
computer programs

J. Appl. Cryst. (2022). 55, 1383–1391 https://doi.org/10.1107/S1600576722008081 1383

Received 1 February 2022

Accepted 12 August 2022

Edited by A. H. Liu, HPSTAR and Harbin

Institute of Technology, People’s Republic of

China

Keywords: single-crystal domain auto finder;

DAFi; single-crystal X-ray diffraction; poly-

crystalline samples; multiphase mixtures.

Domain Auto Finder (DAFi) program: the analysis
of single-crystal X-ray diffraction data from
polycrystalline samples

Andrey Aslandukov,a,b* Matvii Aslandukov,c Natalia Dubrovinskaiaa,d and Leonid

Dubrovinskyb

aMaterial Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth,

Universitaetsstrasse 30, Bayreuth, D-95440, Germany, bBayerisches Geoinstitut, University of Bayreuth, Bayreuth,

D-95440, Germany, cKharkiv National University of Radio Electronics, Nauky Avenue 14, Kharkiv, 61166, Ukraine, and
dDepartment of Physics, Chemistry and Biology (IFM), Linkoping University, Linköping, SE 581 83, Sweden.

*Correspondence e-mail: andrii.aslandukov@uni-bayreuth.de

This paper presents the Domain Auto Finder (DAFi) program and its

application to the analysis of single-crystal X-ray diffraction (SC-XRD) data

from multiphase mixtures of microcrystalline solids and powders. Superposition

of numerous reflections originating from a large number of single-crystal

domains of the same and/or different (especially unknown) phases usually

precludes the sorting of reflections coming from individual domains, making

their automatic indexing impossible. The DAFi algorithm is designed to quickly

find subsets of reflections from individual domains in a whole set of SC-XRD

data. Further indexing of all found subsets can be easily performed using widely

accessible crystallographic packages. As the algorithm neither requires a priori

crystallographic information nor is limited by the number of phases or individual

domains, DAFi is powerful software to be used for studies of multiphase

polycrystalline and microcrystalline (powder) materials. The algorithm is

validated by testing on X-ray diffraction data sets obtained from real samples:

a multi-mineral basalt rock at ambient conditions and products of the chemical

reaction of yttrium and nitrogen in a laser-heated diamond anvil cell at 50 GPa.

The high performance of the DAFi algorithm means it can be used for

processing SC-XRD data online during experiments at synchrotron facilities.

1. Introduction

For more than a century, single-crystal X-ray diffraction (SC-

XRD) has been a powerful method for determining the

structure of crystalline solids. Until very recently it could be

applied to single crystals not smaller than dozens of micro-

metres, but many compounds are only available in a poly-

crystalline form or as fine powders. State-of-the-art powder

X-ray diffraction (XRD) data analysis, including Rietveld

refinement in combination with ab initio structure search, can

help with structure interpretation if sufficiently large crystals

are unavailable and their preparation or growth is infeasible.

This concerns investigations of natural objects or drugs, in situ

studies of matter under extreme conditions, or processes in

solids involving domain formation or reconstructive phase

transitions. However, when it comes to multiphase systems

with unknown microcrystalline compounds, the problem of

structure solution for individual components becomes even

more difficult.

In recent decades, the development of third- and fourth-

generation synchrotrons, such as the Advanced Photon Source

(in Lemont, USA), PETRA III (in Hamburg, Germany) and

the ESRF (in Grenoble, France), with the ESRF–EBS (the

ISSN 1600-5767

Published under a CC BY 4.0 licence

https://creativecommons.org/licences/by/4.0/legalcode
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576722008081&domain=pdf&date_stamp=2022-09-28


Extremely Brilliant Source, the ESRF’s facility upgrade over

2015–2022, which increases the brilliance and coherence of the

X-ray beams produced by a factor of 100 compared with

present-day light sources; https://www.esrf.fr/about/upgrade),

has provided users with new opportunities. At the cutting-

edge beamlines, such as ID11 at the ESRF, the size of the

X-ray beam (0.5 � 0.5 mm FWHM) is commensurate with the

size of crystalline domains of polycrystalline samples or fine

powder particles, which makes it possible to study each

micrometre- to submicrometre-size grain individually by

methods of SC-XRD, considering the sphere of confusion of

the diffractometer of only a few hundred nanometres. This

approach was devised for and first applied to studying

products of chemical reactions and phase transformations in

laser-heated diamond anvil cells (DACs); this has led to

discoveries of many exotic compounds, revealing their crystal

structures in situ under high pressure (e.g. Bykova et al., 2016,

2018; Laniel, Winkler, Bykova et al., 2020; Laniel, Winkler,

Fedotenko et al., 2020; Bykov et al., 2020, 2021; Aslandukova et

al., 2021; Dubrovinskaia & Dubrovinsky, 2018; Ceppatelli et

al., 2022).

Still, processing SC-XRD data containing a lot of reflections

coming from numerous crystalline grains is a difficult task,

especially in the presence of a few different phases in a

multicomponent system and/or in the absence of any a priori

information about their chemical composition and/or basic

crystallographic characteristics, such as the unit-cell para-

meters. The diffraction data collected from samples under high

pressure in a DAC are additionally complicated by undesired

but unavoidable reflections from diamond anvils, pressure-

transmitting media, gasket materials and other factors.

Therefore, the development of software which would allow an

automatic separation of the reflections originating from an

individual crystalline domain, i.e. a search for the domain in a

complex pattern of spots in the reciprocal space, is an urgent

task aimed at rationalizing SC-XRD data processing and

making it routine for inexperienced users.

