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Section S1: XPCS data extraction 

X-ray photon correlation spectroscopy (XPCS) is a scattering technique, which probes the 

dynamics present in bulk materials as well as at their surfaces and interfaces 1. The measurement 

setup is identical to time-resolved small angle x-ray scattering (SAXS) and a series of subsequent 

scattering images is recorded (Fig. S1a) 2. In contrast to SAXS, where only minimally coherent 

x-ray beams are used and where the far-field scattering arises from interference between and 

within nano objects 3, the use of highly coherent x-ray beams in XPCS produces speckled 

scattering patterns. The produced speckles arise from scattering due to the structural arrangement 

of electron density differences within the material present in the illuminated coherence volume 4. 

As known from Dynamic Light Scattering (DLS), the time for speckles to decorrelate offers a 

measure to quantify dynamical properties of the sample in the illuminated coherence volume 5. 

For non-equilibrium systems the dynamics can be characterized via the calculation of two-time 

correlation functions (2TCF) from the measured time-resolved scattering pattern I(q,t) at 

reciprocal scattering vector q and time t 6,7: 

𝐶(𝑞, 𝑡1, 𝑡2)  =  
〈𝐼(𝑞, 𝑡1)𝐼(𝑞, 𝑡2)〉

〈𝐼(𝑞, 𝑡1)〉〈𝐼(𝑞, 𝑡2)〉
.                                                                                              (S1) 

Herein the average 〈  〉 is calculated by averaging over a small range of q (in horizontal 

direction qr and vertical direction qz for grazing incidence geometry, see Fig. S2 for Regions of 

Interest). As visible from Fig. S1b) the maximum of the correlation occurs for t1 = t2 and will 

decay as a function of the lag time 𝜏 = |t1 – t2| 
6. From the calculated 2TCF steady-state 

dynamics are obtained for a deterioration time 𝑡 =  
𝑡1+ 𝑡2

2
  by extracting ‘aged’ one-time intensity 

autocorrelation functions 𝑔2(q, 𝜏) (aged-1TCF) 6:  
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𝑔2(𝑞, 𝜏)

= ⟨
〈𝐼 (𝑞, 𝑡 −  

𝜏
2) 𝐼(𝑞, 𝑡 +  

𝜏
2)〉

〈𝐼 (𝑞, 𝑡 −  
𝜏
2)〉 〈𝐼(𝑞, 𝑡 +  

𝜏
2)〉

⟩

𝑡 ± 𝛥𝑡

.                                                                                    (S2) 

To enhance statistics for steady-state dynamics, extracted aged-1TCFs are averaged over a 

range of deterioration times, where the extracted aged-1TCF are invariant. In the presented data 

each aged-1TCF is averaged over 20 frames if no avalanche-like behaviour is visible within the 

2TCF, corresponding to 𝛥𝑡 = 2 s of administered beam. Furthermore, the aged-1TCF is 

connected to the intermediate scattering function 𝑔1(q, 𝜏) (ISF) via the Siegert relation and can 

therefore be calculated from it. 8 

Figure S1b) exemplifies the principle, which was adopted in this study, to calculate 2TCF from 

a taken x-ray image series and how the deterioration time 𝑡 and the lag time 𝜏 are defined. 

To analyze the dynamics in the extracted aged-1TCF an exponential fit of the following form 

is employed: 

𝑔2(𝜏) = 𝛽 ∗ exp(−2(𝛤𝜏)𝛾) + 𝑔∞.                                                                                                  (S3)  

In eq. (S3) 𝛽 is the contrast or Siegert factor, defined by the geometry, sample and the 

coherence of the incident beam 6, γ is the Kohlrausch-Williams-Watts (KWW) exponent 9 of a 

stretched exponential, 𝛤 is the characteristic frequency of decay (with 1/𝛤 giving the correlation 

time 𝜏0) and 𝑔∞ the ergodicity plateau reached for  𝜏 → ∞. Such an approach is well-known for 

soft matter systems and glass-formers showing diffusive and/or hyper diffusive dynamics 10–13. 
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Figure S1. a) GISAXS image obtained from a MAPbI3 thin film, provided by time averaging over 

100 frames from a time series around 𝑡 = [50 ± 10] s. Within the averaged time window, the form 

of the scattering pattern is not changing.  Directions are defined as: qz as the vertical direction (out-

of-plane) and qr as the horizontal direction (in-plane). b) Two Time Correlation Function (2TCF) 

calculated for time series of x-ray detector images at (qz, qr) = (0.0005 Å-1, 0.0035 Å-1). From the 

presented 2TCF aged One Time Correlation Functions (aged-1TCF) 𝑔2(𝑞, 𝜏) are extracted at 

different deterioration times 𝑡, allowing to analyse how the dynamics inside the system change 

within a single XPCS measurement. Black diagonal defines 𝑡, the other black line is drawn along 

a single 𝑔2(𝑞, 𝜏) curve where the arrow points to a specific 𝜏 along the 𝜏-axis and the color in the 

2D colormap indicates the magnitude of 𝑔2(𝑞, 𝜏). 

