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Abstract

The ability to design customized proteins to perform specific tasks is of great

interest. We are particularly interested in the design of sensitive and specific

small molecule ligand-binding proteins for biotechnological or biomedical

applications. Computational methods can narrow down the immense combi-

natorial space to find the best solution and thus provide starting points for

experimental procedures. However, success rates strongly depend on accurate

modeling and energetic evaluation. Not only intra- but also intermolecular

interactions have to be considered. To address this problem, we developed

PocketOptimizer, a modular computational protein design pipeline, that pre-

dicts mutations in the binding pockets of proteins to increase affinity for a spe-

cific ligand. Its modularity enables users to compare different combinations of

force fields, rotamer libraries, and scoring functions. Here, we present a much-

improved version––PocketOptimizer 2.0. We implemented a cleaner user inter-

face, an extended architecture with more supported tools, such as force fields

and scoring functions, a backbone-dependent rotamer library, as well as differ-

ent improvements in the underlying algorithms. Version 2.0 was tested against

a benchmark of design cases and assessed in comparison to the first version.

Our results show how newly implemented features such as the new rotamer

library can lead to improved prediction accuracy. Therefore, we believe that

PocketOptimizer 2.0, with its many new and improved functionalities, pro-

vides a robust and versatile environment for the design of small molecule-

binding pockets in proteins. It is widely applicable and extendible due to its

modular framework. PocketOptimizer 2.0 can be downloaded at https://

github.com/Hoecker-Lab/pocketoptimizer.

1 | INTRODUCTION

Ligand binding is essential in most biological pro-
cesses, for example, enzyme catalysis, immune

recognition, regulation of metabolism, cellular signal
transduction, or control of gene expression. The ability
to design such interactions will help us address many
of society's current challenges. Computational tools for
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the design of small molecule-binding pockets in pro-
teins are of great interest for the design of tailored
enzymes that can catalyze reactions for which no natu-
ral catalyst exists1–4 or for the development of specific
biosensors that can detect small molecules in vitro and
in vivo.5,6

From an energetic point of view, the recognition of
small molecules by proteins relies on the cooperative
formation of a set of weak, non-bonded interactions,
primarily van der Waals (vdW), and electrostatic
attraction, as well as the formation of hydrogen bonds.
These interactions can be estimated based on a variety
of receptor ligand scoring functions7–9 and can be used
to identify specific mutations that lead to increased
binding affinity of a protein to its ligand. Additionally,
solvent effects have been discussed to play a major role
but are not always included in the scoring
functions.10–12 Apart from protein–ligand interactions,
internal protein interactions must also be considered
upon mutation to minimize destabilizing effects on the
protein structure. To this end, we developed a modular
pipeline called PocketOptimizer that accounts for both
packing energies and binding-related energies and that
can include different scoring functions to allow adapta-
tion to specific design problems.13 In this design pipe-
line, we address side chain flexibility via rotamer
libraries and ligand flexibility by using stochastic or
systematic search algorithms.13,14 In addition, discrep-
ancies between designs and experimental results can
be more easily determined because all sampled confor-
mations, together with the computed interaction ener-
gies, are written to user-inspectable files. Finally, a
deterministic solving procedure is applied to extract
the optimum from the sampled search space.15

Due to the significance of protein–ligand binding,
several tools have been developed to computationally
score and (re)design protein binders. Commonly, these
techniques attempt to approximate binding free energy
changes and binding constants based on ensembles of
bound and unbound states.16–19 While most programs
use only one way of designing and scoring, the Pocke-
tOptimizer framework, which only evaluates the bound
state, is set up to use different modules. This way, dif-
ferent approaches or scoring functions can be com-
pared, and a tailored method can be created for the
design problem at hand. However, PocketOptimizer
became outdated, making the addition of new func-
tions difficult. Here, we present a new version, Pocke-
tOptimizer 2.0. Its new user interface is much more
accessible, and the modular architecture has been
improved and extended to provide more options for
modeling and scoring within the computer-aided
design process.