To date, several programs have been developed for multi-

grain indexing. If the unit-cell parameters are known a priori,

e.g. from powder XRD data, indexing means finding the

orientation matrices of the grains in the sample and sorting the

reciprocal-space vectors with regard to the grain of origin.

Following the presentation of the program GRAINDEX

(Lauridsen et al., 2001), several alternative approaches have

been proposed (Wright, 2006; Ludwig et al., 2009; Moscicki et

al., 2009; Schmidt, 2014). The programs ImageD11 (Wright,

2006) and GrainSpotter (Schmidt, 2014) are now incorporated

into the FABLE (Fully Automatic BeamLine Experiments)

package (Sørensen et al., 2012). The main limitation of the

above-mentioned software is that it is designed to be applied

almost exclusively to the analysis of mono-phase materials.

Furthermore, the multigrain indexing programs mentioned

above all assume that the space group (or at least symmetry)

and the unit-cell parameters of phases are known. One

straightforward way to generalize the previous approaches is

to apply the multigrain indexing algorithms repeatedly, once

for each phase (Jimenez-Melero et al., 2011; Sørensen et al.,

2012), but this still requires the phases to be identified in

advance.

To our knowledge, there have only been a few proposals for

dealing with unknown phases, based on a fast Fourier trans-

form approach (Sørensen et al., 2012) or on pattern recogni-

tion (Sørensen et al., 2012), or involving a search of reflections

and subsequent unit-cell optimization in 3D space (Wejde-

mann & Poulsen, 2016). Testing of these programs was

performed on data sets artificially created by randomly

rotating ‘grains’ with exactly defined unit-cell parameters, and

there is no information on how well these programs would

computer programs

1384 Andrey Aslandukov et al. � Domain Auto Finder (DAFi) J. Appl. Cryst. (2022). 55, 1383–1391

Figure 1
A data flowchart for the analysis of single-crystal XRD data from polycrystalline materials. The DAFi program is implemented to sort groups of
reflections originating from individual single-crystal domains (see the text for detailed explanations).



work with real data sets where one may need to consider

statistical and instrumental errors in the positions of reflec-

tions in the reciprocal space, or deal with ‘junk’ reflections

characteristic of the XRD data sets originating from high-

pressure experiments in DACs. Another important problem is

the long program running time; e.g. according to Wejdemann

& Poulsen (2016), indexing of 500 cementite grains takes

5 days.

In this article, we describe our methodological approach to

the analysis of XRD data from polycrystalline materials and

present the DAFi program which helps to automate the search

for individual crystalline domains. A flowchart of the analysis

is shown in Fig. 1. The DAFi program can be applied at that

stage of the analysis when the diffraction from individual

crystalline domains should be sorted. The algorithm does not

need any a priori crystallographic knowledge, and there is no

limitation on the phase composition of polycrystalline mate-

rial and the number of crystalline domains of each phase. The

algorithm is implemented with C++ code. Its important

advantage is the extremely high speed of data processing.

With the number of reflections in the input XRD data set

(input peak table) equal to Nreflections, the algorithm has

OðN2
reflections log NreflectionsÞ time complexity on a single-core

processor, so that a typical computational time is several

minutes. Implemented multithreading capability allows a

further decrease of the computational time by dividing by the

number of processor cores.

While the DAFi program enables the diffraction data of

each domain to be separated from those of other domains, the

data can be further processed using standard methods of

single-crystal X-ray crystallography aimed at structure solu-

tion and refinement. The output of the current version of the

DAFi program is compatible with the CrysAlisPro software,

which performs indexing of each found domain individually

with just one click. However, there will not be a problem using

the DAFi output file(s) with other standard indexing algo-

rithms implemented in any available crystallographic

programs. The algorithm of the DAFi program is described in

detail below.

2. Algorithm

2.1. Input and output data

The algorithm requires only a set of coordinates of all

reflections in the reciprocal space. Currently, the DAFi

program reads these coordinates from the peaktable.

tabbin file generated by the CrysAlisPro software after ‘peak

hunting’ (Fig. 1). If the XRD data originate from high-pres-

sure experiments in a DAC, ‘advanced filtering’ (Koemets,

2020) is applied to eliminate the peaks produced by diamonds

and the other diffraction artifacts associated with such a type

of XRD raw data. After the ‘DAFi input peak table’ data

processing, the DAFi program generates the output file(s),

which is the ‘DAFi output peak table’ with the subsets of

peaks sorted and numbered in the course of the search (see

below for details). This means that the DAFi program updates

the initial CrysAlisPro
peaktable.tabbin file by marking

each reflection with the number of the subset (subset ID) to

which it belongs.

2.2. General structure of the algorithm

The ‘peak table’ generated by the CrysAlisPro software

presents all diffraction peaks produced by a polycrystalline

sample, which are visualized as a set of points in the reciprocal

space. The whole set of points is a result of a superposition of

numerous ‘subsets’ – the reciprocal-lattice points which

belong to individual crystalline domains. Thus, if a subset is

identified, then it can be indexed separately using standard

crystallographic programs, and the crystal structure of the

associated domain can be solved and refined.

