonic phonon dispersion calculations using
the Phonopy software33 show no imaginary frequencies, demon-
strating the dynamical stability of R�3m Y2ClC at both 40 GPa and
1 bar (Supplementary Fig. 9). Ohmer et al.34 predicted the stability
of a Y2ClC solid with a P63/mmc space group (#194), which is
considered to be a MAX-type (Mn+1AXn)35,36 compound. By
comparing the enthalpy values of the two phases (Supplementary
Table 7), we suggest that Y2ClC will have a phase transition
from R�3m to P63/mmc when the pressure is reduced to 10GPa
(Supplementary Fig. 9c). No competing phase was found for R�3m
Dy2ClC, and its dynamical stability at 40 GPa is demonstrated in
Supplementary Fig. 10.

Considering that Y2ClC and Dy2ClC are isostructural, the
computed total and projected electron densities of states (TDOS
and PDOS) are illustrated in Fig. 4a taking Y2ClC as an example.
At 40 GPa, Y2ClC is a metal, as it shows a non-zero density of
states at the Fermi level, and the main contribution at the Fermi
level comes from the yttrium d-states. Interestingly, the calculated
electron localization function (ELF) of Y2ClC at 40 GPa not only
gives evidence of ionic bonding between the Y-Cl and Y-C atoms
but features weak ELF values in the centers of the Y4 tetrahedra
(Fig. 4b–d), forming bridges connecting the C atoms (see the
highlighted red dashed lines in Figs. 4b, d). One can speculate
from the ELF values that these ELF bridges are caused by the
hybridization of the Y-d orbitals (for ELF < 0.5, the metal bonding
is undoubtedly more pronounced37). To confirm this conclusion,
additional DFT calculations were performed with the C atoms
removed, resulting in a stable Y2Cl electride with a more localized
ELF attractor at the center of the Y4 tetrahedra and anionic
electrons localized at the centers of Y6 octahedra (Supplementary
Fig. 11). The introduction of C atoms causes a charge loss in the
Y4 tetrahedra and a charge gain in the Y6 octahedra (Supple-
mentary Fig. 11g) resulting in the weak ELF bridges in Fig. 4b.
The PDOS of Y-d orbitals and the partial charge density map
further confirmed the Y-d orbital overlapping in the Y4 tetrahedra
of Y2ClC (Supplementary Fig. 11f). Detailed information and
further discussion of the electronic properties of Y2ClC and
Dy2ClC can be found in Supplementary Discussion, Supplemen-
tary Figs. 11–13 and Supplementary Table 9.

To summarize, the chemical reactions between NaCl and Y, Dy,
and Re at ~40 GPa and KCl and FeO at ~160 GPa, observed in the
present work under HP, were unexpected. They led to the synthesis
of hitherto unknown chlorides, Y2Cl and DyCl, and chloride
carbides, Y2ClC and Dy2ClC. Although these results limit the
application of alkali halides as thermal insulators and pressure
media in LHDACs, as reactants, they provide a surprisingly simple
route for the preparation of halogen-containing compounds.

Methods
Sample preparation. One stack of halide (NaCl or KCl) thin (3–5 µm) plate was
first loaded on one of the diamond anvils, with a culet diameter of 250 µm (for
DAC 1–4) or 120 µm (for DAC 5; Supplementary Table 1). A piece of pure flake of

Fig. 3 Crystal structure of Y2ClC and Dy2ClC synthesized at ~40 GPa. a Ball model in a hexagonal setting. b Polyhedral model built of (YC3Cl3) octahedra;
A, B, C letters highlight the ccp formed by Y/Dy atoms. c View of the structure along the c-direction; C and Cl atoms together forming the ccp. d Crystal
structure in the rhombohedral setting. e Interatomic distances (in Å) in Y2ClC (black numbers) and Dy2ClC (red numbers). Y/Dy, Cl, and C atoms are
shown in blue, red, and gray colors.
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metal (Y/Dy/Re/Ag) or FeO of typically ~5 × 5 × 5 µm3 in size was positioned on
the halide layer. Then we placed another stack of halide (NaCl or KCl) thin
(3–5 µm) plate on the other diamond anvil so that the samples were loaded as
sandwiches. Rhenium was used as the gasket material. NaCl and KCl powders were
dried on a heating table at 220 °C for 48 h before loading to avoid any presence of
water. The in situ pressure was measured using the first-order Raman mode of the
stressed diamond anvils38. Double-sided sample laser-heating was performed at
our home laboratory at the Bayerisches Geoinstitut39. Detailed information of
pressure and the heating temperature can be found in Supplementary Table 1.

X-ray diffraction. Synchrotron X-ray diffraction measurements of the compressed
samples were performed at ID15 (λ= 0.41015 Å, beam size ~5.0 × 5.0 μm2) and
ID27 (λ= 0.3738 Å, beam size ~2.0 × 2.0 μm2) of the EBS-ESRF. In order to

determine the sample position for single-crystal X-ray diffraction data acquisition,
a full X-ray diffraction mapping of the pressure chamber was performed. The
sample positions displaying the greatest number of single-crystal reflections
belonging to the phases of interest were chosen, and step-scans of 0.5° from −36°
to +36° ω were performed. The CrysAlisPro software40 was utilized for the single-
crystal data analysis. To calibrate the instrumental model in the CrysAlisPro soft-
ware, i.e. the sample-to-detector distance, detector’s origin, offsets of the goni-
ometer angles, and rotation of both the X-ray beam and detector around the
instrument axis, we used a single crystal of orthoenstatite [(Mg1.93Fe0.06)
(Si1.93,Al0.06)O6, Pbca space group, a= 8.8117(2) Å, b= 5.1832(10) Å, and
c= 18.2391(3) Å]. The DAFi program17 was used for the search of reflections’
groups belonging to individual single-crystal domains. The crystal structures were
then solved and refined using the OLEX241 and JANA2006 software42. The crys-
tallite sizes were estimated from X-ray maps. The crystallographic information is
available in Supplementary Tables 2–6.

Density functional theory calculations. First-principles calculations were per-
formed using the framework of density functional theory (DFT) as implemented in
the Vienna Ab initio Simulation Package (VASP)43. The Projector-Augmented-Wave
(PAW) method44,45 was used to expand the electronic wave function in plane waves.
The Generalized Gradient Approximation (GGA) functional was used for calculating
the exchange-correlation energies, as proposed by Perdew–Burke–Ernzerhof (PBE)46.
The PAW potentials with following valence configurations of 4s4p5s4d for Y, 4f6s for
Dy, 3p4s3d for Fe, 3s3p for Cl, and 2s2p for C were used. The plane-wave kinetic
energy cutoff was set to 600 eV. The crystal structure, ELF, and charge density maps
visualization were made with the VESTA software47. The finite displacement method,
as implemented in PHONOPY33, was used to calculate phonon frequencies and
phonon band structures.

Data availability
All data generated or analyzed during this study are included in this published article
(and its Supplementary information files). The X-ray crystallographic coordinates for
structures reported in this article have been deposited at the Cambridge Crystallographic
Data Centre (CCDC), under deposition number CSD-2184739, CSD 2184740, CSD
2184741 and 2184742. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
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