The following figures show the raw data and the ROIs used for analysis within the maintext (Fig 

S1) and exemplary aged-1TCF of different ROIs (Fig S2 & S3). 
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Figure S2. Subgraphs a) & b) show a speckled intensity pattern taken at 0.22° incident angle. 

Subgraphs a) & b) show a speckled intensity pattern taken at 0.30° incident angle. Subgraph a) & 

c) shows the Regions of Interest (ROIs) used for calculation of aged-1TCFs in Figure 3 and Figure 

4 (main text). Subgraph b) & d) shows the ROIs used for calculation of aged-1TCFs in Figure 2 

and Figure 4 (main text).  
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Figure S3. Graph a): Exemplary normalised aged-1TCF on a semi-log time scale extracted at 

deterioration time 𝑡 = 50 s from 2TCFs calculated from ROIs 17-20 in Figure S2, Subplot a). Graph 

b): Exemplary normalised aged-1TCF on a semi-log time scale extracted at deterioration time 𝑡 = 

50 s from 2TCFs calculated from ROIs 1-8 in Figure S2, Subplot a). Graph c): Exemplary 

normalised aged-1TCF on a semi-log time scale extracted at deterioration time 𝑡 = 50 s from 

2TCFs calculated from ROIs 9-16 in Figure S2, Subplot a). Dotted lines are fits to the aged-1TCFs 

with a stretched exponential (see eq. S3, section S1).  

 

Figure S4. Graph a): Exemplary normalised aged-1TCF on a semi-log time scale extracted at 

deterioration time 𝑡 = 50 s from 2TCFs calculated from ROIs 17-20 in Figure S2, Subplot c). Graph 

b): Exemplary normalised aged-1TCF on a semi-log time scale extracted at deterioration time 𝑡 = 

50 s from 2TCFs calculated from ROIs 1-8 in Figure S2, Subplot c). Graph c): Exemplary 



 

 S8 

normalised aged-1TCF on a semi-log time scale extracted at deterioration time 𝑡 = 50 s from 

2TCFs calculated from ROIs 9-16 in Figure S2, Subplot c). Dotted lines are fits to the aged-1TCFs 

with a stretched exponential (see eq. S3, section S1). 
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Section S2: DWBA introduction  

In grazing incidence geometries, the experiments are carried out with small incident angles (θi < 

1°) to enhance the beam footprint and therefore the effective scattering volume. One distinguishes 

the grazing incidence transmission (GT) geometry and the grazing incidence (GI) geometry. As 

visible in Fig. S5 scattering in GT exits below the sample horizon (exit angle θf < 0°), thus exiting 

through the downstream sample edge 14,15, while in GI scattering is detected above the sample 

horizon (θf > 0°). In contrast to scattering in the transmission geometry both GI and GT introduce 

extra scattering due to reflections taking place within the sample. To describe the reflection related 

extra scattering the Distorted Wave Born Approximation can be used 16.  

 

Figure S5. The schematic diagram shows the scattering geometry for grazing incidence 

experiments. An incident beam (solid black line, incident angle θi) is refracted at the air-film and 

further refracted at the film-substrate interface. The refraction events bend the exiting transmitted 

beam (blue line) relative to the direct beam. A similar refraction applies to the scattered x-rays 

(dark orange line) while the beam leaves in the GISAXS region. Also due to refraction the 

scattering (occurring in the thin film under an angle of 2αs = αi + αf  in intrinsic sample reciprocal 

space Q) is projected to the detector at a different scattering angle 2θs = θi + θf , resulting in an 
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altered detector reciprocal space q 17. Adapted with permission from Ref. 17, Copyright 2018, 

IUCr Journals. 

While the DWBA is employed within its simplified form within the main text the DWBA 

generally describes the intensity on a detector Id(qz) along qz as follows:  

𝐼𝑑(𝑞𝑧) =  |𝑇(α𝑖)𝑇(α𝑓)𝐹(+𝑄𝑧1) + 𝑇(α𝑖)𝑅(α𝑓)𝐹(−𝑄𝑧2) + 𝑅(α𝑖)𝑇(α𝑓)𝐹(+𝑄𝑧2)

+ 𝑅(α𝑖)𝑅(α𝑓)𝐹(−𝑄𝑧1)|
2

                                                                                              (S1) 

In equation (S1) the reciprocal vectors 𝑄𝑧1 & 𝑄𝑧2 consider the beam direction in the film and 

are thus defined as: 

𝑄𝑧1 = 𝑘(sin α𝑖 + sin α𝑓)                                                                                                                        (S2a) 

𝑄𝑧2 = 𝑘(sin α𝑖 − sin α𝑓)                                                                                                                       (S2b) 

with k = 2π/λ and λ the wavelength of the incident x-ray beam. In the utilized definition of 

reciprocal vectors, 𝑄𝑧1 matches the classical definition, while 𝑄𝑧2 considers the directional change 

by a single reflection event. Further, R(α𝑖) and R(α𝑓)  are the angle dependent Fresnel coefficients 

of reflectivity for incident angle α𝑖 and exit angle α𝑓 and T(α𝑖) and T(α𝑓) are the respective angle 

dependent Fresnel coefficients of transmissivity. The term F(Q) is the scattering strength 

contribution from the form factor. When expanding equation S1 the formula will result in 16 terms, 

most of them complex valued. Using the following notation 𝑇(α𝑖) =  𝑇𝑖 , 𝑅(α𝑓) =  𝑅𝑓 and 

