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Abstract

In the course of the second quantum revolution, quantum mechanics is put to practice in
novel quantum technologies like quantum information technology, quantum cryptography, or
quantum computing. Non-classical states of light such as single photons or entangled photon
pairs, that are at the heart of many fascinating applications in these fields, can be created in
semiconductor quantum dot-cavity systems. This cumulative thesis theoretically investigates
the possibility to generate and manipulate highly non-classical states of light in such systems. To
this end, the influence of various system parameters, e.g., the energy of involved cavity modes,
intrinsic electronic properties, or external optical excitation, is analyzed. Because quantum dots
unavoidably interact with their semiconductor environment they are influenced by temperature-
dependent lattice vibrations, i.e., phonons, which are known to have a profound impact, even
at cryogenic temperatures. In order to assess the impact of longitudinal acoustic phonons
on photonic figures of merit without any approximations to the microscopic description, a
numerically complete path-integral approach is employed.
This thesis presents a variety of notable results that may pave the way towards more advanced

sources of non-classical states of light. Assuming an initially excited quantum dot, the impact
of different quantum dot-cavity configurations and phonons on polarization-entangled photon
pairs is studied, highlighting the importance of direct two-photon processes. In contrast to
previous expectations, parameter areas are found for certain configurations, where a phonon-
induced enhancement of photon entanglement takes place.
The possibility to generate different types of entangled Bell states in continuously excited

quantum emitter-cavity systems is discussed. Based on an in-depth numerical and analytic
investigation of this system, a protocol realizing an active, time-dependent switching between
different types of entanglement is proposed. In the case of strongly confined quantum dots,
a phase transition-like behavior for photon pair states and the suppression of N -photon bun-
dles due to the strong phonon impact in constantly driven systems is revealed. A profound
phonon influence is also encountered during the investigation of shape-changing photon number
distributions that emerge after the excitation with chirped laser pulses.
Precisely timed and tailored laser pulses are employed to investigate the quality of single

photons and store individual photons in a metastable dark exciton state. Quite remarkably, it
is uncovered that the widely used quantum regression theorem systematically overestimates the

i



phonon impact on the indistinguishability. As highlight of the work, it is demonstrated that
the achievable degree of photon entanglement in state-of-the-art experiments is limited due to
a Stark-shift introduced by the two-photon resonant excitation scheme.
In total, this thesis gives detailed insights into the generation of non-classical states of light

valuable to all working in photonic quantum technologies.
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Kurzfassung

Im Zuge der zweite Quantenrevolution wird die Quantenmechanik in neuartigen Quantentech-
nologien, wie z.B. Quanteninformatik, Quantenkryptographie oder Quantencomputing, in die
Praxis umgesetzt. Nichtklassische Lichtzustände, wie einzelnen Photonen oder verschränkte
Photonpaare, die das Herzstück vieler faszinierenden Anwendungen in diesen Forschungsfeldern
sind, können in Halbleiterquantenpunkt-Resonator-Systemen erzeugt werden. Diese kumulati-
ve Dissertation untersucht die Möglichkeit hochgradig nichtklassische Lichtzustände in solchen
Systemen zu erzeugen und zu manipulieren auf theoretischer Ebene. Hierfür wird der Einfluss
verschiedener Systemparameter, wie z.B. der Energie von Resonatormoden, intrinsischer elek-
tronischer Eigenschaften oder äußerer, optischer Anregungen, analysiert. Da Quantenpunkte
zwangsweise mit ihrer Halbleiterumgebung wechselwirken, werden sie von temperaturabhän-
gigen Gitterschwingungen, d.h. Phononen, beeinflusst, von denen man weiß, dass sie bereits
bei kryogenen Temperaturen einen tiefgreifenden Einfluss haben. Um die Auswirkungen von
longitudinal akustischen Phononen auf photonische Kennzahlen zu beurteilen, ohne dass hier-
für Näherungen an der mikroskopischen Beschreibung vorgenommen werden müssen, wird eine
numerisch vollständige Pfadintegralmethode angewandt.
In dieser Dissertation wird eine Auswahl von beachtenswerten Ergebnissen präsentiert, wel-

che den Weg hin zu fortgeschrittenen Quellen von nichtklassischen Lichtzuständen bereiten
könnten. Ausgehend von einem anfänglich angeregter Quantenpunkt wird der Einfluss von
verschiedenen Quantenpunkt-Resonator-Konfigurationen und von Phononen auf polarisations-
verschränkte Photonpaare studiert, wodurch die Bedeutung von direkten Zweiphotonprozessen
hervorgehoben wird. Im Gegensatz zu der bisherigen Erwartungshaltung, werden für bestimmte
Konfigurationen Parameterbereiche gefunden, in denen eine von Phononen induzierte Verbes-
serung der Photonverschränkung auftritt.
Die Möglichkeit, verschiedene Arten von verschränkten Bellzuständen in konstant getrie-

benen Quantenemitter-Resonator-Systemen zu erzeugen, wird diskutiert. Basierend auf aus-
führlichen numerischen und analytischen Untersuchungen dieses Systems, wird ein Protokoll
vorgeschlagen, welches ein aktives, zeitabhängiges Hin- und Herschalten zwischen den ver-
schiedenen Verschränkungstypen ermöglicht. Im Fall von stark begrenzten Quantenpunkten
wird ein phasenübergangsähnliches Verhalten von Photonpaaren und die Unterdrückung von
N -Photonbündeln aufgrund des starken Phononeinflusses in konstant getriebenen Systemen
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aufgezeigt. Ein tiefgreifender Phononeinfluss wird außerdem bei der Untersuchung von form-
veränderlichen Photonzahlverteilungen gefunden, welche nach der Anregung mit gechirpten
Laserpulsen auftreten.
Zeitlich genau abgestimmte und maßgeschneiderte Laserpulse werden benutzt um die Qua-

lität von einzelnen Photonen zu untersuchen und um individuelle Photonen in metastabilen,
dunklen Exzitonzuständen zu speichern. Bemerkenswerterweise wird aufgedeckt, dass das häufig
benutzte Quantenregressionstheorem den Phononeinfluss auf die Ununterscheidbarkeit systema-
tisch überschätzt. Als Höhepunkt dieser Arbeit wird dargelegt, dass der erreichbare Verschrän-
kungsgrad von Photonen in modernen Experimenten durch eine Starkverschiebung begrenzt
wird, welche durch das zweiphotonresonante Anregungsschema hervorgerufen wird.
Insgesamt gibt diese Dissertation detaillierte Einblicke in die Erzeugung nichtklassischer

Lichtzustände, die für jeden, der im Bereich photonischer Quantentechnologien arbeitet, nütz-
lich sind.
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1 Motivation

At the beginning of the 20th century, the first quantum revolution brought mankind a deeper
understanding of our physical reality and a new set of rules and fundamental laws. This new
understanding, most importantly in semiconductor physics, enabled groundbreaking innova-
tions and a first generation of devices based on the features of quantum mechanics like lasers,
atomic clocks, or transistors. The latter is the backbone of modern electronics and paved the
way for the digital age. At the moment a second quantum revolution takes place where the rules
and principles of quantum mechanics, in particular the concepts of superposition and entangle-
ment, are exploited to develop a second generation of devices that actively create, manipulate
and read out quantum states. This led to novel and fascinating applications in different fields
of quantum technologies such as quantum information technology, quantum cryptography, or
quantum computing, that have the potential to drastically change our life once more. Thus,
the world is currently at the door step of the quantum age.
Photons, the quanta of light, can be used to exchange quantum information between different

parties or systems and to realize quantum bits (qubits), the counterpart to classical bits in
information technologies. Among other candidates for these essential tasks, photons stand
out, because they move at the speed of light and are hardly influenced by their environment.
Therefore, the possibility to generate and manipulate non-classical states of light is integral for
various applications in different quantum technologies.
Quantum dots embedded in microcavities are semiconductor nanostructures that have the

potential to function as a deterministic, on-demand source of such states. Due to their semi-
conductor nature, it should be straightforward to combine them with the existing hardware in
modern information technology. But unfortunately, this important advantage is also the root of
their characteristic drawback. Their semiconductor environment gives rise to electron-phonon
interactions, which typically degrade the quality of emitted photonic quantum states.
In this cumulative thesis, the suitability of different quantum dot-cavity setups for the gen-

eration and manipulation of highly non-classical states of light is investigated. First, in Chap-
ter 2, a brief introduction into the system, the theoretical model, and the numerical calculation
scheme is given. Afterwards, Chapter 3 provides a guide through a selection of relevant publica-
tions and highlights their most important results. Finally, Chapter 4 concludes this thesis and
discusses two recent developments which might revolutionize theoretical investigations of open
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1 Motivation

quantum systems like quantum-dot cavity systems and the approach to the optical excitation
strategy in these systems.
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2 Theoretical background: model and
methods

2.1 Semiconductor quantum dot-cavity system

2.1.1 Biexciton-exciton cascade in semiconductor quantum dots

Semiconductor quantum dots (QDs) are structures with typical dimensions on the nanometer
scale [1,2]. The strong confinement of charge carriers inside the QD leads to highly localized
carrier wave functions and, consequently, to well-separated, discrete energy levels. Therefore,
QDs are also referred to as artificial atoms [2]. Typically, QDs are realized by embedding a
semiconductor material or alloy into another one. There exist several methods to fabricate QDs
with different material combinations. In this thesis, typically stongly-confined, self-assembled
InGaAs QDs are considered, that are grown on a GaAs bulk material by the Stranski-Krastanow
method [3,4]. In this method, one semiconductor material is grown by molecular beam epitaxy
on a semiconductor substrate with a slightly different lattice constant. Due to the mismatch
in the lattice constants, strain builds up during the growth process. Beyond a critical layer
thickness of the deposited material, small islands begin to randomly form on the substrate.
Typical spatial dimensions for these QDs are on the order of a few nanometers.
Because of the strong spatial confinement and the corresponding well-separated, discrete

energy levels, it is often sufficient to restrict the modeling to the lowest conduction band and
the highest valence heavy-hole band. After an excitation, an exciton, i.e., a bound electron-hole
pair, consisting of one s-like conduction band electron with spin z-component Se

z = ±1
2 and

one p-like valence band heavy hole with Sh
z = ±3

2 is formed due to the Coulomb interaction.
As a consequence of the Pauli principle, only a maximum of two electrons, with opposite spin
z-component, can occupy the energetically lowest s-like state. This bound state with a typical
binding energy EB on the order of a few meV which comprises two excited electron-hole pairs
is referred to as the biexciton state.
Thus, the four possible energetically lowest, charge-neutral excited states are the exciton

states denoted by |Se
z , S

h
z 〉. Due to the optical selection rules, only the two bright exciton states

|X+〉 = | − 1
2 ,+

3
2〉 and |X−〉 = | + 1

2 ,−
3
2〉 with a total spin z-component ±1 can be optically
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2 Theoretical background: model and methods

Figure 2.1: Biexciton-exciton cascade consisting of the ground state |G〉, two bright exciton
states, and biexciton state |B〉. ~ωX denotes the mean exciton energy and EB is the biexciton
binding energy. (a) Electronic transitions between the bright excitons |X±〉 and the remaining
states couple to σ± circularly polarized light. The energetically degenerate bright excitons are
coupled by the exchange interaction Vexc. (b) Electronic transitions between bright excitons
|XH/V〉 and the remaining states couple to horizontally (H) or vertically (V ) polarized light.
The bright excitons are energetically split by the exciton fine-structure splitting δ.

excited by using σ+ and σ− circularly polarized light, respectively. The remaining two exciton
states with total spin z-component ±2 are thus referred to as dark excitons. The biexciton is
also optically bright and can be reached from the bright exciton |X+〉 (|X−〉) by absorption
of one σ− (σ+) polarized photon. Together with the ground state, i.e., the state without any
excitations, the two bright excitons and the biexciton form the optically active biexciton-exciton
cascade.

In general, the two bright exciton states are coupled by the exchange interaction. Therefore,
the energy eigenstates of the electronic system are exciton states |XH〉 = (|X+〉+ |X−〉) /

√
2

and |XV〉 = i (|X+〉 − |X−〉) /
√

2 which are split by the so called exciton fine-structure splitting
δ and couple to linearly polarized light [5] - here denoted as H (horizontal) and V (vertical)
polarization, respectively. Figure 2.1 depicts the biexciton-exciton cascade and the optical se-
lection rules for circularly [panel (a)] and linear [panel (b)] polarized light. After the preparation
of the biexciton state, there are two decay paths from the biexciton to an exciton state and
subsequently into the ground state. Because of this feature and typically small fine-structure
splittings on the order of 10 µeV, the biexciton-exciton cascade in QDs is often discussed as
a source for polarization-entangled photon pairs [1,6–10]. Their fundamental advantage is a de-
terministic on-demand character [11–14]. In contrast to spontaneous parametric down-conversion
sources, QDs have the potential to deliver exactly one entangled photon pair per excitation
pulse [1].
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2.1 Semiconductor quantum dot-cavity system

2.1.2 Optically excited four-level emitter

The biexciton-exciton cascade in semiconductor quantum dots represents one possible realiza-
tion of a four-level quantum emitter with a diamond-shaped level structure, cf., Figure 2.1. Note
that such four-level emitters can also be found in other systems, like F-centers or atoms [15–17].
The diamond-shaped four-level model for the electronic structure of a quantum emitter is pre-
dominantly used in this thesis. For some studies, however, slightly different models, e.g., the
reduction to a two-level system - in the case of circularly polarized light and insignificant ex-
change interaction - or the inclusion of dark excitons, are considered (cf., [Pub 3, Pub 6, Pub 7,
Pub 8]).
In order to create non-classical states of light, the quantum emitter has to be excited first,

from its ground state into an excited state. One possible way to achieve this, are optical
excitation schemes employing continuous-wave or pulsed lasers. When an external laser is
included into the model using a semi-classical description, the Hamiltonian for the optically
driven four-level QD is given by

ĤQD-L =
(

∆XL + δ

2

)
|XH〉〈XH|+

(
∆XL −

δ

2

)
|XV〉〈XV|+ (2∆XL − EB) |B〉〈B|

+ Ω∗(t) σ̂L + Ω(t) σ̂†L
(2.1)

where Ω(t) is proportional to the time-dependent laser amplitude and the star symbol indicates
the complex conjugated quantity. Note that the Hamiltonian in Eq. (2.1) is formulated in
a frame co-rotating with the laser frequency ωL. Furthermore, the dipole and rotating wave
approximations have been applied. EB and δ denote the biexciton binding energy and the fine-
structure splitting, respectively, and ∆XL := ~(ωX − ωL) is the detuning between the energetic
position of the laser and the mean exciton energy ~ωX. The polarization of the external laser
is encoded in the operator

σ̂L := αH σ̂H + αV σ̂V (2.2a)

σ̂H/V := |G〉〈XH/V|+ |XH/V〉〈B| (2.2b)

where the coefficient αH/V ∈ R represents its component in H/V direction. Finally, the opera-
tors σ̂H/V describe electronic transitions that couple to horizontally/vertically polarized light.

2.1.3 Quantum dot-cavity structures

In order to enhance the non-classical light source, the QD is often embedded inside a micro-
cavity. By doing so, the photon emission rate and the light-collection efficiency are increased
due to the Purcell effect [18–20]. There exist several different strategies and setups for QD cav-
ity structures [1,6], e.g., one possibility is to place Bragg-reflectors below and on top of the
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2 Theoretical background: model and methods

QD [8,11,21]. In addition to the Purcell effect, embedding the QD inside a cavity structure can
also be used to influence the decay mechanism/characteristics. For example, when the energy
of the cavity modes is placed at the two-photon resonance between ground and biexciton state,
direct two-photon emission processes can be enhanced in comparison to the sequential one-
photon emission processes following the biexciton-exciton cascade [22–27]. Thus, the generation
of non-classical photon states is affected by the chosen QD-cavity realization, and one might
use cavity parameters to manipulate the resulting state.
The surrounding cavity structure modifies the electromagnetic modes in the vicinity of the

QD. Due to its resonance conditions, only well-separated electromagnetic field modes exist
along the cavity direction. In this thesis, it is always assumed that, for each of the two linear
polarizations H and V , only one of these cavity modes is close to resonance with the electronic
QD transitions. In this situation, it is sufficient to consider only these two distinct cavity modes
and dismiss the rest of them.
In cavity quantum electrodynamics, the interaction of a few-level system, like the biexciton-

exciton cascade in QDs, with individual cavity modes can often by described by an extended
Jaynes-Cummings model [28,29], exploiting again the dipole and rotating wave approximations.
In the frame co-rotating with a frequency ωL, the interaction of the four-level QD with one
horizontally and one vertically polarized cavity mode is given by the Hamiltonian

ĤC =
∑

`=H,V
∆(`)

CLâ
†
`â` +

∑
`=H,V

g
(
â†`σ̂` + â`σ̂

†
`

)
, (2.3)

where the QD-cavity coupling strength g is assumed to be equal for all four QD transitions.
The bosonic operator â†H/V (âH/V) creates (annihilates) one photon in the cavity mode with the
respective polarization. The energies of the cavity modes are denoted by ~ωH/V and ∆(`)

CL =
~(ω` − ωL) is the energetic detuning between the cavity mode ` ∈ {H,V } and the frequency
of the rotating frame, typically, the external laser frequency. For most studies presented in
this thesis, the two orthogonally polarized cavity modes are considered to be energetically
degenerate, i.e., the cavity-laser detuning ∆(H)

CL = ∆(V)
CL =: ∆CL is identical for both modes.

2.1.4 Cavity losses and radiative decay

Especially in an application-oriented description, further processes and mechanisms have to be
included in order to reflect realistic quantum emitter-cavity structures and experiments. The
first process are cavity losses due to a non-unity reflectance of the cavity mirrors, e.g., Bragg
reflectors. Typically, the non-classical photon state created inside a cavity structure has to be
delivered to an outside recipient. Thus, these losses are not only unavoidable but also necessary
for applications in quantum technologies. The second type of process associated with realistic
quantum-emitter cavity structures is the radiative decay of the quantum emitter. This process
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2.1 Semiconductor quantum dot-cavity system

captures emission events, where the quantum emitter emits a photon into the continuum of
electromagnetic field modes orthogonal to the cavity axis instead of into a cavity mode.
Both processes can be well-described as Markovian processes with phenomenological rates.

They are incorporated into the theoretical description using Lindblad operators [30,31]

LÔ,Γρ̂ = Γ
2
(
2 Ôρ̂Ô† − Ô†Ôρ̂− ρ̂Ô†Ô

)
(2.4)

acting on the statistical operator ρ̂ of the quantum emitter-cavity system. In this formal-
ism, Ô represents the system operator associated with the respective Markovian process with
phenomenological rate Γ. Cavity losses (radiative decay processes) are associated with the op-
erators â` (|G〉〈X`| and |X`〉〈B|) and, throughout this thesis, the corresponding rate is denoted
by κ (γ).

2.1.5 Phonon environment and spectral density

Phonon environment Using semiconductor QDs as source for non-classical states of light
has both characteristic advantages and drawbacks. On the one hand, they can be quite easily
incorporated into already existing semiconductor devices or setups used in modern (classical)
information technology. But on the other hand, they unavoidably interact with their semicon-
ductor environment, which gives rise to charge carrier-phonon interactions.
In the case of strongly-confined, self-assembled QDs, the lattice properties, in particular

the lattice constants, of the QD deviate only marginally from the surrounding semiconductor
crystal matrix. Thus, in contrast to charge carriers, phonons are not confined to the QD and
the consideration of bulk phonons is justified. Furthermore, for GaAs-type QDs at cryogenic
temperatures, the deformation potential coupling to longitudinal acoustic (LA) phonons is
typically the most important and thus dominant charge carrier-phonon interaction [32–35]. Due to
the well-separated energy levels of the QD, acoustic phonons cannot introduce direct transitions
between different electronic states. Rather, elastic scattering processes where the QD state
remains unchanged lead to a loss of quantum coherence in the QD-cavity system and impact its
time-evolution. Consequently, the deformation potential coupling to LA phonons is of the pure
dephasing-type. Finally, in strongly-confined QDs, the wave function for exciton and biexciton
states can in good approximation be factorized into one-particle wave functions for electrons
and holes. This directly implies the assumption that the charge carrier-phonon coupling is
proportional to the number of electron-hole pairs.
Altogether, the interaction between charge carriers confined inside the QD and the continuum

of LA phonons is described by the Hamiltonian

ĤPh = ~
∑

q
ωqb̂

†
qb̂q + ~

∑
χ,q

nχ
(
γXq b̂

†
q + γXq

∗
b̂q
)
|χ〉〈χ| (2.5)

7



2 Theoretical background: model and methods

where γXq denotes the exciton-phonon coupling strength and nχ ∈ {0, 1, 1, 2} is the number
of excitons present in the QD state |χ〉 ∈ {|G〉, |XH〉, |XV〉, |B〉}. The bosonic operator b̂†q
(b̂q) creates (annihilates) one bulk phonon with energy ~ωq in the mode with wave vector
q. Although it is obvious, that in this description phonons cannot directly lead to electronic
transitions between the bare QD states, they can introduce transitions between (cavity- and
laser-)dressed states once the QD is coupled to a cavity or is optically driven [36]. Furthermore,
the pure-dephasing coupling to LA phonons is the origin of many, often non-Markovian, effects
in solid-state physics, like the renormalization of Rabi frequencies and the damping of Rabi
oscillations [37–42], a renormalization of the QD-cavity coupling strength [43–45], the appearance
of phonon sidebands in optical spectra [46,47], or a nonexponential partial loss of coherence [32,33]

and its non-monotonic temperature dependence [48,49]

Phonon spectral density The charge carrier-phonon interaction is characterized by the so-
called phonon spectral density J(ω) = ∑

q

∣∣∣γXq ∣∣∣2 δ(ω − ωq), which is determined by the coupling
constant. The explicit expression for J(ω) depends on geometric aspects and material param-
eters. Typically, the following assumptions are made: (i) a spherically symmetric, harmonic
oscillator confinement for electrons and holes, (ii) a linear phonon dispersion ωq = cs |q| with
sound velocity cs, and again (iii) the factorization of the exciton wave function are assumed.
After employing these assumptions, the explicit expression for the phonon spectral density
reads [50,51]

J(ω) = ω3

4π2~ρDc5
s

[
De e

−ω2a2
e/(4c2

s ) −Dh e
−ω2a2

h/(4c
2
s )
]2

(2.6)

where ae (ah) is the electron (hole) confinement length. The necessary material parameters -
mass density ρD, electron (hole) deformation potential De (Dh), and the sound velocity - for
GaAs-based QDs are taken from the literature and are listed, e.g., in [Pub 1] or [Pub 10]. Note
that in the limit of small frequencies, J(ω) is proportional to ω3, i.e., the considered coupling
is of the super-Ohmic type.

In this thesis, usually, an identical confinement for electrons and holes is assumed. This results
in the fixed ratio ae/ah = 1.15 due to the different effective masses of electrons and holes. In
the case of strongly-confined, self-assembled InGaAs QDs, good agreements between theory and
experiment were obtained for an electron confinement length around 3...5 nm [52,53]. Note that
the assumption of a spherically symmetric QD does not provide a loss of generality, because the
theoretical description of any asymmetric QD can be mapped to a symmetric situation with
suitable parameters [54]. The resulting phonon spectral density J(ω) for ae = 3 nm is depicted
in Figure 2.2. In this case, the maximum of the phonon spectral density is obtained for a
frequency corresponding to roughly 2 meV.
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Figure 2.2: [Taken from [Pub 10]]
Phonon spectral density J(ω) for a
GaAs-based QD with electron (hole)
confinement length ae = 3 nm (ah =
ae/1.15). The remaining material pa-
rameters can be found in Table II of
[Pub 10].

2.2 The Liouville-von Neumann equation and its solution

The scientific studies presented in this thesis employ some or all building blocks and their
corresponding theoretical description as introduced in the previous Section 2.1. A sketch of
the system predominantly discussed in this thesis is provided in Figure 2.3. Typical target
quantities are the occupation probability for different electronic or photonic states or figures of
merit characterizing the non-classical state of light, e.g., common single-photon characteristics
or entanglement measures. They are obtained by evaluating time-dependent expectation values
or correlation functions containing different operator combinations with one or multiple time
arguments.

In the corresponding representation in the Schrödinger picture, these time-dependent quan-
tities can be calculated based on the time-evolution of the system. The dynamical equation
governing the time-evolution of the statistical operator ρ̂ of the complete system, consisting of
electronic, photonic, and phonon degrees of freedom, is the Liouville-von Neumann equation

d
dt ρ̂ = − i

~
[
Ĥ, ρ̂

]
−

+
∑

`=H,V

{
Lâ`,κ + L|G〉〈X`|,γ + L|X`〉〈B|,γ

}
ρ̂ =: Lρ̂ (2.7)

Here
[
Â, B̂

]
−

:= ÂB̂−B̂Â is the commutator between two operators Â and B̂, and the complete
system Hamiltonian is given by

Ĥ = ĤQD-L + ĤC + ĤPh (2.8)

In principle, the formal, exact solution of the Liouville-von Neumann equation is

ρ̂(t) = T̂ exp
 t∫
t0

L dt′
 ρ̂(t0) =: Pt0,t [ρ̂(t0)] (2.9)
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2 Theoretical background: model and methods

Figure 2.3: Schematic sketch
of the considered system. The
biexciton-exciton cascade in QDs
(cf., Figure 2.1) is embedded in-
side a lossy cavity and inter-
acts with two orthogonally polar-
ized cavity modes (red and blue
double-headed arrows). The QD
is excited by an external laser (or-
ange arrow) and can also decay ra-
diatively. Due to its semiconduc-
tor environment, the QD is cou-
pled to LA phonons. A possible
energetic detuning between exci-
ton (cavity modes) and laser is de-
noted by ∆XL (∆CL).

where ρ̂(t0) denotes the initial statistical operator at the starting time t0 and T̂ is the time-
ordering operator. After introducing a suitable basis of ket states |j〉 and bra states 〈k| for
the Hilbert space, one can change to the density matrix ρ with elements ρkj = 〈k|ρ̂|j〉. The
time-evolution of these elements can then be numerically calculated by discretizing the formal
propagator Pt0,t. However, this brute force approach is only feasible for calculations without
phonons, i.e., Ĥ = ĤQD-L + ĤC. Here, the dimension of the Hilbert space is manageable when
either a reasonable cut-off is introduced for the maximum number of photons to be considered
in each cavity mode (e.g., in [Pub 4] or [Pub 5]), or no surrounding cavity is present (e.g., in
[Pub 9]). In contrast, the inclusion of the deformation potential coupling to LA phonons via
ĤPh results in a genuine many-body problem with infinite degrees of freedom and, consequently,
an infinite-dimensional Hilbert space.
In order to tackle this problem, different strategies and methods can be applied. For ex-

ample, one often used method is a fourth-order correlation expansion, cf., [FPub 6]. In this
approach, one starts with the dynamical equations for single-particle expectation values, e.g.
〈|X`〉〈X`|〉, 〈|G〉〈X`|〉. Due to the charge carrier-phonon interaction, the equations of motion
for these quantities derived from the Heisenberg equation contain expectation values of higher
order, e.g.,

〈
|G〉〈X`|b̂†q

〉
= 〈|G〉〈X`|〉

〈
b̂†q
〉

+δ
〈
|G〉〈X`|b̂†q

〉
with correlation δ

〈
|G〉〈X`|b̂†q

〉
. These

correlations are considered as new variables and their equations of motion then contain cor-
relations of an even higher order. By repeating this procedure, one ends up with an infinite
hierarchy of equations. They are closed, i.e., cut, by neglecting correlations of fifth order, as-
suming that the importance of correlations decreases with their order. One advantage of this
scheme is that it also provides access to expectation values for phonon variables, e.g., the prop-
agation of phonon wave packets, cf., [FPub 6], or phonon squeezing [55] can be analyzed. But
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due to its approximative nature, e.g., phonon processes beyond the second order and higher
correlations are neglected. Furthermore, this method is not suitable for simulations on the
nanosecond scale, because it becomes unstable after a certain time interval determined by the
q-discretization [56,57].
Often, one is only interested in electronic or photonic expectation values or correlation func-

tions. In this situation it is sufficient to consider the time-evolution of the QD-cavity subsystem
described by the reduced statistical operator ˆ̄ρ = TrPh {ρ̂} and the corresponding reduced den-
sity matrix ρ̄, where the phonon degrees of freedom have been traced out. One approximative
method that delivers quantities based on the reduced density matrix is the polaron master
equation approach [58,59]. The central idea of this method is to perform a transformation into
the polaron frame and subsequently derive a time-local master equation in this frame employing
a Born-Markov approximation. As a result various non-Markovian features can be observed in
this approach, e.g., phonon sidebands in optical spectra, cf., Erratum of [Pub 6]. However, the
validity of this approach is not always clear, especially in the case of strong interactions and
high temperatures [60].
In order to analyze the impact of phonons without any prejudice, in this thesis, a numerically

complete path-integral approach is employed. This method also delivers quantities based on
the reduced density matrix and, in contrast to the two previously discussed methods, no further
approximations or assumptions are applied to the model. In the following Section 2.3, a brief
introduction to the path-integral approach is presented.

2.3 Iterative real-time path-integral method

2.3.1 General and advanced iteration scheme

General iteration scheme In order to characterize the quantum emitter and the created state
of light, electronic and photonic expectation values and correlation functions are of interest.
The expectation values of any observable related to the QD-cavity subsystem can be obtained
from its reduced density matrix. The iterative real-time path-integral method provides the
opportunity to extract the time-evolution of this system of interest without any additional ap-
proximations or assumptions to the model as formulated in the Liouville-von Neumann equation
(2.7). The principle idea is to discretize the formal time propagator into operators acting on
small time intervals ∆t, factorize it into contributions that act only on the subsystem of inter-
est, i.e., the QD-cavity system, and the remaining degrees of freedom, i.e., ĤPh, respectively,
and trace out the phonon degrees of freedom. Because of the factorization the standard method
is exact in first order of ∆t. The general cost of the path-integral approach is a finite memory
introduced by the charge carrier-phonon interaction, which renders the subsystem’s dynamics
non-local in time. However, for a continuum of phonon modes, the induced memory has only a
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finite depth. This feature allows for an iterative approach to the solution that makes long-time
studies feasible. In the following, a brief description of this path-integral approach is given.
After introducing a basis of ket states |µ〉 and corresponding bra states 〈ν| for the QD-cavity

system, the reduced density matrix ρ̄ can be expressed in this basis as

ρ̄ =
∑
ν,µ

ρ̄νµ |ν〉〈µ| (2.10a)

ρ̄νµ = 〈ν|TrPh {ρ̂} |µ〉 (2.10b)

Typically, the basis |µ〉 is chosen as the combined QD-cavity states |χ, nH, nV〉 with χ ∈
{G,XH, XV, B}, where n` denotes the number of cavity photons in the mode with polarization
` ∈ {H,V }. In their seminal work in the year 1995 [61,62], Makri and Makarov showed that
ρ̄νµ can be expressed as a sum over paths which can be performed iteratively, provided that
the system dynamics is Hamiltonian. A decade ago, this method was then adopted to QDs
by Vagov et al. [63]. In recent years, it has been demonstrated that an iterative path-integral
approach is still possible when non-Hamiltonian contributions as provided by La`,κ, L|G〉〈X`|,γ,
and L|X`〉〈B|,γ are included [50].
After introducing an equally spaced time discretization tj = j∆t with time step ∆t and

j ∈ N0, the states of the QD-cavity system at time tj are denoted by νj and µj, respectively.
Due to the finite memory depth, a finite memory length tM = nM ∆t can be used and the
iteration scheme is based on the so-called augmented density matrix (ADM), an object which
depends on the current time-step tn and all prior time-steps that lie within this memory length.
The ADM ρ̄

µn...µn−nM+1
νn...νn−nM+1 := ∑

νn−nM ...ν0
µn−nM ...µ0

Rµn...µ0
νn...ν0 obeys the recurrence [50]

ρ̄
µn...µn−nM+1
νn...νn−nM+1 =Mνn−1µn−1

νnµn

∑
νn−nM
µn−nM

exp
(

n∑
j=n−nM

Sνjµj
νnµn

)
ρ̄
µn−1...µn−nM
νn−1...νn−nM (2.11)

where
Mνj−1µj−1

νjµj
= 〈νj|Mtj−1,tj

[
|νj−1〉〈µj−1|

]
|µj〉 (2.12a)

Mt,t′ [·] = T̂ exp
( t′∫

t

LQD-C dt
′′
)[
·
]

(2.12b)

LQD-Cρ̂ = − i
~
[
ĤQD-L + ĤC, ρ̂

]
−

+
∑

`=H,V

{
Lâ`,κ + L|G〉〈X`|,γ + L|X`〉〈B|,γ

}
ρ̂ (2.12c)

Rµn...µ0
νn...ν0 := ρ̄ν0µ0

n∏
j=1
Mνj−1µj−1

νjµj
exp

(
n∑
j=1

j∑
j′=1

S
νj′µj′
νjµj

)
. (2.12d)

The reduced density matrix at time tn can then be obtained from the ADM by summation over
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2.3 Iterative real-time path-integral method

the prior time-steps:
ρ̄νnµn(tn) =

∑
νn−1...νn−nM+1
µn−1...µn−nM+1

ρ̄
µn...µn−nM+1
νn...νn−nM+1 (2.13)

In this scheme, the formal propagator Mt,t′ describes the phonon-free time-evolution of the
QD-cavity system and the influence of the phonons is captured completely by the functions
S
νj′µj′
νjµj . Assuming that the initial state of the complete system is the product of a QD-cavity

state and a phonon state in thermal equilibrium at temperature T , the explicit expressions for
the latter are [63,64]

S
νj′µj′
νjµj = −Kνj′νj

(tj − tj′)−K∗µjµj′
(tj − tj′) +K∗νjµj′

(tj − tj′) +Kνj′µj
(tj − tj′) (2.14a)

Kνjµj′
(τ) = 2

∞∫
0

dω
nνj

nµj′
J(ω)

ω2

[
1− cos(ω∆t)

][
coth

(
~ω

2kBT

)
cos(ωτ)− i sin(ωτ)

]
, τ > 0

(2.14b)

Kνjµj
(0) =

∞∫
0

dω
nνj

nµj′
J(ω)

ω2

[
coth

(
~ω

2kBT

)(
1− cos(ω∆t)

)
+ i sin(ω∆t)− iω∆t

]
(2.14c)

where nν is again the number of excitons present in the QD-cavity state |ν〉 and J(ω) is the
phonon spectral density as defined in Section 2.1.5.
In this path-integral method, numerical errors can be caused only by two intrinsic parameters:

(i) the time step ∆t and (ii) the considered memory length tM. Usually, these convergence
parameters can be well controlled. In the case of strongly-confined self-assembled GaAs QDs,
the memory depth of the memory kernel Kνjµj′

(tj − tj′) is on the order of a few picoseconds.
For example, for a confinement length of ae = 3nm, a memory length of tM = 3ps is usually
sufficient. In typical simulations performed in this thesis, the parameter set nM = 7 and
∆t = 0.5ps leads to numerically complete results, i.e., neither a further reduction of ∆t nor a
further increase of tM causes a noticeable change in the numerical results.
However, the general iteration scheme has its limits. In particular, the study of four-level

emitter-cavity systems is impossible. In this scheme, NADM = N2nM
QD-C elements of the ADM

have to be stored, where NQD-C is the number of QD-cavity basis states that are considered in
the numerical calculations. Even when just basis states |χ, nH, nV〉 with a total photon number
nH +nV ≤ 4 are considered, the number of NADM = 602×7 ≈ 7.8×1024 elements clearly exceeds
current storage capabilities.

Advanced iteration scheme In order to explore such multi-level QD-cavity systems, an ad-
vanced iteration scheme has to be employed, which was first introduced in Ref. [64]. This scheme
exploits another important property of the functions Sνj′µj′

νjµj . According to Equation (2.14),
they depend on the indices νj, µj, νj′ , µj′ solely via the number of excitons present in the cor-
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2 Theoretical background: model and methods

responding QD-cavity states. Therefore, the QD-cavity states |ν〉 can be sorted into three
groups {|G, nH, nV〉}, {|XH, nH, nV〉, |XV, nH, nV〉}, and {|B, nH, nV〉}, where each member of
one group couples identically to the phonon degrees of freedom. After re-labeling the basis
states |ν〉 → |λ, k〉 and |µ〉 → |λ̄, k̄〉, where the group is donated by λ ∈ {0, 1, 2} and k distin-
guishes between different group members, the partially summed ADM (PSADM)

ρ̄
(λ̄n,k̄n)λ̄n−1...λ̄n−nM+1
(λn,kn)λn−1...λn−nM+1

:=
∑

kn−1...kn−nM+1
k̄n−1...k̄n−nM+1

ρ̄
(λ̄n,k̄n)(λ̄n−1,k̄n−1)...(λ̄n−nM+1,k̄n−nM+1)
(λn,kn)(λn−1,kn−1)...(λn−nM+1,kn−nM+1). (2.15)

can be defined. This quantity then obeys the recursion relation [64]

ρ̄
(λ̄n,k̄n)λ̄n−1...λ̄n−nM+1
(λn,kn)λn−1...λn−nM+1

=
∑
kn−1
k̄n−1

M(λn−1,kn−1)(λ̄n−1,k̄n−1)
(λn,kn)(λ̄n,k̄n)

∑
λn−nM
λ̄n−nM

exp
(

n∑
j=n−nM

S
λj λ̄j

λnλ̄n

)
ρ̄

(λ̄n−1,k̄n−1)λ̄n−2...λ̄n−nM
(λn−1,kn−1)λn−2...λn−nM

(2.16)

and the reduced density matrix at time tn can be obtained by

ρ̄νnµn(tn) =
∑

λn−1...λn−nM+1
λ̄n−1...λ̄n−nM+1

ρ̄
(λ̄n,k̄n)λ̄n−1...λ̄n−nM+1
(λn,kn)λn−1...λn−nM+1

(2.17)

Although, Eqs. (2.15)-(2.17) just represent an exact reformulation without any additional as-
sumptions, the numerical demand in the advanced iteration scheme is drastically reduced. The
PSADM only contains NPSADM = N2

QD-C × N
2(nM−1)
G elements, where NG denotes the num-

ber of groups. For the same multi-level system and memory length nM = 7 as before, the
number of elements in the central object is reduced by more than 15 orders of magnitude to
NPSADM = 602 × 312 ≈ 1.9 × 109. Only this immense reduction of the numerical demand due
to the advanced iteration scheme enables one to tackle multi-level QD-cavity systems.

2.3.2 Two-time correlation functions

The real-time path-integral approach as discussed so far, can deliver the reduced density matrix
of the QD-cavity system ρ̄, and, thus, all related expectation values in a numerically complete
fashion. However, not all figures of merit and properties of a non-classical state of light and
its emitter can be directly obtained from the time-evolution of ρ̄. For example, figures of
merit related to single-photon states and emitters (cf., [Pub 6], [FPub 5], and [FPub 8]) or
the reconstruction of two-photon states via quantum state tomography [65] in entanglement
measurements (cf., [Pub 4], [Pub 5], [Pub 9], and [Pub 10]), rely on (polarization-resolved) two-
time coincidence measurements, performed in a Hanbury Brown and Twiss [66,67] or Hong-Ou-
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Mandel [68] setup. These types of measurements can be theoretically modeled by evaluating two-
time correlation functions for the electric field operators [69]. Since the source of the electric field
is, depending on the experiment, either a bare QD or a QD-cavity structure, the electric field
operators are proportional to the QD transition operators or the cavity operators, respectively.
In addition, also other characteristics, e.g., emission spectra, are calculated based on similar
correlation functions (cf., Supplement of [Pub 6]).

A numerically complete calculation scheme for general two-time correlations functions

G(2)(t, τ) =
〈
Ô1(t)Ô2(t+ τ)Ô3(t+ τ)Ô4(t)

〉
(2.18)

within the path-integral framework was introduced in Ref. [70]. Here, the four operators Ô
denote any set of operators that act only on the system of interest, i.e., the QD-cavity subsystem,
like the electronic transition operators, |G〉〈X`| and |X`〉〈B|, or the cavity mode operators â`.
The first time argument, t, represents the (real) time of the first detection event and τ is
the delay time until a subsequent second one. After reformulating Equation (2.18) in the
Schrödinger picture, the resulting expression

G(2)(t, τ) = Tr
{
Ô2Ô3Pt,t+τ

[
Ô4Pt0,t [ρ̂(t0)] Ô1

]}
(2.19)

can be evaluated by the following procedure: (i) First, until the time t = n∆t is reached, one
can use the advanced algorithm and iterate the PSADM according to Equation (2.16). (ii)
Then, at this step, the operators Ô1 and Ô4, which act at this point in time, are multiplied to
the PSADM from the right and the left, respectively. The resulting, new object is a modified
PSADM (MPSADM)

ρ̄Ô4Ô1

(λ̄n,k̄n)λ̄n−1...λ̄n−nM+1
(λn,kn)λn−1...λn−nM+1

=
∑
λ′n,k

′
n

λ̄′n,k̄
′
n

∑
kn−1
k̄n−1

(O4)(λn,kn)(λ′n,k′n)M
(λn−1,kn−1)(λ̄n−1,k̄n−1)
(λ′n,k′n)(λ̄′n,k̄′n) (O1)(λ̄′n,k̄′n)(λ̄n,k̄n)

×
∑

λn−nM
λ̄n−nM

exp
(

n∑
j=n−nm

S
λj λ̄j

λnλ̄n

)
ρ̄

(λ̄n−1,k̄n−1)λ̄n−2...λ̄n−nM
(λn−1,kn−1)λn−2...λn−nM

(2.20)

where (O)(λj ,kj)(λ′j ,k
′
j) := 〈λj, kj|Ô|λ′j, k′j〉 for any operator Ô acting on the QD-cavity subsystem.

(iii) For subsequent time steps, the MPSADM is iterated instead of the PSADM, obeying the
same recursion relation as the latter. (iv) Assuming that the time t + τ is reached after m
further time steps, i.e., τ = m∆t, the correlation function G(2)(t, τ) is finally obtained by
multiplying the remaining pair of operators to the MPSADM and performing the trace over
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the phonon-induced memory:

G(2)(t, τ) =
∑

λn+m...λn+m−nM+1,kn+m

λ̄n+m...λ̄n+m−nM+1,k̄n+m

(O2O3)(λ̄n+m,k̄n+m)(λn+m,kn+m) ρ̄Ô4Ô1

(λ̄n+m,k̄n+m)λ̄n+m−1...λ̄n+m−nM+1
(λn+m,kn+m)λn+m−1...λn+m−nM+1

(2.21)
Note that, in this calculation scheme, the phonon-induced memory accumulated during the
first propagation in the real time t is completely kept for the second propagation related to the
delay time τ . Thus, the presented iteration scheme is still numerically complete and provides
the unique opportunity to evaluate the validity of approximate strategies like the quantum
regression theorem (QRT) [31]. This approximate tool is often employed for the calculation of
two-time correlation functions, even when the system dynamcis is non-Markovian.

2.4 Entangled photon pairs

2.4.1 Bell states and different realizations

Although this thesis also discusses single-photon states ([Pub 6] and [Pub 8]) and non-classical
multi-photon statistics ([Pub 3] and [Pub 7]), its major focus is the generation and manipulation
of entangled photon pairs in quantum emitter-cavity systems as well as the influence of phonons
or other system parameters on the latter.
Entanglement is a genuine quantum effect, sometimes contrary to man’s physical intuition. In

quantum mechanics, two particles or systems are entangled when their combined state cannot
be factorized into states that describe just one of the two constituents. As a consequence,
a measurement performed on one particle or system directly impacts the state of the other,
even when they do not interact with each other or are far apart. Historically, this counter-
intuitive spooky action on a distance, e.g., in the EPR-gedankenexperiment [71], was one major
criticism of quantum mechanics in its earlier years. Nowadays, after quantum mechanics and
its predictions have been proven time and time again, entanglement is key to novel quantum
science and technologies, like, quantum cryptography [72–75], quantum communication [6,76], or
quantum information and quantum computation [77–80].
Many fascinating applications in these fields rely on entangled quantum bits (qubits). A

qubit is a quantum mechanical two-state system, that in contrast to its classical analogue, can
be in any superposition of its two states. For two entangled qubits, there exist four maximally
entangled states

|Φ±〉 = 1√
2

(|0〉A|0〉B ± |1〉A|1〉B) (2.22a)

|Ψ±〉 = 1√
2

(|0〉A|1〉B ± |1〉A|0〉B) (2.22b)
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which became known as the four Bell states (BSs). Here, |0〉 and |1〉 denote the two possible
states that each of the two qubits, labeled by A and B, can assume. The four BSs form a
basis of the two-qubit Hilbert space and violate Bell’s inequalities [81,82], a fundamental test for
entanglement, with the highest possible value.
Among other possible realization of qubits, like superconducting qubits [83] or trapped ions [84],

that satisfy DiVincenzo’s criteria for quantum computation [85], photons stand out, because they
travel at the speed of light and are only weakly influenced by their environment [1,6]. In the
case of photonic qubits, several degrees of freedom can be used to encode the two general one-
qubit states |0〉 and |1〉: For example, the frequency or orbital angular momentum (OAM),
as well as different temporal or spatial modes. Consequently, in the recent years, photons
entangled in their frequency [86], OAM [87], or spatial mode [88] and time-bin entangled photon
pairs [89–92] have been reported. However, the most common and, arguably, most straightforward
realization are polarization-entangled photon pairs, where the two different states are encoded
in two orthogonal polarizations, e.g., H and V . They are especially attractive, because they
can be quite easily created, manipulated, and measured using polarizers and waveplates. As
mentioned in Section 2.1.1, the biexciton-exciton cascade in QDs provides a natural platform
for the generation of polarization-entangled photon pairs.

2.4.2 Reconstructing the two-photon state

After a two-photon state has been generated, e.g., by the subsequent decay of an excited biex-
citon in QDs, it has to be characterized. To this end, in standard experiments, the resulting
photon pair state is usually reconstructed in the basis {|HH〉, |HV 〉, |V H〉, |V V 〉}, where H
and V denote the two orthogonal linear polarizations and the order corresponds to the first
and second detected photon. Typically, quantum state tomography [65] is employed, a recon-
struction technique based on polarization-resolved two-time coincidence measurements. From
a theoretical point of view, these measurements can be modeled with second-order correlation
functions.
In the case of QDs interacting with only one cavity mode per polarization as introduced in

Section 2.1.3, the detected signals in such coincidence measurements are proportional to the
two-time correlation functions

G
(2)
jk,`m(t, τ) =

〈
â†j(t)â

†
k(t+ τ)âm(t+ τ)â`(t)

〉
(2.23)

where j, k, `,m ∈ {H,V }, cf., e.g., [FPub 1] or [Pub 10]. Here, t is the (real) time when the
first photon is detected, and τ denotes the delay-time until the detection of the subsequent
second one occurs. Note that G(2)

jk,`m(t, τ) describes photons within the cavity structure, while
in standard experiments the measurements are performed on photons that have already left the
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cavity. However, if the outcoupling of light from the cavity into free space is assumed to be a
Markovian process, Equation (2.23) can also be used to model the latter [93].
In an actual experiment, the coincidence measurements are always performed over finite real

time and delay time intervals, i.e., the experimental result represents a statistical average over
these intervals. Therefore, the reconstructed two-photon density matrix ρ2p is theoretically
calculated as

ρ2pjk,`m =
G

(2)
jk,`m

Tr
{
G

(2)
} (2.24a)

G
(2)
jk,`m =

t0+Tave∫
t0

dt
τave∫
0

dτ G(2)
jk,`m(t, τ) (2.24b)

where Tave (τave) is the real (delay) time interval used in experiment. The trace Tr
{
G

(2)
}

in Equation (2.24) assures that ρ2p is normalized. While one typically considers all detection
events until the emitter has returned into its ground state, different delay time windows can be
applied to select different photonic subsets, cf., [FPub 1]. Once the two-photon density matrix
ρ2p has been obtained, the created type of BS can be identified based on its elements.

2.4.3 Entanglement measures and concurrence

In order to quantify the degree of entanglement associated with a given two-photon state, a
suitable measure has to be selected. If the two-photon density matrix ρ2p describes a pure
two-photon state |ψ2p〉 with subsystems, i.e., photons, A and B, it is common to use the von-
Neumann entropy of any of the two subsystems to define the degree of entanglement E(|ψ2p〉)
as [94]

E(|ψ2p〉) = −TrA {ρA log2 ρA} = −TrB {ρB log2 ρB} (2.25)

where ρA = TrB {ρ2p} and ρB = TrA {ρ2p} are the reduced density matrices of each subsystem,
respectively. From a physical point of view, E represents the missing information about one
photon due to its entanglement with the other one. It is straightforward to show that all four
BSs introduced in Equation (2.22) display the maximum possible value E = 1.
However, in the case of a mixed state, this quantity cannot be used, because the missing

information about one subsystem can also be caused by ensemble averaging instead of entan-
glement. In this situation, several ways to identify the contribution due to entanglement have
been proposed [94,95] and different entanglement measures, e.g, fidelity [96] - the overlap with a de-
sired maximally entangled state - or negativity [97] based on the Peres-Horodecki criterium [98,99],
are used. In this thesis, concurrence [95,100] is employed to quantify the degree of entanglement,
a well-established measure that is directly linked to the entanglement of formation.
The entanglement of formation itself is closely related to the von-Neumann entropy. The
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2.4 Entangled photon pairs

basic idea is to determine the minimal amount of pure-state entanglement that is at least
present in a given mixed two-photon state ρ2p. To this end, one considers possible decom-
positions of ρ2p into a set of pure two-photon states |ψj〉 with corresponding probabilities pj.
Following Equation (2.25), any such decomposition ρ2p = ∑

j
pj|ψj〉〈ψj| is assigned the degree

of entanglement
E({pj, |ψj〉}) =

∑
j

pjE(|ψj〉) (2.26)

The entanglement of formation is then defined as [95]

EF = inf
{pj ,|ψj〉}

E({pj, |ψj〉}) (2.27)

where one takes the infimum over all possible decompositions. Although this quantity has a
clear physical meaning and interpretation, it is hardly practical due to the infimum operation.
The concurrence C has a one-to-one correspondence to the entanglement of formation, i.e.,

it is related to the latter according to

EF = E(C) (2.28)

where E is a monotonically increasing function for 0 ≤ C ≤ 1 [95]. Furthermore, the concur-
rence assumes its minimal (0) and maximal (1) value in accordance with the entanglement of
formation. Thus, the concurrence can be used as a measure for the degree of entanglement in
its own right. Although its physical interpretation is not as intuitive and its meaning is only
derived from the entanglement of formation, the concurrence is arguably the most widely-used
entanglement measure. In contrast to EF, the concurrence can be directly calculated from the
elements of the two-photon density matrix ρ2p, a property which makes it especially attrac-
tive for practical applications. In the (computational) basis {|HH〉, |HV 〉, |V H〉, |V V 〉}, the
concurrence is given by [65,100]

C = max
{

0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

}
(2.29)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the real and positive eigenvalues of the 4×4-matrix

M = ρ2p Σ (ρ2p)∗Σ with Σ =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 (2.30)

Depending on the actual form of ρ2p, this abstract formula can be approximated or exactly
written using just a few of its elements. For example, when the two-photon density matrix
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takes the form

ρ2p =


a 0 0 c

0 b d 0
0 d∗ b 0
c∗ 0 0 a

 (2.31)

where the parameters a, b ∈ R and c, d ∈ C fulfill the requirements for a general density matrix,
i.e., 2(a+ b) = 1 as well as |c| ≤ a and |d| ≤ b, it is straightforward to show that the definition
of the concurrence reduces to

C =


2 (|c| − b) , |c| > b

2 (|d| − a) , |d| > a

0, else

(2.32)

Note that due to the above-mentioned requirements, the first two cases are mutually exclusive.

20
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The thesis at hand deals with the generation and manipulation of highly non-classical states of
light in different QD-cavity setups. In particular, the impact of system parameters, like external
laser fields, surrounding cavity structures, or the exciton fine-structure splitting, as well as of
LA phonons is studied. In this chapter, a guide through the publications is given, highlighting
the most important results of every article and connecting them to each other. The overall
storyline follows loosely the chronological order, reflected in the increasing complexity of the
external excitation.
Starting with an initially prepared biexciton state in Section 3.1, entangled photon pairs

can be created exploiting the biexciton-exciton cascade. Four QD-cavity configurations are
discussed, revealing the importance of two-photon processes and regions of phonon-induced
enhancement of photon entanglement. Next, in Section 3.2, the creation of different types
of entangled Bell states in constantly driven quantum emitter-cavity systems is investigated.
As a result, a protocol for entanglement switching is developed and a phase transition-like
behavior in strongly confined QDs is predicted. A profound phonon impact is also found when
N -photon bundles and time-dependent photon number distributions are studied in Section 3.3.
Afterwards, in Section 3.4, short, time-dependent laser pulses are employed to generate and
control single photon states. It is uncovered that the QRT systematically overestimates the
phonon impact on the indistinguishability, and a QD-based photon storage devise is proposed.
Finally, in Section 3.5, numerical and analytical considerations reveal that the laser pulse in
the two-photon resonant excitation scheme introduces an AC-Stark splitting between exciton
states which degrades the degree of entanglement.

3.1 Entangled photons from an initially prepared biexciton

After a QD has been prepared in its biexciton state |B〉, the two different decay paths in the
biexciton-exciton cascade can be exploited to create polarization-entangled photon pairs, cf.,
Figure 2.1. If both decay paths are indistinguishable, i.e., when the fine-structure splitting δ is
zero and both exciton states are energetically degenerate, a maximally entangled ΦBS

|Φ+〉 = 1√
2

(|HH〉+ |V V 〉) (3.1)
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is created. In this section, a QD without external laser excitation and an initially prepared biex-
citon state is assumed and the generated two-photon state is analyzed for different QD-cavity
configurations. The preparation of the biexciton state can be achieved employing different ex-
citation schemes, e.g., two-photon resonant excitation with short laser pulses [10,12,14,74,101–104],
phonon-assisted off-resonant excitation [51,52,105–107], adiabatic rapid passage protocols [108–110], or
far off-resonant excitation schemes, where charge carriers subsequently relax into the biexciton
state [9,20,21,111,112].

3.1.1 Different cavity configurations and their temperature-dependent
entanglement

One obstacle that inhibits the generation of the maximally entangled two-photon state |Φ+〉
in QDs is the fine-structure splitting δ. If δ is finite, the system is asymmetric and the two
possible decay paths in the biexciton-exciton cascade become distinguishable. Thus, a finite
fine-structure splitting introduces a which-path information that results in a reduced degree
of entanglement. For this reason several methods and strategies were developed to reduce the
fine-structure splitting in QDs [6,9,101,111–116].
However, because such strategies are quite restrictive and cannot always be applied, different,

less demanding solutions were proposed. One prominent proposal is to exploit a QD with siz-
able biexciton binding energy in combination with a favorable cavity mode placement [23,25,27].
By adjusting the energy of the two cavity modes - one for each polarization - to the two-photon
resonance between ground and biexciton state, direct, simultaneous two-photon processes be-
come likely to occur. Since these processes do not involve the intermediate exciton states, the
fine-structure splitting is effectively not probed, leading to a strongly reduced which-path in-
formation. In addition, due to the large biexciton binding energy the sequential single-photon
processes following the biexciton-exciton cascade are strongly detuned from the cavity modes.
Altogether, the weak impact of the fine-structure splitting in the case of two-photon processes
and the suppression of one-photon processes should result in a high degree of entanglement,
even in the presence of a large fine-structure splitting.
In order to analyze the influence of phonons as well as the impact of direct two-photon and

sequential one-photon processes on the created two-photon state and its degree of entanglement,
four different QD-cavity configurations are compared in [Pub 1]: the two-photon resonant
(2PR) and the one-photon resonant (1PR) configuration with a vanishing as well as a finite
biexciton binding energy EB, cf., Figure 3 in [Pub 1]. As expected, in the absence of a fine-
structure splitting, there is no which-path information in the system and, consequently, all four
configurations result in a maximally entangled ΦBS with unity concurrence, independent of the
temperature.
However, if the fine-structure splitting is finite, strikingly different dependences on the fine-
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3.1 Entangled photons from an initially prepared biexciton

Figure 3.1: [Taken from [Pub 1]] Concurrence as a function of temperature for all four QD-
cavity configurations. Results are shown for two different fine-structure splittings: (a) δ =
0.02 meV and (b) δ = 0.1 meV. Circles mark the crossing temperature Tcross of the concurrence
in the 2PR configuration with EB = 0 and the concurrence in the 2PR configuration with
EB = 0.5 meV. (c) Crossing temperature Tcross as a function of δ for different biexciton binding
energies EB.

structure splitting and the temperature are observed, cf., Figure 5 in [Pub 1]. The origin of
these different dependences is traced back to the competition between direct two-photon and
sequential one-photon processes, in particular, the relative importance of the latter. The results
show that the higher the contribution of direct two-photon processes, the higher the degree of
entanglement.
The main result that follows from the newly gained insights is visualized in Figure 3.1. The

expectation that the 2PR configuration combined with a sizable biexciton binding energy EB

is the best choice to protect the degree of entanglement against the destructive influence of a
finite fine-structure splitting is only valid for low temperatures. Only in this limit, the 2PR
configuration with a finite EB results in the highest degree of entanglement, as measured by the
concurrence. But with rising temperature, this configuration exhibits the strongest decrease
in concurrence, leading to subsequent crossing points with all other considered configurations.
This steep decrease can be explained with an enhanced phonon impact due to the frequency
dependence of the phonon spectral density, cf., Figure 2.2. For typical biexciton binding energies
of a few meV, this results in a stronger and more effective phonon coupling compared to the
2PR configuration with vanishing EB.
In addition to a phonon-related loss of coherence that reduces the degree of entanglement,
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phonon emission and absorption processes also assist the off-resonant sequential one-photon
processes, shifting the competition between two- and one-photon processes towards the latter.
Because of the enhanced phonon impact, this effect is more prominent in the 2PR configura-
tion with a sizable biexciton binding energy. Consequently, the initial advantage of the 2PR
configuration with EB > 0 at low temperatures is more and more diminished with rising tem-
perature until the resulting concurrence drops below the respective concurrence for the 2PR
configuration with vanishing EB at a certain crossing temperature Tcross, cf., Figure 3.1(a) and
(b).
This crossing temperature depends on the biexciton binding energy EB and the fine-structure

splitting, cf., Figure 3.1(c). However, for typical values of the exciton fine-structure splitting
on the order of several 10 µeV the crossing temperature is around 10 K. Thus, in realistic
QD-cavity systems, the expected advantage of the 2PR configuration with a sizable EB is
lost already at rather low temperatures due to the interaction with LA phonons. Instead,
at elevated temperatures, the 2PR configuration with a vanishing biexciton binding energy is
more favorable for the creation of entangled photon pairs in the case of a finite fine-structure
splitting.

3.1.2 Phonon-induced enhancement of photon entanglement

The results of the previous section demonstrate that the interaction with LA phonons typically
leads to a reduced degree of entanglement compared with phonon-free calculations, and a
monotonic decrease of concurrence with rising temperature, cf., Figure 3.1. A high degree of
entanglement requires stable phases between the involved states. But, phonons are known as
a major source of decoherence in QDs [42,49,117–124]. Therefore, one could expect that phonons
always degrade the degree of entanglement, an observation that was also reported in further
theoretical simulations, e.g., in References [27], [125] or [FPub 1].
In contrast to this expectation, it is discovered in [Pub 2] that the phonon impact on the de-

gree of photon entanglement is not necessarily destructive in nature. Rather, the destructive loss
of coherence due to LA phonons can be overcompensated by a phonon-related non-Markovian
effect: the renormalization of the QD-cavity coupling strength. This renormalization effect can
cause a non-monotonic temperature dependence and even lead to a phonon-induced enhance-
ment of photon entanglement.
One prerequisite for this unexpected phonon-induced enhancement is a decreasing degree of

photon entanglement with rising QD-cavity coupling strength g in the phonon-free case. Such
a behavior is found in the 2PR configuration with vanishing biexciton binding energy in the
case of a finite fine-structure splitting δ [consult Figure 3.2(a) for a sketch of this QD-cavity
configuration]. Here, the degree of entanglement, as measured by the concurrence, exhibits a
non-monotonic behavior with a pronounced minimum for g ' δ/2 in the phonon-free case, cf.,
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3.1 Entangled photons from an initially prepared biexciton

Figure 3.2: [Taken from [Pub 2]] (a) The considered QD-cavity configuration with finite fine-
structure splitting δ, vanishing biexciton binding energy EB, and two-photon resonant cavity
modes. (b) Concurrence in dependence of temperature for three selected QD-cavity coupling
strengths. The corresponding phonon-free result is indicated by straight (faded) lines. Inset:
(normalized) difference ∆C between the maximum concurrence value at finite temperature and
the corresponding phonon-free value in dependence of EB for g1 = 35 µeV. (c) Concurrence
as a function of the QD-cavity coupling for three temperatures. Also shown are phonon-free
results (solid purple line) and phonon-free calculation using the phonon-renormalized coupling
g̃(g) for T = 30 K (green curve with circles). Vertical lines mark the coupling values used in
(b). Parameters: δ = 0.1 meV, κ = 0.025 ps−1.

purple curve in Figure 3.2(c).
When the interaction with LA phonons is accounted for in the numerical calculations, the

temperature dependence of the concurrence can display qualitatively different behaviors, de-
pending on the QD-cavity coupling g. This observation is demonstrated for three selected values
in Figure 3.2(b). Only in the case of g3 = 130 µeV, the expected monotonic decrease of the
concurrence is obtained. For the two remaining coupling values, a non-monotonic temperature
dependence is uncovered. Most strikingly, in the case of g1 = 35 µeV, the concurrence can even
exceed the corresponding phonon-free value by more than 10% (cf., blue dash-dotted line).
The origin of this remarkable phonon-induced enhancement of the photon entanglement is

visualized in Figure 3.2(c). With rising temperature, the minimum of the concurrence is lowered
and shifted to higher coupling strength values. While the lowering is indeed caused by phonon-
induced dephasing, the shift occurs due to the renormalization of the QD-cavity coupling.
This interpretation is supported by phonon-free calculations where the corresponding phonon-
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renormalized coupling g̃(g) at T = 30 K is used (green curve with circles). The position
of the minimum agrees well with the full path-integral calculations at the same temperature
(red dotted line). Because the shift increases with temperature, displacing the phonon-free
curve results in a higher degree of entanglement in regions where the concurrence decreases
monotonically in the phonon-free case. Thus, phonon-induced enhancement of the concurrence
can appear in a finite range of coupling strength values, as long as the renormalization effect
overcompensates the phonon-induced decoherence.
Although this is no longer the case for binding energies on the order of a few meV due to

a stronger dephasing action caused by an enhanced phonon impact (cf., Figure 2 in [Pub 2]),
there exists a finite range of binding energies EB . δ/2 where the phonon-induced enhancement
can be observed. This is highlighted in the inset of Figure 3.2(b). Note that one can tune the
biexciton binding energy into this region by employing different strategies [126–129]. Furthermore,
the phonon-induced enhancement can also be found in the case of degenerate excitons but a
finite cavity mode splitting, cf., Supplemental Material of [Pub 2].

