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Abstract

Biofabrication comprises all forms of the automated production of living and functional
biological tissue, involving methods from medicine, biology, chemistry, engineering, and
physics. The efforts are driven by the growing demand of organ and tissue transplants,
the need for improved pharmaceutical drug testing models, prosthetics, and cancer
research. The broad spectrum of evolving techniques ranges from advances in cell
expansion methods to cell specific bioink development, from assembly and controlled
self-assembly of organoids to tissue structures of physiological scale. The most pop-
ular manufacturing technology is 3D bioprinting, where established fused-deposition
techniques have been translated to operate with bioinks that have special material
properties; and hence also special demands. For example, the cytocompatibility and
permeability with nutrients, or the micromechanical extra-cellular environment provided
by the material, have to be tailored to fit the needs of specific cell types. And while
negative biochemical interactions can virtually be eliminated through proper biomaterial
choice, the hydrodynamic influences during the fabrication process are what inevitably
remains to damage the cells. At which stage of the printing process, and in what
magnitude it affects the cells, however, is hardly understood so far.
To elucidate the underlying mechanisms, we develop in this thesis a variety of analytical
and numerical tools to study the behavior of cells under realistic printing conditions.
As a starting point, we investigate the flow of the bioink from the material cartridge
through a confined needle and the outlet, which results in elongational and shearing fluid
motion acting on the suspended cells. To quantify the major suspect for flow-induced
cell damage, the shear stress, we develop a semi-analytical solution of the Navier-Stokes
equations for a generalized Newtonian fluid, a class comprising all fluids with strain
rate dependent viscosity. A practical Python implementation of our algorithm has
become a popular tool among experimentalists of the community. We further propose
an analytical method to estimate shear stress induced cell damage during printing,
which despite its simplicity accurately reproduces a large experimental data set.
The cell is the second essential ingredient in a bioink for printing. We develop a hy-
perelastic cell model, which we carefully validate with experiments in both an atomic
force microscopy based compression setup and several microfluidic devices. We show
that the strain hardening effect of the employed Mooney-Rivlin strain energy functional
description strongly depends on the mode of deformation which the cell undergoes in
either compression or flow. For our flow-based investigations, we modify the theory
of Roscoe and demonstrate that its range of applicability can be extended from the
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description of neo-Hookean particles in a linear shear flow to Mooney-Rivlin particles in
a Poiseuille flow and, strikingly, still remains valid for shear thinning suspensions. An
essential assumption in both micromechanical characterization techniques as well as in
large-scale simulations is the homogeneity of the cell’s interior. We therefore provide
systematic proof of the possibility to substitute any elastic inhomogeneity inside the
cell with a homogeneous equivalent, and do so for both compression and flow scenarios.
Our knowledge gained from the validation of our flow computations and the cell model
is then concentrated into the simulation of the three steps of the extrusion process:
the nozzle inlet, the nozzle itself, and its exit at the tip. Single cell simulations are
performed to elucidate the role of the particular flow patterns and the bioink rheology.
Simulations of dense cell suspensions which resemble desired bioprinting conditions
supplement this information. We find that the elongational flows at the inlet of the
nozzle have an effect similar in magnitude to the maximum shear stresses present in
the nozzle. They are almost independent of the trajectory of the entering cell, however,
only act on a very short time span. The shear stresses inside the nozzle, on the other
hand, act along its entire length, and the duration is inverse proportional to the flow
velocity. Hence, cells flowing closer to the wall experience higher stresses for a longer
time span, decreasing their potential to survive during extrusion, or maintain proper
functionality post-printing. Elongational flows act on the cells a second time when
exiting the nozzle at the tip. We find that here their influence is in general lower than
the shear stresses inside the nozzle, and the dominating factor is the relaxation from
the sheared deformation into the stress-free shape.
This thesis is a contribution to research regarding the mechanical behavior of cells in
different experimental setups and especially bioprinting-related scenarios. The analytical
and numerical methods developed herein are capable of explaining various — but not all

— features of the cell behavior and identify the major flow-induced damage factors for
cells during extrusion, while offering the potential to be extended with further features.

keywords: 3D bioprinting, shear thinning, shear flow, microfluidics, Roscoe theory, hyperelastic-
ity, Mooney-Rivlin, strain hardening, cell mechanics, atomic force microscopy, Lattice-Boltzmann,
computational fluid dynamics, biological physics



Zusammenfassung

Unter dem Begriff Biofabrikation fasst man alle Formen der automatisierten Herstellung
funktionierenden, lebenden, biologischen Gewebes zusammen, wobei Methoden der
Disziplinen Medizin, Biologie, Chemie, Ingenieurswesen und Physik Anwendung finden.
Getrieben werden diese Entwicklungen durch den stetig steigenden Bedarf an Spendeorga-
nen und -geweben, der Notwendigkeit verbesserter Gewebemodelle für pharmazeutische
Studien, Prothetik und die Krebsforschung. Das breite technologische Spektrum reicht
dabei von Methoden der Zellexpansion zur Entwicklung maßgeschneiderter Biotinten,
von Selbstorganisation und kontrollierter Selbstorganisation von Organoiden zu Gewebe-
strukturen physiologischer Längenskala. Die dabei prominenteste Technologie ist der
3D Biodruck, wo die bereits etablierte fused deposition-Methode dahingehend erweitert
wurde, dass auch Biotinten mit speziellen Materialeigenschaften eingesetzt werden kön-
nen. Spezielle Anforderungen an die Materialien, etwa die Zellverträglichkeit oder die
Permeabilität für Nährstoffe, oder auch die von der Tinte erzeugte mikromechanische
Umgebung der Zelle, müssen gemäß der Ansprüche eines jeden Zelltyps angepasst wer-
den. Und selbst wenn die negativen biochemischen Wechselwirkungen durch passende
Wahl des Biomaterials im Prinzip ausgeschaltet werden können, bleiben doch unver-
meidbar die hydrodynamischen Einflüsse während des Druckprozesses übrig, die die
Zellen schädigen können. An welcher Stelle des Druckprozeses und in welcher Stärke
diese Einfluss auf die Zellen ausüben, ist bislang nicht vollständig geklärt.
Wir beleuchten die zugrundeliegenden Mechanismen in dieser Arbeit mithilfe mehrerer
analytischer und numerischer Werkzeuge, mit denen wir das Verhalten von Zellen unter
realistischen Druckbedingungen untersuchen. Als Einstiegspunkt betrachten wir die
Strömung der Biotinte von der Materialkartusche beginnend durch die Nadel und die
Öffnung am Ende, wobei sowohl Elongations- als auch Scherströmungen auftreten, die
auf die suspendierten Zellen wirken. Scherspannungen gelten dabei weitgehend als
Hauptursache für Zellschäden. Wir berechnen diese über eine semi-analytische Lösung
der Navier-Stokes Gleichungen für generalisierte Newtonsche Fluide, eine Klasse, die
jegliche Fluide beschreibt, deren Viskosität von der lokalen Dehnrate abhängt. Unsere
anwenderfreundliche Python Implementierung dieses Algorithmus hat sich zu einem
beliebten Werkzeug der Experimentalisten entwickelt. Mit einer weitaus simpleren
analytischen Methode können wir die von rein durch Scherspannungen verursachte
Zellschädigung bereits hervorragend abschätzen, wie wir durch Reproduktion eines
großen experimentellen Datensatzes zeigen.
Zellen sind die zweite essentielle Zutat einer Biotinte für den 3D Druck. Wir entwickeln
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ein hyperelastisches Zellmodell, welches wir mit Experimenten sowohl aus Rasterkraft-
mikroskopie als auch Mikrofluidischen Messungen validieren. Dabei zeigen wir, dass
die Stärke der Dehnverhärtung der verwendeten Beschreibung durch ein Mooney-Rivlin
Dehnenergiefunktional insbesondere von der Deformationsmode abhängt, die die Zelle
unter Kompression oder in Fluss annimmt. Zur Betrachtung einer Zelle in der Strömung
erweitern wir die Theorie von Roscoe und demonstrieren, dass ihr ursprünglicher An-
wendungsbereich deutlich erweitert werden kann: von einem Partikel mit neo-Hookscher
Elastizität in einer linearen Newtonschen Strömung hin zu einem Mooney-Rivlin Partikel
in einer parabolischen Poiseuille-Strömung und tatsächlich auch für Zellsuspensionen
in scherverdünnenden Fluiden in einer nichtlinearen Rohrströmung. In mechanischen
Charakterisierungsmethoden von Zellen wie auch in großen Simulationen ist eine häufige
Annahme die elastische Homogeneität des Zellinneren. Wir zeigen daher systematische
Belege dafür, wie eine Zelle mit beliebig elastisch heterogenem inneren Aufbau grundsätz-
lich durch eine gleichwertige, homogene Zelle ersetzt werden kann. Diese Betrachtungen
führen wir in Kompressions- und in Strömungsszenarien durch. Die Erkenntnisse aus der
Validierung des Zellmodells und der Flussberechnungen konzentrieren wir abschließend in
unseren Simulationen der wichtigsten Stufen des 3D Biodruckprozesses: (i) dem Eintritt
in die Nadel, (ii) der Nadel selbst und (iii) dem Austritt an der Spitze. Simulationen
mit einzelnen Zellen klären dabei die Rolle der unterschiedlichen Strömungsmuster und
der Rheologie der Biotinte. Unterstützt und erweitert werden diese mit Simulationen
von dichten Zellsuspensionen, die realen Biodruck-Bedingungen entsprechen.
Es zeigt sich, dass die Elongationsflüsse am Nadeleintritt einen Einfluss auf die Zellen
haben, der vergleichbar ist mit dem der maximalen Scherspannungen innerhalb der
Nadel. Der Einfluss ist außerdem annähernd unabhängig von der Trajektorie der Zelle.
Er wirkt jedoch nur auf einer kurzen Zeit- und Längenskala, wohingegen die Sch-
erspannungen innerhalb der Nadel auf der gesamten Länge wirken, wobei die Zeitskala
invers proportional zur Flussgeschwindigkeit ist. Daher erfahren Zellen, die nahe der
Nadelwand fließen, höhere Spannungen und diese zugleich für längere Zeit, was ihr
Überlebenspotential nach dem Druck einschränkt. Beim Nadelaustritt wirken ein zweites
Mal Elongationsflüsse auf die Zelle ein, hier allerdings im allgemeinen schwächer als am
Eintritt. Der dominante Prozess ist die Relaxation vom gescherten in den kräftefreien
Zustand.
Diese Arbeit bildet einen Beitrag zur Forschung über Zell- und Strömungsmechanik in
verschiedenen experimentellen Aufbauten und im Speziellen für relevante Szenarien des
3D Biodrucks. Die entwickelten analytischen wie auch numerischen Methoden können
einige — wenn auch nicht alle — Eigenschaften des Zellverhaltens erklären und die
dominierenden Einflüsse strömungsbedinger Zellschädigung während eines Extrusions-
prozesses identifizieren. Sie können in Zukunft leicht mit zusätzlichen Funktionen
erweitert werden.

Schlüsselwörter: 3D Biodruck, Scherverdünnung, Scherfluss, Mikrofluidik, Roscoe Theo-
rie, Hyperelastizität, Mooney-Rivlin, Dehnverhärtung, Zellmechanik, Rasterkraftmikroskopie,
Lattice-Boltzmann, Strömungssimulationen, biologische Physik
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Extended Abstract



Chapter 1

Introduction

The objectives of the biofabrication research field target developments of high relevance
in the medical sector, such as cancer treatment [1–3], wound healing [4, 5, chs. 15, 73],
creation of pharmaceutical drug testing models [6–8], or the replacement of dysfunctional
tissues and entire organs [9–12]. Being able to produce patient specific biological tissue
in an automated manner is one of the major goal of the combined research efforts in
the areas of medicine, biology, chemistry, engineering and physics.
Biofabrication, in a basic definition [13, 14], is the production of complex biological
components from cells and simple materials or other basic building blocks in a controlled
and automated manner, commonly involving computer aided design technologies and
additive manufacturing techniques. The tissue types of interest are diverse and comprise

— among many others — cartilage [15–19], bone [20–22], muscle [21, 23–28], vascular
structures [28–33] and all organs in the human body. Just as diverse are hence the
cell types involved: the native types building the aforementioned tissues, but also stem
cells as promising candidates for tissue generation due to their controllable ability to
differentiate into other cell types [34–38], are harvested via biopsy for patient specific
research [39]. The development of scalable cell expansion methods from traditional
flat culture plate solutions [34] towards novel bioreactor techniques [34] is one barrier
between science and the adoption of the methods in regenerative medicine and tissue
engineering products [13]. Another major challenge to be faced in all biofabrication
efforts is the maintenance of biological functionality and the prevention of cell damage
[40–48], which depends on a suitable biomaterial choice for each individual cell type
on the one hand and the technical fabrication process on the other. During the past
three decades, a variety of different approaches have been tested, all requiring individ-
ually tailored material properties. To name just a few, there are lithography-based
biofabrication methods, such as stereolithography [11], digital light processing [20], and
2-photon polymerization [11], drop-on-demand or inkjet techniques [35, 49], and 4D
fabrication processes [25, 31] which make use of spatial material compositions that,
e. g., allow the construct to fold itself into a tubular shape. Spotlighted in this work is
the extrusion-based 3D bioprinting process [41, 43, 50–53], where the bioink is pushed
from a material cartridge on the printhead through a fine nozzle onto the substrate
in form of a continuous strand. Similar to conventional thermoplast 3D printing, the
computer-controlled motion of the printhead along three coordinate axes allows for a
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layer-by-layer material deposition in order to build up a three-dimensional construct. A
bioink is defined as mixture of cells and other biomaterials [54] — typically hydrogels
enriched with biological growth factors [2, 29] and with cross-linking abilities [55, 56].
These biomaterials have to fulfill a variety of requirements to be considered for 3D
bioprinting: Starting from the obvious, i. e., the absence of cytotoxic properties [15],
they are ranging over process related properties like viscosity and printability [43, 57] up
to relevant post-processing properties like shape fidelity and appropriate extra-cellular
environment [43, 58]. To name some examples, gelatin and alginate [55, 59–61] and
thereof chemically modified derivatives [2, 24, 41, 62] are popular choices of current
bioink development efforts. Various protocols and characterization techniques have
been and are still being developed to somehow quantify the bioinks’ suitability for
specific processes [63, 64]. After proper material choice for the fabrication endeavor,
another damage source, which is independent of biological or biochemical effects, comes
alongside the printing process itself: flow induced mechanical damage, which can arise
at different stages of the extrusion process. A major contribution here is the flow of the
cell through the fine printing nozzle with its concurrent shear stress [40–48]. But also
elongational stresses, as they occur at the inlet and the exit of the nozzle, have been
found responsible for a loss of cell functionality and viability after extrusion [65–68].

The goal of this thesis is to first develop a theoretical and numerical framework suited
to describe the cell types and the flow of the biomaterials in geometries of interest, and
in a second step apply the gained knowledge in order to characterize and predict the
cells’ behavior during a 3D bioprinting process.
One essential part of a bioink is the shear thinning biomaterial, which flows through
different geometries during the bioprinting process. An understanding of the cell-free
flow behavior is therefore crucial to monitor the flow-induced effects on the cells. There
exist a variety of simulation based methods for simple and complex printer nozzle
geometries [40, 55, 57, 69], which take the shear thinning rheology into account. We
similarly incorporate an algorithm proposed by [70] for the treatment of non-Newtonian
fluids into the software package ESPResSo [71, 72] in [pub1], which we use for all fully
three-dimensional simulations in this thesis. However for the sake of simplicity, and
especially when including cells into our simulations, we restrict ourselves in most cases
to a cylindrical geometry as it is a popular 3D bioprinter nozzle types. This geometry
makes it possible to solve the Navier-Stokes equations fully analytical in the case of
the power-law viscosity model which is frequently used in literature [40, 43, 55]. We
take the well-known solution of the power-law flow one step further and present in
this thesis a method which accurately reproduces the large data set of cell viability
measurements from Ouyang et al. [73] for embryonic stem cells — while it practically
depends on only one free parameter. For the more complex, but also more realistic,
Carreau-Yasuda description of shear thinning bioinks, we present in our publication
[pub1] a semi-analytical solution to the Navier-Stokes equation, which is computation-
ally more efficient than other simulation methods. The handy implementation of this
algorithm in Python has become a popular tool for researchers and is used to asses
velocity and shear stress profiles in bioprinting experiments [60, 74], as it requires only
process parameters which are usually known by the experimentalist — the printing
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pressure, the nozzle size, and the bioink rheology.
The other essential part of a bioink are the biological cells. Numerical cell models are
no novel development of this thesis; there exist abundant approaches for annucleate,
fluid-filled cells, e. g., the human red blood cells [75–79]. As for cells with a complex
cytoskeleton, there exist axisymmetric hyperelastic finite-element models [80, 81] in
two dimensions, and bead-and-spring based [82] as well as hyperelastic and viscoelastic
finite-element models in 3D [83, 84]. While the latter two are partially similar to the
cell model used in this thesis, they lack an experimental validation of the mechanical
properties of single cells. In our publication [pub2], we perform fluidic force microscopy
(FluidFM®) experiments with rat embryonic fibroblasts to validate our model in a
compression scenario, a technique which is based on common atomic force microscopy
(AFM) for mechanical characterization [85–92]. In addition, we show in this thesis
qualitative proof of the correct behavior of this model in flow through comparison with
microfluidic experiments of NIH-3T3 cells, by coupling it to our Lattice-Boltzmann
simulations via an immersed boundary algorithm. That our description is not limited
to only one particular cell type is demonstrated by comparing it to AFM compression
and indentation experiments of bovine endothelial cells and hydrogel particles from
literature. Our experiments furthermore show that the more complex Mooney-Rivlin
description with its additional terms in the strain energy functional is necessary to
properly capture the increasingly strain hardening mechanical response, which is not
covered by the neo-Hookean description of the models used in [83, 84]. An aged yet
accurate analytical approach towards neo-Hookean cells in a linear flow scenario is the
Roscoe theory [93], which is an extension to the work of Jeffery for rigid bodies [94].
We find in our publication [pub3], that the Roscoe theory does not only apply to a
hyperelastic cell in a simple shear flow, but also correctly predicts the behavior of a
cell flowing off-centered in pressure driven flow. We additionally recover that the shear
thinning rheology of a bioink does not affect the applicability of the Roscoe theory,
although it has been derived strictly for Newtonian liquids. Hence, we extend the
analytical formulation of the Roscoe theory [93] from a neo-Hookean to a Mooney-Rivlin
description, where we find a decrease of the strain hardening effect compared to the
neo-Hookean form, in contrast to our micromechanical investigations with the fluidic
force microscope. This seemingly contradictory behavior is uncovered in this thesis
through the use of simple mechanical substitute models for the deformation modes
of the cells in compression and flow scenario. An arguable attribute that both the
numerical and the analytical description of the cell have in common is the isotropy and
homogeneity of the elastic properties, as the different constituents of the cell, e. g., the
cortex, membrane, and nucleus, all have different mechanical properties [95–98]. Since
this assumption is essential for flow-based mechanical cell characterization [74, 99], we
propose in [pub4] a homogeneous equivalent of real cells with elastic heterogeneities and
provide a systematic numerical investigation to proof its applicability.
The investigation of the behavior of cells in flow is of course one of the driving forces
behind the development of the aforementioned numerical models, which have been
tested in simple flow scenarios [83, 84]. From experimental side, there exist numerous
microfluidic-based high-throughput methods to assess the mechanical properties of
cells [97, 99–103], typically by confining the cells in narrow microchannels. Numerical
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investigations of cells in these microfluidic setups exist in abundance [78, 104–106].
While the narrow geometry does not affect the cell characterization, the confinement
leads to significantly different deformations of the cell which are not present in a 3D
bioprinting process. Wider microchannels are used to further characterize the frequency
dependent viscoelastic cell response utilizing the tank-treading motion of off-centered
flowing cells [74]. Experiments performed by our collaborators under these conditions
are used in this thesis for a qualitative experimental validation of our cell model in flow,
as we observe the same cell shapes as function of the local shear stress. In the context
of a bioprinting process, there exist so far no experimental observations of the cell
shapes inside the nozzle and at the exit. Also from numerical side, complex simulations
so far disregard the cell and investigate the shear thinning flow alone [40, 57, 69]. In
our publication [pub3], we close this gap by providing a systematic analysis of the cell
behavior during the passage through the nozzle and the exit. We conduct our simulations
explicitly as function of the shear thinning rheology of the fluid. Considering first the
cell-free flow, we find that the elongational stresses at the exit gain in significance
compared to the shear stresses for shear thinning bioinks. We find this particularly
relevant as we also observe a pressure dependent radially inwards-directed migration
of the cell, which leads to a focusing of the cell distribution towards the center of the
channel, where the elongational stresses have the strongest impact on cells exiting the
nozzle. Nevertheless, we do not observe a drastic increase of the cell deformation at the
exit even with an increase of the flow velocity of one order of magnitude, since the effect
of the large stresses is reduced due to the shorter application time. For off-centered cells
it remains the shear stresses which dominate the cell deformation in the entire passage.
With this knowledge gained from our fully three-dimensional simulations, we are able to
predict the maximum cell stress and strain for the entire process using a much simpler
approach utilizing our aforementioned Python tool from [pub1].

Part I of this cumulative thesis provides the basic theoretical background of the publi-
cations, followed by individual sections bringing them into context and accompanied by
additional, unpublished work. The publications together with a list of the individual
author contributions are attached to the thesis in part II.
The remainder of part I has the following structure: Chapter 2 briefly introduces the
theories of hydrodynamics and elasticity in the way there are utilized in this thesis.
Building up on that, we first describe in section 3.1 analytical approaches to solve or
approximate the flow of a bioink in relevant geometries in 3D bioprinting processes, from
which we then construct a cell survival prediction method. In section 3.2 a simplified
analytical cell model is presented on the basis of which it is possible to understand its
strain hardening behavior under loading, and the Roscoe theory for hyperelastic cells in
shear flow is introduced. Chapter 4 summarizes our numerical methods for both the sim-
ulation of shear thinning bioinks and our hyperelastic cell model used in all simulations.
The next chapter 5 explains the application of the developed methods in detail: We
start by investigating the relevance of intracellular elastic heterogeneities in section 5.1,
reveal the cause of the change in strain hardening behavior of the Mooney-Rivlin model
in section 5.2, and propose an approximation method for the elongational stresses during
bioprinting in section 5.3, after which we apply our cell survival prediction method
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to reproduce a large set of experimental data in section 5.4. Section 5.5 summarizes
our investigations of the 3D bioprinting process with numerical methods, followed by
conclusions and an outlook in chapter 6.





Chapter 2

Theoretical background

Two theories, the hydrodynamic theory and the theory of elasticity, form the underlying
basis for the work in this thesis. The next section reviews the basic principles of both
the Navier-Stokes equations and how the properties of shear thinning bioinks can be
treated mathematically, followed by a contextualization of how the special conditions
employed in this work relate to the general framework. The second section shall provide
a brief introduction into the theory of cell elasticity, the hyperelastic description utilized
in this work, and relations to other material constitutive models.

2.1 Hydrodynamics

2.1.1 Navier-Stokes equations
Derived from two basic physical principles, respectively the conservation of mass and
momentum, the continuity equation and the Navier-Stokes equations describe the
dynamics of a fluid. In this work, we consider purely incompressible fluids, since the
materials of interest are liquids or hydrogels — which typically do not show the same
grade of compressibility as for example gases do.
In vector notation, the Navier-Stokes equations read:

∂ϱ

∂t
+ ∇ · (ϱu⃗) = 0 (2.1)

ϱ

[
∂u⃗

∂t
+ (u⃗ · ∇u⃗)

]
= −∇p + ∇ · σ + f⃗ext. (2.2)

The mathematical treatment of this continuum theory considers tiny fluid elements as
basic units. The continuity equation (2.1) describes the change of mass density inside
such a fluid element: Its mass can only change over time due to the presence of a source
or a sink of material inside of it, resulting in a nonzero divergence of the density flux.
The Navier-Stokes equation (2.2) describes the temporal change of the momentum
density inside the fluid element, which is possible due to four different mechanisms: (i)
The advection of the fluid, (ii) the presence of a spatially changing hydrostatic pressure,
(iii) the presence of momentum sinks or sources, e. g., hydrodynamic friction, and (iv)
external volume forces, e. g., gravity.
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Figure 2.1: Components
of the stress tensor at the
faces of a cubical fluid
element

In a simple picture, hydrodynamic friction is created when adjacent layers of the liquid
move with different speed. This happens for example when fluid is being pushed through
a static pipe, like — in the context of this thesis — a bioprinter nozzle. The motion can
also be imposed onto the fluid by a moving wall, which is what happens in a classical
shear rheometer.
In mathematical terms, hydrodynamic friction enters the Navier-Stokes equations
through the viscous stress tensor σ. For incompressible fluids it is defined by the
constitutive equation

σ = 2η Ṡ , (2.3)

with the strain rate tensor

Ṡ = 1
2
[
∇u⃗ + (∇u⃗)T

]
. (2.4)

The viscous stress acting on a cubical fluid element can be visualized as in figure 2.1: The
tensor element σij gives the j-component of the force per area acing on the cube’s face
in e⃗i-direction. In Newton’s postulate of viscosity, the dynamic viscosity η would denote
the proportionality constant between the viscous stress and the strain rate. Anytime it
is referred to Newtonian fluids, we mean a liquid with a viscosity independent of the
strain rate. It may however still change with other environmental parameters, e. g.,
temperature.
In the context of this thesis, however, η will typically not be regarded as a constant,
but as a function of the strain rate tensor itself.

2.1.2 Shear thinning fluids
Generally, a fluid is called non-Newtonian when its viscosity changes as function of
the applied stress and/or the time of application. One subset of this class exhibits a
decrease in viscosity when a shear is applied between neighboring fluid elements, thus
becoming “thinner”. The viscosity is a function of the strain rate Ṡ,

η = η
(
Ṡ
)

, (2.5)

which is a scalar quantity obtained from the rate of strain tensor via contraction into
its second invariant

Ṡ =
√

2ṠijṠij . (2.6)
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A variety of empirically driven and also theoretically derived models exist for η
(
Ṡ
)
. In

this thesis, two of them will receive special attention.

2.1.2.1 The power-law viscosity model

The power-law or Ostwald-de Waele [43, 107, 108] model is a mathematically rather
simple formulation of the strain rate dependency of the viscosity, and thus exceptionally
practical in analytical derivations. Yet, it does not fall short in reliability when compared
to reality [43]. It reads

ηpl
(
Ṡ
)

= mṠn−1 (2.7)

and its two parameters are the consistency parameter m (in Pa sn) and the flow index
0 < n ≤ 1, which describes the strength of the shear thinning behavior. Setting n = 1
yields a Newtonian description with the consistency parameter as viscosity.
The mathematical advantages of the power-law model will be exploited during this
thesis in section 3.1.2.1 and section 3.1.2.2.
However, two major shortcomings accompany this model which are of both mathematical
and (un-)physical nature: (i) In an entirely stress-free scenario, e. g., a quiescent liquid,
the strain rate would vanish and thus the viscosity would tend to infinity. This divergent
behavior is also present in any rotationally symmetric flow scenario at the axis of
revolution. (ii) The opposite behavior, a vanishing viscosity for increasing strain rates,
is similarly unphysical. The first point — while it is surely not promoting the liability
of the model — does not cause major difficulties in the solution of the Navier-Stokes
equations (2.2) in an actual flow scenario, as described in section 3.1.2.1. Additionally,
for materials which exhibit pure power-law behavior in the experimentally accessible
range of strain rates, the description remains very accurate as long as the strain rates
are not extrapolated too far from that range, as shown in figure 2.4 for Pluronic and
Poly-oxazoline (POx). The second point, the vanishing viscosity, is not of mathematical
relevance in this thesis, but remains an unphysical representation of what is observed in
real liquids, as discussed in the next section.

2.1.2.2 The Cross model

In order to better understand the aforementioned unphysical properties of the power-law
model and gain a better description of a realistic shear thinning liquid, the following
picture of a simplified polymer solution can be helpful:
In figure 2.2(a) are shown bundles of single polymer strands dissolved in an otherwise
quiescent (or low-shear) Newtonian liquid. Since the shear stresses between adjacent
fluid elements are not large enough to untangle the polymers, they remain as bundles
which are simply advected with the surrounding liquid — the macroscopic Newtonian
viscosity unaltered. Upon increasing the shear stresses to the point where the polymers
start unfolding, the microscopic composition of the suspension begins to change. The
more elongated polymer shapes depicted in figure 2.2(b) allow for better advection and
the friction between neighboring bundles decreases — thus reducing the macroscopic
viscosity with increasing strain rate. Eventually this extensional process stops due to
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Figure 2.2: Schematic of polymer strands in solution untangling due to increasing
shearing between the fluid layers: (a) entangled polymer stands at low shear rates, (b)
gradually untangling at intermediate shear, and (c) fully stretched polymer strands at
high shear rates. Arrows indicate the magnitude and direction of the velocity field.

(a) (b) (c)

Figure 2.3: Viscosity versus strain rate behavior of the power-law model (2.7) and the
four-parameter Cross model (2.8).

10−3

10−2

10−1

1

10−2 1 102 104 106 108

η

Ṡ
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the finite length of the polymers, leaving a suspension of completely elongated polymer
strands as in figure 2.2(c) which, again, are simply advected with the surrounding
Newtonian liquid. The macroscopic viscosity reaches another limit where it behaves
Newtonian.
Mathematically, there are several ways to incorporate the two Newtonian limits — the
zero-shear (or low-shear) and the infinite-shear (or high-shear) limit — into the viscosity
description in (2.5), one of which is the Cross model [109], which has proven itself quite
useful in describing the sorts of materials involved in this thesis. It reads

ηCross,4
(
Ṡ
)

= η0 − η∞

1 + (KṠ)α
+ η∞ , (2.8)

with the zero-shear and infinite-shear viscosity, η0 and η∞ (both in Pa s), respectively.
The exponent α has a similar role as n for the power-law model, with the difference
that α = 0 describes the Newtonian behavior and increasing shear thinning is obtained
for 0 < α < 1. K (in s) is a time constant; its inverse γ̇c = K−1 is often referred to as
“corner shear rate” — when plotted double-logarithmically as in figure 2.3, the transition
from the zero-shear Newtonian region into the power-law region happens at γ̇c. It is
also the point where the curves of different α intersect.
In accordance with rheological measurements of the materials of interest in this thesis,
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Figure 2.4: Rheological measurements of bioinks in the framework of the SFB TRR225
performed by the various subprojects (number in parentheses) show materials with
mostly power-law behavior and such with clear low-shear Newtonian plateau.
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we omit the infinite shear viscosity in (2.8) and effectively reduce it to the following
three-parameter model:

ηCross,3
(
Ṡ
)

= η0

1 + (KṠ)α
(2.9)

In figure 2.4 we show measurements performed by various contributors to the rheological
database of the SFB TRR225 biofabrication. It can be seen very clearly that all bioinks
show relevant power-law-like shear thinning behavior in a certain range of strain rates.
Some of these materials show purely a power-law dependency in the entire experimentally
accessible range, others exhibit the expected low-shear Newtonian plateau in that range.
None of the materials show the high-shear Newtonian plateau, which is accounted for
by the additional parameter η∞ in (2.8), thus justifying our simplification in (2.9).
Note, that the power-law description according to (2.7) can be obtained from the
parameters of the Cross model (2.9) in the case (KṠ)α ≫ 1 by choosing:

m = η0K−α (2.10)
n = 1 − α (2.11)

2.1.2.3 The Carreau-Yasuda model

The Carreau-Yasuda model [109, 110] is a slightly more generalized formulation of the
Cross model of section 2.1.2.2 above. In comes with a total of five parameters, with two
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of them being exponents characterizing the shear thinning strength. It reads

ηCY
(
Ṡ
)

= η0 − η∞(
1 + (KṠ)a1

)a2
a1

+ η∞ , (2.12)

with the zero-shear and infinite shear viscosity, η0 and η∞, and the time constant
K, as in the Cross model. The additional exponent a2 tunes the onset behavior of
the intermediate power-law region, which eases fitting to experimental data, e. g., for
Chitosan hydrogels [111].

2.1.3 Contextualization
Shear thinning liquids are merely one sub-class of non-Newtonian fluids. Another well-
known behavior is exhibited by shear thickening fluids, which are materials that seem
to solidify under stress. A generalized description of these strain rate dependent viscous
properties is achieved by the so-called Reiner-Rivlin model [112], with its constitutive
equation

σ = η
(
I2(Ṡ), I3(Ṡ)

)
Ṡ + ζ

(
I2(Ṡ), I3(Ṡ)

)
Ṡ

2 (2.13)

relating the viscous stress tensor to multiple orders of the strain rate tensor via coefficients
which themselves depend on the second and third invariant of the strain rate tensor.
While steady state material properties are covered by the description (2.13), time-
dependent behavior is not accounted for. Such materials with viscosities increasing
or decreasing with the duration of an applied stress are called rheopex or thixotropic,
respectively.
The last important type of non-Newtonian liquids in the context of bioinks are viscoelastic
materials. Viscoelastic fluids show, in addition to Newtonian or strain rate dependent
viscous properties, additional elastic behavior, i. e., they can partially store energy in
form of reversible shape changes. In the context of biofabrication, the elastic properties
of bioinks are often assessed though rheological measurements [43, 50, 59, 113–115].
For simplicity, however, the possible elastic properties of bioinks are purposefully
neglected in this thesis.

2.2 Cell elasticity

2.2.1 General principles
The second continuum theory applied in this thesis is that of elasticity. When an elastic
body is deformed due to external mechanical influences, e. g., the surrounding flow of a
liquid, it can store the energy necessary to revert this deformation in form of so-called
strain energy.
Mathematically, the deformation is assessed in terms of the displacement field [116,
p. 14]

ui = yi − xi , (2.14)
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where yi and xi denote the position of a material point of the elastic body in the
deformed and undeformed state, respectively. The deformation gradient tensor [116,
p. 14]

Fij = ∂yi

∂xj
(2.15)

and the thereof constructed symmetric left Cauchy-Green deformation tensor

Bij = FikFkj (2.16)

are used to define measures for the strain of the material. An example showing the
similarity in the theoretical description of elastic bodies and liquids is the form of the
infinitesimal strain tensor [116, p. 22], which has the same mathematical form as the
strain rate tensor (2.4) in fluid dynamics:

εij = 1
2

[
∂ui

∂xj
+ ∂uj

∂xi

]
(2.17)

Similar to the constitutive equation in fluid dynamics (2.3), which relates viscous stress
to strain rates via the viscosity, constitutive equations in elasticity theory relate the
(elastic) stress inside a material to the applied strain via elastic moduli, e. g., the Young’s
modulus and the Poisson ratio. In an equivalent description, constitutive equations may
relate the strain energy density, which is a scalar quantity, directly to the deformation
gradient (2.15) via the elastic material parameters [116, p. 97]:

U = U(I1(F ), I2(F ), I3(F )) (2.18)

Similar to (2.13), I1, I2, and I3 denote invariants of the deformation gradient tensor,
i. e., scalar quantities measuring the degree of deformation.
From that, the Cauchy stress as measure for the force per unit area is computed as [116,
p. 97]

σij = 1
det(F )Fik

∂U

∂Fjk
. (2.19)

2.2.2 Neo-Hookean and Mooney-Rivlin materials
In this work, focus lies on material descriptions that prove compatible with properties of
biological cells. One major requirement here is the reversibility of even very large defor-
mations, so-called hyperelastic behavior. Further qualities to be fulfilled by the material
model are an inclusion of (near) incompressibility and strain-hardening qualities. The
neo-Hookean and Mooney-Rivlin constitutive equations both fulfill the aforementioned
requirements.
The strain energy density of the neo-Hookean [116, p. 100] and Mooney-Rivlin [116,
p. 100f.] description are given by, respectively,

UNH = µ

2 (I − 3) + κ

2 (J − 1)2 (2.20)
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and

UMR = µ1
2 (I − 3) + µ2

2 (K − 3) + κ

2 (J − 1)2 . (2.21)

Here, µ, µ1, and µ2 denote shear moduli, while κ denotes a bulk modulus. For consistency
with linear elasticity in the limit of small strains, these material parameters relate to
the Young’s modulus and the Poisson ratio via [116, p. 74, 100]

µ = µ1 + µ2 = E

2(1 + ν) and κ = E

3(1 − 2ν) . (2.22)

Sufficiently incompressible materials have very high κ and a Poisson ratio near 1
2 .

The Mooney-Rivlin description (2.21) adds one more term to the neo-Hookean form
(2.20) to account for another order of strains, assessed by the invariants J , I, and K [116,
p. 96]: 1

J = det(F ) (2.23)

I = J− 2
3 Bkk (2.24)

K = 1
2J− 4

3
[
B2

kk − BnkBkn

]
(2.25)

The additional consideration of terms quadratic in B alters the strain hardening behavior
compared to the neo-Hookean description. In this thesis, we further choose the shear
moduli of the Mooney-Rivlin model as µ1 = wµ and µ2 = (1 − w)µ, to be able to scan
through the influence of the the higher order terms on the deformation behavior. That
way the same shear or Young’s modulus is found for different w in the case of small
deformations. This becomes particularly relevant when the parameters obtained from
fits using this model are compared with experimental measurements that employ the
traditional Hertz theory for mechanical characterization, as has been done in [pub2].
The Cauchy stress (2.19), from which the cell stress will be computed in this thesis, is
given as [116, p. 100 f.]

σNH
ij = µ

J
5
3

(
Bij − 1

3Bkkδij

)
+ κ(J − 1)δij (2.26)

for the neo-Hookean material and

σMR
ij =wµ

J
5
3

(
Bij − 1

3Bkkδij

)
+ κ(J − 1)δij

+ (1 − w)µ
J

7
3

(
BkkBij − 1

3B2
kkδij − BikBkj + 1

3BknBnkδij

)
(2.27)

for the Mooney-Rivlin material.

1Bkk = tr(B) and BnkBkn = tr
(
B2).
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2.2.3 Contextualization
Most hyperelastic material models, and so, too, the neo-Hookean and Mooney-Rivlin
description, were originally designed for the characterization and modeling of rubber-like
materials, as this group of materials remains highly elastic under very large strains.
Empirical approaches exist that generalize the constitutive equation (2.21) using a
polynomial series [116, p. 101],

U =
N∑

i+j=1
µij(I − 3)i(K − 3)j +

N∑
i=1

κi

2 (J − 1)2i , (2.28)

where an appropriate choice of the fit parameters yields the simpler descriptions (2.20)
and (2.21).
In this work, we employ these rubber models to describe the mechanical properties of
biological cells. Among all possible types of cells that could be considered, we aim to
describe cells which have a complex inner structure — like the cytoskeleton or actin
cortex — and put less focus on particular membrane mechanics, as it would be necessary
for the description of human red blood cells or likewise “simple”-constituted cell types.
To name only a few, fibroblasts and muscle cells, but also endothelial cells, fulfill these
requirements and are well described with rubber-like models, as we demonstrate in
[pub2].
Similar to bioinks, also cells can show viscoelastic behavior due to the presence of
protein-laden cytosol and the organelles residing inside of them. In this thesis, however,
explicit focus is put on the elastic behavior of the cells, as the viscous properties are
attributed to the bioink — thus creating a clear distinction between the two influences
for the purpose of abstraction.





Chapter 3

Analytical methods

The analytical approaches presented in this thesis fulfill two
purposes. One main goal is to provide useful prediction methods
for an actual 3D bioprinting process. The other purpose is to
provide a deeper understanding of the behavior of the employed
theoretical models and to serve as validation reference to ensure
the correctness of the numerical models.
In section 3.1, well-known analytical solutions to the flow in
the scenarios of interest are recalled, and our novel method to
compute the pipe flow of a Cross fluid from [pub1] is briefly
summarized. A prediction method for cell survival is derived
from the power-law viscosity model. In section 3.2 thereafter,
simplified analytical descriptions for a cell are introduced which
elucidate its mechanical behavior. The Roscoe theory [93] is
extended to the Mooney-Rivlin description in the end.

3.1 Flow of a shear thinning bioink

3.1.1 Newtonian fluid in important geometries

Although bioinks and bioink materials do typically not show Newtonian behavior, it is
advantageous — and undoubtedly simpler from a mathematical point of view — to first
recall the well-known flow behavior of Newtonian fluids in the geometries of interest.
During this thesis, it is shown that already the simple pipe flow of a more sophisticated
shear thinning fluid creates mathematical difficulties that render an analytical treatment
of more complex geometries likely impossible. On the other hand, it is also shown that
there exist certain similarities of the flow of Newtonian and shear thinning liquids which
are particularly relevant for suspended cells, e. g., the surrounding undisturbed fluid
stress.
The introduction introduced the different parts of the printhead: the cartridge, the
inlet into the nozzle, the nozzle itself, and its exit. The following sections give an
overview over existing analytical solutions of the Navier-Stokes equations (2.2) in these
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geometries.

3.1.1.1 Flow inside the cartridge

Prior to any fabrication, the bioink and the cells are contained inside the printer
cartridge. This is typically a cylindrical container of roughly 1 cm to 3 cm in diameter
(as known from medical syringes) and is attached to the printhead itself. Then, during
pneumatically driven extrusion, an air pressure of the order of several 105 Pa is applied
on the top. Due to the large diameter compared to the fine nozzle, only a negligible
portion of the applied pressure drops inside the cartridge.
The main similarity between the flow inside the cartridge and through the nozzle
(section 3.1.1.3) is the geometry and, hence, also the flow profile, which has the same
radial functional dependency. However, the size difference between the nozzle and the
cartridge, which is about two orders of magnitude, causes similarly large differences in
the stresses acting in the components. To attain an equal material flow in both parts,
the flow velocities in the cartridge are much smaller, and thus is the pressure gradient
driving the fluid. Due to the relation between pressure gradient and shear stress (3.5),
the latter are also expected to be of negligible magnitude inside the cartridge. As an
example, it follows from the formula for the pressure dependent flow rate in a cylinder
(3.17) for the ratio between the pressure gradients in cartridge and nozzle:

Gc
Gn

=
(

Rn
Rc

)4
(3.1)

Hence, for a nozzle of radius 100 µm, the pressure gradient and thus the stresses in a
cartridge of radius 1 cm are a factor of 10−8 smaller than inside the nozzle.