Sorting subsets in the whole pattern of points in the reci-

procal space is exactly the task of the DAFi program. The

advantage of the implemented algorithm is that it selects the

subsets purely geometrically, considering only a definition of a

lattice (no time-consuming indexing is involved). As any 3D

lattice is defined by three lattice vectors, the latter define three

directions in a 3D space and the distances between the adja-

cent lattice points in these three directions. Obviously, a lattice

can be recognized if considered as rows of equally distant

computer programs

J. Appl. Cryst. (2022). 55, 1383–1391 Andrey Aslandukov et al. � Domain Auto Finder (DAFi) 1385

Figure 2
Illustration of the two main stages of the algorithm. (a) First stage: finding a set of possible directions (shown here by arrows) for a given set of reflections
(here blue points A through F) and selecting the ‘best’ one(s) to consider at the second stage. Among the ten directions found for the set of points A, B,
C, D, E, F, the ‘best’ one (shown by the green arrow) is identified as that corresponding to the largest number of collinear vectors. (b) The second stage:
finding the ‘proper’ distance between the reflections (here denoted as ‘d’) in the selected direction. (c) An example of a view of the reciprocal space with
the subset of points (orange dots) found in the initial set (blue dots).



points aligned in one direction, so the algorithm relies on

finding such rows (i.e. a direction vector and a ‘proper’

distance between the adjacent points along the direction

vector). This simplifies the search, which is realized iteratively.

As soon as one subset of points is found, it is separated from

the pool of all points, and only the remaining ones are

considered in the next search.

The algorithm consists of two main stages:

(i) Finding a set of possible directions [Fig. 2(a)] and

selecting the ‘best’ ones to consider at the second stage.

(ii) Finding the ‘proper’ distance between the reflections for

a given direction [Fig. 2(b)] and identifying the nodes of the

reciprocal lattice [Fig. 2(c)] generated by the chosen pair

(direction, distance).

Combining these two parts we can find the ‘best’ pair

(direction, distance), which corresponds to the biggest group

of reflections belonging to one single-crystal domain. In

Section 2.3 we describe different approaches to finding a set of

possible directions, while in Section 2.4 we present an effective

way to find the correct group of reflections for the given

direction.

For the convenience of further mathematical description of

the algorithm, the terms used below are defined as follows:

A point is a single diffraction reflection in the reciprocal

space. The points are denoted as p1; p2; . . . ; pNreflections
and are

represented as radius vectors rp1
�!; rp2

�!; . . . ; rpNreflections

�����! in a 3D

space.

A row is a subset of reflections that lie on the same line in

the reciprocal space.

A group is a subset of reflections in the reciprocal space

belonging to a distinct single-crystal domain.

2.3. First stage of the algorithm

Before the main algorithm, point normalization is applied:

(i) All radius vectors are shifted by the vector

ð�
Pn

i¼1 rpi
�!
Þ=n, which shifts the center of the points’ system

to the coordinate ð0; 0; 0Þ.

(ii) The coordinates ðxi; yi; ziÞ of each radius vector are

divided by the maximum absolute value of the corresponding

coordinate among all radius vectors (i.e. X ¼ maxi¼1...n jxij,

Y ¼ maxi¼1...n jyij, Z ¼ maxi¼1...n jzij). After that all radius

vectors’ coordinates are transformed into ðxi=X; yi=Y; zi=ZÞ

and belong to the range [�1; 1].

The shift described in the first step of the normalization

procedure aims exclusively to improve the stability of the

algorithm during the calculations. Although in practice the

shift is very small, the shifting at the very beginning makes the

algorithm more stable due to coordinates being transformed

into a more uniform distribution. At the same time, the second

part of the normalization procedure is important for further

calculations [especially for the correct use of allowed absolute

and relative errors (epsilon constants) in the second stage].

It is easy to see that the direction vector that determines the

group will be equal to the direction vector between some two

initial points. So, the most straightforward approach is to

create a set of possible directions as a set of all direction

vectors between each pair of initial points. However, such a set

has a size of OðN2
reflectionsÞ; which is too large for the second

stage of the algorithm. In Section 2.3.1 we propose a simple

way to select only Ndirs ‘best’ directions out of all OðN2
reflectionsÞ,

where Ndirs is any integer constant (naive approach), and in

Section 2.3.2 we propose an improved version of such a

selection (smart approach). Both naive and smart approaches

are implemented in DAFi and the user can select which one to

use in the configuration file.

2.3.1. Naive approach. Ideally, we would like to select

directions along which the second part of the algorithm will

produce the largest possible group. We do not know in

advance which directions are the ‘best’; however, we can see

that if a group consists of k rows with sizes s1; s2; . . . ; sk, then

there are exactly S ¼
Pk

i¼1½siðsi � 1Þ�=2 pairs of initial points

that produce the same direction vector. This allows us to

define the ‘best’ direction as the direction with a maximum

number of pairs of initial points that produce it. However,

because the initial points are real valued (have non-integer coor-

dinates), all S generated vectors can differ slightly. To compare

different real-valued vectors we transform them in two steps.

Before the first step of transforming a vector ðx0; x1; x2Þ
������!

,

where x0; x1; x2 are the coordinates of the real-valued vector

that we are transforming, index k 2 f0; 1; 2g is found such that

jxkj ¼ maxfðjx0j; jx1j; jx2jÞg.

In the first step we make a transformation after which

opposite vectors are considered to be equal: ðx0; x1; x2Þ
������!

!

sgnðxkÞ � ðx0; x1; x2Þ
������!

.

In the second step we transform the obtained vector to an

integer-valued triplet: ðx0; x1; x2Þ
������!

! fk; ½ðxi þ 0:51=2Þ="1�,

½ðxj þ 0:51=2Þ="1�g, where i and j are two indices from f0; 1; 2g

not equal to k, "1 is a constant representing the allowed

absolute error, and square brackets denote the integer part of

a fractional number.

To illustrate this, let us consider a numerical example.

Suppose that we want to transform a direction vector

ð�0:36;�0:8; 0:48Þ
������������!