3.2 Different types of entanglement from constantly driven
quantum emitters

After investigating the generation of entangled photon pair states from the biexciton-exciton
cascade without external excitation, and in particular, the impact of different QD-cavity con-
figurations and LA phonons, the discussion now turns to constantly driven systems. Due to
the optical selection rules, the former systems only support the creation of an entangled ΦBS

|Φ±〉 = 1√
2

(|HH〉 ± |V V 〉) (3.2)

where the order reflects the order of photon detection. Indeed, various theoretical [23,25,27,130,131]

and experimental [8–12,20,21,74,75,102–104,111–113,132–134] studies reported the possibility to create en-
tangled photon pairs of this type, where the first and second detected photon always display
the same polarization.
However, this can change if the system is continuously driven by an external laser. In Ref. [26],

it was demonstrated that under specific conditions also a ΨBS

|Ψ±〉 = 1√
2

(|HV 〉 ± |V H〉) (3.3)

can be generated in the same polarization basis. In this type of BS, the first and second
detected photon display always the opposite polarization and the two-photon states |HV 〉 and
|V H〉 differ in the temporal order of the H and V polarized photon.
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3.2.1 Creating different types of photon entanglement

In [Pub 4], the possibility to create both types of BSs is investigated, in particular, the conditions
that lead to a high degree of entanglement are determined. To this end, an excited general four-
level emitter with a diamond-type level structure, as introduced in Section 2.1.2, is considered.
The general four-level emitter can be realized, e.g., by QDs, F-centers or atoms. Because a
general quantum emitter is analyzed, the QD-specific coupling to LA phonons is omitted here.
The quantum emitter is continuously driven by a constant external laser with driving strength
Ω tuned to the two-photon transition between ground state |G〉 and the double-excited state
|XX〉 (i.e., the biexciton state in case of a QD). A corresponding schematics of the system can
be found in Figure 1 of [Pub 5]. The polarization of the laser is chosen to be diagonal in the
basis spanned by H and V , in accordance with Ref. [26]. Thus, this system has two remaining
free parameters: the driving strength and the energetic position of the cavity modes.
Due to the continuous laser excitation, four (time-independent) laser-dressed states emerge

(cf., Equations (10)-(12) in [Pub 4]), which are denoted as the “Uppermost” (U), “Middle”
(M), “Null” (N), and “Lowest” (L) dressed state, according to their respective energies. The
dependence of these energies on the driving strength (in units of the cavity coupling strength
g) is depicted in the inset of Figure 3.3(a). In addition to the energy of the laser-dressed
states, also their composition in terms of the bare states can vary with the driving strength.
This feature enables changing optical selection rules and the opportunity to manipulate the
emitted two-photon state by varying both free parameters. Due to the constant excitation on
one hand, and loss mechanisms, i.e., cavity losses and radiative decay, on the other, a steady
state is reached in the system dynamics. For this steady state, the emitted two-photon state
is reconstructed based on two-time correlation functions, where only photon pairs with a delay
time τ ≤ 50 ps are accepted.
It turns out that, indeed, both types of BSs can be created for various parameter combina-

tions, but the cavity placement is even more crucial than in the undriven situation, cf., Figure 6
in [Pub 4]. Only if the energy of the cavity modes is close to a multi-photon resonance between
two laser-dressed states an entangled state of any kind is obtained. In particular, a high degree
of entanglement is always related to matching a two-photon resonance between the laser-dressed
states. Furthermore, employing a perturbative approach, the so-called Schrieffer-Wolff trans-
formation [135–137], the resulting type of photon entanglement at any given two-photon resonance
can be predicted.
The created type of photon entanglement changes with the driving strength and/or cavity-

laser detuning. A particularly interesting behavior is found when the cavity modes are always
kept in resonance with the two-photon transition between the laser-dressed states |U〉 and |L〉,
cf., Figure 3.3. Here, a sharp transition between regions of high ΦBS and ΨBS entanglement
takes place. While for small driving strength values, a ΦBS (blue segment) is obtained [cf.,
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Figure 3.3: [Taken from [Pub 4]] (a) Concurrence as function of the laser driving strength Ω.
Results are shown for the full model (solid line), the analytic approximation C(r) according
to Equation (3.4) (dotted line), and with a finite fine-structure splitting δ = 0.1EB/2 (dashed
line). Inset: Dressed state energies as a function of the driving strength. Green arrows indicate
the two-photon resonant cavity modes for three selected Ω values. (b)–(d) Two-photon density
matrix ρ2p (absolute values) for three different driving strengths Ωj [indicated by vertical lines
in panel (a)].

panel (b)], a ΨBS (red segment) is created for high driving strength values [cf., panel (d)].
In between the two regions of high entanglement, a special point occurs, where the degree of
entanglement vanishes and a factorizable two-photon state is emitted.
The regions of different photon entanglement as well as the occurrence of the special point

can be understood by constructing an approximate, effective Hamiltonian for the chosen two-
photon resonance according to the Schrieffer-Wolff transformation. This analysis reveals that
the emitted two-photon state depends on the ratio r = γUL1 /γUL2 = 16 (Ω/EB)2−1/2, where γUL1

(γUL2 ) is the effective coupling associated with a two-photon process that leads to the creation of
a ΨBS (ΦBS). The good agreement between the full calculation and the analytic approximation
for the concurrence

C(r) = |1− r
2|

1 + r2 (3.4)

[dotted line in Figure 3.3(a)] supports this interpretation. Furthermore, the observed features
are only weakly influenced by typical fine-structure splittings much smaller than the binding
energy EB (dashed line).
Similar considerations at the remaining two-photon resonances enable one to predict the
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Figure 3.4: [Taken from [Pub 5]] (a) In the proposed protocol, the driving strength is changed
in a step-like fashion with step length T . (b) Concurrence calculated for respective measure-
ments with starting time t0 and (real-time) interval ∆t as a function of t0. Results are shown
for degenerate states |XH/V〉 (solid line), for a finite fine-structure splitting (dashed line), and
including pure dephasing (dotted line). (c)–(e) Two-photon density matrices ρ2p (absolute
values) for degenerate states and measurements performed at three different starting times t0.

generated two-photon state and its type of entanglement, cf., Table 2 in [Pub 4]. In conclusion,
the generation of the desired BS can be achieved by tailoring the driving strength and the
cavity mode placement.

3.2.2 Time-dependent entanglement switching

The new physical insights gained in [Pub 4] are employed in [Pub 5] to manipulate the created
two-photon state in a time-dependent fashion. A protocol for an active, time-dependent en-
tanglement switching is proposed that can be operated by just changing the external driving
strength.
A sketch of the proposed protocol is depicted in Figure 3.4(a). The central idea is to fix
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the cavity mode energy such that for a small driving strength ΩΦ the cavity modes are in
resonance with the two-photon transition between the laser-dressed states |U〉 and |L〉. Thus,
in accordance with [Pub 4], a ΦBS is created as long as the quantum emitter is excited with
this driving strength. Consequently, when a measurement is performed during the first step a
ΦBS with a high degree of entanglement [cf., panels (b) and (c)] is obtained. After a certain
time period T the external driving strength is abruptly changed to a higher value ΩΨ, which
brings the two-photon transition between the dressed states |N〉 and |L〉 in resonance with the
fixed cavity modes. Because this two-photon resonance is associate with the second type of
photon entanglement, a ΨBS is created and measured during the second step [cf., panels (b)
and (d)]. Furthermore, steps 4 and 5 show that the switching does not depend on the order
and is possible in both directions. Thus, one can actively switch back and forth between the
generation of different types of photon entanglement.
In addition, it is also possible, to turn off the creation of entangled photon pairs for a given

time period by choosing an intermediate driving strength Ω0 that is not associated with a two-
photon resonance. Note that Ω0 can be chosen such, that the same photon yield is obtained as
for the former driving strength values. Thus, the amount of emitted photons stays the same,
but a measurement performed on photon pairs emitted during this step (step 3 and 6) will
result in a mixed state with vanishing degree of entanglement [cf., panels (b) and (e)].
The proposed protocol is also robust against typical fine-structure splittings much smaller

than the binding energy EB (dashed line). Altogether, the proposed protocol enables one to
perform a time-dependent switching between the generation of either different entangled two-
photon states or entangled and nonentangled states from the same source without the need of
post processing, e.g., with waveplates.

3.2.3 Phase transition-like behavior in quantum dots

When the four-level emitter is realized by a strongly-confined self-assembled InGaAs QD, the
surrounding semiconductor environment has to be accounted for. In [Pub 10], the impact of
LA phonons on photon pairs created in continuously driven QD-cavity systems is studied. It is
found that the phonon impact is much more severe and qualitatively different than in the case
without constant laser excitation.
Figure 3.5(a) depicts the resulting concurrence as a function of the driving strength for

calculations without phonons (solid line) and including LA phonons at 4 K (green dots). Similar
to the results presented in Figure 3.3, the cavity modes are always adjusted to the two-photon
resonance between the laser-dressed states |U〉 and |L〉, i.e., their energy changes alongside the
driving strength. As discussed in Section 3.2.1, a sharp transition between regions of high ΦBS
and ΨBS entanglement is obtained in the phonon-free situation.
But already at cryogenic temperatures of 4 K, the results including the interaction with LA
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Figure 3.5: [Adopted from [Pub 10]] (a) Concurrence as a function of the driving strength.
Results are shown for calculations without phonons (solid line) and with phonons at a temper-
ature of 4 K (green dots). Straight vertical lines mark three driving strength values associated
with either a high concurrence or a vanishing degree of entanglement in the phonon-free sit-
uation. (b) Two-photon density matrices (absolute values) at T = 4 K for the three driving
strength values Ωj indicated in panel (a).

phonons only follow the phonon-free results for small driving strength values. With increasing
driving strength, phonons lead to a strong decrease in the degree of entanglement and the
concurrence vanishes already before the special point at Ω2 and the subsequent region of ΨBS
entanglement cannot be reached. When the driving strength is increased further, the concur-
rence remains zero. Thus, a behavior similar to a phase transition is encountered, where the
concurrence takes on the role of the order parameter. Only below a certain driving strength an
entangled two-photon state is created. Above this critical parameter, the emitted photon pair
state is not entangled.

The physical origin behind the severe phonon impact and the phase transition-like behavior
are phonon-induced transitions between the dressed states of the driven QD-cavity system.
These processes compete with the remaining relaxation processes, i.e., cavity losses and radia-
tive decay, and have a severe impact on the resulting steady state. With rising driving strength
the phonon-related relaxation processes become more and more dominant, cf., Figure 4 in
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[Pub 10], pulling the resulting two-photon density matrix towards

ρ2pth = 1
6 [2 (|HH〉〈HH|+ |V V 〉〈V V |) + (|HV 〉+ |V H〉) (〈HV |+ 〈V H|)] (3.5)

This effect can be well observed in the sequence of density matrices presented in Figure 3.5(b).
The characteristic form of ρ2pth can be explained by a phonon-related thermalization of the
dressed states. The increasing phonon impact with rising driving strength is traced back to a
more effective phonon coupling due to the frequency dependence of the phonon spectral density
and the changing character of the laser-dressed states.
A similar behavior is also found for fixed driving strength values. Here the degree of entangle-

ment decreases with rising temperature until it vanishes for a certain critical value. Above this
temperature the concurrence, again, remains zero. Although many similarities with a phase
transition can be found, the observed behavior is not an actual phase transition. For example,
no critical slowing down or discontinuity in any quantity can be observed.

3.3 Photon statistics in driven quantum emitter-cavity
systems

In general, driven quantum emitter-cavity systems offer interesting physics, as the transitions
that lead to photon emission take place between laser-dressed states instead of the bare emitter
states. By enhancing specific multi-photon processes due to clever cavity mode placement, also
other fascinating non-classical states of light can be generated in constantly driven systems, e.g.,
the recently proposed N -photon bundles [138]. A characteristic fingerprint of these multi-photon
structures is their specific stationary photon number distribution.
Additionally, transiently changing photon number distributions arise due to the excitation

with chirped laser pulses. Chirped laser pulses fall into the middle ground between continuous
excitation and short femto- or picosecond pulses, since their effective pulse length increases
drastically when chirps are introduced by a Gaussian chirp filter, cf., [Pub 3]. Furthermore,
they can also be used to excite spatio-spectrally distinct QDs, exploiting the adiabatic rapid
passage mechanism, cf., [FPub 10].

3.3.1 N -photon bundles

Another highly non-classical state of light that can be created in constantly driven quantum
emitter-cavity structures are N -photon bundles [138,139]. In these recently proposed multi-photon
structures, photons are released from the cavity only in groups of N subsequent photons with
a specific temporal spacing between them. In theory, they can be generated in (off-resonantly)
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Figure 3.6: [Taken from [Pub 7]] Sketch of a
two-level emitter embedded in a lossy cavity.
The emitter is driven by a continuous excita-
tion and interacts with one cavity mode. In
addition, it can decay radiatively. For specific
parameters, N -photon bundles leave the cavity.

driven two-level emitter-resonator systems when the cavity mode energy is in resonance with
a specific N -photon transition between the emerging pair of laser-dressed states. A schematic
sketch of the considered system is depicted in Figure 3.6.
In the ideal situation, an N -photon Fock state |N〉 is created inside the cavity by a simultane-

ous emission of N photons due to the chosen resonance condition. Because of the cavity losses
these N photons are then released from the cavity as |N〉 decays following a cascade over Fock
states |n〉 (N ≥ n ≥ 0). Since the cavity loss rate for an n-photon Fock state is proportional
to the number of photons, a specific temporal spacing between the subsequently emitted N

photons emerges that is also reflected in the characteristic stationary photon statistics

PN(n) =


1− 〈n〉

N

N∑
j=1

1
j
, n = 0

〈n〉
N

1
n
, 1 ≤ n ≤ N

0, n > N

(3.6)

of an N -photon bundle. Here, 〈n〉 is the average number of photons in the cavity mode.
Besides other characteristics, like its emission properties [140,141] or internal correlations [142],

PN(n) is established as a major fingerprint of an N -photon bundle. Due to the sharp cut-
off for n > N and the relatively high N -photon component, N -photon bundles are especially
attractive for quantum cryptography, cf., [FPub 8], or medical applications [138,143–147]. In [Pub 7]
the possibility to generate N -photon bundles in two different solid state realizations for the
integral two-level emitter is discussed. In particular, the case N = 2 is analyzed.

Strongly-confined QD-cavity system Employing realistic, state-of-the-art values for cavity
parameters and radiative decay in phonon-free calculations suggests that QD-cavity systems
might be suitable platforms for the generation of 2-photon bundles, cf., Figure 3.7(a), as argued
in Ref. [138]. For these parameters, indeed, a stationary photon distribution very close to the
characteristic fingerprint PN=2(n) is obtained (black column). But, when the coupling to LA
phonons is taken into account, the relative contribution of the two-photon Fock state is strongly
reduced (colored columns). Thus, already at temperatures of 4 K the characteristic fingerprint
is essentially lost.
Similar to the discussion presented in Section 3.1.1, phonons assist off-resonant single-photon
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Figure 3.7: [Adopted from [Pub 7]] (a) QD–cavity system: The stationary probability Pn of
occupying the photon number states |n〉 normalized to its value at n = 1. Results are shown for
calculations without phonons and including the coupling to LA phonons. (b) Superconducting
qubit–microwave resonator system: The stationary ratios of the 2- to 1-photon occupation
probabilities and of the 3- to 1-photon occupation probabilities as functions of the resonator
loss rate. The dotted black line indicates the target value of r = 0.5.

processes. These one-photon processes are in competition with the simultaneous two-photon
process that is crucial for the creation of the 2-photon bundle. Since phonons shift this com-
petition strongly towards the single-photon processes, the generation mechanism of the bundle
is overshadowed. Therefore, the unavoidable phonon environment in strongly-confined QDs
suppresses already the creation of 2-photon bundles, and, consequently, also the generation of
higher N -photon bundles.

Superconducting qubit–microwave resonator system In contrast to QD-based systems, su-
perconducting qubits are not prone to pure-dephasing caused by interactions with phonons.
Thus, it is found in [Pub 7] that superconducting qubit–microwave resonator system are a suit-
able platform for the generation of N -photon bundles, in agreement with Ref. [148]. However, it
is revealed that the bundle generation is only possible for a certain range of resonator loss rates
κ. This is highlighted in Figure 3.7(b). According to the characteristic fingerprint PN=2(n), an
ideal 2-photon bundle is only created if the stationary 2- to 1-photon ratio r := P2/P1 takes
the value 0.5 and, simultaneously, all n- to 1-photon ratios with n > N vanish. On the one
hand, this is only possible if the cavity loss rate is much larger than the radiative decay rate
γ [cf., Figure 3.7(b)] as the latter can introduce transitions between the laser-dressed states
that interfere with the cascade over subsequent Fock states in the generation process of the
bundle. On the other hand, if the cavity loss rate is too large, the linewidth of the cavity mode
overlaps with off-resonant one-photon processes between the laser-dressed states. This results
in an increase of one-photon emission processes that also destroy the characteristic fingerprint.
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3.3.2 Time-dependent photon number distributions

Although photon number distributions do not contain the full information about the emitted
light since, e.g., coherences are not captured, they can indicate non-classical states of light, cf.,
Section 3.3.1. Furthermore, they are directly accessible in experiments [149–151]. Often, photon
number distributions are described by extracting a few characteristic numbers, like the mean
photon number 〈n〉 and/or the Mandel parameter [152]

Q =

〈
∆n2

〉
− 〈n〉

〈n〉
(3.7)

The latter is a measure for the derivation of the mean-square fluctuation ∆n2 from 〈n〉 and
vanishes for a Poissonian distribution. Because a negative Mandel parameter Q < 0 has no
classical analog [153], it is also an indicator for highly non-classical states of light.

The main focus of [Pub 3] is the transient behavior of photon number distributions in QD-
cavity systems excited by chirped laser pulses. A two-level system comprising the ground state
and one exciton state is considered that couples to one cavity mode. The chirped laser pulses
used to excite the QD display a central frequency that changes linearly over time. Whether the
frequency of the laser increases or decreases over time is determined by the sign of the chirp
parameter α.

Quite interestingly, it is discovered that the shape of resulting photon number distributions
can change drastically over the course of time, cf., Figure 3.8. In calculations without phonons
[panel (a) and (b)] - which also corresponds to the limit of atomic cavity systems - the photon
number distribution displays several different and interesting shapes after the time of the pulse
maximum. For example, while two smooth peaks can be observed at t − t0 = 20 ps, jagged
shapes with multiple maxima emerge at later points in time. An analysis performed in the basis
of cavity-dressed states reveals that this transient behavior of the photon number distribution
originates from subsequent crossings of resonance by the instantaneous laser frequency. Note
that, in the phonon-free situation, the system dynamics is symmetric with respect to the sign
of the chirp parameter α.

The interaction with LA phonons at a temperature of 4 K has a strong and qualitative
impact on the time evolution of the photon number distribution, cf., panels (c) and (d). Most
strikingly, the symmetry with respect to the sign of α disappears. Only in the case of a positive
chirp parameter, shapes with multiple maxima can be observed [cf., panel (d)]. Although the
distributions are quite similar to the phonon-free situation shortly after the pulse maximum,
they approach a thermal distribution already after 80 ps due to the phonon influence. In stark
contrast, the resulting photon number distribution is always close to a thermal distribution
when the chirp parameter is negative.
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Figure 3.8: [Taken from [Pub 3]] Transient photon number distributions for laser excitations
with chirped pulses. The pulse has its maximum at t0 and black markers indicate its full-width-
at-half-maximum. (a) and (c) Calculated with a negative chirp parameter α < 0, (b) and (d)
α > 0. (c) and (d) Results accounting for phonons at a temperature of 4 K. The corresponding
phonon-free results are shown in (a) and (b).

The observed asymmetry can be understood by an analysis in the basis of laser-dressed
states in combination with the well-known asymmetry between phonon emission and absorption
processes, cf., Figure 4 in [Pub 3]. At low temperatures the latter are essentially suppressed
and only phonon emission processes are likely to occur. As a consequence, the impact of LA
phonons is more pronounced in the case of a negative chirp parameter, where an interplay
between photon and phonon emission processes already results in a thermalization before the
pulse maximum hits the system. For a positive chirp, phonons affect the system dynamics only
after the pulse maximum due to the strong suppression of phonon absorption processes at low
temperatures.
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Nevertheless, the Mandel parameter Q changes its sign over the course of time in all consid-
ered situations. This indicates that in each situation a genuine quantum state of light is reached
at some point in time. A closer investigation of Q(t) leads to another important conclusion: A
vanishing Mandel parameter is not necessarily related to a Poissonian statistics. For example,
Q = 0 is obtained for t − t0 ≈ 40 ps in Figure 3.8(b), although the respective photon number
distribution is far away from a Poissonian distribution.

3.4 Generation and storage of single photons employing
short laser pulses

Precisely timed and tailored laser pulses can be used to deterministically excite a QD into an
exciton or biexciton state or to manipulate and control the dynamics in QD-cavity systems. For
example, short resonant laser pulses and/or off-resonant AC-Stark pulses can be employed to
prepare non-classical states of light, such as higher-order Fock states ([FPub 2]) or Schrödinger
cat states ([FPub 3]), as well as to control the dark exciton occupation ([FPub 4]).
In this thesis, the validity of the QRT for the calculation of different single-photon charac-

teristics in the presence of phonons is investigated by studying QDs under short resonant laser
excitation of an exciton state. Afterwards, off-resonant AC-Stark pulses in combination with a
magnetic dopant are employed to store one photon in an optically dark state.

3.4.1 Single photons and the quantum regression theorem

In addition to entangled photon pairs, indistinguishable single photons represent another key
ingredient for applications in quantum technologies [154]. QDs are often discussed as a practical
source for these non-classical states of light, because single photons can be created on-demand
after the preparation of an exciton state with a short, resonant π-pulse excitation.
It is common to characterize single-photon sources with three figures of merit that capture

properties relevant for typical applications: (i) the source brightness B, (ii) the single-photon pu-
rity P , and (iii) the indistinguishability I. Definitions and models to calculate these quantities
can be found in Equations (1)-(5) of [Pub 6]. While the brightness is related to a time-integrated
expectation value, the two latter quantities involve the evaluation of two-time correlation func-
tions. The QRT is probably the most widely used tool to calculate such correlation functions
in open quantum systems [155]. It states that the same dynamical map that is used to propagate
the system in the real time t, can also be used for the subsequent propagation in the delay
time τ . The QRT is typically also employed for studies in QD systems [156–158], despite the fact
that its central assumption - a factorization of system and environment at all times - should be
quite problematic in systems with strong non-Markovian effects. For example, it was found in
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(c)

Figure 3.9: [Adopted from [Pub 6]] The single-photon purity P (a), the indistinguishability I
of two successively emitted photons (b), and the relative error QI for the indistinguishability
(c) in a two-level QD for a temperature range between 4 K and 70 K and phonon scalings from
0 to 10.

Ref. [47] that a naive application of the QRT predicts the phonon sideband in photon emission
spectra on the energetically wrong side.

The phonon impact on the major characteristics of single-photon sources is studied in [Pub 6],
in particular, the validity of the QRT in QDs is investigated. As discussed in Section 2.3.2, the
path-integral formalism provides a numerically complete approach for the calculation of multi-
time correlation functions, and can thus be used to benchmark approximate QRT results.

In [Pub 6], the three figures of merit are investigated as a function of temperature and the
phonon coupling strength, employing the numerically complete path-integral formalism. In
order to vary the coupling strength, the phonon spectral density is scaled by a factor λ. Thus,
λ = 0 represents the phonon-free situation, while λ = 1 corresponds to GaAs-based QDs and
larger coupling values 1 < λ ≤ 10 to piezoelectric materials like GaN [34]. In general, all three
figures of merit decrease with rising temperature or coupling strength. However, the purity is
hardly influenced by the presence of phonons, cf., Figure 3.9(a). In contrast, indistinguishability
[panel (b)] and brightness (not shown) strongly decrease with rising temperature and/or cou-
pling strength. For standard GaAs parameters, i.e., λ = 1, the indistinguishability drops below
70% already at 30 K. Nevertheless, for a temperature of 4 K, an almost perfect single-photon
source is realized.

Quite remarkably, it is uncovered that the validity of the QRT depends on the considered
quantity. While the relative error in the single-photon purity is on the order of 10−4, the
relative error of the indistinguishability QI can reach values up to 18%, cf., Figure 3.9(c). In
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the latter situation, the QRT calculations always suggest a worse indistinguishability. Thus
the QRT systematically overestimates the phonon impact on this figure of merit. This is an
important new insight, given the widespread use of the QRT and the current race for an ideal
single-photon source [159]. The QRT-related error can, indeed, be traced back to a strong non-
Markovianity of the system dynamics. Comparing the relative error of the indistinguishabilty
with a measure for non-Markovianity demonstrates that the regions of large deviations between
QRT and numerically complete path-integral results coincide with strong non-Markovian effects
in the system dynamics, cf., Figure 2 in [Pub 6].

3.4.2 Photon storage exploiting AC-Stark pulses and dark states

After discussing QDs as single-photon sources, this Section explores the potential of QD-cavity
systems as storage devices for individual photons. Such storage devices are necessary in actual
realizations of quantum technologies, e.g., to achieve the synchronization of different signals.
In [Pub 8], a protocol for photon buffering, i.e, the temporary storage of a single photon,

based on a QD-cavity system is proposed. The central idea is to absorb the photon and
temporarily convert it into an excitation of the QD in order to release it at a later point in
time. Unfortunately, the optically active bright exciton state |X〉 in typical QDs has rather
short lifetimes in the range of a few 100 ps up to 1 ns. On the other hand, dark excitons |D〉
are metastable and display lifetimes that are at least one order of magnitude larger, but cannot
be addressed optically. Nevertheless a coupling to the bright exciton state can be facilitated
by introducing a single magnetic dopant inside the QD. The exchange interaction between the
electron spin and the spin of the dopant introduces an effective coupling J between the bright
and dark exciton state under a simultaneous spin flip of the dopant. However, the induced
coupling strength J is typically much smaller than the dark-bright splitting δeff between the
two exciton states. Thus, the interaction between |X〉 and |D〉 is effectively suppressed.
To overcome this hurdle, a strongly off-resonant AC-Stark pulse can be applied to the op-

tically active ground state-to-bright exciton transition. Due to the AC-Stark effect [160] the
energy of the bright exciton can be shifted in resonance with its dark counterpart by exactly
compensating the dark-bright splitting, enabling a controllable transfer of occupations between
them, cf., [FPub 4].
In order to demonstrate the potential of QD-cavity systems as photon storage devices, a Man-

ganese (Mn) doped CaTe/ZnTe QD inside a microcavity is considered [161]. The corresponding
theoretical model takes the form of a Λ-type three-level system, cf., inset of Figure 3.10(b).
It comprises the ground state |G〉 and the bright exciton in resonance with one cavity mode
(coupling strength g), as well as one dark exciton coupled to the latter due to the Mn-induced
interaction J . The proposed protocol is visualized in Figure 3.10(a). One photon that is ini-
tially in the cavity mode interacts with the QD and Rabi-oscillations between the 1-photon Fock
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Figure 3.10: [Adopted from [Pub 8]] (a) A first writing AC-Stark pulse is used to store a
single cavity photon in the dark exciton state. The occupations of the ground state, the bright
exciton, the dark exciton, and the 1-photon Fock state are depicted. Results are shown for the
ideal case without phonons and losses (dashed lines) and including radiative and cavity loss
effects (solid lines). Afterwards, the single photon is retrieved by a second readout AC-Stark
pulse. (b) and (c) Decay time τ ∗ and the C1PO at τ = 0 in dependence of the effective splitting
δeff between the dark and bright exciton state without taking phonons into account. The red
line represents an analytic estimate. Inset: The Λ-type three-level model of the QD. The spin
configuration of the two exciton states is symbolized by arrows (blue: electron; red: hole).

state and the bright exciton take place. After half the Rabi period, an off-resonant AC-Stark
pulse is applied. This pulse shifts the energy of the bright exciton. The Rabi-oscillation stops
as the bright exciton is now in resonance with its dark counterpart. Instead, the occupation of
the bright exciton is converted into the dark exciton. After the conversion, the pulse is turned
off and the photon is stored in |D〉. A specific storage time τ later, a second AC-Stark pulse is
applied, reversing the storage process and releasing the captured photon.
The performance of the storage device is characterized by the captured 1-photon occupation

C1PO. This quantity measures the maximal single-photon occupation after the second pulse.
In the ideal situation, without losses and phonons, the protocol works perfectly. When loss
processes, i.e., cavity losses and radiative decay, with realistic parameters are considered, the
C1PO exhibits a dependence on the coupling J and the dark-bright splitting. Furthermore, it
decreases exponentially with rising storage time τ . The corresponding characteristic decay time
τ ∗ of the C1PO can be interpreted as the time interval during which the photon can be stored
successfully. τ ∗ is indeed up to two orders of magnitude larger than the lifetime of the bright
exciton and increases with the dark-bright splitting, cf., Figure 3.10(b). This dependency is
caused by a residual coupling between the two exciton states during the storage time and can
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be quantified analytically (solid red line). In addition, C1PO at τ = 0 measures the photon
occupation that is lost during the write and read pulse. It is found, that well above 80% of the
photon occupation can be successfully stored and released again, cf., Figure 3.10(c).
Although the interaction with LA phonons has a strong impact on the performance of the

proposed scheme at higher temperatures, only slightly reduced characteristics are obtained at
low temperatures around 4 K, cf., Figures 3(c) and (d) in [Pub 8]. Thus, [Pub 8] demonstrates
a feasible QD-based device for the storage of individual photons.

3.5 Limited entanglement due to pulsed optical excitation

In the final Section, arguably the most important result and new physical insight is presented.
State-of-the-art experiments, that demonstrate polarization-entangled photon pairs with de-
grees of entanglement close to unity, employ a coherent two-photon resonant excitation (TPE)
scheme, cf., Figure 3.11(a), with linearly polarized laser light and typical pulse durations on
the order of 10 ps [10,12,14,74,101–104]. Because of the practically suppressed re-excitation proba-
bility in the TPE scheme [13,162], one expects the creation of a perfectly entangled photon pair,
provided that the exciton fine-structure splitting is zero. However, even in the absence of an
exciton fine-structure splitting, no polarization-entangled photon pairs with a unity degree of
entanglement have been reported to this day, the current record concurrence being 0.97(1) [102].
In [Pub 9], the impact of the TPE scheme on polarization-entangled photon pairs and their

degree of entanglement is analyzed. To this end, a short Gaussian laser pulse with a finite full-
width-at-half-maximum (FWHM) is employed to prepare the biexciton state. It is discovered
that the degree of entanglement decreases monotonically with a rising FWHM of the laser pulse,
cf., Figure 3.11(b). Based on analytical considerations and calculations an intuitive picture for
the physical origin as well as an analytic expression for the resulting concurrence is presented.
These considerations reveal that the TPE excitation scheme itself introduces a which-path

information. If a laser polarization is considered that coincides with the optical selection rules of
the QD, e.g., the horizontal polarization H, only the corresponding exciton state |XH〉 interacts
with the laser pulse. Due to the AC-Stark effect, the energy of this exciton state is shifted,
resulting in a sizable energetic splitting ES ∼ ~π/FWHM between the two exciton states during
the laser pulse, cf., Figure 3.11(c) left column. Since a finite probability exists that the first
photon is emitted while the laser pulse still interacts with the QD, this laser-induced splitting
impacts the obtained two-photon state similar to an exciton fine-structure splitting. During
the laser pulse, the two decay paths become distinguishable and, consequently a which-path
information is introduced by the TPE scheme itself. As a result the coherence in the two-photon
density matrix ρ2p is reduced, leading to a deviation from the ideal state |Φ+〉 and a degraded
concurrence. With rising pulse duration, the laser-induced splitting persists for a longer time
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Figure 3.11: [Adopted from [Pub 9]] (a) A Gaussian pulse with finite full-width-at-half-
maximum (FWHM) excites a quantum dot in the two-photon resonant excitation scheme.
Expectation: The excited quantum dot decays radiatively, resulting in a maximally entangled
state |Φ+〉. (b) Concurrence in dependence of the pulse FWHM for two laser polarizations
[horizontal (H) and diagonal (D)] and three fine-structure splittings δ. Symbols: numerical
results; Lines: analytic expression according to Eq. (8) in [Pub 9]; Pentagons at FWHM = 0:
initially prepared biexciton without optical excitation. (c) Laser-induced effects. Horizontal
polarization (left column): A laser-induced splitting ES introduces a which-path information
that reduces the coherence. Diagonal polarization (right column): A laser-induced coupling VS
leads to the creation of unwanted two-photon states |HV 〉 and |V H〉.

period and the probability that the first photon is emitted during the pulse increases. Therefore,
the concurrence drops with rising FWHM.

Because the loss in concurrence is related to an asymmetry during the pulse, one could
naively assume that the detrimental impact of the TPE scheme can be avoided by using a laser
polarization that is symmetric in H and V polarization, i.e., diagonal in this polarization basis.
However, in this situation, the same laser-induced splitting is still present, just in a rotated
basis. In the computational basis H and V , a diagonal laser polarization results in an effective
coupling VS between the two exciton states |XH〉 and |XH〉, cf., Figure 3.11(c) right column. As
a consequence unwanted two-photon states |HV 〉 and |V H〉 can be created, resulting again in
a reduced degree of entanglement. Note that the effective coupling is equivalent to the induced
splitting ES, similar to the fine-structure splitting, which can also be interpreted as an energetic
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splitting or an exchange interaction, depending on the chosen basis, cf., Figure 2.1.
When the exciton fine-structure splitting is zero, the resulting concurrence is independent of

the chosen (linear) laser polarization, cf., Figure 3.11(b), because all situations are physically
equivalent. However, when δ is finite, using a horizontal laser polarization results in a slightly
higher degree of entanglement. Although the concurrence approaches the value associated with
the respective initial value calculation, the limit FWHM → 0 is not desirable for practical
realizations. Because the spectrum of the laser pulse starts to overlap with the exciton tran-
sitions for short laser pulses, the TPE scheme breaks down below a FWHM of 2...3 ps. Thus,
the laser-induced which-path information cannot be avoided in the TPE scheme, resulting in a
fundamental limit for the achievable degree of entanglement.
All essential features and dependencies are well described by the analytic expression presented

in Equation (8) of [Pub 9], cf., Figure 3.11(b). Furthermore, the theoretical upper bound for
the concurrence C ≈ 0.975 predicted for realistic parameters and a typical pulse FWHM of
10 ps agrees well with the current record concurrence. Thus, the laser-induced which-path
information explains the observed deviation from unity even quantitatively.
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4 Summary and outlook

Semiconductor quantum dots (QDs) are one of the most promising and versatile platforms for
the creation of highly non-classical states of light that should be straightforward to incorpo-
rate in modern information technologies. But in contrast to other candidates, they are prone
to a typically detrimental interaction with longitudinal acoustic (LA) phonons due to their
semiconductor environment. In this thesis, the possibility to generate and manipulate highly
non-classical states of light in different QD-cavity setups was investigated theoretically. The
impact of various system parameters, like external laser fields or the energetic position of cavity
modes as well as the fine-structure splitting and the biexciton binding energy was discussed.
In particular, the influence of LA phonons was in the focus of the conducted studies.
It was discovered, that almost all tuning nobs available in QD-cavity systems have a profound

impact on the generated state. The energetic placement of the cavity modes plays a decisive
role in the generation of N -photon bundles or entangled photon pairs, in particular, in the
presence of a continuous laser excitation. Furthermore, sophisticated protocols for the storage
of single-photon states or a time-dependent switching of the photonic entanglement type are
proposed that rely on precisely timed and/or tailored optical laser pulses.
The impact of LA phonons on the resulting photonic quantum state of light can be quali-

tatively different. Although LA phonons often result in a tolerable gradual degradation of the
target state or quantity with rising temperature, a strong phonon impact in some situations can
lead to a qualitatively different system behavior that essentially suppresses the generation of
the desired state of light. For example, highly non-classical single-photon states can be success-
fully created and manipulated at low temperatures. On the other hand, the creation of more
complex states, like entangled Ψ Bell states or N -photon bundles, that rely on a strong, con-
tinuous laser excitation and direct multi-photon transitions between dressed states, seem to be
out of reach in strongly-confined self-assembled QDs. Nevertheless, their generation might be
achievable in alternative solid-state realizations of quantum emitters or larger QDs with a less
effective phonon coupling. Most strikingly, the impact of phonons can even be beneficial and
boost the degree of photon entanglement when other phonon-related effects overcompensate
the phonon-induced dephasing.
Arguably the most important result of this thesis is the realization that the two-photon

excitation scheme itself prohibits the creation of perfectly entangled photon pairs due to a
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laser-induced which path information. This newly discovered feature fits well to the current
record concurrence and recent experiments performed in the group of Armando Rastelli at the
University of Linz, cf., [FPub 11]. With state-of-the-art setups employed by current collab-
orators working in experimental groups in Innsbruck, Linz, or Vienna other predictions and
mechanisms discussed in this thesis might be verified in the future.
Furthermore, a recent methodological break through by one of the author’s prime collabora-

tors enables one to push for new physical frontiers regarding numerical studies of open quantum
systems [163]. Although the path-integral method allows for an accurate description of the LA
phonon environment, it is restricted to a diagonal pure-dephasing type coupling. In contrast,
the newly developed calculation scheme based on the automated compression of environments
(ACE) has the potential to be a multi-purpose tool for a numerically complete investigation
of almost arbitrary environments. Multiple environments can be taken into account on the
same microscopic level, provided that no direct interaction between their degrees of freedom
exists. One of the first important results of the ACE algorithm was the justification of a cen-
tral assumption used in this thesis: the flat electromagnetic environment responsible for cavity
losses and radiative decay and the LA phonon environment couple indeed additively [163]. Thus,
Equation (2.7) is an accurate description for lossy QD-cavity systems. At the moment, the
applicability of ACE seems limitless: for the first time a large variety of open quantum systems
with multiple bosonic, fermionic, or spin environments can be investigated, that range from
infinite to negligible memory depths and from strong to weak system-environment correlations.
Finally, a recently proposed and already experimentally demonstrated coherent, but strongly

off-resonant excitation scheme, cf., [FPub 5] and [FPub 7], respectively, has the potential of pow-
ering high-purity photon sources with superior photon count rates. In this so-called Swing-UP
of quantum EmitteR population (SUPER) scheme, two red-detuned laser pulses are employed
to excite the exciton state in QDs. This excitation scheme also relies on transitions between
dressed states, cf., [FPub 9]. Because of its genuine off-resonant character with detunings of
several milli-electronvolts, no post-processing is needed to separate emitted photons from the
laser light. Thus, future studies might find that the SUPER scheme is superior in comparison
to resonant or incoherent excitation schemes, in particular for single-photon sources. Because
current investigations indicate that also a preparation of the biexciton state is possible, cf.,
[FPub 9], its use in preparation schemes for entangled photon pairs is also an interesting topic
for future studies.
In summary, highly non-classical states of light in general, and entangled photon pairs in

particular, are key to many novel quantum technologies and thus remain a fascinating and
important research topic. This is also reflected in the Nobel Prize in Physics 2022 awarded to
Alain Aspect, John F. Clauser, and Anton Zeilinger “for experiments with entangled photons,
establishing the violation of Bell inequalities and pioneering quantum information science” [164].
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We investigate the degree of entanglement quantified by the concurrence of photon pairs that are simultane-
ously emitted in the biexciton-exciton cascade from a quantum dot in a cavity. Four dot-cavity configurations
are compared that differ with respect to the detuning between the cavity modes and the quantum dot transitions,
corresponding to different relative weights of direct two-photon and sequential single-photon processes. The
dependence of the entanglement on the exciton fine-structure splitting δ is found to be significantly different for
each of the four configurations. For a finite splitting and low temperatures, the highest entanglement is found
when the cavity modes are in resonance with the two-photon transition between the biexciton and the ground state
and, in addition, the biexciton has a finite binding energy of a few meV. However, this widely used configuration
is rather strongly affected by phonons such that other dot-cavity configurations, that are commonly regarded
as less suited for obtaining high degrees of entanglement, become more favorable already at temperatures on
the order of 10 K and above. If the cavity modes are kept in resonance with one of the exciton-to-ground-state
transitions and the biexciton binding energy is finite, the entanglement drastically drops for positive δ with rising
temperatures when T is below � 4 K, but is virtually independent of the temperature for higher T .

DOI: 10.1103/PhysRevB.99.245301

I. INTRODUCTION

Entangled photon pairs can be used as the fundamental
building blocks for a wide range of applications in quantum
communications, quantum cryptography, or quantum com-
putation [1–3]. Furthermore, entanglement can be used to
test fundamentals of quantum mechanics, e.g., by revealing
violations of Bell’s inequality [1,4]. Different devices and
protocols for the generation of entangled photon pairs have
been proposed. A well-established and especially attractive
way of producing (polarization) entangled photon pairs is
the emission of photon pairs via the biexciton cascade in
semiconductor quantum dots (QDs) inside a microcavity
which enhances the light collection efficiency [5–12]. One
special advantage of using semiconductor quantum dots is
the possibility to generate triggered [5–7] or even on-demand
[10,11,13] entangled photon pairs which is of utmost impor-
tance for applications.

Entanglement generation from the biexciton cascade is
possible since the biexciton can decay via two paths, first into
one of the two exciton states and a photon which can be either
polarized horizontally (H) or vertically (V ). Subsequently,
the exciton generated in the first step can further decay to
the QD ground state by emitting a second photon with the
same polarization as the photon generated in the biexciton
decay. Ideally, the two paths are fully symmetric and the
corresponding quantum state is a coherent superposition of
the respective amplitudes, resulting in a maximally entangled
two-photon state. However, when which-path information
is introduced by disturbing the symmetry, e.g., by a finite

fine-structure splitting between the intermediate exciton
states, the superposition becomes asymmetric and the en-
tanglement decreases. In principle, it is possible to come
close to maximal entanglement in current experiments, either
by selecting QDs which naturally have a sufficiently small
fine-structure splitting [7,10], by tuning the splitting with
external fields [5,6,14], or by applying strain [15]. However,
these requirements are rather restrictive. Therefore, it has
been proposed to look for less demanding conditions which
still allow for a high degree of entanglement. A prominent
proposal of this type considers QDs with a sizable biexciton
binding energy which are embedded in a microcavity. Besides
the possibility of an increased light extraction efficiency, a
microcavity offers the advantage that the resonance between
the cavity modes and electronic transitions in the dot can be
used to enhance, e.g., direct two-photon transitions between
the biexciton and the ground state compared to sequential
transitions from the biexciton to the exciton or from the
exciton to the ground state. Since the direct two-photon
transitions do not involve the occupation of exciton states,
the fine-structure splitting is effectively not probed, leading
to drastically reduced which-path information and therefore
increased entanglement [16,17]. When the cavity mode is
tuned to the two-photon resonance, a finite biexciton binding
energy is typically favorable for entanglement since it shifts
the sequential single-photon transitions further away from
resonance.

In order to systematically compare different configurations
of cavity and QD transition frequencies, a measure for the
entanglement is required. A widely accepted measure is the

2469-9950/2019/99(24)/245301(13) 245301-1 ©2019 American Physical Society



T. SEIDELMANN et al. PHYSICAL REVIEW B 99, 245301 (2019)

concurrence, which has a one-to-one correspondence to the
entanglement of formation [18]. The latter represents the
amount of pure-state entanglement that is at least present
in a mixed state described by a given density matrix. The
concurrence has the advantage that it can be directly cal-
culated from the values of the reduced density matrix of
the bipartite system for which the entanglement is to be
measured [19]. Here, we focus on the concurrence of simul-
taneously emitted photon pairs which, albeit yielding lower
signals due to filtering only photons with equal emission
times from the cavity, typically show the highest degree of
entanglement in experiments [20,21], as well as theoretical
calculations [17,22].

Phonons are known to have a tremendous impact on the
dynamics of QDs in general [23–33] and on QD-cavity sys-
tems in particular [34–43]. Since the pure dephasing induced
by acoustic phonons is a major source of decoherence in
QDs [24–26], phonons might also limit the entanglement
of the two-photon states generated in the biexciton cascade.
However, in many studies of the entanglement phonons have
either been completely disregarded [13,17] or accounted for
by a phenomenological pure dephasing rate [16,44,45]. The
description based on rates ignores that phonon-induced pure
dephasing leads only to a partial loss of coherence which
is nonexponential [46,47] and is the origin of many other
non-Markovian effects [37,48,49]. Furthermore, with phe-
nomenological rates the temperature dependence of the degree
of entanglement cannot be predicted. An explicit treatment
of the phonon impact on the concurrence in the biexciton
cascade has been presented in Ref. [50]. However, that paper
concentrates on the contributions from the sequential decay of
the biexciton via intermediate excitons and misses the compe-
tition with the direct two-photon decay to the ground state,
which is at the heart of the protocol based on resonant two-
photon transitions in systems with finite biexciton binding
energies proposed in Ref. [16]. The effect of phonons on the
concurrence in the case where two-photon transitions domi-
nate the biexciton decay has been analyzed in Ref. [51] where,
however, no selection of simultaneously emitted photon pairs
has been considered. As mentioned above, the latter is more
favorable for obtaining a high degree of photon entanglement.

In this paper, we investigate the phonon impact on the de-
gree of two-photon polarization entanglement obtained after
the decay of a biexciton in a cavity as measured by the con-
currence of simultaneously emitted photon pairs. We present
a comprehensive comparison of representative configurations
of cavity and QD transition frequencies referring to physical
situations with different relative importance of two-photon
and sequential single-photon pathways, respectively. We find
that the phonon influence in combination with the competition
between two-photon and one-photon processes leads to strik-
ingly different dependences on the exciton splitting as well as
strongly different temperature dependences.

Tuning the cavity to the two-photon resonance and con-
sidering a quantum dot with a biexciton binding energy of a
few meV is likely to be the most widely studied configuration
in the literature because it is commonly expected to yield the
highest two-photon entanglement at finite fine-structure split-
ting. Indeed at low temperatures we confirm this expectation.
The main result of the present paper is, however, that the

distinction of the two-photon resonant configuration with fi-
nite biexciton binding energy to yield the highest concurrence
is lost typically already at temperatures as low as ∼10 K.

The article is structured as follows. In Sec. II we specify
the model and the method used. We discuss the concurrence of
simultaneously emitted photon pairs as the measure of choice
when high degrees of entanglement are targeted and explain
how this quantity is extracted from the numerical calcula-
tions. In Sec. III four configurations with different resonance
settings and biexciton binding energies are introduced which
enable us to analyze most clearly the competition between
direct two-photon and sequential single-photon processes and
its impact on the degree of entanglement. In Sec. IV we
demonstrate that the phonon impact strongly depends on the
considered configuration, resulting in substantially different
dependences on the fine-structure splitting and the tempera-
ture. Deviations from the standard bell shape dependence on
the splitting or asymmetries reflect the competition between
single- and two-photon processes. Finally, in the Conclusion,
Sec. V, we present a brief summary of the main results of this
article.

II. THEORETICAL APPROACH

A. Model

We consider a semiconductor QD embedded in a mi-
crocavity which is initially prepared in the biexciton state.
The dynamics of the statistical operator of the system ρ̂ is
determined by the Liouville–von Neumann equation

d

dt
ρ̂ = − i

h̄
[Ĥ , ρ̂] + L[ρ̂], (1)

where [ , ] denotes the commutator. The Hamiltonian

Ĥ = ĤQD-cav + ĤQD-phon (2)

takes into account the interaction between the QD and two
linearly polarized cavity modes (ĤQD-cav) as well as a pure de-
phasing type coupling to a continuum of longitudinal acoustic
(LA) phonons (ĤQD-phon). The Lindblad operator L[ρ̂] allows
the inclusion of non-Hamiltonian dynamics, i.e., cavity losses
due to for example imperfect mirrors. Thus the model contains
three parts, which are discussed separately in the following.

The first part describes the coupling between the QD and
two linearly polarized cavity modes and is modeled by the
Hamiltonian [51]

ĤQD-cav = h̄ωH |XH 〉〈XH | + h̄ωV |XV 〉〈XV |
+ h̄(2ω̄X − ωB)|B〉〈B| +

∑
�=H,V

h̄ωc
�â†

� â� + X̂ ,

(3)

where the interaction part is given by

X̂ = − g(|G〉〈XH |â†
H + |XH 〉〈B|â†

H

+ |G〉〈XV |â†
V − |XV 〉〈B|â†

V ) + H.c. (4)

Here, the four states of the QD are represented by the
biexciton state |B〉, the two possible exciton states |XH 〉 and
|XV 〉, and the ground state |G〉. The exciton states as well
as the two photon modes are labeled with H (horizontal
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polarization) and V (vertical polarization). The bosonic oper-
ator â†

H/V creates one photon with frequency ωc
H/V and corre-

sponding polarization H or V and H.c. denotes the Hermitian
conjugate. The light-matter coupling strength g is assumed
to be equal for all couplings and the dipole approximation
as well as the rotating-wave approximation are used. The
energies h̄ωH/V denote the exciton energies, while the energy
of the biexciton is h̄(2ω̄X − ωB), where EB = h̄ωB represents
the biexciton binding energy and h̄ω̄X = h̄(ωH + ωV )/2 is the
mean exciton energy. The energy of the ground state is set
to zero. When the QD is initially prepared in the biexciton
state without any photons present in the two orthogonal cavity
modes, the total number of excitations (number of excitons
plus number of photons) is initially two. Since without losses
the excitation number is conserved, the number of states
that are accessible by the coherent QD-cavity coupling is
restricted to five states of the form |χ, nH , nV 〉 with χ denoting
the QD state and nH/V the number of photons present in
the corresponding cavity mode. To be specific, these five
states are given by |B, 0, 0〉, |XH , 1, 0〉, |XV , 0, 1〉, |G, 2, 0〉,
and |G, 0, 2〉. States with lower excitation numbers become
accessible via cavity losses by removing photons from the
system. However, we do not need to consider these states
explicitly in our calculations, first, because the corresponding
dynamical variables do not couple back to the dynamics of
the above five states and, second, only states with at least two
photons contribute to the concurrence [19,22], which is the
target quantity of our analysis.

In Fig. 1 a schematic sketch of the biexciton cascade with
the two cavity modes is shown. Because of the exchange inter-
action the two exciton states XH and XV are split by the fine-
structure splitting δ symmetric to the mean exciton energy
h̄ω̄X . Thus the energy of the horizontally polarized exciton
state is h̄ωH = h̄ω̄X + δ/2 and the energy of the vertically
polarized exciton state is h̄ωV = h̄ω̄X − δ/2. Furthermore, a
possible biexciton binding energy EB can lower the energy
of the biexciton state with respect to 2h̄ω̄X . In general, the
energies of the two orthogonally polarized cavity modes do
not match any of the electronic transition energies of the QD.

In addition to the light-matter interaction also a pure
dephasing type coupling to a continuum of LA phonons is

FIG. 1. Schematic sketch of the biexciton cascade with a fine-
structure splitting δ between the two exciton states, a mean exci-
ton energy h̄ω̄X = h̄(ωH + ωV )/2, and a possible biexciton binding
energy EB. In general, both cavity modes can be detuned from the
electronic transitions of the QD.

included in the model via

ĤQD-phon =
∑

q

h̄ωqb̂†
qb̂q +

∑
q,χ

nχ (γqb̂†
q + γ ∗

q b̂q)|χ〉〈χ |.
(5)

Here, nχ denotes the number of excitons in the different QD
states |χ〉 and γq is the coupling constant. We account for
deformation potential coupling which is known to dominate
for GaAs-type QDs [46] and b̂†

q are bosonic creation operators
for phonons with energy h̄ωq in the mode with wave vector q.

Finally, possible cavity losses of photons are taken into
account using the Lindblad operator

Lcav[ρ̂] =
∑

�=H,V

κ�

2
(2 â�ρ̂â†

� − ρ̂â†
� â� − â†

� â�ρ̂ ), (6)

which allows the inclusion of non-Hamiltonian dynamics
while preserving the physically important properties of the
statistical operator [52]. In the following we assume the loss
rates for the two differently polarized cavity modes to be equal
(κH = κV = κ).

Longitudinal optic (LO) phonons have been shown to
affect the two-photon entanglement by multiphonon transi-
tions to the continuum of wetting layer states [53]. This
mechanism is, however, negligible for temperatures below
∼80 K. Since all major findings of the present paper occur
at much lower temperatures, effects of LO phonons can safely
be disregarded. Nevertheless, we show in the present paper a
few results for temperatures above 80 K in order to illustrate
how the contribution of LA phonons behaves at elevated
temperatures.

B. Method

Equation (1) is numerically solved by using a real-time
path-integral (PI) approach. As almost all modern implemen-
tations of the real-time PI concept, also our simulations are
based on an iteration scheme for the so called augmented
density matrix which was introduced in the pioneering work
of Makri and Makarov [54,55]. This scheme exploits the
finiteness of the environment memory to obtain an efficient
algorithm for performing efficiently a numerically complete
summation over the paths. A specialization of these general
ideas to QDs with a super-Ohmic pure-dephasing coupling
to a continuum of phonons has been worked out, e.g., in
Ref. [56]. Important for the present investigations are two
recent extensions of the standard PI treatment. The first
is a translation of the PI method from the usual Hilbert
space formulation to Liouville space [57]. In this way, the
non-Hamiltonian contributions to the dynamics, like, e.g.,
Lindblad-type loss rates, can be accounted for in a natural
way while still treating the phonons without approximation
to the model. The second is a reformulation of the PI algo-
rithm such that now a partially summed augmented density
matrix is iterated. This reformulation is described in detail in
the supplement of Ref. [58], which in principle contains all
information about the actually used PI method. For systems
like QDs coupled to cavities the reformulation reduces the
numerical demands by many orders of magnitude and thus
numerically complete simulations for such systems would
not be feasible without it. The numerical efficiency might be
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FIG. 2. Phonon spectral density J (ω) for a spherical GaAs QD
with an electron (hole) geometrical confinement length ae = 3 nm
(ah = ae/1.15). The deformation potential constants and the mass
density, as well as the sound velocity for a GaAs QD are taken from
Ref. [60] and are listed in Table I. An explicit formula for J (ω) can
be found in Ref. [56] or Ref. [57].

further boosted by using recently developed tensor-network
techniques [59] which could further extend the applicability
of PI methods in future work.

We consider a spherically symmetric GaAs QD with a har-
monic oscillator confinement resulting in an electron (hole)
confinement length ae = 3 nm (ah = ae/1.15). The deforma-
tion potential constants and the mass density as well as the
sound velocity are taken from the literature [60] and enter the
phonon spectral density

Jχχ ′ (ω) = nχ nχ ′ J (ω), (7)

with

J (ω) =
∑

q

γqγ
∗
q δ(ω − ωq) (8)

appearing in the memory kernels of the PI approach [57]. It
is worthwhile to note that all phonon related influences on the
dynamics of the QD-photon system enter only via J (ω). Thus
the assumption of a symmetric QD does not entail a loss of
generality as long as only the dynamics of QD and photons
are concerned, since as shown in Ref. [61] for any QD (not
necessarily assuming a symmetric confinement) it is always
possible to find a symmetric QD with the same J (ω).

In Fig. 2 J (ω) is depicted for the chosen parameters of
the QD. For low frequencies J (ω) approaches zero ∼ω3 as
can be seen from the explicit expression for the deformation
potential coupling [46]. We are therefore dealing with a cou-
pling of super-Ohmic type which is responsible for striking
non-Markovian effects such as the nonexponential partial loss
of coherence [46,47]. Furthermore, we note a pronounced
maximum at about 2 meV that is the origin of the resonant
structure of the phononic response [24,62].

Assuming that initially the phonons are in thermal equilib-
rium and the electronic system is prepared in the biexciton
state without photons, our PI approach delivers the time
dependence of the reduced density matrix ˆ̄ρ in the subspace
spanned by the five states |B, 0, 0〉, |XH , 1, 0〉, |XV , 0, 1〉,
|G, 2, 0〉, and |G, 0, 2〉, where the phonon degrees of freedom
have been traced out.

C. Concurrence

As a measure for the degree of entanglement we use
the concurrence of simultaneously emitted photons that for
brevity will be referred to in the following simply as the
concurrence. This quantity can be directly calculated from
the time-averaged values of the reduced density matrix ˆ̄ρ of
the system [22,45,53]. The time-dependent populations of the
two states where two photons are present and the coherences
between these states are given by

ρmn(t ) = 〈mm| ˆ̄ρ(t )|nn〉, (9)

with m, n ∈ {H,V }. Here |HH〉 := |G, 2, 0〉 is the state with
two horizontally polarized photons and |VV 〉 := |G, 0, 2〉
denotes the state with two vertically polarized photons. The
corresponding time-averaged quantities ρ̄mn are calculated
according to

ρ̄mn = 1

Tav

∫ Tav

0
ρmn(t )dt . (10)

From these quantities, the concurrence C is derived as [19,22]

C = 2
∣∣ρ̄N

HV

∣∣, (11)

where all quantities entering the normalized two-photon
coherence

ρ̄N
HV = ρ̄HV

ρ̄HH + ρ̄VV
(12)

are evaluated in the limit Tav → ∞. We average the time-
dependent quantities ρmn(t ) until all excitations have left the
cavity and the system has reached its ground state |G, 0, 0〉.
Experimentally, the concurrence C is accessible [20,21] by
measuring the two-photon correlation function G(2)

i j,kl (t, τ ) and
extrapolating towards zero delay time τ = 0.

Before presenting the results of our calculations, let us
briefly comment on different measures to quantify the entan-
glement in the biexciton cascade and the impact of the cavity
loss rate (a more extended discussion of these issues can be
found, e.g., in Ref. [22]). Indeed, for an analysis of polariza-
tion entanglement there is a variety of choices for selecting
photon pairs for which to calculate the concurrence. Probably
the most widely used choice is to inspect the concurrence of
all photon pairs that are detected in coincidence measurements
without discriminating between the detection times of the two
photons. The obvious advantage of this scheme is the high
signal yield. For the corresponding theoretical description, the
calculation of the two-time two-photon correlation function
G(2)(t, τ ) is required [16,22,51,63,64]. Another approach is
to consider the concurrence of frequency filtered coincidence
measurements [17,63] or for a subsystem of the detected
photons, e.g., by only selecting photon pairs with equal emis-
sion times from the cavity [17,45]. As stated previously, we
follow the latter scheme and focus on the concurrence of
simultaneously emitted photon pairs. The reasons behind this
choice are presented in the following.

The concurrence calculated for a selected subset of photons
is in general quantitatively as well as qualitatively different
from the concurrence obtained for another photon subset.
For example, it has been found [22] that the concurrence of
simultaneously emitted photons shows qualitatively different
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FIG. 3. Schematic sketches of the four different configurations of the QD-cavity system studied in this paper. Big curved purple arrows
indicate transitions that are resonant with the corresponding cavity mode. Transitions which are detuned on the order of the fine-structure
splitting δ are represented by medium-sized curved green arrows and small curved orange arrows indicate transitions where the detuning is on
the order of the biexciton binding energy EB.

trends with varying cavity losses than observed for photon
pairs without selection of the emission time (an increase of
the concurrence with rising loss rate is turned into a decrease).
Thus these two concurrences calculated for different photon
subsets cannot be equivalent measures for the same physical
quantity. Nevertheless, in both cases, the phonon impact is
reduced with rising loss rate and the concurrence approaches
its phonon-free value in the limit of infinite losses [22]. This
can be explained by noting that the phonon impact requires
a finite time to develop. The loss rate limits the available
time window and when the latter becomes too small the
phonons cannot efficiently act on the QD degrees of freedom.
Besides the different trends regarding the cavity loss rate,
experiments [20,21] as well as theory [17,22] indicate that
simultaneously emitted photons exhibit a significantly higher
degree of entanglement and are much less affected by the
which-path information introduced by a finite fine-structure
splitting than photon pairs detected without emission time
selection. In particular, the concurrence of simultaneously
emitted photons represents an upper limit for the achievable
degree of entanglement in the latter situation. Since we are
interested in the highest possible degree of entanglement for
a given QD-cavity configuration we solely concentrate on
the concurrence of simultaneously emitted photons. Detecting
photon pairs without emission time filtering, on the other
hand, would maximize the emission efficiency.