3.1.1.2 Flow through a circular orifice

The inlet of the nozzle is the first stage of the printing process where cells experience flow
conditions that are assumed to be strong enough to harm them inside the suspension [65–
69, 117]. For cylindrical nozzles the contraction of around two orders of magnitude in
diameter takes place very sudden, thus leading to a localized flow acceleration. This
mostly elongational flow stretches the cells while they are getting sucked into the nozzle.
An analytical solution to the flow profile in this geometry is not available. The velocity
field is therefore most easily obtained via numerical simulation of this problem, which
has been done extensively in literature [48, 65, 66, 69, 117–120]. In this work, the
cell-free flow into the nozzle is thus not investigated in detail. Numerical simulations
with cell suspensions entering the constriction are performed in section 5.5.1.

3.1.1.3 Flow through a cylindrical channel

After the quick contraction at the inlet, the cell suspension is pushed through the nozzle
itself. The pipe flow of a Newtonian fluid through an infinitely long cylinder, also known
as Poiseuille flow, is a classical problem in fluid dynamics, and its solution can be found
in every fluid dynamics text book [121, 122]. For convenience, it is briefly summarized
in the following. With the assumptions of a stationary, laminar, uniaxial and pressure
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driven flow [122, pp. 180 ff.], the velocity field — with the axial component u as only
non-zero component — computes as

u(r) = umax

[
1 −

(
r

R

)2
]

, (3.2)

where R is the radius of the cylindrical channel and umax denotes the maximum velocity
at the axis of revolution which relates to the pressure gradient G as follows:

umax = − G

4η
R2 (3.3)

The pressure gradient G = ∆P
L is defined as the hydrostatic pressure difference ∆P < 0

along the unit length L. Due to the axisymmetry of the infinitely long channel, the
strain rate Ṡ reduces to the shear rate

γ̇(r) =
∣∣∣∣∂u

∂r

∣∣∣∣ = − G

2η
r , (3.4)

from which the shear stress follows via multiplication with the viscosity as

σ(r) = ηγ̇(r) = −G

2 r . (3.5)

This linear radial dependency of the shear stress can easily be understood by considering
the force balance of a cylindrical fluid element with radius r concentrically aligned
with the channel axis: The forces acting on the cylinder caps are determined by the
hydrostatic pressure drop as Pπr2 and (P + ∆P )πr2, respectively, whereas the force
acting on the side face is computed via the viscous shear stress as 2πrLσ. The force
balance reads

Pπr2 = (P + ∆P )πr2 + 2πrLσ , (3.6)

which directly yields (3.5) after rearrangement.

3.1.1.4 Flow through a conical channel

In a conical nozzle geometry, the channel is constantly tapering along the axis, requiring
a constant displacement of fluid towards the center, thus developing radial flows. The
flow problem becomes two-dimensional, but stays rotationally symmetric. It can hence
be solved using the stream function approach, as in [121, pp. 138–140], or directly from
the Navier-Stokes equations in spherical polar coordinates as done by Raptis et al. [123].
When applying these approaches to a conical bioprinter nozzle, entrance and exit effects
are neglected similar to the infinitely long cylinder assumption in section 3.1.1.3.
For convenience, the solution of the flow field from [123] is repeated here. Expressed
in spherical coordinates (ρ, θ, ϕ) originating from the tip of the cone, the (spherically)
radial velocity component reads

uρ(ρ, θ) = 1
ρ2

3Ω
2π

cos2(θ) − cos2(θ0)
(1 + 2 cos(θ))(1 − cos(θ0))2 , (3.7)
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with the volumetric flow rate Ω through the conus of half opening angle θ0. This result
is used in section 3.1.2.3 to validate the approximation of the flow of a power-law fluid
in the same geometry. The viscous stress tensor

σij(ρ, θ) = ηṠij(ρ, θ) (3.8)

can be computed from the strain rate. Since the remaining velocity components vanish
(uθ(ρ, θ) = uϕ(ρ, θ) = 0), the components of the rate of strain tensor reduce to:

Ṡρρ(ρ, θ) = ∂uρ

∂ρ
(3.9)

Ṡθθ(ρ, θ) = Ṡϕϕ = uρ

ρ
(3.10)

Ṡρθ(ρ, θ) = Ṡθρ = 1
2ρ

∂uρ

∂θ
(3.11)

And the rate of strain is obtained using (2.6) as

Ṡ(ρ, θ) = 3Ω
2πρ3

√
12(cos2(θ) − cos2(θ0))2 + 4 cos2(θ) sin2(θ)

(1 + 2 cos θ0)(1 − cos θ0)2 . (3.12)

3.1.1.5 Flow transition into a free liquid strand

After the transit through the nozzle the bioink experiences the transition from a bounded
flow into a free liquid strand, thereby subjecting the flow to a change in boundary
conditions. The curved Poiseuille-like flow present inside the nozzle transitions into a
plug-flow, where the entire cross-section of the fluid moves with the same velocity. This
transition requires a radial redistribution of the axial velocity components: material
near the axis is slowed down, while material near the channel wall experiences sudden
acceleration. Hence, at the nozzle exit, the bioink itself and the therein suspended
cells experience a radial displacement. It is reported for extruded bioinks to produce
a widened strand after extrusion, as also shown in our experimental images in [pub3].
Among other parameters, the strand widening is used to characterize the so-called
printability of the bioink [43].
In this thesis, we assume for simplicity that the free bioink strand maintains the same
diameter as inside the nozzle. We therefore prescribe a no-slip boundary condition with
vanishing perpendicular and tangential velocity components on the boundary inside the
nozzle, and a slip boundary condition outside, allowing for a finite tangential velocity
component at the surface. To the knowledge of the author, there is so far no analytical
solution available for this problem. An approximative solution using the stream function
formalism has been developed by Katharina Gräßel during her Master thesis [124], the
main difference to the actual scenario being that her solution does not consider local
change of the boundary condition, but solves the intermediate flow between a Poiseuille
flow at infinite distance on the one side and a plug flow on the other.
In this thesis, the influence of the special flow conditions at the outlet of the bioprinter
nozzle is studied numerically in great detail in [pub3].
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3.1.2 Shear thinning fluids in important geometries

3.1.2.1 Power-law fluid in a cylindrical channel

One exception to the aforementioned mathematical difficulties in the treatment of shear
thinning liquids is the power-law model introduced in section 2.1.2.1. As demonstrated
in the supplementary information to [pub1], it is possible to solve the Navier-Stokes
equations (2.2) with the common assumptions of a Poiseuille flow [122, pp. 180 ff.] and
to find a solution to the velocity profile in an infinitely long cylinder. For convenience,
this section repeats the well-known solution for the velocity profile.
Assuming an incompressible, stationary, laminar, uniaxial, and pressure driven flow
in an infinitely long cylinder (cf. 3.1.1.3), the Navier-Stokes equation (2.2) reduces to
[pub1]

G = 1
r

∂

∂r

(
rη(γ̇)∂u

∂r

)
, (3.13)

with the strain rate given by the shear rate γ̇ = −∂u
∂r as in (3.4). Inserting the power-law

formulation for the viscosity (2.7), one obtains the well-known velocity profile:

u(r) =
(

− G

2m

) 1
n n

n + 1R1+ 1
n

[
1 −

(
r

R

)1+ 1
n

]
(3.14)

The maximum velocity is identified by the first three factors as

umax =
(

− G

2m

) 1
n n

n + 1R1+ 1
n (3.15)

and the average velocity is found through integration and division by the channel
area [pub1] as

uavg = umax
n + 1
3n + 1 . (3.16)

In practice, the average extrusion velocity is typically chosen similar to the collector
plate speed of the 3D bioprinter to provide consistent thickness and hence improve the
shape fidelity of the printed strand [43]. From (3.16) and (3.15) the relation between
the volumetric flow rate Ω and the pressure gradient is derived:

Ω = πR2uavg =
(

−GR

2m

) 1
n

R3π
n

3n + 1 (3.17)

The inverse relation is given by

G = 2m

(3n + 1
n

Ω
R3+ 1

n

)n

. (3.18)

Since the radial dependency of the shear stress (3.5) remains unchanged when applying
power-law rheology [pub1], (3.17) can be expressed in terms of the maximum shear
stress σmax as

Ω =
(

σmax
m

) 1
n

R3π
n

3n + 1 . (3.19)
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The velocity also determines the time necessary for a fluid element at position r to
transit a nozzle of length L, termed the residence time [43]. It becomes relevant for
duration-dependent cell damage considerations [69] and is simply found with (3.14) to
be

τ(r) = L

u(r) . (3.20)

3.1.2.2 Prediction methods from the power-law fluid

With the solution to the Navier-Stokes equation for the power-law viscosity model in
section 3.1.2.1, we derive several quantities of interest as monitoring tools for the bioink
extrusion process.
One of the major suspects for flow induced cell damage during the extrusion process
are the occurring shear stresses [44]. We therefore propose in the following a method to
compute the cell survival as function of the maximum stress present in a cylindrical
printing nozzle. We consider cells as significantly smaller than the nozzle dimensions,
and assume that they remain at their radial position. Therefore, the radial distribution
of the cells c(r) does not change along the length of the nozzle. The next step is to
determine the fraction of cells that flows inside a cylindrical shell of radius r around the
axis from the velocity profile (3.14) via:

ωC(r) =

2π∫
0

r∫
0

u(r′)c(r′)r′ dr′ dϕ

2π∫
0

R∫
0

u(r′)c(r′)r′ dr′ dϕ

(3.21)

The simplest form of cell distribution, a uniform one, is described by a constant

c(r) = c0 , (3.22)

which inserted into (3.21) yields the radial profile of the partial flow rate ω(r), i. e., the
percentage of material that flows inside a cylindrical shell of radius r, divided by the
total flow rate (3.17). It yields:

ω(r) =
c0

2π∫
0

r∫
0

u(r′)r′ dr′ dϕ

c0
2π∫
0

R∫
0

u(r′)r′ dr′ dϕ

=
2πr2umax

[
1 − 2n

3n+1
(

r
R

)1+ 1
n

]
2πR2umax

[
1 − 2n

3n+1

] (3.23)

= 3n + 1
n + 1

(
r

R

)2
− 2n

n + 1

(
r

R

)3+ 1
n

(3.24)

Note that this equation has become independent of the pressure gradient and the
consistency parameter m of the power-law model. Next, we introduce a critical quantity
σcrit to denote the shear stress threshold below which a cell stays unharmed and above
which it is damaged irreversibly. Using the linear shear stress profile (3.5), the critical
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radial position rcrit, which separates the safe from the harmful flow regions inside the
channel, is determined as

rcrit = σcrit
σmax

R , (3.25)

which can be inserted in (3.24). This ultimately yields the percentage of undamaged
cells as a function of the maximum applied shear stress during extrusion,

ω(σmax, σcrit) = 3n + 1
n + 1

(
σcrit
σmax

)2
− 2n

n + 1

(
σcrit
σmax

)3+ 1
n

, (3.26)

with the only fluid related parameter being the shear thinning index n and the only
cell related parameter being the critical shear stress σcrit. Relation (3.26) is depicted
in figure 3.1(a) for a critical cell stress of σcrit = 400 Pa. Starting at a damage-free
plateau while σmax < σcrit, the survival percentage rapidly decreases for σmax > σcrit.
It becomes apparent, that the influence of the shear thinning index n, although present,
does not drastically change the shape of the curve.
One modification to this method can be made by introducing the typical variance which
is inherent to any biological system. A sample of a large number cells will tend towards
a Gaussian distribution of the critical shear stress around the average value of σcrit. The
probability of finding a cell with critical stress σ is then given as

p(σ) = 1√
2πν2

exp
(

−(σ − σcrit)2

2ν2

)
, (3.27)

with ν2 denoting the variance here, not the kinematic viscosity. The survival percentage
of cell computes as the average of (3.26) weighted with (3.27):

ω̃(σmax, σcrit) =
∞∫

0

ω(σmax, σ)p(σ) dσ (3.28)

Through numerical integration (3.28) can be evaluated in order to obtain the survival
percentage of cells with a certain variance. An example result is plotted in figure 3.1(b)
for a distribution of the cells’ critical parameter with ν = 1

4σcrit. The additional
parameter variability clearly smoothens the curve around σmax = σcrit. Again, the
difference between by a highly shear thinning (n = 0.1) and a Newtonian bioink does
not exceed 15 %.
In 5.4, we use this method to exactly reproduce literature data for stem cell survival
measurements.

3.1.2.3 Flow approximation of a Power-law fluid in a conical channel

Although this thesis does not include a detailed numerical investigation of cells flowing
through a conical geometry, it is worth mentioning, as besides cylindrical syringes conical
dispenser tips are the other most popular choice for 3D bioprinting nozzles. The main
technical motivation behind this is that the gradually flow-focusing geometry is expected
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Figure 3.1: Cell survival percentage predicted as function of the maximum shear stress
during extrusion for a critical shear stress σcrit = 400 Pa. (a) Dependency of the cell
survival percentage on the shear thinning behavior. (b) Inclusion of a variance of
ν = 100 Pa of the critical shear stress softens the sharp edge at σmax, while the influence
of the shear thinning behavior stays unaffected.
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to create less shear stresses inside the nozzle compared to the much more confined
cylindrical needles. However, along with the constant tapering come elongational stresses
along the entirety of the nozzle, whereas for cylindrical needles these stresses only exist
at the inlet and the exit. It is not yet conclusively established which of the two effects
are more harmful towards cells [48, 65, 69, 117]. Since — in order to address this topic
in future research — knowledge about the undisturbed flow profile will be essential, it
is summarized in the following what the major challenges and differences compared to
the cylinder are, and an accurate approximation method for typical conical bioprinter
nozzles is presented.
As introduced in section 3.1.1.4 for the conical geometry, the strain rate (2.6) does
not reduce to the a single term, but has a more complex dependency on the velocity
field. Hence, inserting the strain rate into the viscosity model (2.7) introduces many
co-dependent terms in the Navier-Stokes equation (2.2), making an analytical solution
impossible even for the simple case of the power-law viscosity.
In the course of a bachelor project supervised by the author, an approximation method
for the power-law velocity profile inside a conical nozzle has been developed. Clara
Gremmelspacher [125] proposes in her thesis a method based on two assumptions: (i)
The stream lines are pointing towards the tip of the conus and (ii) the axial velocity
profile (in cylindrical coordinates aligned with the conus’ axis of revolution) locally
has the same form (3.14) as inside an infinite cylinder, but with changing wall radius
R(z). Hence it has been termed the wall-variation solution [125]. From that, a local
pressure gradient can be derived using (3.18), and the two-dimensional radial velocity
field component is obtained via the continuity equation (2.1) to [125]:

uz(z, r) = 3n + 1
n + 1

Ω
πR2(z)

[
1 −

(
r

R(z)

)1+ 1
n

]
(3.29)

ur(z, r) = uz(z, r) r

R(z)
∂R(z)

∂z
(3.30)

To supplement her work, this thesis presents a numerical validation of her method, by
simulating a power-law fluid in a conus using the Lattice-Boltzmann method from 4.1.
We simulate a funnel with a conical center piece, as schematically illustrated in the
inset of figure 3.2(a). The cylindrical inlet and outlet extensions ensure a reasonably
well developed Poiseuille flow before and after the conical section. From simulations
of a conus with an openening angle of 5.7◦ with a Newtonian fluid, and a power-law
fluid with n = 0.5 and n = 0.1, we extract slices of the velocity field which we compare
to the axial (3.29) and radial (3.30) velocity in figure 3.2. We find that for opening
angles < 20◦ of the conus — which is an assumption that still covers typical bioprinter
nozzles with angles of about 6◦ — the method remains very accurate. Interestingly,
the numerical solution shows that the flattening of the axial velocity in the center is
less pronounced than in the case of a cylinder. This might be particularly relevant for
bioprinting applications, since the flattening of the profile is considered one of the main
beneficial effects of shear thinning bioinks. We also find that the magnitude of the
radial velocity is almost independent of the shear thinning behavior, whereas the axial
velocity changes by a factor of 2.
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Figure 3.2: (a) The approximation (black line), the analytical solution (orange dashed
line), and the numerical solution (blue squares), agree perfectly in the case of a Newtonian
fluid (n = 1) for the axial velocity, while the numerical solution slightly underestimates
the radial velocity. The approximation compared to the numerical solution for (b) n = 0.5
and (c) n = 0.1. In both cases we find good agreement. The radial velocity from the
numerical solution consistently underestimates the approximation. The inset shows
the position, where the velocity slices are taken from the simulation of a funnel with
opening angle 5.7◦.
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3.1.2.4 Carreau-Yasuda fluid in a cylindrical channel

As mentioned in section 2.1.2, the Cross model (2.9) and the Carreau-Yasuda description
(2.12) account for the unrealistic shortcomings of the power-law viscosity model (2.7).
However, upon inserting the simpler 3-parameter Cross model (2.9) into the Navier-
Stokes equation for the flow in an infinite cylinder (3.13), it becomes apparent that an
analytical solution of the resulting differential equation for u is not possible:

Gr = ∂

∂r

(
r

η0

1 + (−K ∂u
∂r )α

∂u

∂r

)
(3.31)

In our publication [pub1], we therefore present a semi-analytical approach to efficiently
solve this equation without the need of computationally expensive simulation tools. In
the following, the main idea of the method proposed in [pub1] is summarized.
From 3.1.2.1 we know that the the Navier-Stokes equation can be solved for the power-
law viscosity model. Our method therefore utilizes a piecewise definition of the viscosity
as function of the strain rate, as illustrated in figure 3.3(a). Each interval between two
points of the analytical form of the viscosity η(Ṡ) — or data points from a rheological
measurement — is then interpolated with a power-law form. The individual parameters
m and n for every power-law interval are determined by ensuring continuity at the
interval bounds, as demonstrated in the supplementary material of [pub1] for the
Carreau-Yasuda model. With the viscosity defined, a piecewise solution of the Navier-
Stokes equation is derived, where continuity conditions for the velocity and the strain
rate, and the boundary conditions, determine all integration constants. Figure 3.3(b)
shows the obtained velocity profile. The accuracy of the method is determined solely by
the number (and position) of interpolation intervals, as the remaining computations
follow from an analytical form. During her Bachelor thesis [125], Clara Gremmelspacher
extended this algorithm with two more viscosity interpolation methods: a piecewise
constant (Newtonian) and a piecewise linear interpolation.
In practice, the Python implementation of this algorithm delivered with [pub1] has
become a popular tool for other researchers to monitor the flow during experiments [60,
74]. Also, the input parameters for the numerical simulations with shear thinning
fluids in this thesis were computed using this method, in order to ensure systematically
changing flow conditions. This method’s capabilities do not end here, though. In
[pub1], the tool has been used to characterize the rheological parameters of a bioink
by fitting them to measurements of the pressure versus flow rate dependency in a
defined geometry. The parameters obtained were in agreement with classical cone-plane
rheometer measurements of the same bioink [pub1].
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Figure 3.3: Example computation of our semi-analytical method from [pub1] to compute
the flow profile of a bioink with complicated viscosity model: (a) the viscosity versus
shear rate function (dashed blue) is interpolated with power-law intervals (solid orange),
and (b) the resulting velocity profile is a piecewise solution to the Navier-Stokes equation.
Gray vertical lines indicate the 7 interval bounds. Parameters are η0 = 10 Pa s, K = 0.05,
α = 0.6, R = 50 µm, and G = 5 × 107 Pa m−1.
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3.2 Deformation modes of cells
In the context of this thesis, one particular deformational mode — a triaxial deformation

— of an initially spherical cell plays a major role in both purely elastic analytical
computations as well as numerical simulations with flow coupling. When a cell is being
compressed between two plates it undergoes an oblate-like deformation, while when it
is suspended in a sheared liquid, it exhibits a prolate shearing deformation.
In the following sections, the cell stress is derived as a function of the deformation for
the triaxial elongation of an incompressible sphere. The geometry is shown in figure 3.4:
A sphere of initial radius a0 is stretched along all three coordinate axes with their
respective stretch factors α1, α2, and α3. This deformation can be described with the
linear transformation

yi = αixi (3.32)

from the undeformed (reference) coordinates x⃗ to the deformed coordinates y⃗. Hence,
the deformation gradient tensor (2.15) is a diagonal matrix containing the principal
stretches,

Fij = αiδij (3.33)

a1

a2 a3

a1

a2 a3

(a) (b)
Figure 3.4: Through stretching with factors
α1, α2, and α3, along the coordinate axes,
(a) a sphere with radius a0 transforms into
(b) a triaxial ellipsoid with semi-axes a1 =
α1a0, a2 = α2a0, and a3 = α3a0.
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and the left Cauchy-Green deformation tensor (2.16) and its invariants (2.23), (2.24),
and (2.25) are obtained as:

Bij = α2
i δij (3.34)

J = α1α2α3 = 1 (3.35)
I = α2

1 + α2
2 + α2

3 (3.36)

K = 1
α2

1
+ 1

α2
2

+ 1
α2

3
(3.37)

To quantify the cell stress, we employ the von Mises effective stress,

σvM =
√

1
2
[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]
, (3.38)

which is computed from the principal stress differences — here the normal stress
differences — from the Cauchy stress tensor (2.27) as detailed in [pub3]. As a measure
for the cell deformation, we introduce the Taylor deformation parameter

D = amajor − aminor
amajor + aminor

, (3.39)

which is calculated from the major and minor semi-axes of the ellipsoid, as detailed in
[pub2].

3.2.1 Oblate, prolate, and shear deformation

For the Mooney-Rivlin strain energy density [pub2], the normal stress differences, which
are equal to the principal stress differences in case of a triaxial deformation, are

σi − σj = µ

[
w
(
α2

i − α2
j

)
+ (1 − w)

(
1

α2
j

− 1
α2

i

)]
, (3.40)

and they are further reduced by one variable when incompressibility (3.35) is assumed:

σ1 − σ2 = µ

[
w
(
α2

1 − α2
2

)
+ (1 − w)

( 1
α2

2
− 1

α2
1

)]
(3.41)

σ2 − σ3 = µ

[
w

(
α2

2 − 1
α2

1α2
2

)
+ (1 − w)

(
α2

1α2
2 − 1

α2
2

)]
(3.42)

σ3 − σ1 = µ

[
w

( 1
α2

1α2
2

− α2
1

)
+ (1 − w)

( 1
α2

1
− α2

1α2
2

)]
(3.43)
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From these normal stresses, a general expression for the von Mises stress (3.38) of an
incompressible sphere is derived:

2
µ

σ2
vM =(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 (3.44)

=
(
α2

1 − α2
2

)2
[
w2 + 1

α2
1α2

2
w(1 − w) + 1

α4
1α4

2
(1 − w)2

]
+
(

α2
2 − 1

α2
1α2

2

)2[
w2 + α2

1w(1 − w) + α4
1(1 − w)2

]
+
(

α2
1 − 1

α2
1α2

2

)2[
w2 + α2

2w(1 − w) + α4
2(1 − w)2

]
(3.45)

This lengthy form (3.45) can be further simplified for the case of an oblate (uniaxial
compression) or prolate (uniaxial elongation) deformation. In both cases, two semi-axes
are equal, thus a = α1 = α2, and it follows for normal stresses (3.40)

σ1 − σ2 = 0 (3.46)

σ2 − σ3 = µ

[
w

(
a2 − 1

a4

)
+ (1 − w)

(
a4 − 1

a2

)]
(3.47)

σ3 − σ1 = −(σ2 − σ3) . (3.48)

The cell stress is then given by

σvM = µ

∣∣∣∣w(a2 − 1
a4

)
+ (1 − w)

(
a4 − 1

a2

)∣∣∣∣ . (3.49)

Alternatively, when a simple shear deformation, described by a = α1 = 1
α2

and α3 = 1,
is inserted into the normal stress differences (3.40), they read

σ1 − σ2 = µ

(
a2 − 1

a2

)
(3.50)

σ2 − σ3 = µ

[
w

( 1
a2 − 1

)
+ (1 − w)

(
1 − 1

a2

)]
(3.51)

σ3 − σ1 = µ

[
w

( 1
α2

1α2
2

− α2
1

)
+ (1 − w)

( 1
α2

1
− α2

1α2
2

)]
(3.52)

and the corresponding von Mises stress is obtained as:

σvM = µ

√
(1 − a2)2 +

( 1
a2 − 1

)2
+ (1 − a2)

( 1
a2 − 1

)
− w(1 − w)

(
a2 + 1

a2 − 2
)2

(3.53)

Equations (3.49) and (3.53) a are applied in section 5.2 to explain the dependency of the
strain hardening behavior of the Mooney-Rivlin model compared to the neo-Hookean
model by the influence of the deformational modes.
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Figure 3.5: (a) Validation of the Roscoe theory and our numerical cell model in a
linear shear flow for the neo-Hookean description. (b) The Mooney-Rivlin model shows
stronger strain hardening than the neo-Hookean (w = 1) in the range w = 1.0 to 0.7;
then, it behaves decreasingly strain hardening with decreasing w.
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3.2.2 Roscoe theory for cell in flow
In 1922, Jeffery [94] proposed a solution of the Navier-Stokes equations to describe the
motion of a rigid ellipsoidal particle in a linear flow. His theory has later been adapted
by Roscoe [93] and extended to describe the deformation behavior of a viscoelastic
particle with a rotating surface in both a linear shear flow and an elongational flow
scenario. The details of the analytical approach are summarized and supplemented with
further steps in section A, including a list of corrections of typographical errors in the
original works of Jeffery [94] and Roscoe [93], as well as the conversion of important
quantities used in both works. For convenience, we also deliver a summary of the theory
in the supplementary material of [pub3]. We use a similar approach to adapt Jeffery’s
method for the computation of the velocity field around a rigid, rotating particle and
compute the velocity field inside and outside an elastic, tank-treading, particle according
to the Roscoe theory.
One of the key outcomes of the Roscoe theory in the context of this thesis is the
quantification of the ellipsoidal deformation as function of the shearing motion of the
surrounding fluid, as illustrated in figure 3.5 for a neo-Hookean (2.20) particle in simple
shear flow. The neo-Hookean model (2.20) in its incompressible form corresponds to
(type A) in [93]. Figure figure 3.5(a) shows the Taylor deformation (3.39) as a function
of the Capillary number,

Ca = ηγ̇

µ
, (3.54)

the dimensionless shear rate, which compares the influence of the fluid stress to the
cell stiffness. Roscoe [93] repeats his computations for an elastic model (type B),
which corresponds to the second term in (2.21), i. e., the incompressible Mooney-
Rivlin description minus the neo-Hookean term. During this thesis, the Mooney-Rivlin
description is used in [pub2] to describe the mechanical behavior of fibroblast cells.
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Hence, by superposition of type A and type B of [93] we obtain the Mooney-Rivlin
hyperelastic description, which we insert into the Roscoe theory to compute the cell
deformation in shear flow. Details of the derivation of Roscoe with the Mooney-Rivlin
formulation follow in the appendix (section A). In figure 3.5(b) the resulting Ca-D
curve is shown: Remarkably, the strain hardening effect compared to the neo-Hookean
description (w = 1) first increases for decreasing w, up until w ≈ 0.7. Then, lower
w always result in a decreased strain hardening behavior. As discussed in the SI of
[pub2], this behavior differs from what is found for a compression scenario: in AFM
compression simulations, as in section 4.2.2, decreasing w results in a consistent increase
in strain hardening strength compared to the neo-Hookean case.
An approach to understanding this difference is presented in section 5.2 in this thesis,
using the analytical approach from section 3.2.1.



Chapter 4

Numerical methods

On the one hand, the complexity of the flow of a shear thinning
bioink through different geometries, but especially the coupling
between the flowing bioink and a suspended cell, on the other,
render the exact analytical treatment of these scenarios impossi-
ble. Numerical methods are necessary to look more closely at
the time-dependent dynamics of these systems.
The following sections introduce the lattice Boltzmann method
as flow solver for non-Newtonian fluids, which is coupled via an
immersed boundary algorithm to the hyperelastic cell model.
Our AFM compression and indentation setup for the cell is
explained thereafter.

4.1 Shear thinning Lattice Boltzmann flow simulations
Complex flow scenarios — created by complicated geometries, boundary conditions,
special fluid material properties, or the inclusion of soft elastic particles — often make
an analytical solution of the Navier-Stokes equations (2.2) impossible. Therefore, a
diverse set of numerical methods has been developed in the field of computational fluid
dynamics to assess these complicated systems, each with their individual advantages
and disadvantages. During this thesis, the Lattice Boltzmann method is used in all
fully three-dimensional flow simulations; the coupling between bioink flow and cell is
achieved with an immersed boundary algorithm. Both methods are briefly outlined in
the following section.

4.1.1 Lattice Boltzmann method

The major difference of the Lattice Boltzmann method, when compared to other
conventional computational fluid dynamics solvers, is that the Navier-Stokes equations
are solved indirectly. Instead of solving the differential equation with numerical methods
in discretized space and time like it is done in finite element or finite volume methods,
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the evolution equation of a phase space distribution function f(x⃗, v⃗, t) according to
Boltzmann’s kinetic theory is solved on a regular lattice. Fluid dynamics are obtained
in a second step by identifying several statistical moments of the distribution function
with hydrodynamic quantities via the Chapman-Enskog analysis [126, 127].
For the numerical implementation, the phase space is discretized by fixing a set of
discrete velocities c⃗i, which constrain the motion of the particles described through f to
the spatial Eulerian grid denoted by its vertices at position x⃗j . The temporal evolution
of the velocity components fi of the distribution function (or short: population) on the
lattice is described by the Lattice Boltzmann equation

fi(x⃗ + c⃗i∆t, t + ∆t) = fi(x⃗, t) + Ωi(x⃗, t)∆t , (4.1)

with the time increment for the Euler integration step ∆t. The collision operator
Ωi comprises all physical interactions that alter the distribution function, e. g., the
microscopic collision or viscous relaxation, but also force coupling with the cell. During
one time step, the population is further advected into i-direction.
In this thesis, the multiple relaxation time (MRT) scheme with the D3Q19 velocity set
of the software package ESPResSo [71, 72] is used. It allows, in particular, for a stable
implementation of the shear thinning rheological properties of the bioinks introduced in
section 2.1.2 via the inclusion of strain rate dependent relaxation times as discussed
in S-4 of the SI of [pub1] or explained in great detail in the author’s Master thesis
on this topic [128]. For the simulation of any no-slip boundary, a simple bounce-back
algorithm is used [127]. To simulate the plug flow of the free bioink strand, we use an
extended bounce-back algorithm, which allows for a finite tangential velocity component
at the boundary [104]. While, in principle, a moving object like a cell could also be
described using the fluid’s Eulerian grid, an implementation with more flexible, moving
boundaries using an immersed boundary approach is advantageous.

4.1.2 Immersed boundary algorithm
Two-way coupling between cell and bioink is realized according to the following procedure:
The Lagrangian points of the cell, which are immersed in the Eulerian grid of the fluid,
are advected with the corresponding, interpolated velocity of the fluid at their position.
As detailed in the next section 4.2, this displacement results in elastic forces according
to the elastic model of the cell. In the second step, these forces are redistributed from
the current cell vertex onto the adjacent fluid vertices, by entering into the collision
operator in (4.1). As further elaborated in [pub2], this algorithm essentially gives the
cell viscoelastic properties, where the viscosity inside the particle resembles that of the
surrounding fluid.
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4.2 Hyperelastic cell model

Figure 4.1: Cut-through view of
the spherical cell model revealing
its inner tetrahedralized mesh.

The hyperelastic model for the simulation of cells
has been one of the main developments during this
thesis. In [pub2], we first introduce the model
and provide extensive numerical and experimental
validation to prove the applicability of this rather
simplified picture of a biological cell. Later im-
provements lead to the application of the model
in [pub3] to construct prediction methods for cell
deformations during bioprinting. For convenience,
the main idea and computational procedure are
briefly summarized in the following. Further de-
tails can be found in [pub2].
The cells in this thesis are modeled as a homo-
geneous, isotropically elastic body with spherical
reference shape. Using the software Gmsh [129],
a uniform inner tetrahedral mesh is created, as it
is shown in figure 4.1. As described in detail in
[pub2] and [pub3], the following relations are used
on every tetrahedron to compute the forces and stress distribution from the strain
energy density (2.20) and (2.21) and the displacement (2.14) inside the cell during the
simulation: The vertex forces are computed through the derivative of the strain energy
density U with respect to the vertex displacement, multiplied with the reference volume
of the tetrahedron as

fβ
i = −V0

∂U

∂uβ
i

, (4.2)

where the index i denotes the Cartesian component and the superscript β = 0, 1, 2, 3
indicates the index of the vertex inside one tetrahedron. The forces on vertices shared
by multiple tetrahedra are summed up. As stress measure, we use the Cauchy stress
tensor [116, pp. 43 ff.], which is obtained from U via

σij = J−1Fik
∂U

∂Fjk
, (4.3)

with the Jacobian determinant J (2.23) and the deformation gradient tensor Fij (2.15).
As detailed in [pub3], the scalar von Mises stress is a handy quantity to measure the
stress acting on the cell in flow. We define the cell stress as in [pub3] via

σvM = V −1
cell

Ntetra∑
t=0

V (t)σ
(t)
vM , (4.4)

which is the von Mises stress in every tetrahedron σ
(t)
vM, given by

σ
(t)
vM =

√
1
2

[(
σ

(t)
1 − σ

(t)
2

)2
+
(
σ

(t)
2 − σ

(t)
3

)2
+
(
σ

(t)
3 − σ

(t)
1

)2
]

, (4.5)

averaged over all tetrahedra and weighted with the tetrahedron volume V (t).
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Figure 4.2: (a) Micrographs of NIH-3T3 cells flowing in a microchannel at different
positions and different pressures (modified from [74]) in good visual agreement to (b) our
simulations of the same setup with a cell with a shear modulus of µ = 270 Pa.

(a) Experiment (b) Simulation

4.2.1 Microfluidic validation

We use the experiments performed by our collaborators in [74] to provide further
experimental validation to our cell model — in an actual flow scenario. In figure 4.2(a)
bright-field micrographs of NIH-3T3 cells flowing at different positions in a 200 µm ×
200 µm microchannel at pressures 1, 2, and 3 bar, suspended in a 2 % alginate solution
are shown. While centered flowing cells remain almost spherical, they assume an
increasingly elongated ellipsoidal shape further away from the center. When simulating
the same setup (alginate parameters from [pub1]) with cells at different lateral positions
in the channel with a shear modulus of 270 Pa, we find in figure 4.2(b) an excellent
visual agreement between experiment and simulation.

4.2.2 Compression simulations

During this thesis, a simulation program has been developed that mimics different
experimental atomic force microscopy (AFM) setups. The first one is the compression
of a cell between two parallel plates, as illustrated in the simulation snapshots in
figure 4.3(a,b), which is similar to the fluidic force microscopy (FluidFM®) measurements
as they were performed for [pub2]. The second setup is the cell indentation with a
colloidal probe [130], shown in figure 4.3(c,d), which is another common tip geometry
for AFM cantilevers. The method, as detailed in the Supplementary Information of
[pub2] (section S-3), computes the relaxation of the cell between a fixed plate at the
bottom and a second plate, or a spherical indenter, which is moving downwards to
compress the cell.
The method does explicitly not treat any fluid motion inside or outside the particle
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Figure 4.3: Simulation snapshots of (a,b) the AFM compression and (c,d) the AFM
colloidal probe indentation simulations.

(a) (b) (c) (d)

and thus computes the purely elastic response of the cell to an externally imposed
deformation.

4.2.3 Extensibility, diversity in applications
While in the course of this thesis the cell model is mostly applied to single, or multiple,
suspended cells flowing in a bioink, the descriptive power of the hyperelastic description
goes further: As also shown in [pub2], the compressive mechanics of hydrogel particles
of about 80 µm diameter, which are several times larger than the typical cell considered
in this work, are well described by our model. The scalability should not be limited
there, though. Considering the effectively homogeneous behavior of cells as discussed in
section 5.1, an aggregate of multiple cells may likely exhibit similar elastic properties
which can be described with knowledge of the single cell mechanics. It is therefore well
imaginable to apply our model also to large clusters of cells, cell spheroids, or organoids,
and for it to be of use in numerical investigations of these systems. All simulations
and analytical computations presented in this thesis assume a cell with a spherical
equilibrium shape due to the desired simplicity of the system. The model is of course
not limited to this particular case and can easily be extended to describe objects with a
different equilibrium geometry.





Chapter 5

Application of the developed methods

In this chapter, our analytical methods from chapter 3 and our numerical methods from
chapter 4 are applied to specific problems. In section 5.1, we elucidate the importance
of intracellular heterogeneities and present a mechanically equivalent, homogeneous,
cell model. Section 5.2 explains how second term in the strain energy functional of the
Mooney-Rivlin model results in an increase of the strain hardening behavior compared to
the neo-Hookean description when the cell is experiencing compression, while a decrease
is predicted by the extended Roscoe theory for a Mooney-Rivlin particle in linear shear
flow. Then, we present in section 5.3 our method from [pub3] for the prediction of the
average elongational stresses present at the exit of a 3D bioprinter nozzle, supplemented
by corresponding analytical calculations to assess this quantity directly using the power-
law viscosity model. From the power-law model we also developed a method to predict
the cell survival in a printing process, which we apply in section 5.4 to reproduce a
large experimental data set. Finally, in section 5.5 we present an analysis of the entire
3D bioprinting process for a single cell and a dense cell suspension using our developed
numerical methods.

5.1 The role of intracellular heterogeneities

One of the major simplifications of the cell model used in this work is given by its ho-
mogeneous and isotropic elasticity. On the one hand, this assumption is commonly used
in numerical cell models [83, 84], for the sake of simplicity and computational efficiency.
On the other hand, also experimental techniques for the mechanical characterization of
cells [80] implicitly assume a mechanically homogeneous cell interior. Real biological
cells, however, have internal structures as complex as they are diverse.
In [pub4], we address the question of how big the deviations introduced by the homo-
geneity assumption are compared to an actual heterogeneous internal cell structure.
We investigate three different cell models, as shown in figure 5.1: First, a well-defined
inhomogeneity is used to study the influence of its stiffness, size, shape, and position, on
the cell behavior. Then, we employ a randomly inhomogeneous model, where we assign
a random stiffness to every tetrahedron of the mesh, to combine all factors at once.
Both models we compare with a homogeneous equivalent cell, that we obtain by using
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Figure 5.1: The reference shape of our three cell models investigated in [pub4], revealing
the inner structure: (a) Our homogeneous equivalent cell, with an effective stiffness
obtained as volume weighted average from the constituents’, (b) a well-defined inho-
mogeneity inside the cell volume with various size, stiffness, shape, and position, (c) a
randomly inhomogeneous cell with a different stiffness assigned to each tetrahedron of
the mesh.

the same stiffness — obtained from a volume weighted average of the heterogeneous
structure’s constituents — in the entire mesh. In our publication [pub4], we combine
our mechanical characterization systems from both [pub2], [pub3], and [74], i. e., the
cell under compression and in flow, and systematically investigate the possibility to
substitute an inhomogeneous cell with our homogeneous equivalent.
Strikingly, in all cases, the stationary and quasi-static force versus deformation behavior
are in perfect agreement with that of the homogeneous equivalent cell. Even for an
inhomogeneity that is 50 times, i. e., unrealistically, stiffer than the rest of the cell, we
observe practically the same results. Only the dynamic shape of a cell in flow alters,
since the tank-treading motion of the material forces a stiffer part at surface to produce
a bump that periodically moves along. Nevertheless, while the influence of these bumps
is visible in the time evolution of the deformation parameter, its time averaged value
exactly represents the one obtained from the homogeneous equivalent cell.

5.2 Explanation of the change in strain hardening behavior
of the Mooney-Rivlin model

As was shown before in section 3.2.2 and [pub2] for the Mooney-Rivlin model, the strain
hardening effect depends on the mode of deformation. In case of a compression, the
higher order terms lead to an increase of the strain hardening when compared to the
neo-Hookean model. In the linear shear flow scenario solved by the Roscoe theory [93],
on the other hand, the strain hardening effect decreases or increases, depending on the
ratio between the shear moduli µ1 and µ2 from (2.21). First, using the simple analytical
approach developed in section 3.2.1, this general difference is explained by a change of
roles of the first and second order deformation terms for oblate and prolate deformations.
The turn of the strain hardening effect in shear flow for w ≈ 0.7 is explained using the
shear model from section 3.2.1 at the end of this section.



5.2. Explanation of the change in strain hardening behavior
of the Mooney-Rivlin model 43

5.2.1 Role of oblate and prolate deformation
The Taylor deformation (3.39) is calculated from the major and minor semi-axes of the
triaxial ellipsoid. Choosing the two equal semi-axes a = α1 = α2, we for set the oblate
spheroidal deformation

aoblate
major = α1 = α2 = a (5.1)

aoblate
minor = α3 = a−2 . (5.2)

This yields the Taylor deformation and its inverted form, which gives the distinct
semi-axis as function of the Taylor deformation:

Doblate = a3 − 1
a3 + 1 ⇔ a =

(1 + D

1 − D

) 1
3

= f(D)
1
3 (5.3)

For the prolate spheroid we have accordingly

aprolate
major = α3 = a−2 (5.4)

aprolate
minor = α1 = α2 = a , (5.5)

and obtain for the dependency of a on the Taylor deformation

Dprolate = 1 − a3

1 + a3 ⇔ a =
(1 − D

1 + D

) 1
3

= f(D)− 1
3 . (5.6)

The functional relation between the cell stress and deformation is then recovered by
inserting a from (5.3) and (5.6) into (3.49) as:
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These relations are depicted in figure 5.2(a,b) for w ∈ [0, 1]. When writing (5.7) and
(5.8) in terms of the elastic moduli µ1 and µ2,

σoblate
vM =

∣∣∣µ1
(
f

2
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+ µ2
(
f

4
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)∣∣∣ (5.9)

σprolate
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∣∣∣µ2
(
f

2
3 − f− 4

3
)

+ µ1
(
f

4
3 − f− 2

3
)∣∣∣ , (5.10)

it becomes clear that the roles of the two moduli switch between oblate and prolate
deformations. Thus, as depicted in figure 5.2(a), decreasing w increases the strain
hardening effect compared to the neo-Hookean case (w = 1), while in figure 5.2(b)
decreasing w decreases the strain hardening effect.
A comparison between this analytical approximation for the oblate deformation (5.7) and
our cell compression simulations is shown in figure 5.3. Surprisingly, the neo-Hookean
case (w = 1) is fairly well described by the approximative model; then, the deviations
increase to roughly 1.5 times the cell stress obtained from the simulation for w = 0.
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Figure 5.2: Dimensionless cell stress σvM/µ versus Taylor deformation D as function of
the parameter w for (a) an oblate and (b) a prolate deformation. The strain hardening
effect compared to the neo-Hookean formulation (w = 1) consistently increases for
oblate and decreases for prolate deformations.
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Figure 5.3: Dimensionless cell stress from our AFM simulations in [pub2] compared to
the oblate spheroid approximation from figure 5.2(a). Colors refer to the same w as in
figure 5.2.
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The model consistently overestimates the realistic compression from the simulation due
to the geometrical differences: Being compressed between two plates, the cell in the
simulation develops two flat circular contact faces increasing in size, while the oblate
spheroid has a continuously curved surface. The former, disc-like, geometry is not as
well represented through the Taylor deformation.
A slightly different result is obtained when comparing the analytical approximation
of (5.8) with data from the Roscoe theory (section 3.2.2), shown in figure 5.4. Since
the ellipsoidal deformation of the cell in shear flow computed from the Roscoe theory
is quite similar to the prolate spheroid, the Taylor deformation is a good deformation
measure for both scenarios. Starting with the same slope for small D, the limiting cases
w = 0 and w = 1 under- and overestimate the behavior predicted by the Roscoe theory.
The stress approximation using a prolate spheroid also consistently increases with w. In
the data from the Roscoe theory, a turn is observed at w ≈ 0.7, beyond which the strain
hardening effect becomes less. An explanation for that phenomenon is approached in
the following, by considering the pure shear deformation for the cell stress calculations
instead of a prolate (uniaxially elongated) spheroid.