. x0 ¼ �0:36; x1 ¼ �0:8; x2 ¼ 0:48. Note

that x2
0 þ x2

1 þ x2
2 ¼ 1, because we are working with just a

direction. Then the three steps of the transformation will be

the following:

(i) k ¼ 1 because jx1j is maximum among jx0j; jx1j; jx2j.

(ii) ð�0:36;�0:8; 0:48Þ
������������!

! sgnð�0:8Þ�ð�0:36;�0:8; 0:48Þ
������������!

=

ð0:36; 0:8;�0:48Þ
�����������!

.

(iii) i ¼ 0; j ¼ 2 because there are only two indices from

f0; 1; 2g which are not equal to k ¼ 1.

Let us also assume that "1 ¼ 0:01. Then we get the following

integer-valued triplet:

0:36; 0:8;�0:48ð Þ
�����������!

! 1;
x0 þ 0:51=2

0:01

� �
;

x2 þ 0:51=2

0:01

� �� �

¼ 1;
0:36þ 0:51=2

0:01

� �
;
�0:48þ 0:51=2

0:01

� �� �

¼ 1;
1:067

0:01

� �
;

0:2271

0:01

� �� �
¼ 1; 106; 22ð Þ:

ð1Þ

computer programs

1386 Andrey Aslandukov et al. � Domain Auto Finder (DAFi) J. Appl. Cryst. (2022). 55, 1383–1391



After such a transformation, each direction is represented

as an integer-valued triplet with values in the range

ð0 . . . 2; 0 . . . X; 0 . . . XÞ, where X ¼ ½ð2ð0:5Þ1=2
Þ="1 � 1�, so we

can calculate a distribution of all directions using an array of

size 3X2. After distribution calculation, we can find the top

Ndirs directions in time OðX2Þ using a standard selection

algorithm for finding the kth-order statistic (Blum et al., 1973).

To transform the integer-valued triplet back to the real-valued

vector, we can use the following formula:

k; a; bð Þ ! x0; x1; x2ð Þ
������!

; ð2Þ

where xi ¼ ðaþ 0:5Þ"1 � 0:51=2, xj ¼ ðbþ 0:5Þ"1 � 0:51=2, xk ¼

ð1� x2
i � x2

j Þ
1=2, and i; j are two indices from f0; 1; 2g not equal

to k.

This approach is the most straightforward way to select the

‘best’ Ndirs directions; however, it has drawbacks. The main

one is that this approach does not use information about

distances between points, which means that even with a large

number of points lying on the same line, the second part of the

algorithm may still not find the group if these points are

located at unequal distances.

2.3.2. Smart approach. Below we present the second

approach to select the ‘best’ Ndirs directions, which does not

have the drawbacks mentioned above. We are still going to

select the ‘best’ Ndirs directions from some distribution;

however, instead of creating a distribution from all

OðN2
reflectionsÞ vectors, we will use only some of the more

important of them. Namely, let us iterate over the ‘center’

point pc and find all possible rows of size at least 4 that go

through the point pc and consist of only equidistant points. In

order to do this, first of all let us group all other Nreflections � 1

points in rows with respect to our center point pc. This can be

done by clustering all direction vectors pc pk
��!
¼ rpk
�!
� rpc
�!

ðk 6¼ cÞ, similarly to the method described in Section 2.3.1.

After this, for each row, we can independently find the largest

subset of points where each point lies at an equivalent distance

from the previous one. To do this, let us find out, for each point

pi, at which distances d it will be in the same row as a point pc.

Let us denote by D the distance between points pi and pc.

Then we can say that pi is the kth point in a row with 0th point

pc if the following holds: jD� kdj � d"2, where "2 is some

small constant that allows a small absolute error. From this

inequality we can obtain that valid distances form the

following range: d 2 ½D=ðkþ "2Þ; D=ðk� "2Þ�. After finding

such ranges for all points pi we can find the value of d that

belongs to the largest number of ranges using the scanline

algorithm (Klee, 1977). If this value is at least 3, then there

exists a row that contains at least 4 points and with high

probability belongs to a group. Only in such a case will we use

the corresponding direction vector in our distribution. Such an

approach takes ðN2
reflectionsKmax log NreflectionsÞ time, where Kmax

is the maximum point’s relative number on the row under

consideration and Kmax ¼ 5 works well in practice.

The smart approach catches fewer ‘junk’ reflections (Fig. 3)

and, therefore, provides a better distribution of direction

vectors to the second stage of the algorithm. However, this

approach is a bit slower, because instead of OðN2
reflectionsÞ time,

it requires OðN2
reflectionsKmax log NreflectionsÞ.

2.4. Second stage of the algorithm

Given a direction vector ~vv ¼ ðvx0; vx1; vx2Þ
��������!

, we have to find

the ‘best’ distance d between adjacent points towards a

direction ~vv that generates the group of maximum size. Let

k ¼ arg max jvxij. Then we can project all initial points to a

plane xk ¼ 0: radius vector rp!ðrpx0; rpx1; rpx2Þ of point p will

be transformed to rp!
0
¼ ½rp!� ~vvðrpxk=vxkÞ�. After such a

transformation, all points that belong to the same row in the

direction ~vv will be projected to the same point on a plane. This

allows all different rows to be obtained by clustering of all

projected points. Such clustering can be done in linear time

using radix sort (Cormen et al., 2001) and two linear passes

that select equal points in 2 � 2 grid squares. After grouping

all points into rows, we can create an array ds of all distances

between adjacent points in the same row and choose d as the

most frequent number in the array ds. Because all distances

are real numbers, we have to use tolerance "3 and choose d

such that an interval ½d� "3; dþ "3�

contains the most values from the array

ds. Such a d can be found in linear time

using the two pointers technique for

maintaining a sliding window of size 2"3

after sorting the array ds.