𝐹(+𝑄𝑧1) =  𝐹+1, 𝐹(−𝑄𝑧2) =  𝐹−2 etc the measured intensity on the detector can be written as 

follows 17 :  
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𝐼𝑑(𝑞𝑧) =  |𝑇𝑖𝑇𝑓|
2

 |𝐹+1|2 +  |𝑅𝑖𝑇𝑓|
2

 |𝐹+2|2 +  |𝑇𝑖𝑅𝑓|
2

 |𝐹−2|2  +    |𝑅𝑖𝑅𝑓|
2

 |𝐹−1|2

+  2 |𝑇𝑖|
2Re[𝑇𝑓𝑅𝑓

∗𝐹+1𝐹−2
∗ ] +  2 |𝑇𝑓|

2
Re[𝑇𝑖𝑅𝑖

∗𝐹+1𝐹+2
∗ ] + 2 |𝑅𝑖|

2Re[𝑇𝑓𝑅𝑓
∗𝐹−1

∗ 𝐹+2]

+ 2 |𝑅𝑓|
2

Re[𝑇𝑖𝑅𝑖
∗𝐹−1

∗ 𝐹−2] + 2Re[𝑇𝑖𝑅𝑖
∗𝑇𝑓𝑅𝑓

∗𝐹+1𝐹−1
∗ ]

+ 2Re[𝑇𝑖𝑅𝑖
∗𝑇𝑓

∗𝑅𝑓𝐹+2
∗ 𝐹−2].      (S3) 

In equation (S3) the first four terms are real and positive valued and can be interpreted as the 

intensities resulting from the four (independent) scattering terms in the DWBA. The residual 

terms are cross terms between the first four terms, resulting in interference effects altering the 

observed scattering pattern by enhancing or diminishing the intensity signal on the detector. In 

the physical (disperse) system mentioned within the main text, the scattering signal arises from 

an ensemble of nano formations, giving an average over the ensemble. The ensemble average 

over these structures results in the proportion of the cross-term signals to be insignificant 18, only 

giving rise to high-frequency modulations, which can be ignored in the further data analysis 19. 
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Section S3: Fresnel reflectivity & transmissivity calculations 

The calculation of intensities for GISAXS as well as GTSAXS experiments within the DWBA 

relies on the computation of the reflectivities and transmissivities modulating the measured 

intensity on the detector. For the calculation the intensity in the transmitted and reflected beams 

impinging on the sample needs to be addressed (with the scattering being proportional to the 

arriving photon flux). The following calculations are based on the widely accepted standard 

method for reflectivity calculations20. To calculate the reflectivity for layered systems, we start 

from the influence on the vertical component of the impinging wave vector of a single interface 

and how the traverse of the interface alters the named component: 

𝑘𝑧 =  −√𝑘0
2 + |𝑘|||2, (S1) 

𝑘𝑧,𝑗 =  −√𝑛𝑗
2𝑘0

2 + |𝑘|||2. (S2) 

With k0 = 2π/λ, nj = 1 – δ – iβ = cos(θc) the refractive index of the layer and 𝑘|| = k0cos(α) the in-

plane component of the impinging wave vector under the incidence angle α. With kz,j the Fresnel 

coefficients can be written as: 

𝑟𝑓 =
𝑘𝑧− 𝑘𝑧,𝑗

𝑘𝑧+ 𝑘𝑧,𝑗
, (S3a)  𝑡𝑓 =

2𝑘𝑧

𝑘𝑧+ 𝑘𝑧,𝑗
  . (S3b) 

In a generalized form for a multilayer model the coefficients can be modified for an interface 

between layer j and j+1: 

𝑟𝑗,𝑗+1 =
𝑘𝑧,𝑗− 𝑘𝑧,𝑗+1

𝑘𝑧,𝑗+ 𝑘𝑧,𝑗+1
, (S4a)  𝑡𝑗,𝑗+1 =

2𝑘𝑧,𝑗

𝑘𝑧,𝑗+ 𝑘𝑧,𝑗+1
  (S4b) 

This approach only calculates single reflectivities and transmissivities, not considering the 

influence of underlying layers of certain thickness and their corresponding reflectivities and 
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transmissivities. To consider reflections by different interfaces and the resulting interference 

among themselves the phase offset (determined by the height hj+1 of layer j+1) is considered: 

𝑅𝑗,𝑗+1 =
𝑟𝑗,𝑗+1 + 𝑅𝑗+1,𝑗+2exp (2𝑖ℎ𝑗+1𝑘𝑧,𝑗+1)

1 + 𝑟𝑗,𝑗+1𝑅𝑗+1,𝑗+2exp (2𝑖ℎ𝑗+1𝑘𝑧,𝑗+1)
  (S5a) 

