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ABSTRACT
Two-color optical measurements of thermodiffusion in ternary mixtures frequently suffer from ill-conditioned contrast factor matrices, whose
inversion leads to very large experimental errors. In this contribution, we show how the error amplification can be avoided in situations where
a priori knowledge about the directions of the eigenvectors of the diffusion matrix is available. We present optical beam deflection experiments
on solutions of the polymer polystyrene of Mw = 4880 g/mol in a mixed solvent of toluene and cyclohexane. In this system, the two diffusion
eigenvalues differ by almost one order of magnitude. The large eigenvalue can be attributed to the interdiffusion of the two solvents and
the small one to the polymer diffusion relative to the mixed solvent. The pre-selection of the eigenvectors renders the method stable against
fluctuations of the experimental parameters. Both the diffusion and the Soret coefficients attributed to the two modes agree very well with the
respective values of corresponding binary mixtures.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0128626

I. INTRODUCTION

Most measurements of thermodiffusion and Soret coefficients
are nowadays performed by optical detection of refractive index
changes.1,2 In the case of binary mixtures in the dense liquid state
with large Lewis numbers,3 the transient signals that follow a tem-
perature perturbation contain two contributions that are well sep-
arated on the time axis and can be attributed to the fast thermal
and the slow solutal part. Already for ternaries, let alone higher
multicomponent mixtures, the complexity grows tremendously. The
number of independent solutal transport coefficients increases from
one diffusion and one thermodiffusion coefficient to four indepen-
dent diffusion and two thermodiffusion coefficients. The dynamics
of the solutal signal becomes bimodal with the two time constants
determined by the eigenvalues of the 2 × 2-diffusion matrix. While
these two eigenvalues can be obtained from a single transient
signal, the eigenvectors of the diffusion matrix are not known. The
disentanglement of the concentrations requires the measurement
with a second wavelength and the inversion of the so-called contrast
factor matrix.4–8 The latter is frequently ill-conditioned,5,8,9 which
can lead to a huge error-amplification after the transformation
from the refractive index to the concentration space. In unfavorable

situations, even very precise optical measurements yield only crude
estimates of Soret and thermodiffusion coefficients.9,10

There is no easy solution for the inversion problem in the gen-
eral case although concepts such as the Soret vectors11 can be very
helpful. In this contribution, we will, however, show that reason-
able a priori assumptions can change the situation completely for
certain systems. We will discuss the case of strongly asymmetric
ternary systems of, e.g., a large polymer or colloid dispersed in a
mixed solvent of small molecules. The two diffusion eigenvalues in
such systems are frequently well separated, and the fast mode and
the slow mode are typically attributed to the diffusion of the solvent
and the polymer, respectively.12,13

Despite these reasonable assumptions, the whole problem has
never fully been worked out. Here, we will treat this special case
using the established theory for ternary mixtures. We will show
that the identification of these two modes fixes the eigenvectors of
the diffusion matrix and, hence, the diagonalizing transformation
of the coupled diffusion equations for the two concentration vari-
ables. The knowledge of this transformation eliminates the need for
the inversion of the contrast factor matrix. It solves the problem of
the high condition number and reduces the transformation to the
concentration space from a two-dimensional to a one-dimensional
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problem. Besides the Soret coefficients for all three components
as derived from the asymptotic steady state, we will also analyze
the two solutal modes independently and compare their transport
properties with the ones of the corresponding binaries. We will dis-
cuss experiments performed by optical beam deflection (OBD), but
the arguments equally well hold for other optical techniques, e.g.,
thermal diffusion forced Rayleigh scattering (TDFRS)14,15 or optical
digital interferometry (ODI).16

We present experiments for an asymmetric ternary model sys-
tem, namely, a polymer (polystyrene, PS) in mixtures of the two
solvents toluene (Tol) and cyclohexane (cHex). The polymer repre-
sents a large entity that is dispersed at a relatively low concentration
in a binary solvent composed of small molecules.

II. THEORY
A. Diffusion eigenvectors

Thermodiffusion in ternary mixtures is described by two cou-
pled diffusion equations for the two independent concentrations
(mass fractions) c1 and c2 as follows:4,17

∂c
∂t
= D(∇2c) +D′T∇2T. (1)

An underline represents a vector in the 2d-concentration space,
such as the concentrations c = (c1, c2)T or the thermodiffusion coef-
ficients D′T = (D′T,1, D′T,2)T. The diffusion matrix D with entries
Dij (i, j = 1, 2) has the two eigenvalues D̂1 and D̂2. The concentra-
tions are decoupled by a transformation C = V−1c with the eigen-
vector matrix V of the diffusion matrix. The latter is diagonalized by
D̂ = V−1 D V .

As described in the introduction, the eigenvalues of D are
directly determined from a bimodal fit of the solutal optical signal
recorded with a single laser wavelength. The two eigenvectors, how-
ever, are not easily obtainable even in two-color experiments, which,
in principle, should contain sufficient information. In the following,
we will use a priori assumptions for the direction of the eigenvec-
tors that appear reasonable for the here discussed system. Of course,
these assumptions need to be justified by the final result.

The ternary system under consideration shall consist of, e.g., a
polymer or a colloid as component 1 dissolved in a binary mixture
of small molecules as components 2 and 3. For the sake of simplicity,
we will frequently call the first component just “the polymer.” Our
treatment is guided by the idea that the fast mode can be attributed
to the interdiffusion of the two solvents at constant polymer con-
centration. The slow mode, on the other hand, is due to the polymer
diffusing with respect to the mixed solvent, whose composition is
not affected by the slower diffusing polymer. As usual, we take
c3 = 1 − c1 − c2 as the dependent and c1 and c2 as the independent
concentrations.