After finding the d value, we can find

the exact group formed by a pair ð~vv; dÞ

as a union of all largest valid subsets of

points for each independent row. In

order to find the largest valid subset for

a given row, we introduce an auxiliary

array ‘shifts’, where shiftsi denotes the

distance from a point pi to the plane

xk ¼ 0 towards the direction ~vv. Since the

distance between all adjacent points in a

group’s row is equal to d, for a valid

subset of points it holds that all

computer programs

J. Appl. Cryst. (2022). 55, 1383–1391 Andrey Aslandukov et al. � Domain Auto Finder (DAFi) 1387

Figure 3
Comparison of naive and smart approaches. The naive approach implies consideration of all
directions, while the smart one considers only the directions with rows of equidistant points.



remainders shiftsi mod d are equal, where mod denotes the

modulo operation, i.e. a mod b ¼ x, 0 � x<b, a� x ¼ Kb,

K 2 Z. This allows us to find the largest valid subset as the

largest subset of points with equal values of shiftsi mod d and

pairwise different values of shiftsi=d. It can be found in

Oðn log nÞ time using the two pointers technique for main-

taining the set of all values shiftsi=d in a sliding window, where

n is the number of points in the current row. Similarly to

Section 2.3.2, the values shiftsi1
mod d and shiftsi2

mod d are

considered equal iff jshiftsi2
mod d� shiftsi2

mod dj � d"2.

The program has a configuration file that allows one to flexibly

adjust all necessary parameters and in particular values "1 and

"2. Smaller values of tolerance will result in a more precise

group; however, the found group will contain fewer reflec-

tions.

The time complexity of this stage can be estimated as

OðNreflections log NreflectionsÞ per direction, so the total time

complexity for processing all best Ndirs directions found in the

previous stage is OðNdirsNreflections log NreflectionsÞ.

2.5. Speed optimizations

Without any optimizations, the program finds all

groups one by one, so the total time complexity is

O½NdomainsðNreflections log NreflectionsÞðNreflectionsKmax þ NdirsÞ�:

ð3Þ

There are, however, some implemented optimizations that

allow the algorithm to be significantly speeded up:

(i) Both stages of the algorithm allow the use of multi-

threading (in the first stage several threads uniformly process

Nreflections ‘center’ points, and in the second stage several

threads uniformly process Ndirs different best directions from

the first stage).

(ii) The distribution of the ‘best’ directions is calculated

only at the beginning of the program and, instead of recal-

culation from scratch on the following iterations, the

distribution is just maintained by subtracting the impact

of the removed points from the found group in time

OðNremovedNreflectionsÞ, where Nremoved is the number of points in

the last group found.

(iii) In fact, the algorithm finds Ndirs different groups in one

iteration (one for each direction from the first stage), so there

is an option to choose not just the largest group, but Ngroups > 1

largest groups at once. This is done by firstly selecting the

largest group, then the largest group with points not selected

in the first group, and so on. Such an option allows the algo-

rithm to be speeded up Ngroups times; however, it may slightly

decrease the quality of the search.

When combined, such optimizations allow the algorithm to

be speeded up to the time complexity

O
n�

N2
reflectionsKmax log Nreflections þ ðNdomains=NgroupsÞ

� N2
reflections log Nreflections

� 	
�
Ncores

o
; ð4Þ

where Ncores is the number of processor cores and Ngroups is the

number of groups to be found in one iteration. Assuming that

Kmax, Ncores, Ndomains and Ngroups are all constants, the total time

complexity can be simplified to OðN2
reflections log NreflectionsÞ.

3. Examples of application

The testing of the DAFi program was performed on SC-XRD

data sets obtained from real polycrystalline samples: (i) a

natural basalt rock and (ii) a piece of yttrium (Y) embedded

into molecular nitrogen and laser-heated in a DAC. The results

of these tests are described below as examples 1 and 2.

Example 1. Study of a sample of basalt rock from the Rauher

Kulm mountain/SC-XRD data collected using an in-house

diffractometer. Basalt rock is a natural polycrystalline aggre-

gate of several minerals. A sample of basalt was collected by

LD and ND at the Rauher Kulm mountain, which is a

paleovolcano located in the Upper Palatinate region of the

state of Bavaria, 23 km southeast of Bayreuth (Germany). A

small isometric dark-gray grain of the rock (of about 40 mm in

diameter) with sub-grains barely distinguishable under an

optical microscope (�200) was mounted on a goniometer

head. A single-crystal XRD data set was collected using a

diffractometer equipped with a Bruker D8 platform (the

three-axis goniometer), an APEX detector and an Ag K�
Incoatec ImS source (beam size of �50 mm FWHM, half-

sphere data collection, a collection time of 60 s with a step of

0.3�, 1265 frames). The peak hunting procedure in the Crys-

AlisPro software found 2928 reflections.

The search for 18 groups of reflections (the number set by

the user) in a pool of 2928 reflections took the DAFi program

31 s (Fig. 4 and Table 1). Each of the 18 groups found had its

own size (the number of reflections included in the group). In

the course of further data processing and indexing using

CrysAlisPro, some groups were merged, as the CrysAlisPro

program recognized them as related to the same single-crystal

domain. For example, eight groups (3, 5, 6, 9, 10, 14, 16 and 18)

were merged with group 1, whose size increased from 421 (as

found by DAFi) to 1312 reflections after indexing (see

Table 1). Further processing in CrysAlisPro revealed crystal-

lographic parameters of the mineral olivine. The olivine

crystallite is mosaic, and its nine slightly misaligned domains

were recognized by DAFi separately, whereas CrysAlisPro, due

to the higher tolerance (0.125 in this particular case), counted

the whole crystallite as one domain. Thus, CrysAlisPro

revealed the crystallographic data for seven independent

computer programs

1388 Andrey Aslandukov et al. � Domain Auto Finder (DAFi) J. Appl. Cryst. (2022). 55, 1383–1391

Figure 4
Reciprocal space representing SC-XRD data from a sample of basalt: (a)
all reflections; (b) reflections of group 1 as found by the DAFi program;
(c) reflections of group 1 extended by CrysAlisPro software.



single-crystal domains of three different minerals: three

domains of phlogopite, three of chromite and one domain of

olivine (Table 1).