𝑇𝑗,𝑗+1 =
𝑡𝑗,𝑗+1𝑡𝑗+1,𝑗+2exp (𝑖ℎ𝑗+1𝑘𝑧,𝑗+1)

1 + 𝑟𝑗,𝑗+1𝑅𝑗+1,𝑗+2exp (2𝑖ℎ𝑗+1𝑘𝑧,𝑗+1)
 (S5b) 

Resulting for a single layer of thickness h in the known equations for rs and ts: 

𝑟𝑠 =
𝑟0,1 + 𝑟1,2exp (2𝑖ℎ𝑘𝑧,1)

1 + 𝑟0,1𝑟1,2exp (2𝑖ℎ𝑘𝑧,1)
  (S6a) 

𝑡𝑠 =
𝑡0,1𝑡1,2exp (𝑖ℎ𝑘𝑧,1)

1 + 𝑟0,1𝑟1,2exp (2𝑖ℎ𝑘𝑧,1)
  (S6b) 

Like the vertical components kz. the transmissivities and reflectivities are complex valued, 

resulting in interference effects when multiplied with each other. But due to the simplification to 

the DWBA made in the main text (simplified DWBA) only magnitudes of |R|2 and |T|2 are used to 

calculate simplified DWBA prefactors. 

To illustrate the complex character of the Fresnel coefficients an example of reflectivity (r) and 

transmissivity (t) on a silicon substrate is shown in Fig. S6. 
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Figure S6. Example on the behaviour of a) the reflectivity (r) and b) transmissivity (t) Fresnel 

coefficients for a single interface of Silicon, calculated with an x-ray energy of 9.65 keV. For each 

coefficient the real part, imaginary part and the absolute is shown. 
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Section S4: Refraction influence to scattering origin in GI & GT 

Due to refraction altering detected angles it is necessary to distinguish between the intrinsic thin 

film reciprocal space Q within the thin film and the measured detector reciprocal space q. The 

intrinsic reciprocal space Q is defined as:  

𝑄 = 2𝑘 sin(𝛼𝑠),                                                                                                                                         (S1) 

where k and λ follow the earlier definition and 𝛼𝑠 is the scattering angle within the thin sample. 

As shown in Fig. S5 intrinsic scattering is seen under 2𝛼𝑠 projected to higher angles on the detector 

of 2θs. Thus, intrinsic scattering with Q is projected onto the detector reciprocal space 𝑞 =

2𝑘 sin(𝜃𝑠). As shown by Lu et al. 15 the difference between intrinsic Q and detector q is highly 

non-linear near the critical angle θc of the impinged thin film. Importantly, the refraction affects 

only the z-direction and (for the small angles used here) will not alter the shift in the scattering 

signal on the detector along the horizontal qr-component. To calculate the refraction shift reducing 

the angle at the atmosphere/thin film interface one can use the following cosine form of Snell’s 

law as a function of the critical angle θc of the thin film: cos(𝛼𝑖) =  
cos (𝜃𝑖)

cos (𝜃𝑐)
. Further, refraction 

needs to be considered when scattered electromagnetic waves travel across the thin film/substrate 

interface. The second refraction follows the same form of Snell’s law but using the critical angle 

θsi of the substrate.  

Hereby Qz will be calculated using the cosine form of Snell’s law for the classical definition of 

Qz as discussed above. Two different cases need to be distinguished. The so-called transmission 

channel (Tc) addresses the scattering contributions containing no or double reflections (valid for 

 |𝑇𝑖𝑇𝑓|
2

  |𝐹+1|2 and  |𝑅𝑖𝑅𝑓|
2

 |𝐹−1|2). In the reflection channel (Rc) (valid for  |𝑅𝑖𝑇𝑓|
2

 |𝐹+2|2and 

 |𝑇𝑖𝑅𝑓|
2

 |𝐹−2|2) we take into account the known shift of the scattering in Rc in relation to Tc, which 
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is proportional to 2θi 
21. The shift can be seen, as an incident angle dependent splitting of Rc and 

Tc in Figure 1b (main text) that occurs if an odd number of reflections occurs. For GT we need to 

consider one DWBA term of each channel. We define the intrinsic Qz1 from  |𝑇𝑖𝑇𝑓|
2

  |𝐹+1|2 for 

the transmission channel in GT, which can be written in the following way: 

𝑄𝑧,𝐺𝑇,𝑇𝑐 = 2𝑘 sin (
𝛼𝑖 −  𝛼𝑓

2
) 

≅ 𝑘 ((sin 2θ𝑖 −  sin 2θ𝑐)
1
2 − (sin 2θ𝑓 + sin 2θ𝑆𝑖  −  sin 2θ𝑐)

1
2)                                    (S2a) 

To take into account the above mentioned shift between Rc and Tc of ~2θi 
21 in grazing incidence 

geometries for the reflection channel Rc equation (S2a) needs to include the reflection shift 

introduced in the definition of Qz2 (see section S2, equation (S2b)). This will result in the following 

intrinsic Qz,GT,Rc : 

𝑄𝑧,𝐺𝑇,𝑅𝑐 = 2𝑘 sin (
−𝛼𝑓 −  𝛼𝑖

2
) 