III. DIFFERENT CAVITY CONFIGURATIONS

In this section, four configurations of the QD-cavity system
are considered which differ in the value of the biexciton

binding energy EB as well as in the way the cavity modes
are energetically positioned. Throughout this paper, the two
orthogonal linearly polarized cavity modes are assumed to
have the same frequency (ωc

H = ωc
V ). The main difference

between the configurations is the position of the cavity modes
with respect to the QD transitions. When the cavity modes
are kept in resonance with the direct two-photon transition to
the biexciton, such that ωc

H/V = ω̄X − ωB/2, we refer to the
configuration as two-photon resonant (2PR). In contrast, if the
cavity mode frequencies are chosen to match the transition
frequency of one of the excitons (without loss of generality
we choose the H exciton), such that ωc

H/V = ωH , we refer
to the configuration as one-photon resonant (1PR). In both
configurations, we further distinguish between the case of
a vanishing biexciton binding energy and a finite value of
the latter (in this paper, we consider finite values 0.5 meV �
EB � 6 meV). Note that if a finite biexciton binding energy is
introduced, the energy of the biexciton state is no longer the
sum of the energies of the two exciton states.

In Fig. 3 schematic sketches of the 2PR and 1PR con-
figuration with and without a biexciton binding energy are
shown. In order to highlight the difference concerning the
respective resonance situations, QD transitions are marked
by three types of curved arrows in the figure that corre-
spond to different detunings of these transitions from the
cavity mode frequency (red or blue straight arrow). Reso-
nant transitions are represented by big curved purple arrows.
The medium-sized curved green arrows denote transitions
which are detuned on the order of the fine-structure split-
ting δ and strongly off-resonant transitions with a detuning
on the order of the biexciton binding energy EB (typically

245301-5



T. SEIDELMANN et al. PHYSICAL REVIEW B 99, 245301 (2019)

much larger than δ) are indicated by small curved orange
arrows.

The special characteristic of the 2PR configurations
[Figs. 3(a) and 3(c)] is that the |G〉 ↔ |B〉 transition is reso-
nant with a direct two-photon emission or absorption process,
respectively. Therefore, there are two competing channels
for the biexciton decay. The biexciton state can decay either
via two sequential single-photon emission processes via the
exciton states or via a coherent two-photon process from the
biexciton state directly to the ground state. For vanishing
EB [Fig. 3(a)] the energies of the exciton states h̄ωH/V =
h̄ω̄X ± δ/2 are detuned by ±δ/2 from the cavity modes which
are fixed at ωc

H/V = ω̄X . Thus all four electronic transitions
involved in the sequential emission paths are weakly detuned
by half the value of the fine-structure splitting δ. The direct
two-photon processes stay resonant in the 2PR configuration
when a finite binding energy EB is introduced as the cavity
modes are changed accordingly. But the four electronic tran-
sitions involving an exciton state become strongly detuned on
the order of half the biexciton binding energy EB/2 [Fig. 3(c)]
when EB is finite.

In the 1PR configurations [Figs. 3(b) and 3(d)], the
|XH 〉 ↔ |G〉 transition is chosen to be resonant with the
corresponding cavity mode. Therefore, in the case of a van-
ishing biexciton binding energy [Fig. 3(b)], the |XV 〉 ↔ |B〉
transition is also resonant, whereas the two remaining cascade
transitions as well as the direct two-photon processes are
detuned by the value of the splitting δ. Introducing a finite
biexciton binding energy does not change the situation for
the exciton-to-ground-state transitions but the two transitions
between the biexciton state and one of the exciton states as
well as the direct two-photon processes are now strongly off
resonant and detuned on the order of EB [cf. Fig. 3(d)].

IV. RESULTS

In this section we analyze how the degree of entanglement
between the two states with two photons (|HH〉 and |VV 〉) is
affected by various system parameters. As mentioned before,
the system is initially prepared in the biexciton state without
any photons and the phonons are assumed to be initially in
thermal equilibrium. If not stated otherwise, a light-matter
coupling strength g = 0.1 meV, a finite exciton splitting
δ = 0.1 meV, a biexciton binding energy EB = 0.5 meV, and
a cavity loss rate κ = 0.025 ps−1 corresponding to a cavity
quality factor Q ≈ 45 000 are used. Table I displays these
default values and all other material parameters used for the
numerical calculations. The given value for the biexciton
binding energy EB is the difference between twice the polaron
shifted mean exciton energy and the polaron shifted biexciton
energy. In the corresponding phonon-free situation the value
for EB is kept the same in order to compare QD-cavity systems
with identical energetic detunings between the cavity modes
and the QD transition energies. After quantifying the compe-
tition between direct two-photon and sequential single-photon
processes in Sec. IV A, the dependence of the concurrence on
the exciton fine-structure splitting is investigated in Sec. IV B.
Finally, we discuss the temperature dependence of the concur-
rence for fixed splittings in Sec. IV C.

A. Competition between direct two-photon and sequential
single-photon transitions

As pointed out before, e.g., by Schumacher et al. [16]
or del Valle [17], the competition between the direct two-
photon processes from the biexciton state to the ground state
and the sequential single-photon processes via the exciton
states is of utmost importance for the concurrence. Obviously,
by considering configurations with different resonance situ-
ations, in particular when switching between 2PR and 1PR
configurations, we are comparing situations with different rel-
ative importance of two-photon and sequential single-photon
processes. To quantify the relative impact of these processes,
we introduce the quantity

r2P/1P = |ρ̄B,HH | + |ρ̄B,VV |
ρ̄XH + ρ̄XV

, (13)

i.e., r2P/1P is a ratio where the numerator is derived
from the coherences ρB,HH = 〈B, 0, 0| ˆ̄ρ|G, 2, 0〉 and ρB,VV =
〈B, 0, 0| ˆ̄ρ|G, 0, 2〉 between the biexciton and the ground state
with either two horizontally or vertically polarized photons.
The denominator represents the total exciton occupation
ρXH + ρXV , where ρXH and ρXV denote the occupations of
the states |XH , 1, 0〉 and |XV , 0, 1〉, respectively. The bar over
these quantities indicates a time averaging as introduced in
Eq. (10).

The coherences between the biexciton state and the two
states containing the ground state represent a measure for
the direct two-photon processes. Note that by inspecting the
equations of motion for all elements of the reduced den-
sity matrix it becomes apparent that only the equations for
these coherences introduce a resonance when the biexciton-
to-ground-state transition frequency matches twice the photon
frequency. This is the distinctive property of a two-photon
process. In contrast, the characteristic feature of sequential
single-photon emission processes is the occupation of the in-
termediate electronic states, in our case the excitons. Thus the
total exciton occupation reflects the importance of sequential
processes. Altogether, this justifies that the ratio r2P/1P is a
possible measure for the relative importance of the direct

TABLE I. Material parameters for the GaAs quantum dot and
the default values for the system parameters: light-matter coupling
strength g, exciton splitting δ, biexciton binding energy EB, and
cavity loss rate κ . If not stated otherwise these default values are
used for the calculations.

Parameter Value

Electron geometrical confinement length (nm) ae 3.0
Hole geometrical confinement length (nm) ah ae/1.15
Mass density (kg/m3) ρ 5370 [65]
Longitudinal sound velocity (m/s) cs 5110 [65]
Electron deformation potential constant (eV) De 7.0 [66]
Hole deformation potential constant (eV) Dh −3.5 [66]
Light-matter coupling strength (meV) g 0.1
Exciton fine-structure splitting (meV) δ 0.1
Biexciton binding energy (meV) EB 0.5
Cavity loss rate (ps−1) κ 0.025
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FIG. 4. Comparison of the concurrence [panel (a)] and a measure
for the relative importance of two-photon and sequential single-
photon processes r2P/1P [panel (b)] as a function of the exciton
splitting δ. Different temperatures as well as the limit without
phonons are considered. Note that r2P/1P is scaled by the factor 1/50
in the phonon-free case. The cavity modes are arranged in the 2PR
configuration and a vanishing biexciton binding energy is assumed.

two-photon processes compared with the sequential single-
photon processes.

Figure 4 displays the concurrence [panel (a)] along with
r2P/1P [panel (b)] as a function of δ. The analysis is carried out
exemplarily for the 2PR configuration with EB = 0 for four
temperatures as well as for the phonon-free case. The plotted
range for the fine-structure splitting is chosen larger than
usually covered by typical QDs as the role of the two-photon
processes can be better highlighted on this extended scale.

As can be seen in Fig. 4(a), the concurrence exhibits a
nonmonotonic dependence on the exciton splitting for low
temperatures and the phonon-free situation. This behavior can
be traced back to the competition between two-photon and
sequential single-photon processes. Recalling that in the 2PR
configuration the two-photon processes are chosen to be al-
ways resonant independent of δ, it follows that any which-path
information introduced by the fine-structure splitting affects
only the sequential single-photon processes. Figure 4(b) re-
veals a dominance of sequential emission processes for small
exciton splittings. Therefore, the concurrence decreases with
rising |δ| in the small splitting limit since (i) the which-path
information is larger for larger |δ| and (ii) it efficiently affects
the concurrence due to the dominance of sequential single-
photon processes.

As the splitting increases further, r2P/1P rises because
the single-photon processes become more off-resonant and

thus the relative importance of two-photon processes grows,
since the latter are always resonant. When either the inter-
action with the phonons is switched off or the temperature
is low enough, r2P/1P increases strongly for larger exciton
splittings, indicating a dominance of two-photon processes
[cf. Fig. 4(b) for T = 10 K]. As a result, the concurrence
rises and eventually approaches unity because the which-path
information introduced by the exciton splitting is no longer
tested. The local maximum of the concurrence seen at higher
temperatures of 30 K and 50 K can also be understood
with the help of r2P/1P since it shows a similar behavior. Hence
the nonmonotonic behavior of the concurrence is a result of
the competition between the coherent direct two-photon and
sequential single-photon emission processes.

At higher temperatures the relative importance of the
sequential emission processes is raised, as can be seen in
Fig. 4(b). As the electronic transitions become detuned from
the corresponding cavity modes the sequential single-photon
processes are assisted by phonon absorption and emission
processes to compensate the energy differences, an effect
which is enhanced with increasing temperature. In addition,
for larger exciton splittings the phonon spectral density is
effectively probed at higher values of ω (on the order of δ),
resulting in a stronger phonon influence on the system (cf.
Fig. 2). Furthermore, coherences, such as the ones relevant
for the two-photon processes, are more strongly affected by
phonon-induced decoherence than occupations. The combi-
nation of these effects explains why r2P/1P decreases for
larger splittings at higher temperatures and the concurrence
approaches zero.

B. Dependence of the concurrence on the exciton
splitting for different configurations

For all four QD-cavity configurations illustrated in Fig. 3,
the dependence of the concurrence on the exciton splitting is
shown in Fig. 5. First of all, for a vanishing fine-structure
splitting, the concurrence is strictly one regardless of the
phonon influence since the system is completely symmetric
with respect to H ↔ V so that no which-path information
is introduced. This result was also found on the basis of
a phenomenological rate equation approach for the phonon-
induced pure dephasing [45].

With increasing |δ| the concurrence decreases, reflecting
the increase of which-path information. Furthermore, phonons
generally reduce the concurrence for a given splitting, an
effect which typically becomes more pronounced at higher
temperatures. This can be understood by noting that phonons
typically enhance the differences between different pathways
and thus increase the which-path information. To see this,
we first recall that, when the electronic transitions of the QD
are detuned from the corresponding cavity modes, the pho-
ton emission processes are assisted by phonon emission and
absorption processes to compensate the energy differences.
For a finite splitting, depending on the configuration, the two
sequential emission paths differ either in the values or the
order of the detunings and are therefore influenced differently
by the phonons. For example, in the 2PR configuration with
δ > 0 and EB = 0, the sequential emission process of two
horizontally polarized photons is at first assisted by phonon
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FIG. 5. Impact of the exciton splitting δ on the concurrence for all four cavity configurations introduced in Sec. III and depicted in Fig. 3.
Results are shown for two different temperatures and without phonons. Panel (b) additionally displays the ratio r2P/1P for the phonon-free case.

absorption and in the second step phonon emission occurs for
the exciton-to-ground-state transition. This order is reversed
for the sequential emission path for two vertically polarized
photons. Obviously, this enhances the difference between both
pathways compared with the phonon-free case at least at
low temperatures where emission and absorption are notice-
ably different. In general, as discussed in Sec. IV A, with
increasing temperature more phonons are thermally excited
and sequential one-photon transitions can be more efficiently
bridged by phonon-assisted processes. In combination with
the increased phonon-induced decoherence, this leads to a
smaller impact of two-photon transitions and therefore a lower
concurrence at higher temperatures.

Despite these common tendencies, the detailed depen-
dences of the concurrence on the exciton splitting differ
significantly in the respective configurations. For EB = 0, the
results for the 2PR configuration [Fig. 5(a)] and the 1PR
configuration [Fig. 5(b)] are qualitatively similar for small |δ|
but differ strongly for larger detunings. This can be under-
stood by consulting Fig. 3(a) and Fig. 3(b) which reveals that
these configurations become identical in the limit of vanishing
splitting. The corresponding concurrences are thus very close
to each other for small exciton splittings.

The deviation for larger splittings between the two con-
figurations can be explained by the competition between the

coherent direct two-photon and the sequential single-photon
processes. In the 2PR configuration, the relative importance
of two-photon processes rises with increasing |δ| as already
discussed in Sec. IV A. However, compared with the 2PR
case, the influence of two-photon processes is reduced in
the 1PR configuration since they are detuned by the exciton
splitting [cf. Fig. 3(b)]. Thus the concurrence in the 2PR
configuration is significantly higher for larger |δ| than in the
1PR configuration.

Nevertheless, the competition between two-photon and
single-photon processes also influences the 1PR configuration
where the concurrence exhibits a local minimum for low
temperatures as well as without phonons, which means that
this is not a phonon-induced effect. In fact, phonons cause this
minimum to eventually disappear, as can be seen in Fig. 5(b)
at 50 K. Figure 5(b) reveals that the nonmonotonic behavior of
the concurrence reflects the behavior of r2P/1P. Compared with
the 2PR configuration [cf. Fig. 4(a)], here the local minima are
found already at smaller |δ| because the electronic transitions
of the QD are now detuned by the value of δ, whereas the
detuning is only δ/2 in the 2PR configuration. Furthermore,
although the value of r2P/1P at vanishing splitting without
phonons in Fig. 5(b) is the same as in Fig. 4(b) (note the
different scaling in the latter figure), the ratio between two-
and one-photon processes is a decreasing function of δ in
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the 1PR configuration since a finite splitting also causes a
detuning of the direct two-photon transitions in this case. This
is in contrast to the 2PR case in Fig. 4, where r2P/1P rises with
increasing δ in the phonon-free case.

Next, we consider the results for the 2PR configuration
with a finite biexciton binding energy EB = 0.5 meV plot-
ted in Fig. 5(c). In the phonon-free situation and for a
temperature of 4 K the concurrence decreases only weakly
with increasing |δ|, but at T = 50 K it is drastically reduced
at finite |δ|. Therefore, a finite biexciton binding energy in
the 2PR configuration significantly affects the concurrence
[cf. Fig. 5(a)] since it leads to strongly detuned biexciton-
to-exciton and exciton-to-ground-state transitions, while the
direct two-photon processes remain resonant. Thus, without
phonons, the direct two-photon processes are strongly en-
hanced compared with the sequential single-photon processes,
resulting in a significantly higher concurrence that is much
less influenced by the splitting.

On the other hand, in the 2PR configuration with finite EB,
phonons with energies h̄ωq � EB/2 are required to bridge the
detunings of the sequential transitions. In contrast, for vanish-
ing EB, the required phonon energies are given by the much
smaller value of |δ|/2. At the same time, the relative weight of
the phonon influence is proportional to J (ω). Figure 2 shows
that J ( EB

2h̄ ) > J ( δ
2h̄ ) for EB = 0.5 meV and |δ| < 0.3 meV, i.e.,

the phonon influence and thus the temperature dependence
of the concurrence is stronger for a finite biexciton binding
energy. This results in the significantly larger difference of
the concurrence for 4 K and 50 K in Fig. 5(c) compared with
curves for the same parameters but vanishing binding energy
in Fig. 5(a). We note in passing that, keeping the splitting
in the typical range |δ| < 0.3 meV, for rather high values of
the biexciton binding energy the relation J ( EB

2h̄ ) > J ( δ
2h̄ ) is

reversed (cf. Fig. 2). However, this limit is usually not reached
since typical biexciton binding energies stay below ∼6 meV.

In contrast to the configurations discussed up to now, the
interaction with phonons in the 1PR configuration with a finite
biexciton binding energy, depicted in Fig. 5(d), drastically
reduces the concurrence already at low temperatures. In this
situation, both biexciton-to-exciton-transitions are strongly
detuned from the corresponding cavity modes. The horizon-
tally polarized exciton-to-ground-state transition is resonant
by definition, while the vertically polarized one is detuned
by δ. In addition, also the direct two-photon processes are
highly off resonant. As all possible electronic transitions
starting from the biexciton state are strongly detuned, the
initially prepared occupation of the biexciton state decreases
only very slowly when phonons are not accounted for. Hence
the occupations of the exciton states and the QD ground state
with two photons are always very small. In both the H and V
pathway the exciton can be reached by emission of a photon
only when a phonon with an energy on the order of � EB

is absorbed. At this energy J (ω) is even larger than in the
2PR configuration with finite EB where phonons with energies
� EB/2 are required, which explains the dramatic drop of the
concurrence from the phonon-free case to the values obtained
for 4 K. Furthermore, the concurrence is clearly asymmetric
with respect to the exciton splitting in this configuration.
Especially in the phonon-free case the concurrence decays
much stronger with rising |δ| for negative than for positive δ.

This is due to the fact that for negative δ one comes closer
to the condition that the transition from the biexciton to the H
exciton is getting in resonance. Since the decay from the H ex-
citon to the ground state is held in resonance in this configu-
ration, the pathway |B〉 → |XH , 1, 0〉 → |G, 2, 0〉 is strongly
favored compared with |B〉 → |XV , 0, 1〉 → |G, 0, 2〉, result-
ing in low values of the concurrence. Interestingly, for δ > 0
the concurrence decreases only very little when the tempera-
ture is raised further from 4 K to 50 K.

In general, the symmetry with respect to δ is found to
be another distinguishing feature between the 2PR and the
1PR configuration. In the 2PR configuration, independent of
the biexciton binding energy, the concurrence is a symmet-
ric function of the splitting no matter whether phonons are
included or not. In contrast, in the 1PR configuration with
a finite binding energy, the concurrence always shows an
asymmetric dependence on δ. In this situation, changing the
sign of δ changes the absolute value of the detuning between
the horizontally polarized cavity mode and the corresponding
biexciton-to-exciton transition 
B,XH (δ) = EB + δ, while the
absolute values of the detunings of the remaining sequential
transitions are unaffected. The direct two-photon processes
are also detuned by the same value 
E2P(δ) = EB + δ. Since
without phonons the dynamics depends only on the absolute
values of the detunings between the electronic transitions
and their corresponding cavity modes, an asymmetric con-
currence is expected, which is also visible when phonons are
accounted for. This asymmetry is stronger at low temperatures
since there phonon absorption and emission processes are not
equally likely. Turning finally to the 1PR configuration with
EB = 0, changing the sign of the exciton splitting no longer
changes the absolute values of the detunings. Thus, without
phonons, the concurrence is once more symmetric and only a
slight asymmetry is observed when phonons are included.

We conclude that the competition between single-photon
and two-photon processes plays a decisive role for the con-
currence. Furthermore, the arrangement of the cavity modes
strongly affects the concurrence as one of the competing
processes can be either favored or suppressed. Finally, the
values of the various detunings depend on the chosen config-
uration, resulting in different effective phonon influences and
very different dependences of the concurrence on the exciton
splitting for each of the considered QD-cavity configurations.

C. Temperature dependence of the concurrence
at a finite exciton splitting

After the discussion in the last section it is clear that the
temperature dependence of the concurrence also differs for
each of the four configurations. In this section we investigate
in more detail the concurrence as a function of temperature
for different fixed values of the exciton splitting.

Figure 6(a) displays the concurrence as a function of
the temperature for a typical value of the exciton splitting
δ = 0.02 meV, while a larger value δ = 0.1 meV is used in
Fig. 6(b). As expected after the discussion of the 1PR config-
uration with a finite biexciton binding energy in Sec. IV B, the
concurrence drops in this setting steeply for low temperatures
followed by a very weak T dependence compared with the
other configurations for T > 4 K and both splittings. Note that
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FIG. 6. Concurrence as a function of temperature for a fine-structure splitting δ = 0.02 meV [panel (a)] and δ = 0.1 meV [panel (b)] for all
four QD-cavity configurations introduced in Sec. III. Also shown is the crossing temperature Tcross of the concurrence in the 2PR configuration
with EB = 0 and the concurrence in the 2PR configuration with EB > 0 as a function of δ for several values of the binding energy EB [panel
(c)]. Tcross is marked in panels (a) and (b) by a circle.

for δ > 0 in this configuration all sequential processes require
the absorption of phonons to bridge the energy mismatches
and thus for T → 0 the phonon-free result should be reached.
Indeed, as seen in Fig. 6(b), changing the temperature from 1
to 4 K entails a very steep drop of the concurrence before it
becomes almost independent of T for T > 4 K.

The 2PR configuration with a finite binding energy exhibits
a rather strong temperature dependence for both selected
values of δ. Because of the weak influence of the exciton
splitting in this configuration the concurrence reaches almost
one for temperatures close to zero.

The 2PR and 1PR configuration with a vanishing binding
energy are, as discussed earlier, almost the same for small δ.
Therefore, for δ = 0.02 meV, the concurrence as a function of
temperature is nearly identical for both configurations, with
the 1PR result being marginally lower. For the larger splitting
δ = 0.1 meV these two configurations show a similar tem-
perature dependence at very low temperatures but at higher
temperatures the concurrence decreases noticeably stronger in
the 1PR configuration.

In the 2PR as well as in the 1PR configuration the se-
quential single-photon processes are detuned on the order of δ

when the biexciton binding energy is zero. Since two-photon
processes are more important in the 2PR configuration the
corresponding concurrence is higher for all temperatures than
in the 1PR configuration when EB = 0. However, this trend
reverses for finite EB at high temperatures.

Let us now compare 2PR results with and without a finite
biexciton binding energy. As can be seen in Fig. 6(a) and
Fig. 6(b), introducing a finite value for EB in the 2PR con-
figuration leads to a higher concurrence only below a crossing
temperature which depends on δ. In fact, there is a crossing

point of the 2PR concurrence evaluated at finite EB with each
of the three other concurrences considered here. It turns out
that the setting with the lowest crossing temperature is the
2PR configuration with vanishing biexciton binding energy.
We will denote the corresponding crossing temperature by
Tcross in the following.

For large splittings, a finite biexciton binding energy
can raise the concurrence significantly at low temperatures
since the sequential single-photon emission processes become
largely detuned and the importance of the two-photon pro-
cesses is raised. Therefore, in the absence of phonons, a finite
binding energy in general results in an increased concurrence,
a finding which was already proposed and discussed by Schu-
macher et al. [16].

Above the crossing temperature, however, the pure dephas-
ing coupling to the phonons alters this effect and a finite bind-
ing energy in the 2PR configuration reduces the concurrence.
As the temperature increases, phonons raise the importance
of the detuned single-photon processes because they become
assisted by phonon absorption and emission. In the case of
a finite binding energy, the cavity modes are more detuned
from the electronic transitions involving exciton states. There-
fore, the phonon spectral density J (ω) is probed at larger
values so that the effective phonon coupling is stronger com-
pared with the situation without biexciton binding energy.
These two effects combined lead to a stronger decrease of
the concurrence with increasing temperature for a finite EB.
Thus, above Tcross, a finite biexciton binding energy reduces
the concurrence and the protection of entanglement in the 2PR
configuration is lost.

By comparing Fig. 6(a) and Fig. 6(b), one notices that the
crossing point of the concurrence in the 2PR configuration
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with and without a finite binding energy moves to lower
temperatures for smaller values of the exciton splitting. For
the concurrence, this means that the advantage provided by
a finite EB is lost for small δ already at low temperatures
T ∼10 K. In Fig. 6(c) this crossing temperature is plotted
against δ for several values of EB. For a given binding energy,
Tcross exhibits a monotonic increase with increasing exciton
splitting and converges to a finite value of about 10 K in
the limit δ → 0 and typical binding energies. Therefore, for
typical splittings on the order of several 10 μeV, the pro-
tection of the entanglement due to a finite binding energy
is already lost at quite low temperatures. As can be seen by
comparing the results in Fig. 5(a) and Fig. 5(c), the protection
of the concurrence due to a finite EB in the 2PR configuration
at temperatures close to zero improves for larger δ. Thus,
for larger δ, higher temperatures are needed to destroy this
protection and Tcross increases with increasing splitting for a
given EB.

Comparing the crossing temperature for different values
of the binding energy, a nonmonotonic behavior is found at
a given exciton splitting. On the one hand, a higher value
of the binding energy results in a better protection of the
entanglement at temperatures close to zero. But, on the other
hand, the phonon influence and thus the influence of the tem-
perature depends on the energy of the phonons needed to assist
the detuned single-photon processes as the phonon spectral
density J (ω) depends (nonmonotonically) on this energy. In
the case of the 2PR configuration with finite EB, this roughly
corresponds to half the binding energy. The nonmonotonic be-
havior of Tcross as a function of EB at a given exciton splitting
thus originates from the trade-off between a better protection
of the concurrence for higher binding energies at temperatures
close to zero and the varying influence of the phonons due
to the nonmonotonic behavior of the phonon spectral density.
For example, the crossing point temperature in Fig. 6(c)
for EB = 1 meV is always higher than for EB = 2 meV. The
reason is the much stronger temperature dependence in the
latter situation as the phonon spectral density is much higher
for a phonon energy of 1 meV than for a value of 0.5 meV
(cf. Fig. 2). However, at h̄ω = 1 meV and h̄ω = 3 meV the
values of J (ω) are similar, which means that the phonon
influence is similar for EB = 2 meV and EB = 6 meV and
Tcross is always higher in the latter case because of the stronger
protection due to the higher binding energy.

V. CONCLUSION

We have analyzed how the competition between two-
photon and single-photon emission processes as well as the
coupling to LA phonons influences the degree of two-photon
entanglement created in a QD-cavity system. To this end
we have calculated the concurrence of photon pairs simul-
taneously emitted in a biexciton-exciton cascade of a QD
in a cavity for four different configurations. We account for
four electronic states (biexciton, two excitons, and the ground
state), two degenerate orthogonally polarized cavity modes
that are coupled to the electronic transitions, and cavity losses,
as well as for a continuum of LA phonons coupled by the
deformation potential interaction to the QD. The numerical
simulations are based on a path-integral scheme that allows

the evaluation of quantities of interest without approximation
to the model.

The four configurations considered in this paper comprise
the two-photon resonant (2PR) and the one-photon resonant
(1PR) configuration with a vanishing as well as a finite biex-
citon binding energy. We find a wealth of interesting results
and insights in the physics of the system at hand which we
would like to briefly summarize below before we outline our
main result at the end.

(a) The competition between two-photon and one-photon
processes plays a decisive role for the concurrence and leads
to strikingly different dependences on the exciton splitting
δ. Among other things, we find, e.g., nonmonotonic depen-
dences and deviations from the standard bell shape in the
2PR as well as in the 1PR configuration. While the 2PR and
1PR configuration without a biexciton binding energy lead to
almost the same degree of entanglement for small splittings
the 2PR configuration is favorable for larger splittings. These
results and the different dependences on the splitting δ can
be very well explained by the different relative importance of
direct two-photon and sequential single-photon contributions
as well as the changing phonon impact when the resonance
settings are varied.

(b) The concurrence is in general only symmetric regarding
the exciton splitting δ in the 2PR configurations. Additionally,
LA phonons affect or even introduce the asymmetry in the
1PR configurations. Because of the characteristics of the
phonon coupling this asymmetry is stronger at low temper-
atures as phonon absorption and emission processes are not
equally likely to occur.

(c) The chosen configuration defines the detunings in the
quantum dot-cavity system and results in different effective
phonon influences and therefore also strongly different tem-
perature dependences of the concurrence. The 2PR and 1PR
configuration with a vanishing binding energy have almost the
same concurrence value and temperature dependence for the
usual exciton splittings of several 10 μeV. The concurrence
can be virtually independent of the temperature over a wide
temperature range, as it is the case in the 1PR configuration
with a finite binding energy and positive δ after the con-
currence has fallen drastically with rising temperature for T
below 4 K.

In order to appreciate our main result, it should be noted
that the 2PR configuration with finite biexciton binding energy
has attracted a lot of attention [16,17,51] since this configura-
tion has been proposed in order to reach high degrees of entan-
glement at finite fine-structure splittings. The idea is that two-
photon transitions are favored which are much less affected by
the which-path information introduced by the fine-structure
splitting than sequential single-photon processes. Thus a finite
biexciton binding energy protects the entanglement from the
destructive impact of the fine-structure splitting by making
single-photon processes off-resonant. Indeed, at low temper-
atures we find the highest degree of entanglement for this
configuration which depends only little on the fine-structure
splitting. However, the concurrence in the 2PR configuration
with finite biexciton binding energy exhibits a steep decrease
with rising temperature, which can be explained by an en-
hanced interaction with phonons resulting from the frequency
dependence of the phonon-spectral density combined with
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an increase of the importance of sequential single-photon
processes at higher temperatures.

This strong temperature dependence is the origin of our
most important result that for each of the other three consid-
ered configurations there is a finite temperature above which
the corresponding concurrence is higher than in the 2PR case
with finite biexciton binding energy. Out of the configurations
that we compare, the 2PR configuration with vanishing biex-
citon binding energy has the lowest such crossing temperature
Tcross, which is found to depend on the fine-structure splitting
as well as on the biexciton binding energy. For splittings that
are typically found in experiments on the order of several
10 μeV or below and typical biexciton binding energies of few
meV, Tcross is around or even below 10 K. Thus the special
distinction of the 2PR configuration with finite biexciton
binding energy in terms of yielding the highest degree of

entanglement for finite fine-structure splittings is lost already
at rather low temperatures due to the phonon impact and the
2PR configuration with vanishing biexciton binding energy
becomes more favorable for achieving the highest value of the
concurrence.
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We report on simulations of the degree of polarization entanglement of photon pairs simultaneously
emitted from a quantum dot-cavity system that demand revisiting the role of phonons. Since coherence is a
fundamental precondition for entanglement and phonons are known to be a major source of decoherence, it
seems unavoidable that phonons can only degrade entanglement. In contrast, we demonstrate that phonons
can cause a degree of entanglement that even surpasses the corresponding value for the phonon-free case. In
particular, we consider the situation of comparatively small biexciton binding energies and either finite
exciton or cavity mode splitting. In both cases, combinations of the splitting and the dot-cavity coupling
strength are found where the entanglement exhibits a nonmonotonic temperature dependence which
enables entanglement above the phonon-free level in a finite parameter range. This unusual behavior can be
explained by phonon-induced renormalizations of the dot-cavity coupling g in combination with a
nonmonotonic dependence of the entanglement on g that is present already without phonons.
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The appearance of entangled states is one of the show-
case effects that highlights most impressively the dramatic
conceptual changes brought forth by going over from
classical to quantum physics [1,2]. Moreover, realizations
of entangled states, mostly with photons, have paved the
way toward many innovative applications [3], e.g., in
quantum cryptography [4,5], quantum teleportation [6],
quantum information processing [7–10], and photonics
[11]. In particular, quantum dot (QD) cavity systems have
attracted a lot of attention as sources for triggered entangled
photon pairs [12–19], not only because these systems hold
the promise of a natural integration in solid-state devices.
Embedding a QD in a microcavity enables the manipula-
tion of few-electron and few-photon states in a system with
high optical nonlinearities, which can be used for realizing
a few-photon logic in quantum optical networks [20].
Furthermore, the cavity boosts the quantum yield due to
the Purcell effect [14,21] and, for high cavity quality factors
Q, it reduces the detrimental effects of phonons on the
photon indistinguishability [22].
The essence of entanglement in a bipartite system is the

creation of a state that cannot be factorized into parts
referring to the constituent subsystems, which requires the
buildup of a superposition state. Polarization entanglement
between horizontally (H) or vertically (V) polarized photon
pairs is established, e.g., by creating superpositions of the
states jHHi and jVVi with two photons with either H or V
polarizations exploiting the biexciton cascade [12–18].
Starting from the biexciton, the system can decay first into
one of the two excitons and a photonwith the corresponding

polarization (H or V). The excitons then decay further to the
QD ground state emitting a second photon with the same
polarization as in the biexciton decay. Ideally, the resulting
quantum state is a coherent superposition and maximally
entangled. Which-path information introduced, e.g., by the
fine-structure splitting of the excitons, leads to an asym-
metric superposition and decreased entanglement. The
system can also decay from the biexciton directly to the
ground state by simultaneous two-photon emission, a
process which is much less affected by which-path infor-
mation than the sequential single-photon decay [23–25].
Obviously, maintaining a coherent superposition

requires stable relative phases between the involved states.
However, in a solid-state system, the interaction with the
environment unavoidably leads to a loss of phase coher-
ence. In particular, phonons are known to provide a major
source of decoherence [26–35], which led to the expect-
ation that phonons should always degrade the entangle-
ment. Indeed, recent simulations [24,36,37] are in line with
this expectation.
In this Letter, we demonstrate that the phonon influence

is not necessarily destructive. On the contrary, phonons
can increase the degree of photon entanglement when
the destructive effect resulting from phonon-induced
decoherence is overcompensated by phonon-related renor-
malizations of the QD-cavity coupling that shift the system
into a regime of higher photon entanglement. A precondi-
tion of this mechanism is a decrease of the degree of
entanglement with rising QD-cavity coupling g in the
phonon-free case in a finite g range. This is realized,
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e.g., in the limit of weak biexciton binding and finite exciton
or cavity mode splitting. In both cases, the phonon-induced
enhancement is found in a finite range of binding energies
and couplings g.
Our studies are based on the Hamiltonian [24,37]:

Ĥ¼ ℏωHjXHihXHj þℏωV jXVihXV j
þℏðωH þωV −ωBÞjBihBj þ

X

l¼H;V

ℏωc
lâ

†
lâl

þ
X

q

ℏωqb̂
†
qb̂qþ

X

q;χ

nχðγqb̂†qþ γ�qb̂qÞjχihχj þ X̂ ; ð1Þ

where jBi is the biexciton state with energy ℏðωH þ ωV −
ωBÞ and a biexciton binding energy EB ¼ ℏωB, while
jXH=Vi denote the two exciton states with energies
ℏωH=V that couple to H or V polarized cavity modes with

destruction (creation) operators âH=Vðâ†H=VÞ and mode

energies ℏωc
H=V . b̂qðb̂†qÞ are operators that destroy (create)

longitudinal acoustic phonons with wave vector q and
energy ℏωq. We consider bulk phonons with a linear
dispersion and account for the deformation potential
coupling γq. nχ is the number of electron-hole pairs
contained in the states jχi ∈ fjBi; jXH=Vig. Finally, the
Jaynes-Cummings type coupling of the cavity modes to the
QD with coupling constant g is given by:

X̂ ¼ −gðjGihXHjâ†H þ jXHihBjâ†H
þ jGihXV jâ†V − jXVihBjâ†VÞ þ H:c:; ð2Þ

where H.c. stands for the Hermitian conjugate and jGi is
the QD ground state, the energy of which is taken as the
zero of energy. In addition, we account for cavity losses
with a rate κ by the Lindblad operator:

Lcav½ρ̂� ¼
X

l¼H;V

κ

2
ð2âlρ̂â†l − ρ̂â†lâl − â†lâlρ̂Þ: ð3Þ

We assume that the system is initially prepared in the
biexciton state, without photons and that the phonons are
initially in equilibrium at a temperature T. This can be
achieved, e.g., by using two-photon resonant or near-
resonant excitation with short coherent pulses [16,
38–41], which introduces much less decoherence and time
jitter than, e.g., pumping the wetting layer and subsequent
relaxation to the biexciton. The dynamics of the reduced
density matrix ρ̂ is determined by the equation:

d
dt

ρ̂ ¼ −
i
ℏ
½Ĥ; ρ̂�− þ Lcav½ρ̂�; ð4Þ

where ½; �− denotes the commutator. As in Ref. [37], we
evaluate ρ̂ numerically in the subspace spanned by the five
states jB; 0; 0i, jXH; 1; 0i, jXV; 0; 1i, jG; 2; 0i, and

jG; 0; 2i, where the numbers nH=V in jχ; nH; nVi denote
the number of H=V photons. We use a path-integral
approach that does not introduce approximations to the
model. This is made possible by recent methodological
advances that allow for a natural inclusion of non-
Hamiltonian parts of the dynamics (e.g., represented by
Lindblad operators) in the path-integral formalism [42] as
well as huge improvements of the performance by iterating
instead of the augmented density matrix, introduced in the
pioneering work of Makri and Makarov [43,44], a partially
summed augmented density matrix [45]. We quantify the
degree of entanglement by the concurrence, a quantity
which has a one-to-one correspondence to the entangle-
ment of formation [46]. To be precise, we use the
concurrence of simultaneously emitted photon pairs

C ¼ 2
jρ̄HV j

ρ̄HH þ ρ̄VV
ð5Þ

(see the Supplemental Material [47] for further details) that
can be calculated directly from the time-averaged occupa-
tions ρ̄HH, ρ̄VV and coherence ρ̄HV of the states jHHi and
jVVi [25,37,57]. We focus on simultaneously emitted
photon pairs since experiments [58,59] agree with theory
[15,37] that this case is favorable for the entanglement.
First, we present results for the situation sketched in

Fig. 1(a) where the excitons have a finite fine-structure
splitting δ ¼ ℏðωH − ωVÞ, the biexciton binding energy is
zero and both cavity modes are tuned to the two-photon
resonance 2ωc

H ¼ 2ωc
V ¼ ωH þ ωV − ωB. In the situation

with phonons, these QD energies denote the polaron-shifted
ones. To compare QD-cavity systems with identical energy
relations, the energy values are kept the same in the
corresponding phonon-free calculations thus keeping the
polaron shifts.
Figure 1(b) displays the temperature dependence of the

concurrence for three values of the QD-cavity coupling.
Only the result for g ¼ 130 μeV agrees with the common
expectation that the entanglement should monotonically
decrease with temperature. In contrast, for g ¼ 60 μeV and
g ¼ 35 μeV, unusual nonmonotonic T dependences are
found. Most interestingly, for g ¼ 35 μeV, the concurrence
is noticeably higher than the corresponding value obtained
without phonons in the entire T range that we consider
(T ∈ ½1 K; 100 K�); i.e., for certain values of g we find
indeed a phonon-induced enhancement of entanglement
while in other cases the expectation that phonons reduce the
entanglement is confirmed.
The reason for this remarkable behavior becomes

apparent when looking at the g dependence of the
concurrence in Fig. 1(c). Already without phonons, the
concurrence is a nonmonotonic function of g (purple
curve) with a pronounced minimum reached roughly for
g ≃ δ=2. Dividing Eq. (4) by the coupling strength g and
leaving out the coupling to phonons, the system dynamics
is described by the rescaled quantities t0 ¼ gt,
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g0 ¼ g=g ¼ 1, δ0 ¼ δ=g, and κ0 ¼ κ=g. Since the concur-
rence is the asymptotic value of the normalized coherence
at long averaging times [37], the rescaling of the time is
irrelevant. For large values of g, both parameters δ0 and κ0
tend to zero. This implies that the concurrence approaches
unity for large coupling strengths because the which-path
information disappears for a vanishing splitting and thus
the concurrence is one [37,57]. For very small QD-cavity
couplings, κ0 and δ0 become arbitrarily large. Therefore,
the sequential single photon decay via the intermediate
exciton states becomes strongly off-resonant and is thus
negligible compared with contributions from a direct two-
photon transition, which is always resonant in the present
case [25]. Since the which-path information is contained
only in the sequential decay, the concurrence approaches
unity again. But for finite splittings, the concurrence is
smaller than one and thus a minimum must appear at a
certain coupling strength g.
When phonons are accounted for, the minimum is

lowered and shifted to a higher coupling strength depend-
ing on the temperature. We attribute the shift to the well
known effect of phonon-induced renormalization of the

light-matter coupling [61]. To support this assignment we
have estimated the renormalized coupling g̃ðgÞ as in
Ref. [62] by fitting equations with phenomenological
renormalizations of a resonantly driven two-level system
to path-integral calculations. The results are shown in the
Supplemental Material [47]. If the only effect introduced by
phonons was the g renormalization, then the value of the
concurrence found without phonons at a particular value of
g should be shifted by phonons to g̃ðgÞ. Indeed, in Fig. 1(c)
we have plotted C½g̃ðgÞ� using the phonon-renormalized
coupling g̃ðgÞ for T ¼ 30 K, where CðgÞ is the concurrence
in the phonon-free case (green curve with circles). We find
that, despite the crudeness of the estimation for g̃ðgÞ, the
minimum of the shifted curve agrees even quantitatively
well with the minimum found in the full path-integral
simulation for this temperature (red dotted curve). Since the
shift is larger for higher temperatures, displacing the
phonon-free curve necessarily leads to higher values of
the shifted curves in regions where the phonon-free con-
currence is monotonically decreasing with g. Consequently,
in this region, phonon-induced enhancement appears for a
finite g range.

(a) (b) (c)

FIG. 1. (a) Sketch of the level scheme of a QD-cavity system with finite fine-structure splitting, zero biexciton binding energy and two-
photon resonant cavity modes. (b) Concurrence as a function of the temperature for three selected values of the QD-cavity coupling. The
corresponding values obtained without phonons are drawn as straight (faded) lines with the same linetype. Inset: difference ΔC between
the maximum concurrence value at finite temperature and the corresponding phonon-free value normalized by the latter as a function of
the biexciton binding energy EB for g1 ¼ 35 μeV. (c) Concurrence as a function of the QD-cavity coupling for three temperatures
together with the phonon-free result. In addition C½g̃ðgÞ� is plotted using the phonon-renormalized coupling g̃ðgÞ for T ¼ 30 K
(indicated on the upper axis), where CðgÞ is the phonon-free concurrence. The values of the QD-cavity coupling used in (b) are marked
in (c) by vertical lines. Parameters: δ ¼ 0.1 meV, κ ¼ 0.025 ps−1, electron (hole) confinement length ae ¼ 3 nm, ah ¼ ae=1.15 where
we assume a spherical GaAs-type QDwith harmonic confinement. All other parameters, e.g., concerning the phonon coupling, are taken
from Ref. [60].
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The total effect of phonons is, however, not merely a
shift but also a lowering of the curves with rising temper-
ature, which is indeed due to the dephasing action of
phonons. It is important for obtaining a phonon-induced
entanglement that the gain in entanglement resulting from
the shift of the phonon-free curve due the phonon-induced
g renormalization is not destroyed by the overall lowering
of the concurrence caused by the decoherence. Figure 1(c)
demonstrates that it is indeed possible that the renormal-
ization-induced shift overcompensates the dephasing
action. Additionally, when accounting for pure dephasing
by introducing a phenomenological rate [23], the phonon-
induced enhancement disappears (see the Supplemental
Material [47]). This result reaffirms the g renormalization
as the main origin of the effect, since it is absent in the
phenomenological model.
It is instructive to contrast the above findings with

simulations for the more commonly considered situation
sketched in Fig. 2(a), where the biexciton binding energy
has the finite value EB ¼ 1 meV and the cavity modes are
in resonance with the two-photon transition to the biexci-
ton. Again, the phonon-free curve exhibits a minimum
which is, however, rather flat [purple line in Fig. 2(c)]. In
the limit g → ∞ the concurrence approaches unity since the
argument given for the case of vanishing biexciton binding
energy applies here as well. For the case that both g=ð1

2
EBÞ

and δ=EB are small parameters, it has been shown ana-
lytically in Ref. [37] that the phonon-free concurrence
approaches ½ðE2

B − δ2Þ=ðE2
B þ δ2Þ�, which is smaller than

one for a finite δ. Including phonons, the reduction of the
concurrence for small g values is strongly magnified as
seen in Fig. 2(c). Overall, the dephasing action induced by
phonons is so strong that the line shape of the concurrence
as a function of g is significantly deformed, and the effects
related to a renormalization of g cannot be identified. As a
consequence, the concurrence monotonically decreases
with rising temperature and always stays below the
phonon-free calculation for all values of g as exemplarily
shown in Fig. 2(b). This demonstrates that the phonon-
induced enhancement of entanglement described above can
only occur when the g-renormalization effects dominate
over the phonon-induced dephasing. The stronger phonon-
induced dephasing for EB on the order of a few meV
compared with vanishing EB has been explained recently
[25] by noting that the energies bridged by phonon-assisted
processes are closer to the maximum of the phonon spectral
density in the former case.
It is worthwhile to note that phonon-induced enhance-

ment of photon entanglement is not restricted to the
singular case of vanishing EB but rather appears for a
finite range of binding energies as demonstrated in the inset
of Fig. 1(b). The difference ΔC between the maximum
concurrence value at finite temperatures and the corre-
sponding phonon-free value is positive clearly for an
extended range. Further analysis (shown in the
Supplemental Material [47]) reveals that the effect can
be observed as long as EB ≲ δ=2 holds for our realistic
parameters.

(a) (b) (c)

FIG. 2. (a) Sketch of the level scheme of a QD-cavity system with finite fine-structure splitting, biexciton binding energy EB ¼ 1 meV
and two-photon resonant cavity modes. (b) Concurrence as a function of the temperature for three selected values of the QD-cavity
coupling. The corresponding values obtained without phonons are drawn as straight (faded) lines with the same linetype.
(c) Concurrence as a function of the QD-cavity coupling for three temperatures together with the phonon-free result. The values
of the QD-cavity coupling used in (b) are marked in (c) by vertical lines. Apart from EB, the same parameters are used as in Fig. 1.
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We note in passing that the situation considered in Fig. 1
is not the only one where the conditions for phonon-
induced entanglement are realized. This phenomenon can
also be observed in a system with weak biexciton binding
and degenerate excitons where which-path information is
introduced by a finite splitting of the cavity modes (see the
Supplemental Material [47]). There the concurrence calcu-
lated without phonons is again a nonmonotonic function of
g, which exhibits even more than one extremum. Also in
this case, the phonon-induced renormalization is strong
enough to evoke a phonon-induced entanglement for finite
parameter ranges.
In conclusion, we demonstrate that phonon-induced

renormalizations of the dot-cavity coupling can overcom-
pensate decoherence effects and shift the system to a region
of higher entanglement. In combination with a nonmono-
tonic dependence of the phonon-free concurrence, this can
result in a nonmonotonic temperature dependence of the
concurrence. Most interestingly, the concurrence can even
reach values above the phonon-free level, thus causing
phonon-induced photon entanglement.
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CONCURRENCE OF SIMULTANEOUSLY EMITTED PHOTONS

The concurrence is a widely used measure for the entanglement of a bipartite system. It has a one-to-one corre-
spondence to the entanglement of formation [1] which represents the amount of pure-state entanglement that is at
least present in a mixed state described by a given density matrix. Even though the entanglement of formation is
more intuitive, the concurrence is usually preferred since it can be extracted directly from the values of the reduced
density matrix of the bipartite system for which the entanglement is to be measured [2].

It is worthwhile to note that the photons emitted from the biexciton-exciton cascade can be subdivided in different
ways into bipartite subsystems [3]. The associated concurrences are not necessarily equivalent since they may exhibit
opposite trends when varying parameters such as, e.g., the cavity losses [3]. Widely used is the concurrence of all
photon pairs that are detected in coincidence measurements without discriminating between the detection times of the
two photons [3–7]. This choice results in a high signal yield but measurements [8, 9] as well as theoretical considerations
[3, 10] indicate that significantly higher degrees of entanglement can be reached by selecting simultaneously emitted
photon pairs. For this reason the concurrence of simultaneously emitted pairs is preferred in the present study. The
more general expression given in Ref. [2] reduces in our case to

C = 2 |ρ̄NHV |, (S1)

where the normalized two-photon coherence

ρ̄NHV =
ρ̄HV

ρ̄HH + ρ̄V V
(S2)

is calculated from the time-averaged elements of the reduced density matrix

ρ̄mn =
1

Tav

Tav∫

0

〈mm|ρ̂(t)|nn〉dt. (S3)

Here, |HH〉 := |G, 2, 0〉 (|V V 〉 := |G, 0, 2〉) denotes the state with two horizontally (vertically) polarized photons. The
averaging is performed until the time Tav is reached where the initially prepared biexciton has fully decayed and the
system has reached its ground state without any photons inside the cavity.

In experiments, the two-photon density matrix, from which the concurrence can be derived, is usually reconstructed
using quantum state tomography, a technique based on polarization-dependent photon coincidence measurements [11].
This technique gives access to information about the polarization degree of freedom and the delay time between the
two detection events. The concurrence of simultaneously emitted photon pairs can be obtained from the recon-
structed density matrix elements in the limit where the delay time approaches zero. Typically, in the corresponding
experiments, data points are recorded over extended delay time intervals. Here, the limit of zero delay time can be
approached by using time-windowing techniques where signals over different delay time windows are recorded and
then the data is extrapolated towards zero delay time [8, 9].

RENORMALIZATION OF THE QUANTUM DOT-CAVITY COUPLING

In the main text we argue that the shift of the minimum in the concurrence plotted versus the dot-cavity coupling
g is caused by the phonon-induced renormalization of g. This renormalization occurs already in a two-level system
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where it is much simpler to analyze than in the five-level system considered in the present manuscript. For vanishing
biexciton binding energy and the usually not very large fine-structure splitting, the transitions from the biexciton to
the exciton states and from the exciton states to the ground state are similar and their phonon-induced renormalization
can be expected to be close to the case of resonant coupling. Therefore, we followed Ref. [12] in order to obtain a
simple estimate for the renormalization, i.e., we have performed path-integral calculations for a resonantly driven
two-level system with the same dot and phonon parameters as used in the main text but for κ = 0. For driving with
constant amplitude the exciton occupation is well fitted by the expression:

ρX =
1

2

[
1− e−Γt cos(ωt)

]
, (S4)

where Γ = Γ(g, T ) and ω = ω(g, T ) are used as fitting parameters. As explained in detail in Ref. [12], the renormalized
dot-cavity coupling is related to Γ and ω by:

g̃(g, T ) = [Γ2(g, T ) + ω2(g, T )]/(4g) (S5)
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FIG. S1. Renormalized dot-cavity coupling g̃(g, T )/g as a function of the original coupling g for different temperatures.

Figure S1 displays the resulting renormalized dot-cavity coupling as a function of the original coupling for different
temperatures. Clearly, for not too high values of g (which constitutes the typical situation) the phonon renormalization
leads to a reduction of the effective coupling. Thus, in order to achieve the same effect with the renormalized g as
without renormalization one needs to increase the bare value of g, which explains why the minimum in Fig. 1(c) in
the main text is shifted to higher g values.

PHONON-INDUCED ENTANGLEMENT FOR DEGENERATE EXCITONS AND FINITE CAVITY
MODE SPLITTING

In this section we present numerical simulations of the concurrence for the situation sketched in Fig. S2(a), i.e., a
system with vanishing biexciton binding energy, degenerate excitons and cavity modes with a finite splitting given by
δc = ~(ωcH − ωcV ). Since the excitons are degenerate, which-path information is introduced in this configuration only
by the cavity mode splitting.

The concurrence is again a non-monotonic function of g already in the phonon-free case [purple curve in Fig. S2(c)].
However, the situation here is more involved than in Fig. 1(c) in the main text, since instead of a single minimum we
now have two well pronounced minima. Accounting for phonons, we observe also in this configuration a clear shift of
the curves toward higher g values with rising temperature accompanied by an overall lowering of the curves. As in
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FIG. S2. (a) Sketch of the level scheme of a QD-cavity system with finite cavity mode splitting, zero biexciton binding energy,
and degenerate excitons. (b) Concurrence as a function of the temperature for three selected values of the QD-cavity coupling.
The corresponding values obtained without phonons are drawn as straight (faded) lines with the same linetype. The inset shows
the difference ∆C between the maximum concurrence value at a finite temperature and the corresponding phonon-free value
(only positive values are shown) normalized by the latter as a function of the biexciton binding energy EB for g2 = 70 µeV.
In the case of a finite EB , the cavity modes are adjusted such that their mean energy coincides with the degenerate exciton
energy ~ωX : ~ωc

H/V = ~ωX ± δc/2. (c) Concurrence as a function of the QD-cavity coupling for three temperatures together
with the phonon-free result. The values of the QD-cavity coupling used in (b) are marked in (c) by vertical lines. Parameters:
δc = 0.07 meV, κ = 0.05 ps−1. All other parameters are the same as in Fig. 1 in the main text.

Fig. 1(c) in the main text also here the shift caused by the renormalization is the dominant phonon-induced effect and
consequently the temperature dependence of the concurrence depends crucially on the chosen value of g [cf. Fig. S2(b)].
For example, for g = 45µeV we find the usually encountered monotonic decrease with rising temperature. In contrast,
for g = 70µeV and g = 100µeV the concurrence exhibits different non-monotonic temperature dependences. In both
cases extended ranges for g are found where the concurrence reaches values above the corresponding phonon-free level.
This demonstrates that the phenomenon of phonon-induced entanglement as described in the main text can also be
observed in a configuration where the cavity modes are split while the excitons are degenerate and the biexciton
binding is weak. Again, similar to the configuration discussed in the main text, this effect occurs for a finite range of
biexciton binding energies [cf. inset panel (b)]. Here, the effect can be observed even when the binding energy is a
few times the value of the splitting δc.

DEPENDENCE ON THE BIEXCITON BINDING ENERGY

The effect of phonon-induced enhancement of photon entanglement does not only occur in the singular case of
a vanishing biexciton binding energy but rather for a finite range of binding energies depending on the respective
splitting. It is worthwhile to note that apart from the natural occurrence of QDs with small biexciton binding energies,
the biexciton binding energy can also be tuned into this regime, e.g., by the application of an electrical field [13] or
a biaxial strain [14, 15], or both combined [16]. In the main text, the case of a vanishing and a finite (large) EB
value are discussed in detail and presented in Figs. 1 and 2 for a quantum dot-cavity system with finite fine-structure
splitting and two photon resonant cavity modes. While in the first case phonon-induced enhancement can be observed
this effect does not occur in the latter one. A continuous transition between these two types of behavior is expected.

Figure S3 shows the dependence on the biexciton binding energy EB of the difference ∆C between the maximum
concurrence value at a finite temperature and the corresponding phonon-free value normalized by the latter one.
Figure S3(a) displays results for the situation considered in the main text where the cavity modes are degenerate
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FIG. S3. Difference ∆C between the maximum concurrence value at a finite temperature and the corresponding phonon-free
value normalized by the latter as a function of the biexciton binding energy EB . (a) Results for a QD-cavity system with
two-photon resonant cavity modes and cavity loss rate κ = 0.025 ps−1 for four different combinations of finite fine-structure
splittings δ and light-matter coupling strengths g. Corresponding level schemes can be found in the main text in Figs. 1 and 2.
(b) Results for a QD-cavity system with degenerate excitons and cavity loss rate κ = 0.05 ps−1 for three different combinations
of finite cavity mode splittings δc and light-matter coupling strengths g. The corresponding level scheme for a vanishing EB

can be found in Fig. S2. In the case of a finite binding energy, the cavity modes are adjusted such that their mean energy
coincides with the degenerate exciton energy ~ωX : ~ωc

H/V = ~ωX ± δc/2.

and the excitons exhibit a finite fine-structure splitting δ, while the curves in Figure S3(b) are obtained for the
case described in the previous section where the excitons are degenerate and the cavity modes are split. Different
combinations of exciton (cavity mode) splittings δ (δc) and coupling strengths g are considered. Indeed, in both
QD-cavity configurations discussed in the main text and the supplement, which exhibit phonon-induced enhancement
of photon entanglement, this effect occurs for a finite range of binding energies. For both configurations this range is
roughly proportional to the respective splitting δ or δc. In the case of a QD-system with a finite fine-structure splitting
δ and two-photon resonant cavity modes, the effect can be seen until the binding energy reaches approximately half
the value of the splitting δ [cf. Fig. S3(a)].

For the second QD-cavity configuration [Fig. S3(b), degenerate exciton energies, finite cavity mode splitting δc] the
situation is more involved since ∆C turns out to depend non-monotonically on EB . Nevertheless, also here a finite
range of binding energies exists where phonon-induced enhancement of photon entanglement can be found. Again
this range is roughly proportional to the splitting δc. For some combinations of g and δc, the value of ∆C first drops
below zero and then phonon-induced entanglement enhancement is recovered at higher values of EB , while for other
combinations the minimum of ∆C as a function of EB has a positive value. In all cases, phonon-induced enhancement
is observed in the EB range from zero to at least δc. After ∆C recovers from its minimum, positive values, indicating
the entanglement enhancement compared with the phonon-free case, are found for binding energies approximately up
to 2.5 - 4 times the value of the splitting δc.

PHENOMENOLOGICAL DEPHASING RATE MODEL

A simple standard approximate method used to model pure dephasing is the introduction of phenomenological
pure dephasing rates [5, 17]. Instead of the exact treatment of the continuum of longitudinal acoustic phonons, a
Lindblad-type operator is introduced. Here, we follow the methodology of Ref. [5] and use the operator

LPD [ρ̂] = −1

2

∑

χ,χ′

χ 6=χ′

γPD |χ〉〈χ|ρ̂|χ′〉〈χ′|, (S6)

with χ, χ′ ∈ {G,XH , XV , B} and a pure dephasing rate γPD. Typical values for γPD correspond to several µeV.
In Fig. S4, results are shown for the two configurations discussed in Fig. 1 of the main text and Fig. S2, where
phonon-induced enhancement of photon entanglement has been found in simulations fully accounting for phonons on
a microscopic level.
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FIG. S4. Results obtained using a phenomenological pure dephasing rate model with different rates γPD instead of the exact
path-integral method. (a) Results for the configuration discussed in Fig. 1 in the main text with parameters δ = 0.1 meV,
κ = 0.025 ps−1. (b) Results for the configuration discussed in Fig. S2 with parameters δc = 0.07 meV, κ = 0.05 ps−1.

Clearly, the effect of phonon-enhanced entanglement does not occur, as the introduction of a pure dephasing rate
just leads to a reduction of the concurrence. Furthermore, when one models a higher temperature with a higher
loss rate γPD, an increasing temperature results always in a decreasing degree of entanglement. Thus, the simple
phenomenological rate approximation is not sufficient to model the system dynamics in this situation. This finding
further strengthens the explanation of the effect given in the main text where we concluded that the phonon-induced
enhancement appears because of a renormalization of the light-matter coupling g. This renormalization is, however,
absent in the simple rate model and, consequently, the phonon-induced enhancement of photon entanglement does
not appear.

NUMERICAL REMARKS

We use for our simulations a recently developed real-time path-integral algorithm to determine the temporal evo-
lution of the reduced density matrix. Two major achievements enable us to obtain numerically complete results
for the dynamics of the biexciton cascade coupled to a continuum of longitudinal acoustic phonons. The first is a
translation of concepts originally developed in Hilbert space [18, 19] to Liouville space [20], which allows us to account
for non-Hamiltonian contributions, like the Lindblad-type losses, to the dynamics. The second is a reformulation of
the algorithm to perform the sum over paths. Instead of the widely used iteration scheme worked out by Makri and
Makarov [18, 19] for the so called augmented density matrix, only a partially summed augmented density matrix is
iterated. A detailed derivation and description of this improved iteration scheme can be found in the supplement of
Ref. [21]. For systems like quantum dots coupled to cavities and longitudinal acoustic phonons, the numerical demand
is reduced by many orders of magnitude in this way. Two parameters, the step size of the time discretization ∆t and
the number of time steps Nmem used to scan the finite memory, determine the quality of the numerical results. These
parameters can be well controlled and we speak of numerically complete results when no visible change of the results
occurs when further decreasing ∆t or increasing Nmem. For the QD-cavity systems considered in the present paper,
numerically converged results are obtained for ∆t = 0.5 ps and Nmem = 7.
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We have simulated the time evolution of the photon number distribution in a semiconductor quantum-
dot–microcavity system driven by chirped laser pulses and compare with unchirped results. When phonon
interactions with the dot are disregarded—thus corresponding to the limit of atomic cavity systems—chirped
pulses generate photon number distributions that change their shape drastically in the course of time. Phonons
have a strong and qualitative impact on the photon statistics. The asymmetry between phonon absorption and
emission destroys the symmetry of the photon distributions obtained for positive and negative chirps. While
for negative chirps transient distributions resembling thermal ones are observed, for positive chirps the photon
number distribution still resembles its phonon-free counterpart but with overall smoother shapes. In sharp
contrast, using unchirped pulses of the same pulse area and duration wave packets are found that move up
and down the Jaynes-Cummings ladder with a bell shape that changes little in time. For shorter pulses and lower
driving strength Rabi-like oscillations occur between low photon number states. For all considered excitation
conditions transitions between sub- and super-Poissonian statistics are found at certain times. For resonant
driving with low intensity the Mandel parameter oscillates and is mostly negative, which indicates a nonclassical
state in the cavity field. Finally, we show that it is possible that the Mandel parameter dynamically approaches
zero and still the photon distribution exhibits two maxima and thus is far from being a Poissonian.

DOI: 10.1103/PhysRevB.101.205304

I. INTRODUCTION

Semiconductor quantum-dot–cavity (QDC) systems con-
tinue to raise attention as highly integrable on-demand emit-
ters of nonclassical states of light. In particular, QDCs have
proven to be rather successful providing, e.g., reliable on-
demand high quality single photon sources [1–10] as well as
sources for entangled photon pairs [11–18]. Clearly, QDCs
support a much larger class of excitations when higher mean
photon numbers are reached. The additional degrees of free-
dom provided by higher number photon states obviously allow
for a rich variety of dynamical scenarios and may open the
way to new kinds of applications such as, e.g., the encoding of
quantum information in the photon number state distribution.
These possibilities are, however, far from being explored.