Figure 1 shows the Gibbs triangle of our ternary system for
three different compositions c3/c2 = 4, c3/c2 = 1, and c3/c2 = 0.5 of
the binary solvent and a fixed polymer concentration of c1 = 0.2.
Note that we are more interested in the limit c1 ≪ c2 + c3, but here
we have chosen the relatively high polymer concentration of 0.2 for
the sake of clarity of the figure.

The two postulated eigenvectors of the diffusion matrix are v1
and v2. The first one corresponds to the fast interdiffusion of c2

FIG. 1. Gibbs triangle of a ternary mixture of a polymer or colloid (1) and a binary
solvent (2 and 3). v 1 and v 2 are the two eigenvectors of the diffusion matrix for
three different compositions r = c3/c2 of the binary solvent.

and c3 at constant polymer concentration c1 with eigenvalue D̂1. The
second one belongs to the eigenvalue D̂2 and points along the direc-
tion of the polymer diffusion with respect to the binary solvent of
constant composition ratio c3/c2.

For the following discussion, it is advantageous to represent the
eigenvectors in the 2d-space of the independent concentrations c1
and c2. This is shown in Fig. 2 for the special case r = c3/c2 = 0.5. The
fast mode relates to a change in c2 on expense of the dependent com-
ponent c3 at constant c1. Hence, v1 points along the c2 axis. The slow
mode corresponds to a change δc1 of the polymer concentration that
is compensated by the combined concentration change in the two
solvents, hence δc1 = −δc2 − δc3. In order to maintain constant com-
position of the binary solvent, the requirement δc3/δc2 = c3/c2 = r
must be fulfilled. Together, this gives the normalized eigenvectors

v1 =
⎛
⎜
⎝

0

1

⎞
⎟
⎠

, v2 =
1√

1 + (1 + r)2

⎛
⎜
⎝

1 + r

−1

⎞
⎟
⎠

. (2)

The transformation matrix V = (v1, v2) contains the eigenvectors
as column vectors. It allows us to transform the diffusion matrix D̂ ,
that is, diagonal in the directions of the two eigenvectors, back to the
concentration space of Eq. (1),

D = V
⎛
⎜
⎝

D̂1 0

0 D̂2

⎞
⎟
⎠

V−1 =
⎛
⎜⎜
⎝

D̂2 0
D̂1 − D̂2

1 + r
D̂1

⎞
⎟⎟
⎠

. (3)

Since the solvent interdiffusion is much faster than the polymer
diffusion, D̂1 ≫ D̂2, the off-diagonal diffusion coefficient D21 is of
similar magnitude as the diagonal ones.
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FIG. 2. Eigenvectors of the diffusion matrix in the (c1, c2)-space for the case
r = c3/c2 = 0.5.

B. Optical measurement
The signals recorded in a two-color optical experiment are writ-

ten in Ref. 4 after normalization to the amplitude of the respective
thermal contribution in the general form

snorm(t) = 1 +M f (t), (4)

where snorm(t) = (snorm
1 (t), snorm

2 (t))T is a column vector with the
signals for the two detection wavelengths λ1 and λ2. The vector
f (t) = ( f1(t), f2(t))T contains the two transients fj(t) that start

at zero for t = 0 and approach unity for t →∞. The characteris-
tic rise time tj of fj(t) is determined by the diffusion eigenvalue
D̂j. The detailed mathematical form of fj(t) depends on the type
of experiment performed and differs between, e.g., TDFRS and
OBD.4 Together with the 2 × 2 amplitude matrix M , this results in
a bimodal rise with amplitudes Mi1 and Mi2 of the signals snorm

i (t)
recorded with wavelengths λi. The two-color measurements are then
evaluated by fitting Eq. (4) to obtain the two diffusion eigenvalues D̂j
and the four entries Mij of the amplitude matrix, which is related
to the concentration changes in the eigenspace of the diffusion
matrix by

M = 1
δT

NT
−1 Nc V δC∞. (5)

Here, δT is the applied temperature difference, NT is the diagonal
matrix with the thermal contrast factors NT,ij = (∂ni/∂T)c1 ,c2 ,p δij,
and Nc is the matrix with the solutal contrast factors
Nc,ij = (∂ni/∂cj)ck≠j ,T,p. The refractive index ni is measured at
the respective detection wavelength λi. The diagonal matrix δC∞
contains the two steady state amplitudes δC∞,j in the directions of

the two eigenvectors v j of D . They are transformed into the space of
the independent concentrations c1 and c2 by δc = V δC∞1, where
1 = (1, 1)T. The four amplitudes Mij and the two diffusion eigen-
values are the basis for any subsequent analysis. They characterize
the experiment completely and are everything that can directly be
extracted from a two-color measurement on a ternary mixture.

Before we proceed, it is instructive to take a brief look at the
established standard data evaluation for ternary mixtures, where the
diffusion eigenvectors and, hence, the transformation matrix V are
not known. The computation of the concentration changes δc from
Eq. (5) requires the inversion of the frequently ill-conditioned con-
trast factor matrix Nc .9 Using this standard procedure, the diffusion
matrix and the primed Soret coefficients would be calculated as4

D = (Nc
−1 NT M) D̂ (M−1NT

−1Nc ), (6)

S′T = −Nc
−1NT M 1. (7)

By comparing Eqs. (3) and (6), we can identify the transformation
matrix as V = Nc

−1NT M . However, this is not the route we want
to follow here because of the aforementioned problematic inversion
of Nc . We will come back to the problem of the inversion of the
contrast factor matrix for the determination of the eigenvectors of
D in the last part of the manuscript.