2 | RESULTS

2.1 | Design pipeline

The design pipeline can be divided into four main steps:
structure preparation, flexibility sampling, energy calcu-
lations, and computation of design solutions (see
Figure 1). As input for the pipeline, the structures of a
protein and a ligand are needed. The ligand has to be
placed manually inside the binding pocket since its initial
position influences the design results and can therefore
hardly be automated. Before the actual design process
can start, the protein undergoes a cleaning procedure to
remove unwanted ions, water molecules, small mole-
cules, and protein chains. Next, all amino acid side
chains are protonated according to a pH value defined by
the user. Afterwards, an initial minimization step is per-
formed to resolve potential clashes that may occur in the
process of model building. During minimization, back-
bone atoms are typically constrained to maintain the
backbone conformation. Once scaffold preparation is
complete, the binding pocket can be defined by selecting
flexible residues at certain design positions. Thus, all
non-selected residues are fixed along with the backbone.
Similar to the protein, the ligand is protonated. This is
then followed by a parameterization step in which atom
types, force field parameters, and partial charges are
assigned for both structures.

In the second step, the flexibility sampling step of
the pipeline (Figure 1), rotamers for residues at all
defined design positions and ligand poses can be sam-
pled. PocketOptimizer 2.0 includes two rotamer librar-
ies: a smaller, backbone-independent rotamer library
compiled from high-resolution protein crystal struc-
tures named CMLib20 and a larger, backbone-
dependent rotamer library known as the Dunbrack
rotamer library.21 For ligand pose sampling, ligand
conformations can be generated using different algo-
rithms.13,14 All generated conformers are then system-
atically translated and rotated along a user-defined
grid to create an ensemble of poses within the binding
pocket. To reduce computational overhead, rotamers
and poses are subsequently pruned from the
search tree.

Interaction energies for rotamers and ligand poses are
calculated in the third step of the pipeline. For this pur-
pose, the binding pocket needs to be decomposed into
self- and pairwise interaction energies. Whereas self-
interaction energies describe the interaction between
either rotamers or ligand poses and the fixed scaffold,
pairwise-interaction energies describe the interaction
between rotamers or ligand poses and other rotamers.
This decomposition of energies allows solving the design
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problem at a later stage. The computed energies can be
further subdivided into those representing interactions
within the protein or interactions between protein and
ligand. While the so-called packing-related energies rep-
resent changes in protein stability, the binding-related
energies represent changes in binding affinity and are
therefore particularly important. Hence, they can be
scaled according to the packing energies and calculated
based on a variety of receptor-ligand scoring
functions.8,9,22

In the last step of the pipeline, PocketOptimizer uses
a solver algorithm based on integer linear programming
(ILP) to identify the best design solutions.15 The algo-
rithm requires weighted energy tables and indices of all
rotamers and ligand poses. Once executed, it can provide
indices that minimize the total energy. The correspond-
ing rotamers and ligand poses represent the global mini-
mum energy conformation (GMEC) of our system, where
the ligand binding energy can again be extracted. Accord-
ing to these rotamers and ligand poses, output files of the
resulting energies and design structures can be generated.
This includes the designed structures in PyMOL ses-
sions23 as well as the text and HTML files containing the
generated energy tables.

2.2 | New features in
PocketOptimizer 2.0

The original version of PocketOptimizer 1.020 was mainly a
collection of binaries and Python scripts that interconnected
the various parts of the design pipeline. It was then extended

with a command-line interface to allow for easier interaction
with the framework.24 Nonetheless, source code and soft-
ware dependencies remained unchanged. As, these are now
a decade out of date, we fundamentally rewrote the software
and implemented a range of new functionalities to extend it
further (Table 1). This resulted in version 2.0 of PocketOpti-
mizer, which will be presented in a comparative manner in
the following section.

The first version of PocketOptimizer was written in
Python 2.7, which lost maintenance support in the begin-
ning of 2020. Since most Python libraries are no longer
supporting Python 2.7, PocketOptimizer was rewritten in
Python 3.9. Additionally, we implemented a Python
application programming interface that allows not only
to use specific functionalities of the design pipeline, but
also permits a more user-friendly and flexible interaction
with the framework. PocketOptimizer 2.0 now also offers
multi-core processing, making it faster and scaling better
on a larger number of CPUs. Moreover, progress bars
have been added to monitor computation progress. Addi-
tionally, parts that have already been computed can be
now reused when varying a design task.