Often, the first step to characterize systems with photon
distributions ranging up to higher photon numbers is to record
a few characteristic numbers such as the mean photon number
[19] and/or the Mandel parameter [20]. In simple cases, the
mean photon number is indeed enough to capture the whole
information about the photon distribution even when the latter
is time dependent. This applies in particular when photons
are generated by classically driving an empty cavity without
a quantum dot (QD) where the photonic system is at all times
in a coherent state and thus the distribution is a Poissonian
[21,22], i.e., in this case the photonic excitation is always as
close as possible to a classical light field and thus nonclassical

states cannot be reached. Moreover, although the mean photon
number varies in time, the photon distribution keeps its shape
at all times.

The situation is different when a system with few discrete
levels near resonance to a cavity mode such as an atom
or a quantum dot is placed inside the cavity. When driving
transitions between these discrete levels deviations from the
coherent state may occur as is evident, e.g., by monitoring the
Mandel parameter,

Q(t ) = (〈�n2〉 − 〈n〉)/〈n〉. (1)

Q(t ) measures the deviation of the mean-square fluctuation
from the mean photon number normalized to the latter.
Therefore, Q vanishes for a Poisson distribution. A posi-
tive Q indicates a super-Poissonian distribution with larger
fluctuations than in a coherent state with the same mean
photon number while negative Q values correspond to the
sub-Poissonian regime which is known to have no classical
analog [23]. Indeed, deviations from the coherent state have
been reported for the stationary distribution obtained in an
atomic cavity with constant driving where different signs of
Q have been found for different ratios between cavity loss and
radiative decay rates [24]. In Ref. [25] it has been shown that
the statistics of photons emitted from the exciton-biexciton
system of a QD can be steered from sub- to the super-
Poissonian by varying the biexciton binding energy, the pump
strength or the temperature [26]. Although the experiments in
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Ref. [25] have been performed on QDs without cavity, the
number of modes in the theoretical modeling was restricted
to two which corresponds to the situation in a QDC. There-
fore, the results should also apply to QDCs. Simulations for
a pulsed excitation of a QDC indicate that Q can exhibit
oscillations and change its sign repeatedly in time [27].

It is clear, however, that in general the photon number
distribution contains much more detailed information than
captured by the mean photon number or the Mandel param-
eter. Recently, calculations of the stationary photon number
distribution in a constantly driven QDC revealed a strong
qualitative influence of phonons on the shape of the dis-
tribution [28,29]. While without phonons distributions with
many different shapes were found for different detunings, the
stationary distribution with phonons turned out to be close to
a thermal state with a high effective temperature. Note that the
case without phonons describes, e.g., a cavity with a trapped
atom.

Advances in measuring techniques have demonstrated pos-
sibilities for observing directly the photon number resolved
distributions in various systems without the necessity to per-
form quantum tomography to reconstruct the entire state [30],
ranging from bimodal microlasers [31] over QDs [32,33] to
exciton-polariton condensates [34]. Furthermore, a novel al-
gorithm for data evaluation free of systematic errors to obtain
number distributions has been successfully employed [35].
These achievements could pave the way to novel applications
where easy access to information encoded in the photon
number distribution is needed.

The focus of the present paper is on the transient behavior
of the photon number distribution in a QDC system driven
by chirped pulses in comparison to the unchirped case. Our
most striking result is the finding that the shape of the num-
ber distribution changes dynamically when driving the QDC
with chirped pulses. In sharp contrast, for sufficiently strong
unchriped excitations a wave packet which keeps a bell shape
for all times moves up and down the Jaynes-Cummings ladder.
Phonons have noticeable effects on the photon statistics for all
excitation conditions that we compare. Notably, for chirped
excitation the phonon impact induces qualitative changes of
the shape of the distribution in particular for negative chirps.

II. THEORY

A. Model and methods

We study a self-assembled QD, e.g., GaAs/In(Ga)As, with
strong electronic confinement, such that only the lowest con-
duction and the highest valence band states need to be taken
into account. Furthermore, we consider only situations where
the system is well represented by a two-level model. The latter
applies, e.g., for resonant driving of the exciton by circularly
polarized light when the fine-structure splitting is negligible
or when all other states such as the biexciton are sufficiently
far from resonance. Then the Hamiltonian for the laser driven
dot reads

HDL = −h̄�ωLX|X 〉〈X | − h̄

2
f (t )

× (
e−iϕ(t )|X 〉〈G| + eiϕ(t )|G〉〈X |), (2)

where the detuning between the exciton and central laser
frequency �ωLX := ωL − ωX is introduced. Here, the ground
state |G〉 is chosen as the zero of the energy scale. Note that the
usual dipole and rotating wave approximations are employed
and the Hamiltonian is written down in a frame co-rotating
with the laser frequency ωL. The real amplitude f (t ) and the
phase ϕ(t ) are related to the instantaneous Rabi frequency
�(t ) by

�(t ) := 2M0 · E(t ) = f (t ) e−i(ωLt+ϕ(t )), (3)

where M0 is the dipole matrix element of the transition
between the QD ground |G〉 and exciton state |X 〉 and E is
the positive frequency part of the laser field.

To enhance the coupling between the QD and the electro-
magnetic field, the dot can be placed into a microcavity. We
account for a single cavity mode with frequency ωC far from
the electromagnetic continuum and a QD coupled to that mode
close to resonance via

HC = h̄�ωCLa†a + h̄g
(
a†|G〉〈X | + a|X 〉〈G|), (4)

where the cavity photons are created (annihilated) by the
bosonic operator a† (a) and are detuned by �ωCL := ωC − ωL

from the laser frequency. The QD is coupled to the cavity with
a strength of h̄g.

The subsystem of interest comprising the dot laser and the
cavity Hamiltonian HDL and HC, respectively, is not an ideal
few-level system, since it is embedded into the surrounding
solid-state matrix. Even at cryogenic temperatures of a few
Kelvin, the QD exciton is prone to the coupling to phonons.
In strongly confined excitonic systems, the most important
phononic contribution usually results from the deformation
potential coupling to longitudinal acoustic (LA) phonons and
is of the elastic pure dephasing type [36–39],

HPh = h̄
∑

q

ωqb†
qbq + h̄

∑
q

(
γ X

q b†
q + γ X∗

q bq
)|X 〉〈X |, (5)

where the bosonic operator b†
q (bq) creates (destroys) phonons

with frequency ωq. γ X
q denotes the coupling constant between

the exciton state and the bosonic mode labeled by its wave
vector q which is adequate for bulk phonons. Here, we use
the fact that in GaAs/In(Ga)As the lattice properties of the
dot and its surroundings are similar, such that phonon confine-
ment is negligible. Other QD-phonon interaction mechanisms
like, e.g., the piezoelectric coupling to LA and transverse
acoustic (TA) phonons can become important in strongly polar
crystals such as, e.g., GaN-based QDs [40,41], but are of
minor importance for GaAs-type structures.

Finally, we account for Markovian loss processes by phe-
nomenological decay rates for the radiative decay and cavity
losses, respectively, that are incorporated into the model as
Lindblad-type superoperators L|G〉〈X |,γ • +La,κ• with

LO,�• = �

(
O • O† − 1

2
{•, O†O}+

)
, (6)

where {·, ·}+ denotes the anticommutator. O is a system
operator and � the decay rate of the associated loss process,
i.e., in our case γ stands for the radiative decay rate while κ is
the cavity loss rate.
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The dynamical equation to be solved is the Liouville-von
Neumann equation for the density matrix,

∂

∂t
ρ = − i

h̄
{H, ρ}− + L|G〉〈X |,γ ρ + La,κρ, (7)

with the total Hamiltonian H = HDL + HC + HPh and {·, ·}−
denotes the commutator.

We employ a path-integral formalism for simulating the
dynamics in the above-defined model in a numerically com-
plete fashion. By tracing out the phonon degrees of freedom
analytically, a non-Markovian memory kernel decaying on a
time scale of a few picoseconds is obtained that manifests
in experiments as, e.g., non-Lorentzian line shapes in linear
and nonlinear spectra [37,38,42,43] or in characteristic de-
pendencies of the phonon-induced damping of Rabi rotations
[44–47]. Therefore, this memory cannot be neglected in cal-
culating the QD dynamics which takes place on a similar
time scale. We call a numerical solution complete if a finer
time discretization or a longer cutoff of the phonon-induced
memory kernel does not change the results noticeably.

Most current implementations of the real-time path-
integral approach are based on the pioneering work of Makri
and Makarov [48,49], who introduced an iterative scheme for
the augmented density matrix of the subsystem of interest. We
are using an extension of this scheme that allows the inclusion
of non-Hamiltonian Lindblad-type contributions into the path-
integral algorithm without the loss of precision with respect
to the phonon-induced part of the dynamics by formulating
the iterative scheme not in a Hilbert, but a Liouville space
[50]. In the present study, the system that couples to the
phonons is represented by a large number of basis states of
the form |G, n〉 and |X, n〉 where n denotes the photon number
and G or X indicates whether the dot is in its ground or
excited state. A numerically complete study of such systems
is currently impossible with the Makri-Makarov algorithm
due to the extreme growth of the numerical demand with
rising number of system states. Nevertheless, we are able to
present numerically complete results because we are using a
recently developed reformulation of the algorithm that iterates
a partially summed augmented density matrix [28]. Note that
this reformulation of the path-integral algorithm does not
introduce any additional approximations. For details on the
methods, consider the supplement of Ref. [28]. The photon
number distribution is obtained by taking the corresponding
matrix element of the subsystem’s reduced density operator
ρ̄ = TrPh[ρ], with TrPh denoting the trace over the phonon
degrees of freedom,

Pn(t ) =
∑

ν=G,X

〈ν, n|ρ̄(t )|ν, n〉. (8)

B. Chirped pulses and laser-dressed states

In order to generate a chirped pulse one usually starts with
a Gaussian pulse with an envelope and phase:

f0(t ) = �√
2πσ

e− (t−t0 )2

2σ2 , (9)

ϕ(t ) = const., (10)

where � denotes the pulse area and σ determines the duration
corresponding to a full width at half maximum (FWHM) of
FWHM = 2

√
2 ln(2)σ and t0 marks the time of the pulse

maximum. We shall assume in the following a resonant ex-
citation where ϕ(t ) = 0 in Eq. (3) for an unchirped pulse.
We note in passing that also other pulse shapes are possible
as a starting point for the generation of chirped pulses. In
particular, secant hyperbolic pulses may have advantages in
certain circumstances [51].

Passing the initial pulse in Eq. (9) through a Gaussian chirp
filter [52] yields a chirped pulse with envelope and phase:

fchirp(t ) = �chirp√
2πσchirp

e
− (t−t0 )2

2σ2
chirp , (11)

ϕ(t ) = a (t − t0)2/2, (12)

pulse area �chirp = �
√

σchirp/σ and duration σchirp =√
(α2/σ 2) + σ 2. The phase in Eq. (3) has acquired a quadratic

time dependence, which corresponds to an instantaneous laser
frequency ωL + ϕ̇ = ωL + a (t − t0) that changes linearly in
time and for ωL = ωX crosses the exciton resonance at the
pulse maximum t = t0. The strength of the chirp is commonly
expressed in terms of the chirp parameter α which is related
to the coefficient a in Eq. (12) by a = α/(α2 + σ 4). Note
that the pulse area and in particular the pulse length increases
drastically when chirps are introduced (cf. the definition of
σchirp).

III. NUMERICAL RESULTS ON TRANSIENT PHOTON
STATISTICS

For the numerical calculations, we assume a QD with 6-nm
diameter and standard GaAs parameters [28,41]. The cavity is
coupled to the QD exciton with a strength of h̄g = 0.1 meV
while it is on resonance, i.e., �ωCX := ωC − ωX = 0. The
cavity losses are taken to be h̄κ = 6.6 μeV, which corre-
sponds to a quality factor ≈105 assuming a mode frequency
of h̄ωC = 1.5 eV. The radiative decay rate of the QD exciton
is set to h̄γ = 2 μeV.

A. The chirp-free situation

Let us first concentrate on the chirp-free case. Figures 1(a)
and 1(c) display photon number distributions at different times
for a QDC driven by an unchirped Gaussian pulse with a pulse
area of 5π and a duration of 2.4 ps FWHM. Figure 1(a) shows
results without phonons while in Fig. 1(c) the corresponding
simulations with phonons are depicted assuming the phonons
before the pulse to be in thermal equilibrium at a temperature
of T = 4 K. The initial state for the cavity photons is taken
to be the vacuum, i.e., the n = 0 Fock state and the QD is
initially in the ground state.

As expected the photons stay in the vacuum state until the
arrival of the pulse. At the end of the 5π pulse (cf. black
markers in Fig. 1) the QD is in the exciton state and the
resonant coupling to the cavity initiates vacuum Rabi oscilla-
tions [53–57], i.e., oscillations between the |X, n = 0〉 and the
|G, n = 1〉 states. This is reflected in the photon distribution
as oscillations between the n = 0 and n = 1 Fock states and
results in damped oscillations of the mean photon number
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FIG. 1. Transient photon number distributions for laser excitations with unchirped pulses with (a) and (c) pulse area � = 5π and duration
FWHM=2.4 ps, (b) and (d) pulse area � = 31.63π and duration FWHM = 94.22 ps. Panels (c) and (d) display results accounting for phonons
that are initially at equilibrium at a temperature of T = 4 K while the corresponding phonon-free results are shown in (a) and (b). The pulse
has its maximum at t = t0. Black markers indicate the FWHM of the pulse.

between zero and and a maximal amplitude that due to losses
and phonon effects is below one [cf. orange curve in Fig. 3(a)].
Quantitatively, a small occupation of the two-photon state |2〉
is observed, seen, e.g., for t − t0 = 10 ps in Figs. 1(a) and 1(c).
The reason lies in the re-excitation of the QD during the same
pulse, whereby effectively two photons can be put into the
single cavity mode.

The phonon impact on Rabi-type oscillations in a two-level
system has been extensively studied [29,44–47,58–64] and
shall therefore not be analyzed here in detail. We just note
that the main effects are a phonon-induced damping, which
depends on the driving strength, and a renormalization of
the Rabi frequency. The renormalization of g is reflected in
Figs. 1(a) and 1(c) by slightly different oscillation frequen-
cies. The damping seen in the orange curve in Fig. 3(a) is the
result of the combined effects of phonons, cavity losses, and
radiative decay.

For a fair comparison between unchirped and chirped
pulses, recall that the application of a Gaussian chirp filter in-
volves besides the time-dependent variation of the phase ϕ(t )
in Eq. (12) also a considerable increase of the pulse duration
and of the pulse area. Therefore, we show in Figs. 1(b) and
1(d) the photon distribution with and without the influence of
phonons for a pulse with pulse area � = 31.63π and duration

FWHM = 94.22 ps, which corresponds to the application of a
filter with an effective value of |α| = 40 ps2 in Eq. (11) but
keeping the phase ϕ(t ) = 0 constant. Most strikingly, with
this driving there are no traces of vacuum Rabi oscillations
visible. Instead, a wave-packet-type dynamics sets in, where
a bell-shaped distribution is found for all times. The mean
photon number rises monotonically in time to values n ≈ 12
[note that the blue curve in Fig. 3(a) is scaled down by a factor
of 5 for better visibility] and subsequently falls back to zero
after the pulse has vanished.

B. Finite chirps

Figure 2 displays transient photon number distributions
obtained for chirped pulses that are generated by passing
the Gaussian pulse used in Figs. 1(a) and 1(c) through a
chirp filter with α = ±40 ps2 [(a) and (c) α = −40 ps2,
(b) and (d) α = +40 ps2]. The upper panels correspond to
simulations without phonons while for the lower panels the
interaction with phonons has been included. Note that the
pulses used in Fig. 2 have the same pulse area and duration as
the unchirped pulses used in Figs. 1(b) and 1(d) which allows
us to compare excitation conditions where the only difference
is the frequency modulation.
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FIG. 2. Transient photon number distributions for laser excitations with chirped pulses with pulse area and FWHM before the chirp filter
of � = 5π and FWHM=2.4 ps, i.e., �chirp = 31.63π and duration FWHMchirp = 94.22 ps for |α| = 40 ps2. (a) and (c) Calculated with chirp
parameter α = −40 ps2, (b) and (d) α = +40 ps2. (c) and (d) Displayed are results accounting for phonons that are initially at equilibrium at
a temperature of T = 4 K while the corresponding phonon-free results are shown in (a) and (b). The pulse has its maximum at t = t0. Black
markers indicate the FWHM of the pulse after the chirp filter.

FIG. 3. The time-dependent (a) mean photon number and (b) Mandel parameter Q(t ) = (〈�n2〉 − 〈n〉)/〈n〉 for the cases indicated by the
labels. All curves are calculated with phonons initially at T = 4 K, except for the gray curves which correspond to the phonon-free case. The
blue curve is scaled down by a factor of 5 for better visibility. The inset in (b) corresponds to a zoomed-in scale.
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In the phonon-free case identical distributions are obtained
for positive and negative chirp [cf. Figs. 2(a) and 2(b)]. This
symmetry is removed when phonons are taken into account
[cf. Figs. 2(c) and 2(d)]. In contrast to the unchirped case with
the same pulse area and duration in Figs. 1(b) and 1(d), the
photon number is close to zero until the pulse maximum is
reached, which can be explained by noting that for chirped
pulses the instantaneous laser frequency is strongly detuned
from the QD resonance for times away from the pulse maxi-
mum. The most striking difference compared with Figs. 1(b)
and 1(d) is, however, that the photon distributions in Fig. 2
significantly change their shape in time. The distributions
found in the phonon free case have at early times after the
pulse maximum a bell shape with a single maximum and
transform into a bimodal distribution with two well-separated
bell-shaped contributions at later times [cf. t − t0 = 20 ps
in Fig. 2(a)]. Subsequently, at times t − t0 ≈ 30−50 ps the
distribution still has two peaks but looks rather jagged having
little resemblance with bell-shaped distributions. Eventually,
at later times only a single maximum is found which appears
at a finite photon number or at zero, depending on time.

Phonons change the situation qualitatively for negative
chirp [cf. Fig. 2(c)], where now the photon number distri-
bution has a single maximum at n = 0 for all times. The
shape of the transient distribution resembles thermal photon
occupations, which due to mean photon numbers around n =
2 [cf. Fig. 3(a)] corresponds to an effective temperature above
Teff ≈ 40 000 K for photon energies h̄ωC ≈ 1.5 eV. A similar
impact of phonons on the photon number distribution has been
reported previously for the stationary distribution found at
long times for permanent driving [28]. The phonon impact
for positive chirp is less dramatic [cf. Fig. 2(d)]. As in the
phonon-free case, there are still times where the distribution is
bi-modal while at other times only a single maximum is found.
Overall, the irregular looking shape appearing at certain times
in Figs. 2(a) and 2(b) is smoothened. Moreover, there is a
tendency to build up a maximum near n = 0.

Further differences between the number distributions in
Figs. 1 and 2 are revealed by looking at the time evolution of
the corresponding Mandel parameters Q(t ) in Fig. 3(b). For
a Fock state the number fluctuation disappears, leading to a
negative Mandel parameter, except for the n = 0 Fock state,
where the Mandel parameter approaches an expression of the
form zero divided by zero. We see from the orange curves in
Fig. 3 that for weakly driven unchirped pulses the damped
oscillation of the mean photon number between 0 and at
most 1 is accompanied by damped oscillations of the Mandel
parameter ranging down to almost −1 and up to essentially 0.
The negative values of the minima correspond to times where
the system is close to the n = 1 Fock state. If the dynamics
would exclusively involve states with photon numbers 0 or 1
such that only P0 and P1 are different from zero, it is easy to
show that for all times, where P1 �= 0, the Mandel parameter
is Q(t ) = −〈n〉. Therefore, Q should approach 0 when the
n = 0 Fock state is approached. We see, however, from the
orange curve in Fig. 3(b) that the first maxima of the Mandel
parameter Q are a bit above 0, indicating small admixtures of
higher number states.

For higher pulse areas Q is positive for most of the time for
chirped as well as for unchirped pulses. Interestingly, although

the bell-shaped distributions in Figs. 1(b) and 1(d) at first
glance resemble much more Poissonian distributions than the
somehow irregular ones found for chirped pulses in Figs. 2(b)
and 2(d) their deviation from a Poissonian as measured by the
Mandel parameter is much larger than for chirped pulses [note
that the blue curve in Fig. 3(b) is scaled down by a factor of
5]. But most remarkably, in the calculation with finite chirp
without phonons [cf. the gray line in Fig. 3(b)] the Mandel
parameter decays extremely fast after its initial rise to positive
values compared with the other situations considered. Most
notably, already at around ∼40 ps after the pulse maximum it
has dropped close to zero. In sharp contrast to the common
interpretation that a Mandel parameter near zero implies a
distribution with a shape close to a Poissonian, Fig. 2(b) shows
a jagged distribution with two maxima at ∼40 ps after the
pulse maximum. Therefore, using the Mandel parameter as
a measure for the deviation from a Poisonian is not valid in all
physically relevant situations.

We further note that the Mandel parameter calculated for
all excitation conditions studied in this paper changes its sign
during the course of time. Without chirp and low intensities
(orange curve) this happens near the first maxima of the Q
oscillations, as discussed above, but also for higher driving
strength (blue curve) a sign change occurs indicating that
before the pulse maximum is reached the photon distribution
is sub-Poissonian and switches at the pulse maximum to
super-Poissonian. Also for the chirped excitations Q exhibits
sign changes as revealed by the inset in Fig. 3(b). Actually,
the Mandel parameter calculated for high pulse areas falls
below zero before approaching its asymptotic value of zero
from below for chirped as well as for unchirped excitations.
Indeed, also the blue curve in Fig. 3(b) falls below zero at
t − t0 = 1090 ps (not seen in the plotted range). This sign
change of Q shortly before cavity losses have relaxed the
photon distribution to the empty cavity, can be understood
as follows. The maximal photon numbers that are transiently
reached for high pulse areas are well above one. The cavity
losses remove photons from the cavity such that eventually
the limit of n = 0 with zero fluctuations is reached. However,
since the cavity losses for a state with n photons scale like
∼n, the relaxation from states with n > 1 to lower states is
faster than the final relaxation from the n = 1 to the n = 0
states. Therefore, before the final relaxation is completed the
photons preferably occupy the n = 1 state which results in
a negative Mandel parameter before the asymptotic value of
zero is reached. Note that this effect presumes only κ �= 0
and thus should be robust with respect to variations of this
parameter.

Finally, we note that Q exhibits small amplitude oscilla-
tions for chirped pulses which are absent in the unchirped
case. A similar but less pronounced tendency is seen in the
mean photon number.

C. Interpretation in terms of laser-dressed states

A popular application of driving QDs with chirped laser
pulses is the robust preparation of exciton or biexciton
states by invoking an adiabatic rapid passage (ARP) process
[65–75]. ARP exploits the adiabatic theorem of quantum me-
chanics which predicts a time evolution through instantaneous
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FIG. 4. Time evolution of the upper and lower laser-dressed state energies with respect to the excitation pulse maximum at t = t0. While
for negative chirps (a) phonon emission is probable (represented by black arrows), for positive chirps (b) phonon absorption is suppressed at
low temperatures, which is indicated by the dashed arrows. Green curly arrows indicate transitions between laser-dressed states due to the QD
cavity feeding.

eigenstates (dressed states) of the system provided the external
driving fulfills the restrictions of the adiabatic regime [76].
In order to comply with these restrictions for a two-level
system driven by Gaussian chirped pulses with a frequency
modulation given by Eq. (12), it is advisable to transform the
QD-laser Hamiltonian HDL in Eq. (13) to a frame co-rotating
with the phase ϕ to get rid of a possibly rapidly changing
coupling. The transformed Hamiltonian reads

H̃DL = − h̄(�ωLX + a (t − t0))|X 〉〈X |

− h̄

2
f (t )(|X 〉〈G| + |G〉〈X |). (13)

The laser-dressed states can now be defined as the instanta-
neous eigenstates of H̃DL. The corresponding eigenenergies
are plotted in Fig. 4, where the left panel corresponds to a
negative chirp while the result for positive chirp is shown in
the right panel. The distinctive feature of ARP is that when the
system is in the ground state |G〉 long before the pulse (i.e.,
for t → −∞) it will evolve adiabatically towards the exciton
state |X 〉 after the pulse (i.e., for t → +∞) independent of
the sign of the chirp. However, it is important to note that
the evolution proceeds along the lower (upper) branch for
positive (negative) chirp. This affects in particular the impact
of phonons. In general phonons can efficiently induce transi-
tions between the two branches. However, at low temperatures
phonon absorption is strongly suppressed and phonon emis-
sion can invoke only transitions from the upper to the lower
branch (cf. the black arrows in Fig. 4). That is why phonons
have little effects on the ARP dynamics for positive chirp
while for negative chirp the ARP-based exciton preparation
is strongly disturbed [68,70,73,74]. In order to preserve an
efficient exciton preparation also at negative chirps, it has been
recently demonstrated that high pulse areas can be used since
this effectively decouples the phonons from the electronic
system [29,75].

When also a cavity is coupled to the QD, then the cou-
pling leads to Rabi-type rotations between states |X, n〉 and

|G, n + 1〉 with different numbers n of cavity photons. In
particular for times when the laser is far off-resonant and
the laser-dressed states are close to the undressed states, the
effect of coupling the QD to a cavity can be understood as
inducing a transition between the dressed states similar to
the coupling to phonons. To be a bit more specific, when the
system is in the exciton state the QD-cavity coupling leads to a
feeding of the cavity by an additional photon accompanied by
a transition from the |X 〉-like branch to the |G〉-like branch (cf.
the green curly arrows in Fig. 4). At early times, the reverse
process, where one photon disappears from the cavity while
transferring the system from the ground to the exciton state is
suppressed since there are initially no photons in the cavity.

We shall now try to interpret the pertinent features of the
photon dynamics in some more detail using the simplified
picture where the system evolves adiabatically through the
laser-dressed states in Fig. 4 while phonons and cavity feeding
induce transitions between these states.

In the case of a negative chirp [cf. Fig. 4(a)] transitions
form the upper branch to the lower branch of the laser-dressed
states accompanied by phonon emission are possible before
and after the pulse maximum at t = t0. Thus, phonons should
have a profound impact on the resulting photon statistics dur-
ing the entire pulse. In fact, this explains why the distribution
is close to a thermal one at all times [cf. Fig. 2(c)]. For times
before the pulse reaches its maximum, cavity feeding can
occur form the excitonlike lower branch to the upper branch,
which has a large ground-state contribution. Subsequently, the
system can again decay to the lower branch by phonon emis-
sion followed by another cavity feeding process back into the
upper branch and so on. Because of this constructive interplay
between phonon and cavity feeding processes, higher photon
states can be reached compared with the phonon-free situation
for t � t0 [cf. Figs. 2(a) and 2(c)]. In the time interval shortly
after the pulse maximum the upper branch becomes the state
with the excitonlike characteristics and cavity feeding now
takes place from the upper branch into the ground-state-like
lower branch of the laser-dressed states. Thus, after the pulse
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FIG. 5. (a) Linear absorption spectrum of the QDC system. (b) Time-dependent instantaneous frequency, blue (red) for positive (negative)
chirp. �t marks the time elapsed between the crossing of the two resonances. (c) and (d) Time evolution of the occupations of the lowest
excited eigenstates of the QDC system [(c) for positive and (d) for negative chirp]. (e) and (f) Photon number distribution at t − t0 = 20 ps
(gray); red, accounting only for |n,+〉 (e) or |n, −〉 (f) states. Here, only phonon-free results are shown.

maximum has appeared phonon and cavity feeding processes
are now in direct competition with each other. Therefore,
compared with the phonon-free situation, the mean photon
number should be reduced. Altogether, for negative chirp, the
phonon impact on the photon distributions is visible at all
times leading to nearly thermal distributions. At times before
the pulse maximum the interaction with phonons increases
the mean photon number because of a constructive interplay
between phonon and cavity feeding processes. This effect
is reversed after the pulse maximum and the mean photon
number is reduced compared with the phonon-free situation
due to the phonon interaction, as can be seen comparing the
red with the gray curve in Fig. 3(a).

The situation is different when the chirp is positive as
seen in Figs. 2(b) and 2(d). Here, a phonon influence on
the photon statistics can be hardly seen before the pulse
maximum. This can again be explained by inspection of the
branches of the laser-dressed states. Starting in the ground
state the system evolves adiabatically alongside the lower
branch. Since phonon absorption processes are suppressed at
low temperatures, transitions to the excitonlike upper state
are unlikely to occur. Also cavity feeding is hardly possible
[cf. Fig. 4(b)] and, like in the phonon-free situation, the
system remains essentially in the ground state without photons
and phonons have almost no visible effect. This observation
changes after the pulse maximum. Now, cavity feeding pro-

cesses accompanied by transitions from the excitonlike lower
branch to the upper branch appear. Subsequently, phonon
emission processes take place, resulting in a transition back to
the lower branch. Thus, now, a constructive interplay between
phonon emission and cavity feeding is possible, leading to
a thermalization of the photon distribution. Therefore, after
a transition time of a few 10 ps the distribution resembles
a thermal distribution. Because of the constructive interplay
the mean photon number is increased compared with the
phonon-free situation, as can be seen comparing the cyan with
the gray curve in Fig. 3(a). Consequently, only for a finite
time interval after the pulse maximum photon distributions
can be detected which are similar to the distributions in the
phonon-free situation and display irregular behavior or several
maxima.

D. Interpretation in terms of cavity-dressed states

Finally, we would like to explain why chirped pulse exci-
tation leads to photon number distributions where the number
of maxima changes dynamically from one to two and back
to one. To this end we have to go beyond the laser-dressed
state picture and recall that the linear absorption of a QDC
comprises two lines split by �ω = 2g [cf. Fig. 5(a)]. Thus,
the instantaneous frequency of a pulse with positive chirp first
crosses the energetically lower resonance and then, delayed
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by a time �t = 2g/a, the higher one [cf. Fig. 5(b)]. Each
crossing of these resonances initiates a wave packet climbing
up the Jaynes-Cummings ladder. This behavior is efficiently
described in the picture of the cavity-dressed states, i.e., the
eigenstates of the dot-cavity Hamiltonian, which relate to the
bare QD states by

|n,+〉 = 1√
2

(+|X, n〉 + |G, n + 1〉),

|n,−〉 = 1√
2

(−|X, n〉 + |G, n + 1〉), (14)

in the case of a resonant cavity mode ωX − ωC = 0.
Starting from the state |G, 0〉 only the two states |0,±〉

can be reached directly by the laser coupling and thus climb-
ing up the Jaynes cummings ladder one has to pass these
states. Since the corresponding eigenenergies are separated
by 2g, the transitions to these states are in resonance with
the instantaneous frequency of a chirped pulse at different
times. Indeed, Fig. 5(c) reveals that the occupation of the
lowest excited eigenstate of the QDC system |0,−〉 rises
before the upper state |0,+〉 acquires a noticeable occupation.
The maximum occupation of |0,−〉 is reached ≈ 5 ps after
the instantaneous frequency has crossed the lower resonance,
revealing the reaction time of the system. |0,+〉 is maximally
occupied delayed exactly by �t from the maximal occupation
of |0,−〉. The time ordering of the excitation of the |0,±〉
states is reversed when reversing the sign of the chirp [cf.
Fig. 5(d)] since now the upper resonance is crossed first.

The laser driving couples |n,+〉 to |n,−〉 states. However,
when the instantaneous frequency is in resonance with transi-
tions between |n,+〉 states with adjacent n then the transitions
to |n,−〉 states are off-resonant and vice versa. Thus, it can be
expected that the packets running up the Jaynes-Cummings
ladder are essentially composed either of |n,+〉 or |n,−〉
states. Indeed, this is confirmed by Figs. 5(e) and 5(f) which
displays in gray the photon number distribution at time t −
t0 = 20 ps, i.e., the time where according to Fig. 2(b) the two
maxima are most pronounced. Also shown in red are photon
number distributions calculated according to

P(±)
n =

⎧⎪⎪⎨
⎪⎪⎩

1
2 (〈n,±|ρ|n,±〉 + 〈n − 1,±|ρ|n − 1,±〉)

for n > 0,

1
2 (〈0,±|ρ|0,±〉 + 〈G, 0|ρ|G, 0〉)

for n = 0

.

(15)

Recalling that for a cavity in resonance with the QD transition
the |n,±〉 states have a probability of 1/2 for finding n or
n + 1 photons, Eq. (15) yields, for n > 0, the probability for
having n photons when accounting only for either the |n,+〉
or the |n,−〉 states. For n = 0 the contribution from |G, 0〉 is
counted by 1/2 for the plus and minus branch, since this state
can be counted as lower or upper state. We note in passing
that P(−)

n [red bars in Fig. 5(e)] does not add up with P(+)
n

[red bars in Fig. 5(f)] to the total photon number Pn (gray
bars in Fig. 5), because Pn comprises coherences between the
|n,+〉 and the |n,−〉 states in addition to their occupations.
Nevertheless, Fig. 5 reveals that the two peaks in the photon
number distribution can be attributed unambiguously either to
the upper or lower branch of the QDC states.

Altogether this explains the time evolution of the peaks
in the photon number distribution. After crossing the first
resonance the distribution has a single peak since at first only
a single packet is climbing up the Jaynes-Cumming ladder.
When the second resonance is crossed a second packet is
initiated such that at t − t0 ≈ 20 ps two well-resolved packets
are observed. Both packets move up and down the Jaynes-
Cummings ladder similar to the single wave packet observed
for the unchirped excitation in Figs. 1(b) and 1(d). Since the
decline of the first packet starts while the second is still rising,
at some time both packets overlap. Although the packets are
no longer well resolved, two maxima are still found over an
extended time period [30 ps � t − t0 � 50 ps in Fig. 2(b)]. At
later times the relaxation drives both packets to low photon
numbers such that the maxima merge and a single-peaked
distribution is recovered.

Finally, we note that for a cavity in resonance with the
QD transition the energies of the QDC eigenstates |n,±〉
are found in the rotating frame at h̄ωn,± = ±g

√
n + 1 such

that the transition energies between states with adjacent n
are all different and decrease with rising n. Therefore, the
instantaneous frequency of a chirped pulse crosses all of these
resonances at different times which is likely to contribute to
the somewhat irregular looking time evolution of the photon
number distribution found in particular in the intermediate
time interval 30 ps � t − t0 � 50 ps in Fig. 2(b).

IV. CONCLUSION

We have studied transient photon number distributions
generated in a microcavity by a pulsed excitation of an em-
bedded quantum dot. We find qualitatively different photon
distributions for chirped and unchirped pulses. Phonons have
a noticeable influence on the photon distributions in particular
for negative chirps, where the phonon coupling introduces
qualitative changes of the shape of the distribution already
at a temperature of T = 4 K. To be more specific, phonons
lead in this case to almost thermalized photon distributions at
high effective temperatures for all times. For positive chirp,
the transient distributions are far away from a thermal one for
times after the pulse maximum until about 80 ps afterwards.

For all investigated cases, we find that the Mandel param-
eter changes its sign during the time evolution of the system,
indicating the ability to enter and leave a regime of genuine
nonclassical photon statistics in the course of time. Moreover,
cases were encountered where the Mandel parameter is zero,
but the photon number distribution has two peaks and is defi-
nitely not a Poissonian. Therefore, one has to be careful when
using the Mandel parameter as a measure for the deviation
from a Poissonian distribution, as it is often done [24,77–80].
This finding underlines the necessity to carefully consider the
definition of the Mandel parameter, which indeed yields zero
for a Poissonian distribution. But the reverse implication is
obviously not true for all cases.

Our most striking result is, however, that the shape of
the photon number distribution changes significantly during
the time evolution when the system is excited by chirped
pulses. In fact, when the excitation starts to populate states
with higher photon numbers, one observes at first bell-shaped
distributions with a single maximum that increases in time.
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Subsequently, two well-separated bell-shaped contributions
develop which at later times first evolve into a single broad
feature with two peaks and eventually merge into a distri-
bution with a single peak. This is in sharp contrast to the
unchirped case, where for the same high driving strengths the
photon number distributions keep a bell shape with a single
maximum for all times. Our analysis reveals that the transient
changes of the shape of the photon distribution in the chirped
case can be attributed to subsequent crossings of resonances
of the quantum-dot–cavity system by the instantaneous fre-
quency.

We believe that our findings deepen the understanding
of the transient behavior of photon distributions in a driven
quantum-dot–cavity system and its dependence on the driving

conditions. This might pave the way to targeted manipulations
of photon distributions which could result in new types of
photonic applications in the future.
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Different Types of Photon Entanglement from a Constantly
Driven Quantum Emitter Inside a Cavity
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Bell states are the most prominent maximally entangled photon states. In a
typical four-level emitter, like a semiconductor quantum dot, the photon
states exhibit only one type of Bell state entanglement. By adding an external
driving to the emitter system, also other types of Bell state entanglement are
reachable without changing the polarization basis. In this work, it is shown
under which conditions the different types of entanglement occur and
analytical equations are given to explain these findings. Furthermore, special
points are identified, where the concurrence, being a measure for the degree
of entanglement, drops to zero, while the coherences between the two-photon
states stay strong. Results of this work pave the way to achieve a controlled
manipulation of the entanglement type in practical devices.

1. Introduction

Entanglement of quantum states is one of the most remark-
able and interesting physical effects that separate the quan-
tum mechanical from the classical world.[1,2] Entanglement
can be used to test quantum mechanical principles on a fun-
damental level, for example, by revealing violations of Bell
inequalities.[2,3] Furthermore, many fascinating and innovative
applications, for example, in quantum cryptography,[4,5] quan-
tum communication,[6,7] or quantum information processing
and computing,[8–11] rely on entangled photon pairs.
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The defining property of an entangled bi-
partite system is that its quantummechani-
cal state cannot be factorized into parts cor-
responding to the constituent subsystems.
There are four prominent states, which are
maximally entangled and known as the Bell
states, established for two entangled pho-
tons with horizontalH polarization and ver-
tical V polarization

|Φ±⟩ = 1√
2
(|HH⟩ ± |VV⟩), (1)

|Ψ±⟩ = 1√
2
(|HV⟩ ± |VH⟩). (2)

In the following we will refer to these states asΦ Bell state (ΦBS)
and ΨBS. To create maximally entangled states, one of the best
established routes is via the cascaded relaxation in few-level sys-
tems like atoms, semiconductor quantum dots or F-centers.[12–15]

In this paper, we study under which driving conditions, a four-
level emitter (FLE) placed in a microcavity produces entangled
photons being either in a ΦBS or ΨBS. We demonstrate that
a constantly driven FLE undergoes a sharp transition between
regions of high ΦBS and ΨBS entanglement for a certain two-
photon resonance. At the transition the degree of entanglement
drops to zero at a special point, because the quantum state of
the system becomes factorizable. We will further study all two-
photon resonances revealing a rich variety of different scenarios
with or without switching the type of entanglement and with or
without special points of zero concurrence.

2. Generation of Entangled States

The generation procedure of entangled photons in a typical (non-
driven) four-level system is as follows [see also Figure 1 (left)]:
In a first step the uppermost state is prepared, for example, by
using two-photon resonant or near-resonant excitation with short
coherent pulses[16–24] or adiabatic rapid passage protocols.[25–28]

The excited emitter then decays into a superposition of the two
intermediate states which can be reached from the uppermost
state by emission of either a horizontally or vertically polarized
photon. In the subsequent decay to the ground state a second
photon is emitted. Since a component in the superposition that
was created by emitting a photon with a given polarization gives
rise to a second photon having the same polarization aΦBS two-
photon state is generated. Experiments and theoretical studies
in semiconductor quantum dots demonstrated the possibility to
generate ΦBS entanglement.[3,16,29–50]
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The situation changes profoundly when the few-level system
is continuously driven by an external laser. Then additionally, it
becomes possible to createΨBS entanglement. A possible mech-
anism could be that the uppermost state emits a horizontally po-
larized photon via one path way, is then re-excited by the laser
and then emits a vertically polarized photon via the other path.
Since the sequence of emission of a pair ofH,V orV,H polarized
photons is identical, this process results in an entangled ΨBS.
Note that the states |HV⟩ and |VH⟩ are distinguished by the tem-
poral order of the H or V polarized photon emissions. Indeed,
Sánchez Muñoz et al. found that under specific conditions the
resulting two-photon state is close to the ΨBS.[51] Here we will
show that ΨBS entanglement occurs under various conditions,
but alsoΦBS entanglement is supported by a driven FLE system.
The key is adjusting the cavity modes to two-photon transitions
between the emerging laser-dressed states of the FLE. The sit-
uation of constant driving was also studied experimentally,[52,53]

where the emission spectra clearly demonstrated the transition
from the bare states toward the laser-dressed states.
To create entangled photon states in an optimal way, the FLE

is embedded inside a microcavity. By this, the coupling to the
cavity enhances the light-collection efficiency and the photon
emission rate due to the Purcell effect.[42,54] Additionally, the
energetic placement of the cavity modes can have a profound
impact on the resulting degree of entanglement. By placing
the cavity modes in resonance with a two-photon transition of
the emitter[29,32,33,47,51,55] direct two-photon emission processes
dominate over sequential single-photon ones. Since the direct
two-photon emission is much less affected by a possible which-
path information this configuration results in a high degree of
entanglement of the emitted photon pairs,[32,33] at least at low
temperature.[29]

3. Driven Four-Level Emitter

3.1. Bare State Picture

We consider an externally driven FLE embedded inside a micro-
cavity, adopting the model from ref. [51]. The FLE comprises the
energetic ground state |G⟩ at energy 0, two degenerate interme-
diate states |XH/V⟩ with energy ℏ𝜔X, and the upper state |XX⟩
at energy 2ℏ𝜔X − EB. Note that it is quite common to find the
state |XX⟩ not exactly at twice the energy of the single excited
states, which in quantum dots is known as the biexciton bind-
ing energy.[2,55,56] Optical transitions which involve the state |XH⟩
(|XV⟩) are evoked by horizontally (vertically) polarized light. Fol-
lowing ref. [51], we assume the fine-structure splitting between
these two intermediate states to be zero. A sketch of the FLE is
shown in Figure 1 (left). The Hamiltonian of the FLE reads

ĤFLE = ℏ𝜔X

(|XH⟩⟨XH| + |XV⟩⟨XV|) + (2ℏ𝜔X − EB
)|XX⟩⟨XX|.

(3)

The FLE is continuously driven by an external laser with fre-
quency 𝜔L and driving strength Ω. The laser driving is assumed
to be linearly polarized, such that the H and V polarized tran-
sitions are driven with equal strength ensuring that there is
no preferred polarization and, consequently, no which-path

Figure 1. Left: Sketch of the FLE including optical selection rules for tran-
sitions with either horizontally (H) or vertically (V) polarized light. In
addition, an external laser field excites the system. Right: Sketch of the
laser-dressed states.

information is introduced by the external laser. In the frame
co-rotating with the laser frequency 𝜔L the corresponding
Hamiltonian reads

ĤL = Ω
(
�̂�D + �̂�

†
D

)
; �̂�D =

(
�̂�H + �̂�V

)
∕
√
2 (4)

with the transition operators

�̂�H = |G⟩⟨XH| + |XH⟩⟨XX|, (5a)

�̂�V = |G⟩⟨XV| + |XV⟩⟨XX|. (5b)

We fix the laser frequency to ℏ𝜔L = (2ℏ𝜔X − EB)∕2, such that
the energetic detuning between emitter transitions and laser is
set to

Δ0 := ℏ
(
𝜔X − 𝜔L

)
=

EB
2
. (6)

By this, we resonantly drive the two-photon transition between
ground state |G⟩ and upper state |XX⟩.
The FLE is embedded inside a microcavity and coupled to two

orthogonal linearly polarized cavity modes with energies ℏ𝜔c
H

and ℏ𝜔c
V, which we assume to be energetically degenerate, that

is, 𝜔c := 𝜔c
H = 𝜔c

V. The cavity mode is best defined with respect
to the driving laser frequency (or the two-photon resonance to|XX⟩) via the cavity laser detuning
Δ := ℏ

(
𝜔c − 𝜔L

)
= ℏ𝜔c −

(
ℏ𝜔X − Δ0

)
. (7)

The Hamiltonian describing the cavity modes and their interac-
tion with the FLE reads

Ĥc =
∑

𝓁=H,V

Δâ†𝓁 â𝓁 + ĤFLE-c. (8)

In matrix form, using the basis |XX⟩, |XH⟩, |XV⟩, and |G⟩, the
interaction Hamiltonian is given as

ĤFLE-c =

⎛⎜⎜⎜⎜⎝
0 gâH gâV 0

gâ†H 0 0 gâH
gâ†V 0 0 gâV
0 gâ†H gâ†V 0

⎞⎟⎟⎟⎟⎠
, (9)

where the emitter-cavity coupling constant g is assumed equal for
all transitions. The bosonic operators â†H/V (âH/V) create (annihi-
late) one cavity photon with frequency 𝜔c andH∕V polarization.
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Note that Ĥc is again written in the rotating frame. From the in-
teraction Hamiltonian we can already see that in the un-driven
situation the cascade from the state |XX⟩ into the state |G⟩ can
only go via the emission of twoH or twoV polarized photons and
therefore can result exclusively in the generation of ΦBS entan-
glement.

3.2. Laser-Dressed States

The creation of entangled two-photon states is facilitated by res-
onant transitions between quantum states of the FLE with the
emission of two photons. Further analysis of the system dynam-
ics reveals that such transitions take place not between the orig-
inal FLE basis states but between the dressed states of the laser
driven FLE, obtained by diagonalizing ĤFLE + ĤL. For the diag-
onalization we go into a frame rotating with the laser frequency
𝜔L. The eigenenergies of the dressed states read

EU = 1
2

(
Δ0 +

√
Δ2
0 + 8Ω2

)
(10a)

EM = Δ0 (10b)

EN = 0 (10c)

EL = 1
2

(
Δ0 −

√
Δ2
0 + 8Ω2

)
(10d)

and the corresponding laser-dressed states are

|U⟩ = c(|G⟩ + |XX⟩) + c̃
(|XH⟩ + |XV⟩) (11a)

|M⟩ = 1√
2

(|XH⟩ − |XV⟩) (11b)

|N⟩ = 1√
2
(|G⟩ − |XX⟩) (11c)

|L⟩ = c̃(|G⟩ + |XX⟩) − c
(|XH⟩ + |XV⟩) (11d)

with the coefficients

c = 2Ω√
8Ω2 +

(
Δ0 +

√
Δ2
0 + 8Ω2

)2 , c̃ =
√

1
2
− c2. (12)

A sketch of the four laser-dressed states is given in Figure 1 (right
panel). The dependence of the dressed state energies on the driv-
ing strength Ω is illustrated in Figure 2. The uppermost |U⟩ and
the lowest |L⟩ states have contributions of all four original (bare)
FLE states. In the limiting case of strong driving the contribu-
tion coefficients c and c̃ approach 1∕2. On the other hand, the
composition and energies of the intermediate dressed states |M⟩
(“middle”) and |N⟩ (“null”) are independent of Ω. In general, the
laser-dressed states and the transition energies between them are
functions of Ω. Therefore, also the cavity frequency associated
with a two-photon resonance between two given dressed states
depends on the driving strength, the only exception being the
resonance between the states |M⟩ and |N⟩.

Figure 2. Energies of the laser dressed states (in the units of the emitter-
laser detuning Δ0) as a function of the driving strength Ω (in the units of
the emitter-cavity coupling strength g).

The Hamiltonian describing the coupling to the cavity also
changes profoundly by using the dressed state basis and now
reads in the basis |U⟩, |M⟩, |N⟩, |L⟩

ĤDS-c = g

⎛⎜⎜⎜⎜⎜⎜⎝

2
√
2cc̃ â†D c â†A −c̃ â†D

√
2(c̃2 − c2)â†D

c â†A 0 −1√
2
â†A c̃ â†A

c̃ â†D
1√
2
â†A 0 −c â†D√

2(c̃2 − c2)â†D c̃ â†A c â†D −2
√
2c c̃ â†D

⎞⎟⎟⎟⎟⎟⎟⎠
+ c.c.

(13)

with â†D = (â†H + â†V)∕
√
2 and â†A = (â†H − â†V)∕

√
2 being the cre-

ation operators in the diagonal and anti-diagonal polarization,
respectively.
One notes that the two-photon transitions between the dressed

states can follow different pathways that connect those states.
Considering as an example the transition from |U⟩ to |L⟩, one
path is to emit two photons with anti-diagonal polarization A via
the intermediate state |M⟩, while another path is a self interaction
within |U⟩ and then a direct transition to |L⟩ via emission of two
diagonallyD-polarized photons. This already indicates that due to
the constant optical driving it is not clear a priori, which entan-
glement type occurs. We will show below that new types of entan-
glement become possible and analyze their respective strength.

3.3. Cavity Losses and Radiative Decay

To account for cavity losses and radiative decay, present in every
FLE-cavity system, we introduce Lindblad-type operators

Ô,Γ �̂� = Γ
2

(
2Ô�̂�Ô† − �̂�Ô†Ô − Ô†Ô�̂�

)
, (14)

where Ô is the systemoperator associatedwith a loss process with
corresponding loss rate Γ in the bare state system. The dynamics
of the statistical operator of the system �̂� is then determined by
the Liouville-von Neumann equation

d
dt
�̂� = �̂� := − i

ℏ

[
Ĥ, �̂�
]
+
∑

𝓁=H,V

{â𝓁 ,𝜅
+ |G⟩⟨X𝓁 |,𝛾 + |X𝓁⟩⟨XX|,𝛾

}
�̂�,

(15)
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Table 1. Fixed system parameters used in the calculations.

Parameter Value

Emitter-cavity coupling strength g 0.051 meV

Detuning Δ0 20 × g = 1.02 meV

Cavity loss rate 𝜅 0.1 × g∕ℏ ≈ 7.8 ns−1

Radiative decay rate 𝛾 0.01 × g∕ℏ ≈ 0.78 ns−1

where [⋅, ⋅] denotes the commutator, 𝜅 is the cavity loss rate, and
𝛾 the radiative decay rate. The complete system Hamiltonian Ĥ
includes all contributions discussed in Section 3.1. The system
is assumed initially in the ground state |G⟩ without any cavity
photons. Note that we performed all numerical calculations in
the rotating frame with the laser frequency 𝜔L and use the bare
state system, while for the interpretation the dressed state picture
is advantageous.
The parameter values used in our simulations are listed in

Table 1, where we followed ref. [51]. The frequency of the cavity
mode is taken to ℏ𝜔c = 1.5 eV. The adopted parameter values
correspond to a high quality cavity resonator with Q = 1.5 × 105.

4. Photon Entanglement

4.1. Two-Photon Density Matrix

The basis for quantifying the degree of entanglement is the de-
termination of the two-photon density matrix 𝜌2p. Experimen-
tally, 𝜌2p can be reconstructed using methods of quantum state
tomography,[57] a technique based on polarization-resolved two-
time coincidence measurements. The detected signals are pro-
portional to the two-time correlation functions

G(2)
jk,lm(t, 𝜏) =

⟨
â†j (t)â

†
k(t + 𝜏)âm(t + 𝜏)âl(t)

⟩
, (16)

where {j, k, l, m} ∈ {H,V}, t is the real time when the first pho-
ton is detected, and 𝜏 the delay time between the detection of
the first and the second photon. Note that in experiments one
typically measures photons that have already left the cavity. How-
ever, considering the out-coupling of light out of the cavity to be
a Markovian process, Equation (16) can also describe G(2)

jk,lm(t, 𝜏)
measured outside the cavity.[10,30]

In experiments data is typically averaged over finite real time
and delay time windows. Thus, the experimentally reconstructed
two-photon density matrix is calculated as [30,51]

𝜌
2p
jk,lm(𝜏) =

G
(2)

jk,lm(𝜏)

Tr
{
G
(2)
(𝜏)
} , (17)

where G
(2)
is the time-averaged correlation with

G
(2)

jk,lm(𝜏) =
1

Δt 𝜏

t0+Δt

∫
t0

dt

𝜏

∫
0

d𝜏 ′G(2)
jk,lm(t, 𝜏

′). (18)

Here, 𝜏 (Δt) is the delay time (real time) window used in the co-
incidencemeasurement and t0 is its starting time. The trace Tr{⋅}
is introduced for normalization. For simplicity we refer to 𝜌2p as
the two-photon density matrix in the following.
Throughout this work we calculate the two-photon density ma-

trix for the system that reached its steady state so that the t-
average is independent of t0 andΔt. The steady state of the system
�̂�s is defined by

d
dt
�̂�s = �̂�s = 0. This state is obtained numerically

by letting the system evolve in time until its density matrix be-
comes stationary. We will further set 𝜏 = 50 ps, which is a realis-
tic value for the delay time window used in experiment.[58] More
details on the calculation of the two-time correlation functions
for systems including Markovian loss processes can be found in
ref. [60].

4.2. Concurrence

Using the two-photon density matrix we determine the corre-
sponding concurrence C,[59] which is a widely accepted measure
for the degree of entanglement of a bipartite system. The concur-
rence is calculated from a given two-photon density matrix 𝜌2p

according to [47,57,59]

C = max
{
0,
√
𝜆1 −
√
𝜆2 −
√
𝜆3 −
√
𝜆4

}
(19)

where 𝜆j are the (real and positive) eigenvalues in decreasing or-
der, 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 𝜆4, of the matrix

M = 𝜌2p T (𝜌2p)∗ T, (20)

where T is an anti-diagonal matrix of rank 4 with elements
{−1, 1, 1,−1} and (𝜌2p)∗ is the complex conjugated two-photon
density matrix. In the standard situation without driving, where
only aΦBS |Φ±⟩ can be generated, the full expression for the con-
currence reduces to C = 2|𝜌2pHH,VV |. Thus, the degree of entangle-
ment is closely related to the corresponding coherences in the
two-photon density matrix. Note that like the two-photon density
matrix 𝜌2p(𝜏) also the concurrence C(𝜏) depends on the measure-
ment window 𝜏. A finite delay time window 𝜏 is necessary for the
detection of ΨBS entanglement since the two contributions that
build up |Ψ+⟩ in Equation (2) can only be distinguished if the two
photons are detected at different times.[51]

For the numerical calculation of the concurrence we use the
following procedure: First, following ref. [60], the averaged two-

time photon correlation G
(2)
is calculated. This quantity is then

used to obtain the time-averaged two-photon density matrix in
Equation (17). Finally from the two-photon density matrix the
concurrence is determined according to Equation (19). Note that
we do not use any further approximations in the calculation of

G
(2)
.

5. Two-Photon Transition Between Upper and
Lower Dressed State

The emission of entangled two-photon states is associated with
two photon transitions between the dressed FLE states. The
dressed FLE states feature two-photon emissions, which are
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Figure 3. a) Concurrence as function of the laser driving strength Ω for the full model (solid line), the analytic approximation C(r) presented in Equa-
tion (29) (dotted line), and with a finite fine-structure splitting 𝛿 = 0.1Δ0 (dashed line). Inset: Dressed state energies as a function of the driving strength
and the two-photon resonant cavity modes (green arrows) for three selected Ω values. b–d) Absolute value of the two-photon density matrix |𝜌2p(𝜏)| for
driving strength (b) Ω1 = 8 × g, (c) Ω2 = 12.25 × g, and (d) Ω3 = 30 × g (indicated by vertical lines in (a)).

largest every time the cavity frequency is tuned in resonance with
a possible two-photon transition, that is, when twice the photon
energy (here Δ) is equal to the transition energy between the
dressed state pairs. Therefore, the analysis is focused on these
resonant situations.
We start our analysis with the case where the cavity photons

are in resonance with the transition between the states |U⟩ and|L⟩, that is, the cavity frequency is always tuned such that
Δ =

EU − EL
2

= 1
2

√
Δ2
0 + 8Ω2. (21)

Notice, that keeping this condition requires the cavity frequency
𝜔c to change with the driving strength Ω. This resonance for a
driven FLE was considered in earlier works,[51] where a possibil-
ity to achieve a high degree of ΨBS entanglement was demon-
strated. Here we demonstrate that ΨBS entanglement is not the
only type of two-photon entanglement that can be obtained. It
will be shown that by varying the driving strength (while keeping
the system at the considered resonance) the FLE can reach the
domain of ΦBS entanglement, separated from that of the ΨBS
by a special critical point of zero concurrence.

5.1. Transition Between𝚽BS and 𝚿BS Entanglement

The concurrence as a function of the driving strengthΩ is shown
in Figure 3a, where the inset illustrates the resonance in ques-
tion. In full agreement with earlier calculations[51] one observes
ΨBS entanglement when the driving is strong. However, when

the driving strength is lowered the entanglement changes its type
to ΦBS entanglement. A sharp transition between the two types
occurs at a special critical point Ω ≈ 12.25 × g where the concur-
rence is exactly zero. The ΦBS entanglement obtained for weak
driving reflects the fact that for small Ω the system approaches
the undriven case. Recalling that ΨBS entanglement has been
found in ref. [51] for higher Ω, it is clear that a transition has to
take place in between.
More insight into the entanglement change is obtained by

calculating the corresponding two-photon density matrices as
presented in Figure 3b for the driving strength Ω1 = 8 × g and
Figure 3d Ω3 = 30 × g. At Ω1 the occupations of the states |HH⟩
and |VV⟩ and their coherence clearly dominate over the remain-
ing elements representing ΦBS entanglement. A very different
behavior is found at Ω3 = 30 × g, where the occupations of the
states |HV⟩ and |VH⟩ and the corresponding coherences exhibit
the highest values and, consequently, are associated with ΨBS
entanglement.
Let us now focus on the special point at Ω2 = 12.25 × g. The

two-photon density matrix at the special point, shown in Fig-
ure 3c, reveals that the concurrence does not vanish because of
the absence of coherences. On the contrary, all coherences are
close to their maximal possible value of about 0.25. Further anal-
ysis reveals that the corresponding two-photon state is

|𝜓sp⟩ = 1
2
(|HH⟩ − |HV⟩ − |VH⟩ + |VV⟩)

= 1√
2

(|H1⟩ − |V1⟩) 1√
2

(|H2⟩ − |V2⟩). (22)
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Figure 4. Schematic depiction of the possible transitions connecting|U, 0, 0⟩ to the two-photon states |L, 1, 1⟩, |L, 2, 0⟩, and |L, 0, 2⟩. All but the
direct two-photon emission process (bold orange arrow) are eliminated in
the Schrieffer–Wolff transformation.

Remarkably, this is a pure state and |𝜓sp⟩ can be factorized
into a product of two one-photon states describing the first and
second detected photon, respectively (indicated by 1 and 2).
Since |𝜓sp⟩ can be factorized, it is not entangled and, thus, the
concurrence vanishes at this point. Therefore, instead of a direct
transition from highΦBS to high ΨBS entanglement the system
passes through this special point with vanishing degree of
entanglement.
We note that the special point occurs at a distinct resonance

condition. Beside the two-photon transition between the two out-
ermost dressed states, also the one-photon process between the
intermediate states |M⟩ and |N⟩ becomes resonant.