5.2.2 Effect of shear deformation

In an actual shear flow, the Roscoe theory shows the strain hardening behavior for a neo-
Hookean material (w = 1). With decreasing w, first an increase of the strain hardening
effect is observed until w ≈ 0.7, below that the effect continuously decreases again. This
change in behavior is not captured by the uniaxial description in section 5.2.1; it can,
however, be approached using a simple shear deformation — which is not to be confused
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Figure 5.4: Dimensionless cell stress from the Roscoe theory [93] compared to the prolate
spheroid approximation from figure 5.2(b). Colors refer to the same w as in figure 5.2.
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with the deformation inside a shear flow. In shear flow, the incompressible spherical cell
assumes the shape of a triaxial ellipsoid with α3 = 1

α1α2
̸= 1, whereas the ideal shearing

deformation fixes α3 = 1.
Choosing the major semi-axis as a = α1 we for set the oblate spheroidal deformation

aoblate
major = α1 = 1

α2
= a (5.11)

aoblate
minor = α3 = a−2 , (5.12)

from which the Taylor deformation and its inversion are derived as:

Doblate = a2 − 1
a2 + 1 ⇔ a =

(1 + D

1 − D

) 1
2

= f(D)
1
2 (5.13)

Inserting this result into the cell stress equation (3.53), one obtains
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α2
1

− 2)2 , (5.14)

which is symmetric around w = 1
2 , implying that the strain hardening effect changes at

this point.
Figure 5.5 shows the cell stress versus deformation data for the shear model in comparison
to the Roscoe theory. For small deformations, the approximation describes the data from
the Roscoe theory quite well, however, the stress differences covered by the variation of
w are comparably small, and the ideal shear approximation mostly underestimates the
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Roscoe theory. This does come not surprising, since the actual cell geometry according
to the Roscoe theory lies somewhere between the prolate spheroid and the sheared
sphere. Additionally, the turning point of the strain hardening effect at w = 0.5 is
below the value of w ≈ 0.7 observed for the Roscoe theory. Since the prolate spheroid
approximation does not show this behavior, the Roscoe theory lies between the two
approximations also in this matter.
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Figure 5.5: (a) Dimensionless cells stress from the sheared spheroid approximation with
change of shear thinning behavior at w = 0.5. (b) Dimensionless cell stress from the
Roscoe theory [93] compared to the sheared spheroid approximation from (a).

(a)

(b)
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5.3 Estimating the elongational stress at the nozzle exit
As introduced in section 3.1.1.5, the change of the flow conditions from inside the nozzle
to the free bioink strand come along with radial flow components at the nozzle exit,
which cause the cells passing the transition to be stretched in radial direction, when
flowing close to the center.
In [pub3] we provide a detailed numerical analysis of this effect in dependency of the
shear thinning rheology of the bioink. Our relevant key findings in [pub3] for this part
can be summarized as follows: First of all — inside the nozzle — there is a pressure
dependent migration of the cells towards the center, which will focus the cell distribution
at the nozzle exit towards the center. The effect of the elongational flow present there
will therefore have an effect on a larger portion of the cells than it would have on a
uniform radial cell distribution. We conduct a series of simulations of cell-free bioinks
at the exit to determine the length scale at which these flow components take effect.
Interestingly, the width of the transition is found practically independent of the rheology
and has a length scale of two times the channel radius. This finding we use to deduce an
accurate approximation for the elongation rate ε̇ at the nozzle exit which only utilizes
flow quantities known from the flow inside the nozzle, i. e., the maximum and average
velocity of the infinite cylinder computations. The relation ([pub3] equation (15))

ε̇ ≈ umax − uavg
2R

(5.15)

accurately predicts the average elongational rate, and thus the average elongational
stress, acting on cells at the center of the nozzle exit.
This estimate can be applied to the computations using the simple power-law viscosity
from section 3.1.2.1 as well. We obtain

ε̇ ≈ uavg − umax
2R

= n2

(n + 1)(3n + 1)

(
σmax

m

) 1
n

(5.16)

for the elongation rate as function of the maximum shear stress inside the nozzle. Using
the strain rate [pub3]

Ṡ =
√

3|ε̇| , (5.17)

the estimated elongational stress at the exit is found as

σelong = σmax

[
√

3 n2

(n + 1)(3n + 1)

]n

, (5.18)

which depends on the shear thinning exponent n as only material parameter. The ratio
σelong

σmax
is shown in figure 5.6, revealing the following insights: Similar to our numerical

observations in [pub3], the importance of the elongational stress at the nozzle exit
relative to the shear stress inside the nozzle increases with increasing shear thinning
strength; however, the magnitude never exceeds that of the maximum shear stress.
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Figure 5.6: The ratio between our estimate
for the elongational stress σelong at the noz-
zle exit (5.18) and the maximum shear stress
σmax inside the nozzle as function of the
power-law exponent n, showing how the elon-
gational stress becomes increasingly relevant

— relative to the shear stress — for shear
thinning fluids.

5.4 Predicting cell survival percentage from critical cell stress

Using the method explained in section 3.1.2.2, we can practically predict the cell survival
as function of the maximum printing shear stress from only one material parameter:
the critical shear stress σcrit that a cell can endure. Inversely, the procedure can also be
applied to determine this critical quantity from experimental cell survival measurements.
Through extensive experimental efforts Ouyang et al. [73, fig. 8] provided a large data
set of cell viability measurements of embryonic stem cells. They used bioinks based
on gelatine-alginate mixtures with different concentration compositions at various
temperatures between 22.5 ◦C to 30 ◦C — therefore varying the viscosity and the shear
thinning properties [73]. They report an inverse exponential dependency of the cell
survival on the maximum shear stress present in the printing needle.
We use our method (3.28) to reproduce the data from Ouyang [73] via fitting (by eye)
the critical shear stress and the corresponding variance. In figure 5.7 the result is
presented for σcrit = 150 Pa and ν = 80 Pa. As can be seen, our prediction perfectly
fits the experimental data in the entire range of experimentally assessed shear stresses.
The range covered between the highly shear thinning and the Newtonian prediction is
similar to the experimentally found error bars, suggesting again that the shear thinning
behavior is — practically — irrelevant for the accuracy of this prediction. Finally, in
contrast to the empirically proposed exponential dependency [47, 73], our prediction
correctly predicts the shoulder for low shear stresses, where the cell viability is close to
100 %.
However, this model is not capable of explaining every experimental data set found in
literature; for two — not solely process related — reasons: First of all, research efforts
in the field of bioprinting aim to produce printed constructs with high cell viability,
meaning that only the report of high cell survival in literature is regarded as success,
while a low cell viability deems the entire process useless. Hence, systematically assessed
data showing the gradual decrease of cell viability with the change of process relevant
parameters is sparse, and most investigations show a merely handful of data points to
cover the wide range of process parameters [45, 47, 69]. Another reason is the obvious
dependency on the type of cell used. Cells of the various tissue types (of different
species) have different mechanical properties, and they also react entirely different to
stress. This behavior can further be tuned chemically to alter the cells stiffness [74],
which introduces another variable in the aforementioned literature data. Han et al. [48]
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Figure 5.7: Our cell survival percentage prediction (3.28) from section 3.1.2.2 perfectly
reproduces the large experimental data set of Ouyang et al. [73, fig. 8] for embryonic
stem cells and correctly captures the exponential-like decrease and the low-stress plateau.
The probability distribution (3.27) for the critical cell stress is scaled for better visibility.
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conducted a systematic investigation of fibroblasts in alginate solution with different
concentrations, printed at different pressures, with different nozzle diameter and different
nozzle length. They observe — in terms of figure 5.7 — a cell viability between 50 %
and 90 % in a range of maximum shear stresses up to 2 kPa [48], which may suggest an
independence of the fibroblast viability of the shear stress.

5.5 Cells during the bioprinting process

In the following, a numerical analysis of the cell behavior during the 3D bioprinting
extrusion process is presented. We build simulation setups of the three main stages —
the inlet, the nozzle, and the exit — using our numerical tools developed in section 4.1
and section 4.2. Our interest lies in a quantification of the cell stresses and strains
during these stages, especially considering differences of the bioink rheology. In this
thesis, we further supplement our detailed single-cell investigation from [pub3] with
simulations of a cell suspension passing through the entire printhead.
In section 5.5.1, simulations of the inlet part are presented. The following two sections
summarize the work of [pub3] and provide additional simulations with a cell suspension.
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5.5.1 Cells entering the nozzle

A part of the printing process not yet considered in the publications for this thesis is
the inlet of the nozzle, where the bioink flows from the larger cartridge (typically a
cylindrical container with radius of a few cm in diameter) into the fine nozzle. As the
fluid is approximately uniformly pushed into the nozzle, an elongational flow pattern is
created that stretches the cells on their way approaching the inlet orifice.
We build a simulation setup that approximately resembles this scenario by simulating
the flow from a large slit with 533 µm × 107 µm cross-section into a square microchannel
with 107 µm side length which resembles the nozzle. Cells are placed at random positions
in the cartridge and the flow is driven by inflow an outflow planes with constant normal
velocities. Figure 5.8(a,c) shows the simulation setup in comparison to the flow through
the cylindrical nozzle and its exit. Since the flow is accelerated towards the orifice,
cells are elongated in this direction and their deformations appear to be the same
at equal radial distances from the orifice. Interestingly, when looking at the Taylor
deformation of the cells entering the nozzle in figure 5.8(b), it becomes apparent that
the peak deformation caused by the elongational flow pattern is almost equal for all
cells entering the orifice. For cells flowing at the center, we observe a clear peak of the
deformation only upon entering the nozzle, which quickly relaxes towards the almost
negligible deformation inside the nozzle (cf. section 5.5.2). Cells entering from an angle
exhibit two further features: first, when flowing close to the sharp edge of the inlet, they
deform into a kidney-like shape while bending around the edge. Second, the elongational
deformation shortly decreases, but is then superseded by the ellipsoidal deformation
caused by the shearing motion of the fluid inside the nozzle, discussed in section 5.5.2.
This is also shown in the close-up view in figure 5.9(a,b), together with the internal cell
stress distribution. As the similar peak in the cell deformation indicates, also the cell
stress distribution is uniform and equal for cells flowing both centered and off-centered
upon entering the inlet. The corresponding results for a shear thinning bioink with
α = 0.6 are shown in figure 5.8(c,d) and figure 5.9(c,d): Cells suspended in a shear
thinning bioink show the overall same characteristics as in a Newtonian fluid, however,
due to our assumption of equal volume flux, the hydrostatic pressure gradient and hence
the hydrodynamic stresses are reduced, resulting in similarly reduced cell deformations
during the entrance.

5.5.2 Cells flowing through the nozzle

When cells flow through the cylindrical nozzle, they experience the shear stresses caused
by the pressure drop along the channel. We provide a detailed analysis of the behavior
of a single cell flowing through the nozzle in [pub3]. The following part summarizes the
key findings therein:
When a cells flows along the center axis of the nozzle, it experiences an axisymmetric
fluid stress around it, hence deforming into an axisymmetric, bullet-like shape. The inner
distribution of the cell stress reflects the linear radial dependency of the undisturbed
surrounding fluid stress (3.5). For a increasingly shear thinning bioink, the pressure
needed to push it through the needle at equal flow rate, decreases, thus leading to
less cell pronounced cell deformation at the center. In fact we find in [pub3], that the
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Figure 5.8: Cell suspension during the printing process for (a,b) α = 0 and (c,d) α = 0.6.
The gray vertical lines in the deformation plots indicate the position of the nozzle inlet
and exit.
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Figure 5.9: Internal cell stress upon entering the nozzle inlet for (a) α = 0 and (b) α = 0.6
showing a close-up view of the shaded area in figure 5.8(a,c). For both centered and
off-centered flowing cells, the stress increases uniformly and with the same magnitude
during the passage through the inlet. Then, the centered flowing cell assumes an almost
stress-free bullet-like shape, whereas the off-centered flowing cell assumes an ellipsoidal
shape which is subject to larger stresses. (c,d) Cells flowing very close to the corner
exhibit a kidney-like shape with higher, localized stresses. Flow velocity scale is the
same as in figure 5.8.
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Figure 5.10: Cell deformation of cells in a dense suspension in the nozzle compared
to the Roscoe theory [93] for α = 0 and α = 0.6. Besides noise introduced by cell-cell
interactions, the data excellently matches the Roscoe theory.
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cell strains for centered flowing cells are negligibly small. Cells that flow off-centered
and near the wall assume an approximately ellipsoidal shape, with a tank-treading
motion followed by the entire cell. The cell migrates radially towards the axis, and while
it experiences decreasing fluid stress, it undergoes a series of ellipsoidal shapes until
it reaches close (≈ 1 cell radius distance) to the center, where it transitions into the
bullet-like or almost undeformed shape. We employ the theory of Roscoe, as detailed
in 3.2.2 and the SI of [pub3], which is a theory originally designed to describe the cell
motion in a Newtonian fluid in a linear flow. By approximating the local environment
of the cell in the nozzle as linear shear flow, we find an excellent agreement between the
cell stress and deformation with the prediction of the Roscoe theory. In addition, we
show that it is equally accurate for the description of cells in a shear thinning bioink,
demonstrating that the shear stresses dominate the cell deformation.
We supplement these single-cell investigations in this thesis with further data obtained
from simulations with a dense cell suspension. We place 60 cells in our 400 µm long,
periodic channel with 50 µm radius, which corresponds to a cell concentration of approx.
19×106 cells/mL or a volume fraction of 4.1 %. As can be seen in figure 5.8 in the middle
portion, individual cells assume ellipsoidal shapes while flowing off-center, and bullet-like
shapes at the center, similar to our single-cell observations. Hence, we can compare
the deformation data to the Roscoe theory in figure 5.10. While the observed time
development of each individual cell is occasionally disturbed when it comes in contact
with another cell, we still find an excellent agreement of the overall cell deformation
with the theoretical prediction as function of the local undisturbed fluid stress. This
shows how the Roscoe theory is practically not limited to only single cells or very dilute
suspensions, but can also reasonably well describe more dense particle suspensions.
The deformation pattern in figure 5.8(b,d) of cells from inside the nozzle then continues
in the nozzle exit portion.
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5.5.3 Cells exiting the nozzle
When cells pass through the orifice at the tip of the nozzle, they experience the
elongational flows discussed in section 5.3. For a single cell, this scenario has been
investigated in detail in [pub3]. Our relevant findings therein are summarized in the
following:
When a single cell is flowing at the center, the symmetric flow conditions radially stretch
and axially compress it, causing the bullet-like shape from inside the nozzle to assume
an oblate-like shape. During this deformation, the internal stress distribution increases
uniformly in the whole cell. After the transition, the cell quickly relaxes towards
its spherical equilibrium shape. We found in section 5.5.2 that an increasingly shear
thinning bioink reduces the cell stress significantly inside the nozzle for cells flowing
near the center. However, this effect increases the importance of the elongational cell
stress at the nozzle, which inevitable act on the cell. The cell stress peak observed at
the exit hence becomes increasingly relevant compared to the shear stress when the
shear thinning strength of the bioink increases. Ultimately, cell damage is determined
by the strain exhibited by the cell, and the strain depends not only on the stress, but
also the time that the cell experiences it. In a simulation series with extrusion velocities
increased by more than one order of magnitude, we find that the peak cell strains remain
almost unchanged, since the higher elongational fluid stresses are balanced by the short
application time. A single cell flowing near the channel wall on the inside experiences the
elongational and the shear flow at the same time, which leads to a radial displacement
of the entire cell at the exit. We report that in that case the relaxation from the shear
deformation from inside the nozzle towards the equilibrium shape remains the dominant
effect. We characterize this with the relaxation time scale, which becomes longer for
increasing shear thinning, due to the larger viscosity at low shear rates.
To supplement these findings, we conduct simulations of the same flow setup with a
suspension of 60 cells passing through the nozzle, as illustrated in figure 5.8 on the
right. The suspension (with a cell concentration of approx. 19 × 106 cells/mL) shares
the overall same characteristics as the single cell observations: Smoothly continuing the
deformation curves from inside the nozzle in figure 5.8(b), the most dominant effect
for off-centered flowing cells clearly remains the relaxation from the shear deformation
into the stress free shape, while centered flowing cells experience solely the peak of the
elongational flows.



Chapter 6

Conclusion and outlook

This thesis explored two pathways from theory to application, which were eventually
combined in order to make practical predictions about a real 3D bioprinting process. On
the one hand, the independence of cellular behavior on intracellular elastic heterogeneity,
and its dependence on the mode of deformation and the rheology of the liquid environ-
ment, elucidated the roles of purely passive physical aspects of cell mechanics. On the
other, the cell-free flow of shear thinning liquids in important geometries built the basis
for efficient prediction methods for bioprinting applications. In combination, we used
our analytical tools and numerical investigations to identify the major hydrodynamic
influences on cells during a 3D bioprinting process.
Starting with purely fluid-based investigations, we developed in [pub1] a semi-analytical
method to compute the exact pressure-driven flow profile of a generalized Newtonian
fluid in a pipe, which can easily be implemented for complex viscosity models like the
Carreau-Yasuda description, or be applied to rheological measurement data directly.
We also showed how this method can be inverted in order to assess the shear thinning
properties of a bioink on-line during the printing process via capillary rheometry. Based
on the power-law viscosity description, we developed an analytical method to compute
the shear-induced cell damage during bioprinting that only requires one critical cell
quantity and is practically independent of the bioink rheology. The predictive power of
this simple model was demonstrated by accurately reproducing a large experimental
data set of cell survival from literature, proving the importance of hydrodynamic shear
stresses for cell damage during bioprinting. Due to its simplicity, this method offers a
number of opportunities for extensions for future research. For example, time dependent
cell damage can be assessed by further taking into account the flow speed of the cells in
a nozzle of known length, or a non-uniform cell distribution inside the nozzle can be
employed.
Next, in order to build a framework for the simulation of the entire 3D bioprinting
process, we developed a suitable numerical model for cells in [pub2]. We provided
extensive experimental validation using AFM-based compression and indentation mea-
surements as well as microfluidic flow experiments. By extending the neo-Hookean strain
energy density description to the Mooney-Rivlin form, we found an increasingly strain
hardening behavior, which was necessary to properly describe our FluidFM compression
experiments of rat embryonic fibroblasts in [pub2]. In addition, we showed that the
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hyperelastic properties accurately describe also bovine endothelial cells, NIH-3T3 cells,
and artificial hydrogel particles. In future research, the applicability of our model to
other cell types of interest, entire cell clusters or organoids can be explored.
To supplement our numerical cell model, the theory of Roscoe [93] was extended from
the purely neo-Hookean to the Mooney-Rivlin description as well, which revealed a
different strain hardening behavior in a linear shear flow scenario compared to the
compression. This opposite behavior was explained with a simplified analytical model
of a triaxially elongated sphere. In [pub3], we further proved the applicability of the
Roscoe theory to cells in a non-linear pipe flow, as well as cells suspended in a shear
thinning bioink. On the one hand, this widely expanded the range of applicability of
this theory. On the other, it showed that the cell behavior in flow is mostly shear stress
driven and does not directly depend on the rheological properties of the surrounding
liquid or the flow curvature.
A major simplification in our investigations was the homogeneity of the cell’s elastic
interior. And while the excellent agreement of our numerical model with experimental
studies in [pub2] and [pub3] had already suggested reasonable trust in the assumption,
we provided systematic numerical proof in [pub4]. By using one well-defined as well as
one randomly inhomogeneous cell, we showed that, in both micromechanical compression
scenarios and in microfluidic applications, the heterogeneous cell could be effectively
replaced by a homogeneous one. The effective stiffness of our homogeneous equivalent
cell was simply obtained as the volume weighted average of the constituents’ stiffness.
A detailed investigation of single cells and dense cell suspensions during a realistic 3D
bioprinting process combined the usage of all previously calibrated models. The first
stage where cells experienced a notable deformation was the inlet from the cartridge
into the nozzle. The purely elongational flow produced the same cell deformation almost
independent of the direction from which the cell was coming, as the flow pattern pulls
radially inwards. This elongational deformation peak was of comparable magnitude
as the shear deformation that the cells experience when flowing near the wall inside
the nozzle. Due to the radial migration, the cell distribution shifted towards the center
of the channel along the length of the nozzle. Therefore, the elongational flow at the
exit, although smaller in magnitude than that at the inlet, became relevant. Taking
into account increasingly shear thinning fluid properties, the overall cell deformation
decreased significantly in all three stages, when considering the same volume flux. We
identified the shear stress inside the nozzle as the most significant influence, especially
since the time span during which it acted on the cells was the longest. Finally, for this
scenario, we proved the applicability of the Roscoe theory [93] for single cells and a
dense cell suspension flowing in a shear thinning bioink in a non-linear flow pattern.
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Appendix A

Details of the derivation of the Roscoe the-
ory

In this section, the mathematical derivations of the works of Roscoe [93] and Jeffery [94]
are repeated for convenience and supplemented with additional details and explanations.
For comparability, we will use the notation employed by Roscoe where possible and
introduce new symbols where necessary. Hence, important equations which appear
in both works will be references with the equation number according to Roscoe, who
usually references the respective equation in Jeffery’s work. Primed quantities always
denote those of the fluid, such without prime belong to the particle. Quantities with a
bar are the respective quantities averaged over the particle volume, which are equal to
the value at the particle surface.
In a liquid of undisturbed (linear) fluid motion defined by [93, eq. (22)]

v′
i = e

′(1)
ij xj + ζ ′

ijxj , (A.1)

with local strain [93, eq. (13)] and vorticity

e
′(1)
ij = 1

2

(
∂v′

i

∂xj
+

∂v′
j

∂xi

)
and ζ ′

ij = 1
2

(
∂v′

i

∂xj
−

∂v′
j

∂xi

)
, (A.2)

the fluid stress is given by [93, eq. (8)]

p′
ij = −p′′δij + 2η0e

′(1)
ij . (A.3)

Here, p′′ is a hydrostatic pressure and η0 denotes the dynamic viscosity of the fluid.
The second term is identical to the viscous stress defined previously in (2.3). The force
per unit area at the particle surface (normals pointing outwards) at any point is given
by [93, eq. (10)]

Ti = pijnj , (A.4)

where pij is the stress tensor inside the particle, which is assumed to fulfill

∂pik

∂xk
= 0 , (A.5)
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i. e., there is no variation of the stress inside the particle, and hence [93, eq. (11)]

pij = ∂(pikxj)
∂xk

. (A.6)

Therefore, the average stress in the particle volume V (enclosed by the surface S) can
be derived using the divergence theorem (‡) as follows:

p̄ij = 1
V

∫
V

pij dV (A.7)

(A.6)= 1
V

∫
V

∂(pikxj)
∂xk

dV (A.8)

‡= 1
V

∫
S

(pikxj)nk dS (A.9)

= 1
V

∫
S

(piknk)xj dS (A.10)

(A.4)= 1
V

∫
S

Tixj dS (A.11)

Note that the condition (A.5) for the stress in the particle is also assumed for the fluid,

∂p′
ik

∂xk
= 1

2

(
∂2v′

i

∂x2
k

+ ∂

∂xk

∂v′
k

∂xi

)
= 0 , (A.12)

and is known as slow-motion assumption.
The disturbed velocity field around the particle has to fulfill three conditions: (i) It
has to approach the undisturbed velocity (A.1) for large distances from the particle,
(ii) it has to be continuous across the particle surface, and (iii) fulfills a stress balance
between fluid stresses (A.3) and particle stresses (A.11) [93].
This problem has been solved by Jeffery [94] for a rigid, ellipsoidal particle. His solution
(using the notation of Roscoe [93]) for the force per unit area exerted by the liquid on
the particle (A.4) is [93, eq. (15)]

Ti = −p′′ni + η0Aijnj , (A.13)

where Aij is a certain deviatoric tensor (cf. eqs. (A.27)–(A.35) and description) with
components that depend on the shape of the ellipsoidal particle and the undisturbed
surrounding fluid motion (A.1). The shape of the ellipsoid is defined by its principal
stretches α1, α2, and α3, with

α1α2α3 = 1 and V = 4π

3 α1α2α3a3
0 . (A.14)

Upon identifying the undisturbed fluid stress (A.3) in (A.13), it can be rewritten as

Ti = −p′′ni + 2η0e
′(1)
ij nj + η0Aijnj − 2η0e

′(1)
ij nj (A.15)

= −p′′ni︸ ︷︷ ︸
(i)

+ 2η0e
′(1)
ij nj︸ ︷︷ ︸

(ii)

+ η0Aijnj︸ ︷︷ ︸
(iii)

+ 2η0∆e
′(1)
ij nj︸ ︷︷ ︸

(iv)

= pijnj . (A.16)
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With (A.4), one can identify four contributions to the particle stress: (i) The hydrostatic
pressure, (ii) the fluid stress of the real undisturbed flow (A.1) in large distance of the
particle, (iii) the stress exerted by the actual flow around the particle at its surface
(A.13), and (iv) the stress caused by the disturbance ∆v′

i of the real undisturbed flow
due to the particle presence at its surface. The last term [93, eq. (24)] contains the
strain part of

∆v′
i = vi − v′

i , (A.17)

the difference between the real undisturbed fluid motion (A.1) and the particle motion
at the surface, which is of similar form [93, eq. (23)]

vi = ē
(1)
ij xj − ζ̄ijxj , (A.18)

and vanishes for a rigid particle, vrigid
i = 0. Hence

∆v′
i = −v′

i = ∆e
′(1)
ij xj − ∆ζ ′

ijxj = −e
′(1)
ij xj + ζ ′

ijxj . (A.19)

Roscoe applies the solution of Jeffery (A.16) to the case of a particle with internal and
surface motion, i. e., vi ̸= 0. To be able to use the same formula as for the rigid particle,
the disturbance (A.17) has to be equal to (A.19), which can be achieved via replacing
the undisturbed flow by [93, eq. (25)]

v′′
i = e

′′(1)
ij xj − ζ ′′

ijxj = v′
i − vi (A.20)

=
(
e

′(1)
ij − ē

(1)
ij

)
xj −

(
ζ ′

ij − ζ̄ij

)
xj , (A.21)

which yields

∆v′
i = 0︸︷︷︸

rigid

−v′′
i

(A.17)= vi︸︷︷︸
moving

−v′
i . (A.22)

The surface force acting on a particle with surface motion vi in an undisturbed flow v′
i

is therefore:

Ti = −p′′ni︸ ︷︷ ︸
(i)

+ 2η0e
′(1)
ij nj︸ ︷︷ ︸

(ii)

+ η0A′
ijnj︸ ︷︷ ︸

(iii)

+ 2η0∆e
′(1)
ij nj︸ ︷︷ ︸

(iv)

(A.23)

The terms (i) and (ii) of (A.23) are equal to those of (A.16). A′
ij in (iii) denotes the

deviatoric tensor Aij , but computed for the replaced undisturbed fluid motion v′′
i (A.20)

instead of v′
i (A.1). For the last term (iv), we insert the strain part of the disturbance

(A.19) or (A.22) and obtain [93, eq. (26)]:

Ti = −p′′ni + 2η0e
′(1)
ij nj + η0A′

ijnj − 2η0e
′′(1)
ij nj (A.24)

= −p′′ni + 2η0e
′(1)
ij nj + η0A′

ijnj − 2η0
(
e

′(1)
ij − ē

(1)
ij

)
nj (A.25)

= −p′′ni + η0A′
ijnj + 2η0ē

(1)
ij )nj (A.26)
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The deviatoric tensor Aij is found during the derivation of the velocity field around the
rigid particle in the work of Jeffery [94] by applying the boundary condition to the flow
field at the particle surface, and is defined by [93, eqs. (17),(19)] (or [94, eqs. (25),(26)]
in the original work):

A11 = 4
3

2g′′
1e

′(1)
11 − g′′

2e
′(1)
22 − g′′

3e
′(1)
33

g′′
2g′′

3 + g′′
3g′′

1 + g′′
1g′′

2
(A.27)

A22 = 4
3

2g′′
2e

′(1)
22 − g′′

3e
′(1)
33 − g′′

1e
′(1)
11

g′′
2g′′

3 + g′′
3g′′

1 + g′′
1g′′

2
(A.28)

A33 = 4
3

2g′′
3e

′(1)
33 − g′′

1e
′(1)
11 − g′′

2e
′(1)
22

g′′
2g′′

3 + g′′
3g′′

1 + g′′
1g′′

2
(A.29)

A12 = 4g1e
′(1)
12 − α2

2g′
3ζ ′

12
g′

3
(
α2

1g1 + α2
2g2
) (A.30)

A13 = 4g1e
′(1)
13 − α2

3g′
2ζ ′

13
g′

2
(
α2

1g1 + α2
3g3
) (A.31)

A23 = 4g2e
′(1)
23 − α2

3g′
1ζ ′

23
g′

1
(
α2

2g2 + α2
3g3
) (A.32)

Due to the symmetry of the tensors e
′(1)
ij = e

′(1)
ji and ζ ′

ij = −ζ ′
ji, it follows for the lower

off-diagonal elements of Aij :

A21 = g2e
′(1)
21 − α2

1g′
3ζ ′

21
2g′

3
(
α2

1g1 + α2
2g2
) = g2e

′(1)
12 + α2

1g′
3ζ ′

12
2g′

3
(
α2

1g1 + α2
2g2
) (A.33)

A31 = g3e
′(1)
31 − α2

1g′
2ζ ′

31
2g′

2
(
α2

1g1 + α2
3g3
) = g3e

′(1)
13 + α2

1g′
2ζ ′

13
2g′

2
(
α2

1g1 + α2
3g3
) (A.34)

A32 = g3e
′(1)
32 − α2

2g′
1ζ ′

32
2g′

1
(
α2

2g2 + α2
3g3
) = g3e

′(1)
23 + α2

2g′
1ζ ′

23
2g′

1
(
α2

2g2 + α2
3g3
) (A.35)

Note that Jeffery’s solution [94, eq. (26)] is derived for a rotating particle and its
rotation frequencies ωi appear in the off-diagonal components, which is omitted here.
The quantities gi, g′

i, and g′′
i , are given with ∆′ =

√(
α2

1 + λ′)(α2
2 + λ′)(α2

3 + λ′) by the
following integrals [93, eq. (20)][94, eq. (11)]:

g1 =
∞∫

0

dλ′(
α2

1 + λ′)∆′ (A.36)

g2 =
∞∫

0

dλ′(
α2

2 + λ′)∆′ (A.37)

g3 =
∞∫

0

dλ′(
α2

3 + λ′)∆′ (A.38)
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g′
1 =

∞∫
0

dλ′(
α2

2 + λ′)(α2
3 + λ′)∆′ = g3 − g2

α2
2 − α2

3
(A.39)

g′
2 =

∞∫
0

dλ′(
α2

3 + λ′)(α2
1 + λ′)∆′ = g1 − g3

α2
3 − α2

1
(A.40)

g′
3 =

∞∫
0

dλ′(
α2

1 + λ′)(α2
2 + λ′)∆′ = g2 − g1

α2
1 − α2

2
(A.41)

g′′
1 =

∞∫
0

λ′ dλ′(
α2

2 + λ′)(α2
3 + λ′)∆′ = α2

2g2 − α2
3g3

α2
2 − α2

3
(A.42)

g′′
2 =

∞∫
0

λ′ dλ′(
α2

3 + λ′)(α2
1 + λ′)∆′ = α2

3g3 − α2
1g1

α2
3 − α2

1
(A.43)

g′′
3 =

∞∫
0

λ′ dλ′(
α2

1 + λ′)(α2
2 + λ′)∆′ = α2

1g1 − α2
2g2

α2
1 − α2

2
(A.44)

Note that we use the symbol λ′ to denote the difference between Roscoe’s dimensionless
quantity λ [93, eq. (18)] (which we use here) and Jeffery’s notation [94, eq. (7)]. Shall
the fluid stress be symmetric, the same will apply to Aij , which leads to the following
relations between the undisturbed fluids rate of strain and vorticity and the shape of
the ellipsoid:

A12 = A21 (A.45)

⇒ ζ ′
12

e
′(1)
12

= −α2
1 − α2

2
α2

1 + α2
2

(A.46)
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Inserted into (A.30)–(A.32) simplifies the off-diagonal components of A and yields [94,
eq. (39)]

A12
(A.30)= 4g1e

′(1)
12 − α2

2g′
3ζ ′

12
g′

3
(
α2

1g1 + α2
2g2
) (A.47)

(A.46)= 4e
′(1)
12

g1 + α2
2

α2
1−α2

2
α2

1+α2
2
g′

3

g′
3
(
α2

1g1 + α2
2g2
) (A.48)

(A.41)= 4e
′(1)
12

g1 + α2
2

α2
1−α2

2
α2

1+α2
2

g2−g1
α2

1−α2
2

g′
3
(
α2

1g1 + α2
2g2
) (A.49)

= 4e
′(1)
12

g′
3
(
α2

1 + α2
2
)(α2

1 + α2
2

)g1 + α2
2

α2
1−α2

2
α2

1+α2
2

g2−g1
α2

1−α2
2(

α2
1g1 + α2

2g2
) (A.50)

= 4e
′(1)
12

g′
3
(
α2

1 + α2
2
) g1α2

1 + g1α2
2 + g2α2

2 − g1α2
2(

α2
1g1 + α2

2g2
) (A.51)

= 4e
′(1)
12

g′
3
(
α2

1 + α2
2
) , (A.52)

as well as

A13 = 4e
′(1)
13

g′
2
(
α2

3 + α2
1
) (A.53)

A23 = 4e
′(1)
23

g′
1
(
α2

2 + α2
3
) . (A.54)

Roscoe [93, ch. 4] applies the computations above to a viscoelastic ellipsoidal particle
with a moving boundary (tank-treading behavior) in linear shear flow as follows: The
coordinates of a material point of the particle starting at position (x̃1, x̃2, x̃3) are
following an elliptical trajectory and are given by [93, eq. (29a)]

x1 = α1(x̃1 cos(νt) − x̃2 sin(νt)) (A.55)
x2 = α2(x̃1 sin(νt) + x̃2 cos(νt)) (A.56)
x3 = α3x̃3 , (A.57)

where x1, x2, and x3, align with the ellipsoid’s semi-axes, thus yielding the surface
velocity [93, eq. (29b)]

v1 = −α1
α2

νx2 (A.58)

v2 = α2
α1

νx1 (A.59)

v3 = 0 . (A.60)

The surface velocity defines the rate of strain and vorticity from (A.18). A linear shear
flow — commonly described in the global coordinate system as v′

1 = κx2, v′
2 = v′

3 = 0
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[93, eq. (27)] with a shear rate κ — written in terms of a coordinate system aligned
with the ellipsoid’s semi-axes through rotation by an angle θ is given by [93, eq. (32)]

v′
1 = κ

(
x1 sin θ cos θ + x2 cos2(θ)

)
(A.61)

v′
2 = −κ

(
x1 sin2(θ) + x2 sin θ cos θ

)
(A.62)

v′
3 = 0 . (A.63)

From that, the only non-zero components of the replaced undisturbed fluid’s rate of
strain and vorticity from (A.2) follow as [93, eqs. (33)–(35)]

e
′(1)
11 − ē

(1)
11 = −

(
e

′(1)
22 − ē

(1)
22

)
= κ

2 sin(2θ) (A.64)

e
′(1)
12 − ē

(1)
12 = e

′(1)
21 − ē

(1)
21 = κ

2 cos(2θ) + ν
α2

1 − α2
2

2α1α2
(A.65)

ζ ′
12 − ζ̄12 = −

(
ζ ′

21 − ζ̄21
)

= −κ

2 − ν
α2

1 + α2
2

2α1α2
, (A.66)

and, together with (A.18), the fluid stress at the particle surface from (A.24) can be
computed as [93, eq. (36)]:

p′
11 = −p′′ + η0A′

11 (A.67)
p′

22 = −p′′ + η0A′
22 (A.68)

p′
33 = −p′′ + η0A′

33 (A.69)

p′
12 = η0A′

12 − η0ν
α2

1 − α2
2

α1α2
(A.70)

p′
21 = η0A′

21 − η0ν
α2

1 − α2
2

α1α2
(A.71)

Differences of the normal stresses can be used to eliminate the hydrostatic pressure p′′.
One obtains [93, eqs. (37),(38)]1

p′
11 − p′

22 = 2η0κ sin(2θ) g′′
1 + g′′

2
g′′

2g′′
3 + g′′

3g′′
1 + g′′

1g′′
2

= 5η0κ sin(2θ)I (A.72)

p′
11 + p′

22 − 2p′
33 = 2η0κ sin(2θ) g′′

1 − g′′
2

g′′
2g′′

3 + g′′
3g′′

1 + g′′
1g′′

2
= 5η0κ sin(2θ)J . (A.73)

Due to the symmetry of the stress tensor, p′
12 = p′

21, it follows with (A.46) the relation
between the shear rate of the undisturbed liquid κ and the tank-treading frequency of

1The parameters I and J correspond to the notation used by Roscoe and do not refer to the strain
invariants of the elastic cell model.
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the particle ν [93, eq. (41)]:

− ζ ′
12

e
′(1)
12

= α2
1 − α2

2
α2

1 + α2
2

(A.74)

κ
2 + ν

α2
1+α2

2
2α1α2

κ
2 cos(2θ) + ν

α2
1−α2

2
2α1α2

= α2
1 − α2

2
α2

1 + α2
2

(A.75)

ν

(
α2

1 − α2
2

α2
1 + α2

2

α2
1 − α2

2
2α1α2

− α2
1 + α2

2
2α1α2

)
= κ

2

(
1 − α2

1 − α2
2

α2
1 + α2

2
cos(2θ)

)
(A.76)

− 2α1α2
α2

1 + α2
2
ν = κ

2

(
1 − α2

1 − α2
2

α2
1 + α2

2
cos(2θ)

)
(A.77)

⇒ ν = −α2
1 + α2

2
2α1α2

κ

2

(
1 − α2

1 − α2
2

α2
1 + α2

2
cos(2θ)

)
(A.78)

Inserting the obtained results into (A.70), one obtains

p′
12 =η0A′

12 − η0ν
α2

1 − α2
2

α1α2
(A.79)

(A.52)= η0
4e

′(1)
12

g′
3
(
α2

1 + α2
2
) − η0ν

α2
1 − α2

2
α1α2

(A.80)

(A.65)= η0
4

g′
3
(
α2

1 + α2
2
)(κ

2 cos(2θ) + ν
α2

1 − α2
2

2α1α2

)
− η0ν

α2
1 − α2

2
α1α2

(A.81)

(A.78)= η0
4

g′
3
(
α2

1 + α2
2
)(κ

2 cos(2θ) − α2
1 + α2

2
2α1α2

κ

2

(
1 − α2

1 − α2
2

α2
1 + α2

2
cos(2θ)

)
α2

1 − α2
2

2α1α2

)

− η0ν
α2

1 − α2
2

α1α2
, (A.82)

which simplifies to [93, eqs. (42),(43)]

=η0
4κ

2g′
3

[
cos(2θ)(
α2

1 + α2
2
) − 1

2α1α2

(
1 − α2

1 − α2
2

α2
1 + α2

2
cos(2θ)

)
α2

1 − α2
2

2α1α2

]
− η0ν

α2
1 − α2

2
α1α2

(A.83)

=η0
κ

2g′
3

[
cos(2θ)

(
4(

α2
1 + α2

2
) +

(
α2

1 − α2
2
)2

α2
1α2

2
(
α2

1 + α2
2
))−

(
α2

1 − α2
2
)

α2
1α2

2

]
− η0ν

α2
1 − α2

2
α1α2

(A.84)

=η0
κ

2g′
3

[
cos(2θ)α2

1 + α2
2

α2
1α2

2
−
(
α2

1 − α2
2
)

α2
1α2

2

]
− η0ν

α2
1 − α2

2
α1α2

(A.85)

=η0
κ

2g′
3

α2
1 + α2

2
α2

1α2
2

[
cos(2θ) − α2

1 − α2
2

α2
1 + α2

2

]
− η0ν

α2
1 − α2

2
α1α2

(A.86)

=5
2κη0K

[
cos(2θ) − α2

1 − α2
2

α2
1 + α2

2

]
− η0ν

α2
1 − α2

2
α1α2

. (A.87)
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With the equations above, the viscous stress exerted by the fluid on the particle surface
is determined by the ellipsoid’s shape, the shear rate of the undisturbed flow in infinite
distance, and the inclination angle between the flow axis and the ellipsoid’s major
semi-axis. The shape of the ellipsoid depends on the constitutive law of its material,
which defines how much elastic stress the particle exerts on the fluid at its surface
given a certain deformation and the material properties. For the triaxial ellipsoidal
deformation defined by (A.55) and introduced the beginning of section 3.2, the normal
stress differences at the particle surface using the Mooney-Rivlin description (2.21) can
be computed from (3.40):

p11 − p22 = µ

[
w
(
α2

1 − α2
2

)
+ (1 − w)

( 1
α2

2
− 1

α2
1

)]
(A.88)

p11 + p22 − 2p33 = µ

[
w

(
α2

1 + α2
2 − 2

α2
1α2

2

)
+ (1 − w)

( 1
α2

2
+ 1

α2
1

− 2α2
1α2

2

)]
(A.89)

In a stationary state, the fluid stress must be balanced by the cell stress at the particle
surface [93], i. e., the normal stress differences of the fluid (A.72) and (A.73) must balance
the elastic particle stress from (A.88) and (A.88), respectively. Since the off-diagonal
components are zero for a triaxial deformation, the fluid stress p′

12 must be balanced by
the viscous stress caused by the material motion inside the particle (A.58)–(A.60) [93,
eq. (54)]

p12 = −η1ē
(1)
12 = −η1ν

α2
1 − α2

2
α1α2

, (A.90)

where viscosity of the particle material is denoted by η1. The obtained system of
equations for the coupled viscoelastic motion is:

p′
11 − p′

22 = p11 − p22 (A.91)
p′

11 + p′
22 − 2p′

33 = p11 + p22 − 2p33 (A.92)
p′

12 = p12 (A.93)
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From the equality of the (purely viscous) shear stress (A.93), the inclination angle θ
can be derived [93, eq. (80)] as follows:

0 =p′
12 − p12 (A.94)

(A.87),(A.90)= 5
2κη0K

[
cos(2θ) − α2

1 − α2
2

α2
1 + α2

2

]
− η0ν

α2
1 − α2

2
α1α2

+ η1ν
α2

1 − α2
2

α1α2
(A.95)

=5
2κη0K

[
cos(2θ) − α2

1 − α2
2

α2
1 + α2

2

]
− ν

α2
1 − α2

2
α1α2

(η0 − η1) (A.96)

(A.78)= 5κ

2 η0K

[
cos(2θ) − α2

1 − α2
2

α2
1 + α2

2

]

+ α2
1 + α2

2
2α1α2

κ

2

[
1 − α2

1 − α2
2

α2
1 + α2

2
cos(2θ)

]
α2

1 − α2
2

α1α2
(η0 − η1) (A.97)

× 2
5κη0K⇔ 0 = cos(2θ) − α2

1 − α2
2

α2
1 + α2

2
+ α2

1 + α2
2

2α1α2

[
1 − α2

1 − α2
2

α2
1 + α2

2
cos(2θ)

]
α2

1 − α2
2

α1α2

η0 − η1
5Kη0

(A.98)

= cos(2θ)
[
1 − α2

1 + α2
2

2α1α2

α2
1 − α2

2
α2

1 + α2
2

α2
1 − α2

2
α1α2

η0 − η1
5Kη0

]

− α2
1 − α2

2
α2

1 + α2
2

+ α2
1 + α2

2
2α1α2

α2
1 − α2

2
α1α2

η0 − η1
5Kη0

(A.99)

= cos(2θ)
[
1 −

(
α2

1 − α2
2
)2

2α2
1α2

2

η0 − η1
5Kη0

]

− α2
1 − α2

2
α2

1 + α2
2

[
1 −

(
α2

1 + α2
2
)2

2α2
1α2

2

η0 − η1
5Kη0

]
(A.100)

⇔ cos(2θ) =
(

α2
1 − α2

2
α2

1 + α2
2

)1 − 2
5K

η0−η1
η0

(
α2

1+α2
2

2α1α2

)2

1 − 2
5K

η0−η1
η0

(
α2

1−α2
2

2α1α2

)2 (A.101)

Using the parameter definition in [93, eq. (62)], i. e.,

τ = 3η0 + 2η1
2µ

, σ = 5η0
2µ

and τ − σ

Kσ
= − 2

5K

η0 − η1
η0

, (A.102)

(A.101) can be written as [93, eq. (80)]

cos(2θ) =
(

α2
1 − α2

2
α2

1 + α2
2

)1 + τ−σ
Kσ

(
α2

1+α2
2

2α1α2

)2

1 + τ−σ
Kσ

(
α2

1−α2
2

2α1α2

)2 . (A.103)

Numerical solution of the Roscoe theory

One of the key results of the Roscoe theory used in the present thesis is the knowledge of
stationary cell deformation as function of the Capillary number. The following section
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describes one approach to obtain it from the coupled problem from the previous section
step by step. The relevant equations are repeated here for convenience.