Previously, in PocketOptimizer 1.0, the user had to
prepare the input protein structures, often using external
software such as Chimera.25 In the new version of our
software, HTMD's protein preparation pipeline system-
Prepare has been implemented26 for this. It also comes
with the possibility to assign specific protonation states
according to calculated empirical pKa values
(PROPKA27) and user-defined pH values. After prepara-
tion, minimization is now also available using the molec-
ular dynamics framework OpenMM,28 which provides

FIGURE 1 The different steps of the PocketOptimizer pipeline. For each section, the required input, the included steps, and the

obtained output are listed. The workflow starts with a protein and a ligand structure. These are processed in a preparation step (first box). To

account for flexibility, rotamers and ligand poses are sampled (second box). Next, the interaction energies for each rotamer and each ligand

pose against the fixed scaffold and against each other are calculated (third box). Finally, the best design solutions are identified using an

integer linear programming solving algorithm (fourth box)
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GPU-accelerated minimization. In addition, we imple-
mented a small molecule preparation interface that uses
the OpenBabel chemical toolbox29 for protonation and
the Antechamber software,30 or MATCH31 for
parameterization.

Rotamer sampling previously relied on the molecular
modeling software TINKER.32 During the procedure,
clashing rotamers were minimized to induce a better fit.
Since this minimization can distort the resulting rotamers
and is based on an older force field version, we replaced
TINKER with the force field evaluation tool FFEvalu-
ate.33 For the same reason and to further limit external
dependencies, the Biochemical Algorithms Library
(BALL),34 previously used for all energy calculations, was
replaced by FFEvaluate. Whereas for BALL, all atom
types had to be manually predefined for the AMBER96
force field, FFEvaluate handles them through a Python
library called ParmEd,35 allowing the usage of newer
force fields such as AMBER ff14SB or CHARMM36. In
addition, the scoring function for ligand interactions has
been adapted. While version 1.0 included CADDSuite36

and AutoDock Vina,8 CADDSuite has been removed due
to its dependency on the BALL library. AutoDock Vina,
on the other hand, is now included in Smina,22 which is
a new fork and includes other scoring functions such as
Vinardo (Vina RaDii Optimized).9 These scoring func-
tions differ in their compilation of scoring terms describ-
ing effects such as vdW interactions, electrostatics, and
solvation. Besides, FFEvaluate has been implemented for
binding-related energy calculations based on force fields
that are also used to evaluate internal protein interac-
tions. Accordingly, the enhancements and improvements

not only make the pipeline more consistent, but also
make it less reliant on the use of external software.

2.3 | Benchmarking

PocketOptimizer 1.0 was validated against a benchmark
compiled from the 2010 version of the PDBbind data-
base.37,38 Complexes were selected based on the avail-
ability of a high-quality crystal structure with no
mutations outside of the binding pocket, only minor
conformational differences of the backbone in the bind-
ing pocket, with less than seven potential binding water
molecules, and with less than 15 rotatable bonds in the
ligand. According to these selection criteria, a bench-
mark set consisting of 12 differently folded proteins had
been compiled.20 For each protein, at least two muta-
tional variants with a corresponding affinity measure
for the same ligand were included. To validate the new
version of PocketOptimizer, we compiled a subset based
on this original benchmark. Pairs of mutational variants
with at least a 50-fold difference in binding affinity were
selected. This difference in binding affinity was consid-
ered to be well outside of experimental error and should
be predicted by our design pipeline. In addition, we
extended the benchmark set with new structures from
the 2020 version of the PDBbind database using the
same selection criteria. Overall, our new benchmark set
consists of 13 different proteins and 33 protein crystal
structures (see Table S1). Skeletal representations of all
ligands included in the compiled benchmark set are
shown in Figure S1.

TABLE 1 Comparison of PocketOptimizer 1.0 and 2.0, listing the main differences between both versions

Version 1.0 Version 2.0

Language Python 2.7/C++ Python 3.9

UI CLI API/CLI

Processing Single core Multi core

Scaffold preparation External (Chimera) Internal (systemPrepare)

Ligand preparation External Internal (OpenBabel/antechamber/MATCH)

Minimization External Internal (OpenMM)

Rotamer sampling TINKER FFEvaluate

Rotamer library CMLib CMLib/Dunbrack

Energy computation BALL FFEvaluate

Force field AMBER96 AMBER ff14SB/CHARMM36

Scoring options CADDSuite/Vina Smina/FFEvaluate

Compute detection Re-computation Detection of computed elements

Time estimation None Progress bars

Abbreviations: API, application programming interface; CLI, command-line interface.
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2.4 | Backbone-dependent rotamers lead
to improved prediction accuracy