The huge advantage of our new procedure is the a priori knowl-
edge of the two eigenvectors. This avoids the inversion of Nc , and the
two δC∞,j ( j = 1, 2) are directly obtained from a single wavelength
λi according to Eq. (5),

δC∞,j =
Mij δT

V1jNc,i1/NT,ii + V2jNc,i2/NT,ii
. (8)

Because of the additional a priori knowledge, a measurement with
one wavelength is sufficient. In the case of a two-color experiment,
Eq. (8) holds for either wavelength λ1 or λ2, which both should yield
identical δC∞,j.

Next, we can calculate the actual concentration changes asso-
ciated with the fast and the slow mode. Since we have chosen D̂1 as
the eigenvalue of the fast mode with amplitude δC∞,1, the concen-
tration changes in terms of the independent concentrations c1 and
c2 become

δcfast = V
⎛
⎜
⎝

δC∞,1

0

⎞
⎟
⎠
= δC∞,1

⎛
⎜
⎝

V11

V21

⎞
⎟
⎠

. (9)

Correspondingly, for the slow mode,

δcslow = V
⎛
⎜
⎝

0

δC∞,2

⎞
⎟
⎠
= δC∞,2

⎛
⎜
⎝

V12

V22

⎞
⎟
⎠

. (10)

Figure 3 visualizes the concentration changes associated with
the fast and the slow mode for a mixture with r = c3/c2 = 0.5. The
fast mode with characteristic time t1 describes the diffusion of c2
with respect to c3 at constant c1, the solvent interdiffusion. The
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FIG. 3. The independent concentrations are c1 and c2, while c3 is the depen-
dent one. In the chosen example with r = c3/c2 = 0.5, the concentration c2 even
changes its sign during the slow mode.

slow mode with characteristic time t2 is the diffusion of c1, the
polymer, with respect to the mixed solvent of constant composi-
tion. In the space of the independent concentrations c1 and c2, the
changes in the dependent concentration c3 are not explicitly con-
sidered and the eigenvectors point in the directions associated with
the two modes, hence v1 ∼ (0, δc fast

2 )T and v2 ∼ (δc slow
1 , δc slow

2 )T.
Finally, δci = δc fast

i + δc slow
i is the total concentration change of

the respective component in the nonequilibrium steady state
for t →∞.

C. The Soret coefficients
The so-called primed Soret coefficients, which are frequently

employed for ternary mixtures18 and which are also considered in
Eq. (7), are readily obtained from the total asymptotic concentration
changes as

S′T,i = −
δci

δT
, (11)

which automatically satisfy the relation∑3
i=1S′T,i = 0.

Instead of the primed Soret coefficients, the Soret coefficient
ST of a binary mixture with concentration c of the independent
component is usually defined with concentration prefactors, i.e.,
ST = −[c(1 − c)]−1δc/δT = [c(1 − c)]−1S′T . This definition bears two
distinct advantages. First, ST becomes finite and independent of
c in the two dilute limits whereas S′T increases proportional to
c or (1 − c), respectively. Second, ST is, other than S′T , invariant
under transformation from a mole fraction to a mass fraction based
representation of the concentrations.19

The use of the primed coefficients for ternary systems was
largely owed to a lack of knowledge about how transformation-
invariant coefficients should be defined for ternaries. It was only in
2019 that Ortiz de Zárate derived concentration prefactors that yield
frame-invariant Soret coefficients also in the ternary case.19 They are
related to the primed coefficients by

⎛
⎜
⎝

ST,1

ST,2

⎞
⎟
⎠
=
⎛
⎜
⎝

c1(1 − c1) −c1c2

−c1c2 c2(1 − c2)

⎞
⎟
⎠

−1
⎛
⎜
⎝

S′T,1

S′T,2

⎞
⎟
⎠

. (12)

The assignment of the diffusion eigenvectors in Fig. 2 breaks
the entire separation down into two successive steps along differ-
ent directions in the composition space that both can be regarded as
quasi-binary: the fast mode is the quasi-binary diffusion of c2 with
respect to c3 at fixed c1 and the slow mode is the quasi-binary diffu-
sion of c1 with respect to the mixed solvent of constant composition
c2/c3. It is straightforward to assign primed Soret coefficients to all
three components separately for the following two modes:

S′fast
T,i = −δc fast

i /δT, (13)

S′slow
T,i = −δc slow

i /δT. (14)

They are related to the total primed coefficients by S′fast
T,i

+ S′slow
T,i = S′T,i.

Since the two modes correspond to quasi-binary diffusion,
effective binary Soret coefficients (without the “prime”) can be
defined for the fast and the slow modes with the proper binary
concentration prefactors as

S fast
T,2 = −S fast

T,3 = −
δc fast

2

δT
1

c2c3
, (15)

S slow
T,1 = −

δc slow
1

δT
1

c1(c2 + c3)
. (16)

The concentration prefactor c2c3 for the fast mode takes only the
two diffusing solvents into account but not the inert polymer,
which is immobile on time scales associated with t1. The prefac-
tor for the slow mode, c1(c2 + c3) = c1(1 − c1), accounts for the
diffusing polymer and the mixed solvent of total weight fraction
c2 + c3 = 1 − c1.