1. Set the viscous and elastic parameters η0, η1, and µ.

2. Choose a value of α1 for which the rest of the parameters is to be determined.

3. Divide (A.92) by (A.91) to obtain an equation that can be solved (numerically)
for α2 [93, eq. (78)]:

p11 + p22 − 2p33
p11 − p22

= J

I
(A.104)

w
(
α2

1 + α2
2 − 2

α2
1α2

2

)
+ (1 − w)

(
1

α2
2

+ 1
α2

1
− 2α2

1α2
2

)
w
(
α2

1 − α2
2
)

+ (1 − w)
(

1
α2

2
− 1

α2
1

) = g′′
1 − g′′

2
g′′

1 + g′′
2

(A.105)

4. The incompressibility condition yields the last semi-axis

α3 = 1
α1α2

(A.106)

and the cell deformation is completely determined.

5. With the particle shape fully defined, its inclination angle with the flow axis can
be computed with (A.101)

cos(2θ) =
(

α2
1 − α2

2
α2

1 + α2
2

)1 − 2
5K (1 − ϕ)

(
α2

1+α2
2

2α1α2

)2

1 − 2
5K (1 − ϕ)

(
α2

1−α2
2

2α1α2

)2 , (A.107)

where ϕ = η1
η0

denotes the viscosity ratio between the liquid inside and outside of
the particle.

6. Solving (A.91) for κ yields

κ = µ

2η0 sin(2θ)
g′′

2g′′
3 + g′′

3g′′
1 + g′′

1g′′
2

g′′
1 + g′′

2

[
w
(
α2

1 − α2
2

)
+ (1 − w)

( 1
α2

2
− 1

α2
1

)]
.

(A.108)

7. Finally, the tank-treading frequency follows from (A.78) from the computed flow
parameters:

ν = − κ

2
α2

1 + α2
2

2α1α2

(
1 − α2

1 − α2
2

α2
1 + α2

2
cos(2θ)

)
(A.109)
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Roscoe theory in the limits of low and high Capillary number

Ca → 0: In the limit of very low Capillary number, the cell remains essentially
spherical thus greatly simplifying the theoretical computations of Roscoe. The integrals
in (A.36)–(A.44) reduce to

g1 = g2 = g3 = 2
3 (A.110)

g′
1 = g′

2 = g′
3 = 2

5 (A.111)

g′′
1 = g′′

2 = g′′
3 = 4

15 . (A.112)

Since lim
Ca→0

α1 = lim
Ca→0

α2 = lim
Ca→0

α3 = 1, the inclination angle (A.101) is found as
θ = 45◦. The tank-treading frequency (A.78) is therefore ν = −κ

2 , the shear stress
(A.71) vanishes, and the diagonal stresses (A.67)–(A.70) give σ11 = −σ22 = 5

2κη0.

Ca → ∞: In the limit of very high Capillary number, the cell becomes an infinitley
stretched ellipsoid, with semi axes

lim
Ca→∞

α1 = ∞ (A.113)

lim
Ca→∞

α2 = 0 (A.114)

1 <α3 ≪ α1 (A.115)

aligned with the global coordinate axes. The alignment θ = 0 again follows from (A.101)
(using η0 = η1):

lim
Ca→∞

cos(2θ) = lim
Ca→∞

α2
1 − α2

2
α2

1 + α2
2

= 1 , (A.116)

hence θ = 0. Similarly, it follows

lim
Ca→∞

ν = −κ

2 lim
Ca→∞

α2
1 + α2

2
2α1α2

(
1 − α2

1 − α2
2

α2
1 + α2

2
cos(2θ)

)
(A.117)

= −κ

2 lim
Ca→∞

1
2α1α2

(
α2

1 + α2
2
)2 −

(
α2

1 − α2
2
)2

α2
1 + α2

2

= −κ

2 lim
Ca→∞

2α1α2
α2

1 + α2
2

= 0(−) (A.118)

for the tank-treading frequency. Note however, that, while ν asymptotically approaches
zero, the velocity of a point at the particle surface does not vanish. In fact, for a point
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on the α2-axis inside the cell, one obtains for the velocity (A.58)

lim
Ca→∞

v1 = − lim
Ca→∞

α1
α2

x2

(
−κ

2

)
α2

1 + α2
2

2α1α2

(
1 − α2

1 − α2
2

α2
1 + α2

2
cos(2θ)

)
(A.119)

= κx2 lim
Ca→∞

1
4

(
α2

1 + α2
2

α2
− (α2

1 − α2
2)2

α2
2(α2

1 + α2
2)

)
(A.120)

= κx2 lim
Ca→∞

α2
1

α2
1 + α2

2) = κx2 , (A.121)

which is equal to the motion of the surrounding undisturbed fluid. This behavior is
also clearly visible in the viscous shear stress of the cell which approaches that of the
surrounding undisturbed flow for high Ca, as we investigate more detailed in [pub3].

Computing the velocity field around a tank-treading particle

The velocity field around the particle is not explicitly given by Roscoe, but derived by
Jeffery [94, eqs. (22)–(24)] for a rotating, rigid, particle. However, for its calculation
in the vicinity of an elastic, tank-treading, particle, we can use the same reasoning
as used in (A.24) for the computation of the surface stress distribution. I. e., for the
real undisturbed velocity in infinite distance of the particle we use (A.1), while we
use the replaced undisturbed motion (A.21) for the computation of the velocity field
disturbance near the particle. Inside the particle, the velocity is given by (A.18). For
the computation of the velocity field ui, the following additional quantities are needed:
Similar to g1, g′

2, etc., Jeffery defines [94, eqs. (8)–(10)]

g̃1 =
∞∫

a2
0λ′

dλ(
α2

1 + λ
)
∆′(λ) = a3

0α (A.122)

g̃′
1 =

∞∫
a2

0λ′

dλ′(
α2

2 + λ′)(α2
3 + λ′)∆′ = a5

0α′ (A.123)

g̃′′
1 =

∞∫
a2

0λ′

λ′ dλ′(
α2

2 + λ′)(α2
3 + λ′)∆′ = a5

0α′′ (A.124)

which are the integrals in (A.36)–(A.44), but with a2
0λ′ instead of 0 at the lower

integration limit, and in this thesis denoted with a tilde. The rightmost equalities in
(A.122) and the following equations give the corresponding relation with the symbols
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used by Jeffery [94]. Furthermore, we define analogously to [94, eqs. (15),(27),(28)]

1
P ′2 =

[
x2

1(
α2

1 + λ′)2 + x2
2(

α2
2 + λ′)2 + x2

3(
α2

3 + λ′)2
]

= a4
0

1
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23
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11 = 8a−5
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C ′
3 = 2α2

1A′
11 − 2α2

2A′
22 = 8a−5

0 W . (A.131)

As before x1, x2, and x3, are aligned with the particles semi-axes. Due to the dependency
on xi, the dimension of P ′ is L, the dimensions of Aij , B′

i, and C ′
i, is T −1. Then, with

the convenient substitution

Q′ ..= + x2x3(
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, (A.132)

the disturbed velocity field ui outside the particle can be expressed analogously to [94,
eq. (22)–(24)] as

u1 = + x1
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(A.133)
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u2 = + x1
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and
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(A.135)

In the equations (A.133)–(A.135), the first two terms in the first three lines can be
identified with the undisturbed flow surrounding the particle (A.1). In figure A.1, the
velocity vectors of the flow inside and outside the particle at the central plane (x3 = 0)
are shown for different Capillary numbers.
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Figure A.1: Velocity field disturbance according to (A.17) inside and around an elastic,
tank-treading particle suspended in linear shear flow at increasing Capillary numbers.
The arrow length and coloring indicate the magnitude of the disturbance, which is
normalized using the respective shear rate of the fluid and a constant distance.

Ca = 0.05, D=0.06 Ca = 0.10, D=0.12 Ca = 0.20, D=0.23

Ca = 0.40, D=0.38 Ca = 0.60, D=0.48 Ca = 0.80, D=0.56

Ca = 1.00, D=0.61 Ca = 1.20, D=0.66 Ca = 1.40, D=0.69

Ca = 1.60, D=0.72 Ca = 1.80, D=0.74 Ca = 2.00, D=0.77
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Conversion between Jeffery and Roscoe (and present work) notation For future reference,
the relations between the quantities used by Jeffery [94] on the left side and the ones
used by Roscoe [93] on the right side are given in the following. Note that λ′ defined
below corresponds to Roscoe’s λ, while λ below denotes that used by Jeffery.

λ = a2
0λ′ ∆ = a3

0∆′ (A.136)
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H ′ B F
G F ′ C
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Notes and corrections in Jeffery’s and Roscoe’s original work

• In [94, eq. (26)], all equations miss a “prime" on the right-hand side of the equation
in the second term of the numerator, e. g.

F = β0f − c2α0(ξ − ω1)
2α′

0(b2β0 + c2γ0) should be F = β0f − c2α′
0(ξ − ω1)

2α′
0(b2β0 + c2γ0) . (A.146)

• The prefactor 1
8a3

0 in [93, eq. (16)] belongs on the other side of the equation:
Roscoe non-dimensionalizes the ellipsoids semi-axes, hence the quantities g1, g′

2,
etc., are dimensionless and the tensor Aij has the dimension T −1 of a strain rate.
In Jeffery’s work the dimension of α1, β′, etc., is L−3, and that of the tensor
components A, B, etc., is L3T −1. This is merely a typographic error in [93,
eq. (16)] which does not affect the rest of the derivation.

• A factor of 8 is missing in [93, eq. (19)] in order to be consistent with the definition
of Aij of [93, eq. (16)]. This is a typographic error only and Roscoe uses the
correct form for later calculations, as can be seen from the derivation of the fluid
shear stress in (A.79), which gives the same result as [93, eq. (42)].

• The plus sign in [93, eq. (79)] should be a minus sign: This equation is the first
normal stress difference [93, eqs. (37),(76)], the minus follows directly from [93,
eq. (76)].
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Abstract

We present a simple but accurate algorithm to calculate the flow and shear rate profile of

shear thinning fluids, as typically used in biofabrication applications, with an arbitrary viscos-

ity-shear rate relationship in a cylindrical nozzle. By interpolating the viscosity with a set of

power-law functions, we obtain a mathematically exact piecewise solution to the incom-

pressible Navier-Stokes equation. The algorithm is validated with known solutions for a sim-

plified Carreau-Yasuda fluid, full numerical simulations for a realistic chitosan hydrogel as

well as experimental velocity profiles of alginate and chitosan solutions in a microfluidic

channel. We implement the algorithm in an easy-to-use Python tool, included as Supple-

mentary Material, to calculate the velocity and shear rate profile during the printing process,

depending on the shear thinning behavior of the bioink and printing parameters such as

pressure and nozzle size. We confirm that the shear stress varies in an exactly linear fash-

ion, starting from zero at the nozzle center to the maximum shear stress at the wall, indepen-

dent of the shear thinning properties of the bioink. Finally, we demonstrate how our method

can be inverted to obtain rheological bioink parameters in-situ directly before or even during

printing from experimentally measured flow rate versus pressure data.

Introduction

Biofabrication, or bioprinting, is a novel technology aimed at applying common 3D printing

techniques to fabricate living tissues. In extrusion-based biofabrication, the survival and func-

tionality of printed cells strongly depend on the hydrodynamic stresses that the cells experi-

ence during printing [1–5]. These stresses arise mainly from viscous shear forces in the printer

nozzle and are thus directly related to the flow profile and the viscosity of the bioink [6–11] in

which the cells are suspended. In an effort to reduce hydrodynamics stresses, shear thinning

bioinks have been designed that exhibit a nearly flat velocity profile and correspondingly low

shear rates in the nozzle center, in contrast to purely Newtonian liquids that develop a para-

bolic flow profile with higher shear rates throughout most of the nozzle [12–19]. Consequently,
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cells suspended in shear thinning bioinks can be expected to show increased survival rate and

better functionality after printing [4, 16, 20, 21].

To describe the rheology of inelastic, time-independent, shear thinning materials, a variety

of viscosity models exists, which are collectively labeled as generalized Newtonian fluids [22].

One of the simplest models assumes a power-law, also known as Ostwald-de Waele relation-

ship [4, 23, 24]. Real shear thinning materials, however, show power-law behavior only in a

limited range of shear rates, while Newtonian behavior is observed above and below this

range. The latter is particularly relevant for bioprinting applications and prevails in the central

region of the printing nozzle where the velocity approaches a constant value and thus a vanish-

ing shear rate. To properly model this behavior, a widely used description is the Carreau-

Yasuda (CY) [22, 25] model, which features a central power-law region that smoothly transi-

tions into two Newtonian plateaus in the limits of low and high shear rates. Many commonly

used hydrogel materials for bioprinting [26] but also polymer melts or solutions [27] can be

accurately characterized with the CY model. Existing methods to calculate theoretically the

velocity profile in the printing nozzle for a CY fluid [28, 29] require the shear rate at the nozzle

wall as an input parameter. Experimentally, however, this quantity is usually not known.

Instead either the pressure difference or the volume flux serve as control parameter.

In this work, we present an algorithm to compute the full velocity, shear rate, and viscosity

profile in a printing nozzle for generalized Newtonian fluids such as shear thinning bioinks.

Our algorithm is based on interpolating an arbitrary viscosity-shear rate relation by piecewise

continuous power-law functions, and requires only the experimentally imposed printing

parameters such as the channel radius and the driving pressure difference or flow rate as input

values. To allow for an efficient application of our method in everyday laboratory work, we

provide a user-friendly implementation of our algorithm for CY fluids as a Python tool

included as S1 File. This tool is much simpler to use than typical computational fluid dynamics

software and at the same time can provide higher accuracy at much less computational load.

The calculated shear stresses are a measure for the mechanical load experienced by cells

embedded in the bioink and can thus directly be correlated to post-printing cell viability mea-

surements [1, 11]. We confirm that the well-known linear shear stress distribution found in

Newtonian pipe flow is also valid for shear thinning fluids. We validate our algorithm by com-

paring it to the exact solution for a simplified Carreau-Yasuda fluid, to full numerical Lattice

Boltzmann simulations for a realistic chitosan hydrogel under typical printing conditions, and

to experimental velocity profiles of a shear thinning alginate solution in a microfluidic channel.

Furthermore, we show how our method can be inverted to construct a capillary rheometer,

which allows users to determine the rheological parameters of a given bioink using only a bio-

printer and a standard laboratory scale without the need of a sophisticated rheometer. Such in-
situ measurements of bioink rheology combined with the calculation of expected shear rates

will help users to optimize the printing process and to achieve the desired printing results espe-

cially when bioprinting shear stress-sensitive living cells.

1 Theory and results

1.1 Viscosity model

Our algorithm starts from an experimentally known viscosity-shear rate relation Zð _gÞ and

interpolates it by a series of power-law functions. The viscosity-shear rate relationship of the

bioink, e. g. a cell-laden hydrogel, or any other generalized Newtonian fluid, can be approxi-

mated by a continuous, piecewise function as given in (S-1) and depicted in Fig 1a. In every

interval, the viscosity-shear rate relation is described by a power-law model Zið _gÞ ¼ Ki _g
ni � 1
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with a consistency parameter Ki and a dimensionless exponent ni. The ith interval is bounded

by the shear rates _Gi� 1 and _G i, and we demand Zð _gÞ to be continuous at these bounds.

This continuity condition together with a set of _Gi uniquely determines the power-law

parameters Ki and ni in every interpolation interval, as detailed in section S-1.2.

We note that this approach can be applied to any material described in terms of generalized

Newtonian fluids, including yield stress fluids. Furthermore, our method includes cell-laden

bioinks, as, on the one hand, the presence of cells has been shown to only slightly alter the

materials’ rheological behavior [5, 30]. On the other hand, the macroscopic rheology of a cell

suspension, determined e. g. via shear rheometry or our capillary rheometry method presented

in section 3, can be used as input for our method.

1.2 Governing equations

Analogously to the well-known Poiseuille flow of a Newtonian fluid [31, pp. 180 ff.], we

assume a stationary, laminar, and pressure driven flow, with the velocity having only an axial

component u depending on the radial position r. We consider a cylindrical channel and

neglect entrance and exit effects. Applying these flow conditions, the incompressible Navier-

Stokes equations reduce to the ordinary differential equation as shown in section S-1.3:

G ¼
1

r
@

@r
rZ _gð Þ

@u
@r

� �

ð1Þ

Here, the constant pressure gradient G≔ @p
@z ¼

Dp
L is defined by the pressure drop Δp = p0 − pL<

0 over a channel segment of length L. For a Newtonian fluid, i. e. Zð _gÞ ¼ Z, integration of

Eq (1) directly yields the well-known linear radial dependency of the shear stress:

s rð Þ ¼ Z _g ¼ �
G
2
r ð2Þ

Fig 1. Viscosity and flow profile interpolation. (a) The viscosity-shear rate relationship of an arbitrary shear thinning fluid obtained e.

g. from a rheometer measurement is interpolated by power-law intervals. The bounds of the intervals (vertical lines) are given by the

intermediate shear rates, _G i. By using a large number of intervals, any arbitrary viscosity-shear rate relationship can be approximated as

closely as desired. (b) A long cylinder with uniaxial, stationary flow is used as a model for the flow of a bioink through a printer nozzle.

The flow profile is split into radial intervals Ri determined implicitly via the intermediate shear rates _G i.

https://doi.org/10.1371/journal.pone.0236371.g001
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Similar to the piecewise viscosity model in Fig 1a, we decompose the axial velocity u(r) and the

shear rate _gðrÞ into radial intervals Ri as given in (S-29) and (S-32) and illustrated in Fig 1b for

the velocity.

Inserting these piecewise profiles into the Navier-Stokes equation Eq (1) yields the follow-

ing system of equations where i denotes the intervals as above:

G ¼
1

r
@

@r
½� rKi _g i rð ÞÞ

nið � ð3Þ

_g iðrÞ ¼ �
@uiðrÞ
@r

ð4Þ

In order to solve this system of equations we assume the axial velocity to be continuously dif-

ferentiable and the shear rate to be continuous. The flow shall further fulfill a no-slip boundary

condition at the channel wall and have its maximum at the channel center. The mathematical

solution to the system of equations Eqs (3) and (4) is detailed in section S-1.4 and section S-1.5

and can be summarized as follows: the shear rate profile is obtained by integrating Eq (3) over

the radial position once. Inserting this solution into Eq (4) yields the velocity profile after

another integration over r. Both integrations come along with integration constants that are

determined employing the boundary conditions of the flow and the continuity conditions as

stated above.

1.3 Results

The first equation Eq (3) can be rearranged and integrated once to obtain the shear rate profile

in the ith interval:

_g i rð Þ ¼ �
G

2Ki
r

� �
1

ni ð5Þ

From this, the velocity profile is obtained by integrating over r, which ultimately yields (cf. (S-

58)):

uiðrÞ ¼ �
�

�
G

2Ki

�
1

ni

ni

ni þ 1
r1þ 1

ni

þ

�

�
G

2Kk

�
1

nk

nk

nk þ 1
A1þ 1

nk

�
Xk� 1

j¼i

Rj
_G j

njþ1

njþ1 þ 1
�

nj

nj þ 1

 !

ð6Þ

Here, the newly introduced index k denotes the radial interval that contains the physical

boundary of the channel, i. e. Rk−1� A� Rk with the channel radius A.

The radial shear stress profile can, similarly to the Newtonian case, be derived from Eq (1),

yielding the same linear behavior:

s rð Þ ¼ � Z _gð Þ
@u
@r
¼ �

G
2
r ð7Þ

This shows that the shear stress profile in a cylindrical channel is independent of the shear

thinning properties of the material.

Using the solutions for the shear rate (5) and the velocity (6), we derive mathematical

expressions for the flow rate as well as the average velocity, shear rate, viscosity, and shear
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stress. Details of the derivation and the corresponding solutions can be found in (S-63), (S-66),

(S-71) and (S-74), respectively (cf. section S-1.6). The flow rate or, equivalently, the average

flow velocity determines the printing speed in 3D bioprinting processes. The average shear

rate and shear stress can be used to estimate cell damage during printing [2, 4] as detailed in

section S-1.8 of the S1 File. We discuss the inclusion of possible wall-slip effects [35] in section

S-1.9 of the S1 File.

2 Validation

To validate our method, we implement the presented algorithm in a Python [32] tool, included

as S1 File together with an explanatory tutorial in section S-3 and available at https://github.

com/sjmuellerbt/CYprofiles. Our tool performs the viscosity interpolation according to sec-

tion 1.1 for a five-parameter Carreau-Yasuda fluid, given in Eq (9). The radial profiles for

velocity, shear rate, viscosity, and shear stress and their respective averaged quantities are cal-

culated after providing the printing parameters, i. e. the nozzle radius and the pressure gradi-

ent or an imposed flow rate.

We first validate our algorithm using an exact global mathematical solution for a simplified

CY model. Next, we compare our algorithm with Lattice Boltzmann simulations for a general

CY model using the open source software package ESPResSo [33, 34], for which we extended

both the CPU and GPU implementation with several inelastic viscosity models, including the

CY model. We finally perform experimental velocity profile measurements in a microfluidic

channel and confirm the theoretical prediction of our Lattice Boltzmann simulations.

2.1 Validation with global solution

We consider a simplified Carreau-Yassuda (CY) model of the following form

~Z _gð Þ ¼
~Z0

1þ K _g
ð8Þ

where ~Z0 is the viscosity in the limit of zero shear rate and K is a time constant. For this model,

an exact global solution to the NSE Eq (1) can be found as described in(S-79) and (S-81) (cf.

section S-1.7). As shown in Fig 2, we find excellent agreement between this exact solution and

the calculated profiles using our Python tool.

2.2 Validation with Lattice Boltzmann simulations

The general CY model [25] is given by

~Zð _gÞ ¼ ~Z1 þ
~Z0 � ~Z1

½1þ ðK _gÞ
a1 �

a2
a1

; ð9Þ

where ~Z1 is the viscosity in the limit of infinite shear rates and the exponents a1 and a2 deter-

mine the shape of the transition between the zero-shear Newtonian plateau and the power-law

region as well as the power-law behavior. For this general CY fluid a global mathematical solu-

tion to the NSE does not exist. We therefore compare our algorithm to Lattice-Boltzmann sim-

ulations using realistic bioink and printing parameters for a chitosan hydrogel taken from [26]

with the following rheological parameters: ~Z0 ¼ 5807 Pas, K = 5.33 s, a1 = 1.35 and a2 = 0.87.

The simulation setup consists of a 5 × 400 × 400 (x × y × z) box with a cylindrical boundary

along the x-axis corresponding to a physical radius of A = 100 μm. The flow is periodic in x-

direction thus leading to an effectively infinitely long channel. Further details of the Lattice-

Boltzmann simulations are given in the S1 File.
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The calculated and simulated flow profiles are in excellent agreement (Fig 3) thus validating

our algorithm for a general CY fluid.

2.3 Validation with experimental flow profile measurements

As experimental proof, we measure the flow profile of an alginate solution along the centerline

of a microchannel and compare our findings to Lattice Boltzmann simulations of the same

geometry.

We prepare a 2.0% alginate solution by mixing 800 mg of alginate (Grindsted PH 176,

Dupont, USA) in 50 ml Dulbecco’s phosphate buffered saline under constant stirring over-

night at room temperature together with yellow-green fluorescent beads (FluoroSphere car-

boxylated beads, Invitrogen, diameter: 0.5 μm). The alginate solution is injected under defined

pressure into a polymethylmetacrylate microfluidic channel equipped with male mini Luer

lock connectors (Darwin Microfluidics, France, internal volume: 8 μl) via a 15 cm long silicon

tube (inner diameter: 1 mm). The channel has a length of 58 mm and a quadratic cross section

of 190 μm × 190 μm, similar in size to the cross section of a typical printing needle. A square

cross section of the channel was chosen to avoid optical distortions that would arise from the

Fig 2. Validation with a mathematical solution. Flow profiles for the simplified CY model: the global mathematical

solution and the prediction by our algorithm agree very well. The parameters are N = 1000, η0 = 100 Pa s, K = 1.0 s and

G = −1.95 × 106 Pa m−1.

https://doi.org/10.1371/journal.pone.0236371.g002
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curvature of a cylindrical glass capillary in combination with the refractive index differences

between glass and alginate. We visualize the flow of alginate using an epifluorescence micro-

scope (DM4, Leica Microsystems, Germany) equipped with a CCD camera (frame rate: 100

Hz, Prosilica GE680, Allied Vision, Germany) and a 100 mW laser diode (473 nm). The micro-

scope is focussed at the mid-section of the channel (height: 95 μm).

We perform measurements at a pressure of 300 kPa, close to actual printing conditions.

The maximum flow speed in the center of the channel is around 2 cm s−1, which is too fast to

track the beads between successive frames. Instead, the velocity is estimated from the length of

the linear streaks of the beads during exposure, as shown in Fig 4a, divided by the exposure

time of 7 ms.

We perform Lattice Boltzmann simulations of the pressure driven flow of the alginate solu-

tion in a square microchannel. The simulation setup consists of a 5 × 400 × 400 (x × y × z)

box with plane boundaries in y- and z-direction forming a square channel that corresponds to

the 190 μm × 190 μm microfluidic channel used in the experiment. The viscosity parameters

were obtained using our capillary rheometry method described in section 3 as ~Z0 ¼ 3:65 Pas,
_gc ¼ 21:71 s� 1 and α = 0.67, according to equation Eq (10) below. Since we do not know the

pressure drop across the mini Luer-lock connectors and tubings, we estimate the pressure gra-

dient from the maximum flow speed measured at the center of the channel. Accordingly, we

Fig 3. Validation with Lattice Boltzmann calculations. Flow profiles of a chitosan hydrogel with a pressure gradient

of G = −7.0 × 107 Pa m−1 and N = 1000.

https://doi.org/10.1371/journal.pone.0236371.g003
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find that 79% of the total pressure drop of 300 kPa occurs across the 58 mm long channel,

while the mini Luer-lock connectors and tubings account for the remaining 21%.

Fig 4b depicts the measured flow profile in comparison to our Lattice Boltzmann simula-

tions. We see excellent agreement of the measured velocity profile and our numerical predic-

tion. Further measurements of alginate hydrogels with different concentrations, as well as a

chitosan hydrogel, at various printing pressures and in different channel geometries are

included as S1 File.

3 Inverse application for a capillary rheometer

Not all laboratories working in bioprinting may have access to sophisticated rheometers for

measuring the non-linear viscosity of their bioinks. Moreover, bioinks are often highly sensi-

tive fluids with a large batch-to-batch variation, and the sample used for rheometer measure-

ments may not behave in the same way as the sample used for the actual printing process. In

this section, we show how our method can be inverted to perform in-situ capillary rheometry

measurements using only a bioprinter and a standard laboratory scale. For this, we measure

Fig 4. Validation with experimental flow measurements. Experimental measurement of the flow profile of a 2%

alginate solution in a 190 μm × 190 μm microchannel. (a) Example micrograph of the bead tracking procedure. The

velocity with respect to the lateral position is obtained as the length (yellow circles and labels) of the streaks divided by

the exposure time. (b) The measured flow profile is in excellent agreement with our Lattice Boltzmann simulations.

https://doi.org/10.1371/journal.pone.0236371.g004
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the pressure versus flow rate relationship [35] for a range of discrete pressure values. Using

our Python tool, we then extract from this data the non-linear viscosity parameters of the

bioink.

3.1 Experimental setup

We prepare a 2.5% alginate solution using the protocol described in section 2.3 without the

addition of fluorescent beads. We measure the viscosity of the alginate solution at a tempera-

ture of 25˚C at shear rates between 0.01 s−1 and 100 s−1 using a cone-plate rheometer (DHR-3,

TA-Instruments, USA). Alternatively, we measure the viscosity with a custom-made bioprin-

ter that we use here as a capillary rheometer. A schematic of the experimental setup is shown

in Fig 5. The alginate solution is driven with a defined pressure (K8P electronic pressure regu-

lator, Camozzi Automation, Italy) through a steel needle (21G blunt cannula #9180109-02,

B-Braun, Germany, 28 mm length, 551 μm inner diameter). The pressure is increased stepwise

from 20 kPa to 200 kPa in steps of 20 kPa. The driving pressure is measured with a pressure

Fig 5. Experimental capillary rheometer setup. Schematic of the experimental setup using a custom-made bioprinter as capillary rheometer:

the bioink is driven through a syringe under defined pressure, and the flow rate of the extruded alginate is measured with a precision scale.

https://doi.org/10.1371/journal.pone.0236371.g005

PLOS ONE Shear thinning flow calculations inside a bioprinter needle

PLOS ONE | https://doi.org/10.1371/journal.pone.0236371 July 24, 2020 9 / 15

pub1



transducer (DRMOD-I2C-R10B, B+B Thermo-Technik GmbH, Germany), and the flow rate

of the extruded alginate is measured with a precision scale (DI-100, Denver Instrument, USA).

We then fit the zero-shear viscosity, ~Z0, the corner shear rate, _gc, and the power-law shear

thinning exponent, α, of a 3-parameter Carreau-Yasuda fluid to match the measured flow rate

versus pressure relationship. The viscosity-shear rate relationship is given by

~Z _gð Þ ¼ ~Z0

�

1þ

�
_g

_gc

�a�� 1

; ð10Þ

which is derived from Eq (9) by omitting the infinite-shear viscosity (~Z1 ¼ 0), and introduc-

ing the corner-shear rate _gc ¼ K � 1 as well as the single exponent α = a1 = a2. Fitting is per-

formed using a Marquard-Levenberg least-squares method implemented in the Python library

SciPy, where the squared difference between the measured and the computed flow rate is mini-

mized for each pressure level. The flow rate is computed according to (S-64) with the printing

parameters mentioned above and N = 150 interpolation intervals between shear rates of 10−6

s−1 to 108 s−1. Since the inner diameter of the printer cartridge is large compared to that of the

nozzle, we neglect a possible pressure drop along the cartridge.

3.2 Results

When measured with a cone-plate rheometer, the viscosity of a 2.5% alginate solution displays

a pronounced shear rate dependency (Fig 6a), which is well described by a 3-parameter CY

model according to Eq (10). Specifically, at shear rates below the corner shear rate

_gc � 17:8 s� 1, the viscosity is approximately constant, with ~Z0 � 7:9 Pas. At shear rates above

_gc, the viscosity decreases according to a power-law with exponent α� 0.74.

When the same 2.5% alginate solution is extruded through a 28 mm long 551 μm diameter

capillary, we find an over-proportional increase in flow rate with increasing pressure (Fig 6b).

Specifically, a doubling in pressure causes an approximately 10-fold increase in flow rate. This

experimentally measured flow rate versus pressure relationship is exactly predicted by our

numerical solution (blue line in Fig 6b), adding further support to the validity of our

algorithm.

If a rheometer is not available, the above procedure can be inverted to obtain the rheological

properties of the bioink as follows: starting from a first guess of the CY parameters, the pres-

sure versus flow rate is computed using our Python tool. Subsequently, the viscosity parame-

ters are refined until the prediction matches with the experimental data as shown in Fig 6b.

The parameters obtained from the flow-rate versus pressure data (red squares in Fig 6b) are

~Z0 � 6:8 Pas, _gc � 27:9 s� 1, and α� 0.78 and differ only slightly from the parameters

extracted from the cone-plate rheometer measurements. Accordingly, also only a slight differ-

ence between both parameter sets is seen in the velocity, shear rate and viscosity profiles

shown in Fig 7. Also visible in Fig 6b is an increasing deviation of the flow rate versus pressure

prediction for the cone-plate rheometer from the measured data with increasing pressure.

This is likely due to shear rheometers not being able to achieve the large shear rates that occur

under realistic printing conditions, while the capillary rheometer method intrinsically

accounts for that.

A specific advantage of this capillary rheometry approach is that the experiment can be per-

formed with the very same bioink that is currently in the printing cartridge prior to the actual

printing process. Since most bioprinters are pressure controlled, i.e. the bioink is extruded

through a printing needle with a constant pressure, the highly non-linear increase of the flow

rate with increasing pressure makes it difficult to find the optimal printing parameters and to
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predict the material shear stresses during the printing process. Our algorithm solves both

problems.

Conclusion

We presented a simple yet highly accurate algorithm to calculate the velocity and shear rate

profiles for generalized Newtonian fluids, such as shear thinning bioinks, in cylindrical noz-

zles. For this, an arbitrary experimentally known viscosity-shear rate relation is split into a set

Fig 6. Comparison between capillary rheometer and cone-plate rheometer results. (a) Viscosity versus shear rate

for a 2.5% alginate solution as measured with a cone-plate rheometer (data from 4 independent measurements, red

squares) shows the pronounced shear thinning of a CY fluid that is well characterized by 3 fit parameters (black line)

according to Eq (10). This shear thinning behavior can be predicted (blue line) from an independent capillary

rheometry experiment using our Python tool. (b) Flow rate versus pressure relationship of the alginate solution when

extruded through a 28 mm long 551 μm diameter capillary (red squares). This relationship follows our numerical

solution using 3 fit parameters (blue line). The flow rate versus pressure relationship can similarly be predicted (black

line) from the viscosity values obtained from an independent cone-plate rheometer experiment shown in the upper

panel, showing significant deviations with increasing pressure.

https://doi.org/10.1371/journal.pone.0236371.g006
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of continuous intervals described by power-laws. This includes the possibility to predict veloc-

ity and shear stress profiles in pure as well as cell-laden bioinks. In each interval, an exact solu-

tion for the shear rate and velocity is computed and connected to neighboring intervals to

obtain a continuous smooth profile over the entire nozzle diameter. For the shear stress, the

linear radial dependency independent of the fluid rheology was confirmed. In addition, the

total flow rate as well as the average viscosity, shear rate and shear stress are also found

mathematically.

We implemented our method as an easy-to-use Python tool for calculating the velocity and

shear rate profiles for a Carreau-Yasuda fluid. To validate this tool, we compared our predic-

tions to a mathematically exact global solution and to Lattice Boltzmann simulations for realis-

tic chitosan hydrogels under typical bioprinting conditions. In both cases, we found excellent

agreement. We further measured the velocity profile of an alginate solution in a microfluidic

channel and found good agreement with Lattice Boltzmann simulations.

An important experimental application of our theoretical method is capillary rheometry.

Here, the flow rate versus pressure relationship for a given hydrogel is obtained using a stan-

dard bioprinter. This data can then be fit to our theoretical predictions yielding the

Fig 7. Alginate flow profile from capillary rheometer and cone-plate rheometer data. Flow profiles of 2.5% alginate

hydrogel with a pressure difference of Δp = −105 Pa and N = 150. There is only a slight difference between the flow

profiles calculated from the viscosity parameters obtained with a cone-plate rheometer (black line) and our capillary

rheometer (blue line).

https://doi.org/10.1371/journal.pone.0236371.g007
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corresponding rheological parameters of the bioink. We illustrated this application for alginate

and found good agreement with classical rheometer data.

Our method and the accompanying Python implementation provide a fast and simple tool

to predict flow rates and shear stresses during bioprinting for a given bioink and thus will help

to optimize printing parameters, especially for shear stress-sensitive living cells.

Supporting information

S1 File. Mathematical derivation, further experimental validation, and user’s guide. The

supplementary material for the manuscript contains a detailed mathematical derivation of the

presented method and a simple model to estimate the force and deformation experienced by a

cell in shear thinning capillary flow. We also include further experimental measurements for

alginate 2% and 3% and chitosan 3% in square and rectangular microchannels, as well as the

corresponding error calculations. A user’s guide for the developed Python tool is provided.

(PDF)

S2 File. CYprofiles.py. File containing the implemented classes of our tool.

(PY)

S3 File. Tutorial.py. File with a basic usage example for the implemented classes.

(PY)
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2

S-1. Theory

Our algorithm starts from an experimentally known viscosity-shear rate relation η(γ̇)

and interpolates it by a series of power-law functions. This interpolation is subsequently

used for writing down a similar series of Navier-Stokes equations which are solved first

for the shear rate and then for the velocity profile.

S-1.1. Viscosity model

The viscosity-shear rate relationship of the bioink, or any other generalized Newtonian

fluid, can be approximated by a continuous, piecewise function

η (γ̇) =





K0γ̇
n0−1 0 ≤ γ̇ < Γ̇0

...

Kiγ̇
ni−1 Γ̇i−1 ≤ γ̇ < Γ̇i

...

KN γ̇
nN−1 Γ̇N−1 ≤ γ̇ <∞

, (S-1)

as depicted in figure 1a of the main text. In every interval the viscosity-shear rate

relation is described by a power-law model with a consistency parameter Ki having

the physical unit Pa sni , and a dimensionless exponent ni, according to the literature

[1–7]. We note that the shear rate can also be understood as dimensionless quantity,

normalized to a constant shear rate of 1 s−1 without changing its numerical value. Doing

so, the consistency parameter can be interpreted as a reference viscosity with the more

meaningful physical unit Pa s.

The ith interval is bounded by the shear rates Γ̇i−1 and Γ̇i. The condition

KiΓ̇
ni−1
i = Ki+1Γ̇

ni+1−1
i (S-2)

ensures the continuity of (S-1) across the interval boundary Γ̇i (i = 0, . . . , N − 1). Since

real fluids usually exhibit Newtonian behavior for zero and infinite shear rates, we take

n0 = nN = 1 (S-3)

for the power-law exponents in the first and last interval.

We note that instead of the power-law interpolation, a linear interpolation would also

be possible. However, since most bioinks show power-law shear thinning over a wide

range of shear rates, a power-law interpolation is computationally more efficient when

logarithmically-spaced shear rate intervals are used, as shown in figure 1a.