Example 2. Study of products of the reaction of yttrium and

nitrogen in a double-sided laser-heated DAC at 50 GPa.

A piece of yttrium was placed in the sample chamber of a

BX90-type large X-ray aperture DAC (Kantor et al., 2012)

equipped with Boehler–Almax-type diamonds with 250 mm

culets. Molecular nitrogen was then loaded into the DAC using

a high-pressure gas loading system. The sample was

compressed to �50 GPa and laser-heated (� = 1064 nm) to

2000 (200) K using the double-sided laser heating system

operating at the P02.2 beamline at the PETRA III synchro-

tron. A single-crystal data set was collected at the same P02.2

beamline (� = 0.2908 Å, beam size 1.8 � 2 mm FWHM,

acquisition time 4 s, angular ! step 0.5o, 132 frames). See

Aslandukov et al. (2021) for more experimental details.

The peak hunting procedure in CrysAlisPro found 68 846

reflections. Since this high-pressure experiment was conducted

in a DAC, a lot of undesired reflections from diamonds, the

pressure-transmitting medium, the material of the gasket and

other artifacts were present in the data set. Therefore, a

procedure of ‘advanced filtering’ was applied to remove such

reflections before the execution of the DAFi program. To

realize such a ‘clean-up’, a special script was written by E.

Koemets and M. Bykov, and then incorporated into the

CrysAlisPro software. After the filtering, 44 312 reflections

were left out of 68 846. The size of the DAFi input data set

(‘DAFi input peak table’) was still huge. In such cases, it is

more reasonable to search for several strongly diffracting

domains of different phases than for all single-crystal domains.

A search for ten groups in 44 312 reflections took the DAFi

program 5 min 25 s.

The results of the search are shown in Fig. 5 and Table 2. It

appeared that all ten groups of reflections belong to the same

phase. Each group was indexed independently in CrysAlisPro

[see Table 2 and Figs. 5(b) and 5(c) as an example], and the

crystal structure of the phase (identified as Y5N14) was solved

computer programs

J. Appl. Cryst. (2022). 55, 1383–1391 Andrey Aslandukov et al. � Domain Auto Finder (DAFi) 1389

Table 1
Results of the DAFi run on the data set collected from a sample of basalt.

Lattice parameters

Group
No.

Size of group
found by DAFi

Size of group after
indexing in CrysAlisPro† a (Å) b (Å) c (Å) � (�) � (�) � (�) Minerals

1 421 1312 4.7881 (7) 6.0329 (10) 10.3079 (2) 90 90 90 Olivine
2 197 494 5.2989 (17) 8.911 (3) 9.755 (3) 90 105.47 (3) 90 Phlogopite
3 171 Merged with group 1
4 137 372 8.425 (3) 8.425 (3) 8.425 (3) 90 90 90 Chromite
5 107 Merged with group 1
6 57 Merged with group 1
7 82 Merged with group 2
8 57 Merged with group 3
9 38 Merged with group 1
10 41 Merged with group 1
11 25 140 8.425 (3) 8.425 (3) 8.425 (3) 90 90 90 Chromite
12 28 Merged with group 3
13 15 98 5.317 (8) 8.907 (5) 9.723 (9) 90 105.35 (12) 90 Phlogopite
14 16 Merged with group 1
15 21 86 5.286 (9) 8.970 (17) 9.752 (19) 90 106.0 (2) 90 Phlogopite
16 20 Merged with group 1
17 20 85 8.398 (6) 8.398 (6) 8.398 (6) 90 90 90 Chromite
18 26 Merged with group 1

† Indexing performed with a tolerance of 0.125.

Figure 5
Reciprocal space representing SC-XRD data from a sample of Y+N2 in a
DAC: (a) all reflections (cyan reflections are those filtered after applying
‘advanced filtering’); (b) reflections of group 1 belonging to the first
Y5N14 domain found by the DAFi program; (c) reflections of group 1
belonging to the Y5N14 domain extended by CrysAlisPro; (d) reflections of
ten groups (1 through 10) belonging to ten Y5N14 domains marked by ten
different colors.



and refined for each of its single-crystal domains (Aslandukov

et al., 2021) (e.g. for domain 6, the integration led to Rint =

6.47%; based on 597 independent reflections, the structure of

Y5N14 was solved and refined to R1 = 4.88%). Note that the

unusual stoichiometry of the Y5N14 phase was not known

initially and was determined as a result of the crystal structure

solution and refinement using the standard crystallographic

software OLEX2 (Dolomanov et al., 2009), considering that

the elements present in the system were known. In the

example of Y5N14, only a piece of yttrium and nitrogen were

loaded into the DAC, thus limiting the set of possible elements

(Y, N) in the new compound. Other possible elements (for

example, C from the diamond anvils, Re from the gasket or

other impurities in the initial sample) would have to be taken

into consideration in the case of unsatisfactory structure

refinement (which was not the case for Y5N14).