≅ 𝑘 ((sin 2θ𝑓 +  sin 2θ𝑆𝑖 −  sin 2θ𝑐)
1
2 − (sin 2θ𝑖 −  sin 2θ𝑐)

1
2)                                          (S2b) 

Additionally, like for GTSAXS, the non-linear contribution of refraction on the projection of 

intrinsic Q to the detector q is important to understand the origin of scattered intensity on the 

detector. As in the GTSAXS section the difference of 𝛥𝑞𝑧 = 𝑞𝑧 − 𝑄𝑧 is calculated. With Qz,GI,Tc 

being the intrinsic Qz for the DWBA terms  |𝑇𝑖𝑇𝑓|
2

  |𝐹+1|2 and  |𝑅𝑖𝑅𝑓|
2

 |𝐹−1|2) in the transmission 

channel Tc: 

𝑄𝑧,𝐺𝐼,𝑇𝑐 ≅ 𝑘 [(sin 2θ𝑖 −  sin 2θ𝑐)
1
2 + (sin 2θ𝑓 −  sin 2θ𝑐)

1
2 ].                                             (S3a) 

In contrast to Eq. (S2a) refraction only occurs at the air-film interface and depends on the 

materials critical angle θ𝑐. 
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To consider the vertical shift in Δqz for the reflection channel Rc (relevant for scattering related 

to the DWBA terms |𝑅𝑖𝑇𝑓|
2

 |𝐹+2|2and  |𝑇𝑖𝑅𝑓|
2

 |𝐹−2|2)  equation (S3a) needs to be extended to 

include the effect of an angular offset arising from an odd number of reflections analogous to 

GTSAXS. This will result in the following intrinsic Qz,GI,Rc : 

𝑄𝑧,𝐺𝐼,𝑅𝑐 ≅ 𝑘 [(sin 2θ𝑓 − sin 2θ𝑐)
1
2  − (sin 2θ𝑖 −  sin 2θ𝑐)

1
2 ].                                             (S3b) 

  To describe the refraction effect on the difference introduced in the main text of 𝛥𝑞𝑧 = 𝑞𝑧 − 𝑄𝑧 

the intrinsic reciprocal space vector must be written in terms of incident θi and scattering angles 

θf, resulting in 4 different terms for the reflection channel Rc, transmission channel Tc and GI and 

GT geometry 15. 

The classical definition of the refraction shift in the transmission channel for GI geometry can 

be written as follows: 

𝛥𝑞𝑧,𝑇𝑐,𝐺𝐼 = 𝑞𝑧 − 𝑄𝑧 

= 𝑞𝑧 − 2𝑘 sin(𝛼𝑠) 

= 𝑞𝑧 − 2𝑘 sin (
𝛼𝑖 +  𝛼𝑓

2
) 

=  𝑞𝑧 − 2𝑘 sin (
1

2
arcos (

cos θ𝑖

cos θ𝑐
) + 

1

2
arcos (

cos θ𝑓

cos θ𝑐
)) 

≅  𝑞𝑧 − 𝑘 ((sin 2θ𝑖 −  sin 2θ𝑐)
1
2 + (sin 2θ𝑓 −  sin 2θ𝑐)

1
2) (S4a) 

To include refraction effects by the substrate for scattering in GT geometry one must include a 

second refraction event (silicon interface, critical angle 𝜃𝑆𝑖) as well as the change of the direction 

of the scattering angle: 

𝛥𝑞𝑧,𝑇𝑐,𝐺𝑇 = 𝑞𝑧 − 𝑄𝑧 
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= 𝑞𝑧 − 2𝑘 sin (
𝛼𝑖 −  𝛼𝑓

2
) 

≅  𝑞𝑧 − 𝑘 ((sin 2θ𝑖 − sin 2θ𝑐)
1
2 − (sin 2θ𝑓 + sin 2θ𝑆𝑖  −  sin 2θ𝑐)

1
2) (S4b) 

To include the directional change for the reflection channel leading to the known shift in 

scattering ~2𝜃𝑖  
21 the reflection channel shift in GI geometry can be written as follows:  

𝛥𝑞𝑧,𝑅𝑐,𝐺𝐼 = 𝑞𝑧 − 2𝑘 sin (
𝛼𝑓 −  𝛼𝑖

2
) 

=  𝑞𝑧 − 2𝑘 sin (
1

2
arcos (

cos θ𝑓

cos θ𝑐
) −  

1

2
arcos (

cos θ𝑖

cos θ𝑐
)) 

≅  𝑞𝑧 − 𝑘 ((sin 2θ𝑓 −  sin 2θ𝑐)
1
2 −  (sin 2θ𝑖 − sin 2θ𝑐)

1
2) (S4c) 

Going for the reflection channel to the GT region includes again the refraction event at the 

substrate as well as the directional change in scattering angle, leading to: 

𝛥𝑞𝑧,𝑅𝑐,𝐺𝑇 = 𝑞𝑧 − 2𝑘 sin (
−𝛼𝑓 −  𝛼𝑖

2
) 