S-1.2. Determination of Ki and ni

Starting from an experimentally known viscosity-shear rate relation η̃ (γ̇) which can

be given either as raw rheological data or as a viscosity model with known parameters
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3

(e.g. [8, 9]) such as the Carreau-Yasuda model, the consistency indices Ki and exponents

ni in each interpolation interval are determined as follows. The lowest and highest

consistency indices are fixed by eq. (S-3) as

K0 = η̃
(

Γ̇0

)
and KN = η̃

(
Γ̇N−1

)
. (S-4)

Since rheological data often spans multiple decades, we choose an equidistant

partitioning of the interval [Γ̇0, Γ̇N−1] on a logarithmic scale, as shown in figure 1a. Given

the bounds of this interval and the number of interpolated points, the intermediate shear

rates are given by

Γ̇i = Γ̇0

(
Γ̇N−1

Γ̇0

) i
N−1

. (S-5)

The parameters of the interpolating power-law functions ηi (γ̇) are found by inserting the

known viscosity values at the interval bounds. Thus, the following system of equations

needs to be solved:

KiΓ̇
ni−1
i−1 = η̃

(
Γ̇i−1

)
(S-6)

KiΓ̇
ni−1
i = η̃

(
Γ̇i

)
(S-7)

By division of the two equations, the power-law exponent is found to be

ni = 1 + log



η̃
(

Γ̇i−1

)

η̃
(

Γ̇i

)



(

log

(
Γ̇i−1

Γ̇i

))−1

. (S-8)

Multiplication of (S-6) by (S-7) gives an expression for the consistency index:

Ki =

√
η̃
(

Γ̇i−1

)
η̃
(

Γ̇i

)(
Γ̇i−1Γ̇i

) 1−ni
2

(S-9)

By inserting a functional form or raw data for η̃ (γ̇) into (S-8) and (S-9) the interpolation

can be performed in the entire range of shear rates.

S-1.3. Governing equations

The Navier-Stokes equations to determine the flow field ~u read

%

[
∂~u

∂t
+ (~u ·∇) ~u

]
= −∇p+ ∇ · (τ)+ ~f , (S-10)

with the fluid mass density %, the pressure gradient ∇p, the viscous stress tensor τ , and

an external force term ~f . The viscous stress tensor is related to the viscosity and the

strain rate tensor ε via

τ = 2η (γ̇) ε , (S-11)
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where the strain rate tensor is defined as

ε = 1
2

[∇~u+ (∇~u)ᵀ] . (S-12)

Here, ∇~u denotes the dyadic product of the gradient operator and the velocity vector

and (∇~u)ᵀ its transpose. The shear rate can be obtained as invariant of the strain rate

tensor, i. e.

γ̇ =

√
2
∑

α,β

εαβεαβ . (S-13)

For a purely Newtonian fluid, the viscosity in (S-11) would be a constant.

S-1.3.1. Flow conditions. Analogously to the well-known Poiseuille flow of a Newtonian

fluid [10, pp. 180 ff.], we assume a stationary, laminar, and pressure driven flow, with the

velocity having only an axial component depending on the radial position. We consider

a cylindrical channel and neglect entrance and exit effects. For the following derivation,

a cylindrical coordinate system with a radial component r, an azimuthal component φ,

and an axial component z, is employed. In these coordinates, the flow conditions read:

~f = ~0 (S-14)

∂~u

∂t
= ~0 (S-15)

∂~u

∂z
= ~0 (S-16)

∂~u

∂φ
= ~0 (S-17)

~u (r, φ, z) = u~ez (S-18)

S-1.3.2. Constant pressure gradient. For a purely Newtionan fluid, the flow conditions

(S-14)-(S-18) imply a spatially constant pressure gradient throughout the entire channel.

In the following, we prove that the same holds for an arbitrary generalized Newtonian

fluid. The strain rate tensor in cylindrical coordinates reads:

ε = 1
2




2∂rur︸ ︷︷ ︸
(S−18)

= 0

∂ruφ +
1

r
∂φur −

1

r
uφ

︸ ︷︷ ︸
(S−17),(S−18)

= 0

∂zur︸︷︷︸
(S−18)

= 0

+∂ruz

− 2∂φuφ + 2
1

r
ur

︸ ︷︷ ︸
(S−17),(S−18)

= 0

1

r
∂φuz + ∂zuφ
︸ ︷︷ ︸

(S−17)
= 0

− − 2∂zuz︸ ︷︷ ︸
(S−16)

= 0




(S-19)

where the notation ∂x = ∂
∂x

denotes a partial spatial derivative with respect to the

coordinate x. The ”−” signs indicate the symmetric components of the tensor. The

pub1 SI



5

underbraced terms vanish due to the flow conditions. Thus, the viscous stress tensor

reduces to a single component,

τrz = τzr = η (γ̇)
∂uz
∂r

. (S-20)

The components of the NSE yield:

∂p

∂r
= 0 (r−component) (S-21)

∂p

∂φ
= 0 (φ−component) (S-22)

∂p

∂z
=

1

r

∂

∂r
(rτrz) (z−component) (S-23)

This shows that the pressure gradient has only a z-component. By applying the

derivative ∂z again on the remaining z-component of the NSE, we obtain:

∂2
zp = ∂z

[
1

r
∂r (rη (γ̇) ∂ru)

]
(S-24)

=
1

r
∂r [r∂z (η (γ̇) ∂ru)] (S-25)

=
1

r
∂r


rη (γ̇) ∂r ∂zu︸︷︷︸

(S−17)
= 0

+r∂ru ∂zη (γ̇)︸ ︷︷ ︸
(S−17)

= 0


 = 0 (S-26)

which shows that the pressure gradient is indeed constant and allows us to define

G ..=
∂p

∂z
=

∆p

L
, (S-27)

where ∆p = pL − p0 < 0 is the pressure difference along a channel segment of length

L. Applying the flow conditions, the Navier-Stokes equations reduce to the ordinary

differential equation (1):

G =
1

r

∂

∂r

(
rη (γ̇)

∂u

∂r

)
(S-28)

This equation is however still highly non-linear due to the dependency of η (γ̇) on ∂ru

via the shear rate γ̇ (cf. (S-31), (4)).

S-1.3.3. Ansatz and boundary conditions. Similar to the piecewise viscosity model in

(S-1), we decompose the axial velocity u (r) into intervals:

u (r) =





u0 (r) 0 ≤ r < R0

...

ui (r) Ri−1 ≤ r < Ri

...

uN (r) RN−1 ≤ r <∞

(S-29)
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as illustrated in figure 1b. The essential difference between (S-1) and (S-29) is that

the interval boundaries are determined by shear rates Γ̇i for the former and by radial

positions Ri for the latter. While the interval boundaries for the viscosity Γ̇i are an

input quantity (see section S-1.2), the radial boundaries are determined a posteriori

from the shear rate profile by the condition

γ̇ (Ri) = Γ̇i (S-30)

as will be shown in (S-42) below. The shear rate as a function of the radial position

γ̇ (r) is given by the first derivative of the velocity with respect to the radial position,

i. e.

γ̇ (r) = −∂u (r)

∂r
, (S-31)

and can also be written in the same piecewise manner:

γ̇ (r) =





γ̇0 (r) 0 ≤ r < R0

...

γ̇i (r) Ri−1 ≤ r < Ri

...

γ̇N (r) RN−1 ≤ r <∞

(S-32)

As for classical Poiseuille flow, we assume the common case of the velocity monotonically

decreasing with the radial position. According to (S-31), the shear rate is therefore

always positive. For u (r) to be continuously differentiable and finite at the channel

center, the piecewise definitions of the velocity and the shear rate must be equal at the

intermediate points, Ri, i. e.

ui (Ri) = ui+1 (Ri) (S-33)

and

γ̇i (Ri) = γ̇i+1 (Ri) . (S-34)

The flow shall further fulfill a no-slip boundary condition at the cylindrical channel wall

at r = A, i. e.

u (A) = 0 . (S-35)

To ensure the continuous differentiability of the axially symmetric flow field, the flow

must have a maximum at the channel center, r = 0. Therefore, the shear rate has to

vanish at this point:

γ̇ (0) = 0 (S-36)
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S-1.4. Solution to the shear rate profile

Inserting the ansatz (S-29) and (S-32) into the Navier-Stokes equation (S-28) yields the

following system of equations, (3) and (4), where i ∈ {0, . . . , N} denotes the intervals

as above:

G =
1

r

∂

∂r
(−rKiγ̇i (r)

ni) (S-37)

γ̇i (r) = −∂ui (r)
∂r

. (S-38)

The first equation (S-37), (3), can be rearranged and integrated once to obtain

γ̇i (r) =

(
− Gr

2Ki

− ci
Kir

) 1
ni

, (S-39)

where the ci are a set of integration constants that are determined next using the

continuity conditions (S-34) and the boundary condition (S-36).

S-1.4.1. Determination of the integration constants of the shear rate profile. The

integration constants ci can be shown to be zero using the complete induction proof

described in the following. The base clause, (S-39) for i = 0 with the boundary condition

(S-36) gives

γ̇0 (0) = lim
r→0

(
− Gr

2K0

− c0

K0r

) 1
n0 !

= 0 , (S-40)

which is only fulfilled if the integration constant vanishes, thus, c0 = 0.

Assuming that ci = 0, ci+1 can be determined using the continuity condition (S-34),

γ̇i (Ri) = γ̇i+1 (Ri) = Γ̇i , (S-41)

where the Γ̇i are given. The equality Γ̇i = γ̇i (Ri) yields an expression for the radial

position Ri of the interfacial point between γ̇i (r) and γ̇i+1 (r),

Ri = −2KiΓ̇
ni
i

G
, (S-42)

that can be inserted into the second part of (S-41) using (S-39):

Γ̇i =

(
− GRi

2Ki+1

− ci+1

Ki+1Ri

) 1
ni+1

(S-43)

=

(
Ki

Ki+1

Γ̇ni
i +

ci+1G

2Ki+1KiΓ̇
ni
i

) 1
ni+1

(S-44)

Employing the continuity condition of the viscosity model (S-2) gives an expression for

the ratio of the consistency parameters, i. e.

KiΓ̇
ni−1
i = Ki+1Γ̇

ni+1−1
i (S-45)

Ki

Ki+1

= Γ̇
ni+1−ni

i . (S-46)
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Inserting (S-46) into (S-44) finally yields

Γ̇i =

(
Γ̇
ni+1

i +
ci+1G

2Ki+1KiΓ̇
ni
i

) 1
ni+1

, (S-47)

which is equal only if ci+1 = 0 thus completing the proof.

With that, the final form for the shear rate profile in the ith interval is obtained as

(cf. (5)):

γ̇i (r) =

(
− G

2Ki

r

) 1
ni

(S-48)

Note that this solution reduces to the simple power-law model solution if the index i is

dropped.

S-1.5. Solution to the velocity profile

The velocity profile is obtained by inserting (S-48), (5), into the second part of the

system of differential equations (S-38), (4), and integrating over r:

∂ui (r)

∂r
= −

(
− G

2Ki

r

) 1
ni

(S-49)

ui (r) = −
(
− G

2Ki

) 1
ni ni
ni + 1

r
1+ 1

ni + c̃i (S-50)

The integration constants c̃i are determined next using the no-slip boundary condition

(S-35) and the continuity conditions for the velocity field (S-33).

S-1.5.1. Determination of the integration constants of the velocity profile. Since the

number of intervals of the viscosity model N is independent of the choice of the flow

parameters, G and A, and this choice uniquely determines the Ri via (S-42), the outer

channel boundary R is not necessarily located in the last interval of the velocity ansatz

function uN (r). Instead, the radius of the channel lies in the kth interval, i. e.

Rk−1 ≤ A ≤ Rk , (S-51)

where 0 < k ≤ N . Intervals with i > k whose boundaries Ri lie beyond the

channel radius A have no physical significance and are disregarded in the following.

Consequently, the no-slip boundary condition applies to the kth interval:

uk (A) = −
(
− G

2Kk

) 1
nk nk
nk + 1

A
1+ 1

nk + c̃k
!

= 0 (S-52)

The integration constant can therefore easily be found as

c̃k =

(
− G

2Kk

) 1
nk nk
nk + 1

A
1+ 1

nk . (S-53)
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For i < k, the continuity condition for the velocity field (S-33) can be written as

−
(
− G

2Ki

) 1
ni ni
ni + 1

R
1+ 1

ni
i + c̃i = −

(
− G

2Ki+1

) 1
ni+1 ni+1

ni+1 + 1
R

1+ 1
ni+1

i + c̃i+1 . (S-54)

Assuming that c̃i+1 is known and rearranging this equation for c̃i yields

c̃i = c̃i+1 −Ri




(
− G

2Ki+1

) 1
ni+1

R
1

ni+1

i

︸ ︷︷ ︸
= γ̇i+1(Ri) = Γ̇i

ni+1

ni+1 + 1
−
(
− G

2Ki

) 1
ni

R
1
ni
i

︸ ︷︷ ︸
= γ̇i(Ri) = Γ̇i

ni
ni + 1


 , (S-55)

where the underbraced terms can be identified as the shear rates at the interfacial

position which are equal by the continuity conditions (S-34). Hence,

c̃i = c̃i+1 −RiΓ̇i

(
ni+1

ni+1 + 1
− ni
ni + 1

)
. (S-56)

Finally, inserting the expression for the known outermost integration constant, c̃k, the

interior integration constants can be determined as

c̃i = c̃k −
k−1∑

j=i

RjΓ̇j

(
nj+1

nj+1 + 1
− nj
nj + 1

)
. (S-57)

Combining (S-50), (S-53) and (S-57), the velocity profile in the ith interval is given by

(6):

ui (r) =−
(
− G

2Ki

) 1
ni ni
ni + 1

r
1+ 1

ni +

(
− G

2Kk

) 1
nk nk
nk + 1

A
1+ 1

nk

−
k−1∑

j=i

RjΓ̇j

(
nj+1

nj+1 + 1
− nj
nj + 1

)
(S-58)

S-1.6. Calculation of averages

In the following, we derive mathematical expressions for the flow rate as well as the

average shear rate, viscosity, and shear stress. The flow rate or, equivalently, the average

flow velocity determines the printing speed in 3D bioprinting processes. The average

shear rate and shear stress can be used to estimate cell damage during printing [7, 11].

S-1.6.1. Average velocity and flow rate. The cross-sectional average of the velocity field

is given by

u =
1

πA2

2π∫

0

dφ

A∫

0

dr ru (r) . (S-59)
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The first integral can be evaluated and gives a factor 2π, the second integral is split into

the intervals:

u =
2

A2




R0∫

0

dr ru0 (r) +
k−1∑

i=1

Ri∫

Ri−1

dr rui (r) +

A∫

Rk−1

dr ruk (r)


 (S-60)

Abbreviating the prefactors in (S-50), i. e.

ui (r) = air
1+ 1

ni + c̃i , (S-61)

with

ai = −
(
− G

2Ki

) 1
ni ni
ni + 1

, (S-62)

the average velocity is found to be:

u =
2

A2

[
a0

3 + 1
n0

R
3+ 1

n0
0 +

c̃0

2
R2

0 +
k−1∑

i=1

ai
3 + 1

ni

(
R

3+ 1
ni

i −R3+ 1
ni

i−1

)

+
k−1∑

i=1

c̃i
2

(
R2
i −R2

i−1

)
+

ak
3 + 1

nk

(
A

3+ 1
nk −R

3+ 1
nk

k−1

)
+
c̃k
2

(
A2 −R2

k−1

)
]

(S-63)

The flow rate is given by

Ω = πA2u . (S-64)

S-1.6.2. Average shear rate. The same procedure as above can be applied to find the

average shear rate. With (S-48) shortened to

γ̇i (r) = bir
1
ni , (S-65)

the average shear rate is given by:

γ̇ =
2

A2

[
b0

2 + 1
n0

R
2+ 1

n0
0 +

k−1∑

i=1

bi
2 + 1

ni

(
R

2+ 1
ni

i −R2+ 1
ni

i−1

)
+

bk
2 + 1

nk

(
A

2+ 1
nk −R

2+ 1
nk

k−1

)]

(S-66)

S-1.6.3. Average viscosity. The viscosity field, η (r), is calculated by inserting the

shear rate field from (S-48) into the power-law definitions of the respective interpolation

interval in (S-1). Thus,

ηi (r) = Ki (γ̇i (r))
ni−1 = Ki

(
− G

2Ki

r

)1− 1
ni

, (S-67)

pub1 SI



11

which can be shortened to

ηi (r) = dir
1− 1

ni . (S-68)

Using the same procedure as above, the integral in the ith interval yields

Ri∫

Ri−1

dr rηi (r) =
di

3− 1
ni

(
R

3− 1
ni

i −R3− 1
ni

i−1

)
(S-69)

if ni 6= 1
3

and

Ri∫

Ri−1

dr rηi (r) = di

Ri∫

Ri−1

dr r−1 = di ln

(
Ri

Ri−1

)
(S-70)

if ni = 1
3
. The average viscosity for our model is therefore given by

η =
2

A2




R0∫

0

dr rη0 (r) +
k−1∑

i=1

Ri∫

Ri−1

dr rηi (r) +

A∫

Rk−1

dr rηk (r)


 , (S-71)

where the integrals are chosen as (S-69) or (S-70) according to ni. ‡

S-1.6.4. Average shear stress. The radial profile of the shear stress is given as the

product of the shear rate field (S-48) and the viscosity field. The latter is calculated by

inserting the shear rate field from (S-48) into the power-law definitions of the respective

interpolation interval in (S-1):

ηi (r) = Ki (γ̇i (r))
ni−1 (S-72)

The shear stress profile is therefore obtained as

σi (r) = γ̇i (r) ηi (r) = Ki (γ̇i (r))
ni

= −1
2
Gr = σ (r) , (S-73)

where the index i can be dropped since it is independent of the viscosity interpolation.

This linear relationship of shear stress and radial position is well-known for power-law

fluids [11]. Its average is found by simply solving one integral that yields:

σ =
2

A2

A∫

0

dr rσ (r) = −GA
3

(S-74)

‡ Note that in the inner-most interval with R0 as its right boundary the shear rate is always close to

zero and thus the fluid is Newtonian with n0 = 1 (see (S-3)) such that the mathematically undefined

situation of (S-70) with Ri−1 = 0 is excluded.
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S-1.7. Global analytical solution for a simplified CY model

In order to validate the algorithm presented above according to the procedure described

in section 2 of the manuscript, we calculate a global mathematical solution to the Navier-

Stokes equation (S-28), (1), for a simplified Carreau-Yasuda model. In the following,

we derive an analytical solution for the flow profiles of a CY model (cf. (9)) with the

following simplification:

η∞ = 0

a1 = a2 = 1 (S-75)

The viscosity as a function of the shear rate is therefore given as (cf. (8))

η̃ (γ̇) =
η0

1 +Kγ̇
. (S-76)

Using the same assumptions as in section S-1.3.1, the NSE yields:

G =
1

r

∂

∂r

(
−r η0γ̇

1 +Kγ̇

)
(S-77)

After a first integration and rearrangement of the equations one obtains

γ̇ (r) =
−Gr

2
− c1

r

η0 + KGr
2

+ Kc1
r

(S-78)

and application of boundary condition (S-36) determines the integration constant as

c1 = 0. Therefore, the shear rate profile is given as:

γ̇ (r) =
−Gr

2

η0 + KGr
2

= − 1
2η0
Gr

+K
(S-79)

Inserting this result into (S-38) and integrating the resulting equation gives the velocity

profile:

u (r) = −
∫

dr γ̇ (r)

=
r

K
− 2η0

GK2
ln

(
2η0

G
+Kr

)
+ c2 (S-80)

The second integration is easily found by applying the no-slip boundary condition (S-35).

Thus, the velocity profile is given by:

u (r) =
r − A
K

+
2η0

GK2
ln

(
2η0
G

+KA
2η0
G

+Kr

)
(S-81)
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S-1.8. Estimate of force and deformation experienced by flowing cells

In this section, we provide a simple approach to estimate the force sensed by a cell and

its resulting deformation during printing.

Both quantities depend on the radial position r at which the cell transitions through

the channel. Considering, in a first approximation, the cell as a sphere with radius Rc,

the shear force acting on it is given by the surface integral of the shear stress over the

sphere. Due to the linearity of the shear stress with the radial position, and as long the

cell is small compared to the channel, the force is obtained as the product of the surface

area and the shear stress at the radial position of the sphere center, as detailed next.

With the shear stress given in (S-73), the shear force acting on the cell is obtained as:

Fz =

2π∫

0

π∫

0

σ (Rsurface)R
2
c sin θ dθ dφ = 2πR2

c

π∫

0

σ (r +Rc cos θ) sin θ dθ

= 2πR2
c

(
−G

2

)



π∫

0

r sin θ dθ

︸ ︷︷ ︸
=2r

+

π∫

0

Rc cos θ sin θ dθ

︸ ︷︷ ︸
=0




= 4πR2
c

(
−G

2
r

)

= Acell · σ (r) (S-82)

The result is depicted in figure S-1a.

Another critical quantity is the cell deformation, which can be approximated using the

shear stress and the mechanical properties of the cell. As a rough estimate, we assume

the cell to behave linearly elastic with the stress–strain relationship given as

ε (r) =
σ (r)

E
, (S-83)

where the strain ε quantifies the relative stretching of the cell. The Young’s modulus

E is chosen as 1 kPa to 10 kPa to cover the typical range of stiffness for cells [13]. This

leads to significant deformations as shown in figure S-1b which reiterates the importance

of hydrodynamic shear forces in bioprinting.
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Figure S-1. (a) The force F acting on cells as radial function according to (S-82).

(b) The strain according to (S-83) as a deformation measure for a linear elastic cell.

The corresponding flow profile is shown in fig. 3. We note that the assumption of

linear elasticity predicts relatively large deformations, which would not be the case for

a more realistic, strain-hardening behavior.
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S-1.9. Inclusion of wall-slip effects

Wall-slip effects are sometimes reported, especially for fluids exhibiting non-Newtonian

behavior [12] or highly hydrophobic channel coatings. The general approach to include

a velocity slip at a wall is to allow for a finite tangential velocity at this point or,

equivalently, to shift (in the calculations) the channel wall further outwards by a distance

known as the slip length. It is thus straightforward to incorporate slip effects into our

calculations if the slip length is known.

Alternatively, if the slip velocity next to the wall is known instead of the slip length,

simply shifting upwards the computed no-slip velocity profile by a constant value

represents a very good approximation. The shear rate would stay unchanged, and

likewise the viscosity and the shear stress. Therefore, the inclusion of slip effects in our

algorithm would be unproblematic.

S-2. Additional experimental validation of the algorithm

S-2.1. Additional experiments

In this section, we provide more validation to our algorithm with experimental

measurements. Using the same approach as detailed in 2.3 of the manuscript, we

performed velocity profile measurements of 2 % alginate at 100, 200, and 300 kPa, of

3 % alginate at 300, 400, and 500 kPa, and 3 % chitosan at 300, and 400 kPa. These

measurements as well as the velocity profiles calculated using our Lattice Boltzmann

method are depicted in figure S-2, showing good agreement. Since the pressure drop in

the connectors and tubings is unknown but depends on the rheology of the hydrogel, we

assume a constant pressure drop before the microchannel of 21 % for 2 % alginate, 10 %

for 3 % alginate, and 23 % for 3 % chitosan, respectively. Additionally, we measured

the flow profile of 3 % alginate in a rectangular microchannel with 1000 µm × 200 µm

cross section. Due to limitations of the field of view of the microscope, less than

one half of the channel could be focused during the measurements. In figure S-3, the

mirrored experimentally measured velocity profile is shown in comparison to our Lattice

Boltzmann calculations. Due to connectors and tubing with a diameter of approximately

the size of the microchannel, the pressure drop of 48 % is reasonable.

S-2.2. Error quantification

In the following, we present an error calculation for the different flow experiments. First,

we calculate an averaged velocity profile for the measurements as well as our calculations

by averaging the data in a given d-interval. For the square channel, we choose a bin

width of dbin = 7.31 µm (corresponding to Nbins = 26 bins in the range of d = −95 µm

to 95 µm), for the rectangular channel dbin = 16.3 µm (corresponding to Nbins = 26 bins
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Figure S-2. Experimentally measured velocity profiles in a 190 µm × 190 µm

microchannel in comparison to numerical results using the Lattice Boltzmann method.

(a, c, e) 2 % alginate at 100, 200, and 300 kPa. (b, d, f) 3 % alginate at 300, 400, and

500 kPa. (g, h) 3 % chitosan at 300 and 400 kPa.
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in the range of d = 75 µm to 500 µm). The average velocity in each bin is computed by

ui =
1

Ni

Ni∑

k=1

uk , (S-84)
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Figure S-3. Experimentally measured velocity profiles of 3 % alginate at 400 and

500 kPa in a 1 mm × 200 µm microchannel in comparison to numerical results using

the Lattice Boltzmann method. The experimental data is mirrored with respect to the

channel center.
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where Ni is the number of data points in the i-th bin. Using this approach, we

additionally calculate the standard deviation of the data from the average value as

σu,i =

(
1

Ni − 1

Ni∑

k=1

(uk − ui)2

)1
2

. (S-85)

Using the averaged profiles, we calculate the relative error between measurement and

Lattice Boltzmann computation as:

ε =


 1

Nbins

Nbins∑

k=1

(
uExp
k − uLB

k

)2

(
uLB

max

)2




1
2

(S-86)

The averaged profiles with a range of ±σu,i are shown in figure S-4 for the square

microchannel and in figure S-5 for the rectangular microchannel, where we find relative

errors in the range of ε = 3.3 % to 13.5 %, and ε = 2 %, respectively.
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Figure S-4. Averaged profiles from figure S-2. The gray area indicates the range

of one standard deviation from the mean curve. ε gives the relative error calculated

according to (S-86).
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Figure S-5. Averaged profiles from figure S-3. The gray area indicates the range

of one standard deviation from the mean curve. ε gives the relative error calculated

according to (S-86).
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S-3. Computational procedure and user guide

This section describes the structure and usage of the Python classes, found in the

Supplementary Material, that implement the presented algorithm for the Carreau-

Yasuda model. The first part gives an overview of the four implemented Python classes.

The second part provides a short user guide explaining how to use the classes for flow

profile calculations. Note that their usage requires a Python (version 2 or 3) installation

[14, 15]. The use of a Python IDE, e. g. Spyder [16], Thonny [17] or PyCharm [18], is

optional but can be advantageous. The coloring in the code examples is the following:

blue denotes classes, green denotes variables, and gray means a comment.

For the Carreau-Yasuda model [19] the viscosity is given by

η̃ (γ̇) = η̃∞ +
η̃0 − η̃∞

[1 + (Kγ̇)a1 ]
a2
a1

, (S-87)

where η̃0 and η̃∞ are the viscosities in the limit of zero and infinite shear rates and K

is a time constant with the unit s. Its inverse, K−1 = γ̇c, is sometimes referred to as

corner shear rate and determines the transition to the zero-shear Newtonian plateau.

The exponents a1 and a2 determine the shape of the transition between the zero-shear

Newtonian plateau and the power-law region as well as the power-law behavior.

S-3.1. Overview of Python classes

The tool uses four classes that hold the input parameters, perform the calculations and

save or plot output data. They can be found in the file CYprofiles.py. The four classes

are:

(i) Analytical Viscosity(): instances of this class hold the parameters of the

Carreau-Yasuda model and can calculate the viscosity for a given shear rate

according to (S-87).

(ii) Interpolation(): instances of this class perform the interpolation of a given

Analytical Viscosity() in a provided range of shear rates using the partitioning

described in section S-1.2.

(iii) Printing Parameters(): instances of this class hold the printing parameters, i.e.

the nozzle radius and the pressure gradient or the flow rate.

(iv) Profiles(): instances of this class perform the calculation of the velocity, shear

rate, and viscosity profile for given Interpolation() and Printing Parameters()

according to the presented algorithm. If a flow rate is provided, the corresponding

pressure gradient is calculated iteratively to match the given flow rate.

S-3.2. User guide

This section is meant to serve as an explanatory tutorial for our Python tool. It

will cover the two main steps necessary for calculating a flow profile: the viscosity
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interpolation according to section S-1.2 and the profile calculation according to the

presented algorithm. The following code examples can be found in the file tutorial.py.

Step 1 - Performing the interpolation Starting point for the viscosity interpolation is

the Carreau-Yasuda model. After fitting rheological data, the values of its parameters

in (S-87) are known. The Analytical Viscosity() is then initialized by:

# initialize variables

eta0 = 1.0e2 =̂ η̃0 [Pa s]

etainf = 1.0e-3 =̂ η̃∞ [Pa s]

K = 1.0e-3 =̂ K [s]

a1 = 0.3 =̂ a1

a2 = 0.9 =̂ a2

# initialize Analytical Viscosity instance

analytical = Analytical Viscosity( eta0=eta0, etainf=etainf,K=K,a1=a1,a2=a2 )

To perform the interpolation, the range of shear rates to interpolate and the number of

(power-law) intervals is required:

# initialize variables

gamma0 = 1.0e-6 =̂ Γ̇0 [s−1]

gammaN = 1.0e6 =̂ Γ̇N−1 [s−1]

Ninterpol = 100 =̂ N − 1

# initialize Interpolation instance

interpol= Interpolation(gamma0=gamma0, gammaN=gammaN,

Ninterpol=Ninterpol, analytical=analytical)

The calculation is then simply performed by executing

interpol.calculate interpolation()

and the interpolation can be checked by plotting the calculated data via

interpol.plot interpolation() .

To save the viscosity interpolation, one can use

interpol.save interpolation(file)

to save the data in viscosity-shear rate format and

interpol.save interpolation parameters(file)

to save the power-law parameters for all intervals in a file.
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Step 2 - Calculating the flow profile Once the interpolation is completed, the next step

is the definition of the printing parameters, i. e. the channel radius and the pressure

gradient. This is done by:

# initialize variables

rchannel = 1.0e-4 =̂ A [m]

pgrad = -1.0e7 =̂ G [Pa m−1]

# initialize Printing Parameters instance

printparams = Printing Parameters(

pressureGradient=pgrad, channelRadius=rchannel)

To calculate the radial profiles for the velocity (in m s−1), the shear rate (in s−1), and

the viscosity (in Pa s), the Profiles() class is initialized with printing parameters and

an interpolation by

# initialize Profiles instance

fluidprofiles = Profiles(

interpolation=interpol, printingParameters=printparams)

Finally, the calculation is performed by executing

fluidprofiles.calculate profiles()

and the data can be plotted using the following methods:

fluidprofiles.plot velocity()

fluidprofiles.plot shearrate()

fluidprofiles.plot shearstress()

fluidprofiles.plot viscosity()

The data for all calculated fields is saved to a file with

fluidprofiles.save profiles(file)

and

fluidprofiles.save averages(file)

for the averaged quantities, respectively.

In the case of an imposed flow rate, i. e. if the pressure gradient is unknown, our tool

automatically computes the corresponding pressure gradient necessary for the profile

calculation. To do so, solely the initialization of the printing parameters changes as

follows:

# initialize variables

rchannel = 1.0e-4 =̂ A [m]

flowrate = 1.0e-9 =̂ Ω [m3 s−1]
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# initialize Printing Parameters instance

printparams = Printing Parameters(

flowrate=flowrate, channelRadius=rchannel)

S-4. Lattice Boltzmann algorithm for generalized Newtonian fluids

This section briefly summarizes the Lattice Boltzmann method and the extension we

added to the open-source package ESPResSo [20]. For an introduction into the Lattice

Boltzmann method we refer the interested reader to the book by Krüger et al.[21]. The

Lattice Boltzmann equation for the multiple relaxation time scheme used in ESPResSo

reads:

fi (~x+ ~ci∆t, t+ ∆t)− fi (~x, t) =
18∑

j=0

(
M−1ωM

)
ij

(fj (~x, t)− f eq
i (~x, t)) (S-88)

It describes the collision and streaming of the population distribution fi (i = 0, . . . , 18)

during one time step ∆t. Here, ~ci are the discretized lattice velocities, M denotes

transformation matrix that maps the populations onto moment space, ω is the diagonal

relaxation frequency matrix, and f eq
i denote the equilibrium population distributions.

The relaxation frequency for the shear moments ωS is related to the dynamic viscosity

of the fluid via [22]

η = %c2
s

(
1

ωS

− 1
2

)
∆t , (S-89)

with the fluid mass density % and the lattice speed of sound cs. The calculation of the

viscosity according to the rheological model requires the local shear rate at each lattice

node. Chai et al [22] showed that the local strain rate tensor can be obtained from the

populations by

εαβ = − 1

2%c2
s∆t

18∑

i,j=0

[
(~ci)α (~ci)β

(
M−1ωM

)
ij

(fj (~x, t)− f eq
i (~x, t))

]
. (S-90)

The shear rate is then obtained as invariant of the strain rate tensor according to (S-13).

From the local shear rate, the viscosity according to the rheological model and the local

relaxation time according to (S-89) are computed at each lattice node and updated in

every time step.

In order to ensure simulation stability, we choose the time step globally according to

Krüger et al [21, p. 273] as

∆t = c2
s

(
τ − 1

2

) ∆x2

ν?
=

∆x2

6ν?
, (S-91)

with c2
s = 1

3
, a global relaxation parameter τ = 1, and a reference kinematic viscosity

ν?. The latter is provided, for instance, by the upper Newtonian viscosity plateau of
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the corresponding CY model.

At the boundary of the cylindrical channel a bounce-back algorithm is applied to realize

a no-slip boundary condition. The flow is driven by a pressure gradient along the z-

direction, which is realized as external force density in the algorithm.
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Abstract
In the emerging field of 3D bioprinting, cell damage due to large deformations is considered a main cause for cell death 
and loss of functionality inside the printed construct. Those deformations, in turn, strongly depend on the mechano-elastic 
response of the cell to the hydrodynamic stresses experienced during printing. In this work, we present a numerical model to 
simulate the deformation of biological cells in arbitrary three-dimensional flows. We consider cells as an elastic continuum 
according to the hyperelastic Mooney–Rivlin model. We then employ force calculations on a tetrahedralized volume mesh. 
To calibrate our model, we perform a series of FluidFMⓇ compression experiments with REF52 cells demonstrating that 
all three parameters of the Mooney–Rivlin model are required for a good description of the experimental data at very large 
deformations up to 80%. In addition, we validate the model by comparing to previous AFM experiments on bovine endothe-
lial cells and artificial hydrogel particles. To investigate cell deformation in flow, we incorporate our model into Lattice 
Boltzmann simulations via an Immersed-Boundary algorithm. In linear shear flows, our model shows excellent agreement 
with analytical calculations and previous simulation data.

Keywords  Hyperelasticity · Cell deformation · Mooney–Rivlin · Atomic force microscopy · Shear flow · Lattice-Boltzmann

1  Introduction

The dynamic behavior of flowing cells is central to the func-
tioning of organisms and forms the base for a variety of bio-
medical applications. Technological systems that make use 
of the elastic behavior of cells are, for example, cell sorting 
(Shen et al. 2019), real-time deformability cytometry (Otto 
et al. 2015; Fregin et al. 2019) or probing techniques for 
cytoskeletal mechanics (Kollmannsberger and Fabry 2011; 

Gonzalez-Cruz et al. 2012; Huber et al. 2013; Bongiorno 
et al. 2014; Fischer-Friedrich et al. 2014; Lange et al. 2015; 
Fischer-Friedrich et al. 2016; Nyberg et al. 2017; Lange 
et al. 2017; Kubitschke et al. 2017; Jaiswal et al. 2017; Mulla 
et al. 2019). In most, but not all, of these applications, cell 
deformations typically remain rather small. A specific exam-
ple where large deformations become important is 3D bio-
printing. Bioprinting is a technology which, analogously to 
common 3D printing, pushes a suspension of cells in highly 
viscous hydrogels—so-called bioink—through a fine nozzle 
to create three-dimensional tissue structures. A major chal-
lenge in this process lies in the control of large cell defor-
mations and cell damage during printing. Those deforma-
tions arise from hydrodynamic stresses in the printer nozzle 
and ultimately affect the viability and functionality of the 
cells in the printed construct (Snyder et al. 2015; Blaeser 
et al. 2015; Zhao et al. 2015; Paxton et al. 2017; Müller 
et al. 2020). How exactly these hydrodynamic forces cor-
relate with cell deformation, however, strongly depends on 
the elastic behavior of the cell and its interaction with the 
flowing liquid. Theoretical and computational modeling 
efforts in this area have thus far been restricted to pure fluid 
simulations without actually incorporating the cells (Khalil 
and Sun 2007; Aguado et al. 2012; Blaeser et al. 2015) or 
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1 3

simple 2D geometries (Tirella et al. 2011; Li et al. 2015). 
The complexity of cell mechanics and the diversity of pos-
sible applications make theoretical modeling of cell mechan-
ics in flow a challenge which, to start with, requires reliable 
experimental data for large cell deformations.

The most appropriate tool to measure cellular response 
at large deformations is atomic force microscopy (AFM) 
(Lulevich et al. 2003; Lulevich et al. 2006; Ladjal et al. 
2009; Kiss 2011; Fischer-Friedrich et al. 2014; Hecht et al. 
2015; Ghaemi et al. 2016; Sancho et al. 2017; Efremov et al. 
2017; Ladjal et al. 2018; Chim et al. 2018). AFM cantile-
vers with pyramidal tips, colloidal probes, or flat geometries 
are used to indent or compress cells. Therefore, a common 
approach to characterize the elasticity of cells utilizes the 
Hertzian theory, which describes the contact between two 
linear elastic solids [(Johnson 2003), p. 90–104], but is lim-
ited to the range of small deformations (Dintwa et al. 2008). 
Experimental measurements with medium-to-large deforma-
tions typically show significant deviations from the Hertz 
prediction, e.g., for cells or hydrogel particles (Neubauer 
et al. 2019). Instead of linear elasticity, a suitable description 
of cell mechanics for bioprinting applications requires more 
advanced hyperelastic material properties. While for sim-
ple anucleate fluid-filled cells such as, e.g., red blood cells, 
theoretical models abound (Freund 2014; Závodszky et al. 
2017; Mauer et al. 2018; Guckenberger et al. 2018; Kotsalos 
et al. 2019), the availability of models for cells including 
a complex cytoskeleton is rather limited. In axisymmetric 
geometries, Caille et al. (2002) and Mokbel et al. (2017) 
used an axisymmetric finite element model with neo-
Hookean hyperelasticity to model AFM and microchannel 
experiments on biological cells. In shear flow, approximate 
analytical treatments are possible (Roscoe 1967; Gao and 
Hu 2009; Gao et al. 2011; Gao et al. 2012). Computation-
ally, Gao and Hu (2009) carried out 2D simulations while 
in 3D Lykov et al. (2017) utilized a DPD technique based 
on a bead-spring model. Furthermore, Villone et al. (2014, 
2015) presented an arbitrary Lagrangian-Eulerian approach 
for elastic particles in viscoelastic fluids. Finally, Rosti et al. 
(2018) and Saadat et al. (2018) considered viscoelastic and 
neo-Hookean finite element models, respectively, in shear 
flow.

In this work, we introduce and calibrate a computational 
model for fully three-dimensional simulations of cells in 
arbitrary flows. Our approach uses a Lattice-Boltzmann 
solver for the fluid and a direct force formulation for the 
elastic equations. In contrast to earlier works (Caille et al. 
2002; Gao et  al. 2011; Mokbel et  al. 2017; Rosti et  al. 
2018; Saadat et al. 2018), our model uses a three-parameter 
Mooney–Rivlin elastic energy functional. To demonstrate 
the need for this more complex elastic model, we carry out 
extensive FluidFMⓇ indentation experiments for REF52 
(rat embryonic fibroblast) cells at large deformation up 

to 80% (Alexandrova et al. 2008). In addition, our model 
compares favorably with previous AFM experiments on 
bovine endothelial cells (Caille et al. 2002) as well as arti-
ficial hydrogel particles (Neubauer et al. 2019). Our model 
provides a much more realistic force-deformation behavior 
compared to the small-deformation Hertz approximation, 
but is still simple and fast enough to allow the simulation of 
dense cell suspensions in reasonable time. Particularly, our 
approach is less computationally demanding than conven-
tional finite-element methods which usually require large 
matrix operations. Furthermore, it is easily extensible and 
allows, e.g., the inclusion of a cell nucleus by the choice of 
different elastic moduli for different parts of the volume.

We finally present simulations of our cell model in differ-
ent flow scenarios using an Immersed-Boundary algorithm 
to couple our model with Lattice Boltzmann fluid calcu-
lations. In a plane Couette (linear shear) flow, we investi-
gate the shear stress dependency of single cell deformation, 
which we compare to the average cell deformation in sus-
pensions with higher volume fractions and show that our 
results in the neo-Hookean limit are in accordance with ear-
lier elastic cell models (Gao et al. 2011; Rosti et al. 2018; 
Saadat et al. 2018).

2 � Theory

In general, hyperelastic models are used to describe materi-
als that respond elastically to large deformations [(Bower 
2010), p. 93]. Many cell types can be subjected to large 
reversible shape changes. This section provides a brief over-
view of the hyperelastic Mooney–Rivlin model implemented 
in this work.

The displacement of a point is given by

where xi ( i = 1, 2, 3 ) refers to the undeformed configuration 
(material frame) and yi to the deformed coordinates (spatial 
frame). We define the deformation gradient tensor and its 
inverse as [(Bower 2010), p. 14, 18]

Together with the right Cauchy-Green deformation tensor, 
� = �

⊺
� (material description), we can define the following 

invariants which are needed for the strain energy density 
calculation below:

(1)ui = yi − xi ,

(2)�ij =
�yi

�xj
=

�ui

�xj
+ �ij and �

−1
ij

=
�xi

�yj
.

(3)J = det �

(4)I =T
�
J−2∕3
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Here,

are the trace of the right Cauchy-Green deformation ten-
sor and its square, respectively. The nonlinear strain energy 
density of the Mooney–Rivlin model is given by (Mooney 
1940; Rivlin 1948)

where �1 , �2 , and � are material properties. They corre-
spond—for consistency with linear elasticity in the range of 
small deformations—to the shear modulus � = �1 + �2 and 
bulk modulus � of the material and are therefore related to 
the Young’s modulus E and the Poisson ratio � via [(Bower 
2010), p. 74]

Through the choice �2 = 0 in (7), we recover the simpler 
and frequently used (Gao et al. 2011; Saadat et al. 2018) 
neo-Hookean strain energy density:

As we show later, this can be a sufficient description for 
some cell types. To control the strength of the second term 
and quickly switch between neo-Hookean and Mooney–Riv-
lin strain energy density calculation, we introduce a factor 
w ∈ [0, 1] and set

(5)K =
1

2

(

T2

�
− T

�2

)

J−4∕3

(6)T
�
= tr� and T

�2 = tr
(

�
2
)

(7)U =
[�1

2
(I − 3) +

�2

2
(K − 3) +

�

2
(J − 1)2

]

,

(8)� =
E

2(1 + �)
and � =

E

3(1 − 2�)
.