The DAFi program could have been run to find more

domains. However, this would have made sense only if there

were other phases in the sample. In this particular case, a quick

check of the powder diffraction pattern generated for the

whole data set showed no extra reflections apart from the

found phase; therefore there was no reason to continue the

search.

4. Summary

Existing indexing algorithms for single-crystal data analysis

implemented in available crystallographic programs have no

proven record of application to SC-XRD data processing from

a multiphase mixture of microcrystalline samples. Super-

position of numerous reflections originating from a large

number of single-crystal domains of the same and/or different

(especially unknown) phases precludes the sorting of reflec-

tions coming from individual domains, making their automatic

indexing impossible. The DAFi algorithm presented in this

work is designed for a quick search for subsets of reflections

from individual domains in a whole set of SC-XRD data from

a seemingly polycrystalline sample. Further indexing of all

found subsets can be easily performed in one click using

widely accessible crystallographic packages such as Crys-

AlisPro. The fact that the algorithm presented above neither

requires a priori crystallographic information nor is limited by

the number of the various phases and their individual domains

makes DAFi a powerful software tool to be used for studies of

multiphase polycrystalline and microcrystalline (powder)

materials. It has been shown to be especially valuable for the

analysis of single-crystal diffraction data from products of

chemical reactions being realized in laser-heated DACs. Such

data are always very complex due to (i) the presence of

undesired reflections from diamond anvils and gaskets, and

other technical and diffraction artifacts (e.g. ‘bad’ or ‘satu-

rated’ detector pixels, or reflections from the body of the DAC

itself), and (ii) the limited opening angle of DACs, which

shadows a part of the Ewald sphere. To our knowledge, there

are no existing software tools capable of finding the domains

of unknown phases in such a complicated XRD data set as in

example 2. The DAFi program tackles the task within a few

minutes and finds several strongly diffracting domains, so that

their XRD patterns can be indexed, the data integrated, and

the crystal structures solved and refined. The high perfor-

mance of the proposed algorithm allows the use of this

program for online processing of the XRD data directly

during experiments at synchrotron facilities.

The DAFi program is not designed to be effective with non-

merohedral twins, where a large fraction of reflections are

overlapped, while some of them overlap only partially or do

not overlap. Once DAFi finds the reflection group, the

program removes it from consideration for the next iterations.

If reflections do not overlap, DAFi finds two separate reflec-

tion groups which can be processed afterwards by the user. If

reflections overlap partially, DAFi finds two separate reflec-

tion groups; however, the first group would contain all

reflections of the first crystal in a twin, while the second group

would contain only non-overlapped reflections of the second

one. If a large number of reflections overlap, the second group

most likely will not be found.

The current version of the DAFi program does not find all

reflections belonging to a particular single-crystal domain, as

the algorithm searches for rows of at least three reflections

along a certain direction, so that single reflections or those

which are only two in a row are overlooked. Also, several

groups of reflections can be found to belong to the same

computer programs

1390 Andrey Aslandukov et al. � Domain Auto Finder (DAFi) J. Appl. Cryst. (2022). 55, 1383–1391

Table 2
Results of the DAFi run on the data set collected from a sample of Y+N2 in a DAC at 50 GPa.

Lattice parameters

Group
No.

Size of group
found by DAFi

Size of group after
indexing in CrysAlisPro† a (Å) b (Å) c (Å) � (�) � (�) � (�) Phase

1 617 1286 8.4595 (3) 8.4595 (3) 4.7032 (5) 90 90 90 Y5N14

2 590 1044 8.4788 (6) 8.4788 (6) 4.6883 (3) 90 90 90 Y5N14

3 499 954 8.4527 (8) 8.4527 (8) 4.7034 (11) 90 90 90 Y5N14

4 485 997 8.4459 (5) 8.4459 (5) 4.7182 (7) 90 90 90 Y5N14

5 531 1199 8.4538 (4) 8.4538 (4) 4.711 (2) 90 90 90 Y5N14

6 483 1095 8.4737 (5) 8.4737 (5) 4.6922 (4) 90 90 90 Y5N14

7 478 1011 8.4710 (5) 8.4710 (5) 4.6977 (4) 90 90 90 Y5N14

8 375 984 8.4690 (5) 8.4690 (5) 4.7047 (19) 90 90 90 Y5N14

9 361 823 8.4606 (5) 8.4606 (5) 4.7065 (3) 90 90 90 Y5N14

10 308 935 8.4677 (9) 8.4677 (9) 4.699 (3) 90 90 90 Y5N14

† Indexing performed with a tolerance of 0.05.



domain, as in the 3D reciprocal space the algorithm searches

for rows of reflections in only one direction. These technical

peculiarities of the program are not crucial for further data

processing, as the input and output format of the DAFi

program are compatible with the CrysAlisPro software.

Moreover, the input and output formats of the DAFi program

could be adapted to users’ needs and made to be compatible

with other crystallographic software.

5. Distribution

The DAFi program and its documentation can be downloaded

from https://github.com/AsMaNick/Domain-Auto-Finder/.

Acknowledgements

The authors thank D. Laniel for testing the program, reporting

bugs and giving useful hints for further improvement. Open

access funding enabled and organized by Projekt DEAL.

Funding information

ND and LD thank the Federal Ministry of Education and

Research, Germany (BMBF, grant No. 05K19WC1), and the

Deutsche Forschungsgemeinschaft (DFG projects DU 954-11/

1, DU 393-9/2, DU 393-13/1) for financial support. ND also

thanks the Swedish Government Strategic Research Area in

Materials Science on Functional Materials at Linköping

University (Faculty Grant SFO-Mat-LiU No. 2009 00971).