III. EXPERIMENTAL
The ternary samples were solutions of polystyrene (PS, Poly-

mer Standards Service GmbH, article PSS-ps4.5k, lot ps150410,
Mw = 4880 g/mol, Mn = 4700 g/mol, Mp = 4840 g/mol) dissolved
in a mixture of toluene (Tol, VWR AnalaR NORMAPUR, article
28 676.297, lot 20E044015, purity >99.5%) and cyclohexane (cHex,
VWR AnalaR NORMAPUR, article 23 224.293, lot 18F074018,
purity >99.5%). The numbering of the components is PS/Tol/cHex
as c1/c2/c3 with c3 (cHex) as the dependent component. The sample
composition in mass fractions PS/Tol/cHex was 0.040/0.480/0.480,
hence r = c3/c2 = 1.

Measurements were performed by means of two-color opti-
cal beam deflection (2-OBD)4,6,7 with a Soret cell of h = 1.20 mm
height. The employed vacuum laser wavelengths are λ1 = 405.0 nm
and λ2 = 632.8 nm. The measurements were carried out under ambi-
ent pressure at four different temperatures between T = 293.15 K
and 308.15 K (θ = 20–35 ○C).

The optical contrast factors are listed in Table I. They are
required to calculate the concentration changes along the directions
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TABLE I. Solutal ∂cj n(λi) = (∂n(λi)/∂cj)p,T ,ck≠j
and thermal ∂T n(λi)

= (∂n(λi)/∂T)p,c1 ,c2
contrast factors. The first row contains the condition

number of the solutal contrast factor matrix. The two independent concentrations
are PS (c1) and Tol (c2). Statistical error of solutal contrast factors: σ ≈ 0.0003.
Total error of solutal contrast factors: σ ≈ 0.001. Error of thermal contrast factors:
σ ≈ 1.0 × 10−6 K−1. System PS/Tol/cHex with composition 0.040/0.480/0.480.

λ/nm Units 20 ○C 25 ○C 30 ○C 35 ○C

cond(Nc ) 1 55 55 56 56
405.0 ∂c1 n(λ1) 1 0.1743 0.1749 0.1755 0.1761
405.0 ∂c2 n(λ1) 1 0.0883 0.0881 0.0880 0.0878

632.8 ∂c1 n(λ2) 1 0.1527 0.1534 0.1540 0.1547
632.8 ∂c2 n(λ2) 1 0.0705 0.0704 0.0703 0.0703

405.0 ∂Tn(λ1) 10−4 K−1 −5.75 −5.77 −5.78 −5.80
632.8 ∂Tn(λ2) 10−4 K−1 −5.48 −5.49 −5.51 −5.53

of the diffusion eigenvectors according to Eq. (8). The solutal ones
were measured as usual20 from a concentration series in the ternary
composition space and a polynomial fit of the refractive index as a
function of the two independent concentrations c1 and c2 for both
employed wavelengths. The thermal contrast factors were measured
interferometrically as described in Refs. 21 and 22.

IV. RESULTS
Figure 4 shows the solutal part of an OBD signal for the

blue (405.0 nm) laser. The simultaneous measurement for the red
(63 2.8 nm) laser looks similar and is not explicitly shown. The data
evaluation was performed as described in Ref. 23, and the Taylor

FIG. 4. Solutal part of the OBD beam deflection signal for the blue laser
(λ1 = 405.0 nm) after normalization to the fast thermal contribution. The dashed
curves are the fast and the slow modes plotted separately. The insert shows the
recorded temperatures of the top and the bottom plates, which reach their steady
state values ∼10–20 s after the switching. System PS/Tol/cHex with composition
0.040/0.480/0.480. Temperature θ = 25 ○C.

TABLE II. Amplitude matrix elements Mij and diffusion eigenvalues D̂j for the OBD-
measurements with λ1 = 405.0 nm and λ2 = 632.8 nm. Error of amplitude matrix
elements: σ ≈ 0.002. Error of diffusion eigenvalues: σ ≈ 0.2 × 10−10 m2

/s. System
PS/Tol/cHex with composition 0.040/0.480/0.480.

Units 20 ○C 25 ○C 30 ○C 35 ○C

M11 1 −0.078 −0.073 −0.070 −0.067
M12 1 0.408 0.389 0.371 0.351
M21 1 −0.080 −0.076 −0.073 −0.071
M22 1 0.396 0.377 0.360 0.341

D̂1 10−10 m2/s 17.2 19.7 21.1 24.8
D̂2 10−10 m2/s 1.9 2.1 2.3 2.5

algorithm24 was used for all data fitting. In a first step, the time-
dependent OBD signals were fitted with Eq. (4) to obtain the two
eigenvalues D̂j of the diffusion matrix and the four entries Mij of
the amplitude matrix in Eq. (5). The values are listed in Table II.
The larger eigenvalue D̂1 corresponds to the fast mode, i.e., the
interdiffusion of Tol and cHex, whereas D̂2 describes the slower
diffusion of the polymer PS relative to the mixed solvent. Both con-
tributions are plotted separately in Fig. 4 for illustration. The two
amplitudes M11 < 0 and M12 > 0 of the fast and the slow mode are
indicated.