(9)UNH =
[

�

2
(I − 3) +

�

2
(J − 1)2

]

(10)�1 = w� and �2 = (1 − w)�

such that w = 1 , which equals setting �2 = 0 in (7), corre-
sponds to the purely neo-Hookean description in (9), while 
w < 1 increases the influence of the �2-term and thus leads to 
a more pronounced strain hardening as shown in figure S-6 
of the Supporting Information.

3 � Tetrahedralized cell model

In this section, we apply the hyperelastic theory of Sect. 2 
to a tetrahedralized mesh as shown in Fig. 1.

3.1 � Calculation of elastic forces

We consider a mesh consisting of tetrahedral elements as 
depicted in Fig. 1. The superscript � refers to the four verti-
ces of the tetrahedron. The elastic force acting on vertex � in 
direction i is obtained from (7) by differentiating the strain 
energy density U with respect to the vertex displacement as

where V0 is the reference volume of the tetrahedron. In con-
trast to Saadat et al. (2018), the numerical calculation of the 
force in our model does not rely on the integration of the 
stress tensor, but on a differentiation where the calculation of 
all resulting terms involves only simple arithmetics. Apply-
ing the chain rule for differentiation yields:

(11)f �
i
= −V0

�U

�u�
i

,

(12)

f �
i
= − V0

[(

�U

�I

�I

�T
�

+
�U

�K

�K

�T
�

)

�T
�

��kl

+
(

�U

�I

�I

�J
+

�U

�K

�K

�J
+

�U

�J

)

�J

��kl

+
�U

�K

�K

�T
�2

�T
�2

��kl

]

��kl

�u�
i

Fig. 1   a The four noded tetra-
hedron as mesh element within 
a local dimensionless coordi-
nate system 

{

�1, �2, �3
}

 . b The 
spherical cell model with its 
triangulated surface. c Its inner 
tetrahedralized mesh

(a) (b) (c)
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The evaluation of (12) requires the calculation of the defor-
mation gradient tensor � , which is achieved by linear inter-
polation of the coordinates and displacements inside each 
tetrahedral mesh element as detailed in the next section. We 
note that our elastic force calculation is purely local mak-
ing it straightforward to employ different elastic models in 
different regions of the cell and/or to combine it with elas-
tic shell models. This flexibility can be used to describe, 
e.g., the cell nucleus (Caille et al. 2002) or an actin cortex 
(Bächer and Gekle 2019) surrounding the cell interior.

3.2 � Interpolation of the displacement field

Following standard methods, e.g., Bower (2010), we start 
by interpolating a point xi inside a single tetrahedron using 
the vertex positions x�

i
 ( � = 1, 2, 3, 4 ). The interpolation uses 

an inscribed, dimensionless coordinate system, denoted by 
(

�1, �2, �3
)

 with 0 ≤ �i ≤ 11, as depicted in Fig. 1a. One ver-
tex defines the origin while the remaining three indicate the 
coordinate axes. A set of shape functions, i.e., interpolation 
functions, N�

(

�1, �2, �3
)

 is employed to interpolate positions 
inside the tetrahedron volume. An arbitrary point xi inside 
the element is interpolated as

where the shape functions are defined as [(Bower 
2010), p. 483]:

According to (1), the displacement of vertex � in i-direction 
is given by

Therefore similar to (13), the displacement at an arbitrary 
point in the volume can also be expressed in terms of the 
shape functions and the vertex displacements as

(13)xi =

4
∑

�=1

N�
(

�1, �2, �3
)

x�
i
,

(14)N1
(

�1, �2, �3
)

=�1

(15)N2
(

�1, �2, �3
)

=�2

(16)N3
(

�1, �2, �3
)

=�3

(17)N4
(

�1, �2, �3
)

=1 − �1 − �2 − �3

(18)u�
i
= y�

i
− x�

i
.

The calculation of the deformation gradient tensor according 
to (2) requires the spatial derivative of the displacement:

By inserting (19) into (20) and evaluating the shape func-
tions, the components of the matrix � are easily determined 
to be the difference of the displacements between the origin 
(vertex 4) and the remaining vertices 1, 2 and 3:

Note that due to the linear interpolation �ik is constant inside 
a given tetrahedron. The matrix � = �

−1 is the inverse of the 
Jacobian matrix, obtained similarly to (21) as

Since xi refers to the reference coordinates, the calculation 
of the matrices � and � has to be performed only once at the 
beginning of a simulation. With the interpolation of the dis-
placement in each tetrahedron, we can write all derivatives 
occurring in (12), as listed in the following:

3.3 � Taylor deformation parameter

As a measure for the cell deformation, we use the Taylor 
deformation parameter (Ramanujan and Pozrikidis 1998; 
Clausen and Aidun 2010; Guckenberger et al. 2016; Saadat 
et al. 2018)

(19)ui =

4
∑

�=1

N�
(

�1, �2, �3
)

u�
i
.

(20)�ij − �ij =
�ui

�xj
=

�ui

��k

��k

�xj
= �ik�kj

(21)�ik = uk
i
− u4

i

(22)�ik =
�xi

��k
= xk

i
− x4

i
.

�U

�I
=
�1

2

�I

�T
�

= J
−

2

3

�U

�K
=
�2

2

�K

�T
�

= T
�
J
−

4

3

�T
�

��il
=2�il

�I

�J
= −

2

3
T
�
J
−

5

3

�K

�J
= −

2

3

(

T2

�
− T

�2

)

J
−

7

3
�U

�J
= �(J − 1)

�J

��il
=J�−1

li

�K

�T
�2

= −
1

2
J
−

4

3

�T
�2

��il
=4�ik�kl

��kl

�u�
i

= �ki�ml

(

�m� − �4�
)

(23)D =
a3 − a1

a3 + a1
,

1  (Bower 2010),  p.  481, 483] erroneously states a range of 
−1 ≤ �

i
≤ 1 for the tetrahedral element.
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where a1 and a3 are, respectively, the minor and major semi-
axis of an ellipsoid corresponding to the inertia tensor of the 
cell. The Taylor deformation is a good measure for approxi-
mately elliptic cell deformations, as they occur in shear flow 
(cf. Sect. 6).

To calculate D , first the components of the inertia tensor

where � is a vector inside the volume V  , are calculated using 
our discretized cell with Ntet tetrahedra as

The vector � l denotes the center of mass of the lth tetrahedron 
and Vl is its current volume. The eigenvalues 𝜃1 > 𝜃2 > 𝜃3 
of  can be used to fit the semi axes a1 < a2 < a3 of the cor-
responding ellipsoid:

The prefactor contains the mass M of the ellipsoid (consider-
ing uniform mass density) and drops out in the calculation 
of D.

4 � Comparison of the numerical model 
to FluidFMⓇ measurements on REF52 cells

In this section, we validate compression simulations of our 
cell model with FluidFMⓇ compression experiments of 
REF52 cells stably expressing paxillin-YFP (Alexandrova 
et al. 2008). These experiments provide as an output the 
required force to produce a certain deformation of the cell, 
which can be directly compared to our model. We start with 
a detailed description of the experiments and show the suita-
bility of our model to describe the elastic behavior of REF52 
cells afterwards.

4.1 � FluidFMⓇ indentation measurements

We perform a series of compression measurements of 
REF52 cells with a Flex FPM (Nanosurf GmbH, Ger-
many) system that combines the AFM with the FluidFMⓇ 
technology (Cytosurge AG, Switzerland). In contrast to 
conventional AFM techniques, FluidFMⓇ uses flat canti-
levers that possess a microchannel connected to a pressure 

(24)ij =
∫

V

xkxk�ij − xixjdV ,

(25)ij =

Ntet
∑

l=1

Vl

(

rl
k
rl
k
�ij − rl

i
rl
j

)

.

(26)

a1 =
5

2M

(

−�1 + �2 + �3
)

a2 =
5

2M

(

�1 − �2 + �3
)

a3 =
5

2M

(

�1 + �2 − �3
)

system. By applying a suction pressure, cells can be aspi-
rated and retained at the aperture of the cantilever’s tip. A 
more detailed description of the setup and its functionality 
is already reported in Sancho et al. (2017). All experi-
ments are based on a cantilever with an aperture of 8 �m 
diameter and a nominal spring constant of 2 Nm−1 . In order 
to measure the cellular deformation, a cell was sucked 
onto the tip and compressed between the cantilever and 
the substrate until a setpoint of 100nN was reached. Imme-
diately before the experiment, the cells were detached by 
using Accutase (Sigma Aldrich) and were therefore in 
suspension at the time of indentation. In this way, it can 
be ensured that only a single cell is deformed during each 
measurement.

An example micrograph of the experiment before com-
pression is shown in Fig. 2. Analogously to AFM, primary 
data in form of cantilever position (in m ) and deflection (in 
V ) has to be converted to force and deformation through 
the deflection sensitivity (in m V

−1 ) and the cantilevers’ 
spring constant. The cellular deformation further requires 
the determination of the contact point, which we choose as 
the cantilever position where the measured force starts to 
increase. The undeformed cell size is obtained as mean from 
a horizontal and vertical diameter measurement using the 
software imageJ.

4.2 � Simulation setup

The experimental setup of the previous section is easily 
transferred and implemented for our cell model: The unde-
formed spherical cell rests on a fixed plate while a second 
plate approaches from above to compress the cell as depicted 
in Fig. 3a and b. In Sect. 5.2, we will also use a slightly 
modified version where a sphere indents the cell as shown 

Fig. 2   Example micrograph showing the FluidFMⓇ cantilever and a 
cell viewed from the top. Scale bar is 30�m
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in Fig. 3c and d. A repulsive force prevents the cell verti-
ces from penetrating the plates or the spherical indenter. 
The elastic restoring forces (cf. Sect. 3) acting against this 
imposed compression are transmitted throughout the whole 
mesh, deforming the cell.

We use meshes consisting of 2000 to 5000 vertices 
and about 10000 to 30000 tetrahedra to build up a spheri-
cal structure. More details of the mesh and its generation 
(Sect. S-2.4) as well as the algorithm (Sect. S-3) are pro-
vided in the SI. 

4.3 � Results

In our FluidFMⓇ experiment series with REF52 cells, the 
cell radii lie between 7.1�m and 10.4�m with an over-
all average of 8.6±0.7�m . In Fig. 4, we depict the force 
as function of the non-dimensionalized deformation, i.e., 
the absolute compression divided by the cell diameter. The 
experimental data curves share general characteristics: The 
force increases slowly in the range of small deformations up 
to roughly 40%, while a rapidly increasing force is observed 
for larger deformations. Although the variation of the cell 
radius in the different measurements is already taken into 
account in the deformation, the point of the force upturn 

differs significantly which indicates a certain variability in 
the elastic parameters of the individual cells.

We use the compression simulation setup as detailed in 
Sect. 4.2 to calculate force-deformation curves of our cell 
model. The Poisson ratio is chosen as � = 0.48 . In sec-
tion S-2.7 of the Supporting Information, we show that 
variations of � do not strongly affect the results. A best fit 
approach is used to determine the Young’s modulus and the 
ratio of shear moduli w and leads to very good agreement 
between model prediction and experimental data as shown 
in Fig. 4 as well as section S-1 of the SI. While the general 
range of force values is controlled using the Young’s modu-
lus, the Mooney–Rivlin ratio w especially defines the point 
of the force upturn. We find Young’s moduli in the range 
110Pa to 160Pa and w = 0.25 , 0.5, and 1. For very small 
deformations, our hyperelastic model produces the same 
results as would be expected from a linear elastic model 
according to the Hertz theory. See the SI (section S-2.5) for 
further details on the calculation of the force-deformation 
according to the Hertzian theory. For large deformations, the 
force rapidly increases due to its nonlinear character, show-
ing strain-hardening behavior and huge deviations from the 
Hertz theory. Overall, we find an excellent match between 
simulation and our FluidFMⓇ measurements with REF52 
cells.

5 � Comparison of our numerical model 
to other micromechanical setups

In this section, we compare our simulations to axisymmet-
ric calculations using the commercial software Abaqus and 
validate our cell model with further experimental data for 
bovine endothelial cells from (Caille et al. 2002) and very 
recent data for hydrogel particles from (Neubauer et al. 
2019).

Fig. 3   a  and b Cell compression simulations: The cell is compressed between a lower, resting, and an upper, moving, plate. c and d Colloidal 
probe cell indentation simulations: The cell rests on a plate, while being indented with a sphere

Fig. 4   Our numerical model in comparison to our FluidFMⓇ meas-
urements on REF52 cells. The labels give the two fit parameters E 
and w . We find Young’s moduli in the range of 110Pa to 160Pa. The 
Hertz theory is shown for a Young’s modulus of 180Pa
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5.1 � Validation with axisymmetric simulations

To validate our model numerically, we compare our simu-
lated force—deformation curves to calculations using the 
commercial software Abaqus (Smith 2009) (version 6.14).

In Abaqus, we use a rotationally symmetric setup con-
sisting of a two-dimensional semicircle, which is com-
pressed between two planes, similar to our simulation 
setup in Sect. 4.2 and the finite element model utilized in 
(Caille et al. 2002). The semicircle has a radius r = 15�m , 
a Young’s modulus of E = 2.25kPa and a Poisson ratio 
of � = 0.48 . We choose a triangular mesh and the built-in 
implementation of the hyperelastic neo-Hookean model. In 
Fig. 5, we see very good agreement between the results of 
the two different numerical methods.

5.2 � Validation with AFM experiments

To compare with the AFM experiments of Caille et al. 
(2002), we simulate a cell with radius 15�m using the 
setup of Sect. 4.2. For the hydrogel particle indentation 
(Neubauer et al. 2019) we use the setup depicted in Fig. 3c 
and d with a particle radius of 40�m  and a radius of the 
colloidal probe of 26.5�m . The Poisson ratio is chosen as 
0.48 in all simulations and the Young’s modulus is deter-
mined using a best fit to the experimental data points. 
Since the neo-Hookean description appears to be sufficient 
for these data sets, we further set w = 1.

In Fig.  6a, we show the experimental data for sus-
pended, round, bovine endothelial cells of five separate 
measurements from (Caille et al. 2002) together with the 
prediction of the Hertz theory for a Young’s modulus of 
1000Pa. Fitting our data with Young’s moduli in the range 

Fig. 5   Comparison of force-deformation curves obtained from our 
model (red line) with the linear elastic Hertz theory (black line) and 
the two-dimensional simulation with Abaqus (red squares), showing 
good agreement between our three-dimensional and the axisymmetric 
model

(a)

(b)

Fig. 6   a Our numerical model in comparison to experimental meas-
urements of bovine endothelial cells from (Caille et  al. 2002). The 
black line depicts the prediction of the Hertz theory for a Young’s 
modulus of 1000Pa. b Our numerical model in comparison to experi-
mental measurements of hydrogel particles from (Neubauer et  al. 
2019). The indicated range corresponds to the experimentally found 
range of ± 100Pa for the Young’s modulus according to the depicted 
Hertz model

Fig. 7   Schematic of the single cell in shear flow. The cell sits in the 
center of the box and shows an approximately elliptic deformation 
as well as tank-treading, i.e., a rotation of the membrane around the 
steady shape in the x-y-plane
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of 550Pa to 2400Pa, we find good agreement between 
our calculations and the experimental data. We note that 
Caille et al. (2002) observed similarly good agreement 
for their axisymmetric incompressible neo-Hookean FEM 
simulations which, however, cannot be coupled to external 
flows in contrast to the approach presented here. The same 
procedure is applied to the colloidal probe indentation 
data of hydrogel particles from (Neubauer et al. 2019), 
showing in Fig. 6b the experimental data and the predic-
tion of the Hertz theory from (Neubauer et al. 2019). We 
find excellent agreement between our model calculations 
for Young’s moduli in the range of 580 ± 100 Pa and the 
experimental data. For both systems, Fig. 6 shows large 
deviations between the Hertzian theory and the experi-
mental data for medium-to-large deformations. Our model 
provides a significant improvement in this range.

6 � Application in shear flow

We now apply our model to study the behavior of cells in 
a plane Couette (linear shear) flow setup and compare the 
steady cell deformation to other numerical and analyti-
cal cell models of Gao et al. (2011), Rosti et al. (2018) 
and Saadat et al. (2018). A sketch of the simulation setup 
is shown in Fig. 7. For simplicity, we choose w = 1 to 
reduce the Mooney–Rivlin description (7) to two free 
parameters � and � (or E and � ), obtaining a compressible 
neo-Hookean form. We use the Lattice Boltzmann imple-
mentation of the open source software package ESPResSo 
(Limbach et al. 2006; Roehm and Arnold 2012). Coupling 
between fluid and cell is achieved via the immersed-
boundary algorithm (Devendran and Peskin 2012; Saadat 
et  al. 2018) which we implemented into ESPResSo 
(Bächer et al. 2017; Bächer and Gekle 2019). We note here 
that, in contrast to Saadat et al. (2018), we do not subtract 
the fluid stress within the particle interior. This leads to 
a small viscous response of the cell material in addition 
to its elasticity. To obtain (approximately) the limit of a 
purely elastic particle, we exploit a recently developed 
method by Lehmann et al. (2020) to discriminate between 
the cell interior and exterior during the simulation. Using 
this technique, we can tune the ratio between inner and 
outer viscosity � with � → 0 representing a purely elastic 
particle. For simplicity, we will nevertheless set � = 1 in 
the following, except where otherwise noted. Details of the 
method are provided in the SI (section S-4.1). As measure 
for the deformation, we investigate the Taylor parameter 
D (23) of our initially spherical cell model in shear flow 
at different shear rates 𝛾̇.

6.1 � Single cell simulation

The first simulation setup, a single cell in infinite shear flow, 
is realized by choosing a simulation box of the dimensions 
10 × 15 × 5 ( x × y × z ) in units of the cell radius. The infinite 
shear flow is approximated by applying a tangential veloc-
ity uwall on the x-z-planes at y = 0 in negative and at y = 15 
in positive x-direction, as depicted in Fig. 7. The tangential 

(a)

(b)

(c)

Fig. 8   a Converged shapes of a single cell in a 10 × 15 × 5 ( x × y × z ) 
simulation box (in units of the cell radius) with a shear flow in 
x-direction as function of the capillary number Ca . b Comparison 
of our model predictions for a single cell in shear flow to the ana-
lytical 3D calculations in Fig. 7 of Gao et al. (2011) in the range of 
Ca ∈ [0.01, 2.0] . c The relative stretch Δ� of our cell model as func-
tion of the capillary number Ca . A linear behavior is found for small 
capillary numbers up to Ca = 0.3 , while increasing stress is required 
for larger deformations due to the strain-hardening quality of the neo-
Hookean model. Lines are a guide to the eye
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wall velocity is calculated using the distance H of the paral-
lel planes and the constant shear rate 𝛾̇ via

The box is periodic in x and z. A single cell is placed at 
the center of the simulation box corresponding to a volume 
fraction of � = 0.0003 . We choose the following param-
eters: fluid mass density � = 103kgm−3 , dynamic viscosity 
� = 10−3Pas, and shear rate 𝛾̇ = 4s−1 . The capillary number 
is defined by (Gao and Hu 2009)

and is used to set the shear modulus � of our cell relative 
to the fluid shear stress 𝜂𝛾̇ . Simulation snapshots of the 
steady-state deformation of a single cell in shear flow are 
depicted in dependency of the capillary number in Fig. 8a. 
We compare the Taylor deformation parameter D to previ-
ous approximate analytical calculations of Gao et al. (2011) 
for a three-dimensional elastic solid in infinite shear flow in 
Fig. 8b and see reasonable agreement for our standard case 
of � = 1 . Reducing the inner viscosity by setting � = 0.05 , 
i.e., close to the limit of a purely elastic solid, the agreement 
is nearly perfect. Finally, we demonstrate that the elastic 
particle exhibits a tank-treading motion in section S-4.2.

A possibly even more intuitive way to measure cell defor-
mation is the net strain of the cell which we define as

It describes the relative stretching of the cell using the maxi-
mum elongation dmax , i.e., the maximum distance of two cell 
vertices, and its reference diameter dref = 2R . A strain of 
Δ� = 1 thus corresponds to an elongation of the cell by an 
additional 100% of its original size. In Fig. 8c, we depict the 
Δ� as function of Ca . For small capillary numbers, i.e., small 
shear stresses, a linear stress-strain dependency is observed. 
Above Ca ≈ 0.3 , the strain-hardening, nonlinear behavior of 
the neo-Hookean model can be seen. By stretching the cell 
up to 280% of its initial size, this plot demonstrates again the 
capability of our model to smoothly treat large deformations.

6.2 � Multiple cell simulations

The second simulation setup, implemented to investigate the 
multiple particle aspect of our model, consists of 4 (8) cells 
in a 5 × 8 × 4 simulation box (in units of the cell radius), 
corresponding to a volume fraction of � = 0.11 ( � = 0.22 ) 
occupied by cells. The cells are inserted at random initial 
positions in the box and the flow parameters are the same as 
in the first setup (cf. Sect. 6.1).

(27)uwall =
1

2
H𝛾̇ .

(28)Ca =
𝜂𝛾̇

𝜇
,

(29)Δ� =

(

dmax − dref
)

dref
.

Figure 9a shows simulation snapshots of the cells in 
suspensions with volume fraction � = 0.11 and � = 0.22 
for Ca = 0.2 . The Taylor deformation of the suspensions, 
depicted in Fig. 9b, is calculated as an average over all cells 
and over time after an initial transient timespan. We find 
good agreement when comparing the averaged cell defor-
mation in suspension with Rosti et al. (2018), Saadat et al. 
(2018).

7 � Conclusion

We presented a simple but accurate numerical model for 
cells and other microscopic particles for the use in compu-
tational fluid-particle dynamics simulations.

The elastic behavior of the cells is modeled by apply-
ing Mooney–Rivlin strain energy calculations on a uni-
formly tetrahedralized spherical mesh. We performed a 

(a)

(b)

Fig. 9   a Multiple cells in a 5 × 8 × 4 ( x × y × z ) simulation box (in 
units of the cell radius) with a confined shear flow in x-direction for 
a capillary number of Ca = 0.2 and 4 cells corresponding to a vol-
ume fraction of � = 0.11 , and 8 cells corresponding to � = 0.22 . b 
Averaged deformation of multiple cell simulations with � = 0.11 and 
� = 0.22 in comparison to data from Fig. 3 of Rosti et al. (2018) and 
Fig. 13 of Saadat et al. (2018)
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series of FluidFMⓇ compression experiments with REF52 
cells as an example for cells used in bioprinting processes 
and found excellent agreement between our numeri-
cal model and the measurements if all three parameters 
of the Mooney–Rivlin model are used. In addition, we 
showed that the model compares very favorably to force 
versus deformation data from previous AFM compression 
experiments on bovine endothelial cells (Caille et al. 2002) 
as well as colloidal probe AFM indentation of artificial 
hydrogel particles (Neubauer et al. 2019). At large defor-
mations, a clear improvement compared to Hertzian con-
tact theory has been observed.

By coupling our model to Lattice Boltzmann fluid cal-
culations via the Immersed-Boundary method, the cell 
deformation in linear shear flow as function of the capil-
lary number was found in good agreement with analytical 
calculations by Gao et al. (2011) on isolated cells as well as 
previous simulations of neo-Hookean and viscoelastic sol-
ids (Rosti et al. 2018; Saadat et al. 2018) at various volume 
fractions.

The presented method together with the precise determi-
nation of model parameters by FluidFMⓇ /AFM experiments 
may provide an improved set of tools to predict cell deforma-
tion— and ultimately cell viability—in strong hydrodynamic 
flows as occurring, e.g., in bioprinting applications.
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S-1 Supplementary Material for the cell experiments

Additional force-deformation curves for our FluidFM R© measurements on REF52
cells are shown in figure S-1. Compared to the curves depicted in the manuscript in
figure 4, these measurements show an earlier upturn of the force. Thus, our model
overestimates the force necessary for a small deformation of the cell and slightly un-
derestimates the force for larger deformations. Nevertheless, all measurements fit in
the simulated range of E = 220±100Pa for w = 0.25 and an averaged cell radius of
8.6(7)µm, as figure S-1 shows. The cell radii and Young’s moduli for all measure-
ments are listed in table S-1.

Table S-1 Measured cell radii R and fitted Young’s moduli E and w for our FluidFM R© experiments.

Number 1 2 3 4 5 6 7 8 9

R [µm] 7.1 9.2 8.3 8.0 9.5 9.1 8.4 9.4 8.3
E [Pa] 160 190 220 170 210 290 210 220 125
w 1 0.25 0.25 0.5 0.25 0.25 0.25 0.25 0.25
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Fig. S-1 Our numerical model in comparison to our FluidFM R© measurements on REF52 cells. The ratio
of the shear moduli is chosen as w = 0.25 for all curves. The gray area shows the simulation of a cell with
an averaged cell radius of 8.6(7)µm and Young’s modulus range 220±100Pa.
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S-2 Supporting Information for the numerical model

S-2.1 Convergence of single cell deformation in shear flow

The temporal development of the deformation D of a single cell in a Couette flow
can be seen in figure S-2. Starting from a spherical shape (D = 0), the cell experi-
ences a shape change during an initial transient timespan, after which it assumes a
steady shape. For capillary numbers Ca > 0.2, we first find an overrelaxation of the
deformation before it converges towards a constant value.

0
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0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 10 20 30 40 50 60 70 80

D

step/10−6

Ca = 0.01
Ca = 0.14
Ca = 0.50
Ca = 0.80
Ca = 2.00

Fig. S-2 Single cell deformation in Couette flow for different capillary numbers. After an initial transient
timespan, the deformation converges to a constant value.

S-2.2 Reduction of the system resolution

In figure S-3 we show that a system with reduced cell resolution (from RCell = 10 to
RCell = 6 grid cells) and a smaller simulation box (from 100×150×100 to 60×90×
30 grid cells) produces the same deformation versus capillary number behavior as the
system with higher resolution.

S-2.3 Translational and rotational invariance of the force calculation

As a very direct test for the correct behavior of our model, we consider a single tetra-
hedron and examine the behavior of the volume and the elastic force for an initially
applied translation, rotation and stretching. In figure S-4a, the behavior of the vol-
ume under these deformations is shown over the first time steps. While the volume
remains constant under pure translation, pure rotation, and a combination of both,
it quickly relaxes towards its reference value after an initial stretch is applied. The
same behavior is observed for the elastic force acting on one tetrahedron vertex, in
figure S-4b.
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Fig. S-3 Taylor deformation as function of the capillary number for two different cell and channel reso-
lutions. The large system (RCell = 10, box: 100×150×100 grid cells) produces the same outcome as the
down-scaled system (RCell = 6, box: 60×90×30 grid cells).
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Fig. S-4 The behavior of (a) the volume and (b) the elastic force on a single vertex of a tetrahedron after
an initial rotation, translation or stretching.

S-2.4 Mesh generation and mesh independence

The tetrahedral mesh of our spheroid is generated using the software gmsh (version
4.3.0) [1]. The Frontal2D meshing algorithm produced a mesh with highest unifor-
mity considering edge length, triangle area and tetrahedron volume distribution. Nev-
ertheless, all other available meshing algorithms produce likewise uniform meshes,
with one exception being the Frontal3D algorithm, as listed in table S-2. We de-
mand the uniformity of the mesh to increase the accuracy of our coupled Immersed-
Boundary Lattice Boltzmann simulations. Figure S-5 shows the force-deformation
curves for meshes with increasing number of tetrahedra, which are converged and
thus prove sufficient sampling of the volume mesh.
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Table S-2 Statistics of meshes created using different built-in algorithms of Gmsh [1]. Listed are edge
length L, triangle area A, and tetrahedron volume V providing average, standard deviation, minimum and
maximum value for each mesh.

Algorithm Frontal2D MeshAdapt Delaunay2D Delaunay3D Frontal3D

L̄ 1.252 1.362 1.292 1.362 1.484
σL 0.243 0.301 0.299 0.301 0.530
Lmin 0.616 0.588 0.592 0.588 0.510
Lmax 2.138 2.345 2.462 2.345 3.622

Ā 0.348 0.422 0.382 0.422 0.565
σA 0.377 0.473 0.436 0.473 0.837
Amin 0.218 0.228 0.192 0.228 0.204
Amax 1.577 1.851 1.709 1.851 4.444

V̄ 0.218 0.291 0.252 0.291 0.473
σV 0.078 0.121 0.112 0.121 0.405
Vmin 0.049 0.051 0.043 0.051 0.049
Vmax 0.600 0.881 0.840 0.881 2.353
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Fig. S-5 Force-deformation behavior of meshes with increasing number of tetrahedra. Meshes with N ≥
1658 tetrahedra are stable in the investigated range of deformation. Above 6230 tetrahedra, all meshes
produce the same converged output. The following parameters were used: cell radius R = 7.5µm, Young’s
modulus E = 300Pa, and Poisson ratio ν = 0.48.

S-2.5 Hertz theory

Although originally designed for the contact between two linear elastic spheres, the
Hertz theory can be applied to the contact between a linear elastic sphere and a flat
plate [2]. The general assumptions for the Hertz-theory are the following [3, p. 91-
92]:

– frictionless, smooth contact surfaces
– contact area small compared to sphere dimension
– homogeneous, isotropic and linear elastic material

S-2.5.1 Sphere-sphere contact

The following quantities are necessary to describe the normal contact of two elastic
spheres. The radii R1 and R2 of the spheres define the effective radius of curvature R
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of the bodies by

1
R
=

1
R1

+
1

R2
. (S-1)

Through their Young’s moduli and the Poisson ratios, E1,E2 and ν1,ν2, the effective
stiffness K is defined as:

1
K

=
1−ν2

1
E1

+
1−ν2

2
E2

(S-2)

The displacement δ , which measures the distance that the sphere centers approach
each other due to a normal force N acting on each sphere, can be expressed in terms
of the above parameters [2]:

δ =

(
9N2

16RK2

) 1
3

(S-3)

Therefore, the force–displacement relation according to the Hertzian theory for a
sphere-sphere contact is given by

N (δ ) =
4
3

KR
1
2 δ

3
2 . (S-4)

S-2.5.2 Sphere-plane contact

The analytical solution for the force–displacement relation according to the Hertzian
theory for the contact of a linear elastic sphere with a rigid plane can be obtained
from (S-4) by applying the following modifications: the plane has no curvature, thus
R2→ ∞ and (S-1) simply yields R = R1. Since the plane is assumed rigid, i. e. E2�
E1, (S-2) reduces to K = E1

1−ν2
1

. In this case, N is the force acting on the sphere and δ
is the distance between the center of the sphere and the plane.

S-2.6 Influence of the Mooney-Rivlin ratio w

To clarify the influence of w, we plot in figure S-6 the force versus deformation be-
havior of our cell model for different values of w. With decreasing w, i. e. decreasing
µ1 while increasing µ2, the strain hardening effect clearly increases and the upturn of
the force curve begins at lower deformations. This is due to µ2 scaling the term in the
strain energy density that is quadratic with the deformation (cf. equations (4) and (5)
of the manuscript).

S-2.7 Influence of the Poisson ratio ν

In figure S-7 we demonstrate that variations of the Poisson ratio ν within the range
of an approximately incompressible material do not notably influence the force-
deformation curves.
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S-3 Compression and indentation simulations

After initialization, each time step of our overdamped relaxation simulation consists
of the following two steps: the movement of the upper wall to compress – or the
sphere to indent – the cell and the integration of the equation of motion of the cell
vertices,

ẏα = γ−1(fα + fα
probe) . (S-5)

The vertex velocity ẏα is obtained from the elastic restoring forces (fα (12) and the
probe repulsion fα

probe), considering a friction factor γ . Since here we are only look-
ing at a sequence of equilibrium states, the value of γ is irrelevant for the resulting
force-deformation curves and only influences the performance and stability of the
simulations. The equation of motion is integrated using a fourth order Runge-Kutta
algorithm. The repulsive cell-probe interaction, preventing the cell vertices from pen-
etrating the plates or the indenter, has the form

fprobe (d) =
cF

d2 n , (S-6)

with the cell-probe distance d and a proportionality factor cF. The force points normal
to the probe, resulting in a compression between two plates and a radial displacement
away from the indenter. Physically, this corresponds to a free-slip boundary condition
which does not restrict tangential motions of the cell along the probe.
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S-4 Flow simulations with Lattice Boltzmann

S-4.1 Method

This section briefly summarizes the Lattice Boltzmann method implemented in the
open-source package ESPResSo [4]. For an introduction into the Lattice Boltzmann
method we refer the interested reader to the book by Krüger et al. [5]. The Lattice
Boltzmann equation for the multiple relaxation time scheme used in ESPResSo reads:

fi (x+ ci∆ t, t +∆ t)− fi (x, t) =
18

∑
j=0

(
M−1ω M

)
i j

(
f j (x, t)− f eq

j (x, t)
)

(S-7)

It describes the collision and streaming of the population distribution fi (i= 0, . . . ,18)
during one time step ∆ t. Here, ci are the discretized lattice velocities, M denotes trans-
formation matrix that maps the populations onto moment space, ω is the diagonal
relaxation frequency matrix, and f eq

i denote the equilibrium population distributions.
The relaxation frequency for the shear moments ωS is related to the dynamic viscosity
of the fluid via [6]

η = ρc2
s

(
1

ωS
− 1

2

)
∆ t , (S-8)

with the fluid mass density ρ and the lattice speed of sound cs. In order to ensure
simulation stability, we choose the time step globally according to Krüger et al.[5,
p. 273] as

∆ t = c2
s
(
τ− 1

2

) ∆x2

ν
t̃ =

∆x2

6ν
t̃ , (S-9)

with c2
s =

1
3 , a global relaxation parameter τ = 1, the kinematic viscosity ν , and an

additional factor t̃ in the range 1–2 to manually tune the time step.
We further introduce a scaling factor r by which we divide both the viscosity and the
Young’s modulus. According to eq. (S-9), this leads to a larger time step and thus to a
speed-up of the simulations. At the same time it leaves the important Capillary num-
ber unchanged and only increases the Reynolds number, which nevertheless remains
� 1. The parameter r thus does not affect the physics of the simulation which we
have carefully checked by a number of test runs with r = 1.
At the boundaries of the channel a bounce-back algorithm is applied to realize a
no-slip boundary condition. For the plane Couette setup, the bounce-back algorithm
additionally allows for a fixed tangential velocity component.
We use a combined CPU/GPU implementation which enables the calculation of the
flow field on the GPU, while the calculation of the cell motion is done in parallel
on multiple (4 to 20) CPUs. In lattice units, our simulation box for the single cell in
shear flow setup (cf. section 6.1) has the dimensions 60×90×30 (x× y× z), for the
multiple cell simulation (cf. section 6.2) it is 50× 80× 40. The dynamic viscosity,
chosen as ν = 1 in simulation units, determines the time step in our simulations as
∆ t = 1

3 with t̃ = 2.
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Fig. S-8 The trajectory of a surface node (here: starting at y = R and x,z = 0) for different capillary
numbers traces the ellipsoidal contour of the deformed particle. The non-elliptical part of the trajectory in
the upper-right corner represents the approach from the initially spherical to the final shape.

S-4.2 Tank-treading motion

Figure S-8 shows the trajectories of selected vertices on the outer surface of the par-
ticle for different capillary numbers. They describe an ellipsoidal motion tracing the
outer contour of the deformed particle thus demonstrating that in our simulations the
particle exhibits tank-treading.
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Bioprinting of living cells can cause major shape deformations, which may severely affect cell
survival and functionality. While the shear stresses occurring during cell flow through the printer
nozzle have been quantified to some extent, the extensional stresses occurring as cells leave the nozzle
into the free printing strand have been mostly ignored. Here we use Lattice-Boltzmann simulations
together with a finite-element based cell model to study cell deformation at the nozzle exit. Our
simulation results are in good qualitative agreement with experimental microscopy images. We
show that for cells flowing in the center of the nozzle extensional stresses can be significant, while
for cells flowing off-center their deformation is dominated by the shear flow inside the nozzle. From
the results of these simulations, we develop two simple methods that only require the printing
parameters (nozzle diameter, flow rate, bioink rheology) to (i) accurately predict the maximum cell
stress occurring during the 3D bioprinting process and (ii) approximately predict the cell strains
caused by the elongational flow at the nozzle exit.

I. INTRODUCTION

The aim of 3D bioprinting is to transfer the well-
established techniques of conventional 3D printing to the
fabrication of functional, living tissues. The material to
be printed typically consists of a chemically complex hy-
drogel, termed the bioink, in which living cells are sus-
pended. This technology promises to become a major
breakthrough, e.g. for cancer studies or – in the long
run – organ replacements [1–5]. A key obstacle, however,
remains to ensure the survival and functionality of cells
during and after the fabrication process. Possible causes
for cell damage are numerous, but can be broadly clas-
sified into insufficient bio-compatibility and mechanical
damage. The former arises from direct interaction be-
tween the cell and the surrounding bioink and has been
intensively studied [6–13].

Mechanical damage, by contrast, arises from hydro-
dynamic stresses as the cell passes from the reservoir
through the printing nozzle, transitions into the print-
ing strand, and finally comes to rest in the printed con-
struct. It has been shown that even after optimizing
biological and chemical conditions [14], such hydrody-
namic stresses remain a crucial source of cell damage and
death [15–25]. Understanding these mechanical stress
response processes is notoriously difficult as they result
from an interplay between the complex rheology of the
bioink, which is typically shear thinning [26–29], and the
even more complex viscoelastic response of the cell itself
[30–39]. Despite these difficulties, certain progress to-
wards reliable theoretical estimates of the cell stress in-
side printing needles has been achieved [15, 18, 40]. As a
starting point, the fluid shear stress profiles within print-
ing nozzles have been computed theoretically [17, 21, 41].
Some experimental studies correlated such stress calcu-
lations with cell viability or functionality [15, 22, 40, 42–

47]. These studies, however, investigated hydrodynamic
stresses only up to the end of the printing nozzle. At
the transition from the nozzle exit into the free strand,
the flow profile transitions rapidly from a Poiseuille-like
profile in the nozzle to a plug flow profile inside the free
bioink strand. This transition is accompanied by sizable
radial flows whose effect on cell deformation and there-
fore cell damage has so far not been experimentally or
theoretically quantified.

In this work, we start with fully three-dimensional Lat-
tice Boltzmann calculations for the flow profile of shear
thinning fluids [41] at the exit of a printing nozzle. To
investigate cell stress and strains inside and during exit
from the printing nozzle, we then employ our recently
developed hyperelastic cell model [30] which includes ex-
plicit two-way coupling between bioink and cellular me-
chanics, and show its qualitative match with experimen-
tal micrographs taken during the printing process. From
these investigations, we finally develop simple methods to
predict the cell stress and strains occurring during bio-
printing processes, and specifically during nozzle exit, by
only using the printing parameters, i. e., the nozzle diam-
eter, the bioink rheology, and the volumetric flow rate,
as input quantities. For this, we combine the classical
theories of Jeffery [48] and Roscoe [49] with our semi-
analytical flow computations of shear thinning bioinks in
capillaries [41].

II. METHODS AND SETUP

A. Flow dynamics: Lattice-Boltzmann simulations

In our simulations, we employ a fully three-dimensional
fluid dynamics solver. We use the implementation of the
Lattice Boltzmann method [50] provided by the software
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package ESPResSo [51, 52], which we extended with al-
gorithms to allow for the simulation of free-slip surfaces
[53] and shear thinning fluids [41]. Using an immersed-
boundary algorithm [32, 54–56], we couple our cell model
(section II C) to the flow.

B. Bioink rheology

The shear thinning rheology is considered an essential
material property for bioinks, as it serves two purposes:
first, the large viscosity of the material at rest provides
the necessary mechanical stability of the printed con-
struct itself. Second, the shear thinning properties allow
the material to be printed at significantly lower pressure
— considering the same printing speed —, thus reducing
the overall hydrodynamic stresses acting on cells inside
the nozzle.
We describe the viscosity as function of the rate of strain
|Ṡ| according to a three-parameter simplified Carreau-
Yasuda model, also known as Cross model [41, 57]:

η
(
|Ṡ|
)

=
η0

1 +
(
K|Ṡ|

)α (1)

Here, η0 is the zero-shear viscosity and the exponent α
characterizes the shear thinning strength of the bioink,
with α = 0 for a Newtonian fluid, and α > 0 for a shear
thinning fluid. The inverse of the time constant, K−1,
defines the rate of strain at which the viscosity is equal
to η0/2. |Ṡ| is calculated as the contraction of the rate

of strain tensor Ṡ via

|Ṡ| =
√

2ṠijṠij (2)

with the tensor elements

Ṡij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3)

The diagonal elements of Ṡ are the rates of elonga-
tion of the fluid along the coordinate axes, and the off-
diagonal elements are the respective shear rates. We
choose η0 = 10 Pa s and K = 0.05 s for the zero-shear
viscosity and the time constant, respectively. This pa-
rameter choice roughly resembles the values obtained for
2.5 % alginate hydrogels [26, 41, 58] which is a widely
used bioink material, although other materials can ex-
hibit similar shear-thinning properties. In order to in-
vestigate the influence of the shear thinning strength in
our calculations, we pick six different values for α be-
tween 0 and 1 with α = 0.75 [41] corresponding to the
said alginate solution. The viscosity as function of the
shear rate is depicted in figure 1(a). For an idealized, i.e.
infinitely long, cylindrical nozzle, the velocity profile and
the fluid stress σf can be computed according to [41][59]
as shown in figure 1(b and c) with the pressure adjusted
so as to ensure the same flow rate for each α. In our pre-
vious study [41], we introduced this method to calculate

FIG. 1. (a) Viscosity as function of the shear rate for the
six different degrees of shear thinning (α = 0, 0.15, 0.3, 0.45,
0.6,and 0.75). Squares indicate the maximum shear rate in the
nozzle channel under the flow conditions used in our simula-
tions (cf. section II D). (b) Corresponding velocity profiles for
an average velocity of 5 mm s−1 inside the cylindrical printing
nozzle. With increasing shear thinning strength, the velocity
profile flattens at the center. (c) Corresponding fluid stress
profiles. Stresses are linear with the radial position, and the
maximum fluid stress decreases significantly with increasing
α at constant flow rate.
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the velocity, shear rate, viscosity, and shear stress, pro-
files for an inelastic shear thinning fluid in a cylindrical
nozzle. The central assumptions — a laminar, uni-axial,
pressure driven, flow — are usually applicable for the de-
scription of bioink extrusion. In the following, we define
the fluid stress as:

σf = η
(
|Ṡ|
)
|Ṡ| (4)

We note that, if a constant extrusion pressure was used
for calculation, the fluid stress profile in figure 1(c) would
be the same regardless of α [41].