=  𝑞𝑧 − 2𝑘 sin (−
1

2
arcos (

cos θ𝑓

cos θ𝑐
) − 

1

2
arcos (

cos θ𝑖

cos θ𝑐
)) 

≅  𝑞𝑧 − 𝑘 ((sin 2θ𝑓 +  sin 2θ𝑆𝑖 −  sin 2θ𝑐)
1
2 −  (sin 2θ𝑖 −  sin 2θ𝑐)

1
2) (S4d) 

 

The result of Δqz vs qz is seen in Fig. 1b (maintext). The GISAXS region is located at qz higher 

than the undefined qz region, explained in the GTSAXS section. It is visible in Fig. 1b (maintext) 

that exit angles near the materials critical angle result in non-linear behaviour between detector qz 

and intrinsic Qz, while at higher exit angles Δqz approaches a constant value. 
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   Further, with this framework in place, we can further calculate how 𝑄𝑧 is projected on the 

detector along 𝑞𝑧 in the GI region. This is especially useful, due to the behaviour of 𝑄𝑧 in the Rc, 

resulting in a decrease of the absolute projected |𝑄𝑧| between the Yoneda-region and the specular 

beam position. The results are shown in Fig S7. 

 

 

Figure S7. The figure shows a plot of the absolute |𝑄𝑧| against 𝑞𝑧 for the Tc (full lines) and Rc 

(dashed lines) within the GI region above the respective Yoneda positions for incident angles of θi 

= 0.22° (brown lines) and θi = 0.30° (blue lines). The black dotted vertical lines mark the reversal 

point of decrease in absolute |𝑄𝑧| to increase in absolute |𝑄𝑧|, which coincidences with the 

respective specular 𝑞𝑧 positions for the calculated incident angles θi.  
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Section S5: Considerations on setup parameters and q-range for coherent scattering 

experiments  

When choosing the parameters for an XPCS experiment some aspects must be considered. 

Operation at energies E far away from any absorption edges of the used materials are desirable. 

Further, the contrast β, which is influenced by the ratio of speckle size σ and the pixel size p of the 

used detector should be maximized. The speckle size can be approximated as follows22: 

𝜎 =  
𝜆𝑑

𝑎
 (S1) 

Hereby λ is the wavelength of the used x-ray radiation, d the sample detector distance (SDD) 

and a the size of the used x-ray source.  In the best case scenario,σ ≈ p can be achieved (Falus et 

al. 2006). If several speckles are projected to a single pixel (σ < p) the contrast will be reduced, 

and data quality is decreased. In the reversed case (σ > p) one speckle is detected on several pixels. 

This can lead to smearing of signal but will not decrease the data quality as harshly as if several 

speckles are detected within one detector pixel 23.  

In the present study we used an Eiger 4M with a pixel size d of 75 µm, placed 13 m downstream 

of the sample with a beam size (FWHM) of 10 µm. This results in a speckle size of 167 µm. This 

could have been minimized with an effective SDD of 7 m to the best-case scenario of σ ≈ p. But 

to achieve a finer q resolution in the GT region a longer SDD was chosen. This was necessary to 

get the maximum out of the strongly attenuated scattering in the GT region. 

With the setup parameters fixed the accessible q-range is then given by the maximum exit angle, 

which is dependent on the chosen SDD and detector size. With an SDD of 13 m and a detector 

size of 15.51 cm (2068 pixel) this relates to a maximum exit angle of 0.68°. If the direct beam 
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position at qz = 0 is chosen to be on the detector the qz range can be calculated following the 

formula for the detector reciprocal space given in Fig. S5. 
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Section S6: Q-mixing due to setup geometry and ROI 

When relating in this study to q-mixing mainly the impact of reflection and refraction is 

discussed, but several other setup parameters and the approach of analysis can lead to q-mixing, 

which can influence the aged-1TCF shape. These cases are shortly addressed here to demonstrate 

that the impact of these is several times or several orders of magnitude smaller than the effect 

introduced by reflection and refraction near to the materials substrate critical angle.  

The simplest case is the effect from the finite size of a single detector pixel. Hereby a certain q-

range is projected together into one pixel. As seen from Fig. S8a the effect introduced is constant 

with the detector within the small angle range and in contrast to Δqz from Fig. 1b (maintext) up to 

3 orders of magnitude smaller. 

Another setup related case is the influence of the change in SDD by the finite size of the sample 

(here: 1 cm maximum footprint or smaller and 13 m for SDD) and/or the elongated footprint. The 

change in SDD leads to different qz values projected within the same detector pixel. The difference 

is dependent on the exit angle and related to the change in SDD. As visible in Fig. S8b the shift by 

changed SDD in this study is in most of the used qz-range smaller than the effect from mixing of 

qz within a single pixel. For calculation a SDD of 13 m and a change of 1 cm, related to the sample 

size was used. 