The four entries of the diffusion matrix [Eq. (3)] are given
in Table III. While D12 vanishes, the off-diagonal element D21 is
of the same order of magnitude as the two diffusion eigenvalues.
The postulate that the slow mode corresponds to the diffusion of
component 1 with respect to the mixed solvent at constant com-
position c3/c2 = r = const, and not at c2 = const, is responsible for
the cross-coupling of the two independent components during the
slow mode and leads to the large off-diagonal matrix element D21
in Eq. (3). Thus, this finite cross-diffusion coefficient is not neg-
ligible and at the same time not an indication of a particular
interaction between the two independent components as sometimes
claimed in the literature.25 It is rather a necessary consequence of
the absence of such interactions since the polymer diffusion does
not interfere with the solvent composition in one or the other
way.

The two diagonalized concentration changes δC∞,j from
Eq. (8) can be calculated for either wavelength λi. We have found
that the values from the two wavelengths deviate by (0.5 . . . 1.0)
× 10−4, which translates to ∼5 percent for the slow mode ( j = 2)
and less than 20 percent for the fast mode ( j = 1). Since, after
fixing the directions of the diffusion eigenvectors, the calculation

TABLE III. Entries of the diffusion matrix [Eq. (3)]. Error of diffusion coefficients:
σ ≈ 0.2 × 10−10 m2

/s. System PS/Tol/cHex with composition 0.040/0.480/0.480.

Units 20 ○C 25 ○C 30 ○C 35 ○C

D11 10−10 m2/s 1.9 2.1 2.3 2.5
D12 10−10 m2/s 0.0 0.0 0.0 0.0
D21 10−10 m2/s 7.6 8.8 9.4 11.1
D22 10−10 m2/s 17.2 19.7 21.1 24.8
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TABLE IV. Primed ternary Soret coefficients for the fast and slow modes individually.
System PS/Tol/cHex with composition 0.040/0.480/0.480. Error σ ≈ 0.1 × 10−3 K−1

for the fast mode and σ ≈ 0.05 × 10−3 K−1 for the slow mode.

Units 20 ○C 25 ○C 30 ○C 35 ○C

S′fast
T,1 10−3 K−1 0. 0. 0. 0.

S′fast
T,2 10−3 K−1 −0.57 −0.54 −0.52 −0.50

S′fast
T,3 10−3 K−1 0.57 0.54 0.52 0.50

S′slow
T,1 10−5 K−1 1.82 1.73 1.65 1.56

S′slow
T,2 10−5 K−1 −0.91 −0.87 −0.83 −0.78

S′slow
T,3 10−5 K−1 −0.91 −0.87 −0.83 −0.78

TABLE V. Primed ternary Soret coefficients for the asymptotic total separation. Top:
pseudo-binary evaluation. Bottom: standard ternary evaluation according to Eq. (7).
System PS/Tol/cHex with composition 0.040/0.480/0.480. Error σ ≈ 0.1 × 10−3 K−1

(pseudo-binary) and σ ≈ 1.0 × 10−3 K−1 (standard ternary).

Units 20 ○C 25 ○C 30 ○C 35 ○C

Pseudo-binary
S′T,1 10−3 K−1 1.82 1.73 1.65 1.56
S′T,2 10−3 K−1 −1.48 −1.40 −1.34 −1.28
S′T,3 10−3 K−1 −0.34 −0.33 −0.31 −0.28

Standard ternary
S′T,1 10−3 K−1 1.55 1.45 1.38 1.25
S′T,2 10−3 K−1 −0.92 −0.81 −0.77 −0.62
S′T,3 10−3 K−1 −0.63 −0.64 −0.61 −0.62

from both wavelengths is redundant, we have averaged the results.
The discrepancy between both values is the major source of the
errors for the various Soret coefficients reported in the following
tables.

With the diagonalized concentration changes from Eq. (8), the
concentration changes of the two independent compositions dur-
ing the fast and the slow mode are obtained according to Eqs. (9)
and (10). Finally, Eqs. (13) and (14) yield the ternary primed Soret
coefficients for the two individual modes. Their values are listed in
Table IV.

Table V lists in the upper three rows all total primed Soret
coefficients for the here discussed pseudo-binary data evaluation
based on the fixed diffusion eigenvectors [Eq. (11)]. The lower three

TABLE VI. Transformation-invariant ternary (top) and quasi-binary (bottom) Soret
coefficients. See the text for details. System PS/Tol/cHex with composition
0.040/0.480/0.480. Errors estimated from errors of the primed Soret coefficients.

Units 20 ○C 25 ○C 30 ○C 35 ○C σ

ST,1 10−3 K−1 46.3 44.0 41.9 39.6 2.5
ST,2 10−3 K−1 −2.36 −2.24 −2.15 −2.09 0.15

S fast
T,2 10−3 K−1 −2.46 −2.33 −2.24 −2.17 0.4

S fast
T,3 10−3 K−1 2.46 2.33 2.24 2.17 0.4

S slow
T,1 10−3 K−1 47.5 45.2 43.0 40.6 2.5

rows contain the same coefficients as obtained from a standard
ternary data evaluation based on the contrast factor matrix inversion
without further assumptions [Eq. (7)].

The transformation-invariant ternary Soret coefficients for the
total steady state separation [(Eq. (12) together with S′T,i from
Table V, pseudo-binary] and the quasi-binary Soret coefficients for
the two individual modes [Eqs. (15) and (16)] are listed in Table VI.