We tested PocketOptimizer 2.0 against the extended
benchmark set to compare both versions of the software.
The results indicate a similar performance, with a mean
prediction accuracy of about 66% compared to about 71%
in the first version (see Table 2). Significant differences
were found only in two test cases, namely, neuroamidase
N1, where the new version gave significantly better pre-
dictions, and purine nucleoside phosphorylase, where it
made significantly worse predictions. In both test cases,
this has been attributed to the fact that minimizing rota-
mers with TINKER led to a general preference for larger
amino acids, as they can engage in more favorable inter-
actions. We can largely overcome this bias by using a
backbone-dependent rotamer library and performing no
subsequent rotamer minimization, which leads to a pre-
diction accuracy of 70% (see Table 2). Looking only at the
cases tested with both versions, PocketOptimizer 2.0 with
the new rotamer sampling method achieves a higher
overall prediction accuracy of 75% according to the total

energies. If only the binding-related energies are consid-
ered, this trend becomes even clearer, with the original
rotamer library and sampling procedure achieving a pre-
diction accuracy of about 71%, while the new sampling
method and library lead to a higher prediction accuracy
of about 84%. This is particularly evident in the case of
purine nucleoside phosphorylase, where the original
rotamer sampling procedure and library were only able
to correctly predict one out of four cases, whereas our
new rotamer sampling procedure in combination with
the Dunbrack rotamer library leads to correct predictions
in all cases. eroid isomerase, LAOBP: lys In this test case,
the relevant design position is at the entrance of the bind-
ing pocket and assumed to influence binding dynamics,
as it also has a high temperature factor.39 Three different
variants were tested with PocketOptimizer 2.0: Histidine,
aspartate, and phenylalanine, with the histidine showing
significantly higher binding affinity. Like the first, the
new version correctly predicts hydrogen bonds between
ligand and aspartate. For histidine, this is the case only
when we use our new sampling procedure and
backbone-dependent rotamers. Nonetheless,

TABLE 2 Correctly ranked design mutation pairs

Test case

Original sampling
procedure and library
(PocketOptimizer 2.0)

New sampling
procedure and library
(PocketOptimizer 2.0)

Original data
(PocketOptimizer 1.0)

Total Binding Total Binding Total Binding

D7r4 amine-binding protein 1/1 1/1 1/1 1/1 1/1 1/1

ABC transporter alpha-glycoside-binding
protein

0/2 0/2 1/2 1/2 �/� �/�

Estrogen receptor α 1/1 1/1 1/1 1/1 1/1 1/1

FimH Fimbrial adhesin 2/2 2/2 2/2 2/2 �/� �/�
HIV-1 protease 5/5 5/5 4/5 5/5 5/5 5/5

Ketosteroid isomerase 2/2 1/2 2/2 2/2 2/2 2/2

Lysine-, arginine-, ornithine-binding
periplasmic protein

7/10 9/10 7/10 9/10 �/� �/�

Neuroamidase N1 3/4 2/4 2/4 2/4 1/4 0/4

Nopaline-binding periplasmic protein 1/2 1/2 0/2 1/2 �/� �/�
Purine nucleoside phosphorylase (PNP) 1/4 0/4 4/4 4/4 7/8 6/8

Streptavidin 5/5 4/5 5/5 5/5 5/5 5/5

Thymidylate synthase (TS) 0/4 3/4 1/4 2/4 1/6 0/6

Anionic trypsin 2 1/2 2/2 1/2 2/2 1/2 1/2

Mean 65.9% 70.5% 70.5% 84.1% 70.6% 61.8%

Note: This is shown for two different versions of PocketOptimizer 2.0 using two rotamer sampling procedures in combination with two different rotamer
libraries and for the original data from benchmarking with PocketOptimizer 1.0 (Vina). For PNP and TS, the number of pairs differs since we were more

stringent in applying the cutoff of a 50-fold affinity change for each pair. For each test case, the total number of design mutation pairs and the number of
correctly ranked pairs by total energy or by binding energy are indicated. The mean value refers to the number of correct predictions in relation to the total
number of predictions made.
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phenylalanine is rotated toward the ligand, regardless of
rotamer sampling, and forms favorable vdW interactions,
whereas it points away from the ligand in the crystal
structure (see Figure S2).