A bigger impact is related to the finite size of the ROIs used for analysis. In the present study 

we used quadratic ROIs with a length of 0.003 Å-1, introducing q-mixing of the same order on the 

detector (see Figure S8c). Compared to the difference between Rc and Tc seen in Fig. 1b (maintext) 

this can still be seen as negligible, but can add up if bigger ROIs are chosen, especially if the ROIs 

are in the highly non-linear region related to the materials critical angle. The effect can be limited 

by choosing smaller ROIs in qz, but hereby the usable photon counts are directly proportional to 

the ROI size used to calculate aged-1TCFs. This can limit the reliability of aged-1TCF, which 



 

 S23 

bigger ROIs along qr can adjust for, but introducing again a lower resolution along the horizontal 

direction.  

 

  

Figure S8. The figure shows a comparison for q-mixing as the shift given by Δqz = qz1 – qz2 (two 

positions on the detector) for different cases for a fixed incident angle of 0.30°. Graph a) shows 

the difference Δqz vs qz introduced by single pixel size (Eiger 4M). Graph b) shows the behaviour 

of Δqz vs qz from the change of SDD at 13 m given by the elongated footprint on a finite sample 

(1cm) in GI-geometry projected to an Eiger 4M. Graph c) shows the difference Δqz vs qz given by 

finite ROI size necessary to conduct the experiments of the study with sufficient photon statistics. 
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Section S7: Calculations on Homo- and Heterodyning 

Another important aspect to consider when analysing XPCS data is the occurrence of homodyne 

and heterodyne mixing, in the chosen measurement geometry. From C. Gutt et al. 24 it is known, 

that dependent on the applicable limit to describe scattering events (Fraunhofer or Fresnel limit) 

the distance between aperture and sample will lead to overlap of Fourier components when these 

are within the broadening due to the aperture function. Due to this specularly reflected or directly 

transmitted x-rays can overlap with diffusely scattered x-rays. The reciprocal length scale in the 

Fresnel limit up to which homo- and heterodyne mixing occurs is given by 𝑘2𝑠, with 𝑘2  =

 
2𝜋

𝜆𝐿𝑎
 (λ: wavelength,  La: aperture − sample distance) and s being a measure of the aperture size. 

In our given measurement geometry with an approximated aperture size of 10 µm and an aperture-

sample distance of 1 m this would lead to an upper limit of q-space of 0.0005 Å-1. So, one would 

expect around 0.0005 Å-1 around the direct beam position and the specular beam position to detect 

a mixed hetero and homodyne detection scheme. With a start qr of 0.0035 Å-1 of the used ROI 

series, we don’t expect mixed detection scheme to be present in our chosen Regions of Interest. 

Further Skihaluridze et al.25 showed that one would expect a jump in contrast when moving from 

one detection scheme to the other. This is related to the nature of heterodyne mixing, which is 

modulated with a strong elastic signal (direct or reflected beam), while in homodyne mixing the 

signal is modulated with itself, a weaker quasi-elastic signal. To demonstrate that no sharp jumps 

in contrast occur the contrast factors β of the data points presented in Figure 5 are shown in Fig. 

S9.  

Based on this we conclude that homo- and heterodyne mixing is not present within our chosen 

regions of interest for data analysis and that we operate only within a homodyne detection scheme, 

far enough away from specular reflected x-rays and/or the direct beam.  
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Figure S9. The figure shows the contrast factor β vs qr for the data points shown in Fig. 3 of the 

main text. Graph a) shows the contrast factor for data points extracted in GT (extracted near qz = 

0), while b) shows surface and c) bulk sensitive qz  regions for GI data (for comparison reasons 

located below and above the respective Yoneda regions).  
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Section S8: Calculations on wave vector spread 

C. Gutt et al.26 showed that the resolution parameter Δ representing the wave vector spread δq/q 

can have substantial influence on a detected signal by diminishing the contrast with increasing 

wave vector spread and/or introducing shifts in the detection scheme. Depending on the system 

such detection scheme shift is not necessarily obvious. Gutt et al. showed that for a system of 

overdamped capillary waves, e.g. on a polymer film the shift induces a decrease in extracted 

relaxation times. Such a decrease could be easily misinterpreted as a change of the present 

dynamics in such a system. Further, the wave vector spread is depending on the incidence angle 

𝛼𝑖 and exit angle 𝛼𝑓 due to the projection of coherence length and the projection of the beam size. 

Combining this with various measured q-values on a 2D detector it is necessary to discuss if those 

detection scheme shifts are expected within our presented manuscript. 

Gutt et al. showed that the wave vector spread can be calculated as follows:   

𝛿𝑞𝑧 = 2𝜋√
2

𝛯𝑧
2

+  
1

𝛴𝑧
2

[1 + (
𝑘0𝛥𝑎2

𝐿𝑎
)

2

(1 −  
𝛴𝑧

2

𝛥𝑎2

𝐿𝑎𝑠𝑖𝑛2(𝛼𝑓) + 𝐿𝑏𝑠𝑖𝑛2(𝛼𝑖) 

𝐿𝑏
)

2

] (S1)   

𝛿𝑞𝑟 = 2𝜋√
2

𝛯𝑟
2

+  
1

𝛴𝑟
2

[1 + (
𝑘0𝛥𝑎2

𝐿𝑎
)

2

(1 −  
𝛴𝑟

2

𝛥𝑎2

𝐿𝑎 + 𝐿𝑏 

𝐿𝑏
)