5.2. Effective Hamiltonian of the System at the Resonance

In order to understand the underlying physics of the crossover
between the entanglement types we derive an effective Hamilto-
nian that describes the most relevant transition processes involv-
ing the |U⟩ and |L⟩ states. To be more specific, we account only
for the uppermost state without photons |U, 0, 0⟩ and the low-
est states with two photons |L, 1, 1⟩, |L, 2, 0⟩, and |L, 0, 2⟩. Here,|𝜒 , nH, nV⟩ is the product state of |𝜒⟩ ∈ {|U⟩, |M⟩, |N⟩, |L⟩} and
the photon number state forH and V polarization.
Besides the direct two-photon transitions, there are several

other possibilities to go from the initial to the final states. One
example are subsequent one photon transitions, either going
via one of the intermediate states or by a self-interaction and
then a one-photon process. Also, from the final states, a sequen-
tial photon emission and absorption (or the other way around)
can take place. These processes are depicted in Figure 4. There-
fore, the states mentioned above are coupled to a bunch of other
states, namely the one-photon states |𝜒 , 1, 0⟩, |𝜒 , 0, 1⟩ and the
three-photon states |𝜒 , 3, 0⟩, |𝜒 , 2, 1⟩, |𝜒 , 1, 2⟩, and |𝜒 , 0, 3⟩ (with
𝜒 ∈ {U,M,N, L}), while the latter can be reached in sequential
emission/absorption processes.
Using a Schrieffer–Wolff transformation, it is now possible to

encode these transitions into a single matrix, acting only within
the basis spanned by the direct two-photon transitions, that is,|U, 0, 0⟩, |L, 1, 1⟩, |L, 2, 0⟩, and |L, 0, 2⟩.[61,62] A Schrieffer–Wolff
transformation thereby performs a block-diagonalization, which
decouples the desired states from the rest. This is reasonable,
because the removed states are strongly off-resonant in this situ-

ation and, thus, represent a small perturbation. More details on
the Schrieffer–Wolff transformation can be found in Appendix A.
After the Schrieffer–Wolff transformation, which is treated

within the photon number states, we afterward perform addition-
ally a basis transformation to rotate the system partially into the
Bell basis with {|U, 0, 0⟩, |L, 1, 1⟩, |L,Φ+⟩, |L,Φ−⟩}. In this repre-
sentation |L, 1, 1⟩ corresponds to the possibility of ΨBS entan-
glement, where two photons are generated such that one is H-
and the other V -polarized. However, without further analysis, we
cannot distinguish between Ψ±BS entanglement. The effective
Schrieffer–Wolff Hamiltonian is then given by

̂̃H(2)
UL = g2

⎛⎜⎜⎜⎜⎜⎝

𝛿UL 𝛾UL1 −𝛾UL2 0

𝛾UL1 −𝛿UL 𝛼UL 0

−𝛾UL2 𝛼UL −𝛿UL 0

0 0 0 −𝛿UL

⎞⎟⎟⎟⎟⎟⎠
(23)

with

𝛿UL =
(
c̃2 − c2

)( 2
Δ0

+ 4
ΔUL

)
𝛾UL1 = 4cc̃ 1

Δ0
− 16cc̃

(
c̃2 − c2

) 1
ΔUL

𝛾UL2 = 16cc̃
(
c̃2 − c2

) 1
ΔUL

𝛼UL = 1
Δ0

−
(
1 − 16c2c̃2

) 1
ΔUL

, (24)

where ΔUL = EU − EL. The given expressions contain only the
most important contributions. The full expressions can be found
in Appendix A.1. It is interesting to note that the coefficients 𝛾UL1∕2
stem from the subsequent emission of two single photons (faded
orange arrows in Figure 4) and simultaneous two-photon emis-
sion, while 𝛼UL accounts for the fact that from the two photon
states, coupling to higher (lower) photon states can take place
and therefore couple different types of two-photon states (faded
red arrows in Figure 4). An example for the latter case is the cou-
pling of |L, 2, 0⟩→ |L, 2, 1⟩, followed by a photon number reduc-
tion via |L, 2, 1⟩ → |L, 1, 1⟩ illustrating why different two-photon
states are coupled.
From this Hamiltonian, we can now deduce which type of en-

tanglement is created: First of all we find that the state |L,Φ−⟩
is decoupled, such that we see that photons with this type of en-
tanglement are not created. In contrast, the initial state |U, 0, 0⟩
is coupled to the |L,Φ+⟩ state via 𝛾UL2 and to the state |L, 1, 1⟩ via
𝛾UL1 . Therefore in principle bothΦBS andΨBS entanglement can
be created. The different types of entangled states are coupled via
the coefficient 𝛼UL, however, we will for now neglect this coupling
(see discussion at the end of the next section). Which type of en-
tanglement dominates depends on the ratio

r =
𝛾UL1

𝛾UL2

= 4
(

Ω
Δ0

)2
− 1
2
. (25)

This means, we obtain preferably ΦBS entanglement, when
𝛾UL2 > 𝛾UL1 (or |r| < 1), and preferably ΨBS entanglement if
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Figure 5. Effective coupling constants 𝛾UL1 and 𝛾UL2 and the ratio
r = 𝛾UL1 ∕𝛾UL2 as function of the driving strength Ω.

𝛾UL2 < 𝛾UL1 (or |r| > 1). Figure 5 displays the ratio r as well as the
couplings 𝛾UL1 and 𝛾UL2 as a function of the driving strengthΩ. In-
deed, r = 1 corresponds toΩsp =

√
3∕8Δ0 and we obtain our spe-

cial point, when both types of entanglement are occurring with
equal weight and we have zero concurrence since their superpo-
sition results in a factorizable state.

5.3. Approximate Two-Photon Density Matrix

Further insight is obtained by calculating the two-photon den-
sity matrix assuming the delay window 𝜏 is small and can be ne-
glected so that

𝜌
2p
jk,lm(𝜏) ≈ Tr

{
âm âl �̂�s â

†
j â

†
k

}
(26)

where is a normalization constant and �̂�s describes the steady
state of the system. Note that only states with at least two photons
inside the cavity contribute to the two-photon density matrix. Ne-
glecting the coupling 𝛼UL in the effective Hamiltonian (23) and
performing another basis transformation, one finds that the only
two-photon state coupled to |U, 0, 0⟩ is
|𝜓s⟩ = 1√(

𝛾UL1

)2 + (𝛾UL2

)2 (𝛾UL1 |L, 1, 1⟩ − 𝛾UL2 |L,Φ+⟩). (27)

Therefore, in this approximation, also the contribution to the
steady state which contains two photons inside the cavity should
be proportional to |𝜓s⟩. Consequently, the approximate normal-
ized two-photon density matrix can be calculated by inserting
𝜌s = |𝜓s⟩⟨𝜓s| into Equation (26) which results in
𝜌2papprox =

1
2(1 + r2)

⎛⎜⎜⎜⎝
1 −r −r 1
−r r2 r2 −r
−r r2 r2 −r
1 −r −r 1

⎞⎟⎟⎟⎠ , (28)

For this simplified density matrix, we can analytically calculate
the concurrence C [Equation (19)] to

C(r) = |1 − r2|
1 + r2

. (29)

In Figure 3a the approximate result C(r) is included as a dotted
line. The approximate solution agrees quite well with the nu-
merical results. This underlines the idea that the concurrence
depends essentially on the ratio r. Also for the approximate so-
lution we have the special point at r = 1 and the regions of high
entanglement and the corresponding type of entanglement can
be directly extracted from the analytical result. Below the special
point we have |r| < 1, therefore, r2 < |r|, resulting in a density
matrix of ΦBS entanglement. The maximum concurrence value
appears around Ω = 1

2
√
2
Δ0 ≈ 7.1 × g where the ratio r passes

through zero. Above Ωsp, we have r ≥ 1 and r2 > r. Thus, in this
regime one obtainsΨBS entanglement in the two-photon density
matrix.
We now discuss the deviations between the numerical and the

approximate result for the concurrence. One obvious reason for
the difference is the obmission of the coupling between the two-
photon states (via one- or three-photon states), as indicated by
𝛼UL in Equation (23). This coupling mixes ΦBS and ΨBS, such
that in the full model, the total obtained concurrence is reduced.
Nonetheless, neglecting 𝛼UL for the analysis is reasonable, when
taking the cavity losses into account. By analyzing the values of
𝛼UL and 𝛾UL, we find that these are always smaller than the cavity
loss rate 𝜅. This means that the losses relax the system before the
coupling between the different photon states becomes efficient.
Another reason for the deviations is that for low driving strength
values, other transitions between the laser-dressed states besides
the discussed direct two-photon one become important as they
get closer to resonance.

5.4. Influence of a Finite Fine-Structure Splitting

So far only the situation of degenerate intermediate bare states|XH⟩ and |XV⟩ has been analyzed. However, an often discussed
asymmetry in the system is a possible finite fine-structure split-
ting 𝛿 between these two intermediate states.[29,32,41,45,46] A fi-
nite fine-structure splitting introduces which-path information
into the system and can, therefore, result in a reduced degree of
entanglement.[3,29,32]

In Figure 3a the influence of a finite splitting 𝛿 on the con-
currence is shown, where 𝛿 = ℏ𝜔XH

− ℏ𝜔XV
is the difference

between the energies of the horizontally and vertically polar-
ized intermediate state ℏ𝜔XH∕V

= ℏ𝜔X ± 𝛿∕2. Even in the case
of a rather large splitting 𝛿 = 0.1Δ0, the resulting degree of
entanglement as measured by the concurrence is only weakly
influenced by the fine-structure splitting. Furthermore, all main
features discussed before remain unchanged: A sharp transition
between regions of high ΦBS and ΨBS entanglement takes
place at a special point of vanishing concurrence. Note that the
chosen parameters reflect the often realized situation where
the fine-structure splitting is one order of magnitude smaller
than the binding energy.[3,16,41,45] Thus, the energies of the laser-
dressed states and their character do not change significantly.
Therefore, also the resonance conditions and optical selection
rules stay roughly the same leading to very similar results.
Consequently, the resulting two-photon state and its degree
of entanglement are robust against a possible fine-structure
splitting.
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Figure 6. Concurrence as function of the cavity laser detuningΔ for fixed values of the external laser driving a)Ω = 8 × g, b)Ω = 12.25 × g, c)Ω = 30 × g,
and d) Ω = 40 × g. The color code indicates the type of entanglement: blue curves symbolize ΦBS and red curves are ΨBS entanglement. The vertical
lines mark the position of photon resonances labeled by np 𝜒1|𝜒2. e) Energy of the laser-dressed states as a function of the driving strength Ωmarking
the four selected two-photon resonance conditions which correspond to the two-photon resonances of the same color in panels (a)–(d). f) Concurrence
and mean photon number ⟨n⟩ for Ω = 12.25 × g in the vicinity of Δ = ΔMN∕2.

6. Entanglement at the Other Two-Photon
Transitions

Having discussed the transition between |U⟩ and |L⟩, we now
want to examine the behavior of the other two-photon res-
onances. In particular, there are three other two-photon res-
onances matching the transitions between the corresponding
dressed states (given by Δ𝜒1𝜒2

= E𝜒1
− E𝜒2

) in the system at

ΔUM

2
=

ΔNL

2
= 1
4

(√
Δ2
0 + 8Ω2 − Δ0

)

ΔUN

2
=

ΔML

2
= 1
4

(√
Δ2
0 + 8Ω2 + Δ0

)
ΔMN

2
=

Δ0

2
. (30)

Therefore, to sweep through the respective resonances, we now
fix the driving strength and vary the cavity laser detuning Δ.
The corresponding concurrence is calculated and the results are
shown in Figure 6 for four different driving strength values Ω =
8 × g, 12.25 × g, 30 × g, and 40 × g.
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The type of entanglement is encoded in the color: Blue lines
are for ΦBS and red lines for ΨBS entanglement. On first sight,
we find that both types of entanglement occur when we vary
Δ. In addition to a strong concurrence at the four two-photon
resonances, we find several other cavity detuning values with
non-vanishing concurrence. We can attribute these to the one-
photon resonances U|M and N|L and several three-photon
resonances, which occur between the respective states. Accord-
ingly, we have labeled all resonances by np 𝜒1|𝜒2, which denotes
the n-photon resonances between the laser-dressed states |𝜒1⟩
and |𝜒2⟩.
Figure 6e shows the dressed states as a function of the driv-

ing strength and we used colored arrows to mark the different
two-photon resonances. The same colors are used to indicate the
position of the two-photon resonances in Figure 6a–d. Before we
will go through the two-photon resonances one-by-one (note that
we already discussed the 2pU|L resonance), let us briefly remark
some general findings:
While some n-photon transitions are always associated with

the same type of entanglement, others can change from one
to the other. This change may happen as a result of changing
the cavity laser detuning or the driving strength. Furthermore,
in between some of the resonance conditions the concurrence
value stays at a finite level, whereas it passes through zero in
other situations. A striking feature is the appearance of a sec-
ond special point with vanishing concurrence between regions
of high entanglement when the cavity laser detuning is approx-
imately Δ ≈ ΔUM∕2 = ΔNL∕2, which we will discuss in detail in
Section 6.2.
Next, we will go through the two-photon resonances one-by-

one. For each two-photon resonance we perform a Schrieffer–
Wolff transformation, followed by a rotation of the states, such
that each Hamiltonian in the following is given in the basis

{|𝜒1, 0, 0⟩, |𝜒2, 1, 1⟩, |𝜒2,Φ+⟩, |𝜒2,Φ−⟩} (31)

with 𝜒1 being the higher energy state and 𝜒2 being the lower
energy state of the 2p 𝜒1|𝜒2 resonance. More details on the
Schrieffer–Wolff transformation are given in Appendix A.

6.1. Two-PhotonM|N Resonance

We start by looking at 2pM|N, which is the only two-photon tran-
sition for which the resonance condition does not depend on the
driving strength. The corresponding transitions are marked by a
light green line in Figure 6. At this resonance the concurrence
always displays ΦBS entanglement. While the concurrence is
mostly maximal at the resonance, we find a decrease in strength
at the maximum at Ω = 12.25 × g.
We use the Schrieffer–Wolff transformation to obtain the ef-

fective Hamiltonian

̂̃H(2)
MN = g2

⎛⎜⎜⎜⎜⎝
𝛿MN 0 0 𝛾MN

2

0 −𝛿MN −𝛿MN 0

0 −𝛿MN −𝛿MN 0

𝛾MN
2 0 0 −𝛿MN

⎞⎟⎟⎟⎟⎠
(32)

with

𝛿MN = 2
(
c̃2 − c2

) 1
ΔUL

𝛾MN
2 = −4 c c̃ 1

ΔUL
. (33)

Note that these are shortened expressions and the full expres-
sions can be found in Appendix A.2. From the Hamiltonian, it
is obvious that the initial state is only coupled to the final state|N,Φ−⟩, while the other two-photon states become uncoupled.
This is in agreement with Figure 6, where we only find ΦBS en-
tanglement at the 2pM|N resonance.
The smaller height in concurrence at Ω = 12.25 × g (see also

Figure 6f), can be traced back to the occurrence of several reso-
nance conditions at the same driving strength, in particular the
one-photon transitions 1p U|M and 1p N|L. This is confirmed
by looking at the mean photon number ⟨n⟩ = ⟨â†HâH + â†VâV⟩ as
displayed in Figure 6f. The alignment of several resonance con-
ditions causes the peak to split into two separate resonances, as
indicated by the mean photon number. Due to the additional
one-photon resonances three-photon states with all four possi-
ble combinations of polarized photons gain a noticeable popu-
lation and the extracted (two-photon) coherence 𝜌

2p
HH,VV reaches

only about half the value of the occupations 𝜌2pHH,HH and 𝜌
2p
VV,VV.

As a result, the degree of entanglement is strongly reduced.

6.2. Two-Photon U|M and Two-Photon N|L Resonance
Next we consider the two-photon resonances between the laser-
dressed states |U⟩ and |M⟩, and between |N⟩ and |L⟩, which have
the same energy. In Figure 6, these resonances are indicated by
a dark green line. From Figure 6, we see that here always a sharp
transition betweenΦBS andΨBS entanglement takes place. This
is highlighted in Figure 7a, which presents a closer look at this
resonance condition for Ω = 30 × g. Figure 7b–d display the cor-
responding two-photon densitymatrices for three selected detun-
ing values. With rising cavity laser detuning the entangled state
created inside the cavity changes from ΦBS to ΨBS entangle-
ment, passing through a special point at Δ ≈ 0.836Δ0 where the
concurrence drops to zero.
Here, we have two transitions, for which the corresponding

Schrieffer–Wolff analysis yields the Hamiltonians

̂̃H(2)
UM = g2

⎛⎜⎜⎜⎜⎝
𝛿UM1 − 𝛿UM2 0 0 𝛾UM2

0 𝛿UM3 𝛼UM 0

0 𝛼UM 𝛿UM3 0

𝛾UM2 0 0 𝛿UM3

⎞⎟⎟⎟⎟⎠
(34)

and

̂̃H(2)
NL = g2

⎛⎜⎜⎜⎜⎜⎝

𝛿UM1 − 𝛿UM2 𝛾NL1 𝛾NL2 0

𝛾NL1 𝛿NL3 𝛼NL 0

𝛾NL2 𝛼NL 𝛿NL3 0

0 0 0 𝛿NL3

⎞⎟⎟⎟⎟⎟⎠
(35)
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Figure 7. a) Concurrence and mean photon number ⟨n⟩ for Ω = 30 × g.
Vertical lines indicate the position of Δ̃UM (Equation (37)) and Δ̃NL
(Equation (38)). b–d) Absolute values of the two-photon density matrices|𝜌2p(𝜏)| for Δ as indicated.

with the coefficients given in Appendix A.3. While the Hamilto-
nian ̂̃H(2)

UM has the same form as ̂̃H(2)
MN in Equation (32), theHamil-

tonian ̂̃H(2)
NL has a form similar to ̂̃H(2)

UL in Equation (23).
From the effective Hamiltonian, it is evident that the isolated

2p U|M resonance supports only ΦBS entanglement, while the
isolated 2pN|L resonance has competing channels for bothΦBS
andΨBS entanglement. From the coefficients, we can deduce the
strengths of the competing channels, finding that

|𝛾NL1 | = |𝛾NL2 | + 2
√
2c̃

2Δ0 + ΔUM
. (36)

Therefore the ratio 𝛾NL1 ∕𝛾NL2 is always larger than 1 and the pre-
ferred type of entanglement for the 2p N|L resonance is always
ΨBS entanglement.
A zoom in around the two-photon transition at Δ = ΔUM∕2,

presented in Figure 7a for Ω = 30 × g, shows clearly that two
peaks appear, a ΦBS one and a ΨBS one. The approximate posi-
tion of these peaks can be determined by the diagonal elements
of the Schrieffer–Wolff Hamiltonians in Equation (34) and Equa-
tion (35). Due to the transformation, diagonal elements appear
encoded by 𝛿

𝜒1𝜒2

j , which slightly shift the resulting resonance,
such that now we have the resonances for the 2p U|M transition
with ΦBS entanglement at

Δ̃UM = 1
2

(
ΔUM + (𝛿UM1 − 𝛿UM2 ) − 𝛿UM3

)
(37)

and the 2p N|L transition with ΨBS entanglement at

Δ̃NL =
1
2

(
ΔUM + (𝛿UM1 − 𝛿UM2 ) − 𝛿NL3

)
. (38)

The values of the different 𝛿𝜒1𝜒2j are given in Appendix A.3. In-
deed, the position of the peak maxima visible in Figure 7 agree
well with these shifted resonances (indicated by vertical lines).

This interpretation is confirmed by themean photon number ⟨n⟩
(dotted line in Figure 7) which also displays two separatemaxima,
indicating two close-by resonances (confer Figure 7a).
Also, the 𝛿𝜒1𝜒2j depend sensibly on the driving strength Ω. For

a driving strength being smaller than Ωm =
√
3Δ0 ≈ 34.6 × g we

find that Δ̃UM < Δ̃NL, while for Ω > Ωm this order is reversed.
Therefore, in Figure 6d for a driving strength Ω = 40 × g the ar-
rangement of ΨBS and ΦBS entanglement is swapped.
In between the regions ofΦBS andΨBS entanglementwe have

the special point at (Δ̃UM + Δ̃NL)∕2. From the density matrix at
this special point (confer Figure 7c), we see that the concurrence
does not vanish due to the lack of coherences. We find that at the
special point the generated two-photon state is essentially the su-
perposition of the two density matrices created by each transition
individually with

𝜌
2p
sp2 =

1
2

⎡⎢⎢⎢⎣
1
2

⎛⎜⎜⎜⎝
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞⎟⎟⎟⎠ +
1
2

⎛⎜⎜⎜⎝
1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ (39)

This can be rewritten into

𝜌
2p
sp2 =

1
2
|𝜓 (+)

sp2⟩⟨𝜓 (+)
sp2| + 1

2
|𝜓 (−)

sp2⟩⟨𝜓 (−)
sp2|, (40)

with

|𝜓 (±)
sp2⟩ = 1√

2

(|H1⟩ ± i|V1⟩) 1√
2

(|H2⟩ ± i|V2⟩). (41)

Thus, the density matrix can be written as a mixed state, where
both contributing states are products of two one-photon states,
that is, the states are factorizable states, and, accordingly, the cor-
responding concurrence vanishes.
We emphasize that this is a different type of special point than

the one discussed in Section 5.1 where the system approaches a
pure factorizable state. Another difference in comparison to the
2p U|L resonance can be found in the limit Ω → ∞. While the
concurrence obtained at the 2pU|L resonance approaches a high
finite value and becomes independent of the driving strength, the
concurrence for the 2p U|M and 2p N|L resonances approach
zero. In the limiting case the difference Δ̃UM − Δ̃NL vanishes and,
therefore, the two resonances merge together and the different
types of entanglement cancel each other.

6.3. Two-Photon U|N and Two-PhotonM|L Resonance
Finally, we analyze the remaining two resonances 2p U|N and
2p M|L. In Figure 6 we see that always ΦBS occurs at this
transition.
The analysis with the Schrieffer–Wolff transformation results

in a similar situation as discussed in the previous subsection 6.2:
The Hamiltonian of the 2pM|L transition has the same form as
the 2p U|M transition [Equation (34) or also Equation (32)] and
therefore promotes exclusively ΦBS entanglement. On the other
hand, the Hamiltonian of the 2p U|N transition has the same
form as the 2pN|L transition [Equation (35) or also Equation (23)]
and therefore promotes both ΦBS and ΨBS entanglement. The
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Table 2. Various scenarios: Similarities and differences at the different two-photon resonances.

Resonance Small driving Ω Large driving Ω Special point Limit Ω → ∞

2p U|L Ω < 12.25 × g: ΦBS Ω > 12.25 × g: ΨBS for Ω ≈ 12.25 × g high ΨBS ent.

2pM|N always ΦBS none high ΦBS ent.

2p U|M always ΦBS in between the two close-by resonances resonances coincide and ent. vanishes

2p N|L always ΨBS in between the two close-by resonances resonances coincide and ent. vanishes

2p U|N Ω < 20 × g: ΦBS Ω > 20 × g: ΨBS not observed for Ω ≤ 40 × g resonances coincide and ent. vanishes

2pM|L ΦBS (irrelevant) ΦBS (dominant) not observed for Ω ≤ 40 × g resonances coincide and ent. vanishes

dominating type of entanglement depends on the ratio of 𝛾UN1 to
𝛾UN2 , but also on the splitting from the other resonances given
by the diagonal elements 𝛿𝜒1𝜒2j . For small driving strength values
Ω < 20 × g the 2p U|N transition dominates the dynamics and
the resulting entanglement is ΦBS entanglement. For larger Ω
both two-photon resonances become of equal importance and a
transition betweenΦBS andΨBS entanglement is expected, sim-
ilar to the results presented in Section 6.2. But, in contrast to the
previous section, here, the splitting of the two peaks is too small
for the given driving strength values, therefore, we only observe
ΦBS entanglement in Figure 6. The corresponding Hamiltoni-
ans and constants are given in Appendix A.4.
By investigating the various two-photon resonances we are

able to understand the origins of all regions of high entanglement
observable in Figure 3 and 6. We stress that, we find a rich variety
of different scenarios depending on the considered resonance
condition, which are all equally fascinating. For example, at the
2pM|N resonance one always obtains a highΦBS entanglement.
In contrast to this, in case of the 2p U|L transition, the type of
entanglement undergoes a sharp transition at a special point
of vanishing concurrence when the driving strength is varied.
Additionally, a second type of special point can occur between
two close-by resonances, as demonstrated by the 2p U|M and
2p N|L resonances. Table 2 provides a short overview over the
similarities and differences between the various scenarios at the
different two-photon resonances. Using the same analytic for-
malism based on a Schrieffer–Wolff transformation, we are able
to successfully predict the resulting type of entanglement at all
two-photon resonances, and even more important, we can also
explain these various features.

7. Conclusion

In conclusion, we have investigated the possible types of entan-
glement generated by a driven four-level emitter-cavity system.
We found that two different types of entanglement can occur,
which we classified as ΦBS and ΨBS entanglement.
By adjusting the driving strength as well as the cavity detuning,

we found a rich picture showing a finite concurrence at various
transitions. Using a Schrieffer–Wolff transformation, we were
able to give analytical insight into the occurrence of the differ-
ent types of entanglement showing that either ΦBS or a mix-
ture of ΦBS and ΨBS is promoted at the two-photon transitions.
Most excitingly, we found special points, where the concurrence,
a measure for the entanglement, drops to zero, though the cor-
responding coherences in the two-photon density matrix are not

absent. Instead, factorizable (and therefore not entangled states)
are reached.
In principle, the resulting type of Bell state could also be

changed afterward, for example, by the use of waveplates or
polarization filters. But these additional components often lead
to a significant loss of photon yield. These kinds of losses can
be avoided when the target photonic state is generated directly.
Furthermore, although ΦBS and ΨBS entanglement can be
converted into each other by postprocessing, they are clearly
distinguishable in a fixed basis and reflect the systems ability to
get entangled in more than one fashion. Seeing that entangle-
ment, being one of the most remarkable and interesting physical
effects that separates the quantummechanical from the classical
world, can change its character by just adding an external driving
to a few-level emitter is exciting from a fundamental point of
view and can also lead to new possibilities for using few-level
emitters in quantum information technology.

Appendix A: Schrieffer–Wolff Transformation

For the Schrieffer–Wolff transformation we consider the FLE-
cavity system without losses and use the states |𝜒 , nH, nV⟩ where|𝜒⟩ ∈ {|U⟩, |M⟩, |N⟩, |L⟩} is one of the four laser-dressed states
defined in Section 3.2 and nH (nV) denotes the number of pho-
tons present in the horizontally (vertically) polarized cavitymode.
The direct two-photon transition from |𝜒1⟩ to |𝜒2⟩ involves only
the states

A : |𝜒1, 0, 0⟩, |𝜒2, 1, 1⟩, |𝜒2, 2, 0⟩, |𝜒2, 0, 2⟩. (A.1)

As discussed in Section 5.2, there are also several other paths
to create the two-photon states, thereby coupling the aforemen-
tioned states. These processes are depicted in Figure 4 and in-
clude the states

B : |𝜒 , 1, 0⟩, |𝜒 , 0, 1⟩,
|𝜒 , 3, 0⟩, |𝜒 , 2, 1⟩, |𝜒 , 1, 2⟩, |𝜒 , 0, 3⟩, (A.2)

where the one- and three-photon states include all four bare
states, that is, |𝜒⟩ = |U⟩, |M⟩, |N⟩, |L⟩. This results in a 28 × 28
matrix. To reduce this to a 4 × 4 matrix for the relevant states
in subset A [see Equation (A.1)], we use a Schrieffer–Wolff
transformation.[61,62] In the transformation, we perform a
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block-diagonalization of the system Hamiltonian via the unitary
transformation

e−ŜĤeŜ, (A.3)

where Ŝ is an anti-Hermitian operator.[61] After the decoupling
procedure, the states in set B [see Equation (A.2)] can be disre-
garded as they are insignificant for the system dynamics. This
formalism can be applied here since, for a given two-photon
resonance, where the cavity laser detuning matches half the
transition energy between the states |𝜒1⟩ and |𝜒2⟩, one-photon
transition processes between the laser-dressed states are typically
strongly off-resonant.
In second order the effective Hamiltonian for the states

in set A is then given by Ĥ(2)
𝜒1𝜒2

= {H(2)
a,a′}𝜒1𝜒2 with the matrix

elements[61]

H(2)
a,a′ = Ha,a′ +

1
2

{∑
b

Ha,bHb,a′

[
1

Ea − Eb
+ 1
Ea′ − Eb

]}
, (A.4)

where a runs over the states in subset A, the index b runs over
the states in B, and

Ej = ⟨j|Ĥ|j⟩ = E𝜒 +
(
nH + nV

)
Δ (A.5)

is the energy of the state |j⟩ = |𝜒 , nH, nV⟩ ∈ A, B. The matrix ele-
ments are calculated from the system Hamiltonian with

Ha,a′ = Ea𝛿a,a′ , (A.6)

This term can be dropped since it represents a constant energy
shift as the four states in set A are energetically degenerate.
The remaining matrix elements for a ≠ b are given by the
coupling Hamiltonian in the dressed state basis [Equation (13)]
with

Ha,b = ⟨a|ĤDS-c|b⟩ (A.7)

After the Schrieffer–Wolff transformation we perform a rotation
to the basis

|𝜒1, 0, 0⟩, |𝜒2, 1, 1⟩, |𝜒2,Φ+⟩, |𝜒2,Φ−⟩ (A.8)

using

̂̃H(2)
𝜒1𝜒2

= T†Ĥ(2)
𝜒1𝜒2

T with T =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1√
2

1√
2

0 0 1√
2

− 1√
2

⎞⎟⎟⎟⎟⎟⎠
(A.9)

We performed this procedure for all two-photon resonances.

A.1. Effective Hamiltonian for the 2p U|L Resonance
The effective Hamiltonian is

̂̃H(2)
UL = g2 ×

⎛⎜⎜⎜⎜⎝
𝛿UL 𝛾UL1 −𝛾UL2 0

𝛾UL1 −𝛿UL − 𝛿UL3 𝛼UL 0

−𝛾UL2 𝛼UL −𝛿UL − 𝛿UL3 0

0 0 0 −𝛿UL − 𝛿UL3

⎞⎟⎟⎟⎟⎠
(A.10)

in the basis |U, 0, 0⟩, |L, 1, 1⟩, |L,Φ+⟩ and |L,Φ−⟩ with
𝛿UL =

(
c̃2 − c2

)( 2
Δ0

+ 4
ΔUL

)

𝛿UL3 =
8
(
c̃2 − c2

)2
3ΔUL

+ 2c̃2

ΔUL + Δ0∕2
+ 2c2

ΔUL − Δ0∕2

𝛾UL1 = 4cc̃ 1
Δ0

− 16cc̃
(
c̃2 − c2

) 1
ΔUL

𝛾UL2 = 16cc̃
(
c̃2 − c2

) 1
ΔUL

𝛼UL = 1
Δ0

−
(
1 − 16c2c̃2

) 1
ΔUL

− 1
2
𝛿UL3 + 2c̃2

ΔUL + Δ0∕2
. (A.11)

A.2. Effective Hamiltonian for the 2p M|N Resonance

The effective Hamiltonian is

̂̃H(2)
MN = g2 ×

⎛⎜⎜⎜⎜⎝
𝛿MN 0 0 𝛾MN

2

0 −𝛿MN + 𝛿MN
3 𝛼MN 0

0 𝛼MN −𝛿MN + 𝛿MN
3 0

𝛾MN
2 0 0 −𝛿MN + 𝛿MN

3

⎞⎟⎟⎟⎟⎠
(A.12)

in the basis |M, 0, 0⟩, |N, 1, 1⟩, |N,Φ+⟩ and |N,Φ−⟩ with
𝛿MN = 2

(
c̃2 − c2

) 1
ΔUL

𝛿MN
3 = − 4c̃2

2Δ0 + ΔUL
− 2
3Δ0

− 4c2

2Δ0 − ΔUL

𝛾MN
2 = −4 c c̃ 1

ΔUL

𝛼MN = −𝛿MN + 1
2
𝛿MN
3 + 1

3Δ0
. (A.13)
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A.3. Effective Hamiltonians for the 2p U|M and 2p N|L Resonance
The effective Hamiltonian for the 2p U|M resonance is

̂̃H(2)
UM = g2 ×

⎛⎜⎜⎜⎜⎝
𝛿UM1 − 𝛿UM2 0 0 𝛾UM2

0 𝛿UM3 𝛼UM 0

0 𝛼UM 𝛿UM3 0

𝛾UM2 0 0 𝛿UM3

⎞⎟⎟⎟⎟⎠
for

|U, 0, 0⟩|M, 1, 1⟩|M,Φ+⟩|M,Φ−⟩
(A.14)

where

𝛿UM1 = −16c
2c̃2

ΔUM
+ 2c̃2

2Δ0 + ΔUM
+

4(c̃2 − c2)2

2Δ0 + 3ΔUM

𝛿UM2 = − 2c2

ΔUM
+ 1
2Δ0 + ΔUM

+ 2c̃2

2Δ0 + 3ΔUM

𝛿UM3 = − 4c2

3ΔUM
+ 2
2Δ0 − ΔUM

+ 4c̃2

2Δ0 + ΔUM

𝛾UM2 = −
4
√
2c2c̃

ΔUM
−

√
2c̃

2Δ0 + ΔUM
+
2
√
2
(
c̃2 − c2

)
c̃

2Δ0 + 3ΔUM

𝛼UM = −𝛿UM2 − 1
2
𝛿UM3 (A.15)

The effective Hamiltonian for the two-photon transition between
the states |N⟩ and |L⟩ is given by
̂̃H(2)
NL = g2 ×

⎛⎜⎜⎜⎜⎝
𝛿UM1 − 𝛿UM2 𝛾NL1 𝛾NL2 0

𝛾NL1 𝛿NL3 𝛼NL 0

𝛾NL2 𝛼NL 𝛿NL3 0

0 0 0 𝛿NL3

⎞⎟⎟⎟⎟⎠
for

|N, 0, 0⟩|L, 1, 1⟩|L,Φ+⟩|L,Φ−⟩
(A.16)

with

𝛿NL3 = −32c
2c̃2

ΔUM
− 4c2

3ΔUM
−

8(c̃2 − c2)
2Δ0 + 5ΔUM

− 4c̃2

2Δ0 + 3ΔUM

𝛾NL1 = 𝛾UM2

𝛾NL2 = 𝛾UM2 +
2
√
2c̃

2Δ0 + ΔUM

𝛼NL = −𝛿UM1 + 1
2
𝛿NL3 + 4c̃2

2Δ0 + ΔUM
+ 4c̃2

2Δ0 + 3ΔUM
(A.17)

A.4. Effective Hamiltonians for the 2p U|N and 2p M|L Resonance
For the 2p U|N transition we obtain

̂̃H(2)
UN = g2 ×

⎛⎜⎜⎜⎜⎝
𝛿UN1 − 𝛿UN2 𝛾UN1 𝛾UN2 0

𝛾UN1 𝛿UN3 𝛼UN 0

𝛾UN2 𝛼UN 𝛿UN3 0

0 0 0 𝛿UN3

⎞⎟⎟⎟⎟⎠
for

|U, 0, 0⟩|N, 1, 1⟩|N,Φ+⟩|N,Φ−⟩
. (A.18)

The energies and coupling strengths are

𝛿UN1 = −16c
2c̃2

ΔUN
+ 2c2

ΔUN − 2Δ0
+

4
(
c̃2 − c2

)2
3ΔUN − 2Δ0

𝛿UN2 = − 2c̃2

ΔUN
+ 1

ΔUN − 2Δ0
+ 2c2

3ΔUN − 2Δ0

𝛿UN3 = − 4c̃2

3ΔUN
− 2
2Δ0 + ΔUN

− 4c2

2Δ0 − ΔUN

𝛾UN1 = −
4
√
2cc̃2

ΔUN
−

√
2c

ΔUN − 2Δ0
−
2
√
2
(
c̃2 − c2

)
c

3ΔUN − 2Δ0

𝛾UN2 = 𝛾UN1 +
2
√
2c

ΔUN − Δ0

𝛼UN = 𝛿UN2 + 1
2
𝛿UN3 − 2

ΔUN − 2Δ0
+ 2
2Δ0 + ΔUN

. (A.19)

For the 2pM|L transition we have
̂̃H(2)
ML = g2 ×

⎛⎜⎜⎜⎜⎝
𝛿UN1 − 𝛿UN2 0 0 𝛾UN1

0 𝛿ML
3 𝛼ML 0

0 𝛼ML 𝛿ML
3 0

𝛾UN1 0 0 𝛿ML
3

⎞⎟⎟⎟⎟⎠
for

|M, 0, 0⟩|L, 1, 1⟩|L,Φ+⟩|L,Φ−⟩
(A.20)

with

𝛿ML
3 =

8
(
c̃2 − c2

)2
2Δ0 − 5ΔUN

− 4c̃2

3ΔUN
+ 4c2

2Δ0 − 3ΔUN
− 32c2c̃2

ΔUN

𝛼ML = −𝛿UN1 + 1
2
𝛿ML
3 + 4c̃2

3ΔUN
. (A.21)
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ABSTRACT

The cascaded decay in a four-level quantum emitter is a well-established mechanism to generate polarization-entangled photon pairs, the
building blocks of many applications in quantum technologies. The four most prominent maximally entangled photon pair states are the Bell
states. In a typical experiment based on an undriven emitter, only one type of Bell state entanglement can be observed in a given polarization
basis. Other types of Bell state entanglement in the same basis can be created by continuously driving the system by an external laser. In this
work, we propose a protocol for time-dependent entanglement switching in a four-level quantum emitter–cavity system that can be operated
by changing the external driving strength. By selecting different two-photon resonances between the laser-dressed states, we can actively
switch back and forth between the different types of Bell state entanglement in the same basis as well as between entangled and nonentangled
photon pairs. This remarkable feature demonstrates the possibility to achieve a controlled, time-dependent manipulation of the entanglement
type that could be used in many innovative applications.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0045377

Entangled qubits are the building blocks for fascinating applica-
tions in many innovative research fields, like quantum cryptogra-
phy,1,2 quantum communication,3,4 or quantum information
processing and computing.5–8 Besides possible applications, the phe-
nomenon of entanglement is also important from a fundamental point
of view, being a genuine quantum effect. Especially, attractive realiza-
tions of two entangled qubits are polarization-entangled photon pairs,
because they travel at the speed of light and are hardly influenced by
the environment.9

The most prominent maximally entangled states, established for
polarization-entangled photons pairs, are the four Bell states (BS)

jU6i ¼
1ffiffiffi
2
p jHHi6jVVið Þ; (1a)

jW6i ¼
1ffiffiffi
2
p jHVi6jVHið Þ; (1b)

where H and V denote horizontally and vertically polarized photons,
respectively. The order corresponds to the order of photon detection:
in a U Bell state (UBS), the first and second detected photon exhibit
the same polarization, whereas in a W Bell state (WBS), the two
detected photons have exactly the opposite polarization.

A well-established mechanism for the creation of these maxi-
mally entangled Bell states is the cascaded decay that takes place in a
four-level quantum emitter (FLE) after an initial excitation. Such an
FLE can be realized by a variety of systems, including F-centers, semi-
conductor quantum dots, or atoms.10–13 Employing a FLE,UBS entan-
glement in the chosen basis of linearly polarized photons was
demonstrated for various conditions in both theoretical and experi-
mental studies.14–37 In contrast, WBS entanglement in the same line-
arly polarized basis has only been predicted in the case of continuous
laser driving.38,39 For the driven FLE, laser-dressed states emerge,
which have been observed experimentally.40,41 By embedding the FLE
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inside a microcavity with cavity modes tuned in resonance with the
desired emission process, certain two-photon emission processes
between the laser-dressed states can be favored.38,39 The emerging
type and degree of entanglement depend strongly on the dominant
two-photon emission path between the laser-dressed states, which, in
turn, can be tuned by the external driving strength.39

Based on these findings, we propose a protocol for time-
dependent entanglement switching using a driven FLE-cavity system.
Simply changing the external driving strength in a step-like manner
enables one to actively switch between the generation of UBS and
WBS entanglement as well as between entangled and nonentangled
photon pairs. Therefore, different entangled states can be generated
from the same source without further processing the photons to
change the entanglement, e.g., by wave plates.

We consider an externally driven FLE-cavity system, which has
been presented in detail in Refs. 38 and 39. Figure 1 depicts a sketch of
this system. A generic FLE comprises the ground state jGi, two degen-
erate intermediate single-excited states jXH=Vi, and the upper state
jXXi. Typically, jXXi is not found at twice the energy of the single-
excited states but is shifted by the value EB, e.g., in quantum dots, EB is
referred to as the biexciton binding energy.9,42 Transitions between the
FLE states that involve the state jXH=Vi are coupled to horizontally/
vertically polarized light. If the jXXi state has been prepared,29,43–45

cascaded photon emission takes place when the FLE relaxes to its
ground state resulting in the typical UBS.

An external laser with driving strength X is used to excite the
FLE. The laser frequency is adjusted such that the two-photon transi-
tion between the ground state jGi and jXXi is driven resonantly,
resulting in a fixed energetic detuning D0 ¼ EB=2 between the single-
excitation transitions and the laser (cf. Fig. 1). The laser polarization is
chosen to be linear with equal components of the H and V polariza-
tion. The FLE is placed inside a microcavity and coupled to its two
energetically degenerate linearly polarized modes, H and V. The ener-
getic placement of the cavity modes is described by the cavity laser
detuning D, i.e., the difference between the cavity mode and laser
energy. In typical setups, the fabrication process determines D, and it
cannot be changed afterward. Accordingly, we fix the cavity laser

detuning to D ¼ 0:8D0. The coupling strength g between cavity and
FLE is assumed to be equal for all FLE transitions.

Furthermore, important loss processes, i.e., radiative decay with
rate c and cavity losses with rate j, are included using Lindblad-type
operators.39,46 The time evolution of the statistical operator of the sys-
tem and two-time correlation functions are calculated by numerically
solving the resulting Liouville–von Neumann equation.47 The system
parameters for the calculations are displayed in Table I.38,39 Initially, the
system is in the FLE ground state jGi without any cavity photons. For
the Hamiltonian and details on the calculations, we refer to Ref. 39.

The entanglement characterization relies on the standard two-
time correlation functions

Gð2Þjk;lmðt; s
0Þ ¼ hâ†j ðtÞâ†kðt þ s0Þâmðt þ s0ÞâlðtÞi; (2)

with fj; k; l;mg 2 fH;Vg.15 Here, t is the real time of the first photon
detection and s0 is the delay time between this detection event and the
detection of the second photon. The operator â†H=V creates one hori-
zontally/vertically polarized cavity photon.48 In realistic two-time coin-
cidence experiments, the data are always obtained by averaging the
signal over finite real time and delay time intervals. Consequently, we
use averaged correlation functions that depend on the starting time of
the coincidence measurement t0, the used real time measurement
interval Dt, and the delay time window s (see also Ref. 39).

A measure to classify the entanglement is the two-photon density
matrix q2p, from which the resulting type of entanglement can be
extracted directly from its form. In standard experiments, q2p is recon-
structed employing quantum state tomography,49 and, consequently,
it is obtained from the averaged correlation functions as detailed in
Ref. 39.

To quantify the degree of entanglement, we use the concurrence
C, which can be calculated directly from the two-photon density
matrix.34,39,49–51 Note that both, the two-photon density matrix and
the concurrence, depend on the parameters of the coincidence mea-
surements: t0, Dt, and s. Throughout this article, a delay time window
s¼ 50 ps is assumed.52

Before presenting the switching protocol, we study the behavior
of the constantly driven FLE-cavity system as a function of the driving
strength for a fixed selected cavity laser detuning. The resulting type of
entanglement and its degree depend on the cavity laser detuning D
and the driving strength X, as demonstrated in Ref. 39. In particular, a
high degree of UBS or WBS entanglement is only possible, when the
cavity modes are close to or in resonance with a direct two-photon
transition between the laser-dressed states of the FLE. In the present
setup, we have fixed all frequencies and detunings, such that the only
free tuning parameter is the driving strength X.

FIG. 1. Sketch of the driven FLE-cavity system. The FLE consists of the states
jGi; jXH=Vi, and jXXi, which are coupled via optical transitions by horizontally/ver-
tically polarized light (green/purple straight arrows). The FLE is driven by an exter-
nal laser at the two-photon resonance, which results in a detuning of D0 to the
intermediate states (orange arrows). The FLE is embedded into a cavity with two
energetically degenerate but orthogonal horizontally/vertically polarized cavity
modes (green/purple wavy arrows) detuned by D to the laser energy.

TABLE I. Fixed system parameters used in the calculations.

Parameter Value

Coupling strength g 0.051meV
Detuning D0 20g ¼ 1:02meV
Cavity laser detuning D 0:8D0 ¼ 0:816meV
Cavity loss rate j 0:1g=�h � 7:8 ns�1

Radiative decay rate c 0:01g=�h � 0:78 ns�1
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The constant driving of the FLE results in a mixing of the bare
states jGi; jXH=Vi, and jXXi, such that the new eigenstates are the
laser-dressed states, which we label by jUi; jMi; jNi, and jLi. Their
respective energies are given by39

EU ¼
1
2

D0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
0 þ 8X2

q� �
; (3a)

EM ¼ D0; (3b)

EN ¼ 0; (3c)

EL ¼
1
2

D0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
0 þ 8X2

q� �
: (3d)

Both the state mixing and the energies depend on the driving strength
X, which we will now use to tune certain two-photon transitions in
resonance with the cavity modes.

Figure 2 depicts the dressed state energies [panel (a)], the mean
photon number hni ¼ hâ†HâH þ â†VâVi [panel (b)], and the concur-
rence [panel (c)] as functions of the driving strength X. All quantities
are calculated at times where the system has reached its steady state,
i.e., it is assumed that the coincidence measurements necessary to
determine q2p and C are performed after the steady state in the system

dynamics has been achieved.53 A color code is used to distinguish
among UBS (blue) entanglement, WBS (red) entanglement, and non-
entangled photon pairs (purple).

The mean photon number exhibits a series of differently shaped
peaks related to n-photon transitions between the four laser-dressed
states. An n-photon transition between a pair of dressed states jv1i
and jv2i, labeled as np v1jv2 in Fig. 2(b), is in resonance with the cav-
ity modes when n-times the cavity laser detuning D matches the tran-
sition energy Ev1 � Ev2 . Based on this condition, all peaks of enhanced
photon production can be linked to one-, two-, or three-photon reso-
nances between the dressed states. In particular, two-photon resonan-
ces manifest themselves as high and narrow peaks, e.g., for X � 9g,
14g, or 29g.

Turning to the concurrence, presented in Fig. 2(c), one obtains
again a peak-like structure and both types of Bell state entanglement
occur. By comparing the concurrence and hni, one notes that the
regions of high entanglement are associated with two-photon resonan-
ces. A more detailed analysis reveals that the features observable for
X � 14g (29g) are actually caused by two closely spaced resonances,
2p UjN and 2p MjL (2p UjM and 2p NjL), which result in a double
peak in the concurrence. A particularly high degree of UBS entangle-
ment is obtained for XU ¼ 8:85g when the cavity mode is almost at
resonance with the two-photon transition between the dressed states
jUi and jLi, while at XW ¼ 28:75g, a high WBS entanglement occurs
at the two-photon transition between jNi and jLi. This behavior can
be well understood using an analysis based on a Schrieffer–Wolff
transformation.39 Additionally, three-photon resonances lead to small
peaks in the concurrence and in the mean photon number.

Besides the regions of high UBS and WBS entanglement, also a
wide regime of vanishing concurrence is found, between
X ¼ 16g; :::; 25g, where the cavity modes do not match any multi-
photon transition process, cf. Fig. 2. Note that the vanishing degree of
entanglement in this parameter regime is not due to a lack of emitted
photons. On the contrary, the photon generation can be comparatively
high due to the proximity to one-photon resonances, cf. Fig. 2(b).
Therefore, in this parameter regime, the measurement detects two sub-
sequent photons that are not entangled.

According to our findings, we choose three driving strengths Xj

with similar photon number, but different types of entanglement for
the switching protocol: at XU ¼ 8:85g, we have a strong UBS entan-
glement, at X0 ¼ 18:00g, we have no entanglement, and at
XW ¼ 28:75g, we have a strongWBS entanglement.

We propose a step-like excitation protocol to demonstrate time-
dependent entanglement switching. The results are presented in Fig. 3.
A schematic sketch of the protocol is depicted in Fig. 3(a). The basic
idea is to change between three different driving strengths Xj that, in
the stationary case, are associated with different types of entangled
photon pairs. During the protocol, the FLE is continuously driven
with a constant driving strength Xj for a fixed time period T, and then
X changes step-like to one of the other two values. Accordingly, the
resulting time-dependent laser driving has a step-like structure with
step length T. In order to allow for a time resolved detection of the
entanglement type, measurements with measurement interval
Dt ¼ T=4, delay time window s¼ 50 ps, and varying starting times t0
are performed.

Figure 3(b) displays the calculated concurrence for each measure-
ment as a function of its respective starting time t0, where a step length

FIG. 2. (a) Energies of the four laser-dressed states as function of X (in units of g).
Green double-headed arrows symbolize the cavity mode energy. (b) Mean photon
number hni and (c) concurrence as functions of the driving strength X for a cavity
laser detuning D ¼ 0:8D0. n-photon resonances between the dressed states jv1i
and jv2i are labeled by np v1jv2. The type of entanglement is color-coded:
blue¼UBS entanglement, red¼WBS entanglement, purple¼ no entanglement.
Straight lines mark the driving strengths used for switching in Fig. 3.
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of T¼ 1ns is assumed. As before, the entanglement type is color
coded: blue (red) indicates UBS (WBS) entanglement and purple sym-
bolizes nonentangled photon pairs. The corresponding two-photon
density matrices for the measurements performed at t0 ¼ T=2; 3T=2,
and 5T=2 are depicted in Figs. 3(c)–3(e).

The protocol starts with the driving strength XU, and indeed,
UBS entanglement with a high concurrence is obtained. The corre-
sponding two-photon density matrix shown in Fig. 3(c) represents a
two-photon state close to a maximally entangled UBS. We find that
the occupations of the states with two equally polarized photons,
jHHi and jVVi, and the coherence between them dominate q2p such
that their absolute values are close to 1/2. In the second step, we switch
to XW and obtain a high concurrence related to WBS entanglement. In
the two-photon density matrix, presented in Fig. 3(d), the states jHVi
and jVHi display the highest occupations and coherence values. In the
third step with X0, the entanglement is switched off with zero concur-
rence. The corresponding, reconstructed density matrix is similar to a
statistical mixture, where the coherences needed for an entangled Bell
state are practically absent, resulting in a vanishing degree of
entanglement.

Having demonstrated that all types of entanglement can be created,
we continue the protocol demonstrating that the order of switching does
not play a role. Accordingly, in step 4, we switch into WBS entangle-
ment; in step 5, we switch into UBS entanglement; and in step 6, back to
no entanglement. The obtained concurrence is similar to that in steps
1–3. We also checked that density matrices q2p obtained in the middle
of steps 4, 5, and 6 are almost identical to those presented in Figs.
3(c)–3(e) for the respective driving strength (not shown).

It is also interesting to look at the case when the measurements
start in the vicinity of switching times jT, where j 2 f1; 2;…; 5g.

Here, one observes a continuous transition between the different
entanglement types. This transition begins when the measurement
starting at t0 extends into the next step, i.e., when t0 � jT � Dt.
During this transition process, the degree of entanglement, as mea-
sured by the concurrence, passes through zero when one switches
between UBS and WBS entanglement, or vice versa. After a short tran-
sition interval, the measured concurrence enters either a plateau of
high entanglement associated with the used driving strength or
remains zero, when the driving strength is X0.

An important question is how sensitive the proposed protocol is to
parameter variations. The main requirement is that different types of
entanglement can be obtained at different driving strength values. While
regions of high UBS entanglement can be found rather easily, WBS
entanglement occurs not so often. Only the two-photon transition 2p
NjL always features WBS entanglement, while for high driving strengths,
it can be found also at the 2p UjL resonance.39 Furthermore, the neces-
sary precondition to obtain WBS entanglement at these resonances is a
finite detuning D0. In principle, in these situations, one can then switch
between the different entanglement types using any finite cavity laser
detuning D. Hence, we expect that the protocol also works for different
values of D0 and D. However, a more elaborate analysis suggests that
high concurrence values for both entanglement types are only obtained
if D and D0 are of the same order.

Another possible perturbation is an energy difference between
the single-excited states jXH=Vi, which, in quantum dots, is known as
the fine-structure splitting (FSS). A finite FSS, defined as
d ¼ �hxXH � �hxXV , between the energies of the intermediate bare
states jXH=Vi, is regarded as a main obstacle for entanglement genera-
tion,14,17,26,32,33 because it introduces which-path information and,
thus, reduces the degree of entanglement.14,17,31

FIG. 3. (a) The proposed protocol that ena-
bles time-dependent entanglement switching.
The driving strength is changed instanta-
neously between the three values XU; XW,
and X0 after a time interval T, resulting in a
step-like time-dependent laser driving with
step length T. During each step j, coincidence
measurements with starting time t0, measure-
ment interval Dt ¼ T=4, and delay time win-
dow s¼ 50 ps can be performed. (b)
Concurrence calculated for the respective
measurements as a function of the starting
time t0 for a step length T¼ 1 ns. Results are
calculated for degenerate intermediate states
jXH=Vi (solid line), for the finite fine-structure
splitting d ¼ 0:1D0 between them (dashed
line), and including pure dephasing with
�hcPD ¼ 3 leV (dotted line). The cavity laser
detuning is set to D ¼ 0:8D0, and the driv-
ing strength values XU ¼ 8:85 g; XW

¼ 28:75 g, and X0 ¼ 18 g are used. A
color code indicates UBS (blue) and WBS
(red) entanglement as well as nonentangled
photon pairs (purple). (c)–(e) Corresponding
two-photon density matrices q2p obtained for
the measurements performed at
t0 ¼ T=2; 3T=2, and 5T=2 for the case of
degenerate intermediate states.
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To consider the effect of a FSS on the switching protocol and
entangled photon pair generation, we included an FSS of d ¼ 0:1D0 in
our calculations [dashed line in Fig. 3(b)], which is a typical value
being one order of magnitude smaller than the binding
energy.26,29,31,32 We find that this rather large FSS only marginally
reduces the concurrence compared with the previous results. The rea-
son is that the transitions in the driven system take place between the
laser-dressed states. The FSS affects the energies of the laser-dressed
states and their composition only weakly such that the resonance con-
ditions and optical selection rules hold. This implies that the generated
photonic states are practically the same, and the proposed protocol is
robust with respect to a nonzero FSS.

By adding a phenomenological rate model17,35

LPDq̂ ¼ � 1
2

X
v; v0

v 6¼ v0

cPDjvihvjq̂jv0ihv0j; (4)

with rate cPD and v; v0 2 fG;XH;XV;XXg acting on the statistical
operator q̂, we, furthermore, consider the influence of pure dephasing.
Using a realistic value for quantum dots at low temperatures,17

�hcPD ¼ 3 leV, we find that, although the concurrence is reduced, all
essential features are unaffected. In particular, one can still switch
between different entanglement types with corresponding concurrence
C � 0:5 [dotted line in Fig. 3(b)].

In conclusion, this work presents a protocol for time-dependent
entanglement switching based on a driven four-level emitter–cavity
system. The protocol is operated by simply switching between differ-
ent driving strengths in a step-like manner. Depending on the driving
strength, one obtains either UBS entanglement, WBS entanglement, or
nonentangled photon pairs in the respective measurements. Thus, this
work demonstrates a possibility to actively switch between different
types of entanglement using a time-dependent external laser excita-
tion. The protocol is also robust against a possible FSS. It is stressed
that the protocol enables one to achieve different types of entangle-
ment within the same basis and without further post-processing of the
generated photons.

The proposed protocol is, therefore, a suitable candidate for the
realization of time-dependent entanglement switching, which is an
important step toward future applications.
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Ĥ are constant during the measurement process.

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 118, 164001 (2021); doi: 10.1063/5.0045377 118, 164001-6

Published under license by AIP Publishing





Publication 6

“Accuracy of the Quantum Regression Theorem for Photon Emission from a
Quantum Dot”

M. Cosacchi, T. Seidelmann, M. Cygorek, A. Vagov, D. E. Reiter, and
V. M. Axt.

Phys. Rev. Lett. 127, 100402 (2021).

Copyright by the American Physical Society 2021

DOI: 10.1103/PhysRevLett.127.100402

&

“Erratum: Accuracy of the Quantum Regression Theorem for Photon
Emission from a Quantum Dot”

M. Cosacchi, T. Seidelmann, M. Cygorek, A. Vagov, D. E. Reiter, and
V. M. Axt.

Phys. Rev. Lett. 128, 079901(E) (2022).

Copyright by the American Physical Society 2022
DOI: 10.1103/PhysRevLett.128.079901

https://doi.org/10.1103/PhysRevLett.127.100402
https://doi.org/10.1103/PhysRevLett.128.079901


Author contributions

M. Cosacchi has designed the concept of this study, has performed the numerical data generation and
analysis, and has implemented the problem-specific C++ code. He has provided interpretations of
the results and has written the first drafts of the publication and the erratum. In particular, he had
the original idea to use photonic characteristics of a two-level system to compare numerically exact
calculations with results employing the quantum regression theorem. During the publication process,
he has moderated all discussions, has organized the submission and revision of the manuscript, and
has written the answer to the referees.
The author has participated in the general discussion of the results and their inter-

pretations. Furthermore, he has discussed the results in detail with M. Cosacchi and
has assisted in the numerical implementation of the quantum regression theorem and
convergence tests. He has also contributed to revisions of the draft, the answers to the
referees, and the erratum.

M. Cygorek, A. Vagov, and D. E. Reiter have co-supervised this work. In particular, they have
participated in the discussion of the results and their interpretations. They have also contributed
to the optimization of the presentation, revisions of the draft, the answers to the referees, and the
erratum.

V. M. Axt has advised M. Cosacchi throughout his work as the main supervisor, has obtained the
funding for this work, and has provided the practical means. He has participated in the discussion of
the results and their interpretations. He has also contributed to the optimization of the presentation,
revisions of the draft, the answers to the referees, and the erratum.



Accuracy of the Quantum Regression Theorem for Photon Emission from a Quantum Dot

M. Cosacchi ,1 T. Seidelmann ,1 M. Cygorek ,2 A. Vagov ,1,3 D. E. Reiter ,4 and V. M. Axt1
1Theoretische Physik III, Universität Bayreuth, 95440 Bayreuth, Germany

2Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
3ITMO University, St. Petersburg 197101, Russia

4Institut für Festkörpertheorie, Universität Münster, 48149 Münster, Germany

(Received 25 March 2021; accepted 3 August 2021; published 31 August 2021)

The quantum regression theorem (QRT) is the most widely used tool for calculating multitime
correlation functions for the assessment of quantum emitters. It is an approximate method based on a
Markov assumption for environmental coupling. In this Letter we quantify properties of photons emitted
from a single quantum dot coupled to phonons. For the single-photon purity and the indistinguishability,
we compare numerically exact path-integral results with those obtained from the QRT. It is demonstrated
that the QRT systematically overestimates the influence of the environment for typical quantum dots used
in quantum information technology.

DOI: 10.1103/PhysRevLett.127.100402

To be used as photon sources for quantum information
technology [1,2], semiconductor quantum dots (QDs) must
deliver photons with high-quality characteristics such as a
high brightness, a perfect single-photon purity, and indis-
tinguishability. However, due to the electron-phonon inter-
action in QDs these quantities can be degraded [3,4]. In the
current race for the perfect single-photon source [5,6] with
achieved purities and indistinguishabilities close to unity
[4,7–12], it is crucial to understand the influence of the
phonon-induced dephasing on the properties of emitted
photons. The coupling to environmental phonons has been
shown to lead to several important phenomena like the
phonon sidebands [13,14], damping of Rabi oscillations
[15–19], and the possibility for a dynamic decoupling of
electronic and phononic subsystems [20,21], or degrada-
tion of photon properties [22].
The quantum regression theorem (QRT) known from

quantum optics is probably the most widely used standard
tool to investigate the above photon properties [23]. In esse-
nce, the QRT prescribes to calculate the two- (or multi-)
time correlation functions using the same dynamical
equation for both the (real-) time and the delay-time
arguments, which is used to determine the time evolution
of the single-time correlations. Solving an initial value
problem for the delay-time propagation as done in the QRT
disregards the memory that has build up until the start of the
propagation, and thus, the use of the QRT may become
critical when used for non-Markovian dynamics. With the
help of the QRT, multitime correlation functions yielding,
e.g., the purity and indistinguishability can be deduced. The
QRT can be extended such that it also accounts for the
electron-phonon interaction [24–28]. For our current study
it is most important that phonons are known to induce non-
Markovian dynamics [24,26,29–32] which provides a

situation where the QRT may come to its limits [33–37].
Because the QRT is an approximation it is not always clear,
whether the assumptions made in the derivation are
fulfilled.
Testing the limits of the QRT has recently become

possible by a path-integral approach to calculate multitime
photon correlation functions [38]. This approach is numeri-
cally exact meaning that the time-dependent solution to the
many-body Hamiltionian model is obtained without any
further approximations, and thus the phonon influence
including its non-Markovian part is fully taken into account
[39–41]. The accuracy of the result is controlled by choosing
an appropriate time discretization and memory length.
In this Letter, we explore the limits of the QRT

approximation for calculating multitime correlation func-
tions using a QD coupled to phonons as an example. To
compare numerically exact results with the QRT approxi-
mation in the most transparent way, we implement the
QRT directly within the path-integral method. Since apart
from the QRT no further approximations are involved, this
approach offers a direct way to evaluate the influence of the
QRT on the multitime correlations. Details of the imple-
mentations are found in the Supplemental Material [42].
We demonstrate that the QRT systematically overesti-

mates the phonon impact on the indistinguishability, in
particular for standard GaAs QDs relevant for technological
applications [51–58]. We show that this is connected to the
non-Markovian part of the dynamics. In contrast, the QRT
yields quantitatively correct results for the purity.
We consider a model where a two-level QD can emit

photons and interacts with environmental longitudinal
acoustic (LA) phonons [14,32,59]. For the calculations
we consider GaAs QDs of radius 3 nm and standard
material parameters for the phonon coupling with the
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exception that we introduce a scaling factor λmodifying the
overall coupling amplitude. Details of the model are found
in the Supplemental Material [42]. We assume that this
scaling is a variable in the interval λ ∈ ½0; 10�, where 0
means the absence of phonons, 1 corresponds to the GaAs
QDs, and larger values allow us to explore strongly coupled
QD-phonon systems [39,60]. Larger couplings 1 < λ ≤ 10
can be found in piezoelectric materials like GaN [61]. We
further account for the radiative decay of the QD exciton by
introducing a Lindblad superoperator, setting the radiative
decay rate to γ ¼ 1 ns−1. The QD is excited by an external
laser pulse with a Gaussian envelope. We consider a
resonant [62] excitation scheme with a π pulse of 3 ps
length (full width at half maximum) [63] to prepare the
excited state in the QD [7,28]. Using this model, we can
then calculate the photonic properties.
The single-photon purity P is defined as

P ¼ 1 − p with p ¼
R TPulse=2
−TPulse=2

dτGð2ÞðτÞ
R 3TPulse=2
TPulse=2

dτGð2ÞðτÞ
: ð1Þ

TPulse is the separation of the pulses in the excitation pulse
train, and

Gð2ÞðτÞ ≔ lim
T→∞

1

T

Z
T

−T
dtGð2Þðt; τÞ; ð2aÞ

Gð2Þðt; τÞ ≔ hσ†XðtÞσ†Xðtþ τÞσXðtþ τÞσXðtÞi ð2bÞ

with σX describing the QD transition from the excited to the
ground state. P is a measure for the single-photon compo-
nent of the photonic state [1,7,8,64–68]. It is measured
using a Hanbury Brown-Twiss setup [69], which is a
coincidence measurement and can thus be modeled with
a second-order two-time correlation function Gð2ÞðτÞ. P ¼
1 implies a perfect single-photon purity. The quantity has
no lower bound, −∞ < P ≤ 1, since p can be larger than 1
in the case of bunching instead of antibunching behavior.
The indistinguishability I of two successively emitted

photons is obtained as

I ¼ 1 − pHOM with pHOM ¼
R TPulse=2
−TPulse=2

dτGð2Þ
HOMðτÞR 3TPulse=2

TPulse=2
dτGð2Þ

HOMðτÞ
ð3Þ

with the correlation functions [28,70,71]

Gð2Þ
HOMðτÞ ≔ lim

T→∞

1

T

Z
T

−T
dtGð2Þ

HOMðt; τÞ ð4aÞ

Gð2Þ
HOMðt; τÞ ≔

1

2
½hσ†XðtÞσXðtÞihσ†Xðtþ τÞσXðtþ τÞi

− jhσ†Xðtþ τÞσXðtÞij2 þGð2Þðt; τÞ�; ð4bÞ

where the last term in Eq. (4b) accounts for nonunity
single-photon purities. This quantity is measured in a
Hong-Ou-Mandel setup [72]. Perfect indistinguishability
corresponds to I ¼ 1, and using the definition Eq. (4b) it is
bounded by 0.5 ≤ I ≤ 1 [71]. We note that other defini-
tions of I are often used which are not applicable when the
single-photon purity deviates from unity and where the
lower bound is 0 rather than 0.5 [22,73].
The brightness B of a photon source is defined as the

number of photons emitted per excitation laser pulse [8]. It
is given as [28,74]

B ≔ γ

Z
t0þTPulse=2

t0−TPulse=2
dt hσ†XðtÞσXðtÞi; ð5Þ

where t0 is the center time of the pulse and 0 ≤ B ≤ γTPulse.
A value of B of 100% corresponds to the ideal case of a
delta-pulse excitation.
To calculate these quantities we use the path-integral

method both without and with the QRT. The path-integral
method propagates the augmented density matrix that
contains the information about the memory induced by
the environment to the QD dynamics. Since the phonon-
induced memory depth is finite, a memory window is
formed in each time step. To implement the QRT, the
augmented density matrix is traced over all memory-related
variables at the end of the t propagation to yield a new
initial reduced density matrix before the subsequent τ
propagation. Thus, the accumulated phonon memory is
discarded for the τ propagation. Therefore, the τ propaga-
tion becomes independent from the past evolution in t,
which is the central assumption of the QRT. We have
checked the validity of this approach by comparing our
results with a standard implementation of the QRT as
discussed in Ref. [26] and verify the finding therein that the
QRT yields the phonon sidebands in emission spectra on
the energetically wrong side, cf., Fig. 2 in the Supplemental
Material [42].
Using the path-integral method, we calculate the photon

properties P, I , and B for a wide parameter range as shown
in Fig. 1, which displays the results using the path-integral
approach without the QRT approximation. In the phonon-
free case, λ ¼ 0, the excitation of the QD leads to a
near-optimal single-photon source with P ¼ 99.76%,
I¼99.76%, and B¼99.82%. Slight deviations (< 0.3%)
from the perfect source can be traced back to the finite pulse
length.
While the single-photon purity is close to unity for the

entire parameter range under consideration, for a finite
phonon scaling λ, the indistinguishability rapidly deterio-
rates with rising temperature T, such that for λ ¼ 1 it falls
below 70% when T > 30 K. For large phonon scalings, the
indistinguishability cannot exceed 60% even at T ¼ 4 K.
At higher temperatures and for large phonon scaling, the
indistinguishability decreases to its lowest possible value of
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50%. Nonetheless, the corresponding brightness is non-
vanishing, such that the QD becomes a source of dis-
tinguishable single photons in this regime of higher
temperatures and stronger QD-phonon coupling.
We have marked the most physically relevant regions

with yellow boxes in Fig. 1(c). They correspond to the low-
temperature regime in which experiments are typically
conducted for different QD materials from GaAs to GaN
modeled here by different scalings λ (vertical box) as well
as over a temperature range between liquid helium and
nitrogen temperatures (horizontal box) for GaAs (λ ¼ 1). In
the parameter range of highest interest, i.e., where the boxes
overlap at λ ¼ 1 and T ¼ 4 K, we find P ¼ 99.79%,
I ¼ 93.16%, and B ¼ 96.75%.