V. DISCUSSION
A. Accuracy and stability of results

As can be seen from Table V, the primed Soret coefficients
obtained by the ternary and the new pseudo-binary evaluation pro-
cedure are of comparable magnitude, but they also show notable
deviations. In order to better understand the influence of experi-
mental errors, we have performed Monte Carlo simulations with
Gaussian random noise on all relevant measured parameters. The
noise terms have zero mean and a standard deviation σ that cor-
responds to best estimates of the experimental uncertainties of the
respective quantities. In detail, we have chosen σ = 0.002 for the
amplitude matrix elements Mij in Table II, σ = 0.001 for the solutal
contrast factors ∂cj n(λi), and σ = 1.0 × 10−6 K−1 for the thermal con-
trast factors ∂Tn(λi) in Table I. The standard deviations correspond
to a confidence level of ∼68% for normally distributed values. These
numbers are certainly worth being discussed. In particular, both for
the amplitudes and the solutal contrast factors, it is very difficult to
discriminate between uncorrelated and correlated errors of the four
matrix elements. Knowing about this problem, we have focused on
the effect of random errors.

Figure 5 shows the primed Soret coefficients of the two inde-
pendent concentrations obtained by the two evaluation methods at
θ = 25 ○C. The large symbols are the measured Soret coefficients
from Table V. The small symbols correspond to 2000 simulated
values with the random errors of the experimental data.

FIG. 5. Monte Carlo simulations of the effect of Gaussian statistical noise for the
measured input parameters Mij , ∂cj n(λi), and ∂T n(λi) on the primed Soret coef-
ficients. The effect is large for the standard ternary and small for the pseudo-binary
evaluation method. See the text for details. System PS/Tol/cHex with composition
0.040/0.480/0.480. Temperature θ = 25 ○C.
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The effect on the standard ternary evaluation is drastic. The
Soret coefficients that are all compatible with the measurement
within our assumed error bars spread out over an elongated
ellipsoid-like region in the S′T,1-S′T,2-plane. The minor and the major
axes of the ellipse are determined by the right-singular vectors of the
contrast factor matrix Nc .9 A perfect ellipse is only to be expected in
the linear approximation. For larger errors, as in our case, it becomes
asymmetric and is no longer centered around the original (ternary)
data point.

There are two important observations. First, the data point for
the pseudo-binary model falls perfectly onto the ellipse and both
results are compatible within the experimental error bars. Second,
the fluctuations of the input data have only very little effect on the
pseudo-binary model, where all simulation data end up within the
small circle with the gray background around the original data point.
Thus, stability of the pseudo-binary model against the input errors
is of linear order and not larger than for measurements on binary
mixtures. In summary, this allows the conclusion that the pseudo-
binary results are much better approximations to the true values
than the ones from the standard ternary evaluation, provided that
the pseudo-binary model is indeed applicable.

From the Monte Carlo simulation, we estimate the errors
of the primed Soret coefficients to σ ≈ 0.05 × 10−3 K−1 for the
pseudo-binary evaluation and to σ ≈ 0.5 × 10−3 K−1 for the stan-
dard ternary evaluation. It needs to be kept in mind, however, that
the errors of the three Soret coefficients are highly correlated in the
latter case.

B. Comparison with binary mixtures
In order to compare the results for the ternary polymer solution

with data for binary mixtures, a number of additional data for the
latter are required. They have been aggregated in Table VII and will
be addressed in the following discussion.

FIG. 6. Coefficients for the fast mode of the ternary system PS/Tol/cHex with
composition 0.040/0.480/0.480 in comparison with the ones of the binary mixture
Tol/cHex with composition 0.500/0.500 at θ = 25 ○C. Diffusion eigenvalues D̂1 of
the fast mode and D of the binary mixture (top). Soret coefficient S fast

T ,2 and ST of
the binary mixture (bottom).

1. The fast mode
First, we want to discuss the fast mode, which we attribute to

the interdiffusion of the two solvents. The temperature dependence
of the two corresponding transport coefficients, the diffusion eigen-
value D̂1 (Table II), and the Soret coefficient S fast

T,2 (Table VI) are
plotted in Fig. 6 for the four measured temperatures. Both quan-
tities can nicely be fitted with only little scatter by second order
polynomials.

TABLE VII. Transport properties for related binary mixtures. Soret and diffusion coefficients have been measured by single-
color OBD in our own laboratory. The viscosity data have been extracted from Ref. 26. They are all to be understood as
the viscosities of the solvents or solvent mixtures, not of the entire polymer solutions. The viscosity ηsol is the one of the
symmetric binary solvent mixture Tol/cHex. Temperature θ = 25 ○C.

System Quantity Units Value σ

Tol/cHex ST 10−3 K−1 −2.21 0.05
0.500/0.500 D 10−10 m2s−1 18.5 0.5

PS/Tol ST 10−3 K−1 43.0 1.0
0.040/0.960 D 10−10 m2s−1 2.48 0.1

ηTol mPa⋅s 0.566 0.005
ηTolD 10−10 (m2 s−1) (mPa s) 1.41 0.06

PS/cHex ST 10−3 K−1 47.9 1.0
0.040/0.960 D 10−10 m2 s−1 1.25 0.1

ηcHex mPa s 0.906 0.008
ηcHexD 10−10 (m2 s−1) (mPa s) 1.136 0.09

PS/Tol/cHex ηsol mPa s 0.599 0.01
0.040/0.480/0.480 ηsol D̂2 10−10 (m2 s−1) (mPa s) 1.27 0.12
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As a test of our assumption, we have also measured the sym-
metric binary mixture Tol/cHex with 0.500/0.500 mass fractions
at θ = 25 ○C. For the binary mixture, the conventional single-color
OBD technique could be employed. Contrary to the more compli-
cated two-color experiments on ternary mixtures, the measurements
for binaries are straightforward, and a detailed description has been
given elsewhere.22 Both determined coefficients of the binary mix-
ture, which are listed in the first two rows of Table VII, are included
in Fig. 6. The agreement with the corresponding coefficients for the
fast mode is convincing.