C. Cell elasticity

1. Hyperelastic cell model

Our cell is modeled as hyperelastic continuum, with a
sphere as equilibrium configuration. We provide exten-
sive validation of the model in a previous publication [30].
This includes AFM and FluidFM R© measurements on bi-
ological cells and hydrogel particles as well as comparison
to analytical theories [38, 49] and previous numerical sim-
ulations in shear flow [32, 60].
As a hyperelastic model, we employ the neo-Hookean ma-
terial model. This model is strain-hardening for compres-
sive strain, e.g. in AFM experiments, but also for shear
strains as occurring mainly in microfluidic experiments.
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Its strain energy density is computed via [61, p. 100]

U =
µ

2
(I − 1) +

κ

2
(J − 1)

2
, (5)

where J = det(F ) is the determinant of the deforma-
tion gradient tensor Fij = ∂xi

∂yj
[61, p. 14, 18], with the

undeformed and deformed vertex coordinates xi and yi,
respectively. I = J−2/3 tr(F ᵀF ) denotes the second in-
variant of F . As elastic parameters we choose a shear
modulus of µ = 1000 Pa and a Poisson ratio of ν = 0.48.
A simulation series with µ = 500 Pa is included in sec-
tion S-9 of the Supplementary Material. The Poisson
ratio near 0.5 provides sufficient incompressibility of the
cell, while the shear modulus lies in the range typically
found for mammalian stem cells [62]. In consistency with
linear elasticity for small deformations, the shear and
bulk modulus relate to the Young’s modulus and Pois-
son ratio via

µ =
E

2(1 + ν)
and κ =

E

3(1− 2ν)
. (6)

The cell radius is chosen as Rc = 8 µm (6 in simulation
units), and the mesh consists of 9376 tetrahedra.

In our numerical method, the interior of the cell is filled
with the same fluid as the outside fluid. Together with
the Neo-Hookean elasticity, this leads to an effectively
viscoelastic cell response [30].

2. Force calculation and flow coupling

For numerical simulations, the spherical volume is uni-
formly tetrahedralized using the meshing software Gmsh
[63]. The elastic forces acting on each vertex of one tetra-
hedron are obtained via differentiation of the strain en-
ergy density (5) with respect to the relative vertex dis-
placement,

fi = −V0
∂U

∂ui
, (7)

where V0 denotes the reference volume of the tetrahedron
and ui = yi − xi. This approach is explained in detail in
section 3.1 in [30].
The coupling between the cell model and the bioink is
realized using an immersed-boundary algorithm [64, 65].
After computation of the cell vertex forces, they are
transmitted into the fluid via extrapolation from the
moving Lagrangian cell mesh onto the static Eulerian
Lattice Boltzmann grid. The two-way coupling is com-
pleted through advecting the cell vertices with the local
interpolated fluid velocity.

3. Cell stress calculations

In addition to the elastic forces, we are able to obtain
the internal stress distribution inside our cell model. We

compute the Cauchy stress tensor in each tetrahedron
from the strain energy density and the deformation gra-
dient tensor according to Bower [61, p. 97] as:

σij = J−1Fik
∂U

∂Fjk
(8)

For the neo-Hookean model in (5), this becomes

σij =
µ

J5/3

(
Bij −

1

3
Bkkδij

)
+ κ(J − 1)δij , (9)

where B = FF ᵀ denotes the left Cauchy-Green deforma-
tion tensor.
In order to obtain a simple scalar observable to quantify
the cell stress, we start from the local von Mises stress
in each tetrahedron. The von Mises stress is an invari-
ant of the Cauchy stress tensor and commonly used in
plasticity theory to predict yielding of materials under
multiaxial loading conditions through construction of a
fictitious uniaxial loading. Using the principal stresses,
i. e., the eigenvalues σ1, σ2, and σ3, of the Cauchy stress
tensor (9), we calculate [61, p. 48]

σvM =

√
1

2

[
(σ1 − σ2)

2
+ (σ2 − σ3)

2
+ (σ3 − σ1)

2
]
.

(10)

An alternative equivalent formulation to (10) is the con-
traction of the deviator of the Cauchy stress tensor
σdev
ij = σij − 1

3σkk. It reads:

σvM =

√
3

2
σdev
ij σdev

ij . (11)

The total cell stress σvM is then computed by averag-
ing the local von Mises stress over all tetrahedra in the
cell model weighted by the undeformed volume of each
tetrahedron.

4. Validation of the cell stress calculation

We validate our cell stress calculations using a linear
shear flow setup: the simulation box with dimensions
10× 15× 5 (x× y × z in units of Rc) is bounded by two
planes at y = 0 and y = 15Rc, moving with a tangential
velocity in ±x-direction. This creates a linearly increas-
ing velocity across the gap and thus a constant shear rate
γ̇ in the box. The shear rate is varied to achieve a range
of fluid stresses up to 1.5 kPa, while the fluid viscosity
(α = 0) and the cell’s shear modulus remain constant. In
non-dimensional terms, this range corresponds to capil-
lary numbers Ca = σf

µ between 0 and 1.5.

During the simulation, the initially spherical cell tra-
verses through a series of ellipsoidal deformations before
reaching a stationary state, at which the whole cell vol-
ume performs a tank-treading motion, i. e., the cell ver-
tices rotate around the fixed ellipsoidal cell shape. In
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FIG. 2. Comparison of the cell stress predicted by Roscoe [49]
and the average cell stress of our model in shear flow. Insets
show the stationary, tank-treading shape of the simulated cell
at fluid stresses corresponding to Ca = 0.2, 0.6, and 1.2.
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figure 2, we compare the elastic cell stress in the station-
ary state calculated by (10) to the analytical calculations
of Roscoe [49] (detailed in section S-4) and find excellent
agreement for a realistic range of fluid stresses.

In addition to the elastic stress, we compute the viscous
contribution resulting from the fluid motion enclosed by
the cell volume. This quantity is extracted from the
Lattice-Boltzmann strain rate tensor field [41, 66] inside
the cell using our method from [67] and averaging over
the cell volume. In figure S-2 we show that the agree-
ment of the numerically obtained viscous cell stress with
Roscoe theory is equally good as for the elastic compo-
nent.
We note that cell and fluid stress in figure 2 are time-
independent and stationary. We further dissect their re-
lation in detail in section III A.

D. Bioprinting simulations

The two essential parts of the bioprinting process are
(i) the flow inside the nozzle channel and (ii) the flow
transition at the nozzle exit. Both situations will be stud-
ied separately in this work.

1. Nozzle channel

We model the nozzle channel using a periodic cylin-
drical no-slip channel with a radius of R = 50 µm and
length of 133 µm (37.5 and 100 in simulation units), as de-
picted in the left dashed box in figure 3. The shear thin-
ning fluid dynamics are solved by the Lattice-Boltzmann
method as described in section II A. No-slip boundary
conditions are imposed at the channel wall. The flow is
driven by a pressure gradient G along the nozzle axis.
To compare the different bioinks detailed in section II B,

we consider a fixed average velocity of 5 mm s−1 (volu-
metric flow rate Ω = 3.93× 10−11 m3 s−1 ≈ 141 µl h−1).
The corresponding pressure gradient is different for each
α and is obtained according to [41]. Our input parame-
ters as well as averaged and maximum quantities of the
nozzle channel flow are listed in table I. We note that
compared to common flow cytometry setups [31, 35], the
channel radius in typical bioprinting applications is sig-
nificantly larger, thus allowing cells to flow off-centered.
To account for this, a single spherical cell is inserted at
different radial starting positions of 0, 1.5Rc, 3Rc, and
4.5Rc, as shown in figure 3.

2. Nozzle exit

The geometry of our simulations at the nozzle exit
is depicted by the right dashed box in figure 3, the
flow dynamics are again solved by the Lattice-Boltzmann
method. The free bioink strand of length 933 µm (700 in
simulation units) behind the nozzle exit is assumed to
have the same radius as the inner radius of the nozzle
channel, with free-slip boundary conditions applied at
the fluid surface, which result in a plug motion of the
bioink. This way we neglect the small extension of the
bioink strand at the nozzle exit known as Barus effect or
die swell [68]. Equal flow conditions as inside the nozzle
channel are achieved by applying the average velocity of
5 mm s−1 as normal velocity at the circular inflow and
outflow planes, instead of a constant pressure gradient
as used in the nozzle channel setup. We insert a single
cell at different radial positions as explained above. The
starting configuration of the cell is taken from the cor-
responding simulation of the nozzle channel setup, i. e.,
the cell is inserted in a deformed state close to the nozzle
exit, as shown in the first frames in figure 9.

FIG. 3. Schematic of the bioprinter setup: the nozzle channel
is bounded by a cylindrical wall and periodic in x-direction.
Single cells are inserted at different radial offsets. The nozzle
exit consists of the transition from the no-slip nozzle channel
to the free bioink strand. Cells are initialized in a deformed
state close to the transition.
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TABLE I. Flow parameters of our bioprinter setup with a
nozzle radius of 50 µm and an average velocity of 5 mm s−1.

α G σmax
f σavg

f umax
x |Ṡ|max |Ṡ|avg

− Pa m−1 kPa kPa mm s−1 s−1 s−1

0.00 8.00× 107 2.00 1.33 10.0 400 267
0.15 6.37× 107 1.59 1.06 9.77 410 265
0.30 4.87× 107 1.22 0.81 9.45 426 262
0.45 3.58× 107 0.89 0.60 9.03 454 257
0.60 2.54× 107 0.63 0.42 8.47 502 251
0.75 1.74× 107 0.44 0.29 7.77 604 242

III. RESULTS

A. Dissecting the notion of ”cell stress”

In many situations, it has become a common approach
to invoke the term “cell stress” and to equate it directly
to the fluid stress, i. e., the viscosity multiplied by the
local shear rate at the cell position. Here, we show that
this simple approach, while being correct in its order of
magnitude, hides a good amount of the more complex
features of intracellular stress. To illustrate this, we ap-
ply the theory of Roscoe [49] for a cell in linear shear flow,
which accurately describes cell behavior in our numeri-
cal simulations (see section II C 4) and in microchannel
experiments [69], provided that the cell does not flow in
the channel center where the shear rate approaches zero.

Inside a flowing cell, two qualitatively different kinds of
stress arise. The first kind are viscous stresses that are
caused by frictional motion (i. e. tank-treading) of the
cell interior. The second kind are elastic stresses that are
caused by the deformation (e. g. shearing and stretching)
of the cell. The magnitude of the former are governed by
the cell’s internal viscosity, while the latter are set by its
elastic moduli. We note that, in principle, both a cell’s
viscosity and its elasticity can be non-homogeneous, i. e.,
they vary spatially throughout the cell, and anisotropic,
i. e., they depend on direction, e. g., due to alignment of
certain cytoskeletal elements. Here and in most other
situations, these more complicated effects are neglected,
and the cell is considered a homogeneous, isotropic vis-
coelastic medium. Furthermore, as shown in [49] for a
cell in pure shear flow, stability requires that viscous and
elastic cellular stresses do not vary between different lo-
cations inside the cell. Their value can be calculated from
Roscoe theory as detailed in the Supporting Information
(eqs. (S-43) and (S-48)).

We start with the limiting case of low shear rates cor-
responding to small capillary numbers Ca =

σf

µ → 0.

In this limit, fluid stresses are not sufficient to cause
significant cell deformation, and the cell essentially re-
mains spherical. Indeed, the classical calculation for a
rigid sphere in shear flow detailed in section S-6 of the
Supporting Information yields a surprisingly accurate de-
scription of this limit. The cell rotates as a rigid body,
which implies the absence of internal frictional motions

FIG. 4. Components of the cell stress tensor σij normalized by
the undisturbed fluid stress σf across multiple orders of mag-
nitude of the Capillary number computed using the Roscoe
theory. Elastic stresses are shown in blue, viscous stresses
are shown in purple. Components not appearing in the fig-
ure remain zero throughout. The directions 1, 2, 3 refer to a
body-fixed coordinate system as indicated by the insets.

−3

−2

−1

0

1

2

3

4

5

10−3 10−2 10−1 1 101 102 103

σ11

σ22
σ33

σ12

σvM

σ
ij
/
σ
f

Ca

~e1~e2

~e1

~e2

and thus leads to a vanishing viscous cell stress as shown
by the purple curve in figure 4. Similarly, elastic stresses
in the vorticity direction vanish as shown by the σ33 com-
ponent in figure 4. A positive stress appears in a direction
inclined by 45◦ with respect to the flow direction (σ11),
with a corresponding negative stress in the perpendicu-
lar direction. Their magnitude is precisely 5/2 times the
undisturbed fluid stress σf , which exactly corresponds to
the situation of the rigid sphere as shown in section S-6.

In the opposite limit of high shear rates (Ca → ∞),
the situation becomes more involved. In agreement with
our numerical simulations shown in figure 2, the cell be-
comes strongly elongated and aligned in flow direction.
Due to the persisting tank-treading motion, internal vis-
cous stresses do not disappear. Instead, the flatness of
the cell shape minimizes the cell’s disturbing influence
on the surrounding fluid flow, and indeed the cell’s inter-
nal viscous stress now becomes equal to the undisturbed
fluid stress, as can be seen by the purple curve in fig-
ure 4. Maintaining the flattened cell shape, however, in
addition requires elastic stresses. As shown by the blue
curve in figure 4, all three elastic stress components arise
with their ratios being σ11 : σ22 : σ33 = 2 : −1 : −1. The
positive stress in flow direction, σ11 is balanced by nega-
tive stresses in the two other directions. These ratios can
easily be understood by the analogy with a uniaxially
stretched beam as detailed in section S-7 of the Support-
ing Information.

Despite this complexity, it may be helpful in many situ-
ations to have at hand a single measure to quantify “cell
stress”. Such a measure can be provided by the elas-
tic von Mises stress σvM given in (11) which we include
as the black dashed line in figure 4. The ratio σvM/σf
transitions from 5

2

√
3 at low to 3 at high Ca. In the in-

termediate range, the proportionality factor is situated
between these two limits. As can also be deduced from
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figure 2, the relation between σvM and σf changes the
most in the range of 0.1 < Ca < 1, while otherwise an
approximately linear dependency emerges.

From the results of this subsection, we conclude that
the common approach of equating (undisturbed) fluid
stress to “cell stress” can be a reasonable approximation
for low and high Capillary numbers.

B. Cell flowing inside the nozzle channel

Using our setup described in section II D 1, we inves-
tigate the cell behavior and the cell’s internal stress dis-
tribution during the flow inside the nozzle. Depending
on the initial radial position, we observe two modes of
deformation of the cell:
(i) A cell flowing along the axis of the nozzle channel
assumes an axisymmetric bullet-like shape, as can be
seen in figure 5(a) and (b) for a Newtonian and a highly
shear thinning bioink, respectively. In both cases, the ra-
dial dependency of the internal cell stress is highly non-
homogeneous and resembles the linearly increasing fluid
stress of the undisturbed liquid (cf. figure 1(c)), since the
cell’s surface has to balance higher fluid shear stresses
for increasing r in the stationary state. However, the
magnitude of the stress and likewise the cell deformation
decrease significantly when the shear thinning index α is
increased at the same volumetric flow rate. This finding
may explain earlier experimental observations in which
more shear thinning bioinks were found to increase cell
survival in bioprinting [22, 44] when the pressure was re-
duced to ensure equal flow rates for all conditions.
(ii) A cell flowing off-center deforms into an approx-
imately ellipsoidal shape exhibiting tank-treading mo-
tion. Due to the curvature of the flow, the cell mi-
grates towards the channel center (sometimes referred to
as margination), where it eventually assumes the bullet-
like shape discussed in the previous paragraph. A se-
quence of simulation snapshots for a cell flowing in the
Newtonian bioink is shown in figure 5(c), where the in-
ternal stress distribution of the off-centered cells can be
observed. Figure 6(a) shows the corresponding develop-
ment of the radial position over time starting from an
offset of 36 µm. With increasing shear thinning strength,
i. e., decreasing pressure gradient, the cell takes longer to
migrate towards the channel center.
In figure 6(b) the same situation is studied for a con-
stant pressure gradient. We find that here the migration
speed of the cell becomes independent of the shear thin-
ning properties of the bioink and thus conclude that cell
migration is determined predominantly by the applied
pressure gradient and not the flow speed. This finding
can be understood since the stress, and thus the forces,
that the cell feels are directly determined by the local
fluid stress. Therefore, when printing bioinks with dif-
ferent rheology at the same printing pressure, the radial
cell distribution will not change. When printing bioinks
with increasing shear thinning strength at the same flow

rate, by contrast, fewer cells will migrate to the center of
the nozzle.
The ellipsoidal cell shape during the migration allows us
to compare the cell stress to the prediction of the Roscoe
theory [49] detailed in section II C 4. In figure 6(c) we plot
the development of the cell stress in a Newtonian bioink
when cells are initially placed at different offsets from the
nozzle center. Due to the migration of the cells towards
the channel center, the local fluid stress experienced by
a given cell decreases monotonically over time. In or-
der to directly compare with the prediction of Roscoe
theory, which assumes a constant fluid shear stress, we
choose this local fluid stress as abscissa. Cells start at
offsets of 12 µm, 24 µm and 36 µm corresponding to ini-
tial fluid stresses of σf ≈ 0.5 kPa, 1.0 kPa, and 1.5 kPa,
respectively. The initial shape is undeformed and thus
σvM = 0 for t = 0. The cell first experiences a tran-
sient of large stresses and quickly relaxes towards the
cell stress predicted by Roscoe where the curved flow is
locally approximated as a pure shear flow, as indicated
by the square symbols. Due to the migration towards
the channel center, the cell stress decreases with time
and radial position. The curves of all initial radial offsets
perfectly agree with the prediction of the Roscoe theory,
as long as the cell’s radial position is larger than Rc.
When the cell is close to the channel center, the local
shear flow approximation becomes invalid, thus causing
deviations from the theoretical prediction.
A similar plot is provided for shear thinning bioinks in
figure 6(d) where the stress of cells starting at offset 4.5Rc

for different α is compared with Roscoe theory. We again
find excellent agreement with the Roscoe theory indepen-
dent of the shear thinning strength. This finding may
seem surprising at first, as the theory of Roscoe is de-
signed for purely Newtonian fluids surrounding the cell,
but stays valid for shear thinning bioinks as well. This
demonstrates that the key property determining cell mo-
tion is indeed not the shear rate, but rather the shear
stress. The plots for the remaining cell offsets and bioinks
are included in the SI (cf. figure S-3).

C. Analysis of the flow field at the nozzle exit

In this section, we investigate the influence of the shear
thinning rheology of the bioinks introduced in section II B
on the undisturbed (cell free) flow field at the nozzle
exit, where the transition from nozzle channel to the free
bioink strand causes additional radial flows. We use the
second setup described in section II D, without a cell, and
run the calculations until the flow becomes stationary.
In figure 7(a) and (b), we show x-y-slices of the veloc-
ity profiles for the axial and radial velocity, respectively,
at different values of the shear thinning parameter α.
From top to bottom, the shear thinning strength of the
fluid increases, while the flow rate is kept constant. The
axial velocity component in figure 7(a) shows the same
trend for increasing α as seen in figure 1(b): the flow de-
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FIG. 5. Internal stress distribution for a cell flowing at the
center of the nozzle channel in (a) a Newtonian fluid and (b) a
strongly shear thinning fluid. (c) Internal stress distribution
and radial migration of an off-centered cell towards the axis of
the nozzle channel in a Newtonian bioink. The bottom labels
give the axial distance traveled during the time given by the
top labels.
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velops a central plateau inside the nozzle channel which
at the nozzle exit transitions into the plug flow inside
the bioink strand. Indeed, as shown in figure 7(c), the
ratio umax

x /uavgx between the maximum velocity inside
the nozzle channel and the average velocity assumes the
Poiseuille value of 2 at α = 0 and decreases towards
the plug-flow value of 1 for increasing shear thinning
strength.
The second column, figure 7(b), shows the correspond-
ing radial flow components. Due to the radial symmetry,
they vanish at the center and increase towards the bound-
ary, showing a drop-like shape with its tip pointing to the
position of the nozzle orifice, where the boundary condi-
tions change. The radial flow components decrease with
increasing α, since the fluid has to be displaced less due
to smaller axial velocity difference across the transition.
Figure 7(d) quantifies this observation by comparison of
the maximum radial flow velocity at the exit with the
average axial flow. Combining the axial and radial flows,
streamlines are computed in order to visualize the fluid
motion in the stationary state. As can be seen in the
overlaying lines in figure 7(a) and (b), the streamlines
show very similar elongational behavior for all α at the
nozzle exit due to the simultaneous decrease of the axial
and the radial flow component. They are, however, not
exactly equal, since the maximum axial and radial veloc-
ities scale slightly differently with α. Finally, comparing
the ratio of axial and radial velocities, we find that the
maximum radial flow velocity is always about 10 % of the
maximum axial flow velocity, roughly independent of α.

FIG. 6. Radial migration r (center-of-mass) of a cell start-
ing near the nozzle wall for different shear thinning strengths
(see (d) for color labels) with (a) constant flow rate and (b)
constant pressure gradient (G = 1.14× 107 Pa m−1). For con-
stant G, the migration speed is almost independent of α.
(c,d) Cell stress as function of the local fluid stress compared
to the Roscoe theory (black line). Due to the radial migra-
tion of the cell, the cell experiences a continuous change of
the local fluid stress over time. (c) The cell starting at differ-
ent offsets (from right to left: 4.5Rc, 3Rc, and 1.5Rc) in the
Newtonian fluid. The duration of the deformation from the
spherical reference shape to the approximately elliptical shape
is given by the points. (d) Cells starting at offset 4.5Rc for
bioinks with increasing shear thinning strength in comparison
with the Roscoe theory. For details, see text.
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The fluid stress along the axial direction for different off-
sets is shown in figure 8 for α = 0 and α = 0.75. In
addition to the total fluid stress, we plot the shear and
elongational component separately. To do so, we first
decompose the rate of strain tensor into the shear and
elongational components

Ṡij = Ṡshear
ij + Ṡelong

ij , (12)

where Ṡelong is a diagonal tensor and Ṡshear contains only
off-diagonal elements. Using this decomposition — fur-
ther details can be found in section S-3 —, we can define
the shear and elongational components of the fluid stress
as

σshear
f

..= η
(
|Ṡ|
)√

4Ṡ2
xr (13)
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FIG. 7. x-y-slices of the flow at the nozzle exit for increasingly
shear thinning fluids: (a) axial velocity component and (b) ra-
dial velocity component with streamlines as overlay. (c) The
ratio of maximum axial velocity inside the nozzle to the av-
erage flow velocity as function of the shear thinning strength
α. (d) The ratio of maximum radial velocity after the nozzle
exit to the average flow velocity as function of α.
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σelong
f

..= η
(
|Ṡ|
)√

2(Ṡ2
xx + Ṡ2

rr + Ṡ2
θθ) . (14)

Note that Ṡxθ = Ṡrθ = 0, since no azimuthal flow com-
ponents are present, but that nevertheless Ṡθθ 6= 0 as
detailed in section S-3. Thus, the total fluid stress is
obtained from (13) and (14) via:

σf =

√(
σshear
f

)2
+
(
σelong
f

)2
(15)

Along the channel center (cf. figure 8(a) and (e)), all
shear components of the stress vanish, leaving only the
elongational ones, which show a clear peak at the exit.
Considering the symmetry, this peak is caused solely by
the axial flow deceleration.
With increasing radial offset from the center, as can be
seen in figure 8(b-d and f-h) for offsets 1.5Rc, 3.0Rc, and

FIG. 8. Decomposition of the fluid stress in shear (13) and
elongational component (14) at the nozzle exit for the (a-d)
Newtonian fluid and (e-h) the highly shear thinning bioink
with α = 0.75. x denotes the axial distance from the nozzle
orifice.
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4.5Rc, the influence of the shear components increases
significantly. It can also be seen that the peak of the
fluid stress is not only determined by the elongational
flow components, but also partly by the shear compo-
nent Ṡxr = 1

2

(
∂ux

∂r + ∂ur

∂x

)
. This is further discussed in

section S-2 in the SI. The radial offset at which the shear
stress inside the nozzle channel exceeds the magnitude
of the fluid stress peak depends on the shear thinning
strength of the bioink: when comparing figure 8(c) and
(g), the stress peak for the Newtonian fluid is already
smaller than the fluid stress inside the nozzle channel,
while for α = 0.75 it is still higher. When selecting
shear thinning bioinks in bioprinting, it is thus impor-
tant to keep in mind that the relative significance of the
radial flows at the nozzle exit, both elongational and cor-
responding shear components, increases when a stronger
shear thinning bioink is used.

D. Cell flowing through the nozzle exit

In this section, we investigate the influence of the flow
transition on cells passing the exit of the printer nozzle
using our computer simulations and actual micrographs
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of cells flowing through a real 3D bioprinter nozzle. As
discussed in section III C, elongational flow components
on a short length scale (≈ 2R) occur at the nozzle exit.
These act in different ways on the cell, depending on its
radial position when passing the transition:

1. Centered cell

Flowing along the center of the channel, the cell ex-
periences symmetric flow conditions also when passing
through the nozzle exit. The deceleration in flow direc-
tion leads to an axial compression, while the radial flow
stretches the cell in radial direction, leading to an oblate
deformation of the cell. As can be seen in the simulation
snapshots in figure 9(a) and (b) for the centered flowing
cell, its stress uniformly increases inside the whole cell
volume during this elongational deformation. After the
transition, the cell quickly relaxes towards its spherical
equilibrium shape inside the bioink strand.

Next, we assess the cellular stress resulting from the
various flow regimes and ink properties which may affect
cell survival and health. As can be seen in figure 10(a),
an increase in the shear thinning strength of the bioink
leads to a decreasing cell stress inside the nozzle channel,
as expected from the experimentally observed increased
cell survival in more shear thinning bioinks [22, 44].
In contrast to these beneficial effects of shear thinning
inside the nozzle, we find that the importance of the
elongational stress peak at the nozzle exit notably
increases relative to the stress inside the nozzle when
α is increased: for the Newtonian case (dark blue line
figure 10(a)), cell stress increases by approximately 50%
from 0.9 kPa to 1.3 kPa during the transition, while
for the most shear-thinning bioink (light blue line) it
increases six-fold from 0.1 kPa to 0.6 kPa.
Besides cell stresses, an important measure to assess
cell damage is cell strain, see e. g. [14]. Due to the
symmetry at the channel center, we define an axial
strain α1

..= lx/(2Rc) and a radial strain α2
..= lr/(2Rc),

as the maximum elongation of the cell in the considered
direction divided by the cell’s reference diameter. As
shown in figure 11, the behavior of these cell strains
is similar to that of the cell stresses in the paragraph
above. Independent of the shear thinning exponent α,
the axial strain α1 of the cell’s bullet shape inside the
nozzle channel is almost negligible, and only a clear
peak in deformation is observed when passing the nozzle
exit. The radial strain α2, on the other hand, already
starts with a significant difference from the equilibrium
shape. A cell suspended in a highly shear thinning
bioink flowing at the nozzle center therefore experiences
only the elongational flow right at the nozzle exit, while
remaining almost undeformed otherwise.

2. Off-centered cell

We now observe a cell flowing near the nozzle wall
Here, the elongational flow at the nozzle exit is com-
bined with shear components inside the nozzle. When
passing the transition, the cell is pushed in radial direc-
tion leading to a non-ellipsoidal change in shape, before
it relaxes towards the equilibrium shape in the bioink
strand. An overall decrease of the cell stress when passing
through the transition can be observed in the simulation
snapshots for the off-centered flowing cell in figure 9(a)
and (b). Compared to centered cells in figure 10(a), the
importance of elongational relative to shear stress de-
creases for off-centered cells as shown in figure 10(b)-
(d). Indeed, for off-centered cells, the relaxation from
the shear-dominated axial flow inside the nozzle channel
to the stress-free plug flow in the bioink strand is the
most significant effect.
We determine this relaxation time scale τ for every sim-
ulation by fitting an exponentially decaying function to
the cell stress versus time data (see SI figure S-8). Fig-
ure 10(e) shows the obtained relaxation times for all cell
offsets as function of α. We find that the relaxation time
increases with increasing shear thinning strength α when
keeping η0 constant. This is caused by the larger viscos-
ity of the bioinks with higher α for low rates of strain
(cf. figure 1), resulting in a higher resistance of the fluid
against the cell shape relaxation. Similar to our observa-
tions of the fluid stress at the nozzle exit in section III C,
we find in figure 10(a to d) that the cell stress peak at
the nozzle exit becomes more significant compared to the
cell stress inside the nozzle channel when the cell is closer
to the center and for stronger shear thinning fluids.

3. Microscopy experiments

To verify our numerical predictions, we image with
a high speed camera a bioink strand with cells flowing
out of a printing nozzle into a larger reservoir of wa-
ter. Details of this imaging setup are included in the SI
(cf. section S-1). With the objective focused at the tip of
the nozzle (inner radius 100 µm), the micrograph in fig-
ure 9(c) shows cells suspended in a strand of 2 % alginate
bioink during extrusion at a flow rate of 10 µl s−1. As can
be seen in the marked areas in figure 9(c), cells flowing
close to the center exhibit a radially elongated change of
shape, while cells flowing near the nozzle wall show an
axial elongation. In accordance with our simulations, we
observe the cells in the experiment relaxing towards their
spherical stress-free shape shortly after the nozzle exit.

E. Prediction of elongational stress, cell stress and
cell strain during bioprinting

The methods employed in sections III B, III C, and
III D lead to accurate predictions for important param-
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FIG. 9. Internal cell stress distribution of cells flowing at
different offsets through the nozzle exit in (a) the Newto-
nian fluid and (b) the shear thinning bioink with α = 0.75.
(c) Experimental image of cells exiting a 100 µm radius noz-
zle in 2 % alginate bioink. Left green boxes indicate radi-
ally/axially elongated cells flowing in/off-center, respectively.
Right green box indicates a cell after relaxation back to equi-
librium. Movies of both simulation and experiment can be
found in the supplementary material.

(a)

(b)

(c)

σvM /Pa

eters such as cell strain or stress, but require numeri-
cal simulations with specialized software. As a practical
tool, we develop in the following a simpler yet still ac-
curate method to predict important cell quantities from
the printing parameters only.

1. Elongational fluid stress at the nozzle exit

To quantify the importance of elongational effects, we

define the average elongational fluid stress σ̄elong
f which

we obtain by averaging σelong
f from the simulations along

the nozzle axis in an interval of ∓R around the peak seen

in figure 8(a) and (e). In figure 12 we plot σ̄elong
f as func-

tion of the shear thinning strength of the fluid. As would
be expected from the decreasing pressure gradient, the
elongational stress monotonously decreases with α. In
order to obliviate the need for full numerical simulations
of the entire flow field in practice, we now show that a

good estimate for σ̄elong
f can be obtained by using a much

simpler method for flow field computations [41].
For this, we assume that the length of the transition

is equal to the nozzle diameter 2R, as can be verified
by comparing with figure 7(a) and (b) and figure 8(a)

FIG. 10. Change of the cell stress when passing through the
nozzle exit and flowing in the free bioink strand for increas-
ingly shear thinning bioinks. From (a) to (d), the data is
given for the initial cell’s radial offsets 0, 1.5Rc, 3Rc, and
4.5Rc. (e) Relaxation times τ of the cell stress when flowing
in the free bioink strand as function of α and the initial radial
cell offset.
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FIG. 11. Cell strain for a cell flowing in the center (a) α1 in
x-direction and (b) α2 in r-direction at the nozzle exit for the
different bioinks. The colors correspond to the flow index as
in figure 10.
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and (e). Starting from the velocity profile of [41], the
change in axial velocity along this length then gives the
approximate elongation rate at the nozzle exit:

ε̇ ≈ umax
x − uavgx

2R
(16)

Next, we calculate the stress assuming elongational flow
conditions, i. e., Ṡxx = −2Ṡrr = −2Ṡθθ = −ε̇, via

σ̄elong
f = η

(√
3ε̇
)√

3ε̇ (17)
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which is derived in the SI (cf. section S-3). This ap-
proximated average elongational stress is in very good
agreement with the full numerical simulation of the noz-
zle exit, as shown in figure 12.
We use this approximation to further estimate the elon-
gational cell strain and stress for centered flowing cells at
the nozzle exit in the next section.

2. Cell stress and strain for centered cells

We proceed with an estimation of the maximum stress
and strain experienced by cells while flowing inside the
nozzle as well as during their transition into the free
strand at the nozzle exit.

Starting with the latter, we focus on cells flowing at
or close to the nozzle center where (as we have shown in
figure 8(a), (b), (e), and (f) above) elongational stresses
are the most significant fluid stress contribution. The
theories of Jeffery and Roscoe [48, 49] contain a solution
for the cell strains α1 and α2 in a stationary elongational
flow (cf. section S-4 B). It reads

2√
3

σ̄elong
f

µ
=

(
α2
1 −

1

α1

) ∞∫

0

λ dλ
(

1
α1

+ λ
)2

(α2
1 + λ)

3
2

(18)

and can be solved numerically for α1 as function of the
elongational fluid stress and the cell’s shear modulus.

The other cell strains are α2 = α3 = α
−1/2
1 due to

symmetry. Using the elongation rate from (17) as in-
put value, we compare the theoretical values with the
data obtained from the full numerical simulations in fig-
ure 13(a). We note that the theory slightly, but con-
sistently, overestimates cell strains. Indeed, since the
elongational flow is experienced by the cell for only a
short time span while the theory assumes a stationary
elongational flow, this overestimation is to be expected.
Interestingly, and in line with what has already been ob-
served in figure 6, Roscoe theory yields surprisingly ac-
curate predictions even for highly shear thinning inks.
We again attribute this to the central role of stresses,
instead of flow rates, for the cell deformation process in
printing nozzles when these are large compared to the
radius of the cell. With our approximation consistently
over-estimating the simulated results, it can be consid-
ered as practical upper limit for predicting cell survival.

As a consequence of the stationarity condition assumed
by Roscoe theory, it would predict unrealistically large
cell strains in the case of printing velocities higher than
the 0.5mm/s used in this work. In reality, however, the
flow through the nozzle exit is highly transient and the
stationary state is never attained. To assess nevertheless
the effect of printing speed, we perform additional sim-
ulations for cell flowing centered through the nozzle at
1 cm s−1 to 10 cm s−1 average extrusion velocity, in or-
der to cover the typical range of 3D bioprinting speeds.
Figure 14(a) shows the resulting peak cell strains at the

exit from full numerical simulations in comparison to
our estimate for 0.5mm/s in figure 13(a). It is appar-
ent that a variation of more than one order of magnitude
in flow velocity does hardly affect the cell strains, since
the higher velocities significantly decrease the time span
during which the high elongational stresses are acting on
the cell. Hence, the printing speed does practically not
affect the elongational strains occurring during printing.

Based on this estimate for cell strain, we proceed to
estimate the corresponding cell stress for centered cells.
For this, the fluid elongational stress from (17) is fed
into the elongational Roscoe theory given by eqs. (18)
and (S-52). The result is in good agreement with the
full numerical simulations as shown in figure 13(b) for
centered cells (green line).

3. Cell stress and strain for off-centered cells

For off-centered cells, we have shown in figure 10(d)
that shear components inside the nozzle are an important
contribution to the overall cell stress, especially inside
less shear thinning bioinks, where they substantially ex-
ceed the stress caused by elongational flows at the nozzle
exit. We next estimate this overall maximum cell strain
and stress.

Due to their almost ellipsoidal shape, we choose as
strain measure for the off-centered flowing cells now the
ellipsoid’s major and minor semi-axis α′1 and α′2, which
are obtained through computing the equivalent ellipsoid
from the deformed cell’s inertia tensor, as detailed in [30].

Starting from the fluid shear stress obtained from our
earlier work [41], we employ the shear part of Roscoe
theory in (S-45) and (S-47) and plot the resulting stresses
and strains for cells starting at 1.5Rc, 3Rc, and 4.5Rc in
figure 13(c,d). Again, we observe very good agreement
with the simulations from section III D(ii).

Upon increasing the average flow velocity by more than
one order of magnitude in figure 14(b), we find that cells
flowing at maximum radial offset in Newtonian bioinks
are not able to attain a stable state while flowing inside
the nozzle channel. However, this limitation is solely a
result of the large viscosity of the hypothetical Newto-
nian fluid, and would not affect a real printing process.
With increasing shear thinning strength, as shown in fig-
ure 14(b), a stable cell shape can be achieved also for high
flow velocities of 10 cm s−1. The maximum cell strains
are accurately predicted by Roscoe theory.

IV. CONCLUSION

In this work, we investigated the cell stress and strain
and the bioink flow behavior during a 3D bioprinting
extrusion process using Lattice-Boltzmann numerical
simulations together with corresponding qualitative
experiments. The two scenarios considered were the flow
inside the nozzle channel as well as at the nozzle exit,

pub3



12

FIG. 12. The average elongational stress σ̄elong
f across the

nozzle exit from figure 8(a and e) can be estimated from (17).

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1

σ̄
e
lo
n
g

f
/

k
P

a

α

Simulation
Estimate

FIG. 13. (a) The peak strain and (b) cell stress for centered
flowing cells at the transition can be approximated using our
estimate of the average elongational fluid stress from (17) and
the Jeffery and Roscoe theories for a cell in an elongational
flow from section S-4 B. For off-centered cells, our flow calcu-
lations inside the nozzle channel and the theory of Roscoe for
a cell in shear flow.
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where the flow transitions into the free bioink strand.
During the first stage of the printing process while cells
are flowing inside the printing nozzle, our simulations
showed a bullet-like deformation for cells in the center
of the channel and an ellipsoidal shape for cells flowing
off-center. The latter can be understood on the basis
of the classical theory of Roscoe [49] which relates
cell stress to the local fluid stress. Interestingly, our
simulations demonstrate that these relations hold even
in realistic shear thinning bioinks, even though they
were originally designed for Newtonian fluids only. The
radially inward-directed migration of the cell due to
the shear forces was also found to be independent of

FIG. 14. (a) Peak elongational cell strain for centered flowing
cells passing the transition for an average extrusion velocity of
1 cm s−1, 2 cm s−1, 5 cm s−1, and 10 cm s−1 in comparison to
the data of figure 13(a) for 5 mm s−1. (b) Maximum cell strain
for cells flowing off-centered at 4.5Rc for increasing velocities
is in accordance with the prediction of the Roscoe theory.
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the shear thinning strength and solely dependent on
the printing pressure. We show that, when bioprinting
at constant flow rate (or velocity), the shear thinning
properties reduce the overall cell stress and strain
significantly, while this will not be the case for printing
processes performed at constant printing pressure.
In the second stage, cells transition into the free printing
strand as they exit the printer nozzle. During this
transition, cells are exposed to an elongational flow
pattern. While a radial deformation also occurs for cells
flowing off-center, we find that the shear deformations
dominate in this case. For cells in the channel center,
however, this flow causes notable radial stretch of the
cells as predicted by our numerical simulations, in
qualitative agreement with experimental microscopy
images. We show that this effect becomes particularly
relevant for cells flowing in highly shear thinning bioinks,
as the shear deformation inside the nozzle can virtually
be eliminated, while the radial elongation inevitably
takes place (figure 10a). In addition, we find that the
elongational cell strain is practically independent of the
extrusion velocity of the bioink, since the faster velocity
balances the high elongational stress by reducing the
application time. The relaxation times of the elongated
cells even increase with the shear thinning strength, thus
prolonging the time that they remain under strain with
potentially harmful side effects (figure 10e).
Using our numerical simulation techniques as a starting
point together with the velocity profiles derived in our
earlier work [41], we finally developed simple estimates
for cell stress and/or cell strain for centered as well as
off-centered cells.
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S. Schrüfer, D. W. Schubert, B. Fabry, and S. Gekle,
PLOS ONE 15, e0236371 (2020).
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S-1. BIOPRINTER IMAGING SETUP

MDA-MB-231 breast carcinoma cells were suspended in a 2 % alginate-DMEM solution

(sodium alginate PH176, batch nr. 4503283839, JRS Pharma GmbH, Rosenberg, Germany)

at a concentration of 106 cells
ml

. The cell-alginate suspension was then extruded through a

stainless steel needle with an inner diameter of 200 µm and a length of 12.7 mm (Nordson

EFD, East Providence, USA) at a constant flow rate of 10 µl s−1 using a volume-controlled

3-D printer [1]. The needle was dipped into a transparent plastic cuvette (rotilabo, Roth,

Germany) filled with PBS solution. The cells were imaged through a non-infinity corrected

10× 0.25 NA objective (Zeiss, Germany) and a lens-less 150 mm tube (Thorlabs, Germany)

using a CMOS camera (acA720-520um, Basler, Germany) at an exposure time of 30 µs and

a frame rate of 100 Hz.
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FIG. S-1. Decomposition of the shear component of the strain rate tensor for (a) the Newtonian

fluid and (b) the bioink with α = 0.75. In both cases, the local peak of the rate of strain is due to

the radial shear component ∂ur
∂x , while the axial shear decreases monotonously.