We now evaluate how the QRT approximation changes
these results. It is usually conjectured that the QRT might
fail when the dynamics is non-Markovian, i.e., when
memory effects are nonnegligible [34,35]. Furthermore,
there is a class of environmental couplings for which the
QRT cannot be accurately applied, even when the single-
time dynamics is Markovian [36]. In order to describe the
contribution of the memory effects quantitatively, we
consider a non-Markovianity measure for our system.
In contrast to classical Markovian stochastic processes,

in open quantum systems there is no single definition of
Markovianity (or non-Markovianity) that is agreed upon.
Rather, there are different measures that capture different
aspects of Markovian quantum dynamics [75–81], one of

FIG. 1. The single-photon purity (a), the indistinguishability of two successively emitted photons (b), and their brightness (c) in a two-
level QD for a temperature range between 4 and 70K and phonon scalings from 0 to 10. Yellow rectangles in panel (c) mark the
physically important parameter regime of GaAs around λ ¼ 1 for different temperatures and different phonon scalings for temperatures
below 10K.

FIG. 2. The non-Markovianity measure N (a) and the relative error QI for the indistinguishability (b) as a function of temperature T
and phonon scaling λ. (c) The indistinguishability as a function of the phonon scaling parameter l at 4K, calculated with the numerically
exact path-integral method (num. exact), by using the QRT in the lab frame (QRT), and by applying the QRT in the polaron transformed
frame within the PME approach (PME).
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which is the trace distance measure. The trace distance
between two states described by the reduced density
matrices ρ1 and ρ2 is defined as

D½ρ1ðtÞ; ρ2ðtÞ� ≔
1

2
jjρ1ðtÞ − ρ2ðtÞjj1 ¼

1

2

X

k

jxkðtÞj; ð6Þ

where xkðtÞ are the eigenvalues of the difference matrix
ρ1ðtÞ − ρ2ðtÞ. In our case, ρ1 and ρ2 correspond to arbitrary
states chosen on the Bloch sphere of the two-level QD.
For Markovian dynamics, this quantity is a contraction:

d
dt

D½ρ1ðtÞ; ρ2ðtÞ� ≤ 0: ð7Þ

The intuitive explanation for this behavior lies in the loss of
information in a Markovian system: two originally distinct
states monotonically lose their distinguishability over time.
Only in a non-Markovian system, information can flow
back from the environment to the system, making the trace
distance a nonmonotonic function of time. Therefore, the
non-Markovianity of a system can be quantified as
[26,36,75]

N ≔ max
ρ1;ρ2

Z

Ωþ

d
dt

D½ρ1ðtÞ; ρ2ðtÞ�dt: ð8Þ

Ωþ is the union of the intervals on which
ðd=dtÞD½ρ1ðtÞ; ρ2ðtÞ� > 0. The maximum is taken over
all pairs of possible initial states. Fortunately, only the
subset of those states, which are orthogonal to each other,
needs to be considered [82]. For our two-level system, this
means that the corresponding Bloch sphere needs to be
sampled only for pairs of opposing points on its surface.
While N ¼ 0 implies Markovianity, it is important to

realize that N ≠ 0 implies that the underlying dynamical
map is indivisible [36]. Therefore, the measure N captures
the appearance of memory effects in the dynamics of the
system, which is a fundamental aspect of non-Markovianity
both in classical stochastic processes and open quantum
systems.
To quantify the deviations introduced by the QRT, we

define the relative error of evaluating a target quantity M
using the QRTas a measure for the validity of the QRTwith
respect to M:

QM ¼
����
M −MQRT

M

����; ð9Þ

where M is calculated numerically exact and MQRT using
the QRT.
The QRT states that the same dynamical map that is used

to evolve the density matrix and, in extension, expectation
values of any subsystem operator, can be used for the time
evolution of multitime correlation functions used in

Eqs. (2b) and (4b). In particular, the differential equation
propagating the density matrix in the real time t is reused for
the propagation in the delay time τ [83,84]. This assumption
presumes that the initial factorization of subsystem and
environment common in the description of open quantum
systems is also used at the beginning of the τ dynamics. In
other words, this factorization is assumed for every t.
Now, we examine the impact of the QRT approximation

on the photon source characteristics considered above. The
non-Markovianity measureN and the relative error QI for
the indistinguishability are depicted in Figs. 2(a) and 2(b)
as a function of T and λ. We see large values ofN andQI ,
in particular, in the physically relevant parameter regimes,
i.e., at λ ¼ 1 and low temperatures. The largest N is found
for λ > 1 and T < 10 K [cf., Fig. 2(a)], where the error
introduced by using the QRT also rises up to roughly 18%.
This behavior can be related to the connection between
Markovianity and the QRT. Interestingly, there are also
parameter ranges with a nonzeroN , where the QRTerror is
insignificant, e.g., at λ ¼ 10 and T ¼ 20 K, where
N ¼ 0.0125, while QI ¼ 0.3%. This means that there
are parameter sets where the QRT approximation is valid to
a better degree than a Markovian description. This is
unexpected since the former imposes more restrictive
conditions on the system dynamics: for the QRT to hold,
the subsystem and environment have to factorize for all
times t, not only at the initial time. In the entire parameter
regime considered here, the QRT overestimates the phonon
influence on I , that is I > IQRT, cf., Fig. 2(c) for a slice
at 4K.
In contrast, the error QP introduced by the QRT to the

single-photon purity is negligible, and the brightness is
unaffected by the QRT, since its definition in Eq. (5)
contains only expectation values at a single time.
Surprisingly, QP is also extraordinarily small, being on
the order of 10−4 for all considered parameter values (not
shown), in contrast to QI .
In order to understand this, we examine the multitime

correlation functions. While the purity contains only the
second-order correlation Gð2Þðt; τÞ, the indistinguishability
also includes the correlation Gð1Þðt; τÞ ≔ hσ†Xðtþ τÞσXðtÞi.
In Gð2Þðt; τÞ the operators σ†X and σX appear in pairs at each
time t and tþ τ, respectively, hence modeling intensity-
intensity correlation measurements, i.e., the correlation
between occupations. In Gð1Þðt; τÞ on the other hand, σ†X
and σX appear as stand-alone operators for each time
argument in Gð1Þðt; τÞ. Therefore, this function correlates
coherences rather than occupations. Because the coupling
to the LA phonon environment has a stronger impact on
coherences than on occupations, it becomes clear why the
approximations introduced by the QRT have a significantly
stronger impact on I than on P.
This finding implies two consequences: first, the single-

photon purity can be calculated using the QRT with
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negligible error, even for those parameters, where the
dynamics is clearly non-Markovian according to the
measure N [cf., Fig. 2(a)]. Second, one cannot use QP
as a generalmeasure for the validity of the QRT. Using it in
such a way would imply the validity of the QRT, which is
misleading since in the same parameter regimes considered,
the indistinguishability is off by up to 18% when evaluating
with the QRT.
Finally, we analyze the frame dependence of the QRT by

applying it in a polaron transformed frame. This technique
is widely used in the polaron master equation approach
(PME) [85–87] (see also Supplemental Material [42]). In
Fig. 2(c), the indistinguishability is shown for a varying
phonon scaling parameter λ at T ¼ 4 K. The numerically
exact result (black solid line) is compared with the
calculation using the QRT in the lab frame (red dashed
line) and the PME approach applying the QRT in the
polaron frame (blue dotted line). While all methods yield
qualitatively the same dependency, the PME produces
results closer to the numerically exact calculation. While
the largest relative error encountered in the slice shown in
Fig. 2(c) is 18% for the QRT in the lab frame (red dashed
line), it is only 6% when the QRT is applied in the polaron
frame within the PME. The better performance of the PME
is expected because due to the transformation to the polaron
frame a variety of, but not all, non-Markovian effects are
captured. Therefore, changing the frame improves the
usage of the QRT, but still a significant systematic
overestimation of phonon effects on the photon indistin-
guishability is obtained.
In summary, assessing the validity of the commonly used

QRT is dependent on the target quantity that is calculated.
In particular, there is no single measure by which the
validity of the QRT could be estimated for all possible
figures of merit derived from multitime correlation func-
tions. Using a numerically exact path-integral method to
calculate the properties of photons emitted from a QD
coupled to LA phonons enabled us to explore the bounda-
ries of the QRT, showing that the phonon effect on photon
indistinguishability is systematically overestimated by the
QRT, while the purity can be safely calculated using the
QRT. Unlike what is found for other systems [36], the QRT
induces errors in the photon emission from QDs typically
only when the dynamics is non-Markovian. Though we
show that due to the phonons the photon properties are
limited close to but below unity in typical cases, there is
still room for improvement, e.g., by placing the QD in a
cavity. Furthermore, our results should be applicable to a
broad range of physical two-level systems, such as defects
in diamonds [88–93], silicon [94,95], hexagonal boron
nitride [96,97], or other solid-state emitters [98] coupled to
a continuum of environmental oscillators.
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I. HAMILTONIAN AND MODEL EQUATION

Our model Hamiltonian reads as:

H =HQD +HPh +Hdriving . (1)

The two-level quantum dot (QD) has an excited state |X〉 at energy ~ωX and the energy of the ground state |G〉 is
set to zero. In a frame co-rotating with the laser frequency ωL the corresponding Hamiltonian is

HQD = ~∆ωXL|X〉〈X| (2)

with the exciton-laser detuning ∆ωXL = ωX − ωL. The QD interacts with an environment of longitudinal acoustic
(LA) phonons via a pure-dephasing coupling Hamiltonian [1–5]

HPh = ~
∑

q

ωqb
†
qbq + ~

√
λ
∑

q

(
γX
q b
†
q + γX∗

q bq
)
|X〉〈X| , (3)

where bq (b†q) annihilates (creates) a phonon in the mode q with energy ~ωq. The coupling strength to the QD is
denoted by γX

q . In order to analyze the impact of the phonon coupling, we introduce a scaling parameter λ, with
0 ≤ λ ≤ 10. λ = 0 describes the phonon-free case, λ = 1 the coupling in a GaAs QD. 1 < λ ≤ 10 roughly estimates
the stronger phonon coupling in piezoelectric materials like GaN [6]. λ is referred to as the phonon scaling in the main
text. Note that we followed the standard way to write the phonon coupling in Eq. (3) to the exciton state |X〉 only.
But in fact, it can be written to the ground state |G〉 without any influence on the stationary emission spectrum,
which we checked numerically by calculating the QRT spectrum in Fig. 1 (red dashed line) both ways.

The QD is driven by an external laser pulse described by

Hdriving = −~
2
fp(t)

(
σX + σ†X

)
. (4)

σX := |G〉〈X| is the operator for the transition between |X〉 and the ground state |G〉. fp(t) is the real envelope
function of the external laser pulse. Throughout the main text, we consider a Gaussian pulse with an area of π
and pulse duration as measured by the full width at half maximum τFWHM = 3 ps resonant to the polaron shifted
QD transition energy. We further account for the radiative decay of the QD exciton by introducing a Lindblad
superoperator acting on the density matrix ρ to our model

LσX ,γρ = γ

(
σXρσ

†
X −

1

2

{
ρ, σ†XσX

}
+

)
, (5)

where {A,B}+ denotes the anti-commutator of operators A and B and γ the radiative decay rate set to a typical
value of 1 ns−1 unless noted otherwise.

In this model the QD environment consists of two parts: the coupling to photon modes which is responsible for
the radiative decay and the coupling to phonons. Since the radiative decay is modeled by a Markovian rate, it is not
expected to limit the validity of the QRT. Phonons are known to influence the QD dynamics profoundly [1, 7–18] and
to be the origin of non-Markovian behavior [5, 19–23], which might entail errors of the QRT.

While the Hamiltonian in Eq. (1) defines the model, the corresponding Liouville-von Neumann equation for the
density matrix ρ reads

∂

∂t
ρ = − i

~
{H, ρ}− + LσX ,γρ (6)
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TABLE I. Parameters typical for GaAs QDs [6].

Electron deformation potential De (eV) 7.0
Hole deformation potential Dh (eV) -3.5
Density ρD (kg/m3) 5370
Sound velocity cs (m/s) 5110
Electron-to-hole confinement ratio ae/ah 1.15
Electron confinement radius ae (nm) 3.0

with the commutator {A,B}− of operators A and B. This equation is solved in a numerically exact way for the
time evolution of the QD subsystem’s reduced density matrix ρ̄ = TrPh[ρ], where the trace is taken over the phonon
subspace, by employing an iterative real-time path-integral formalism (details are explained in Refs. 24–26).

The deformation potential coupling of the QD to LA phonons influences the reduced electronic density matrix via
the phonon spectral density J(ω) =

∑
q |γXq |2δ(ω − ωq). Note that the sign or even the phase of the coupling has no

influence on the electronic dynamics, since only the absolute square enters the spectral density. Assuming a linear
dispersion ωq = cs|q| with sound velocity cs and Gaussian wave functions for both electrons and holes with radii ae
and ah, the spectral density becomes [24, 26, 27]

J(ω) =
ω3

4π2ρD~c5s

(
Dee

−ω2a2e/(4c
2
s) −Dhe

−ω2a2h/(4c
2
s)
)2

. (7)

We use typical GaAs parameters for a QD with radius ae = 3.0nm listed in Tab. I. Note that scaling the phonon
coupling γXq with

√
λ as in Eq. (3) implies that the spectral density J(ω) is scaled with λ.

The low-frequency behavior of this spectral density is given by J(ω) ∝ ωs with s = 3. Spectral densities with
such a power law dependence are classified as super-Ohmic, in contrast to the Ohmic case, for which s = 1, and
the sub-Ohmic case with 0 ≤ s < 1. The super-Ohmic case is known to result in a nonexponential and only partial
polarization decay [3] which is a clear signature of non-Markovian dynamics. Rather generally, the low-frequency
behavior has been shown to potentially play a decisive role for the relation between Markovianity and QRT errors
[28].

II. EVALUATION OF G(2)(t, τ)

Numerically Exact Evaluation To evaluate the two-time correlation function introduced in the main text
G(2)(t, τ) = 〈σ†X(t)σ†X(t+τ)σX(t+τ)σX(t)〉 within the path-integral formalism, first, we assume a time discretization
of n equidistant time steps with length ∆t for the interval [0, t] and of another m time steps of the same length to
cover [t, t+ τ ], i.e., t = n∆t and τ = m∆t. The object propagated in time is the augmented density matrix (ADM),
a 2nc-rank tensor that contains all the information induced by the nc∆t long memory. The iterative propagation of
the ADM is summarized as [25]:

ρ̄
µn...µn−nc+1
νn...νn−nc+1 =Mνn−1µn−1

νnµn

∑

νn−nc
µn−nc

exp

(
n∑

l=n−nc

Sνnνlµnµl

)
ρ̄
µn−1...µn−nc
νn−1...νn−nc

, (8)

whereMνn−1µn−1
νnµn is the subsystem propagator and Sνnνlµnµl

the phonon influence functional. The indices µj and νj
describe the subsystem state µ and ν, respectively, at the time step j. The subsystem’s reduced density matrix at
time n∆t, which is the quantity necessary to calculate any expectation value of observables within the subsystem, is
obtained by tracing out the memory contained in the ADM, i.e.,

ρ̄νnµn
=

∑

νn−1...νn−nc+1

µn−1...µn−nc+1

ρ̄
µn...µn−nc+1
νn...νn−nc+1 . (9)

In order to calculate the two-time correlation function G(2)(t, τ), the ADM is propagated for the first n steps, after
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which the operators evaluated at time t are multiplied to produce a modified ADM (MADM):

ρ̄
µn...µn−nc+1

σXσ
†
Xνn...νn−nc+1

=
∑

ν′nµ
′
n

(σX)νnν′nM
νn−1µn−1

ν′nµ
′
n

(σ†X)µ′nµn

∑

νn−nc
µn−nc

exp

(
n∑

l=n−nc

Sνnνlµnµl

)
ρ̄
µn−1...µn−nc
νn−1...νn−nc

, (10)

The MADM follows the same recursion as the ADM, such that for the subsequent m steps until t + τ , the MADM
is iterated instead of the ADM. Finally, the two-time correlation function is obtained by multiplying the operators
evaluated at time t+ τ and the trace is performed to yield

G(2)(t, τ) =
∑

νn+m...νn+m−nc+1

µn+m...µn+m−nc+1

[
σ†XσX

]
µn+mνn+m

ρ̄
µn+m...µn+m−nc+1

σXσ
†
Xνn+m...νn+m−nc+1

. (11)

A derivation of this scheme with detailed explanations can be found in Ref. [29]. Note that the first-order correlation
function 〈σ†X(t+ τ)σX(t)〉 appearing in the main text can be obtained using the same method by simply exchanging
σ†X(t) and σX(t+ τ) with identity operators in G(2)(t, τ).

QRT Evaluation To implement the QRT within this framework, one traces out the memory of the ADM after
reaching the time n∆t as in Eq. (9) to obtain the reduced density matrix (RDM) ρ̄νnµn . Then, a modified RDM
(MRDM) which is defined as

ρ̄ µn

σXσ
†
Xνn

=
∑

ν′nµ
′
n

(σX)νnν′n ρ̄ν′nµ′n(σ†X)µ′nµn
(12)

is used as the new initial RDM for the next m time steps, which now describe the propagation in τ . The essential
difference to the exact propagation scheme is that here the memory acquired until the time t is discarded for the
subsequent τ -propagation. As for the initial (real) time t = 0, the phonon subspace is assumed to be in equilibrium at
a temperature of T at the time n∆t, when the propagation of the MRDM begins. The statistical operator of the total
system is approximated by the QRT at the beginning of the τ -propagation by a product of the statistical operators
for the two-level system and the environment, thus ignoring the entanglement between these subsystems that has
been built up during the t-propagation due to their mutual interaction [30].

III. EMISSION SPECTRA AND QRT IMPLEMENTATION

The emission spectrum S(ω) is obtained in a stationary nonequilibrium state of the system. To this end, the first-
order two-time correlation function G(1)(t, τ) = 〈σ†X(t+ τ)σX(t)〉 is considered in the limit t→∞. After subtraction
of the coherent part of the emission [29, 31] limt,τ→∞G(1)(t, τ) the Fourier transform is taken:

S(ω) = Re
[∫ ∞

−∞
dτ lim

t→∞

(
G(1)(t, τ)− lim

τ→∞
G(1)(t, τ)

)
e−iωτ

]
. (13)

In Fig. 1 QD emission spectra calculated for a constantly driven QD with a field strength of ~fp(t) = 0.079meV and
a radiative decay rate of γ = 0.01 ps−1 at T = 10K are shown. As a reference, the phonon-free result, i.e., for λ = 0,
is depicted (orange dashed-dotted line), where no sidebands appear. The inset in Fig. 1 shows the same data zoomed
in on the energy scale and zoomed out on the intensity axis. On this scale, the Mollow triplet becomes visible with the
peaks at ±~fp, which corresponds to the Rabi splitting. For finite temperature, the peaks shift to smaller energies and
broaden slightly, which corresponds to the phonon-induced renormalization of the Rabi frequency and its damping,
respectively. Note that the numerically exact result at 10K has been obtained by employing a matrix-product-state
representation of the iterative path-integral method [32] to enable calculations with very fine time discretization.

We stress that there is a clear physical picture that the phonon sideband has to be on the left side of the zero
phonon line (ZPL). At low temperatures, phonon emission is strongly favored over phonon absorption. Therefore, the
energies of the emitted photon and of the emitted phonon have to add up to the QD transition energy due to energy
conservation. Accordingly, in an emission spectrum, the energy of the emitted photon after phonon emission has to
be smaller than the QD transition energy. This results in the phonon emission sideband being on the energetically
lower side of the ZPL.

The numerically exact approach (black solid line) gives the physically correct results showing the phonon sideband
on the energetically lower side of the ZPL. In contrast, when the QRT is applied, the phonon sideband appears on
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FIG. 1. The QD emission spectrum [29] calculated for a constantly driven QD with ~fp(t) = 0.079meV and a radiative decay
rate of γ = 0.01ps−1 at T = 10K. The numerically exact result (num. exact) is compared with results obtained using the QRT
in the lab frame (QRT) and in the polaron frame (PME). As a reference, the phonon-free case λ = 0 is also shown. The inset
depicts the same data on a different scale, where the Mollow triplet becomes visible.

the energetically higher side (red dashed line). This wrong outcome of the QRT was already discussed in Ref. 22,
where it was explicitly shown that by neglecting correlations resulting in memory effects, physically wrong results are
obtained. We consider our implementation of the QRT as verified, since it reproduces this result of Ref. 22, which
was obtained within a completely different methodological framework. When including said correlations and memory
effects on the other hand, as they are in our numerically exact path-integral approach, the physically correct picture
of a phonon sideband at the lower energy side of the emission spectrum is found.

IV. THE QRT IN THE POLARON TRANSFORMED FRAME

An approximate method to account for the coupling to the LA phonon environment is the polaron master equation
approach (PME) [33–35]. The core idea of this method is to transform the system into the polaron frame by

H ′ = eSHe−S (14a)

S =σ†XσX
∑

q

√
λ

ωq

(
γXq b

†
q − γX∗q bq

)
. (14b)

Only then the Markov approximation is employed to obtain a time-local master equation for the reduced subsystem
dynamics. This method becomes exact in the weak-driving limit. Since we consider strong pulsed excitation, it is
not a priori clear if this condition is fulfilled. The PME approach captures a variety of non-Markovian features that
would be lost if the Markov approximation had been used in the original laboratory frame.

Therefore, the question arises whether the QRT is also frame dependent. Indeed, QD emission spectra calculated
within the PME approach by employing the QRT in the polaron frame show the correct phonon sidebands [36], cf.,
blue dotted line in Fig. 1.

In the following, we describe the procedure to compare the effect of using the QRT in the lab and the polaron frame
on the indistinguishability, cf., Fig. 2(c) in the main text. To obtain the indistinguishability in the lab frame within
the PME approach, one has to transform it back after using the QRT in the polaron frame. In this transformation, all
σ†X (σX) operators acquire a B+ (B−) operator with B± = exp

[
±∑q(

√
λ/ωq)(γX∗q bq − γXq b†q)

]
. Hence, whenever

the two transition operators appear in pairs at equal times as in the second-order correlation function G(2)(t, τ) the
back transform is the identity operation. In contrast, the function G(1)(t, τ) is influenced by the back transform. In
particular, a term 〈B+(τ)B−(0)〉 appears, which is simplified to 〈B〉2eφ(τ) [37]. The so-called Franck-Condon factor
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[16] 〈B〉 is defined as

〈B〉 = 〈B±〉 = exp

[
−1

2

∫ ∞

0

dω
J(ω)

ω2
coth (~ω/(2kBT ))

]
, (15)

where kB denotes the Boltzmann constant. The phonon correlation function is

φ(τ) =

∫ ∞

0

dω
J(ω)

ω2
[coth (~ω/(2kBT )) cos (ωτ)− i sin (ωτ)] . (16)
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Erratum: Accuracy of the Quantum Regression Theorem for
Photon Emission from a Quantum Dot
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In our Letter, the main investigation was a comparison between a numerically exact path-integral (PI) method and the
quantum regression theorem (QRT) to model photonic figures of merit in quantum-dot–cavity systems obtained from two-
time correlation functions. As a side aspect, we discussed the dependence of applying the quantum regression theorem in
different frames, in particular, the lab frame and the polaron frame. The latter was achieved by considering the polaron
master equation (PME) approach. Upon closer inspection of our numerical analysis, we have found a parameter discrepancy
as explained below that affects the results obtained within the PME approach. We stress that this correction does not affect
the majority of the results and the main message of the Letter, namely that the QRT overestimates the phonon influence on
the indistinguishability.
Concerning Fig. 2(c) of our original Letter, the numerically exact PI results and the ones obtained by using the QRT in the

lab frame were calculated for a quantum dot (QD) with an electron confinement radius of ae ¼ 3 nm (as defined in Table 1
in Supplemental Material of our Letter [1]). In contrast, the PME results were calculated for ae ¼ 4.175 nm by mistake,
which prohibits a meaningful comparison of the different methods. In Fig. 2(c), the corresponding PME results for a 3 nm
QD are shown (blue dotted line).
Furthermore, in the PME community, two different ways to account for the radiative decay by a phenomenological

Lindblad term are being used: either the corresponding rate is scaled by a factor hBi2 (as done in, e.g., Ref. [85] of our
Letter) or not (as done in, e.g., Ref. [87] of our Letter), where hBi is the phonon Franck-Condon factor as given in Eq. (15)
in Supplemental Material of our Letter. In the calculations shown in our Letter, we had scaled the radiative decay rate by the
factor hBi2. The assumption, though, that the radiative decay of the QD into a spectrally flat electromagnetic field
environment is not affected by the phonon environment has recently been confirmed by taking into account both
environments microscopically within the numerically exact algorithm ACE [2]. Therefore, we continue here without using
the factor hBi2. This different scaling, though, has only a marginal influence on the corresponding results for our
parameters. The different QD size ae is responsible for the larger contribution to the change of the PME results.
As was stated in the original Letter, the QRT applied both in the lab frame and in the polaron frame systematically

overestimate the phonon influence on the indistinguishability. But in contrast to the previous comparison, the correct PME
results now basically coincide with the QRT results [cf. Fig. 2(c)]. Therefore, applying the QRT in the polaron frame does
not improve the accuracy of the indistinguishability.

FIG. 2. (c) The indistinguishability as a function of the phonon scaling parameter λ at 4 K, calculated with the numerically exact PI
method (num. exact), by using the QRT in the lab frame (QRT) and in the polaron frame (PME). Phonon sidebands of the QD emission
spectra at 10 K are shown in the inset.
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To explain this finding, we look at each term of Eq. (4b) of our Letter and compare their derivation within the different
methods. The factors in the first term are both (single-time) expectation values of the exciton occupation. We have checked
that the PME approach without using the scaling hBi2 agrees well with the path-integral method regarding the exciton
occupation for all parameters concerned. The last term is the second-order two-time correlation function Gð2Þðt; τÞ, upon
which the single-photon purity P is based. In our Letter, we found that the QRT introduces basically no error to this quantity
compared with the numerically exact evaluation of the two-time function.
The second term jhσ†Xðtþ τÞσXðtÞij2 is the absolute square of the first-order correlation function Gð1Þðt; τÞ. Without the

factor hBi2 the PME spectrum is almost a mirror image of the spectrum obtained by applying the QRT in the lab frame
[cf. inset of Fig. 2(c)] similar to what was found earlier by a perturbative approach (cf. Ref. [26] of our Letter). This implies
that the QRT and PME results differ basically only by the sign of the imaginary part of Gð1Þðt; τÞ, which does not affect the
absolute square.
In summary, we find that the QRT and PME agree in most parts and both exhibit deviations by up to 18% from the

numerically exact PI results.
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The term N-photon bundles has been coined for a specific type of photon emission, where light quanta are
released from a cavity only in groups of N particles. This emission leaves a characteristic number distribution of
the cavity photons that may be taken as one of their fingerprints. We study this characteristic N-photon bundle
statistics considering two solid-state cavity quantum electrodynamics (cQED) systems. As one example, we
consider a semiconductor quantum-dot–microcavity system coupled to longitudinal acoustic phonons. There, we
find the environmental influence to be detrimental to the bundle statistics. The other example is a superconducting
qubit inside a microwave resonator. In these systems, pure dephasing is not important and an experimentally
feasible parameter regime is found, where the bundle statistics prevails.

DOI: 10.1103/PhysRevB.106.115304

I. INTRODUCTION

Many innovative applications of the quantum realm rely
on the on-demand preparation of specific, highly nonclassical
target states. Cavity quantum electrodynamics (cQED) is a
well established tool for this purpose. On numerous different
platforms, e.g., atoms in resonators [1–3], superconduct-
ing qubits in microwave resonators [4,5], or semiconductor
quantum dots in microcavities [6–26], preparation of single
photons, entangled photon pairs, Fock states, and Schrödinger
or Voodoo cat states has been proposed or achieved. Recently,
a new class of emitters has been proposed [27,28], where
the photon emission takes place only in groups of an integer
number N . The term N-photon bundle has been coined to
describe these multiphoton structures. There are numerous
ways to characterize these structures, e.g., in terms of their
emission properties [29,30] or their internal correlations be-
tween the constituent photons [31], which can be interpreted
as a consequence of their specific temporal spacing, see sketch
in Fig. 1. In contrast to the ordinary Fock state |N〉, a bundle
is emitted as a cascade over successive Fock states |n〉, where
0 � n � N , after the preparation of the state |N〉. The cascade
is a direct result of the outcoupling via resonator losses. In a
resonator with loss rate κ , the Fock state |n〉 effectively decays
with the rate nκ , explaining the temporal spacing between
the photons constituting the bundle. A feature that has been
established in Ref. [27] as a major fingerprint of an N-photon
bundle, resulting from its cascaded generation, is its charac-
teristic stationary photon statistics:

PN (n) =
⎧⎨
⎩

1 − 〈n〉
N

∑N
j=1

1
j n = 0

〈n〉
N

1
n 1 � n � N

0 n > N
(1)

with 〈n〉 being the average photon number in the resonator.
Note that the stationary distribution of photon number states

is directly accessible to experiments [32–34], and thus the
statistics given by Eq. (1) is a measurable quantity.

The N-photon bundle is highly nonclassical and exhibits
two attractive properties: (i) a sharp cutoff for photon number
occupation probabilities PN (n) with n > N and (ii) it contains
a relatively high stationary N-photon component. The cutoff is
useful for applications, e.g., in quantum cryptography [35]. A
simultaneous creation of N photons is advantageous for med-
ical applications due to a greater penetration depth and better
resolution [27,36–40]. On timescales longer than the size of
the bundle, Planck’s constant is effectively renormalized in
the relationship between frequency and energy, E = Nh̄ω.
Since in a stationary state an N-photon component is always
redistributed to states with lower n < N due to cavity losses,
the characteristic bundle statistics according to Eq. (1) reflects
both important properties.

Cavity losses are both unavoidable and necessary for actual
quantum technological applications, because, typically, the
photon state created inside the cavity has to be delivered to
a recipient outside the cavity structure. Although the target
N-photon component in the stationary bundle state is lower
than subsequent n-photon components [cf. Eq. (1) for n < N],
it still realizes the highest possible relative N-photon compo-
nent that can be achieved in a stationary situation with loss
processes. In this sense, the N-photon bundle is probably the
best compromise between creating a pure N-photon Fock state
|N〉 only inside the cavity and delivering a high N-photon
component in a stationary fashion.

From a detection point of view this means the following:
When a Poissonian source emits photons, their arrival times
at the detector are distributed randomly; in the case of an
N-photon bundle emission, the bundles arrive randomly, but
the photons contained in each bundle obey the temporal order
as sketched in Fig. 1. Therefore there is a Poissonian distri-
bution over bundles. In this sense, N-photon bundles can be
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FIG. 1. Sketch of a two-level system (2LS) embedded in a cavity
resulting in the coupling to one cavity mode. The 2LS is driven by
a continuous external excitation. It can decay radiatively, while the
cavity is lossy. For particular sets of parameters, N-photon bundles
leave the cavity. They are characterized by the specific temporal
spacing between the constituent photons and their specific photon
number statistics. Exemplary, four five-photon bundles are depicted.

considered as an alternative to Fock states as building blocks
for more complex quantum states of light. In addition to
optical applications, even bundle generation using phonons
instead of photons has been proposed [41].

In this work, we consider the bundle statistics in Eq. (1)
as one of the possible ways to characterize a bundle and
study this fingerprint in two different solid-state platforms: (i)
semiconductor quantum dots (QDs) in microcavities and (ii)
superconducting qubits in microwave resonators.

In QDs, the coupling to longitudinal acoustic phonons
is known as the main source of decoherence. Further-
more, phonon emission and absorption can assist off-resonant
single-photon processes and, thus, influence the competition
between these processes and direct higher-order multi-photon
processes [42]. Because the N-photon bundle is associated
with an N-photon resonance, phonons can impact the bundle
generation. We therefore analyze a QD–cavity system coupled
to a phonon environment modeled in a microscopic picture.
This full many-body problem is solved in a numerically exact
way by employing a path-integral formalism. We compare
these results with those found in a model accounting for
phonons only via a phenomenological pure dephasing rate.
For realistic parameters that are currently achievable, we find
that the phonon influence leads to photon number distributions
that deviate significantly from the bundle statistics in Eq. (1).

In superconducting qubit–microwave resonator systems,
pure dephasing is negligible. For these systems, we propose a
set of parameters experimentally well within reach, where the
bundle statistics with N = 2 is preserved. We show that for
this purpose a resonator with a mediocre Q factor is optimal.

II. MODEL AND METHODS

A. cQED model

Both example systems can be described by a strongly
driven Jaynes–Cummings model with the Hamiltonian in a
frame corotating with the frequency of the external excitation
ωL in the usual dipole and rotating-wave approximations

HSys = − h̄�ωLX|X 〉〈X | + h̄�ωCLa†a

+ h̄g(|X 〉〈G|a + |G〉〈X |a†)

+ h̄ f (|X 〉〈G| + |G〉〈X |). (2)

FIG. 2. Schematic sketch of the N-bundle mechanism. Black
lines indicate the energetic position of systems states |±, n〉 where
the driven 2LS is in the upper (lower) laser-dressed state |+〉 ≈ |X 〉
(|−〉 ≈ |G〉) and n ∈ N0 photons are inside the resonator. Note that
in the rotating frame the contribution of a resonator photon h̄�ωCL

to the total energy is negative in the regime where bundles are found
(cf. Fig 3). The states |−, 0〉 and |+, N〉 are in resonance and the
resonator introduces an effective coupling Veff between them (blue
arrows). Green (dashed black) arrows indicate the action of the
resonator loss (radiative decay) with rate nκ (γ ) on a system state
|±, n〉.

The two-level system (2LS) has an excited state |X 〉 at energy
h̄ωX and a ground state |G〉 at energy zero. a (a†) is the anni-
hilation (creation) operator of a photon in the single resonator
mode at energy h̄ωC coupled to the 2LS by g. The detuning
between the external excitation with strength f and the upper
state |X 〉 is denoted by �ωLX = ωL − ωX and the detuning
between resonator and external excitation �ωCL = ωC − ωL

is defined analogously. The detuning between resonator and
the upper state |X 〉, �ωCX = ωC − ωX, is fixed by the growth
process of the structure. Hence, we keep it constant in our
analysis.

When the 2LS is strongly driven ( f � g) and it is in the
dispersive regime (�ωCX � g), a sharp N-photon resonance
emerges with N being an integer. It corresponds to a polari-
ton of the type (|G, 0〉 ± |X, N〉)/

√
2, where |χ, n〉 denotes

the product state of the 2LS state |χ〉 with χ ∈ {G, X } and
the photon number state |n〉. When dissipative channels are
included by introducing the excited state’s radiative decay
with rate γ and resonator losses with rate κ , this resonance
becomes a source of N-photon bundles [27].

This mechanism is sketched in Fig. 2. Because the 2LS is
strongly driven ( f � g) and the dispersive regime (�ωCX �
g) is considered, the coupling to the resonator represents a
small perturbation to the driven 2LS. Thus the system is best
discussed using the two eigenstates

|+〉 = α|G〉 + β|X 〉, (3a)

|−〉 = β|X 〉 − α|G〉 (3b)
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of the system Hamiltonian HSys without the resonator cou-
pling, i.e., g = 0 in Eq. (2), which are typically referred to as
the laser-dressed states. In general, the laser-dressed states are
admixtures of both bares states, and the mixing coefficients
α, β ∈ R depend on the driving strength f and the detuning
�ωLX. In order to create N-photon bundles, the resonator
mode (in the rotating frame) is adjusted to the N-photon
resonance between the lower laser-dressed state without pho-
tons |−, 0〉 and the higher laser-dressed state with N photons
inside the resonator |+, N〉. The resonator introduces then an
effective (N th-order) coupling between these two states [29],
which we denote as Veff in Fig. 2. In the relevant situation here,
were the laser is typically strongly detuned from the 2LS, the
laser-dressed states are essentially the bare states |+〉 ≈ |X 〉
and |−〉 ≈ |G〉. Therefore the polariton (|G, 0〉 ± |X, N〉)/

√
2

is formed which corresponds to N-photon Rabi oscillations
between the involved states. Dissipative channels lead to fur-
ther couplings between the states |±, n〉, cf. schematic sketch
in Fig. 2. Therefore, after the state |+, N〉 has been reached
due to the effective resonator coupling, the resonator losses
with rate nκ lead to a cascaded decay. The characteristic N-
photon bundle statistics is a direct result of the ratio (n + 1)/n
between subsequent loss rates nκ associated with the state
|+, n〉. In contrast, the radiative decay with rate γ provides
a pathway from |+, n〉 ≈ |X, n〉 to |−, n〉 ≈ |G, n〉 at the same
photon number.

We include both dissipative effects by accounting for the
Lindblad superoperators L|G〉〈X |,γ and La,κ acting on the den-
sity matrix ρ as

LO,
ρ = 

(
OρO† − 1

2 {ρ, O†O}+
)
, (4)

describing loss processes with rate 
 on a dissipation chan-
nel O, where {A, B}+ is the anti-commutator of operators A
and B.

The time evolution of the density matrix ρ is then governed
by the Liouville-von Neumann equation

∂

∂t
ρ = 1

ih̄
[H, ρ]− + La,κρ + L|G〉〈X |,γ ρ, (5)

where [A, B]− is the commutator of operators A and B. In the
following, we introduce two different driven 2LS-resonator
systems. Depending on the considered system, the Hamilton
operator H may include further contributions in addition to
HSys.

1. QD model

At first, we consider a self-assembled GaAs QD system
in a single-mode microcavity. In these systems, additionally
the pure-dephasing coupling of the electronic states to an
environment of longitudinal acoustic phonons is important
[43,44], i.e., H = HSys + HPh in Eq. (5). It is described by the
Hamiltonian [45–48]

HPh = h̄
∑

q

ωqb†
qbq

+ h̄
∑

q

(
γ X

q b†
q + γ X∗

q bq
)|X 〉〈X |, (6)

where bq (b†
q) annihilates (creates) a phonon of energy h̄ωq

in mode q with the coupling strength γ X
q . The phonons

are assumed to be initially in thermal equilibrium at
temperature T .

This coupling to phonons is the source of many well-
known effects in QDs, like the phonon sideband in the QD
emission spectrum [45,49], the renormalization of the Rabi
frequency [50,51], and the damping of Rabi oscillations
[52–54]. It should be noted that because of the QD-phonon
interaction resonances are found at different spectral positions
due to the polaron shift. Whenever we refer to the excited state
energy when phonons are taken into account, we mean the
polaron-shifted excited state energy.

To treat this full many-body Hamiltonian in a numerically
exact way, we employ an iterative real-time path-integral
formalism [55–59] to solve the Liouville–von Neumann equa-
tion. Details on the used path-integral algorithm can be found
in Appendix A. Within this approach, all effects mentioned
above are thus taken into account.

Unless noted otherwise, we take h̄g = 0.02 meV [60], γ =
1 ns−1, and κ = 8.5 ns−1 [61]. These values, in particular,
the cavity loss rate κ are realistically achievable [61]. The
record in cavity quality so far is around κ ≈ 4 ns−1 to 6 ns−1

[60], which means that it should be possible to achieve the
value of κ chosen here with current state-of-the-art equipment
with reasonable effort. Further, following Ref. [27], we set
h̄�ωCX = −60h̄g = −1.2 meV and h̄ f = 32h̄g = 0.64 meV.
For the phonon coupling, standard GaAs parameters [59,62]
are chosen for a QD with a radius of 3 nm.

2. Superconducting qubit model

As a second example, we consider a superconducting qubit
in a microwave resonator. Here, pure dephasing is negligible.
Therefore no addition to the model in Sec. II A is necessary,
i.e., H = HSys in Eq. (5).

We use the parameter set h̄g = 0.079 µeV, γ = 1.54 µs−1,
κ = 0.29 µs−1, i.e., κ 	 γ , taken from Ref. [5]. Again, fol-
lowing Ref. [27], we choose h̄�ωCX = −60h̄g = −4.71 µeV
and h̄ f = 32h̄g = 2.51 µeV.

III. RESULTS: QD-CAVITY SYSTEM

A. Resonance landscape and N = 2

The resonance corresponding to an N-photon bundle is
found at [27,63]

�ωLX =
√

4(N2 − 1) f 2 + N2�ω2
CX + �ωCX

N2 − 1

+ �ωCX. (7)

In this work, we focus mostly on the case N = 2. For
the QD–cavity system, this results in a detuning value of
h̄�ωLX = −0.51 meV. Higher-order bundles with N > 2 can
be reached by tuning the excitation to the corresponding res-
onance according to Eq. (7), however for the realistic set of
parameters assumed here they are negligible.

To illustrate the appearing resonances, we scan the station-
ary probability Pn of occupying the photon number states |n〉
with the laser frequency ωL. Figure 3 shows the corresponding
results for the photon number states |n〉 = |1〉, |2〉, and |3〉
in the QD–cavity system. Three resonance peaks emerge in

115304-3



M. COSACCHI et al. PHYSICAL REVIEW B 106, 115304 (2022)

FIG. 3. Stationary probability Pn of occupying the photon num-
ber states |n〉 in the QD–cavity system as a function of the
laser–exciton detuning �ωLX (a) without taking phonon effects into
account, (b) including phonons initially at T = 4 K (the insets show
the region marked by yellow boxes on a larger scale), (c) the cor-
responding energies of the laser-dressed states |+〉 and |−〉. The
energy of a photon in the rotating frame is given by the cavity–laser
detuning h̄�ωCL, which is plotted as a shaded area to illustrate its
modulus. Arrows indicate the number of photons involved in the
processes leading to the various resonance peaks, while their length
corresponds to their energy h̄�ωCL. The circular arrow indicates a
one-photon process with a photon energy (in the rotating frame)
of h̄�ωCL = 0. The blue lines above panel (a) mark the energetic
positions of the bundle resonances, starting for N = 1 and quickly
converging to h̄�ωCX for larger N . Since the bundle resonance is
derived from the condition that N cavity photons energetically fit
between the two dressed states, an equation analogous to Eq. (7) can
be found for the trivial case N = 1.

the vicinity of the bundle resonance [presented in Fig. 3(a)],
which itself is shown on a magnified scale in the inset.

The most prominent peaks are found for the limiting cases
N → ∞ and N = 1. For N → ∞ a double-peaked structure
emerges at h̄�ωLX = h̄�ωCX = −1.2 meV (cf. Fig. 8 in
Appendix B for a zoom-in). At its center the photon statis-
tics is Poissonian and is hardly influenced by phonons [cf.
Figs. 3(a) and 3(b)]. In contrast, the peak at h̄�ωLX ≈
0.08 meV corresponds to the resonance for N = 1. Here, Fock

FIG. 4. The stationary probability Pn of occupying the photon
number states |n〉 normalized to its value at n = 1 for the QD–cavity
system. While the data labeled ’realistic losses’ is obtained using
the parameters listed in Sec. II A 1, weaker losses of γ = 0.01g and
κ = 0.1g were chosen following Ref. [27] for the calculation shown
in gray. Note that in the phonon-free case, the absolute values of the
Fock state with n = 1 are 0.016 for the weaker losses and 0.003 for
the realistic parameter set.

states with n > 1 are not occupied due to a photon blockade
effect [cf. Fig. 3(a)], which is spoiled once phonons are con-
sidered: then, the system can climb up the Jaynes-Cummings
ladder [cf. Fig. 3(b)]. The different physical mechanisms giv-
ing rise to these two limiting cases and the phonon influence
on them is discussed in detail in Appendix B.

We now consider the range of bundle physics for 1 < N <

∞ and focus on N = 2. The characteristic bundle statistics as
denoted in Eq. (1) is well visible for the two-photon bundle
shown in the inset of Fig. 3(a), in particular, the three-photon
occupation probability is zero.

To understand all the resonances, we diagonalize the
Hamiltonian of the laser-driven 2LS neglecting the cavity
(since f � g). As a result, we obtain the laser-dressed states
|+〉 and |−〉. Their energies in the laser-rotating frame are
plotted in Fig. 3(c) along with the energy of a cavity photon
given by h̄�ωCL in this frame.

The analysis in terms of laser-dressed states confirms
the fact that the two-photon bundle resonance at h̄�ωLX =
−0.51 meV originates from a two-photon process [27], in
this case a transition from |−, 0〉 to |+, 2〉. The study of the
influence of the phonons on this resonance shows that already
at 4 K [inset of Fig. 3(b)], it is strongly suppressed. The
occupation probability P1 strongly rises around the resonance
peak. While the absolute value of P1 is only weakly affected
when phonons are included, the height of the peak associated
with P2 is reduced by one order of magnitude from 1.3 × 10−3

to 1.3 × 10−4. In particular, the characteristic 1/n fingerprint
[cf. Eq. (1)] of the number distribution is violated.

To illustrate this point in more detail, the stationary photon
number distribution normalized to its value at n = 1 is shown
in Fig. 4. First of all, it is interesting to note that the ideal
bundle statistics Pn ∝ 1/n is only observed for loss parame-
ters weaker than the realistic, state-of-the-art values (cf. gray
data in Fig. 4). This parameter set consists of γ = 0.01g =
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0.3 ns−1 and κ = 0.1g = 3 ns−1, following the values chosen
in Ref. [27]. Already the slightly higher values chosen in our
work in accordance with current experiments (cf. Sec. II A 1)
lead to a ratio of the stationary two- to the one-photon occu-
pation probability

r := lim
t→∞

〈|2〉〈2|〉(t )

〈|1〉〈1|〉(t )
= lim

t→∞
P2(t )

P1(t )
(8)

equal to 0.45. Thus the ratio deviates from the target of 0.50,
which is a necessary indicator for an N = 2 bundle. The
phonon coupling pushes this value down to r = 0.20 already
at T = 1 K. For higher temperatures up to 10 K, r swiftly
approaches zero and the two-photon bundle fingerprint cannot
be observed anymore. The N-photon bundle statistics (1 <

N < ∞) therefore seems to be hard to find in state-of-the-art
QD–cavity systems.

The reason for the drastic phonon influence can be under-
stood by revisiting Fig. 2. Besides the effective two-photon
process (blue arrows) creating the bundle, the coupling to
the cavity also introduces one-photon processes between
|±, n〉 and |±, n + 1〉. In the phonon-free situation, these
processes are strongly detuned from the cavity mode, and
therefore highly unlikely to occur. But when LA phonons
are considered, the energetic mismatch can be compensated
by a simultaneous phonon emission. Note that phonon emis-
sion is possible at any temperature and always dominates
over phonon absorption. The phonon-assisted one-photon
transitions from |−, 0〉 to |−, 1〉 are competing against
the two-photon bundle process (blue arrows). This com-
peting second-order process, where one photon and one
phonon are emitted simultaneously dominates over the bun-
dle mechanisms. After the state |−, 1〉 is reached due to the
phonon-assisted one-photon transitions, the cavity losses di-
rect the system back to state |−, 0〉, provided that the cavity
loss rate is larger than the phonon-assisted coupling towards
further states |−, n〉 with n > 1. Consequently, the system just
transitions back and forth between these two states, resulting
in a suppressed two-photon occupation probability and a vio-
lation of the bundle statistics. With increasing temperature,
phonon-assisted processes gain importance, resulting in an
even stronger suppression of the bundle.

Our finding that due to the phonon influence the occupation
probability P2 of the n = 2 Fock state compared with the
n = 1 state is much lower than expected for an N = 2 bundle
does, however, not mean that two-photon emission features
are precluded from observation. The latter can still be made
prominent, e.g., by spectrally filtering the emission as has
been shown in Ref. [29].

B. Comparison with a phenomenological dephasing model

The phonon environment has a drastic influence on the
N-photon bundle statistics as shown in the previous section for
the case N = 2. Already at a low temperature of T = 1 K the
1/n-distribution characteristic for the bundle [cf. Eq. (1)] is
not recognizable anymore (cf. Fig. 4). This result was obtained
within a microscopic model of the phonon influence. In con-
trast, in Ref. [27], the dephasing has been analyzed using a
phenomenological Lindblad operator L|X 〉〈X |,γφ

.
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FIG. 5. The stationary ratio between the two- and the one-
photon occupation probability in the QD–cavity system with the
phonon influence approximated by a Lindblad operator with a phe-
nomenological pure dephasing rate γφ instead of the microscopic
Hamiltonian HPh in Eq. (6), cf. main text. (a) γφ corresponding
to the full driven Jaynes–Cummings model at T = 4 K. (b) γφ

corresponding to a Jaynes–Cummings dynamics with n = 1. (c) γφ

corresponding to a Jaynes–Cummings dynamics with n = 2.

It is therefore instructive to compare the microscopic
model with the phenomenological one to check whether the
latter is valid. On first sight, we find a quite different be-
havior: for the phenomenological model taking values for the
corresponding Lindblad rate γφ from the literature on semi-
conductor QD-cavity systems, the impact of pure dephasing
is almost negligible [27].

To analyze this in more detail, we have plotted results
of the phenomenological model in Fig. 5, which shows the
stationary ratio r as a function of the phenomenological pure-
dephasing rate γφ which is incorporated into the model by
the addition of the Lindblad operator L|X 〉〈X |,γφ

instead of
the microscopic Hamiltonian model HPh. Indeed, in that ap-
proximation a large plateau range is found where the ratio
stays essentially at its phonon-free value of r = 0.45 (cf. also
Fig. 4).

To assess, what γφ should be chosen in the reduced model
to best approximate the full phonon effect, we apply the fol-
lowing procedure: We compare the exciton dynamics resulting
from the full calculation (where phonons are included by HPh)
with the phenomenological model (where HPh is replaced by
L|X 〉〈X |,γφ

) and vary γφ until the envelopes of the two dynami-
cal results essentially match. Note that we set κ = γ = 0 for
this procedure to extract the pure phonon influence on the
dynamics. Furthermore, this comparison is conducted for the
all-resonant case, i.e., �ωLX = �ωCX = 0. We perform this
procedure at T = 4 K for three different cases and mark the
resulting rate γφ by red squares in Fig. 5. (a) Driven Jaynes-
Cummings system with the initial state |G, 0〉, resembling
the closest approximation to the full calculation, (b) Jaynes-
Cummings system without driving ( f = 0) for the initial state
|G, 1〉, and (c) same as (b) but with |G, 2〉 as the initial state.
The three extracted rates (cf. Fig. 5) indicate that a very large
pure-dephasing rate of the order of 10−1 meV is necessary to
reproduce the dynamics of the full microscopic model [cf. red
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square labeled with (a)]. With such a large rate, the ratio r is
close to zero, meaning that no two-photon bundle statistics is
observed in accordance with the results of the full model at
T = 4 K (cf. Fig. 4).

The reason for such a significant increase in γφ lies in
the impact of the pure dephasing mechanism, which gains
in strength for larger Rabi frequencies related to the effective
couplings present in the system. While in (b) and (c) the cavity
Rabi frequency amounts to 2g

√
n + 1 with n the number of

photons present in the cavity, the driving f � g introduces
the highest transition frequency in (a). In Fig. 5, it becomes
clear that the pure-dephasing rate increases with larger effec-
tive coupling, in accordance with earlier observations in the
case of a microscopic description of phonons [53,64,65]. The
values of γφ in (b) and (c) are of the order of experimentally
found pure-dephasing rates for strong QD-cavity coupling like
the one studied here (cf. Sec. II A 1), but without external
driving. Choosing such values for the rate indeed results in
a marginal influence of pure dephasing, since both points lie
well inside the plateau region.

Thus the conclusion in Ref. [27] that dephasing does not
significantly affect the N-photon bundle generation can be
traced back to the fact that values for dephasing rates have
been considered that are no longer applicable in the regime of
very strong driving as required for this protocol. The phys-
ical reason lies in the fact that an optically driven system
is influenced by the phonon Hamiltonian in a profoundly
different way than its nondriven counterpart: while phonons
cannot induce transitions between the two electronic states in
the undriven case, they can lead to transitions between the
laser-dressed states, which are the eigenstates of the driven
two-level system [66]. In essence, the dephasing rate depends
on the driving strength. A quadratic dependence γφ ∝ f 2 can
be derived in a weak-coupling limit [67].

In conclusion, a phenomenological pure dephasing model
is also able to qualitatively predict that the characteristic
statistical fingerprint of N-photon bundles is violated. The
challenge is the choice of a proper rate, which has to be
calibrated to the full phonon system. Since non-Markovian
features are missing in the phenomenological model our re-
sults indicate that, in the present case, non-Markovian effetcs
are of minor importance and, indeed, phonon-induced tra-
nitions between laser dressed states are the origin of the
violation of the bundle statistics.

IV. RESULTS: SUPERCONDUCTING QUBIT-MICROWAVE
RESONATOR SYSTEMS

Superconducting qubit–microwave resonator systems have
been successfully used to demonstrate the on-demand prepa-
ration of various highly nonclassical photon states, such as
Fock states [4], superpositions thereof, and Voodoo cat states,
i.e., coherent superpositions of three coherent states [5]. In
none of these experiments, a significant impact of pure de-
phasing was reported.

For state-of-the-art superconducting systems [5], the res-
onator losses are much smaller than the decay of the qubit
(κ 	 γ as in Sec. II A 2). Again, the two-photon bundle res-
onance is achieved by an external excitation tuned according
to Eq. (7). The resulting photon number distribution is shown

FIG. 6. The stationary probability Pn of occupying the photon
number states |n〉 normalized to its value at n = 1 for the super-
conducting qubit–microwave system. The data labeled κ 	 γ is
obtained using the parameters from Sec. II A 2. In dark blue, the
result of a calculation with a cavity loss rate two orders of magnitude
larger than in Sec. II A 2 is shown, namely κ = 0.1g = 7.76γ , cf.
Fig. 4.

in Fig. 6, normalized to its value at n = 1 (light blue bars).
No bundle statistics is found, as higher order photon number
states can be reached. Consequently, the characteristic cutoff
for n > N = 2 is not observed.

The reason for this finding lies in the fact that the radiative
decay with rate γ can induce transitions from states |+, n〉 to
|−, n〉, as indicated in Fig. 2. After the state |+, N〉 is reached
due to the N-photon resonance in the bundle-mechanism,
these radiative transitions represent a competing channel in
addition to the cascaded decay caused by the resonator losses.
If at any point in the subsequent cascade, the radiative decay
rate γ becomes comparable to the resonator loss rate nκ

(n � N ) associated with the state |+, n〉, the system can reach
the state |−, n〉. Because the coupling to the resonator does not
only induce an effective coupling between the states |−, 0〉
and |+, N〉, but between all pairs |−, n〉 and |+, n + N〉, cf.
Fig. 2, a subsequent emission of N additional resonator pho-
tons is possible when the system transitions into the state
|+, n + N〉. Consequently, the characteristic cutoff is lost and
higher order Fock states can be reached, violating the bundle-
statistics.

This interpretation is supported by Fig. 6. For n = 5, the
resonator loss rate nκ becomes comparable to γ . Thus the
last significant two-photon emission occurs due to the tran-
sition from |−, 5〉 to |+, 7〉. Afterwards the resonator losses
dominate and the stationary probabilities Pn essentially vanish
for n > 7.

Thus the failure of the superconducting qubit to show the
statistical fingerprint can be traced back to the lack of res-
onator losses κ in comparison to radiative decay γ . Indeed,
if we consider a resonator loss rate much larger (following
Ref. [27], κ = 0.1g has been chosen, cf. also Fig. 4 for this
specific choice), we can obtain a near-perfect two-photon
bundle statistics. The resulting photon number distribution (cf.
dark blue bars in Fig. 6) indeed shows a near-perfect two-
photon bundle fingerprint, with r = 0.49 and no occupation
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FIG. 7. The stationary ratios of the two- to one-photon occu-
pation probabilities and of the three- to one-photon occupation
probabilities as functions of the resonator loss rate κ (in units of γ )
for the superconducting qubit–microwave system. The two vertical
black lines mark those values of κ , which are used to obtain the
corresponding data in Fig. 6. The dotted black line shows the target
value of 0.5 for the ratio r.

probability for n > 2. This means that though much effort is
usually invested into resonators of better quality, here the use
of a bad resonator is mandatory.

To analyze the impact of the losses in more detail, we
study the bundle statistics as a function of the resonator losses.
To this end, the two- to one-photon ratio r is shown as a
function of κ in Fig. 7 as well as the three- to one-photon
ratio, which should vanish for an ideal two-photon bundle
emission due to the cutoff for n > N = 2. Indeed, these two
quantities confirm that the chosen value of κ = 0.1g = 7.76γ

lies well within a plateau region of r ≈ 0.5 and a vanishing
occupation probability for n > 2. While resonator losses too
low compared to the decay of the qubit result in the occupation
of states with n > 2, using very low-quality resonators with
κ � 20γ (cf. Fig. 7) leads to a drastic reduction of r and thus
a photon statistics, which displays a two-photon component
much smaller than the ideal two-photon bundle. While con-
structing resonators of better quality is always an experimental
challenge, creating a resonator of intermediate quality should
be a lesser problem. Thus superconducting qubit-microwave
resonator systems are indeed suitable candidates for sources
of N-photon bundles, in agreement with Ref. [68].

V. CONCLUSION

We have studied the N-photon bundle statistics in
two solid-state platforms: semiconductor quantum-dot–cavity
systems and superconducting qubit-microwave resonator
systems.

In quantum-dot–cavity systems, pure dephasing is induced
by longitudinal acoustic phonons. We have found that even at
low operating temperatures of a few kelvin, the characteristic
bundle statistics [cf. Eq. (1)] cannot prevail for N = 2, thereby
implying that a corresponding statistics for N > 2 is also out
of reach with current state-of-the-art samples. The reason is
the considered driving regime that is required to address the

bundle resonance, which also favors the phonon activity in the
electronic subsystem of the quantum dot.