2. The slow mode
Next, we come to the slow mode, which we attribute to the

polymer diffusion. Figure 7 shows, in a similar plot as before, the
diffusion eigenvalue D̂2 of the slow mode and the effective binary
Soret coefficient S slow

T,1 of the polymer (Table VI) for the measured
temperatures. In addition, the data fall almost perfectly onto second
order polynomial fits with very little scatter.

Similar to the slow mode, we have performed additional mea-
surements for related binary mixtures, which are in this case the
solutions of the polymer in the pure solvents at the same poly-
mer concentration c1 = 0.04. The numerical values of the Soret and
diffusion coefficients are listed in Table VII. Other than for the
fast mode, the data from the binary solutions are not expected to
coincide with their ternary counterparts, but they nicely frame the
latter. The Soret coefficient S slow

T,1 of the ternary system almost per-
fectly interpolates between the Soret coefficients ST of the two binary
limits.

Finally, we observe in Table VI that the transformation-
invariant Soret coefficient of Tol, ST,2, is in excellent agreement with
the Soret coefficient of the binary mixture Tol/cHex and the one of
the fast mode in Fig. 6. Furthermore, the transformation-invariant
Soret coefficient of PS, ST,1, agrees well with the Soret coefficient

FIG. 7. Coefficients for the slow mode of the ternary system PS/Tol/cHex with
composition 0.040/0.480/0.480 in comparison with the ones of the binary polymer
solutions PS/Tol and PS/cHex with compositions of 0.040/0.960. Soret coefficient
S slow

T ,1 and ST of the binary mixture (top). Diffusion eigenvalues D̂2 of the slow mode
and D of the binary mixture (bottom).

S slow
T,1 of the slow mode and the value interpolated from the two

polymer solutions in the pure solvents (Fig. 7).
The situation is different and more complicated for the diffu-

sion coefficient, where D̂2 is much closer to the value for PS/Tol
and not approximately given by the mean values of the two binary
diffusion coefficients.

A major impact on polymer diffusion coefficients in dilute to
semidilute solutions stems from the solvent viscosity. Its influence
can be scaled out by looking at the products ηD instead of D alone.
The viscosities of the pure solvents and of the Tol/cHex-mixture can
be extracted from Ref. 26, where a mixing rule for the viscosity, based
on mole fractions xi, is given as

ηmix =
2

∑
i=1

xiηi + Δη (17)

with a Redlich–Kister polynomial for the viscosity deviation

Δη = xixj[(A0 + A1/T) + (B0 + B1/T)(xi − xj)]. (18)

The fit coefficients for Δη in mPa⋅s are A0 = 3.855, A1 = −1.318
× 103 K, and B0 = 2.464B1 = −0.807 × 103 K.

The viscosities of the pure and the mixed solvents, the viscosity-
scaled diffusion coefficients for the two binary polymer solutions,
and the viscosity-scaled slow diffusion eigenvalue D̂2 of the ternary
system are also included in Table VII. The data are not explicitly
plotted, but from the numbers it is apparent that the viscosity-scaled
diffusion coefficients are much more similar and that the viscosity-
scaled eigenvalue ηsolD̂2 = ηTol/cHexD̂2 coincides almost perfectly
with the mean value from the two binaries. Thus, the strong asym-
metry of the diffusion coefficients in Fig. 7 is entirely caused by the
viscosities.

3. The diffusion eigenvectors and the diffusion path
Finally, we want to shed some additional light on the diffu-

sion eigenvectors. As we have seen in Fig. 5, the Soret coefficients
obtained by the full ternary and by the pseudo-binary evaluation
method agree fairly well, albeit the ternary method suffers from
large anisotropic errors caused by the ill-conditioned contrast fac-
tor matrix. Since the a priori assumption about the direction of the
diffusion eigenvectors shown in Fig. 2 is at the core of our data treat-
ment, it is instructive to take a look at the diffusion eigenvectors that
result from the ternary evaluation. By slightly rewriting Eq. (5), we
obtain

δc = δT Nc
−1NT M , (19)

where δc is a 2 × 2 matrix, whose column vectors are the concentra-
tion changes of the two independent components for the fast mode
(column 1) and the slow mode (column 2). They are not normalized,
but they point in the directions of the diffusion eigenvectors.

Figure 8 shows the thus obtained concentration changes for the
two modes (filled violet circles) and the total concentration change
(open violet circle). The green squares show the corresponding con-
centration changes from the pseudo-binary evaluation. They are
directly calculated from the primed Soret coefficients in Table IV
as δc = −δT S′T and, naturally, point in the directions of the chosen
diffusion eigenvectors (a negative sign is of no concern).

J. Chem. Phys. 157, 194903 (2022); doi: 10.1063/5.0128626 157, 194903-8

© Author(s) 2022

 12 July 2023 06:20:25

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 8. Concentration changes during the fast and the slow mode and total concen-
tration change (sum) as determined by the standard ternary and the quasi-binary
evaluation methods. The arrows point in the directions of the diffusion eigenvec-
tors. The orange lines indicate the direction of the long axis of the error ellipsoid
in Fig. 5. The dashed line is the diffusion path, along which the position of the
sample in the concentration space evolves during the transient build-up phase of
the concentration gradient. The slanted numbers give the position on the diffusion
path in seconds after switching on the temperature gradient. System PS/Tol/cHex
with composition 0.040/0.480/0.480. Temperature θ = 25 ○C.