2

] (S2) 

With δqz being the wave vector spread along the beam, δqr perpendicular to the beam, Ξ being 

the projected transversal coherence length, Σ being the projected beam size and Δa a measure of 

the incident aperture size. Further is La the aperture-sample distance, Lb the sample-detector 

distance, k0 = 2π/λ the wave number of the incident wavelength. The non-projected coherence 

length was calculated as 𝛯 =  
𝜆𝐿𝑎

2𝐷
 with an aperture-sample distance of 1m, a wavelength λ of 1.285 

Å and source size D of 10 µm. Further, the following values were used within the calculations: 

𝛥𝑎 = 10 µm, 𝐿𝑏 = 13 m, non-projected beam size 𝛴 = 10 µm. While for 𝛼𝑖 incidence angles of 
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0.22° and 0.30° were considered. The exit angle 𝛼𝑓 ranges between 0.0° and 0.68°, taken from the 

observable angle range at 13 m sample-detector distance for an Eiger X 4M. 

A plot of δqz/qz is shown in Fig. S10, showing that within our experiments no ratio above 0.01 

is expected for qz. Further we calculated δqr/qr with the smallest qr used within the manuscript, 

which results in a δqr/qr (qr = 0.0035 Å-1) ≈ 0.0395. We see that the wave vector spread along qr 

will dominate the resolution parameter Δ. With the approximation of Gutt et al. that changes of the 

detection scheme above 0.2 come into play we conclude that no such changes are expected for our 

taken experiments. 

  

Figure S10. The figure shows the influence of the incidence angle to the wave vector spread δqz/qz. 

Graph a) shows δqz/qz vs qz starting from the qz value of the horizon for an incidence angle of αi = 

0.22°. Graph b) shows δqz/qz vs qz starting from the qz value of the horizon for an incidence angle 

of αi = 0.30°. Both graphs end at a qz of 0.059 Å-1 marking the upper limit of the detector used 

within the experiments shown within the maintext. For the calculation of δqz/qz see S8. 
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Section S9: Generalization of incident angle approximation by Fresnel coefficients  

To examine whether a general rule of thumb for BA-term domination can be provided we 

calculated the Fresnel coefficient representation shown in Fig. 1a (main text) for 

Methylammonium Lead Iodide (MAPbI3) with layer thicknesses of 800 nm and 20 nm and Poly(3-

hexylthiophene-2,5-diyl) (P3HT) with layer thicknesses of 200 nm and 20 nm. Two different 

energies were used in the calculations: 9.65 keV (identical to the experiments within the study) 

and 13.5 keV. The critical angle of a thin film is a function of the material and the x-ray energy 

used, hence to compare incident angles, the applied angle of incidence is expressed as a multiple 

of the energy dependent material critical angle. The used critical angles were: θc(MAPI, 9.65 keV) 

= 0.163°, θc(MAPI, 13.50 keV) = 0.135°, θc(P3HT, 9.65 keV) = 0.132°, θc(P3HT, 13.50 keV)  = 

0.095°. The results are shown in Fig 5 (main text) and Fig S11.  

From the 2D maps we can see that the material composition has a high impact on the dominant 

Fresnel coefficients as a function of angle of incidence. For example, for both MAPbI3 thicknesses 

in Fig 5 a) and b) the BA scattering term is already dominant for θi =1.5 θc, whereas for P3HT in 

Fig 5c) and d) a higher incident angle of two times the material critical angle is necessary to reach 

BA dominated scattering. Further, when comparing Fig 5 and Fig S11 the impact of the x-ray 

energy has different effects. On the one hand for the higher electron density sample of MAPbI3 

(800 nm thick) the prefactor fractions with Ti contributions dominate already at lower θi for all qz 

(Fig 5a) & Fig S11a)), while we do not observe this behaviour for P3HT where more terms are 

still relevant at intermediate θi. The change of thickness mainly plays a role for the prefactor 

fractions around the Yoneda region but does not significantly influence for which qz the BA term 

dominates. The lowest qz where the BA term dominates, increases more strongly to higher qz for 

the material with the higher electron density while for the lower electron density material the shift 

is not discernible.  In contrast, the qz, for which the BA dominates the scattering, is not strongly 
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affected by the change in x-ray energy for the lower density material. For the examples shown 

using two times the material critical angle as incident angle and double the qz value of the horizon 

is a good indicator for obtaining BA dominated data. However, since material and x-ray energy 

relationships are complex, we recommend to carry out the actual calculations for confirming the 

ideal measurement conditions for a particular material system and beamline settings. 

 

 

Figure S11. Material dependent Fresnel coefficient analysis used for intensity calculations in the 

simplified DWBA for incident angles θi = 1.1 θc, 1.5 θc and 2.0 θc versus qz. The reflectivities and 

transmissivities are calculated for a two-slab system of a) 800 nm thick MAPbI3 b) 20 nm thick 

MAPbI3 c) 200 nm thick P3HT d) 20 nm thick P3HT placed on a silicon substrate with varying 

exit angles θf  which is converted to qz. Calculations are for an x-ray energy of 13.50 keV (λ = 

0.918 Å). 
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