In contrast, superconducting qubit–microwave resonator
systems are suitable candidates for the observation of the
N-photon bundle statistics. Here, the pure dephasing does not
play a notable role. However, the quality of the resonator has
to be in a certain, optimal range. In particular, it should not be
too high to facilitate the emission of photon bundles.
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APPENDIX A: ITERATIVE REAL-TIME PATH-INTEGRAL
ALGORITHM

In this section, a brief description of the iterative real-time
path-integral algorithm is given. This formalism is used to
obtain the time evolution of the reduced density matrix ρ̄

for the system of interest, i.e., the driven QD-cavity system,
which is coupled to LA phonons via the pure-dephasing type
Hamiltonian HPh.

The time evolution of the full statistical operator ρ of the
system, containing all QD, photonic and phonon degrees of
freedom, is governed by the Liouville-von Neumann equation

∂

∂t
ρ = LSysρ + LPhρ, (A1a)

LSysρ = 1

ih̄
[HSys, ρ]− + La,κρ + L|G〉〈X |,γ ρ, (A1b)

LPhρ = 1

ih̄
[HPh, ρ]−. (A1c)

First, a basis of ket states |μ〉 and corresponding bra states
〈ν| for the system of interest is introduced. In the situation
studied here, the basis |μ〉 comprises the states |G, n〉, |X, n〉
with n � Nmax ∈ N0, where Nmax is the maximum number
of cavity photons that are considered in our numerical sim-
ulations. The reduced density matrix ρ̄ = TrPh[ρ], which is
obtained from the statistical operator of the complete system
by performing the trace over the phonon degrees of freedom
can be expressed in the basis of the driven QD-cavity system
as

ρ̄ =
∑
ν,μ

ρ̄νμ |ν〉〈μ|, (A2a)

ρ̄νμ = 〈ν|TrPh[ρ]|μ〉. (A2b)

In Ref. [55], it was demonstrated that when the system
dynamics is Hamiltonian, ρ̄νμ can be expressed as a sum over
paths that can be performed iteratively, without introducing
further approximations to the model. Furthermore, it has been
shown recently that this still holds when non-Hamiltonian
contributions to LSys are taken into account, as provided, e.g.,
by La,κ and L|G〉〈X |,γ [58].

The general idea is to rewrite the formal solution of
Eq. (A1a) by discretizing the time-evolution operator into
small steps and integrating over the phonon degrees of free-
dom. When an equally spaced time discretization t� = �t �
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with time step �t and � ∈ N0 as well as a finite memory
length tm = nm�t is considered, and the states of the driven
QD-cavity system at time t� are labeled by ν� or μ�, the
reduced density matrix at time tn is given by

ρ̄νnμn (tn) =
∑

νn−1...νn−nm+1
μn−1...μn−nm+1

ρμn...μn−nm+1
νn...νn−nm+1

. (A3)

The so called augmented density matrix (ADM) [55,56]
ρ

μn...μn−nm+1
νn...νn−nm+1 := ∑

νn−nm ...ν0
μn−nm ...μ0

Rμn...μ0
νn...ν0

obeys the recurrence [58]

ρμn...μn−nm+1
νn...νn−nm+1

= Mνn−1μn−1
νnμn

∑
νn−nm
μn−nm

exp

(
n∑

�=n−nm

Sν�μ�

νnμn

)
ρμn−1...μn−nm

νn−1...νn−nm
, (A4)

where

Mν�−1μ�−1
ν�μ�

= 〈ν�| Mt�−1,t� [|ν�−1〉〈μ�−1|] |μ�〉, (A5a)

Mt,t ′ [·] = T exp

(∫ t ′

t
LSys dt ′′

)[ · ]
, (A5b)

Rμn...μ0
νn...ν0

:= ρ̄ν0μ0

n∏
�=1

Mν�−1μ�−1
ν�μ�

exp

(
n∑

�=1

�∑
�′=1

Sν�′ μ�′
ν�μ�

)
.

(A5c)

Here it is assumed that initially the system is in its ground
state |G, 0〉 while the phonons are in a thermal equilibrium at
temperature T . The influence of the phonons is captured in the
functions Sν�′ μ�′

ν�μ�
, which introduce a finite memory.

For the pure-dephasing type Hamiltonian HPh with real
couplings γ X

q , the explicit expressions for these functions are
[57,59]

Sν�′ μ�′
ν�μ�

= −Kν�′ ν�
(t� − t�′ ) − K∗

μ�μ�′
(t� − t�′ ) + K∗

ν�μ�′
(t� − t�′ ) + Kν�′ μ�

(t� − t�′ ), (A6a)

Kν�μ�′ (τ ) = 2
∫ ∞

0
dω

Jν�μ�′ (ω)

ω2
[1 − cos(ω�t )]

[
coth

(
h̄ω

2kBT

)
cos(ωτ ) − i sin(ωτ )

]
, τ > 0 (A6b)

Kν�μ�
(0) =

∫ ∞

0
dω

Jν�μ�
(ω)

ω2

[
coth

(
h̄ω

2kBT

)
(1 − cos(ω�t )) + i sin(ω�t ) − iω�t

]
, (A6c)

Jνμ(ω) =
∑

q

γ ν
q γ μ∗

q δ(ω − ωq); with γ ν
q = nνγ

X
q . (A6d)

They display two important properties. (i) In the case of
a continuum of phonon modes, the induced memory is finite,
i.e., the memory kernel Kν�μ�′ (t� − t�′ ), and in turn Sν�′ μ�′

ν�μ�
, be-

come negligibly small for t� − t�′ > tm = nm�t . This property
is already exploited in the recurrence Eq. (A4), where it is
sufficient to memorize only the past nm time steps to calculate
the next one.

(ii) The function Sν�′ μ�′
ν�μ�

depends on the indices
ν�, μ�, ν�′ , μ�′ solely via the phonon spectral density
Jνμ(ω) and its dependence on the corresponding couplings
γ ν

q = nνγ
X
q , where nν ∈ {0, 1} is the number of excitons

present in the QD-cavity state |ν〉. This property is exploited

in an advanced algorithm, that was first introduced in the
supplement of Ref. [59].

The central idea is to divide the QD-cavity states |ν〉 into
groups where each member couples identically to the phonon
degrees of freedom. In the situation considered here, the cou-
pling to the LA phonons depends solely on the QD state.
Thus the states |ν〉 can be sorted into two groups {|G, n〉} and
{|X, n〉}. Formally, the states can be re-labeled |ν〉 → |λ, k〉
and |μ〉 → |λ̄, k̄〉, where λ ∈ {1, 2} denotes the group and k
distinguishes the different members within this group. After
defining the partially summed ADM (PSADM)

ρ
(λ̄n,k̄n )λ̄n−1...λ̄n−nm+1

(λn,kn )λn−1...λn−nm+1
:=

∑
kn−1...kn−nm+1

k̄n−1...k̄n−nm+1

ρ
(λ̄n,k̄n )(λ̄n−1,k̄n−1 )...(λ̄n−nm+1,k̄n−nm+1 )
(λn,kn )(λn−1,kn−1 )...(λn−nm+1,kn−nm+1 ) . (A7)

One obtains the recursion relation [59]

ρ
(λ̄n,k̄n )λ̄n−1...λ̄n−nm+1

(λn,kn )λn−1...λn−nm+1
=

∑
kn−1

k̄n−1

M(λn−1,kn−1 )(λ̄n−1,k̄n−1 )
(λn,kn )(λ̄n,k̄n )

∑
λn−nm
λ̄n−nm

exp

(
n∑

�=n−nm

Sλ�λ̄�

λnλ̄n

)
ρ

(λ̄n−1,k̄n−1 )λ̄n−2...λ̄n−nm
(λn−1,kn−1 )λn−2...λn−nm

(A8)

for this quantity. Then, the reduced density matrix for the
driven QD-cavity system at time tn is given by

ρ̄νnμn (tn) =
∑

λn−1...λn−nm+1

λ̄n−1...λ̄n−nm+1

ρ
(λ̄n,k̄n )λ̄n−1...λ̄n−nm+1

(λn,kn )λn−1...λn−nm+1
. (A9)

Equations (A7)–(A9) represent an exact reformulation
without any additional approximation to the model. Numer-
ical errors can be caused either by the number of considered
photons per QD state Nmax or by two intrinsic parameters of
the path-integral algorithm: (i) The finite time step �t and (ii)
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the truncation of the memory to tm. Usually, these convergence
parameters can be well controlled. A simulation is considered
to be numerically complete if neither a further reduction of
�t nor a further increase of tm or Nmax changes the numerical
results noticeably.

An explicit expression for the phonon spectral density
Jνμ(ω) and the material parameters used in the simulations
can be found in the supplement of Ref. [59]. Typically, cal-
culations at low temperatures are most demanding, since they
require the longest memory length [57]. For the calculations
at a temperature of T = 1 K performed in the main text,
numerically complete simulations were obtained for the pa-
rameter set: �t = 0.65 ps, nm = 9, and Nmax = 4. Note that,
for this set of parameters, the advanced algorithm based on
the PSADM reduces the number of terms to be iterated from
NADM = 102nm ≈ 1.0 × 1018 for the full ADM to NPSADM =
102 · 22(nm−1) ≈ 6.6 × 106 [59]. Thus this reduction of the
numerical demand by more than 11 orders of magnitude is
the reason that a numerically complete investigation of the
considered system of interest becomes feasible at all. How-
ever, it is indeed the numerically complete treatment of the
microscopic model that enables us to make a judgment on the
phonon influence on the bundle statistics without prejudice.

APPENDIX B: RESONANCE PEAKS
FOR N → ∞ AND N = 1

Since the peaks at h̄�ωLX = −1.2 meV and 0.08 meV are
the most striking features in Fig. 3, we shall discuss them in
some detail in this Appendix. This will give additional insights
into the physics taking place in this parameter regime in
general, although the analysis reveals that these peaks are not
related to the bundles which are the main target of our paper.
The most prominent peak in Fig. 3 at h̄�ωLX = h̄�ωCX =
−1.2 meV is obtained in the limit N → ∞ and corresponds
to a process where the photon energy in a frame rotating with
the laser frequency is h̄�ωCL = 0 and the system can climb
up the photon ladder from |−, n〉 to |−, n + 1〉, such that a
Poissonian distribution with respect to n emerges. Note that
one observes a double-peaked structure at this resonance in
Fig. 3. At its center, the order of the photon occupation proba-
bilities is reversed, i.e., the occupation probability of n = 2 is
higher than that of n = 1, consistent with a Poissonian with an
average photon number of 〈n〉 = 6.6 and a maximum occupa-
tion probability of 0.15 at n = 6. A magnification of this peak,
where the reversal of the photon order is visible, is replotted
in Fig. 8. An analysis of the corresponding Wigner function
[5,26] (not shown here) confirms that the corresponding state
is a (Glauber) coherent state.

The peak at h̄�ωLX ≈ 0.08 meV corresponds to a one-
photon bundle resonance, i.e., a one-photon Fock state, and
also results from a one-photon process. But in contrast to the

FIG. 8. Stationary probability Pn of occupying the photon num-
ber states |n〉 in the QD–cavity system as a function of the
laser-exciton detuning �ωLX without taking phonon effects into ac-
count. This is a magnification of the resonance peak for N → ∞ in
Fig. 3(a). On this scale, the double-peak structure and the reversal of
the photon order at its center are well visible.

previously discussed case, the photon is emitted only by the
transition from |−, 0〉 to |+, 1〉. Due to an energy mismatch
between the photon energy and the transition between |+, 1〉
and |±, 2〉, no further photons are put into the cavity, as can
be seen in the stationary probabilities Pn of occupying the
photon number states |n〉 at this peak in Fig. 3(a). This effect
is commonly known as the photon blockade [69].

The phonon influence on the stationary probability Pn of
occupying the photon number states |n〉 at T = 4 K as shown
in Fig. 3(b) could not be more different for these two res-
onances. The first one for N → ∞ at h̄�ωLX = −1.2 meV
is hardly influenced by phonons at all. Indeed, the photon
number distribution remains Poissonian with a slightly lower
average photon number of 〈n〉 = 5.6 and a similar maximum
occupation probability of 0.16 at n = 5. The reason lies in
the fact that the photons are emitted from transitions, where
the electronic (laser-dressed) state remains |−〉 and does not
change. Since this is the energetically lower dressed state and
at temperatures below a few tens of kelvins phonon absorption
is highly unlikely, phonons have only a slight influence on the
stationary photon distribution.

On the other hand, the second peak at h̄�ωLX ≈ 0.08 meV
for N = 1 experiences strong phonon enhancement, since the
photon blockade is spoiled. The energy mismatch between
|+, n〉 and |−, n〉 is now bridged by phonon emission, which
is possible for all temperatures down to absolute zero, and a
subsequent resonant transition to |+, n + 1〉 can take place.
Therefore the phonon coupling drives the occupation proba-
bility of higher-order Fock states beyond n = 1 [59,70].
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Light trapping is a crucial mechanism for synchronization in optical
communication. Especially on the level of single photons, control of the exact
emission time is desirable. In this paper, a single-photon buffering device
composed of a quantum dot doped with a single Mn atom in a cavity is
theoretically proposed. A method to detain a single cavity photon as an
excitation of the dot is presented. The storage scheme is based on bright to
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and mediated via a spin-flip with the magnetic ion. The induced Stark shift
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1. Introduction

Self-assembled quantum dots (QDs) are op-
tically active and allow the control of elec-
tronic states with light.[1–4] In return, they
can serve as photon sources, which makes
them attractive for quantum communica-
tion devices.[5,6] A QD–cavity system greatly
increases light emission efficiency due to
the Purcell effect[7] and has a favored direc-
tion of emission in contrast to a standalone
QD, providing easier in- and outcoupling.
While QDs in cavities are a suitable plat-
form for quantum information processing
devices,[8] the realization requires the syn-
chronization of signals,[9] for which a pho-
ton buffer is desirable.
In all-optical systems, buffers were re-

alized with fibers and waveguides.[9–12]

Another proposed realization of an optical memory cell is a three-
level Λ system, which gives the possibility to store information
in a dark state.[13] Extremely long light storage was achieved in
atomic systems, where the slow light effect is commonly based on
electromagnetically induced transparency (EIT). Adequate cou-
pling in the Λ system highly reduces the group velocity of light
and results in slow propagation of a beam through atoms or
even reversible trapping of light in atomic excitations.[13–16] Re-
cent experiments were performed even on the single-photon
level,[17–19] raising hopes for use in quantum communication.
Atomic systems were also used to store time-entangled solitons
in a cavity, representing a step toward multiplexed quantum
communication.[20]

In solid-state systems, photons may be absorbed and stored
as excitons. However, the typical lifetime of a bright exciton is
short (typically a few hundred ps up to one ns). Therefore, a sep-
arated electron-hole pair, the indirect exciton, was used in cou-
pled nanostructures to extend the storage time.[21–29] On the other
hand, in a singleQD–cavity system, the lifetime of an excitonmay
be increased by the Stark shift, which decouples the exciton from
the cavity mode.[30] A more attractive direction for storing exci-
tations in a QD is to use a dark state, which lives for at least an
order of magnitude longer than the bright one. For a long time,
dark excitons were beyondmuch interest as they are not optically
active and hence not directly accessible.
Recent progress allows for indirectly accessing the dark exci-

ton with light[31,32] or other complexes,[33] but all-optical control
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of the dark state using an intermediate biexciton state has also
been proposed for the use as a long-lived qubit.[31,34–37] Another
possibility is the coupling of bright and dark states using mi-
cromechanical resonators, making the dark state addressable by
light.[38] Still, it is much easier to excite the bright state. Hence,
a method to realize the bright-to-dark conversion for excitation
storage was already proposed for colloidal systems.[39] Yet, they
cannot be easily integrated on-chip. A dark state was also used
as a microsecond valley polarization memory in transition metal
dichalcogenides.[40] More recently, a controllable occupation
transfer between bright and dark excitons in a QD–cavity system
was suggested.[41]

Our method facilitates QDs with a single magnetic dopant,
which can be deterministically fabricated for several years,[42]

with dopand atoms like Manganese (Mn),[43,44] Cromium,[45]

Iron,[46] or Cobalt.[47] Interestingly, the spin state of the dopant
can be changed via optical control.[48–52] Here, we choose an Mn
dopedCdTe/ZnTeQD in amicrocavity.[53] The exchange coupling
between the Mn and the electron spin enables a coupling be-
tween bright and dark excitons in the quantum dot under the si-
multaneous flip of theMn spin.[48,54] Given a spin state, the states
can be interpreted as a Λ-type three-level system, as specified in
the next section.
The buffering scheme relies on storing the photon in the dark

state. After the photon is converted to the bright exciton state, an
AC-Stark pulse is utilized to facilitate the conversion of the bright
into a dark exciton. We stress that the Stark pulse is the only ex-
ternal pulse which is used in the buffering scheme. Because the
coupling between bright and dark excitons in this system is en-
abled by the exhange interaction with the Mn dopant, no external
magnetic field needs to be applied as in other studies.[41,55,56] This
is a significant advantage because it gives a possibility to integrate
magnetically doped QDs into compact on-chip devices.

2. Mn-Doped Quantum Dot System

We consider a self-assembled CdTe quantum dot (QD) doped by a
single Mn ion inside a ZnTe micropillar cavity. Due to the strong
spatial confinement of the carriers in theQD, only the lowest con-
duction band state and the uppermost valence band state need
to be considered, namely electrons in the s-like conduction band
and holes in the p-like heavy-hole band.
Excitons form as pairs of conduction band electrons and va-

lence band heavy holes. Having a spin component of Shz = ± 3
2
,

heavy holes can form two types of excitons with the spin- 1
2
elec-

trons: the optically active bright states with a circular polarization
of±1 and the dipole-dark states with±2. For typical fine-structure
splittings of a few tens of μeV[57] between the two bright exciton
states of opposite circular polarization, only excitons of one polar-
ization need to be considered, if the external driving has a defined
circular polarization.[55,58,59]

Doping such a QD system with a single Mn ion, which has
a spin of 5

2
, introduces an additional state space, namely the six

possible orientations of its spin. The Mn spin interacts with elec-
trons and holes via the exchange interaction[43,48,60–63]

Hex = jeM ⋅ Se + jhM ⋅ Sh (1)

Table 1. Parameters used for the simulations.

Electron-Mn coupling Je [meV nm3] −15 [65]

Hole-Mn coupling Jh [meV nm3] 60 [65]

Intrinsic dark-bright splitting 𝛿XD [meV] 0.95 [66]

Mn g-factor gMn 2.0075 [60]

Electron g-factor ge −1.5 [43]

QD–cavity coupling ℏg [meV] 0.1 [67]

Cavity loss rate 𝜅 [ns−1] 8.5 [68]

Radiative decay rate of |X⟩ 𝛾X [ns−1] 2.4 [67]

Residual decay rate of |D⟩ 𝛾D [ns−1] 0.01 [69]

Electron deformation potential De [eV] −5 [70]

Hole deformation potential Dh [eV] 1 [70]

Density 𝜌D [kg m−3] 5510 [70]

Sound velocity cs [m s−1] 4000 [70]

Electron-to-hole confinement ratio ae∕ah 1.38 [71, 72]

Electron confinement radius ae [nm] 3.0 [73–75]

where M denotes the spin of the Mn ion. Se (Sh) is the operator
of the electron (hole) spin in the QD. je/h = Je/h|Ψe/h

0 (rMn)|2 are
composed of the coupling constants Je/h between the electon/hole
and the Mn spin (cf., Table 1) and the carrier ground state wave
function Ψ0 at the position rMn of the Mn atom. Modelling the
QD with a hard wall cubic potential[63,64] with in-plane widths of
6 nm and a height of 2 nm, the coupling strengths je/h depends
on the position of the Mn atom.
For a more intuitive understanding of the exchange Hamilto-

nian, it can be rewritten as

Hex = jeMzS
e
z +

je
2

(
M+S

e
− +M−S

e
+

)
+ jhMzS

h
z +

jh
2

(
M+S

h
− +M−S

h
+

)
(2)

withM± := Mx ± iMy and S
e/h
± := Se/hx ± iSe/hy . The Ising terms[76]

arising from the z-component of the interaction lead to energy
shifts of the exciton states with different spin configuration.
These contributions lead to the characteristic splitting of the ex-
citon line into six lines even at zero magnetic field.[42–44,62] The
electron flip-flop term[77] on the other hand results in a coupling
between the excitonic bright state with total spin ±1 and the exci-
tonic dark state with±2 via simultaneous spin flip. While usually
the flip-flop term is much weaker than the energetic splitting, for
an applied magnetic field in Faraday configuration, this coupling
is seen as anti-crossing in the optical spectrum at a field of several
Tesla.[78,79] Note that the flip-flop term regarding the hole[80] can
be neglected since the hole spin is pinned in a pure heavy-hole
system.[48]

Assuming the Mn spin to be initially prepared in the state
Mz = − 5

2
, we can reduce our system to a three-level system. This

preparation can be achieved in numerous ways: by thermal oc-
cupation at low temperatures since by applying a magnetic field,
it becomes the energetically lowest state[48]; or by an all-optical
protocol,[81] thus avoiding the necessity of an additional exter-
nal magnetic field. Then, the three states are: the ground state
without an electronic excitation |G⟩ := |0,− 5

2
⟩, the bright exciton
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Figure 1. a) Sketch of the QD–cavity system. The Mn ion provides the
magnetic field necessary to facilitate the storage of a single cavity photon.
An off-resonant external laser controls both the storage and the release
time and thus the entire buffering procedure deterministically. b) The Λ-
type three-level model of the QD. The spin configuration of the two exciton
states is symbolized by arrows.

|X⟩ := | − 1,− 5
2
⟩, and the dark exciton |D⟩ := | − 2,− 3

2
⟩. Here,

the first entry denotes the projection of the total spin of the elec-
tronic excitation and the second one the Mn spin orientation.
Note that a circular polarization of the external laser of −1 is as-
sumed, from which the sign of the bright exciton spin follows.

3. Model of the 𝚲-Type Three-Level System
In the basis of the three states |G⟩, |X⟩, and |D⟩ the Hamiltonian
reads as follows:

H = HQD +Hflip +Hdriv(t) +HC +HPh (3)

consisting of theQDpartHQD and the flip-flop termHflip as intro-
duced in Equation (2). In addition, we account for the driving of
the system with an external laser pulseHdriv(t), the coupling to a
single-mode cavityHC, and the coupling to longitudinal acoustic
(LA) phononsHPh. A sketch of the system and its level structure
is shown in Figure 1.
The QD part is composed of

HQD = ℏ𝜔X|X⟩⟨X| + (ℏ𝜔X − 𝛿eff
)|D⟩⟨D| (4)

where the energy of the ground state is set to zero, the bright
exciton has the energy ℏ𝜔X, and the effective dark-bright splitting
is 𝛿eff. Three contributions enter the latter quantity: the intrinsic
splitting 𝛿XD due to the electron-hole exchange interaction and
the splitting arising from the Ising terms in Equation (2)

𝛿eff = 𝛿XD − 2je +
3
2
jh +

(
gMn − ge

)
𝜇BBz (5)

The third contribution is a Zeeman splitting due to an exter-
nal magnetic field in Faraday configuration B = Bzez. gMn and ge
in Equation (5) denote the Mn and the electron g-factors (cf., Ta-
ble 1), respectively, and 𝜇B is the Bohr magneton.

One arm of ourΛ-type system is coupled by the flip-flop term

Hflip = −1
2
J(|X⟩⟨D| + |D⟩⟨X|) (6)

The interaction strength results from calculating the corre-
sponding matrix elements in the three-level basis as J = −

√
5je.

We assume the position of the Mn atom to be 30% away from
the QD edge in both x and y direction and 13% in z direction.
This results in a coupling strength of J = 0.25 meV and an ef-
fective dark-bright splitting of 𝛿eff = 1.85 meV in the field-free
case Bz = 0. This value can be interpreted as the Mn spin provid-
ing an effective magnetic field for the excitons with a strength of
roughly 3 T.
The other arm of the Λ-type system, that is, the ground to

bright exciton state transition is driven by an external laser clas-
sically described by the function f (t) = fACS(t)e

−i𝜔ACSt with the
real envelope function fACS(t) and the off-resonant AC-Stark fre-
quency 𝜔ACS [cf., Figure 1b]. Although the AC-Stark pulse is off-
resonant, the parameters are chosen such that the conditions for
the usual dipole and rotating wave approximations still hold and
the corresponding coupling can be written as[82, 83]:

Hdriv(t) = −ℏ

2

(
f ∗(t)|G⟩⟨X| + f (t)|X⟩⟨G|) (7)

The coupling to the single-mode cavity with strength g [cf., Fig-
ure 1b] is described by a Jaynes–Cummings model

HC = ℏ𝜔Ca
†a + ℏg

(
a|X⟩⟨G| + a†|G⟩⟨X|) (8)

where a (a†) is the annihilation (creation) operator for a photon
at the cavity frequency 𝜔C, which is assumed to be on resonance
with the bright state 𝜔X.
To model the decoherence in the QD, we consider that the QD

is coupled to an environment of LA phonons in the bulk material
[cf., Figure 1a][70,84–88]

HPh = ℏ
∑
q

𝜔qb
†
qbq + ℏ

∑
q

(
𝛾qb

†
q + 𝛾∗q bq

)
(|X⟩⟨X| + |D⟩⟨D|) (9)

bq (b
†
q) annihilates (creates) a phonon in the mode q with the

frequency 𝜔q. Both exciton states are assumed to couple to the
environment with the same strength 𝛾q. The role of phonons
in QD–cavity systems is typically considered to be detrimen-
tal to the preparation of photonic quantum states, for example,
single photons[89–97] or entangled photon pairs.[98–104] Nonethe-
less, in specific situations a phonon enhancement of the single-
photon purity is found.[105,106] Also, a boost in the entanglement
of two photons has been predicted to be a result of the phonon
interaction.[107]

Furthermore, we account for cavity losses (a,𝜅 ) as well as ra-
diative decay of the bright exciton (|G⟩⟨X|,𝛾X ) and losses of the
dark exciton (|G⟩⟨D|,𝛾D ) using Lindblad superoperators acting on
the density matrix 𝜌 as

O,Γ𝜌 = Γ
(
O𝜌O† − 1

2

{
𝜌, O†O

}
+

)
(10)
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where {A, B}+ is the anti-commutator of operatorsA andB. These
superoperators describe phenomenologically loss processes with
rate Γ on a dissipation channel O.
We use an interaction picture representation of this Hamilto-

nian for the numerics as well as the physical discussion, in order
to eliminate fast oscillating terms in the dynamics resulting from
transition energies in the eV range. The noninteracting Hamil-
tonian used for this transform is[41]

H0 = −ℏΔ𝜔AX|G⟩⟨G| + ℏ𝜔X(|X⟩⟨X| + |D⟩⟨D|) + ℏ𝜔ACSa
†a (11)

Here, the detuning between the laser and bright exciton
frequencies Δ𝜔AX := 𝜔ACS − 𝜔X has been introduced. Then,
the transformed Hamiltonian is HI = U†(H −H0)U with U =
exp [−(i∕ℏ)H0t].
We choose parameters from the experimental literature, in or-

der to perform simulations as realistic as possible. The values are
given in Table 1 together with corresponding references.
The dynamics is obtained as the solution of the Liouville-von

Neumann equation

𝜕

𝜕t
𝜌 = − i

ℏ
{H, 𝜌}− + a,𝜅𝜌 + |G⟩⟨X|,𝛾X𝜌 + |G⟩⟨D|,𝛾D𝜌 (12)

with the commutator {A, B}− of operators A and B. We treat the
phononHamiltonian in a numerically exact way based on a quasi-
adiabatic path-integral (QUAPI) formalism.[73,108–111] By numer-
ically exact we denote a solution that depends only on the time
discretization and the memory length as the sole convergence
parameters. Beyond these two convergence parameters, no ap-
proximations enter the solution for the QD–cavity dynamics.
Physically, the phonon influence is fully captured by the

phonon spectral density J(𝜔) =
∑

q |𝛾q|2𝛿(𝜔 − 𝜔q). Assuming har-
monic confinement and a linear dispersion𝜔q = cs|q|with sound
velocity cs, the spectral density reads

J(𝜔) = 𝜔3

4𝜋2𝜌Dℏc5s

(
Dee

−𝜔2a2e ∕(4c
2
s ) − Dhe

−𝜔2a2
h
∕(4c2s )

)2
(13)

where we have considered deformation potential coupling which
is usually the dominant coupling mechanism.[85] Here, 𝜌D is
the density of the material, De (Dh) the electron (hole) deforma-
tion potential, and ae (ah) the electron (hole) confinement radius,
listed in Table 1.

4. Buffering Protocol

4.1. General Idea

Wepropose a protocol to buffer a single cavity photon determinis-
tically using the Λ-type three-level system described in Section 3.
Initially, we assume the QD to be in its ground state |G⟩ and one
photon to be present in the cavity, that is, the initial state of the
QD–cavity dynamics is |G, 1⟩ (cf., Figure 2), where we have intro-
duced the notation |𝜒 , n⟩ for the QD–cavity product space with
𝜒 ∈ {G,X,D} and the photon number n. Due to the QD–cavity
coupling, the cavity photon is absorbed into the bright state |X⟩
after half a coherent Rabi oscillation. Then, the dark state |D⟩ is
prepared using a recently proposed protocol relying on the opti-
cal Stark shift.[41] The transfer of the excitation from the bright to

Figure 2. A single cavity photon is stored in the dark exciton state of the
QD using a first writing AC-Stark pulse (bottom panel). The occupations of
the ground state |G⟩, the bright exciton |X⟩, the dark exciton |D⟩, and the 1-
photon Fock state |1⟩ are depicted: ideal case without phonons and losses
(dashed lines); including radiative and cavity loss effects (solid lines). A
second readout AC-Stark pulse retrieves the single photon. The time be-
tween the pulses is the buffer time 𝜏.

the dark state is triggered deterministically using an off-resonant
AC-Stark pulse, which shifts the bright state energy such that the
bright and dark states are effectively in resonance. The pulse du-
ration is chosen such that exactly half a Rabi oscillation between
the two exciton states is possible.
To present a physically clear picture of the processes in-

volved in the buffering scheme, we use rectangular pulses with
smoothed edges for the AC-Stark pulse envelopes, following
ref. [41]

fACS(t) =
f0

(1 + e−𝛼(t−ton))(1 + e−𝛼(tACS−(t−ton)))
(14)

Here, 𝛼 determines the rise time of the pulse, which we set
to 10 ps−1, ton is the switch-on time, and tACS the pulse duration.
The pulse amplitude f0 is determined by the effective dark-bright
splitting 𝛿eff, which needs to be bridged, and the pulse duration
tACS by the oscillation frequency J.
During the pulse, when the amplitude is essentially f0, the in-

duced optical Stark shift is

ΔEStark =
ℏ

2

(√
Δ𝜔2

AX + f 20 − Δ𝜔AX

)
(15)

for Δ𝜔AX > 0.[41] By setting ΔEStark = 𝛿eff, the pulse amplitude
necessary to bridge the dark-bright splitting is determined to be

f0 =

√(
2
𝛿eff

ℏ
+ Δ𝜔AX

)2

− Δ𝜔2
AX (16)

The length tACS of the pulse has to correspond to half a Rabi
oscillation between the two exciton states mediated by the spin-
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flip coupling[41]

tACS =
2𝜋ℏ

2
√
J2 +

(
𝛿eff − ΔEStark

)2 (17)

which simplifies to tACS = 𝜋ℏ∕J for ΔEStark = 𝛿eff.
This leaves only the detuning with respect to the bright exciton

frequencyΔ𝜔AX as a free parameter. For a dark-bright splitting in
the order of a meV, it has been shown that a detuning of Δ𝜔AX =
15 meV is favorable for the transfer of the excitation from the
bright to the dark state.[41]

In an ideal system without losses and decoherence, the exci-
tation is expected to stay in the dark state indefinitely. When in-
cluding loss effects, it is important to note the different orders of
magnitude of the dark and bright exciton decay rates. Since the
dark state is not optically active, it is a metastable state. This is re-
flected in its decay rate 𝛾D being about two orders of magnitude
smaller than the radiative decay rate 𝛾X of the bright state (cf., Ta-
ble 1). Therefore, the dark state is a good candidate for storing
the photon in a realistic, lossy system. The release of the photon
is facilitated by the reverse process with a second AC-Stark pulse.
The time evolution of this protocol in the ideal case (without

taking phenomenological losses or phonons into account) is pre-
sented in Figure 2 (dashed lines), which shows the occupation
of the three states together with the occupation of the 1-photon
state and the applied laser pulses as functions of time. The dy-
namics behaves as predicted by the writing scheme described
above. Indeed, the occupation of the dark state after the first writ-
ing pulse is close to unity. Small-amplitude oscillations appear
due to the residual coupling to the bright state, which depend
both on the coupling J and the splitting 𝛿eff between the bright
and the dark state.
To release the photon after the buffering time 𝜏 (23.5 ps in the

example shown in Figure 2), a second readout AC-Stark pulse is
required (cf., bottom panel of Figure 2). When the excitation is
transferred back to the single-photon state, Rabi oscillations be-
tween the cavity mode and the bright exction are observed. These
oscillations are undamped in the ideal case, where no phonon
coupling and no phenomenological loss processes are considered
(cf., dashed lines in Figure 2). The maximum occupation of the
1-photon state |1⟩ is 99.95%, implying a close to perfect writing
and readout of the buffered single photon in the ideal case.

5. Storage Performance

The key quantity of interest in a buffering scheme is the retriev-
able percentage of the stored photon after the buffering time 𝜏.
Therefore, we here discuss the dependence of this captured 1-
photon occupation on the buffering time 𝜏 and various system
parameters, including the dark-bright coupling J, the splitting
𝛿eff, and the temperature T . An example of the influence of phe-
nomenological losses on the buffering scheme is shown in Fig-
ure 2b (solid lines). We find that the scheme is degraded and here
we quantify the amount of storage which is still achievable. Since
damped Rabi oscillations between the bright exciton and the cav-
ity occur in the protocol proposed in Section 4 after the read-
out AC-Stark pulse when including phenomenological losses, we
take the maximum captured 1-photon occupation (C1PO) after

Figure 3. The maximum captured 1-photon occupation (C1PO) after the
second AC-Stark pulse as a function of the buffering time 𝜏, that is, the
delay time between the two pulses. The dependence is shown for different
coupling strengths J between the bright and the dark state. Labels indi-
cate the decay time 𝜏∗ extracted from fitting an exponential function to
the corresponding curve (cf., main text for detailed explanation).

the readout pulse as a measure of the retrievable percentage of
the stored photon.

5.1. Influence of the Dark-Bright Coupling J

Figure 3 shows the dependence of the C1PO on the buffering
time 𝜏, that is, the delay time between the two AC-Stark pulses.
These calculations are performed considering phenomenological
losses, that is, bright and dark exciton decay and cavity losses, but
without taking phonons into account. The red line corresponds
to the coupling J = 0.25 meV. After initial oscillations, the C1PO
decreases exponentially. The oscillations are a direct consequence
of the dark-bright coupling with strength J, which is off-resonant
due to the dark-bright splitting 𝛿eff. This off-resonance leads to
low-amplitude high-frequency oscillations of the dark state occu-
pation in between the writing and readout pulses (cf., Figure 2).
When the second AC-Stark pulse arrives during a minimum of
this oscillation, the corresponding value of the C1PO also be-
comes minimal.
The damping of these oscillations and the subsequent expo-

nential decay shown in Figure 3 is a result of the decay of the
dark state |D⟩. While its intrinsic decay rate 𝛾D corresponds to a
lifetime of 100 ns, the overall effective decay of the dark state de-
pends not only on this decay time, but also on themixing between
the dark and the bright state due to their residual off-resonant
coupling. Since the admixture of the bright state decays on the
much shorter time scale of 𝛾−1X = 0.4 ns, the combined effective
decay time of the dark state becomes much faster (cf., analytical
discussion in Appendix A).
Fitting an exponential function of the form

C1POfit(𝜏) = c e−𝜏∕𝜏
∗

(18)

to C1PO(𝜏) in Figure 3 using the scaling constant c and the
decay time 𝜏∗ as free parameters, one obtains a decay time of
𝜏∗ = 45.8 ns (cf., red line in Figure 3). This value agrees well
with the effective decay time of the dark state as derived in the
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Figure 4. The dependencies of the decay time 𝜏∗ and the C1PO at 𝜏 = 0 on the effective splitting 𝛿eff between the dark and bright state [panels (a) and
(b)] without taking phonons into account and on the temperature T [panels (c) and (d)] including phonon effects. The red solid line in panel (a) is the
approximate analytical prediction from Equation (19). For the temperature dependent study, the splitting is set to 𝛿eff = 𝛿XD = 0.95 meV.

appendix [cf., also Equation (19)], corroborating the conclusion
that the storage performance between writing and readout only
depends on the decay of the dark state |D⟩.
Increasing J while keeping all the other parameters fixed,

yields a shorter decay time 𝜏∗ (cf., black line in Figure 3) and thus
a worse performance of the storage protocol. The reason is the
increased oscillation amplitude between |D⟩ and |X⟩ stemming
from the larger dark-bright coupling. Therefore, the interaction
with the faster-decaying bright state is more effective. The higher
oscillation amplitude is reflected in the larger initial oscillation
amplitude of C1PO. The reverse argument holds for a smaller
coupling strength J and indeed for J = 0.05 meV (cf., blue line in
Figure 3) 𝜏∗ = 95.8 ns is already close to the lifetime of 100 ns of
the dark exciton without exchange coupling to the bright exciton.
Overall, decay times on the order of a few tens of ns suggest

a high storage performance. In comparison, a single photon in-
side a high-Q cavity with a quality factor of 2.68 × 105,[68] cor-
responding to our value of 𝜅 (cf., Table 1), has a decay time of
𝜅−1 = 118 ps. Therefore, the buffering protocol presented here
facilitates a storage time roughly two orders of magnitude longer.
Note that changing the dark-bright coupling J experimentally

means that the location of the Mn atom rMn needs to be changed,
thus requiring different QD samples. Changing the Mn position
also changes the shifts induced by the carrier-Mn Ising terms.
Therefore, an additional magnetic field in Faraday configuration
would be necessary to keep 𝛿eff constant (cf., Equation (5)).

5.2. Influence of the Dark-Bright Splitting 𝜹eff

In the previous section, it became clear that themain loss channel
during the storage time is the effective decay of the dark state.
This in turn depends on the residual coupling to the bright state,
which is determined by J and 𝛿eff. In this section, we analyze the
influence of the latter by repeating the calculations of C1PO(𝜏)

by varying 𝛿eff and fitting Equation (18) to the resulting curves,
in analogy to Figure 3. We keep the dark-bright coupling fixed at
J = 0.25 meV.
It is instructive to investigate the dependence of the decay time

𝜏∗ on the effective dark-bright splitting 𝛿eff shown in Figure 4a.
We note that while this analysis is a theoretical parameter study
and in principle would require to analyze several QDs, it could
also be performed on the same QD by applying an external mag-
netic field in Faraday configuration with magnitude Bz to control
𝛿eff (cf., Equation (5)).
We vary the splitting around the value of 𝛿eff = 1.85 meV.[65,66]

The corresponding decay time 𝜏∗ is the same as the one obtained
from the red line in Figure 3. At constant J, a higher splitting
means that the residual coupling of the dark to the bright state
is weaker. This closes the corresponding radiative loss channel
more andmore, such that 𝜏∗ converges to the intrinsic decay time
of the dark state 𝛾−1D = 100 ns. The opposite argument holds for
smaller splittings. Without any splitting, the two exciton states
would perform coherent full-amplitude Rabi oscillations with a
frequency corresponding to J, such that the radiative decay chan-
nel would diminish the storage performance maximally.
Assuming g ≪ 𝛿eff and J ≪ 𝛿eff, which holds well for the pa-

rameters considered in Figure 4a, an analytical approximation of
the following form can be derived (for a detailed derivation, see
Appendix A):

𝜏∗(𝛿eff) =

[(
J

2𝛿eff

)2(
𝛾X − 𝛾D

)
+ 𝛾D

]−1

(19)

This function is plotted in Figure 4a as a red solid line, repro-
ducing the numerically obtained data well.
To analyze the performance of the writing and reading process

separately from the losses during storage, we take the C1PO for
𝜏 = 0 as a measure, that is, the writing and readout pulses merge
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Figure 5. a) Same protocol as in Figure 2, but for an initial QD–cavity state of |G, 2⟩. While one of the photons is stored in the dark state, the remaining
one can leave the cavity, when cavity losses are taken into account. Ideal case without phonons and losses (dashed lines); including radiative and cavity
loss effects (solid lines) b) The maximum captured photon occupation after the second AC-Stark pulse as a function of the buffering time 𝜏. Here, both
phenomenological loss effects and the phonon influence at T = 4 K are taken into account.

to a single pulse of length 2tACS. This value indicates, what per-
centage of the initially present photon can be retrieved after writ-
ing it to the dark state and immediately reading it out again. Note
that due to the initial oscillations of C1PO(𝜏) (cf., data shown in
Figure 3), the fit parameter c in Equation (18) does not necessarily
correspond to the value of C1PO(𝜏 = 0).
The results are shown in Figure 4b. Overall, the losses dur-

ing writing and readout are restricted to values between 10% and
20%, originating from the loss rates 𝛾X and 𝜅.

5.3. Temperature Dependence

Including the coupling of both the bright and the dark exciton
states to LA phonons as described by Equation (9) leads to a faster
decay of the initial oscillations of C1PO(𝜏) and a faster subse-
quent exponential decay. We perform this analysis for a dark-
bright splitting of 𝛿eff = 𝛿XD = 0.95 meV, that is, for the intrin-
sic splitting due to the electron-hole exchange, with a coupling of
J = 0.25 meV.
The resulting decay times 𝜏∗ and values of C1PO(𝜏 = 0) are

shown in Figure 4c and d, respectively. The phonon-free results
are marked by dashed black lines. At T = 4 K, the decay time
is close to its phonon-free counterpart. With rising temperature,
though, the decay times become drastically shorter. At T = 77 K,
it is only roughly a quarter of the phonon-free value. The rea-
son is the asymmetry of phonon absorption and emission at
low temperatures that vanishes at higher temperatures. During
storage, the state |D, 0⟩ is mostly occupied. The state |G, 1⟩ lies
𝛿eff = 0.95 meV above it and thus cannot be reached by phonon
emission, which is predominant at low temperatures. In contrast,
at higher temperatures, 𝛿eff can be bridged by phonon absorption.
Thus, an additional decay channel of the dark state |D, 0⟩ opens
during storage. Reducing the residual coupling during storage

by means of smaller J or a 𝛿eff much larger than the maximum of
the phonon spectral density should therefore weaken the phonon
influence, too.
The losses due to writing and readout are also hardly influ-

enced at low temperatures, while they become stronger with ris-
ing T . This means that the preparation of the dark state during
writing is already incomplete. The reason lies in the fact that the
phonon interaction dampens the Rabi oscillations between the
bright state and the cavity to an extent that already the transfer
from the single-photon state to the bright exciton (before the writ-
ing pulse) is incomplete.

6. Storage of a Single Photon Out of the State |n⟩
with n > 1

Wehave demonstrated the buffering capacity of our protocol con-
cerning a single-photon state. Now, the question arises how it per-
forms, when higher-order Fock states are present in the cavity.
To this end, we consider the state |G, 2⟩ as the initial value of the
QD–cavity system and buffer one of the two photons present in
the cavity using the presented protocol. The occupation dynam-
ics is shown in Figure 5a for a fixed 𝜏 = 15.5 ps. The analysis is
performed for J = 0.25meV and 𝛿eff = 𝛿XD = 0.95meV as before.
Dashed lines show the ideal case, while solid lines depict the case
including phenomenological losses.
We consider both the C1PO and the captured 2-photon occupa-

tion (C2PO) after the buffering time 𝜏 in Figure 5b (black and red
lines, respectively). All loss processes and the phonon influence
at T = 4 K are taken into account in these results. The C2PO de-
cays exponentially. The rate corresponds exactly to the cavity loss
rate 𝜅. Since one of the two initially present photons is stored in
the dark state, the remaining single photon can leave the cavity
via the cavity loss channel. Retrieving the other photon from the
dark state and recombining it with the remaining one to yield the
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initial Fock state |2⟩ is only possible, when the remaining one has
not left the cavity yet.
Nonetheless, the effective buffering of the 2-photon Fock state

outperforms the case, where the state |2⟩ decays without using
a storage scheme. The reason is the fact that the Fock state |n⟩
decays with an effective rate of n𝜅. Therefore, our single-photon
buffering protocol can reduce this effective rate to (n − 1)𝜅, as
shown here for the case n = 2. Meanwhile, the dependence of
the C1PO on the buffering time corresponds again to the effec-
tive lifetime of the dark state of about ∼ 20 ns. Interestingly, the
dependence of the C1PO on 𝜏 is, even when disregarding the
high-frequency oscillations in the beginning, nonmonotonous.
The reason is the photon that remains in the cavity: the Rabi fre-
quency of the oscillations between the bright state and the cavity
depends on the number of photons present in the cavity. Since
the frequencies for the different photon numbers are incommen-
surable, changes in the amplitude and therefore the nonmono-
tonicity of the C1PO are the consequence.

7. Toward Experimental Realization

To present a clear and well understandable physical picture of
the buffering scheme, we used rectangular pulses with smoothed
edges as model AC-Stark pulses [cf., Equation (14)]. While such
pulses can be generated using fast electro-optical modulators to
cut the desired envelopes out of a continuous wave laser,[41] the
rise time of 1∕𝛼 = 0.1 ps assumed in Section 4.1 in combination
with the pulse length necessary for the protocol is out of reach
with current state-of-the-art equipment.[41] Experimentally, it is a
far lesser challenge to use pulses with Gaussian envelopes.
The AC-Stark pulses are needed for the excitation transfer

from the bright to the dark state for the writing and vice versa
for the readout procedure. Therefore, we compare the storage ca-
pacity of differently shaped pulses by using the maximum occu-
pation of the dark state |D⟩ after the first (writing) pulse (cf., Fig-
ure 2) as a target quantity in the following. Note that any losses
experienced during writing occur again at readout, thus influenc-
ing the C1PO two times. Nonetheless, the pulse shape should
not have any influence on the decay time 𝜏∗ during storage, since
there are no pulses in the time interval between writing and read-
out.
Using Gaussian pulses of the form

fACS(t) =
Θ√
2𝜋 𝜎

e−
(t−t0)2

2𝜎2 (20)

three parameters have to be determined: the pulse area Θ, the
standard deviation 𝜎, which is connected to the full width at half
maximum via FWHM = 2

√
2 ln 2 𝜎, and the time t0, where the

maximum of the pulse occurs. While the three parameters f0,
tACS, and ton can be determined from analytical considerations
for rectangular pulses from ref. [41], predicting an optimal set
of Gaussian pulse parameters is not straightforward. Therefore,
we numerically search for the maximum occupation of |D⟩ in
the parameter space spanned by Θ, 𝜎, and t0 by discretizing all
three parameters. At T = 4 K for example, this optimum is given
byΘ = 33.77𝜋, FWHM = 7.14 ps, and t0 = 15.01 ps. We perform
this optimization for the parameters used in the last two sections,
namely J = 0.25 meV and 𝛿eff = 𝛿XD = 0.95 meV.

Figure 6. The maximum occupation of the dark exciton |D⟩ after the stor-
age pulse depending on temperature. Pulses with rectangular envelope
are compared with Gaussian pulses.

Figure 6 shows the results depending on the temperature
T . Although the rectangular pulses consistently outperform the
Gaussian ones, the loss in occupation due to the experimentally
easier to implement Gaussian shape is only around 5 percentage
points for all considered temperatures. Therefore, the presented
buffering protocol also works with Gaussian instead of rectangu-
lar pulses. This provides a path to an experimental realization in
the near future.
Finally, let us comment on the usage of a semimagnetic QD

for this protocol. The dark-bright coupling provided by the Mn
atom is crucial for the operation of the protocol. The advantage
of the Mn doping is that the dark-bright interaction is provided
by an intrinsic degree of freedom of the QD, thus pointing the
way toward creating compact on-chip devices. Nonetheless, this
coupling could also be provided by an additional external mag-
netic field in Voigt configuration without using the Mn atom as
a mediator.[41] Therefore, our proposed storage protocol should
in principle also work in nonmagnetic QDs, but the controlled
application of a magnetic field only to the buffering device could
be obstructive in miniaturized circuits containing several com-
ponents.

8. Conclusion

We proposed a protocol to deterministically write and read a
single photon in a QD–cavity system. Assuming a CdTe QD
isoelectrically doped with a single Mn ion yields a Λ-type three-
level system consisting of a ground state and two exciton states,
one optically active bright state and one that is dipole dark. The
storage protocol relies on a coherent transfer of the photon
occupation to the bright exciton due to Rabi oscillations. Then,
an AC-Stark pulse shifts the bright state to be in resonance with
the dark exciton. A coherent excitation transfer during the length
of the pulse prepares the dark state, which due to its optical
inactivity is a metastable state with long lifetime. The readout
procedure is exactly the reverse process.
We analyzed the influence of the dark–bright coupling

strength J and the effective dark-bright splitting 𝛿eff on the
performance of the protocol as well as its dependence on tem-
perature. During storage in the dark state, its residual coupling
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to the bright state and thus to faster loss channels is controlled by
J and 𝛿eff. Reducing this residual coupling by decreasing J or in-
creasing 𝛿eff leads to a better overall performance of the buffering
scheme. At rising temperatures, the phonon environment acts
on the coupling between the bright state and the cavity. Thus,
an additional loss channel during storage has to be considered,
which again can be influenced by adjusting the residual coupling
of the dark to the bright exciton. Furthermore, phonons have a
rather strong influence on the writing and readout procedure.
At high enough temperatures, already the transfer of the photon
to the bright exciton before writing becomes incomplete.
Nonetheless, for all considered parameter sets the overall stor-

age time asmeasured by 𝜏∗ ranges from a few to tens of ns. Thus,
it is two orders of magnitude longer than the lifetime of a photon
in a high-Q cavity with a quality factor of 2.68 ⋅ 105.[68]

Furthermore, we have shown that the proposed scheme can
store a single photon out of a higher-order Fock state |n⟩ with
n > 1. Thus, the lifetime of the state |n⟩, which is (n𝜅)−1 in a cavity
with loss rate 𝜅, can be extended to [(n − 1)𝜅]−1 (for 𝛾D ≪ 𝜅).
Finally, we discussed the possibility of using Gaussian pulses

for the buffering protocol instead of rectangular ones, which are
experimentally out of reach with current equipment for the pulse
characteristics needed for the protocol. For optimal pulse param-
eters, Gaussian pulses can be used successfully. Pulses of rectan-
gular shape are only ≈5 percentage points better concerning the
dark state occupation after the writing procedure.
Thus, we expect the proposed scheme to be realizable with

state-of-the-art equipment. After QDs have long been discussed
as on-demand single-photon sources, this work paves the way for
them to also be used as storage components. A main advantage
of using magnetically doped QDs is that no external magnetic
field is necessary. Such a QD buffering device for single photons
could serve as a building block in more complex QD quantum
information processing devices.

Appendix A: Derivation of the Effective Decay Rate

Here, we give a brief derivation of the analytic equation given for the ef-
fective decay rate in Equation (19). In the basis {|D, 0⟩, |X, 0⟩, |G, 1⟩}, the
Hamiltonian H, describing the coherent part of the system dynamics dur-
ing the storage time, is given by:

H =

⎛⎜⎜⎜⎜⎝
−𝛿eff − 1

2
J 0

− 1
2
J 0 ℏg

0 ℏg 0

⎞⎟⎟⎟⎟⎠
(A1)

The formal expression for any of the three eigenstates |𝜆⟩ of H is

|𝜆⟩ = 𝜆

⎧⎪⎪⎨⎪⎪⎩
|D, 0⟩ − J

2E𝜆

[
1 −

(
ℏg
E𝜆

)2][|X, 0⟩ + ℏg
E𝜆
|G, 1⟩]

⎫⎪⎪⎬⎪⎪⎭
(A2)

where 𝜆 is a normalization constant and E𝜆 is the corresponding
eigenenergy. In the situation considered here, both coupling constants of
the model are much smaller than the effective dark-bright splitting, that
is, J∕(2𝛿eff ),ℏg∕𝛿eff ≪ 1. Therefore the energetically lowest eigenstate |d⟩
has an energy Ed ≈ −𝛿eff , which is on the order of the dark-bright splitting,
and is thus associated with the dark exciton. Furthermore, the contribution

of the state |G, 1⟩ to |d⟩ is then on the order Jℏg∕𝛿2
eff
, cf., Equation (A2),

and can be neglected. In other words, this means that the coupling to the
cavity mode has only a negligible impact on this eigenstate and |d⟩ can in
good approximation be written as the energetically lower eigenstate of the
upper left 2×2-matrix of H:

|d⟩ = cD|D, 0⟩ + cX|X, 0⟩ (A3a)

cX =
J√

J2 +
(
𝛿eff +

√
𝛿2
eff

+ J2
)2 ; cD =

√
1 − c2X (A3b)

Ed = − 1
2

(
𝛿eff +

√
𝛿2
eff

+ J2
)

(A3c)

Because |d⟩ is strongly associated with the dark exciton state |D, 0⟩ the
decay of the excitation during the storage time is determined by the effec-
tive decay rate 𝛾eff of this eigenstate. Considering the loss processes via
the three Lindblad superoperators a,𝜅 , |G⟩⟨X|,𝛾X , and |G⟩⟨D|,𝛾D leads to
a contribution

𝜕

𝜕t
𝜌d = −

(
c2X𝛾X + c2D𝛾D

)
𝜌d = −𝛾eff 𝜌d (A4)

in the dynamical equation for the occupation 𝜌d = ⟨d|𝜌|d⟩ of the state |d⟩.
Keeping only terms up to the second order in the small parameter J∕(2𝛿eff )
yields

𝛾eff ≈
(

J
2𝛿eff

)2

𝛾X +

[
1 −

(
J

2𝛿eff

)2
]
𝛾D (A5)

Consequently, the corresponding decay time of the stored excitation is
given by 𝜏∗ = 𝛾−1

eff
, which directly leads to the analytic expression given in

the main text.
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Entangled photon pairs are key to many novel applications in quantum technologies. Semicon-
ductor quantum dots can be used as sources of on-demand, highly entangled photons. The fidelity
to a fixed maximally-entangled state is limited by the excitonic fine-structure splitting. This work
demonstrates that, even if this splitting is absent, the degree of entanglement cannot reach unity
when the excitation pulse in a two-photon resonance scheme has a finite duration. The degradation
of the entanglement has its origin in a dynamically induced splitting of the exciton states caused by
the laser pulse itself. Hence, in the setting explored here, the excitation process sets a fundamental
limit to the achievable concurrence for entangled photons generated in an optically excited four-level
quantum emitter.

Entangled quantum states [1–3] inspired the develop-
ment of applications in the fields of quantum cryptog-
raphy [4–7], quantum communication [8, 9], or quantum
information processing and computing [10–13]. The sim-
plest realization of entangled qubits are entangled pho-
ton pairs. These are attractive due to their robust-
ness against environmental decoherence [2]. In the past
decades, quantum dots (QDs) have emerged as a versa-
tile platform for the generation of polarization-entangled
photon pairs in experiment [14–31] and theory [32–39] as
well as for time-bin entangled photon pairs [40–42].

Their generation relies on the biexciton-exciton cas-
cade. After the biexciton is prepared, it decays by one of
two paths, cf., Fig. 1 middle panel, ideally emitting either
a pair of horizontally (H) or vertically (V ) polarized pho-
tons. In the ideal case of zero fine-structure splitting, the
information of the chosen path (which-path information)
is missing, and the resulting two-photon state

|Φ+〉 =
1√
2

(|HH〉+ |V V 〉) (1)

is a maximally entangled Bell state. However, in reality,
the generated state deviates from the perfect Bell state.
This deviation can be quantified by the fidelity F [43] or
the concurrence C [44], defined such that only F = 1 or
C = 1 corresponds to a maximally entangled Bell state.

The fine-structure splitting (FSS), i.e., an energy dif-
ference between the two exciton levels, is a major ob-
stacle for generating perfectly entangled states. By
breaking the symmetry of the system, it introduces a
which-path information during the photon generation
[45]. Several methods were developed to suppress the
FSS [9, 18, 20, 25], resulting in entangled states with
higher concurrence. From theory side, it was predicted
that an initially prepared biexciton yields a maximally
entangled state in the case of vanishing FSS [32, 36], even
when cavity and radiative losses as well as phonons are
considered.

FIG. 1. A Gaussian pulse (left) with finite full-width-at-
half-maximum (FWHM) excites a quantum dot. In the two-
photon resonant excitation scheme, the central frequency of
the laser pulse matches half of the ground state-to-biexciton
transition energy. The excited quantum dot decays radia-
tively, following the diamond-shaped cascade. Ideally, either
a pair of horizontally (H) or vertically (V ) polarized photons
is emitted (center), resulting in a maximally entangled state
|Φ+〉 described by the ideal two-photon density matrix ρ2p

(right).

However, the influence of the preparation process
is still under debate. Early experimental proof-of-
principle studies often employed far off-resonant excita-
tion schemes, where carriers were excited in higher QD
states or the wetting layer, which subsequently relaxed
into the biexciton state [16–20]. Recent state-of-the-art
experiments rely on a coherent two-photon resonant ex-
citation (TPE) scheme with typical pulse durations on
the order of 10 picoseconds and light with linear polar-
ization in the QD growth plane, and demonstrate very
high degrees of entanglement [6, 24–26, 28, 29, 31, 46],
because of the strongly reduced re-excitation probability
[47, 48]. Nevertheless, perfectly-entangled photons have
not yet been observed, and the question remains whether
TPE can still be a source of entanglement degradation.

In this letter, we show that the TPE scheme employed
to create the biexciton sets a fundamental limit to the
obtainable concurrence. To demonstrate this, we present
numerical simulations alongside analytical calculations
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TABLE I. Quantum dot parameters used in the calculations.

Parameter Value

Biexciton binding energy EB 4 meV

Exciton-laser detuning ∆XL EB/2 = 2 meV

Radiative decay rate exciton γX 0.005 ps−1

Radiative decay rate biexciton γB 2γX = 0.010 ps−1

giving a dependence of the maximally achievable con-
currence as a function of the full-width-at-half-maximum
(FWHM) of the exciting Gaussian laser pulse. We pro-
vide a clear physical picture how the laser introduces
a which-path information that significantly reduces the
achievable degree of entanglement.

We model the QD as a four-level system, cf., Fig. 1,
consisting of the ground state |G〉, excitons with horizon-
tal and vertical transition dipoles |XH〉 and |XV〉, and the
biexciton |B〉. The FSS between the two exciton states,
which is typically on the order of a few µeV, is denoted as
δ and we assume that the energy of |XH〉 is always higher
than the one of |XV〉. EB is the biexciton binding energy,
i.e., the difference between the energy of two uncorrelated
excitons and the biexciton. The biexciton (An exciton)
decays with a characteristic rate γB (γX) into an exciton
(the ground) state. For the numerical calculations, we
use parameters for typical GaAs QDs given in Tab. I.

In experiments, the concurrence is obtained from the
two-photon density matrix which is reconstructed em-
ploying quantum state tomography [49]. This scheme
relies on measuring polarization-resolved two-time cor-
relation functions, where the measurement represents a
statistical average over both time arguments - the real
time of the first detection event and the delay time until
a subsequent second one. In principle, one can restrict
the averaging intervals to narrow time windows, which
corresponds to selecting different subsets of photon pairs
[35]. Such time filtering can be used to alleviate dephas-
ing effects, but at the cost of a reduced photon gener-
ation. Here, the two-photon density matrix ρ2p [in the
basis {|HH〉, |HV 〉, |V H〉, |V V 〉}] is calculated based on
time-integrated correlation functions, where we average
over all possible real and delay times. Details on the the-
oretical model, the two-photon density matrix, and the
concurrence can be found in the Supplemental Material
[50].

It is instructive to briefly recapitulate the concurrence
predicted for the initial value problem where one assumes
an initially prepared biexciton. In the ideal situation
of a vanishing FSS, the energy structure is completely
symmetric, and the resulting two-photon state is maxi-
mally entangled. But, if the FSS is finite, the two emis-
sion paths in the biexciton-exciton cascade can be distin-
guished, and emitted photons with opposite polarization
exhibit slightly different energies. Thus, a finite FSS in-

troduces a which-path information into the system. In
the two-photon density matrix this which-path informa-
tion manifests itself in a reduced coherence between the
states |HH〉 and |V V 〉. The corresponding concurrence
can be calculated analytically, cf., Supplemental Material
[50], yielding

C0(γX, δ) =
1√

1 +
(

δ
~γX

)2 (2)

It depends solely on the ratio between the FSS δ and
the decay rate γX of the exciton states. We stress that
in the case of δ = 0, the concurrence is unity for an
initially prepared biexciton, i.e., the maximally entangled
Bell state is created. In particular, it was shown that
the concurrence in this case is robust against dephasing
processes [32, 35, 36].

For a finite FSS, C0 reflects the integration over a time-
dependent phase oscillation of the exciton coherence dur-
ing the measurement process [45]. Due to this oscillating
phase, the two-photon state associated with one possible
cascaded decay is

|Φτ 〉 =
1√
2

(
|HH〉+ ei

δ
~ τ |V V 〉

)
(3)

where τ is the delay time between the first (biexciton)
and second (exciton) photon emission event. Averaging
over all possible realizations with different delay times
results in a mixed state with a reduced coherence. Note
that the concurrence depends on the averaging window
for the delay time in the experiment. Selecting only pho-
ton pairs in a small delay-time window results in a higher
concurrence [24, 30], but one has to discard the majority
of emission events. Furthermore, when the QD is em-
bedded inside a cavity, even in the limit of a vanishing
averaging window, the concurrence does not reach unity
[35].