0

50

100

150

−100 −50 0 50 100

st
ra
in

ra
te
[ s

−
1
]

x /µm
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S-2. FLUID SHEAR STRESS AT THE NOZZLE EXIT

As shown in figure 7 of the manuscript, the total fluid shear stress σf along the axial

direction always has a local or global peak right after the nozzle exit. When considering

the flow close to the channel axis, this peak is clearly a result of the elongational flow at

the nozzle exit. Moving closer to the wall, the influence of the elongational components

decreases, however, the peak is still present and part of the shear components of the flow. In

figure S-1 we decompose the strain rate tensor element Ṡxr = 1
2

(
∂ux
∂r

+ ∂ur
∂x

)
into its axial and

radial shear component. While the axial strain rate ∂ux
∂r

monotonously decreases along the

nozzle exit, the radial strain rate ∂ur
∂x

increases, changes its sign, and relaxes to zero again

due to the localized radial flows at the nozzle exit.
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S-3. FLUID STRESS TENSOR DECOMPOSITION

The components of the rate of strain tensor in a cylindrical coordinate system are given

by:

Ṡxx =
∂ux
∂x

(S-1)

Ṡxr = Ṡrx = 1
2

(
∂ur
∂x

+
∂ux
∂r

)
(S-2)

Ṡrr =
∂ur
∂r

(S-3)

Ṡxθ = Ṡθx = 1
2

(
∂uθ
∂x

+
1

r

∂ux
∂θ

)
(S-4)

Ṡrθ = Ṡθr = 1
2

(
1

r

∂ur
∂θ
− uθ

r
+
∂uθ
∂r

)
(S-5)

Ṡθθ =
1

r

(
∂uθ
∂θ

+ ur

)
(S-6)

For the present axisymmetric situation, this simplifies to

Ṡij = Ṡshear
ij + Ṡelong

ij , (S-7)

Ṡshear =




0 1
2

(
∂ur
∂x

+ ∂ux
∂r

)
0

1
2

(
∂ur
∂x

+ ∂ux
∂r

)
0 0

0 0 0


 , (S-8)

Ṡelong =




∂ux
∂x

0 0

0 ∂ur
∂r

0

0 0 ur
r


 . (S-9)

We can thus compute the scalar shear rate

∣∣∣Ṡshear
∣∣∣ =

√
2Ṡshear

ij Ṡshear
ij =

√
4Ṡ2

xr (S-10)

=

∣∣∣∣
∂ur
∂x

+
∂ux
∂r

∣∣∣∣ (S-11)

and the scalar elongation rate

∣∣∣Ṡelong
∣∣∣ =

√
2Ṡelong

ij Ṡelong
ij (S-12)

=

√
2(Ṡ2

xx + Ṡ2
rr + Ṡ2

θθ) (S-13)

=

√
2

(
∂ux
∂x

)2

+ 2

(
∂ur
∂r

)2

+ 2
(ur
r

)2

, (S-14)
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and the rate of strain

∣∣∣Ṡ
∣∣∣ =

√∣∣∣Ṡshear

∣∣∣
2

+
∣∣∣Ṡelong

∣∣∣
2

. (S-15)

Using the shear and elongation rates, we define the fluid’s scalar shear and elongational

stress via

σshear
f

..= η
(
|Ṡ|
)∣∣∣Ṡshear

∣∣∣ (S-16)

and

σelong
f

..= η
(
|Ṡ|
)∣∣∣Ṡelong

∣∣∣ . (S-17)

The total fluid stress is thus obtained as:

σf = η
(
|Ṡ|
)
|Ṡ| =

√(
σshear

f

)2

+
(
σelong

f

)2

(S-18)

When assuming a perfect elongational flow, i. e., ux = −ε̇x, ur = 1
2
ε̇r, and uθ = 0, the fluids

rate of strain is given via

|Ṡ| =
∣∣∣Ṡelong

ij

∣∣∣ =

√
2ε̇2 + 2

(
1
2
ε̇
)2

+ 2
(

1
2
ε̇
)2

=
√

3ε̇ (S-19)

and thus follows the fluid stress as:

σf = σelong
f = η

(√
3ε̇
)√

3ε̇ (S-20)
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S-4. JEFFERY AND ROSCOE THEORY

An analytical theory describing the deformation and stresses of a cell embedded in a

linear flow was proposed by Roscoe [2], based on the work of Jeffery [3]. For convenience,

we briefly summarize their theoretical approach and the application of the theory for cells

in a shear and an elongational flow scenario in this section.

Jeffery [3] originally solved the problem of the motion of a rigid ellipsoidal particle in a linear

flow, i. e., the undisturbed fluid velocity can be written as (using the notation of Roscoe [2])

v′i = e
′(1)
ij xj − ζ ′ijxj , (S-21)

where the fluid’s rate of strain and vorticity are defined by

e
′(1)
ij =

1

2

(
∂v′i
∂xj

+
∂v′j
∂xi

)
and ζ ′ij =

1

2

(
∂v′i
∂xj
− ∂v′j
∂xi

)
. (S-22)

Jeffery [3] derived the fluid stress acting on the surface of a rigid ellipsoidal particle as

p′ij = −phδij + η0Aij , (S-23)

with an arbitrary hydrostatic pressure ph and a deviatoric tensor Aij. Roscoe [2] notes that

the deviatoric stress can further be divided into two parts,

p′ij = −phδij + 2η0e
′(1)
ij + η0

(
Aij − 2e

′(1)
ij

)
, (S-24)

one due to the undisturbed flow from (S-21) and one due to the disturbance of the flow

induced by the particle presence. The components Aij in a coordinate system coinciding

with the ellipsoid axes can be calculated via (remaining components by cyclic change of

indices):

A11 =
4

3

2g′′1e
′(1)
11 − g′′2e′(1)

22 − g′′3e′(1)
33

g′′2g
′′
3 + g′′3g

′′
1 + g′′1g

′′
2

(S-25)

A12 =
g1e
′(1)
12 − α2

2g
′
3ζ
′
12

2g′3(α2
1g1 + α22g2)

(S-26)
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gi, g
′
i, and g′′i are integrals of the type

g1 =

∞∫

0

dλ

(α2
1 + λ)∆

(S-27)

g′1 =

∞∫

0

dλ

(α2
2 + λ)(α2

3 + λ)∆
=

g3 − g2

α2
2 − α2

3

(S-28)

g′′1 =

∞∫

0

λ dλ

(α2
2 + λ)(α2

3 + λ)∆
=
α2

2g2 − α2
3g3

α2
2 − α2

3

, (S-29)

where ∆ =
√

(α2
1 + λ)(α2

2 + λ)(α2
3 + λ).

Equation (S-23) can directly be employed to compute the stresses acting on a rigid ellipsoid

suspended in the undisturbed flow given by (S-21), e. g., a cell inside an elongational flow,

as detailed in section S-4 B. Roscoe [2] extended the theory of Jeffery [3] to compute the

stresses acting on a non-rigid ellipsoid with moving boundaries, i. e., tank-treading motion.

The ellipsoid’s surface motion is assumed to be linear — similar to (S-21) — given by

vi = ē
(1)
ij xj − ζ̄ijxj , (S-30)

with ē
(1)
ij and ζ̄ij denoting respectively the average rate of strain and vorticity inside the

particle, which are always equal to their values at the particle surface [2]. The velocity

disturbance ∆v′i = vi − v′i at the particle surface induced by the surface motion of the non-

rigid particle is equal to the velocity disturbance of a rigid particle in an undisturbed flow

given by

v′′i = v′i − vi . (S-31)

Therefore, (S-24) can be employed to compute the fluid stresses for a non-rigid particle with

a moving boundary by simply computing the stress contribution due to the disturbance

using the equivalent undisturbed flow (S-31), while keeping the contribution due to the

actual undisturbed flow (S-21). Thus:

p′ij = −phδij + 2η0e
′(1)
ij + η0

(
A′ij − 2

(
e
′(1)
ij − ē(1)

ij

))
(S-32)

= −phδij + η0

(
A′ij + 2ē

(1)
ij

)
(S-33)

Here, the tensor A′ij is computed for an undisturbed flow of the form given in (S-31) instead

of (S-21).
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A. Cell stress and strain in shear flow

Roscoe [2] applies (S-32) to compute the motion of a tank-treading ellipsoidal particle in

a linear shear flow. The coordinates of a material point of the particle starting at position

(x̃1, x̃2, x̃3) following an elliptical trajectory are given by

x1 = α1(x̃1 cos(νt)− x̃2 sin(νt)) (S-34)

x2 = α2(x̃1 sin(νt) + x̃2 cos(νt)) (S-35)

x3 = α3x̃3 , (S-36)

where x1, x2, and x3, align with the ellipsoid’s semi-axes, thus yielding the surface velocity:

v1 = −α1

α2

νx2 (S-37)

v2 =
α2

α1

νx1 (S-38)

v3 = 0 (S-39)

The surface velocity defines the rate of strain and vorticity from (S-30). A linear shear flow

— commonly described in the global coordinate system as v′1 = κx2, v′2 = v′3 = 0 with a

shear rate κ — written in terms of a coordinate system aligned with the ellipsoid’s semi-axes

through rotation by an angle θ is given by

v′1 = κ
(
x1 sin θ cos θ + x2 cos2(θ)

)
(S-40)

v′2 = −κ
(
x1 sin2(θ) + x2 sin θ cos θ

)
(S-41)

v′3 = 0 . (S-42)

From that, the undisturbed fluid’s rate of strain and vorticity from (S-21), and, together

with (S-30), the fluid stress at the particle surface from (S-32) can be computed.

In a stationary state, the fluid stress must be balanced by the cell stress at the particle

surface. As mentioned in section III-A of the manuscript, the cell stress consists of an

elastic and a viscous part. For the triaxial ellipsoidal deformation described in (S-34), the

elastic stress at the particle surface can be computed from (9) assuming an incompressible

cell (J = 1). With the corresponding deformation gradient tensor given by Fij = αiδij, the

non-zero diagonal elements of the Cauchy stress are then found as

σ11 =
µ

3

(
2α2

1 − α2
2 − α2

3

)
, (S-43)

7

pub3 SI



with similar expressions for σ22 and σ33 obtained by cyclic change of indices. The obtained

system of two equations of the stress balance is solved by considering only the differences of

the principal stresses, which eliminates the hydrostatic pressure:

p′11 − p′22 = σ11 − σ22 (S-44)

⇔ 2η0κ sin(2θ)
g′′1 + g′′2

g′′2g
′′
3 + g′′3g

′′
1 + g′′1g

′′
2

= µ
(
α2

1 − α2
2

)
(S-45)

p′11 + p′22 − 2p′33 = σ11 + σ22 − 2σ33 (S-46)

⇔ 2η0κ sin(2θ)
g′′1 − g′′2

g′′2g
′′
3 + g′′3g

′′
1 + g′′1g

′′
2

= µ

(
α2

1 + α2
2 −

2

α2
1α

2
2

)
(S-47)

Note that α3 = 1
α1α2

due to the assumed incompressibility. The viscous contribution of the

cell stress can be computed directly from its internal fluid motion (S-37)–(S-39) as:

σ12 = σ21 = 2η1e
′(1)
12 = −η1ν

α2
1 − α2

2

α1α2

(S-48)

Through numerical solution of these equations one obtains the cell stresses and strains

as well as the tank-treading frequency as function of the undisturbed fluid’s shear rate κ

(cf. Roscoe[2, eq.(80),(41)]).

To compare it with the Roscoe theory, we numerically assess the viscous shear stress inside

the cell from our simulations by extracting the Lattice-Boltzmann strain rate tensor field

inside the cell. For that, we first compute the symmetric strain rate tensor components from

the Latte Boltzmann populations of the current and previous time step using the method

from [4]. Then, we mask the strain rate tensor field using a flag grid that distinguishes the

interior and exterior of the cell, which we track using our method from [6]. The viscous cell

stress is obtained by averaging the off-diagonal component of the strain rate tensor field. In

figure S-2 we show how the resulting viscous component of the cell stress as function of the

cell’s shear modulus in a linear shear flow of constant strain rate |Ṡ| = 100 s−1. For low µ —

i. e., for soft cells — the shear stress inside the cells asymptotically approaches the viscous

shear stress of the surrounding undisturbed fluid, as it is increasingly stretched and hence

more aligned with the flow. Very stiff cells, on the other hand, will remain their undeformed

spherical shape. It can be seen that the transition between these two limits in large parts

happens in the stiffness range of biological cells at around 100 Pa to 10 kPa.
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FIG. S-2. Viscous shear stress σ12 inside the cell as function of the cell stiffness in a shear flow with

|Ṡ| = 100 s−1. The straight line indicates the viscous fluid stress of the surrounding undisturbed

flow field.
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B. Cell stress and strain in elongational flow

Roscoe [2] applies (S-23) to compute the steady state deformation and stresses of an

ellipsoid in an elongational flow, where the undisturbed velocity is given by

v′1 = ξx1 (S-49)

v′2 = −1

2
ξx2 (S-50)

v′3 = −1

2
ξx3 , (S-51)

with the elongational rate ξ. From this, the rate of strain and vorticity in (S-21) and the

deviatoric tensor Aij are calculated. Since the ellipsoid’s boundary has no motion, vi = 0.

Due to the symmetry of the flow and the incompressibility, α2 = α3 = α
−1/2
1 applies to the

ellipsoid. The fluid’s normal stress differences from (S-23) are then set to balance the surface

stresses of the triaxially elongated particle:

p′11 − p′22 = σ11 − σ22 (S-52)

2η0
ξ

g′′2
= µ

(
α2

1 −
1

α1

)
(S-53)

The numerical solution of this equation yields the cell stresses and strains as function of the

undisturbed fluid’s elongational rate ξ. We note that due to the stationarity condition a

stable solution can not be found for very high elongational rates.
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S-5. APPLICABILITY OF ROSCOE THEORY FOR SHEAR THINNING BIOINKS

In figure 5(c and d) of the manuscript we show the cell stress as function of the fluid

stress for different cell starting positions in the channel in a Newtonian bioink and for the

maximum radial offset for increasing shear thinning strength. Figure S-3 shows additional

data curves for all investigated bioinks, i. e., data similar to figure 5(c) for different α. In

Addition to the fluid stress on the lower x-axis, the upper x-axis gives the radial position of

the cell in units of the cell radius.

As mentioned in section III A of the manuscript, the key property determining cell motion is

the shear stress. To underline this, we plot in figure S-4 the cell stress data from figure 5(d),

but with respect to the rate of strain instead of the shear stress. Due to the similar velocities,

the range of the |Ṡ|-axis is similar for all flow indices. Therefore — instead of collapsing

onto a master curve as in figure 5(d) — the curves fan out, suggesting a weaker dependency

of the cell stress on the shear rate for increasingly shear thinning bioinks. This, however, is

slightly misleading, since it neglects the change in viscosity of the surrounding liquid.

In section III E we find that the influence of higher extrusion velocities on the elongational

cell strain is almost negligible. However, this does obviously not apply to the shear conditions

inside the nozzle channel, as a higher pressure gradient is necessary to produce larger flow

velocities. In figure S-5 below, we show data similar to that of figure 5(c and d), for a cell

starting at the largest radial offset in a bioink with α = 0.6 for average extrusion velocities

of 1 cm s−1, 2 cm s−1, and 5 cm s−1, demonstrating the validity of the Roscoe theory also for

higher velocities.
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FIG. S-3. The cell stress inside the nozzle channel as function of the local shear stress for all used

bioinks, as in figure 5(c). The upper x-axis gives the radial position of the cell in units of the cell

radius.
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FIG. S-4. Data from figure 5(d), but plotted versus the local rate of strain |Ṡ| of the fluid. Due

to the constant average velocity, the shear rates experienced by the cells are of similar magnitude.
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at the largest radial offset in a bioink with α = 0.6 for average extrusion velocities of 1 cm s−1,

2 cm s−1, and 5 cm s−1, demonstrating the validity of the Roscoe theory also for higher velocities.)
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S-6. RIGID SPHERE IN FLOW

To compute the additional stress caused by a rigid sphere in pure shear flow, we start

from the strain rate tensor (S-22) of the undisturbed flow. As usual, for a shear rate κ, this

is given by

e′(1) =
1

2




0 κ 0

κ 0 0

0 0 0


 (S-54)

The sphere is neutrally buouyant as well as force- and torque-free. We then compute the

so-called stresslet (see, e. g., [7, eq. (2.32)]) which embodies the additional stress in the fluid

due to the presence of the sphere

S =
20

3
πη0R

3
ce
′(1)

=
20

6
πη0R

3
cκ




0 1 0

1 0 0

0 0 0


 (S-55)

This quantity is normalized by the shear stress of the undisturbed fluid integrated over the

sphere volume

Sf =
4

3
πR3

cη0κ (S-56)

thus leading to the dimensionless stresslet

S∗ =
S

Sf

=
5

2




0 1 0

1 0 0

0 0 0


 . (S-57)

(S-57) is given in the laboratory system. To express it in the body-fixed coordinate system

of the cell, we require a rotation by 45◦ (cf. left inset in figure 4) given by the matrix

M45 =

√
2

2




1 −1 0

1 1 0

0 0 1


 . (S-58)
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The final result is

S∗rot = M45 S
∗ MT

45

=
5

2




−1 0 0

0 1 0

0 0 0


 (S-59)

thus furnishing an explanation for the cell stress at low flow rates in figure 4.

S-7. UNIAXIAL STRETCHING OF AN ELASTIC BEAM

In the limit of high Capillary numbers, the elastic components of the cell stress tensor

approximately develop according to the ratio σ11 : σ22 : σ33 = 2 : −1 : −1. This ratio is

equivalent to what would be expected from the uniaxial extension of an elastic beam, as

briefly outlined in the following. The uniaxial stretching with a factor α1 = a in x1-direction

of an isotropic, incompressible material results in α2 = α3 = 1√
a

for the remaining principal

stretches. The left Cauchy-Green deformation tensor is hence given by B = diag
(
a2, 1

a
, 1
a

)
,

which can be inserted into (S-43) of the manuscript in order to obtain the stress components

as:

σ11 =
2

3
µ

(
a2 − 1

a

)
(S-60)

σ22 = σ33 = −1

3
µ

(
a2 − 1

a

)
(S-61)
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S-8. STRESS RELAXATION INSIDE THE BIOINK STRAND

In figure S-6 we show the individual fits of the cell stress relaxation times τ from figure 9(e)

of the manuscript. As a fit function we use an exponential decay of the form

σvM(t) = σarb.offset
vM + σ

(0)
vM exp

(
−t− t0

τ

)
, (S-62)

where σ
(0)
vM denotes the cell stress at t0 (indicated by the gray area), and σarb.offset

vM is an

arbitrary small offset. At t0, the cell passes the transition (i. e.x = 0).

When the cell relaxes in a quiescent fluid, i. e., when we disable any imposed flow or external

pressure, the relaxation times of the cell decrease slightly. This is shown in figure S-7, where

we compare the relaxation times of cells inside quiescent fluid to those of cells passing

through the nozzle exit into the bioink strand (cf.figure 9(e))
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FIG. S-6. Relaxation time fit of the cell stress in the bioink strand using an exponentially decaying

function. The fit excludes they gray shaded area.
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FIG. S-7. Relaxation times of cells suspended in quiescent liquid (solid lines), compared to the

data in figure 9(e) (dotted lines).
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S-9. CELL STIFFNESS VARIATION

All simulations in the manuscript were performed using a cell with a fixed shear modulus.

We plot in figure S-8 the results of figure 9 and figure 10 (gray lines) together with the same

data of a softer cell with a shear modulus of µ = 500 Pa.

The maximum cell stress in figure S-8(a) to (e), i. e., the peak right after the exit as well

as the magnitude inside the nozzle channel before the exit, are approximately half of the

value obtained for the stiffer cell. This is due to the stress calculation in (9), where the

shear modulus scales the influence of the deformation. Additionally, the cell strain peaks in

figure S-8(f) and (g) are of similar order. An inverse scaling with the stiffness is observed

for the stress relaxation time τ in figure S-8(e), showing values about twice as large for the

soft cell compared to the stiff one.
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FIG. S-8. Influence of the cell stiffness: (a) to (e) data from figure 9 and (f, g) data from figure 10

for a softer cell with µ = 500 Pa.
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FIG. S-9. Estimated elongational stress at the nozzle exit for a bioink with shear thinning

exponent α = 0.6 in differently sized nozzles and with (a) variable extrusion speed uavg, or (b)

different flow rate Ω or (c) different printing pressures.
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S-10. ELONGATIONAL FLOW ESTIMATE

To compute the average elongational stress σ̄elong
f acting on cells right at the nozzle exit,

we start by calculating the maximum and average flow velocity of our bioink using our

tool from [5], as in figure 1(b). From equations (15) and (16) we then obtain σ̄elong
f as a

function of the average extrusion velocity uavg and the nozzle radius R. The result is shown

in figure S-9, using the same parameter space as in figure 13 of the manuscript.
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A mechanically homogeneous equivalent of real cells

Sebastian Wohlrab⋆ · Sebastian J. Müller⋆ · Stephan Gekle

Abstract Biological cells are built up from many different
constituents of varying size and stiffness which contribute to
the cell’s mechanical properties and whose presence influ-
ences the behavior of the cell in flow or under compression.
However, assuming a homogeneous cell interior remains a
common simplification in experimental mechanical charac-
terization techniques as well as large scale computer simu-
lations. In this study, we propose a homogeneous equivalent
to inhomogeneously constituted cells and provide system-
atic proof of the validity of this simplification. We inves-
tigate numerically a hyperelastic cell with an explicitly het-
erogeneous interior under compression and in flow, mimick-
ing respectively common atomic force microscopy and mi-
crofluidic characterization techniques. We find that our ho-
mogeneous equivalent cell with a volume averaged elastic
modulus reproduces quantitatively the behavior of its inho-
mogeneous counterpart, and that this equality is independent
of the stiffness or spatial distribution of the heterogeneity.

1 Introduction

Approximating biological cells as homogeneously elastic
bodies is a highly common assumption employed in exper-
imental micromechanical characterization techniques and
large-scale computer simulations of physiological flows.
However, the different constituents of the cell, e. g., the cor-
tex, membrane, and nucleus, all have different mechanical
properties [1–4]. Atomic force microscopy has success-
fully been used to characterize the mechanical properties of
whole cells [5–13], capsules [14], or the cell nucleus [15].
The effect of the nucleus on AFM based measurements has

Sebastian Wohlrab⋆ · Sebastian J. Müller⋆ · Stephan Gekle
Theoretical Physics VI, Biofluid Simulation and Modeling, University
of Bayreuth, 95440 Bayreuth, Germany
E-mail: stephan.gekle@uni-bayreuth.de
⋆: Sebastian Wohlrab and Sebastian J. Müller contributed equally.

partially been studied [16], however, in the range of small
deformations which allow an comparison with the Hertz the-
ory. Other micromechanical evaluation techniques include
the flow through confined microchannels [3, 3, 17–21, 21],
or the flow through larger channels [22]. The characteriza-
tion in flow typically allows for a much higher throughput
than the AFM-based techniques. An important conceptual
difference between these two methods is that, while a certain
deformation is imposed on the cell and its responding force
is measured during compression, certain fluid forces are im-
posed and the cell reacts with a corresponding deformation
when suspended in flowing liquid. A practical difference is
that flow-based methods typically characterize the cell as a
whole, whereas AFM-based techniques can precisely probe
the cell’s constituents [15]. From a numerical point of view,
a resource-efficient application of the computational meth-
ods commonly requires a set of simplifications. Numerical
cells models exist in very complex forms [23] to explicitly
study their isolated dynamics. In large-scale simulations like
physiological flows require them, a common approach is to
assume cells with a homogeneously elastic interior [24, 25].
And while the similarity between several numerical investi-
gations and the corresponding experimental measurements
suggest the validity of this simplification, there exists so far
no proof that the assumption should be correct for large cell
deformations as well.
In this work, we systematically proof the possibility to sub-
stitute any inhomogeneously constituted cell with a simple
homogeneous cell with an effective elasticity. For that, we
first construct a well-defined inhomogeneous cell with an
inclusion, e. g., a nucleus, of variable stiffness (Young’s
modulus or shear modulus), size, and position. In addition,
we build an inhomogeneous cell with a spatially random
stiffness distribution. From the volume averaged mean of
the constituents’ Young’s moduli we define an effective
Young’s modulus of a homogeneous equivalent cell. We
perform AFM compression simulations as well as microflu-
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idic shear flow and pipe flow computations of our three cell
models. We find excellent agreement of the resulting force
versus deformation behavior in compression and the strain
versus fluid forces behavior in flow. Through variation of
stiffness, size, position, and shape, of the inhomogeneity
we show that neither of these factors have a drastic impact
on the cell’s mechanical behavior. Any kind of intracellular
mechanical diversity can hence be effectively described
using our proposed homogeneous equivalent cell.

2 Methods and setup

2.1 Inhomogeneous cell with nucleus

As model for a well-defined inhomogeneous cell, we use a
cell with a stiffer nucleus inside. We model the nucleate cell
as a sphere of radius R which contains a spherical inclusion
of radius Rn inside the cell volume, as shown in figure 1(a).
It is labeled “Nucleus” in the plot. We tetrahedralize both
volumes and apply the neo-Hookean strain energy compu-
tations from [13] in both parts. Properties of the whole cell
are denoted without subscript, properties of the nucleus and
the cytoskeleton by the subscripts “n” and “c”, respectively.
The Poisson’s ratio is ν = 0.48 in all simulations, which
ensures sufficient incompressibility while maintaining nu-
merical stability. To parametrize the stiffness we choose the
Young’s moduli En and Ec of the inhomogeneity and the
shell, respectively.
For our systematic analysis, we further define the stiffness
ratio and the size ratio

γ =
En

Ec
and λ =

Rn

R
, (1)

with γ > 1 describing an inhomogeneity stiffer than the rest
of the cell and 0 < λ < 1. An additional offset d of the in-
homogeneity from the cell’s geometrical center is given in
units of the cell radius. Through variation of the control pa-
rameters γ , λ , and d, any kind of spherical inclusion into
the cell volume is covered. We discuss the effect of an ellip-
soidal inhomogeneity in the last paragraph of section 3.1.
As a reference configuration, from which variations of the
control parameters start, we choose γ = 2, λ = 1

2 , and d = 0.

2.2 Random inhomogeneous cell model

In addition to the well-defined inhomogeneous system of
section 2.1, we create a random inhomogeneous cell by
randomly assigning a stiffness ratio γi ∈ [1,10] to every
of the Ntet individual tetrahedra of the mesh, as shown in
figure 1(a). It is labeled “Random” in the plot.

2.3 Homogeneous equivalent cell model

We construct a simplified but equivalent description of the
inhomogeneous cell model from section 2.1, shown in fig-
ure 1(a). It is labeled “Homogeneous” in the plot. The same
hyperelastic computations are performed on a tetrahedral-
ized, initially spherical, mesh. Instead of the spatially inho-
mogeneous stiffness distribution, however, a single param-
eter is computed by volume weighted averaging the con-
stituents. The effective Young’s modulus of our equivalent
cell model is defined as:

Eeff =
1
V
(VcEc +VnEn) =

[
1+(γ −1)λ 3]Ec (2)

to substitute the inhomogeneous cell with nucleus. Analo-
gously for our random inhomogeneous cell model, the ef-
fective Young’s modulus is computed as

Eeff =
1
V

Ntet

∑
i=1

ViEcγi = Ecγeff , (3)

from the volumes Vi and the Young’s moduli Ei = γiEc of the
Ntet individual tetrahedra. In our setup, the volume averaged
stiffness ratio is γeff ≈ 5.5.

2.4 Cell simulations under compression

We create a compression scenario similar to mechanical
characterization techniques of cells via atomic force mi-
croscopy by compressing our model between an upper,
moving, and a lower, resting, plate using the algorithm
from [13]. From our quasistatic simulation we obtain the
normal force F exerted by the upper plate onto the cell,
which causes a deformation as shown in figure 1(b). We
define the deformation parameter δ as the relative com-
pression, i. e., the plate-plate distance divided by the cell
diameter. We perform our simulations up to very large de-
formations of δ = 75% for parameters γ ∈ {0,2,10,20}
and λ ∈ {0.1,0.2, . . . ,0.9}, as well as for our random inho-
mogeneous cell. We then perform another set of simulations
with our homogeneous equivalent cell with the effective
Young’s modulus from (2) and (3).

2.5 Cell simulations in shear flow

As a first flow scenario we use a linear shear flow, where
our initially spherical deforms into an ellipsoidal body that
undergoes a tank-treading motion. To do so, we couple our
hyperelastic tetrahedralized mesh to a Lattice Boltzmann
flow simulation [26–28] via an immersed-boundary algo-
rithm [29, 30], using the same procedure as in [13, 31].
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A mechanically homogeneous equivalent of real cells 3

Fig. 1 (a) Definitions of our inhomogeneous cells and their homoge-
neous equivalent showing the stiffness ratio of the individual tetrahe-
dra. (b) Our inhomogeneous cell under compression at different values
of the deformation δ . (c) The stationary cell shape of a cell with a
centered inhomogeneity in linear shear flow with increasing capillary
number Ca. (d) Our inhomogeneous cell flowing through a cylindri-
cal capillary migrates towards the symmetry axes while maintaining
an ellipsoidal shape. At the center, it assumes a bullet-like shape.
(a)

Nucleus Random Homogeneous

(b)

δ = 0% δ = 25% δ = 50% δ = 75%

(c)

(d)

Since the cell assumes an ellipsoidal shape, we choose the
Taylor deformation parameter [13, 25]

D =
a−b
a+b

(4)

with the ellipsoids major and minor semi-axis, respectively
a and b, as our measure for the cell deformation. In analogy
to the normal force introduced in section 2.4, the strength of
the shear flow is best characterized using the dimensionless
shear rate, or capillary number

Ca =
ηγ̇
µc

= 2(1+ν)
ηγ̇
Ec

, (5)

where η denotes the surrounding fluid’s dynamic viscosity
and γ̇ = ∂ux

∂y the constant velocity gradient. Commonly,
the shear modulus µ is used as stiffness parameter for this
definition. It relates to the Young’s modulus of the previ-
ous section via the Poisson’s as E = 2(1+ν)µ . Hence,
the stiffness ratios γ and γeff have the identical value when
defined analogously to (1) and (3) via the shear moduli of
the nucleus and the cytoskeleton, respectively µn and µc.
In figure 1(c), we show the stationary shape of our inho-
mogeneous cell at various Ca. In addition to the ellipsoidal
deformation of the entire shape, we find that the centered in-
homogeneity, too, deforms into an ellipsoidal manner. How-
ever, its isolated deformation is visibly less pronounced.
We perform our simulations for γ ∈ {0,2,10,20} and
d ∈ {0,0.45}, and with our random inhomogeneous cell.
Using the effective shear modulus µeff in (5), we compare
the inhomogeneous cells’ behavior with the master curve
describing the homogeneous equivalent cell.

2.6 Cell simulations in capillary flow

In our second flow scenario, we place the initially spherical
cell inside a cylindrical pipe with radius Rch, where an axial
pressure gradient G drives the Poiseuille flow [32]. Here, we
need to distinguish two important cases, as illustrated in fig-
ure 1(d): (i) When placed off-centered the cell will assume
an approximately ellipsoidal shape according to the local
shear rate. Recently, it has been shown experimentally [22]
and numerically [31], that a local shear flow approximation
is valid for microfluidic and pipe flow applications, given
that cells flow off-centered. The local Capillary number as
function of the radial position r is given by

Ca(r) =
G

2µc

r
Rch

(6)

Due to the fluid’s shear stress, however, the cell continuously
migrates from its starting point towards the center where the
local shear flow approximation becomes insufficient.
(ii) At the channel axes the cell assumes a bullet-like shape
due to the symmetrical flow conditions, as shown in fig-
ure 1(d). This shape can be characterized by its strain in
axial and radial direction, which we define as the maximum
elongation in the respective direction divided by the cells
reference diameter:

εx
..=

lx
2R

and εr
..=

lr
2R

(7)

We perform our simulations for γ ∈ {0,2,10} and with
the random inhomogeneous cell and compare the results to
those of the homogeneous equivalent cell.
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3 Results

3.1 Cells under compression

We first place a spherical nucleus with λ = 1
2 at the center of

the cell and perform the compression simulations. When in-
creasing the stiffness ratio γ at a constant size of the nucleus
under compression, we find that — as expected — the force
needed to compress the whole cell to a certain deformation
δ increases. This is shown in figure 2, where we plot the
dimensionless force F/(EcR2) versus the deformation for
our inhomogeneous cells with nucleus. It is normalized us-
ing the Young’s modulus of the shell Ec and hence identical
for all simulations with different γ . In the same manner,
we plot in figure 2 the data obtained from the simulations
performed with the corresponding homogeneous equivalent
cells as lines. We find that, even for a nucleus 20 times
stiffer than the cytoskeleton, the deviation from the homo-
geneous equivalent cell are not significant. Interestingly,
our data for γ = 10 matches perfectly with its homogeneous
equivalent with Eeff = 2.125Ec, whereas the differences for
other values of γ deviate in different directions. While for
1 < γ < 10, the inhomogeneous cell exhibits stronger strain
hardening than the homogeneous equivalent cell, for γ > 10
the strain hardening is instead decreasing.
This deviation can be visualized in a more quantitative way
when the force is non-dimensionalized using the corre-
sponding effective Young’s modulus (2), giving

F∗ =
F

EeffR2 , (8)

which is shown in figure 3(a). Due to this non-dimension-
alization, all data curves describing homogeneous cells col-
lapse onto one master curve. The data of the inhomogeneous
cells then deviates from this master curve in different direc-
tions, which indicates the quality of the homogeneous equiv-
alent description. It is apparent that the variation of γ does
not lead to a consistent deviation from the homogeneous de-
scription, but instead changes in different directions. This is
visualized in the inset of figure 3(a), where data for addi-
tional values of γ is plotted.
We now vary the size of the inhomogeneity at constant stiff-
ness γ = 2 between the two limiting cases that describe ho-
mogeneous cells, namely λ = 0 (all softer shell) and λ = 1.
In figure 3(b), the resulting normalized force (8) versus de-
formation curves show little deviation, and they always lie
between the curves for γ = 1 and γ = 2 from figure 2. The
inset of figure 3(b) shows the increase and decrease of the
deviation from the homogeneous cases, with a maximum
value at around λ ≈ 0.7. Note that this value is close to, yet
differs, from the value λ = 2−

1
3 ≈ 0.79 obtained for equal

volumes of shell and inhomogeneity.
Next, we move the inhomogeneity (γ = 2 and λ = 1

2 ) away

Fig. 2 The force versus deformation behavior of our proposed homo-
geneous equivalent cell compared to inhomogeneous cells with stiffer
nucleus and our random inhomogeneous cell. Increasing the stiffness
of the nucleus increases the overall force necessary to compress the
cell.
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from the center and very close to the cell surface, i. e., d =
0.45. As illustrated in figure 4(a), we denote with x the di-
rection parallel to the plates and with y the perpendicular di-
rection. We deduce the insignificance of the position of the
inhomogeneity from the force versus deformation curves in
figure 4(a), where all data points overlap exactly.
Finally, we alter the shape of the nucleus and replace the
centered spherical inclusion with an ellipsoid of equal vol-
ume with semi-axes a ≈ 0.8R, b = c ≈ 0.4R. We choose
again the parallel (x) and perpendicular (y) alignment of the
major semi-axis, which we compare to the centered spher-
ical inclusion (λ = 1

2 ) denoted with ref, as shown in fig-
ure 4(b). The resulting force versus deformation curves for
(γ = 2) in figure 4(b) underline that a variation of the inho-
mogeneity’s shape effectively does not affect the compres-
sion behavior of a cell.
We then perform the same simulation with our random in-
homogeneous cell model from figure 1(a). The force versus
deformation behavior in figure 2 and figure 3(a) excellently
matches with its homogeneous equivalent cell.
This section shows that, for compression scenarios, a het-
erogeneous cell can in practice be replaced with a homoge-
neous equivalent cell with a volume averaged Young’s mod-
ulus, since neither the stiffness difference nor the size, the
position, or the shape, of the inhomogeneity have a signifi-
cant impact on the force necessary to produce a certain cell
deformation.

3.2 Cells in linear shear flow

For our investigations of cells in flow, we start by putting
our initially spherical inhomogeneous cell (γ = 2, λ = 1

2 ,
and d = 0) in a linear shear flow with shear rate γ̇ . After
a transient time span its shape becomes stationary (cf. fig-
ure 1(c)), and the cell undergoes a continuous tank-treading
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A mechanically homogeneous equivalent of real cells 5

Fig. 3 (a) The quality of the homogeneous equivalent can be visu-
alized using the normalized force F∗ (8). (b) Variation of the volume
ratio λ (1). The insets show a close-up view revealing that parameter
variations of γ and λ do not affect the quality in a consistent manner.
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motion. We find in figure 5(a) excellent agreement between
our nucleate cell and its homogeneous equivalent cell, when
plotting the stationary value of D obtained from the simula-
tion with γ = 2 as a function of the Capillary number (5). In
accordance with the compression simulations of figure 2(a),
we find that the inhomogeneous cell with nucleus at a stiff-
ness ratio γ = 2 yields a slightly lower deformation than its
homogeneous equivalent. Similarly in figure 5(b), we de-
pict additionally the results for γ = 5 and 10. In comparison
with the respective homogeneous equivalent cell, we find
that only low deformations yield inaccurate results, which is
to be expected from previous studies [16]. In that range, the
data approaches the results as they would be obtained from
a homogeneous cell with µc throughout. Analogously to our
observation in the compression setup in figure 2(a), the data
for γ = 10 is surprisingly accurate for large deformation. An
excellent agreement is found when comparing our random
inhomogeneous cell model to its homogeneous equivalent

Fig. 4 (a) Variation of the position of the nucleus along two indepen-
dent axes slightly increases the accuracy of the homogeneous descrip-
tion. (b) A nucleus with ellipsoidal shape (but same volume) comes
without notable effect on the force versus deformation behavior inde-
pendent of the orientation.
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in figure 5(c).
A significant influence on the dynamic behavior is found
when the stiffer nucleus is not centered in the cell. Our cell
with nucleus at d∥ = 0.45 is show in figure 6(a). A series
of snapshots depicts the tank-treading motion of the entire
cell, where the nucleus produces a bump at the cell sur-
face, which periodically moves along. This behavior is also
reflected in the time development of the Taylor deforma-
tion (4), as shown in figure 6(b) (dashed lines), where D
is plotted as function of the dimensionless time t γ̇ . If in-
stead the nucleus in placed perpendicular to the shear plane
at d⊥ = 0.45, the same stationary behavior as for a centered
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Fig. 5 (a) Taylor deformation D as function of the Capillary number
of our inhomogeneous cell with γ = 2 in linear shear flow (squares)
and during its migration in a pipe flow (lines) compared to that of its
homogeneous equivalent cell. (b) Taylor deformation of the nucleate
cell for different γ . (c) Data as in (a) for the random inhomogeneous
cell.
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nucleus is obtained (solid lines). The time average of the
deformation in this state is shown in figure 6(c) for both
nucleus offsets as well as the corresponding homogeneous
equivalent cell. It becomes clear that the time-averaged de-
formation of the cell with off-centered nucleus is perfectly
covered by our homogeneous description.

Fig. 6 (a) Time series snapshots for the inhomogeneous cell with
nucleus displaced parallel to the shear plane. Due to the rotation of
the cellular material, the bump produced by the inhomogeneity travels
around the cell. (b) Time development of the Taylor deformation pa-
rameter D for an inhomogeneous cell with the nucleus displaced paral-
lel to the shear plane oscillating around that for a displacement perpen-
dicular to the shear plane. (c) Average D of the cell with off-centered
nucleus compared to the data of figure 5(a).
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3.3 Cell in capillary flow

The two major differences between the pressure driven flow
through a pipe or microchannel and the simple shear flow
scenario are (i) the non-linearity of the velocity profile and
(ii) the symmetry conditions at the channel axis. We plot
in figure 5(a) the Taylor deformation of our inhomogeneous
cell (γ = 2, λ = 1

2 , and d = 0) when put near the wall inside
the pipe. Reading the solid line from right to left, we see
an initial transient deformation time span, during which the
cell deforms into an ellipsoid, which is followed by the cell
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migrating radially inwards through monotonously decreas-
ing local shear rates, and hence, local Ca. We find excellent
agreement between our nucleate cell and its homogeneous
equivalent cell, as expected from our results in section 3.2.
This result stays valid also for the data of the random inho-
mogeneous cell in figure 5(c), which is in excellent agree-
ment with that of its homogeneous equivalent.
When the cell flows at the center of the channel, it assumes
a stationary bullet-like shape as depicted in figure 7(a) for
our inhomogeneous cell with γ = 2 and 10, as overlay over
its homogeneous equivalent. Visible, these two shapes agree
perfectly with each other, even though the cytoskeleton in
contact with the surrounding fluid is 2.125 times softer for
the inhomogeneous cell. As for a quantitative analysis, the
axial and radial strains, εx and εr, assume a stationary value
after a short time span. We depict the time average of these
stationary values for our inhomogeneous cell with nucleus,
our random inhomogeneous cell, and their respective ho-
mogeneous equivalent in figure 7(b). It becomes apparent
that the radial strain of nucleate cell shows an increasing
deviation from its homogeneous equivalent, while the axial
strain remains accurate. In contrast to the decreasing radial
strain of the homogeneous equivalent cell, which is simply
explained by its larger stiffness, the radial strain of the nucle-
ate cell remains almost unchanged. This can be understood
the following way: On the one hand, the soft cytoskeleton of
the nucleate cells has the same stiffness throughout all sim-
ulations. Since all simulations are performed using the same
flow conditions, a similar stress is acting on the cell sur-
face and the cytoskeleton. The stiffer nucleus, on the other
hand, is centered inside the cell and located on the symmetry
axis of the channel, where the fluid stress vanishes [32]. We
can therefore assume a weaker influence of the nucleus in
this scenario as compared to the off-centered flow, in which
the nucleus itself was subjected to large stresses. This ob-
servation is underlined by our investigation of the random
inhomogeneous cell, which shows excellent agreement with
its homogeneous equivalent in figure 7(b). Thus, we con-
clude that our proposed homogeneous equivalent descrip-
tion is still valid in capillary flow.

4 Conclusion

In this work, we presented systematic proof of the possibil-
ity to substitute any inhomogeneously constituted cell with
a simple homogeneous equivalent cell by means of a volume
averaged effective elasticity.
We constructed three numerical cell models, a homogeneous
one, one including a well-defined inhomogeneity, and a ran-
dom inhomogeneous cell. All models showed the same force
versus imposed deformation behavior under AFM-like com-
pression. In shear and pipe flow simulations, we found that
an inhomogeneity can have an impact on the dynamic time

Fig. 7 (a) Snapshots of the inhomogeneous cell with nucleus and its
homogeneous equivalent when flowing at the center of the pipe for
γ = 2 and 10. The gray area shows a slice of the homogeneous equiv-
alent cell while the green/blue overlay depicts the inhomogeneous cell
with nucleus. (b) The stationary axial (εx < 1) and radial strains (εr > 1)
of our inhomogeneous cells as function of the stiffness ratio γ in com-
parison to those of the homogeneous equivalent cell. Error bars denote
the standard deviation.
(a)

(b)

0.96

1

1.04

1.08

1.12

5.52 4 6 8 10

ε x
ε r

γ γeff

Homogeneous
Nucleus
Random γeff ≈ 5.5

evolution of the cell’s shape. However, no difference in the
stationary behavior was observed and the average strain as
function of the fluid forces agrees exactly.
Our proposed homogeneous equivalent hence stays valid un-
der different loading scenarios and is independent of the
shape, size, stiffness, or distribution, of the cell’s internal
heterogeneity.
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