To gain further insight, we calculated structural devi-
ations between experimentally determined and designed
structures. On the one hand, we focused on the designed
pocket residues, and on the other, on the predicted ligand
poses (see Figure 2). We found that the pocket side

chains deviate by 0.93 Å on average when designed with
the original rotamer sampling method and library, while
they deviate by only 0.75 Å with our new method and
library. Not only the affinity predictions are more accu-
rate overall, but also the pocket side chains are better
reproduced on average. The ligand poses, on the other
hand, are more comparable, differing by 0.56 Å on aver-
age with the original procedure and by 0.57 Å when FFE-
valuate and Dunbrack are used. Nevertheless,
significantly better pose predictions are observed for two
test cases (ABP and ER). This indicates an overall good
prediction of poses by PocketOptimizer. However, since
the ligand starting poses were taken from the initial
structures (see calculations) and often differ only slightly
between mutants, the structural deviations may be higher
than the suggested values.

3 | CONCLUSION

PocketOptimizer 2.0 has been updated and refined to pre-
dict affinity-improving mutations and to design protein–
small molecule interactions. Different functions, such as
scoring, can be easily compared, and approaches can be
optimized for a specific design task. The program pro-
vides a clean user interface. Its compute times have been
significantly improved by adapting the pipeline to multi-
core processing. The preparation of the protein scaffold
and the ligand are now included in the pipeline, as well
as a minimization step. To extend the modularity of the
pipeline, we added the options for rotamer libraries, scor-
ing functions, and force fields. In addition, rotamer sam-
pling and energy calculations have been updated with
newer tools. This improved version of PocketOptimizer
performs as good or even better than its predecessor on
an extended benchmark set. Overall, the affinity predic-
tions appear to be more accurate, and also the pocket side
chains are better reproduced on average. Thus, Pocke-
tOptimizer 2.0 provides a robust and versatile framework
for the design of small molecule-binding pockets in
proteins.

4 | MATERIALS AND METHODS

Protein and ligand structures were taken from the PDB,
and ligand starting poses were assumed to be the same as
in the crystal structures. Protonation states were adjusted
according to the pH values reported in the literature for
affinity measurements (see Table S1). Side chains were
minimized with the AMBER ff14SB force field and
allowed to change conformations during designs if they
were within 4 Å of the ligand or a Cα atom of a mutation

FIGURE 2 Pocket residue and ligand pose RMSD values

between experimentally determined and designed structures.

RMSD values were calculated after superimposing the structures

using their backbone atoms. Only heavy atoms were considered in

all calculations, and only residues that were allowed to change

conformations during the designs were included. For each protein

test case that included more than one crystal structure, the average

RMSD and standard deviation were calculated. Protein test cases

are ABP: D7r4 amine-binding protein, AGBP: ABC transporter

alpha-glycoside-binding protein, ER: estrogen receptor α, FIMH:

fimH fimbrial adhesin, HP: HIV-1 protease, KI: ketosteroid

isomerase, LAOBP: lysine-, arginine-, ornithine-binding

periplasmic protein, N: neuroamidase N1, NBP: nopaline-binding

periplasmic protein, PNP: purine nucleoside phosphorylase, S:

streptavidin, TS: thymidylate synthase, T: anionic trypsin 2
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position. Residues located at the end of protein segments
or involved in disulfide bridges were kept static. The
number of ligand conformations was selected according
to the number of rotatable bonds a ligand contains.
Ligand poses were then created by rotating all generated
conformations by ±20� around each axis and translating
them by ±0.5 Å in each direction. Rotamer sampling was
performed using two different procedures. First, TINKER
in combination with the CMLib rotamer library and the
AMBER96 force field was used, and second, FFEvaluate
in combination with the Dunbrack rotamer library, and
the AMBER ff14SB force field was used. Of the rotamers
and ligand poses generated, only those with a vdW
energy of less than 100 kcal/mol in the scaffold were
kept. Protein–protein interactions were assessed based on
the AMBER ff14SB force field, while protein–ligand
interactions were evaluated using the Autodock Vina
scoring function and were upscaled by a factor of 50.
According to the objective of the design, predictions were
considered to be correct if, after the identification of the
GMEC, the binding energy of the mutant that experimen-
tally shows higher binding affinity is lower.
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