Other than the Soret coefficients in Fig. 5, the diffusion eigen-
vectors are more sensitive to experimental errors and hardly show
similarities at all. Nevertheless, the eigenvectors from the two eval-
uation methods can be considered consistent. Both for the fast and
the slow mode and for the sum of both, the matching pairs of data
points fall onto straight lines with the slope defined by the long axis
of the error ellipsoid in Fig. 5. This example shows that the poor
condition number of the contrast factor matrix, while it may still
yield acceptable estimates of the Soret coefficients and the diffusion
eigenvalues, can lead to completely unreliable eigenvectors of the
diffusion matrix.

Thompson and Morral discussed in detail diffusion paths in
isothermal ternary alloys after a perturbation and their relation
to diffusion eigenvectors.27 In our situation, with a nonequilib-
rium steady state, the (thermo)diffusion path in the concentration
space reflects the evolution of the concentration gradients of the
two independent components across the sample in the c1-c2-space,
parameterized as a function of time.

We have plotted the diffusion path for the quasi-binary eval-
uation in Fig. 8 as a dashed black line. It is particularly simple due
to the well separated time scales of the two modes. It first proceeds
along fast eigenvector v1 towards the composition difference labeled
with “fast” and then along the direction of the slow eigenvector v2
to finally reach the steady state denoted as “sum” in Fig. 8. It can be
calculated as follows.

From the concentration matrix δc in Eq. (19) and the transients
f (t) in Eq. (4), the time evolution of the two independent concen-
trations is given by δc(t) = (δc1(t), δc2(t))T = δc f (t). The vector
δc(t) defines a parametric representation of the diffusion path in
the concentration space. Due to the way it is calculated, δci(t) is

to be understood as the product of the concentration gradient in
the center of the cell times the cell height. In the asymptotic limit,
this quantity is identical to the concentration difference between
the hot and the cold plate. For finite times, both quantities are
related but not identical. The slanted numbers in Fig. 8 give the
time in seconds when the respective position on the diffusion path is
reached.

VI. SUMMARY AND CONCLUSION
We have investigated thermodiffusion of a ternary system con-

sisting of a polymer at moderate concentration in a mixed solvent
by means of two-color optical beam deflection. The transforma-
tion from the experimentally accessible refractive index space to the
concentration space is, as for many ternary mixtures, hampered by
an ill-conditioned contrast factor matrix, which leads to a strong
error amplification. Since the time dependent beam deflection sig-
nals show two well separated diffusion eigenvalues, a plausible
assumption is that the fast mode can be attributed to the solvent
interdiffusion and the slow mode to the polymer diffusion. Since
this fixes the directions of the eigenvectors of the diffusion matrix,
the stability of the data evaluation is greatly improved and on par
with the situation in binary mixtures.

In the first part of our work, we have developed a so-called
pseudo-binary formalism that is based on the established treatment
of ternary systems, however, with a pre-defined transformation
matrix between the independent concentrations ci and the con-
centrations Cj in the diffusion eigenspace. This formalism directly
leads to non-vanishing off-diagonal elements (cross-diffusion coeffi-
cients) in the diffusion matrix and allows not only the determination
of the total Soret coefficients of the asymptotic steady state but also
the Soret coefficients associated with the fast and the slow mode
separately.

The assignment of the two modes is strongly supported by a
comparison with binary mixtures. The Soret and diffusion coeffi-
cients of the fast mode agree almost perfectly with the respective
coefficients for a binary mixture of the two solvents of identical com-
position. For the slow mode, there is no directly comparable binary
system, but the Soret coefficient of the slow mode perfectly interpo-
lates the Soret coefficients of the corresponding polymer solutions
in the pure solvents. For the diffusion coefficient, the interpola-
tion seems to be not as perfect, but this asymmetry is resolved by
factoring out the viscosity effect.

While the good agreement with the results from the binary
systems is a strong hint that the assignment of the diffusion eigen-
vectors is correct, it is, of course, not an ultimate proof. Although
it looks very plausible, the interpolation of the slow mode between
the polymer solutions in the pure solvents is not a strict require-
ment. As observed for the diffusion coefficient, the interpolation
to the mixed solvent can also be non-linear. In the case of D,
there is a trivial reason caused by the nonlinear interpolation of the
viscosity.

An additional aspect we have not yet explicitly considered
is the different solvent quality of toluene and cyclohexane for
polystyrene. While toluene is a good solvent with a large posi-
tive second virial coefficient,28 cyclohexane is a theta solvent with
an even slightly negative second virial coefficient at θ = 25 ○C and
for the employed molar mass.29 While the effect of solvent quality
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on polymer diffusion has already been studied in the literature,30

the situation is more complicated in the case of the Soret coeffi-
cient. So far, no theory exists that would allow to relate the Soret
and the thermodiffusion coefficients to the solvent quality. We are
planning to specifically address the solvent quality aspect in future
works.

We expect that the method can also be applied to other binary
systems with different sizes of the constituents, e.g., colloidal disper-
sions in mixed solvents. A question that has not yet been addressed
is the influence of the concentration. For the here investigated low
molar mass polystyrene, the concentration can still be regarded as
dilute, but for higher molar masses, the sample would be in the
semidilute regime with chain overlap and entanglements. Currently,
we are working on the extension of both the molar mass and the
concentration range.
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