References

Aslandukov, A., Aslandukova, A., Laniel, D., Koemets, I., Fedotenko,
T., Yuan, L., Steinle-Neumann, G., Glazyrin, K., Hanfland, M.,
Dubrovinsky, L. & Dubrovinskaia, N. (2021). J. Phys. Chem. C, 125,
18077–18084.

Aslandukova, A., Aslandukov, A., Yuan, L., Laniel, D., Khandar-
khaeva, S., Fedotenko, T., Steinle-Neumann, G., Glazyrin, K.,
Dubrovinskaia, N. & Dubrovinsky, L. (2021). Phys. Rev. Lett. 127,
135501.

Blum, M., Floyd, R. W., Pratt, V., Rivest, R. L. & Tarjan, R. E. (1973).
J. Comput. Syst. Sci. 7, 448–461.

Bykov, M., Chariton, S., Bykova, E., Khandarkhaeva, S., Fedotenko,
T., Ponomareva, A. V., Tidholm, J., Tasnádi, F., Abrikosov, I. A.,
Sedmak, P., Prakapenka, V., Hanfland, M., Liermann, H. P.,
Mahmood, M., Goncharov, A. F., Dubrovinskaia, N. & Dubro-
vinsky, L. (2020). Angew. Chem. Int. Ed. 59, 10321–10326.

Bykov, M., Fedotenko, T., Chariton, S., Laniel, D., Glazyrin, K.,
Hanfland, M., Smith, J. S., Prakapenka, V. B., Mahmood, M. F.,
Goncharov, A. F., Ponomareva, A. V., Tasnádi, F., Abrikosov, A. I.,
Bin Masood, T., Hotz, I., Rudenko, A. N., Katsnelson, M. I.,
Dubrovinskaia, N., Dubrovinsky, L. & Abrikosov, I. A. (2021).
Phys. Rev. Lett. 126, 175501.

Bykova, E., Bykov, M., Černok, A., Tidholm, J., Simak, S. I., Hellman,
O., Belov, M. P., Abrikosov, I. A., Liermann, H.-P., Hanfland, M.,
Prakapenka, V. B., Prescher, C., Dubrovinskaia, N. & Dubrovinsky,
L. (2018). Nat. Commun. 9, 4789.

Bykova, E., Dubrovinsky, L., Dubrovinskaia, N., Bykov, M.,
McCammon, C., Ovsyannikov, S. V., Liermann, H. P., Kupenko,
I., Chumakov, A. I., Rüffer, R., Hanfland, M. & Prakapenka, V.
(2016). Nat. Commun. 7, 10661.

Ceppatelli, M., Scelta, D., Serrano–Ruiz, M., Dziubek, K., Morana,
M., Svitlyk, V., Garbarino, G., Poręba, T., Mezouar, M., Peruzzini,
M. & Bini, R. (2022). Angew. Chem. 134, e20211419.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. (2001).
Introduction to Algorithms, Section 8.3, pp. 170–173. Cambridge:
MIT Press/McGraw-Hill.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. &
Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Dubrovinskaia, N. & Dubrovinsky, L. (2018). Phys. Scr. 93, 062501.
Jimenez-Melero, E., van Dijk, N. H., Zhao, L., Sietsma, J., Wright, J. P.

& van der Zwaag, S. (2011). Mater. Sci. Eng. A, 528, 6407–6416.
Kantor, I., Prakapenka, V., Kantor, A., Dera, P., Kurnosov, A.,

Sinogeikin, S., Dubrovinskaia, N. & Dubrovinsky, L. (2012). Rev.
Sci. Instrum. 83, 125102.

Klee, V. (1977). Am. Math. Mon. 84, 284–285.
Koemets, E. (2020). Dissertation, University of Bayreuth, Germany.
Laniel, D., Winkler, B., Bykova, E., Fedotenko, T., Chariton, S.,

Milman, V., Bykov, M., Prakapenka, V., Dubrovinsky, L. &
Dubrovinskaia, N. (2020). Phys. Rev. B, 102, 134109.

Laniel, D., Winkler, B., Fedotenko, T., Pakhomova, A., Chariton, S.,
Milman, V., Prakapenka, V., Dubrovinsky, L. & Dubrovinskaia, N.
(2020). Phys. Rev. Lett. 124, 216001.

Lauridsen, E. M., Schmidt, S., Suter, R. M. & Poulsen, H. F. (2001). J.
Appl. Cryst. 34, 744–750.

Ludwig, W., Reischig, P., King, A., Herbig, M., Lauridsen, E. M.,
Johnson, G., Marrow, T. J. & Buffière, J. Y. (2009). Rev. Sci. Instrum.
80, 033905.

Moscicki, M., Kenesei, P., Wright, J., Pinto, H., Lippmann, T., Borbély,
A. & Pyzalla, A. R. (2009). Mater. Sci. Eng. A, 524, 64–68.

Schmidt, S. (2014). J. Appl. Cryst. 47, 276–284.
Sørensen, H. O., Schmidt, S., Wright, J. P., Vaughan, G. B. M., Techert,

S., Garman, E. F., Oddershede, J., Davaasambuu, J., Paithankar,
K. S., Gundlach, C. & Poulsen, H. F. (2012). Z. Kristallogr. 227, 63–
78.

Wejdemann, C. & Poulsen, H. F. (2016). J. Appl. Cryst. 49, 616–621.
Wright, J. P. (2006). ImageD11, https://github.com/FABLE-3DXRD/

ImageD11/.

computer programs

J. Appl. Cryst. (2022). 55, 1383–1391 Andrey Aslandukov et al. � Domain Auto Finder (DAFi) 1391

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iu5028&bbid=BB23