Having seen that in the limit of vanishing FSS, an
initially prepared biexciton yields unity concurrence, we
now consider the impact of the excitation process in the
TPE scheme. Here, the biexciton is excited by a laser
pulse in resonance with the two-photon biexciton tran-
sition. In the simulations, we assume a Gaussian pulse
with envelope

Ω(t) =

√
4 ln(2)

π

Θ

FWHM
exp

[
−4 ln(2)

(
t

FWHM

)2
]

(4)
where the FWHM of the laser pulse is the central quan-
tity of interest. Note that the width of the corre-
sponding laser intensity I(t) ∝ Ω2(t) is characterized by
FWHM/

√
2. To achieve a two-photon π-pulse, the pulse

area Θ is determined numerically, such that the maximal
biexciton occupation is obtained. The optimal value is
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FIG. 2. Concurrence in dependence of the pulse duration,
characterized by its FWHM, for two laser polarizations [hor-
izontal (H): filled symbols and diagonal (D): open symbols]
and three fine-structure splittings δ = 0 (blue circles), 1.5 µeV
(green diamonds), and 3 µeV (red squares). The symbols rep-
resent numerical results and lines are the analytic expression
Eq. (8) [H/D polarization: solid/dashed line]. For δ = 0, the
results for H and D polarization are exactly the same. Data
points at FWHM = 0 (pentagons) represent calculations with
an initially prepared biexciton without optical excitation.

roughly

Θ ≈
√
EB FWHM

~
√

2π ln(2)
π (5)

cf., Supplemental Material [50]. Note that the concur-
rence is not sensitive to the initial occupation of the biex-
citon - it can reach unity also for a partially occupied
biexciton state.

We start with the case of vanishing FSS, i.e., δ = 0,
and consider two different linear laser polarizations: (i)
horizontal, i.e., the laser polarization coincides with the
polarization H, and (ii) diagonal, i.e., the laser polariza-
tion has equal components in H and V . As shown in
Fig. 2 (blue symbols), both laser polarizations result in
the same concurrence. In contrast to the initial value
problem without optical excitation, i.e., data points at
FWHM = 0, the concurrence drops significantly with
increasing FWHM. For a typical pulse length of 10 ps
[6, 26, 29], the concurrence decreases to C ≈ 0.975. Using
a dressed state picture, we can derive (see Supplemental
Material [50]) the analytic expression

C ≈ 1− 2f(γB,FWHM) (6a)

FIG. 3. Top: Sketches of the four-level system with the
laser-induced effects for (a) horizontal and (b) diagonal polar-
ization. Black lines are the unperturbed quantum dot states.
Optical transitions are indicated by dashed arrows. The laser
effect for horizontally polarized excitation can be interpreted
as an AC Stark-shift yielding an energetic splitting ES. For
a diagonal polarization, the laser-induced interaction can be
interpreted as a coupling between the excitons with coupling
strength VS. Bottom: Examples of resulting density matrices
for the two polarizations.

f(γB,FWHM) =
γBFWHM

8
exp

[
−γBFWHM

4

]
(6b)

which describes the drop of concurrence with increas-
ing FWHM well. The obtained result depends solely on
the product of the FWHM and the biexciton decay rate,
which can be interpreted as a measure for the number of
biexciton photons that are emitted during the pulse. We
stress that this drop does not originate from an increas-
ing re-excitation probability, cf., Supplemental Material
[50], i.e., the creation of additional photons is negligible.

To understand this drop in concurrence, we start with
considering the excitation with horizontal (H) polariza-
tion. We recall that a reduced degree of entanglement is
associated with which-path information. The only source
of the latter in the TPE scheme is the laser pulse, which
makes the level configuration (dynamically) asymmetric
as illustrated in Fig. 3(a). Only |XH〉 interacts with the
laser pulse, while |XV〉 remains unchanged. The interac-
tion with this laser pulse introduces an AC Stark-shift for
|XH〉, resulting in a finite energy shift ES ∝ Ω2(t)/EB.
For the two-photon π-pulse, this energy shift is on the
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order of

ES ∼
~π

FWHM
(7)

cf., Supplemental Material [50]. Hence, during the pulse,
the two exciton states are split by ES. As in the case
of a fixed FSS, the dynamic splitting ES gives rise to
phase oscillations of the exciton coherence until the pulse
is gone. Thus, on the time-scale of the pulse, a which-
path information is introduced by the TPE scheme itself.
Note that for a FWHM of 10 ps, ES ∼ 200 µeV is one
order of magnitude larger than typical FSSs. With in-
creasing pulse length the dynamically induced splitting
ES becomes smaller but persists in a longer time win-
dow. Thus, more emitted photon pairs are affected by it,
resulting in a monotonic drop of the concurrence with ris-
ing FWHM. It is instructive to consider the effect of this
which-path information on the two-photon density ma-
trix as shown in Fig. 3(a) bottom row. Similar to what
occurs for a finite FSS, we observe a reduced coherence
ρ2pHH,V V .

Because the reduced concurrence has been traced back
to an asymmetry during the pulse, one could naively
assume that using a diagonally polarized laser might
result in a maximally entangled state. But numeri-
cal calculations with a diagonal polarization yield ex-
actly the same degree of entanglement, cf., Fig. 2. Of
course, when the FSS is absent, all orthogonal bases, con-
structed as linear combinations of the horizontally and
vertically polarized exciton state, are equivalent. Con-
sequently, all linear laser polarizations yield the same
entanglement. Clearly, this applies to the basis states
|XD/A〉 := (|XH〉 ± |XV〉)/

√
2, for which the system be-

comes identical to the one with the horizontal laser po-
larization.

It is nevertheless instructive to look at the interpre-
tation of the drop in concurrence for a diagonally po-
larized excitation. During the laser pulse, the action of
the pulse can be described as a full-amplitude (coherent)
oscillation between the two different exciton states (cf.,
Supplemental Material [50]). Thus, if the QD decays into
an exciton state via the emission of a biexciton photon al-
ready during the pulse duration, the pulse introduces an
effective coupling to the other exciton. In Fig. 3(b) this
coupling is denoted as VS. Therefore, during the pulse
duration, the exciton state can change and the subse-
quently emitted exciton photon can have a different po-
larization than the prior biexciton photon. Consequently,
the interaction with the laser enables the creation of two-
photon states |HV 〉 and |V H〉, which represent a devi-
ation from the maximally entangled state |Φ+〉. This
interpretation is confirmed by looking at the two-photon
density matrix in Fig. 3(b), where the elements ρ2pHV,HV
and ρ2pV H,V H become finite, causing a reduced degree of
entanglement. Note that for diagonal polarization the
occupations ρ2pHH,HH and ρ2pV V,V V have the same value

as the coherence |ρ2pHH,V V | in contrast to the excitation
with horizontal polarization where the relative amplitude
of this coherence is reduced.

Thus, a diagonal laser polarization corresponds to de-
scribing the same effect in a different basis/picture. This
is similar to the FSS stemming from the anisotropic ex-
change interaction, which can also be discussed as an
interaction between circularly polarized excitons or an
energetic splitting δ between linearly polarized ones. In
the TPE scheme, the electromagnetic field plays the role
of a tunable exchange interaction.

Finally, we analyze the combined effect of FSS and
laser-induced splitting. Figure 2 shows the concurrence
obtained for two finite FSSs δ = 1.5 µeV (green) and 3
µeV (red) for a horizontal (H: filled symbols) and di-
agonal (D: open symbols) laser polarization. We rem-
ined that in the limit of a vanishing pulse duration, i.e.,
FWHM → 0, the concurrence is given by C0(γX, δ).
Starting from this value, the concurrence drops with ris-
ing FWHM due to the laser-induced splitting. Depending
on the laser polarization, this can be observed either as
an additional loss of coherence (horizontal polarization)
or an increase of detrimental photon states (diagonal po-
larization) in the two-photon density matrix, cf., Supple-
mental Material [50]. Because the effect of the FSS on
the TPE scheme is negligible for δ � EB, we find only a
marginal difference between the two polarizations.

In this case, the drop in concurrence is well described
by the analytic expression

C ≈ C0(γX, δ) {1− f(γB,FWHM) [1 + g(αH)]}
−f(γB,FWHM) [1− g(αH)] (8a)

g(αH) =
(
1− 2α2

H

)2
(8b)

where C0 [defined in Eq. (2)] represents the concurrence
associated with an initially prepared biexciton, while
f [defined in Eq. (6b)] and g capture the influence of
the pulse duration and the laser polarization, respec-
tively. The parameter αH describes the component of the
laser polarization in H direction such that the horizon-
tal (diagonal) laser polarization corresponds to αH = 1
(αH = 1/

√
2). Note that for δ = 0, this expression re-

duces to Eq. (6) and becomes independent of the laser
polarization.

When both, FSS and laser-induced splitting, are
present, the laser polarizations have a slightly different
impact. The difference between the concurrence obtained
for horizontal and diagonal polarization is estimated as

∆C ≈ f(γB,FWHM) [1− C0(γX, δ)] (9)

and increases with pulse duration and FSS. This implies
an optimal laser polarization can be found. By analyzing
Eq. (8), one finds that the horizontal polarization corre-
sponds to the optimal choice, while diagonal polarization
is the most detrimental one.
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In conclusion, our analysis shows that the TPE scheme
with a pulse of finite duration sets a limitation for the
degree of entanglement of photon pairs due to the exci-
tation itself. This result is supported by numerical cal-
culations for a two-photon π-pulse as well as analytical
expressions. Its generic nature is explained by an intu-
itive physical picture of a Stark-induced energy splitting,
which introduces a which-path information, and thus, re-
duces the entanglement. The effect increases for longer
pulses, and, in principle, disappears in the limit of in-
stantaneous excitation. However, in this limit the exci-
tation model and the TPE scheme become inadequate.
In most practical situations, a pulse shorter than 2-3 ps
produces unwanted exciton states in typical InGaAa or
GaAs QDs. Consequently, while the FSS in QDs can be
reduced to zero, the pulse length cannot, and this sets
a fundamental upper limit for the on-demand generation
of entangled photon pairs.

Our calculations accounted only for the most basic re-
laxation mechanisms that are present in all realizations
of a four-level emitter, i.e., rates for the cascaded decay.
Further influences that might affect the entanglement
such as, e.g., phonons were disregarded. Our analysis
thus explores an ideal situation highlighting the detri-
mental effect of the excitation scheme even in the absence
of other destructive mechanisms.

Finally, we note that our theoretical prediction of
C ≈ 0.975 is very close to the highest experimentally
achieved concurrence of 0.97(1)[26]. This may indicate
that the laser-induced which-path information provides a
quantitative explanation for the observed deviation from
unity.
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A. THEORETICAL MODEL, DENSITY MATRIX AND CONCURRENCE

I. Optically excited quantum dot and system dynamics

In this section, we provide more details on the theoretical model and the determination of the two-photon density
matrix and its corresponding degree of entanglement as measured by the concurrence.

In our simulations, we consider the biexciton-exciton cascade of a quantum dot (QD) excited by a two-photon

resonant Gaussian laser pulse. In a frame co-rotating with the laser frequency ωL, the Hamiltonian ĤQD-L, describing
the interaction of the QD with the applied laser pulse, is given by

ĤQD-L =

(
∆XL +

δ

2

)
|XH〉〈XH|+

(
∆XL −

δ

2

)
|XV〉〈XV|+ (2∆XL − EB) |B〉〈B| − ~

2
Ω(t)

(
σ̂L + σ̂†L

)
(A1)

Here, δ = ~ (ωH − ωV) denotes the fine-structure splitting between the energies ~ωH and ~ωV of the orthogonally
polarized exciton states |XH〉 and |XV〉, which couple to horizontally and vertically polarized light, respectively,
and the exciton-laser detuning ∆XL = ~ (ωX − ωL) is the energetic difference between the mean exciton energy
~ωX = ~ (ωH + ωV) /2 and the laser. The energy of the ground state |G〉 is used as the zero of the energy scale and
the biexciton binding energy EB lowers the energy of the biexciton state |B〉 compared to the sum of both exciton
energies.

In this article, we assume a Gaussian pulse shape with (real) envelope

Ω(t) =

√
4 ln(2)

π

Θ

FWHM
exp

[
−4 ln(2)

(
t− tL

FWHM

)2
]

(A2)

where Θ is the (one-photon resonant) pulse area and tL is the time of the pulse maximum. The duration in time
of this Gaussian pulse is characterized by its full-width-at-half-maximum FWHM. In order to achieve a two-photon
resonant excitation of the biexciton state, the laser frequency is set to half of the ground state-to-biexciton transition
energy, i.e., ∆XL = EB/2 and a linear laser polarization is considered. In the basis spanned by the horizontal (H)
and vertical (V ) polarization associated with the two orthogonally polarized exciton states, the laser polarization can
be described by

σ̂L = αH σ̂H + αV σ̂V (A3)

where the transition operators

σ̂H/V = |G〉〈XH/V|+ |XH/V〉〈B| (A4)

describe QD transitions that couple to horizontally/vertically polarized light and the coefficient αH/V ∈ R is the
component of the laser polarization in H/V direction.

The transitions between QD states accompanied by photon emission are modeled as a radiative decay with rates Γ
and incorporated in the model via Lindblad operators [1]

LÔ,Γρ̂ =
Γ

2

(
2Ôρ̂Ô† − Ô†Ôρ̂− ρ̂Ô†Ô

)
, (A5)
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acting on the statistical operator ρ̂ of the QD system, where the operator Ô describes the relevant QD transition. Due
to the optical selection rules, we consider the four operators L|G〉〈XH|,γX , L|G〉〈XV|,γX , L|XH〉〈B|, γB2 , and L|XV〉〈B|, γB2 ,

where γB (γX) denotes the decay rate of the biexciton (exciton) state.
The dynamics of the statistical operator of the system ρ̂ is governed by the Liouville-von Neumann equation

d

dt
ρ̂ = Lρ̂ :=− i

~

[
Ĥ, ρ̂

]
+
∑

`=H,V

{
L|G〉〈X`|,γX + L|X`〉〈B|, γB2

}
ρ̂, (A6)

where [Â, B̂] denotes the commutator of two operators Â and B̂. This equation is numerically solved using its formal
solution

ρ̂(t) = P0→t [ρ̂(0)] := T̂ exp

[∫ t

0

dt′L(t′)

]
ρ̂(0) (A7)

where P0→t denotes a formal propagator in time, T̂ is the time-ordering operator, and we assume the QD to be
initially in its ground state.

In order to perform studies using a two-photon resonant π-pulse to excite the biexciton state, the corresponding
pulse area Θ of the Gaussian pulse has to be determined. This is done numerically for each individual calculation by
optimizing Θ to obtain the maximum biexciton occupation during the real-time dynamics. In the situation considered
here where Ω(t)/EB is a small quantity, a first approximation for this value

Θ ≈
√
EB FWHM

~
√

2π ln 2
π (A8)

can be obtained by performing a Schrieffer-Wolff transformation [2, 3] on the QD-laser Hamiltonian ĤQD-L. In the
actual simulations, the numerically determined optimal value for Θ is typically 5...20% higher, depending on the
FWHM.

II. Reconstructed two-photon density matrix

In standard experiments, the emitted photon state is reconstructed using quantum state tomography [4], a well-
established scheme that is based on polarization-resolved two-time correlation measurements. The signal obtained in
these type of measurements are proportional to two-time correlation functions containing electric field operators at
different times. Since electronic transitions in the QD four-level system are the source for the emitted field, the electric
field operators are in turn proportional to the QD transition operators σ̂H/V and the relevant correlation functions
can be theoretically calculated by evaluating the correlation functions

G
(2)
jk,`m(t, τ) =

〈
σ̂†j (t)σ̂

†
k(t+ τ)σ̂m(t+ τ)σ̂`(t)

〉
, (A9)

where {j, k, `,m} ∈ {H,V }. The time t denotes the time of the first detection event and τ is the delay time until a
subsequent second one.

In an actual measurement, one always averages over both times, the real time t, as well as the delay time τ . While
the integration interval for the real time Tav is extended over the complete decay process, different subsets of photon
pairs can be selected by using different integration intervals τav for the delay time [5]. For example, simultaneously
emitted photon pairs are selected in the limit of a vanishing integration window τav → 0. But there are always
experimental limits to the time resolution down to 20-300 picoseconds, depending on the setup.

Furthermore, in application-oriented experiments, one aims to obtain the maximum photon yield, which corresponds
to considering all emission events, i.e., the limit τav → ∞ is used. Consequently, in our studies, the (normalized)
two-photon density matrix ρ2p is given by

ρ2p
jk,`m =

G
(2)

jk,`m

Tr
{
G

(2)
} (A10a)

G
(2)

jk,`m = lim
Tav,τav→∞

Tav∫

0

dt

τav∫

0

dτ G
(2)
jk,`m(t, τ) (A10b)
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where, both integration intervals are considered in the limit of infinity. In our numerical calculations, these quantities
are evaluated by re-writing Eq. (A9) in the Schrödinger picture [6]

G
(2)
jk,`m(t, τ) =

〈
σ̂†kσ̂mPt→t+τ

[
σ̂`P0→t [ρ̂(0)] σ̂†j

]〉
(A11)

III. Degree of entanglement

The degree of entanglement associated with a given two-photon density matrix is quantified using the concurrence
C, a well-established measure which has a one-to-one correspondence to the entanglement of formation [7]. The
concurrence can be obtained directly form the two-photon density matrix ρ2p by calculating the four (real and
positive) eigenvalues λj of the matrix

M = ρ2p T (ρ2p)∗ T, (A12)

where (ρ2p)∗ denotes the complex conjugated two-photon density matrix and T is the anti-diagonal matrix with
elements {−1, 1, 1,−1}. After sorting the eigenvalues in decreasing order, λj+1 ≤ λj , the concurrence is given as
[4, 7, 8]:

C = max
{

0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

}
, (A13)

A quite useful approximation for the concurrence is

C ≈ 2
(
|ρ2p
HH,V V | − ρ2p

HV,HV

)
. (A14)

This expression is exactly fulfilled for a two-photon density matrix, that has the form

ρ2p =



a 0 0 c
0 b d 0
0 d∗ b 0
c∗ 0 0 a′


 (A15)

in the basis {|HH〉, |HV 〉, |V H〉, |V V 〉} where the parameters a, a′, b ∈ R+, c, d ∈ C fulfill a + a′ + 2b = 1 and√
a a′ ≥ |c| ≥ b ≥ |d|. Thus, Eq. (A14) is a good approximation for the concurrence, if a two-photon density matrix

is dominated by the elements ρ2p
HH,HH , ρ2p

V V,V V , and ρ2p
HH,V V , the condition ρ2p

HV,HV = ρ2p
V H,V H is approximately

fulfilled, and the 8 remaining coherences can be neglected. In our numerical simulations, we obtain density matrices
of this kind for the considered parameter regime. Thus we use this approximate formula for the analytic calculations.

B. INITIAL VALUE CALCULATIONS

In this section a brief derivation for the quantity C0 is given, which represents the concurrence in the case of an
initially prepared biexciton state.

Without an external laser the Hamiltonian describing the system reduces to

Ĥ0 :=
EB + δ

2
|XH〉〈XH|+

EB − δ
2
|XV〉〈XV| (B1)

in a frame rotating with the frequency ωL = ωX − EB/(2~). This Hamiltonian is of course diagonal in the basis
{|G〉, |XH〉, |XV〉, |B〉} and time-independent. Therefore, the formal solution of the Liouville-von Neumann equation

d

dt
ρ̂ = L0ρ̂ := − i

~

[
Ĥ0, ρ̂

]
+
∑

`=H,V

{
L|G〉〈X`|,γX + L|X`〉〈B|, γB2

}
ρ̂, (B2)

for the statistical operator ρ̂ is given by

ρ̂(t) = P(0)
t0→t[ρ̂(t0)] := exp[L0 (t− t0)]ρ̂(t0). (B3)
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where L0 is a time-independent operator in Liouville space and P(0)
t0→t the corresponding formal propagator for the

statistical operator. In particular one obtains

〈B|P(0)
t0→t[|B〉〈B|]|B〉 = e−γB (t−t0) (B4a)

〈Xm|P(0)
t0→t[|X`〉〈Xj |]|Xk〉 = δjkδ`me

−[γX+i(E`−Ej)/~](t−t0)

(B4b)

where j, k, `,m ∈ {H,V } and EH/V = (EB ± δ)/2. In order to calculate the reconstructed two-photon density
matrix, integrated two-time correlation functions have to be evaluated. In the Schrödinger picture Eq. (A10b) can be
reformulated as

G
(2)

jk,`m =

∞∫

0

dt

∞∫

0

dτ G
(2)
jk,`m(t, τ) =

∞∫

0

dt

∞∫

0

dτ Tr
{
σ̂†kσ̂mP

(0)
t→t+τ

[
σ̂`P(0)

0→t[ρ̂(0)]σ̂†j

]}
(B5)

Note that in a time evolution governed by the propagator P(0)
t0→t the system can only relax towards its ground state

|G〉 and no excitation is ever transferred to higher excited states, i.e., no excitation is transferred from the ground

state |G〉 (exciton state |Xj〉) towards an exciton state |Xj〉 (biexciton state |B〉). Therefore G
(2)

jk,`m is only nonzero
if the system is in the biexciton at the time t when the first pair of transition operators is applied. This is a direct
consequence of the considered system, where the interaction with the field modes can be modeled as radiative decay.
Thus, the re-absorption of emitted photons cannot occur. In other systems, e.g., when the QD is embedded inside a
high-quality microcavity, photons inside the cavity are likely to be re-absorbed by the QD, leading to an oscillating
biexciton occupation. Furthermore, since the operator L0 is time-independent, the propagator depends only on a

time difference, i.e., P(0)
t0→t = P(0)

0→t−t0 . Starting with an initially prepared biexciton state, i.e., ρ̂(0) = |B〉〈B|, and
inserting the formal propagation (B4) one arrives at

G
(2)

jk,`m =

∞∫

0

dt

∞∫

0

dτ Tr
{
σ̂†kσ̂mP

(0)
t→t+τ

[
|X`〉〈B|P(0)

0→t [|B〉〈B|] |B〉〈Xj |
]}

=

∞∫

0

dt

∞∫

0

dτ Tr
{
σ̂†kσ̂mP

(0)
0→τ

[
e−γB t|X`〉〈Xj |

]}
=

1

γB

∞∫

0

dτ Tr
{
σ̂†kσ̂mP

(0)
0→τ [|X`〉〈Xj |]

}

=
1

γB

∞∫

0

dτ δjkδ`me
−[γX+i(E`−Ej)/~]τ =

1

γB
δjkδ`m

1

γX + i(E` − Ej)/~

(B6)

From these quantities the elements of the two-photon density matrix are obtained according to Eq. (A10a). As
expected one finds only four nonzero elements

ρ2p
HH,HH =

1

2
= ρ2p

V V,V V (B7a)

ρ2p
HH,V V =

1

2

1

1− i δ
~γX

=
(
ρ2p
V V,HH

)∗
(B7b)

In this situation, the definition of the concurrence given in Eqs. (A12) and (A13) reduces to

C = 2|ρ2p
HH,V V | =

1√
1 +

(
δ

~γX

)2
=: C0(γX, δ) (B8)

C. CALCULATIONS WITH FINITE FWHM

In this section a brief derivation of the analytic approximation for the concurrence in Eq. (6) in the main text is
given, which takes into account the impact of a finite pulse duration in a two-photon resonant excitation scheme.
Here, the calculation is performed for an arbitrary linear laser polarization. Special cases and interpretations are
discussed in the following Sections D, E and G.
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The basic idea for the analytic estimate is inspired by the initial value calculation in the previous section. We
consider a short time interval centered around the time of the pulse maximum and assume that the Gaussian pulse
only interacts with the QD during this time. Additionally, we replace the time-dependent shape of the pulse by an
effective constant driving. Based on these main steps and some further assumptions, in particular that γBFWHM/2
and γXFWHM are small quantities, we rework the calculations for the concurrence.

I. Effective model with constant driving

For the effective model, we define a time interval with length F centered around the time of the pulse maximum
and assume that the Gaussian pulse only interacts with the QD in this interval t ∈ [tL − F/2, tL + F/2]. Addi-
tionally, we replace the time-dependent amplitude of the laser pulse Ω(t) by an effective constant driving strength
Ωeff. Furthermore, the fine-structure splitting between the excitons is neglected during the time interval F since a
splitting δ � EB has hardly any impact on the two-photon resonant excitation scheme. Because the two-photon
process exciting the QD from the ground state towards the biexciton state is a second order process and scales with
Ω2(t), it is plausible to assume, that this interval starts at the time FWHM/2 before the pulse maximum, since
Ω2(tL − FWHM/2) ≤ Ω2(tL)/4. Thus we set F = FWHM for the moment. An effective constant driving Ωeff should
fulfill the relation

tL+F/2∫

tL−F/2

dtΩ(t) =

tL+F/2∫

tL−F/2

dt

√
4 ln(2)

π

Θ

FWHM
e−4 ln(2)( t−tL

FWHM )
2

=

tL+F/2∫

tL−F/2

dtΩeff = F Ωeff (C1)

With the choice F = FWHM one obtains

Ωeff ≈ 0.81

√
4 ln 2

π

Θ

FWHM
(C2)

Based on these assumptions, the effective Hamiltonian for a laser pulse with an arbitrary linear polarization is given
by

Ĥeff
QD-L =

{
Ĥ1 , t ∈ [tL − F/2, tL + F/2]

Ĥ0 , otherwise
(C3a)

Ĥ1 =
EB

2
(|XH〉〈XH|+ |XV〉〈XV|) +

~
2

Ωeff

(
σ̂L + σ̂†L

)
(C3b)

σ̂L = αH σ̂H + αV σ̂V (C3c)

in the frame co-rotating with the laser frequency ωL set to the two-photon resonance. The linear polarization of the
laser is defined by the (real) coefficients αH and αV which fulfill α2

H +α2
V = 1 and represent the component in H and

V polarization, respectively. The four energy eigenstates of Ĥ1 are given by

|U〉 = c (|G〉+ |B〉) +
√

2c̃ (αH |XH〉+ αV |XV〉) (C4a)

|M〉 = αV |XH〉 − αH |XV〉 (C4b)

|N〉 =
1√
2

(|G〉 − |B〉) (C4c)

|L〉 = c̃ (|G〉+ |B〉)−
√

2c (αH |XH〉+ αV |XV〉) (C4d)

with coefficients

c =
~Ωeff√

2(~Ωeff)2 + 4E2
U

; c̃ =

√
1

2
− c2 (C5)

The corresponding eigenenergies

EU =
1

4

(
EB +

√
E2

B + 8(~Ωeff)2

)
(C6a)

EM =
EB

2
(C6b)

EN = 0 (C6c)

EL =
1

4

(
EB −

√
E2

B + 8(~Ωeff)2

)
(C6d)
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are independent of the laser polarization, i.e., independent of αH/V .

II. Approximate time dynamics in the effective model

Without radiative decay, the time evolution of the statistical operator for times t, t0 ∈ [tL−FWHM/2, tL+FWHM/2]
in the effective model is determined by

ρ̂(t) = P(1)
t0→tρ̂(t0)] := exp[L1 (t− t0)]ρ̂(t0) (C7a)

L1ρ̂ := − i
~

[
Ĥ1, ρ̂

]
(C7b)

Combining the expression (C2) with the estimate for the optimal pulse area in Eq. (A8), we realize that (~Ωeff)2/E2
B �

1 for our parameters and, thus, the coefficients c and c̃ fulfill

c̃2 ≈ 1

2
;
(c
c̃

)2

� 1 (C8)

Consequently, the two eigenstates |N〉 and |L〉 are approximately an equal admixture of ground and biexciton state,

i.e., |N/L〉 ≈ (|G〉∓|B〉)/
√

2. Therefore, the time evolution after an initially prepared ground state is mainly described
by these two eigenstates and the time evolution of the biexciton state can be approximated as

ρBB(t) = 〈B|P(1)
t0→t[|G〉〈G|]|B〉 ≈

1

2
[1− cos (EL (t− t0)/~)] (C9)

Taking into account radiative decay described by the Lindblad operators L|XH〉〈B|, γB2 and L|XV〉〈B|, γB2 , both eigenstates

|N〉 and |L〉 should decay with the rate γB/2, since both are close to an equal admixture of |G〉 and |B〉. In the situation
(~Ωeff)2/E2

B � 1, one obtains

EU − EM

~
=
|EL|
~
≈ ~Ω2

eff

EB
= 0.812 2

√
2π ln 2

FWHM
(C10)

by inserting Eqs. (A8) and (C2). Furthermore, as stated in Section A I, we observed that in the presence of radiative
decay, the optimal pulse area is actually around 10% higher than estimated in Eq. (A8). Taking this factor into
account, Eq. (C10) can be (nicely) approximated as

EU − EM

~
=
|EL|
~
≈ π

FWHM
(C11)

This also means that, the energetic splitting between the two upper dressed states ES (cf., Fig. C1), which is always
identical to the energetic splitting between the two lower ones, is approximately

ES = EU − EM = EN − EL ≈
~π

FWHM
(C12)

Altogether, the biexciton occupation during the effective pulse interval is therefore estimated as

ρBB(t) = 〈B|P(2)
t0→t[|G〉〈G|]|B〉 ≈

1

2

[
1− cos

(
π (t− t0)

FWHM

)]
e−γB(t−t0)/2 (C13a)

P(2)
t0→t[ρ̂(t0)] := exp[L2 (t− t0)]ρ̂(t0) (C13b)

L2ρ̂ := − i
~

[
Ĥ1, ρ̂

]
+
∑

`=H,V

{
L|G〉〈X`|,γX + L|X`〉〈B|, γB2

}
ρ̂ (C13c)

Note that these formulas are independent of the laser polarization. Any linear laser polarization will result in this
estimate for the biexciton occupation during the laser pulse.

Figure C2 depicts the comparison of the effective model, where Eq. (C13a) is used to describe the biexciton
occupation during the time interval t ∈ [tL−FWHM/2, tL+FWHM/2], with the numerical data. For our purposes, the
estimated dynamics agrees reasonably well with the numerically obtained dynamics, justifying the choice F = FWHM
and the use of the effective model.
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FIG. C1. Dressed state energies EU and EM as function of the FWHM for an effective driving strength Ωeff according to
Eq. (C2). In accordance with our numerical observation, the optimal pulse area Θ is set to 1.1 times the value predicted by
the Schrieffer-Wolff transformation in Eq. (A8). Blue double-headed arrows indicate the energetic splitting ES = ~π/FWHM.
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FIG. C2. Biexciton occupation obtained from the numerical simulations compared to results according to Eq. (C13a) and the
effective Hamiltonian.

In the following, we also need an approximation for the propagation of an exciton occupation or coherence during
the time window of the laser pulse after the emission of a first biexciton photon. Employing similar approximations,
in particular, |U/M〉 ≈ αH/V |XH〉 ± αV/H |XV〉 and Eq. (C11), one obtains

〈Xj |P(1)
t0→t[|Xj〉〈Xj |]|Xj〉 ≈ 1 + 2α2

Hα
2
V

[
cos

(
π(t− t0)

FWHM

)
− 1

]
(C14a)

〈X`|P(1)
t0→t[|Xj〉〈Xj |]|X`〉 ≈ 2α2

Hα
2
V

[
1− cos

(
π(t− t0)

FWHM

)]
(C14b)

〈XV|P(1)
t0→t[|XV〉〈XH|]|XH〉 ≈ 2α2

Hα
2
V + α4

He
iπ(t−t0)/FWHM + α4

V e
−iπ(t−t0)/FWHM (C14c)

where j, ` ∈ {H,V } and ` 6= j. Here the propagator P(1)
t0→t is used, i.e., the radiative decay of the exciton state

is neglected, cf., Eq. (C7). In the following it will become clear that this corresponds to the approximation that
no second photon is emitted during the interval F = FWHM. Note that this assumption in combination with the
previous ones results in the feature that the propagation of an exciton occupation or coherence during the interval

F can not lead to finite elements outside of the exciton subspace, i.e., 〈χ|P(1)
t0→t[|Xj〉〈Xj′ |]|χ′〉 = 0 for χ, χ′ ∈ {G,B}

and j, j′ ∈ {H,V }.
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III. Two-photon density matrix and concurrence

Based on the estimated dynamics of the statistical operator, we now turn to the integrated two-time correlation
functions. With the definitions ts/e := tL ∓ FWHM/2 the expression for the integrated two-time correlation function
can be re-formulated as

G
(2)

jk,`m =

∞∫

0

dt

∞∫

0

dτ G
(2)
jk,`m(t, τ) =

∞∫

ts

dt

∞∫

0

dτ G
(2)
jk,`m(t, τ) = G

(I)

jk,`m +G
(II)

jk,`m +G
(III)

jk,`m (C15a)

G
(I)

jk,`m =

te∫

ts

dt

te−t∫

0

dτ G
(2)
jk,`m(t, τ) (C15b)

G
(II)

jk,`m =

te∫

ts

dt

∞∫

te−t

dτ G
(2)
jk,`m(t, τ) (C15c)

G
(III)

jk,`m =

∞∫

te

dt

∞∫

0

dτ G
(2)
jk,`m(t, τ) (C15d)

Using the effective model, the respective propagators P(n)
t0→t are time-independent, enabling an easier evaluation of

G
(2)

jk,`m . The first contribution can in good approximation be omitted. Due to the very narrow integration intervals
for t and τ on the order of the FWHM, it is much smaller than the other two contributions. Note that omitting this
term corresponds to the assumption that the probability for emitting two photons during the effective pulse interval
is negligible. For the following calculations we use F instead of FWHM in order to shorten the expressions.

We first evaluate the third term. Note that if the real-time argument t is larger than te, one only obtains a nonzero
contribution when the system is in the biexciton state at this point in time. Starting initially in the ground state, the
third term leads to the contribution

G
(III)

jk,`m =

∞∫

te

dt

∞∫

0

dτ G
(2)
jk,`m(t, τ) =

∞∫

te

dt

∞∫

0

dτ Tr
{
σ̂†kσ̂mP

(0)
t→t+τ

[
σ̂`ρ̂(t)σ̂†j

]}

=

∞∫

te

dt

∞∫

0

dτ Tr
{
σ̂†kσ̂mP

(0)
0→τ

[
σ̂`P(0)

te→t
[
〈B|P(2)

ts→te [|G〉〈G|]|B〉 |B〉〈B|
]
σ̂†j

]}

=

∞∫

te

dt

∞∫

0

dτ Tr
{
σ̂†kσ̂mP

(0)
0→τ

[
e−γBF/2e−γB(t−te)|X`〉〈Xj |

]}

= e−γBF/2
1

γB

∞∫

0

dτ Tr
{
σ̂†kσ̂mP

(0)
0→τ [|X`〉〈Xj |]

}
= e−γBF/2

1

γB
δjkδ`m

1

γX + i(E` − Ej)/~

(C16)

The evaluation of the last integral is known from Eq. (B6).

Next, the second term is evaluated. Because of the insignificant exciton occupation during the effective pulse
interval due to the two-photon resonant excitation character, only two photon states are considered, where the first
photon is emitted from the biexciton state. These contributions should clearly dominate over ones where the first

photon is emitted from an exciton decay. Thus, we set σ̂` = |X`〉〈B| and σ̂†j = |B〉〈Xj |. Furthermore, if an exciton

occupation or coherence is propagated during the pulse window, the propagator P(1)
t→t′ is used, cf., Eq. (C14). Thus,

the radiative decay of the exciton state is neglected in this short interval. This also corresponds to the assumption
that no subsequent second photon is emitted during the pulse window and is justified by the numerical observation
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that the concurrence hardly depends on γX as long as γXFWHM� 1.

G
(II)

jk,`m ≈
te∫

ts

dt

∞∫

te−t

dτ Tr
{
σ̂†kσ̂mP

(0)
te→t+τ

[
P(1)
t→te

[
|X`〉〈B| P(2)

ts→t[|G〉〈G|] |B〉〈Xj |
]]}

=

te∫

ts

dt

∞∫

te−t

dτ
1

2
(1− cos[π(t− ts)/F ]) e−γB(t−ts)/2 Tr

{
σ̂†kσ̂mP

(0)
te→t+τ

[
P(1)
t→te [|X`〉〈Xj |]

]}
(C17a)

G
(II)

jj,jj = e−γBF/2
te∫

ts

dt

∞∫

te−t

dτ
1

2
(1 + cos[π(t− te)/F ]) e−γB(t−te)/2 e−γX(t+τ−te)

×
{

1 + 2α2
Hα

2
V (cos[π(te − t)/F ]− 1)

}

= e−γBF/2
1

γX

0∫

−F

dt
1

2
(1 + cos[π t/F ]) e−γBt/2

{
1 + 2α2

Hα
2
V (cos[π t/F ]− 1)

}

= e−γBF/2
1

γX

0∫

−F

dt

(
1

2
− α2

Hα
2
V sin2[π t/F ] +

1

2
cos[π t/F ]

)
e−γBt/2

≈ e−γBF/2 1

γX

(
F

2
− α2

Hα
2
V F

2

)
eγBF/4 =

F

2γX

(
1− α2

Hα
2
V

)
e−γBF/4 (C17b)

G
(II)

HH,V V = e−γBF/2
te∫

ts

dt

∞∫

te−t

dτ
1

2
(1 + cos[π(t− te)/F ]) e−γB(t−te)/2 e−[γX−iδ/~](t+τ−te)

×
{

2α2
Hα

2
V + α4

He
iπ(te−t)/F + α4

V e
−iπ(te−t)/F

}

= e−γBF/2
1

γX − iδ/~

0∫

−F

dt
1

2
(1 + cos[π t/F ]) e−γBt/2

{
2α2

Hα
2
V + α4

He
−iπ t/F + α4

V e
iπ t/F

}

≈ e−γBF/2 1

γX − iδ/~

(
α2
Hα

2
V F +

α4
HF

4
+
α4
V F

4

)
eγBF/4 =

F

2(γX − iδ/~)

(
1

2
+ α2

Hα
2
V

)
e−γBF/4 (C17c)

G
(II)

HV,HV = e−γBF/2
te∫

ts

dt

∞∫

te−t

dτ
1

2
(1 + cos[π(t− te)/F ]) e−γB(t−te)/2 e−γX(t+τ−te) {2α2

Hα
2
V (1− cos[π(te − t)/F ])

}

= e−γBF/2
1

γX

0∫

−F

dt α2
Hα

2
V sin2[π t/F ]e−γBt/2 ≈ α2

Hα
2
V F

2γX
e−γBF/4 (C17d)

Here, it is assumed that γBF/2 is a small quantity. In this situation one also finds that

e−γBF/2 +
γBF

2
e−γBF/4 ≈ 1 (C18)

Note that following the same steps one obtains G
(II)

V H,V H = G
(II)

HV,HV . Therefore, one ends up with the total integrated
correlation functions

G
(2)

jj,jj =
1

γXγB

[
e−γBF/2 +

γBF

2
e−γBF/4

(
1− α2

Hα
2
V

)]
≈ 1

γXγB

(
1− α2

Hα
2
V

γBF

2
e−γBF/4

)
(C19a)

G
(2)

HH,V V =
1

(γX − iδ/~)γB

[
e−γBF/2 +

γBF

2
e−γBF/4

(
1

2
+ α2

Hα
2
V

)]

≈ 1

(γX − iδ/~)γB

[
1− γBF

4
e−γBF/4

(
1− 2α2

Hα
2
V

)]
(C19b)

G
(2)

HV,HV =
1

γXγB
α2
Hα

2
V

γBF

2
e−γBF/4 = G

(2)

V H,V H (C19c)
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where we employ the approximation given in Eq. (C18). The normalization for the two-photon density matix is thus

Tr
{
G

(2)

jk,`m

}
= 2

(
G

(2)

HH,HH +G
(2)

HV,HV

)
=

2

γXγB
(C20)

Finally, the elements of the two-photon density matrix are calculated according to Eq. (A10a):

ρ2p
HH,HH = ρ2p

V V,V V =

(
1

2
− α2

Hα
2
V

γBF

4
e−γBF/4

)
(C21a)

ρ2p
HH,V V =

1

1− i δ
~γX

[
1

2
− γBF

8
e−γBF/4

(
1− 2α2

Hα
2
V

)]
=
(
ρ2p
V V,HH

)∗
(C21b)

ρ2p
HV,HV = α2

Hα
2
V

γBF

4
e−γBF/4 = ρ2p

V H,V H (C21c)

Using the approximation presented in Eq. (A14) the concurrence can be estimated as

C ≈ 2
(
|ρ2p
HH,V V | − ρ2p

HV,HV

)
= C0(γX, δ) {1− f(γB, F ) [1 + g(αH)]} − f(γB, F ) [1− g(αH)] (C22a)

C0(γX, δ) =
1√

1 +
(

δ
~γX

)2
(C22b)

f(γB, F ) =
γBF

8
exp

[
−γBF

4

]
(C22c)

g(αH) =
(
1− 2α2

H

)2
(C22d)

Thus, the analytic approximation for the concurrence presented in Eq. (6) of the main text is obtained.

D. DISCUSSION: HORIZONTAL LASER POLARIZATION

In this section we discuss and interpret the influence of a laser pulse with horizontal polarization. A horizontal
laser polarization corresponds to setting αH = 1 and αV = 0. In this situation, the approximate result in Eq. (C22)
reduces to

C = 2|ρ2p
HH,V V | = C0(γX, δ) [1− 2f(γB,FWHM)] (D1)

and the only four non-zero elements of the two-photon density matrix are the occupations ρ2p
HH,HH = ρ2p

V V,V V = 1/2

and the coherence ρ2p
HH,V V = (ρ2p

V V,HH)∗. Thus, the deviation from a maximally entangled states is caused solely
by a reduced coherence. The contribution to this effect, that originates from the influence of the laser pulse can be
best understood when looking at the dressed states of the effective model and the approximate time evolution of an
exciton occupation and coherence during the pulse duration.

For a horizontal laser polarization the four energy eigenstates of Ĥ1 are, cf., Eq. (C4),

|U〉 = c (|G〉+ |B〉) +
√

2c̃|XH〉 ≈ |XH〉 (D2a)

|M〉 = |XV〉 (D2b)

|N〉 =
1√
2

(|G〉 − |B〉) (D2c)

|L〉 = c̃ (|G〉+ |B〉)−
√

2c|XH〉 ≈
1√
2

(|G〉+ |B〉) (D2d)

Since the laser pulse couples only to the transitions between |XH〉 and the ground or biexciton state, the interaction
of laser and QD leads to the formation of three dressed states |U〉, |N〉, and |L〉 while the remaining state |XV〉 is
unaffected. This dressing effect results in an energetic splitting between the vertically polarized exciton state |XV〉 and
the dressed state |U〉, which for our parameters is essentially the horizontally polarized exciton state, cf., discussion
in Section C II. Thus the horizontally polarized exciton state experiences a Stark-shift due to the interaction with the
laser. According to Eq. (C12), the energetic splitting between the exciton states is approximately

ES = EU − EM ≈
~π

FWHM
(D3)
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Therefore the laser pulse introduces an effective splitting between the exciton states. After the emission of a first
biexciton photon during the pulse window, the QD is in a superposition of the two exciton states. The effective
splitting then leads to a phase oscillation of the corresponding exciton coherence. This phase oscillation can be
observed in the approximate propagation given in Eq. (C14), which reduces to

P(1)
t0→t[|Xj〉〈Xj |] ≈ |Xj〉〈Xj | (D4a)

P(1)
t0→t[|XV〉〈XH|] ≈ eiπ(t−t0)/FWHM|XV〉〈XH| (D4b)

for a horizontal laser polarization. In the measurement process when one integrates correlation functions the integra-
tion over this phase oscillation causes a reduced absolute coherence value. In other words, one could also say that
the laser introduces a which-path information during its interaction time with the QD, since it causes an effective
splitting. Note that for an actual Gaussian pulse, this splitting is a time dependent quantity and scales with Ω2(t).

Even in the absence of a fine-structure splitting, i.e. δ = 0, this effect results in a two photon density matrix

ρ2p =




1
2 0 0 1

2 − f
0 0 0 0
0 0 0 0

1
2 − f 0 0 1

2


 (D5)

in the basis {|HH〉, |HV 〉, |V H〉, |V V 〉} with a corresponding concurrence

C = 1− 2f(γB,FWHM) (D6)

E. DISCUSSION: DIAGONAL LASER POLARIZATION

In this section we discuss and interpret the influence of a laser pulse with diagonal polarization. The diagonal laser
polarization corresponds to setting αH = αV = 1/

√
2. Thus, the general approximate result in Eq. (C22) simplifies

to

C ≈ 2
(
|ρ2p
HH,V V | − ρ2p

HV,HV

)
= C0(γX, δ) [1− f(γB,FWHM)]− f(γB,FWHM) (E1)

and the six most important elements of the two-photon density matrix are the occupations ρ2p
HH,HH = ρ2p

V V,V V and

ρ2p
HV,HV = ρ2p

V H,V H as well as the coherence ρ2p
HH,V V = (ρ2p

V V,HH)∗. In this situation, one obtains the ratio

|ρ2p
HH,V V |
ρ2p
HH,HH

= C0 (E2)

Thus the ratio of the coherence ρ2p
HH,V V and the occupation ρ2p

HH,HH is precisely the same as for the initial value
calculation presented in Section B. Consequently, the impact of the laser pulse as captured by the function f does
not equate to an additional effective splitting that reduces the coherence compared to its corresponding occupations.
Instead the reduced degree of entanglement originates from finite occupations ρ2p

HV,HV and ρ2p
V H,V H , i.e., two-photon

states that consist of photons with two different polarizations. Again, the impact of the laser pulse can be analyzed
by investigating the dressed states of the effective model and the approximate time evolution of an exciton occupation
during the pulse duration.

For a diagonal laser polarization, the four eigenstates of the effective Hamiltonian Ĥ1, given in Eq. (C4), become

|U〉 = c (|G〉+ |B〉) + c̃ (|XH〉+ |XV〉) ≈
1√
2

(|XH〉+ |XV〉) (E3a)

|M〉 =
1√
2

(|XH〉 − |XV〉) (E3b)

|N〉 =
1√
2

(|G〉 − |B〉) (E3c)

|L〉 = c̃ (|G〉+ |B〉)− c (|XH〉+ |XV〉) ≈
1√
2

(|G〉+ |B〉) (E3d)

In contrast to the horizontal laser polarization, all four states are dressed states, i.e., are a mixture of several bare
states. In particular, the two upper dressed states, |U〉 and |M〉, are in good approximation equal superpositions of
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both exciton states. Just as the lower dressed states |N〉 and |L〉 describe the two-photon resonant excitation between
the ground and biexciton state (cf., Section C II), the upper ones represent a two-photon resonant process between
the two orthogonally polarized exciton states.

This effect is clearly visible in the approximate time dynamics of an exciton state during the pulse interval F . For
a diagonal laser polarization, Eq. (C14) yields

P(1)
t0→t[|Xj〉〈Xj |] ≈

1

2

[
1 + cos

(
π (t− t0)

FWHM

)]
|Xj〉〈Xj |+

i

2
sin

(
π (t− t0)

FWHM

)
(|Xj〉〈X`| − |X`〉〈Xj |)

+
1

2

[
1− cos

(
π (t− t0)

FWHM

)]
|X`〉〈X`|

(E4)

where j, ` ∈ {H,V } and ` 6= j. This approximate dynamics describes precisely a full-amplitude (coherent) oscillation
between the two different exciton states. Thus, if a first biexciton photon is emitted during the pulse duration and
the system is in an exciton state, the pulse introduces an effective coupling to the other exciton state. Therefore, the
exciton state can change during the pulse duration and the subsequent exciton photon can have a different polarization
than the biexciton photon. Consequently, the interaction with the laser, enables the creation of two-photon states
|HV 〉 and |V H〉, which are unwanted and represent a deviation from the maximally entangled state |Φ±〉. Hence one
obtains a reduced degree of entanglement.

Note that this effective coupling between the exciton states does not include an actual re-excitation back into the
biexciton state. Thus no additional photons are created. Still the degree of entanglement drops.

Most importantly, even in the absence of a fine-structure splitting, i.e. δ = 0, the effective coupling results in a
two-photon density matrix[9]

ρ2p =




1
2 (1− f) 0 0 1

2 (1− f)
0 1

2f
1
2f 0

0 1
2f

1
2f 0

1
2 (1− f) 0 0 1

2 (1− f)


 (E5)

in the basis {|HH〉, |HV 〉, |V H〉, |V V 〉} with a corresponding concurrence

C = 1− 2f(γB,FWHM) (E6)

The rise of the elements ρ2p
HV,HV and ρ2p

V H,V H by f/2 leads to a reduction of the occupations ρ2p
HH,HH and ρ2p

V V,V V

and the corresponding coherence ρ2p
HH,V V by the same amount.

Note that the expression for the concurrence is identical to the result for a vanishing fine-structure splitting using a
horizontal laser polarization, given in Eq. (D6). From a physical point of view, this must be fulfilled. For a vanishing
fine-structure splitting no pair of orthogonal polarized exciton states is distinguished. Therefore, one could simply
perform a basis transformation into a new pair of exciton states

|XD〉 =
1√
2

(|XH〉+ |XV〉) (E7a)

|XA〉 =
1√
2

(|XH〉 − |XV〉) (E7b)

where only one exciton (|XD〉) couples to the laser polarization and the other is decoupled. Of course after this
transformation, the system is identical to the situation of a horizontal laser polarization as discussed in Section D.
Consequently the resulting degree of entanglement must also remain the same.

In addition, when one also transforms the measurement basis for the two-photon density matrix accordingly, i.e.,
from H and V polarization to the diagonal D and anti-diagonal A basis via

|D〉 =
1√
2

(|H〉+ |V 〉) (E8a)

|A〉 =
1√
2

(|H〉 − |V 〉) (E8b)



13

FIG. F1. (a) Concurrence in dependence of the pulse duration, characterized by the FWHM. Results are shown for two
laser polarizations [horizontal (H): filled symbols and diagonal (D): open symbols] and three fine-structure splittings δ = 0
(blue circles), 1.5 µeV (green diamonds), and 3 µeV (red squares). In addition to numerical results (symbols), the analytic
approximation according to Eq. (C22) is included as lines with the same color [H (D) polarization: solid (dashed) line]. For
δ = 0, the results for H and D polarization are exactly the same. Data points at FWHM = 0 (pentagons) represent calculations
with an initially prepared biexciton. (b) Ratio between the density matrix elements ρ2p

HH,V V and ρ2p
HH,HH for δ = 0 (H and D

polarization) and δ = 3 µeV (only H polarization) together with the analytic estimate for a horizontal laser polarization. (c)
Sum of the elements ρ2p

HV,HV and ρ2p
V H,V H for δ = 0 (H and D polarization) and δ = 3 µeV (only D polarization) together with

the analytic estimate for a diagonal laser polarization.

the two-photon density matrix becomes

ρ2p =




1
2 0 0 1

2 − f
0 0 0 0
0 0 0 0

1
2 − f 0 0 1

2


 (E9)

in the basis {|DD〉, |DA〉, |AD〉, |AA〉}. As expected this is precisely the result obtained for a horizontal laser po-
larization, cf., Eq. (D5). This finding highlights the fact, that for a vanishing fine-structure splitting both laser
polarizations are equivalent and that the influence of the laser pulse which introduces an effective splitting in one
picture, i.e., horizontal laser polarization, is equivalent to the effective coupling in the other one, i.e., diagonal laser
polarization.

Note that we only discussed two limiting cases. For a vanishing fine-structure splitting, any linear laser polarization
will result in the same degree of entanglement and the impact of the laser will in general present itself as a combination
of both, an effective splitting and an effective coupling, depending on the chosen basis.

F. EXTENDED FIGURE 2 - DENSITY MATRIX ELEMENTS

Figure F1 is an extension to Fig. 2 in the main text which also includes selected elements of the two-photon density
matrix. In addition to the concurrence, also the numerical data for the density matrix elements agrees very well
with the analytic estimate. Thus, the behavior of the two-photon density matrix supports the physical picture and
interpretation.

For a horizontal laser polarization, the decreasing concurrence with rising FWHM is caused by an energetic splitting
ES between the two exciton states |XH〉 and |XV〉, which is introduced by the TPE scheme itself. Thus, the main
effect of the laser pulse is an additional loss of coherence, cf., filled symbols in panels (b) and (c). Re-excitation of the
system, i.e., the creation of additional photons is negligible. This is evident from the filled blue circles in panel (c).

The two-photon density matrix elements ρ2p
HV,HV and ρ2p

V H,V H , which in the case of a horizontal laser polarization
can only be created after re-excitation, are insignificantly small.



14

On the other hand, a diagonal laser polarization introduces a direct coupling between the two exciton states |XH〉
and |XV〉, leading to finite elements with two differently polarized photons ρ2p

HV,HV and ρ2p
V H,V H , cf., open symbols in

panels (b) and (c). Note that for a diagonal laser polarization the increase of these matrix elements is caused by the
effective coupling which does not include an actual re-excitation into the biexciton state.

A finite fine-structure splitting δ � EB hardly impacts the TPE scheme. Thus, for typical fine-structure splittings,
the impact of the laser is virtually independent of δ. This is evident in Fig. F1(c), where hardly any change can be
observed when one compares the results for δ = 0 (open blue circles) and δ = 3 µeV (open red squares).

G. OPTIMAL LASER POLARIZATION

In this section, we discuss the optimal laser polarization. By variation of the coefficient αH ∈ [−1, 1] representing
the horizontal component of the laser polarization in Eq. (C22), one can determine the optimal laser polarization.

∂

∂αH
C = f(γB,FWHM) [1− C0(γX, δ)]

∂

∂αH
g(αH)

(G1a)

∂

∂αH
g = 8αH

(
2α2

H − 1
)

(G1b)

For a vanishing fine-structure splitting δ = 0 the function C0(γX, δ), which represents the concurrence for an initially
prepared biexciton state, is unity. Thus, in accordance with the discussion at the end of Section E, all linear laser
polarizations are equivalent and result in the same degree of entanglement.

This of course changes when the fine-structure splitting is finite and one pair of orthogonally polarized exciton
states is distinct by the system. In the situation considered here, i.e., δ � EB/2, Eq. (G1) has three simple zeros:

αH ∈ {0,±1/
√

2}. Since g(αH = ±1) = g(αH = 0), the highest degree of entanglement is obtained when the laser
polarization coincides with one of the two distinct exciton states. On the other hand, the emitted photon pairs have
the lowest possible degree of entanglement if a diagonal polarization is used, which has equal components in H and
V polarization, i.e., if αH = ±1/

√
2. The difference between the maximum and minimum degree of entanglement for

a given fine-structure splitting and pulse duration is

∆C = C(αH = 0)− C(αH = 1/
√

2)

= f(γB,FWHM) [1− C0(γX, δ)]
(G2)
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Entangled photon pairs are essential for many applications in quantum technologies. Recent the-
oretical studies demonstrated that different types of entangled Bell states can be created in a con-
stantly driven four-level quantum emitter-cavity system. Unlike other candidates for the realization
of the four-level emitter, semiconductor quantum dots unavoidably interact with their environment,
resulting in carrier-phonon interactions. Surprisingly, phonons change the entanglement of emitted
photon pairs in a qualitative way, already at low temperatures on the order of 4 K. While one type
of Bell state can still be generated using small driving strengths, the other type is suppressed due
to phonon interactions. The degree of entanglement decreases with rising temperature and driving
strength until it vanishes at a critical parameter value. Because it remains zero afterwards, we
encounter a phonon-induced phase transition between an entangled and nonentangled phase with
critical temperatures below 30 K. The concurrence is regarded as the order parameter and, indepen-
dent of the driving strength, a corresponding critical exponent can be extracted which is found to
be 1.

I. INTRODUCTION

The phenomenon of quantum entanglement is one of
the most fascinating and unintuitive effects in nature.
Being a pure quantum effect, entanglement is interesting
not only from a fundamental view, but it also prompted
the development of innovative applications in novel re-
search fields, like quantum cryptography [1, 2], quantum
communication [3, 4], and quantum information process-
ing and computing [5–8].

An often discussed realization of entangled qubits are
polarization entangled photon pairs. Typically, one aims
for the generation of one of the four Bell states

|Φ±〉 =
1√
2

(|HH〉 ± |V V 〉) (1a)

|Ψ±〉 =
1√
2

(|HV 〉 ± |V H〉) , (1b)

the most prominent maximally entangled states estab-
lished for linearly polarized photon pairs. Here H and
V denote horizontally and vertically polarized photons,
respectively, and their order reflects the order of pho-
ton detection. One can distinguish between two different
types of Bell states (or Bell state entanglement): While
in a Φ Bell state (ΦBS) the first and second detected
photon possess the same polarization, in a Ψ Bell state
(ΨBS) they exhibit the opposite one.

A promising platform for the generation of a maxi-
mally entangled Bell state are semiconductor quantum

∗ Corresponding author: tim.seidelmann@uni-bayreuth.de
† Current address: Condensed Matter Theory, Department of
Physics, TU Dortmund, 44221 Dortmund, Germany

dots (QDs), which realize a four-level quantum emit-
ter [9, 10]. The biexciton-exciton cascade in QDs com-
prises its ground state, two exciton states, and the biex-
citon. Due to the optical selection rules, these four elec-
tronic levels display a diamond-shaped configuration, cf.,
Fig. 1. After an initial excitation of the biexciton [11–17],
the subsequent photon emission induced by the cascade,
should, in an ideal situation, result in the generation of a
maximally entangled ΦBS. By embedding the QD inside
a microcavity, one can enhance the light-collection effi-
ciency and photon emission rate due to the Purcell effect
[18]. Furthermore, the energy of the cavity modes can
have a profound impact on the resulting type and degree
of entanglement [10, 19–22].

Indeed, various theoretical and experimental studies
demonstrated the possibility to obtain ΦBS entanglement
in the chosen basis of linearly polarized photons [11, 18,
19, 22–45]. Furthermore, recent theoretical studies [10,
21, 46] showed that a four-level emitter–cavity system,
e.g., a QD embedded inside a cavity, can also facilitate
the creation of ΨBS entanglement, when a constant laser
driving is applied to the emitter. In this setup, four laser-
dressed states emerge and their characteristics depend
on the applied driving strength. By adjusting the cavity
modes to a direct two-photon transition between these
dressed states, entangled photon pairs can be created.
The resulting type and degree of entanglement depends
crucially on the applied driving strength and the energy
of the cavity modes [10, 46].

In contrast to other possible realizations of the quan-
tum emitter, e.g., atomic systems, QDs unavoidably in-
teract with their semiconductor environment, which re-
sults in carrier-phonon interactions [47–54]. Although
phonons are associated with the loss of quantum coher-
ence in the system, their possible impact on the resulting
two-photon state and its degree of entanglement cannot
be easily predicted. Indeed, various scenarios and de-
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pendencies have been found for different QD setups. Al-
though the interaction with phonons often results in a
reduced degree of entanglement, their detrimental im-
pact can depend strongly on the chosen cavity arrange-
ment [22]. Furthermore, in highly symmetric situations,
phonons may have no impact on entanglement at all [26].
Moreover, even a phonon-induced enhancement of the
degree of entanglement has been predicted under special
conditions [24]. Therefore, it is not a priori clear in which
manner phonons may impact the constantly driven QD-
cavity system.

In this article, we investigate the phonon influence on
emitted photon pairs in this system. In our theoretical
study, we consider the configuration where the highest
degrees of ΦBS and ΨBS entanglement have been pre-
dicted in the phonon-free analysis of a four-level quan-
tum emitter [10]. Remarkably, the phonon impact on
the entanglement is much more severe than in studies
employing an initially prepared biexciton without con-
stant driving. Not only does the interaction with phonons
strongly reduce the degree of entanglement for small driv-
ing strength values already at 4 K, but it results in the ab-
sence of entanglement for higher driving strength values
and/or temperatures. A qualitative change of the sta-
tionary state of a driven dissipative system upon change
of a parameter is often referred to as a dissipative phase
transition [55, 56]. The observed change of the emitted
photon states in the presence of phonon interactions can
be understood as a competition between two phases char-
acterized by stationary states being either entangled or
not. Thus we encounter a phonon-induced phase tran-
sition, where the generated photon pairs transform from
an entangled to a nonentangled phase at a critical tem-
perature or driving strength. The concurrence [57], a
well established entanglement measure, takes on the role
of the order parameter that characterizes this transition.

II. DRIVEN QUANTUM-DOT–CAVITY
SYSTEM

We consider the biexciton-exciton cascade of a
strongly-confined, self-assembled GaAs semiconductor
QD. The QD is embedded inside a microcavity and is
continuously driven by an external laser, cf., Fig. 1 for
a schematic sketch. Furthermore, the QD interacts with
its surrounding semiconductor environment, resulting in
a coupling to lattice oscillations, i.e., phonons. In the
case of GaAs QDs at low temperatures, the most im-
portant interaction is due to the deformation potential
coupling to longitudinal acoustic (LA) phonons [58].

The QD comprises the ground state |G〉, two orthogo-
nally polarized exciton states |XH/V〉 at energy ~ωX that
couple to horizontally (H) and vertically (V ) polarized
light, respectively, and the biexciton state |B〉. In the
frame co-rotating with the external laser frequency ωL,

FIG. 1. Schematic sketch of the driven QD-cavity system.
The biexciton-exciton cascade comprises the ground state |G〉,
two energetically degenerate exciton states |XH/V〉 that cou-
ple to horizontally or vertically polarized light, respectively
(indicated by green and purple arrows), and the biexciton
state |B〉. Curvy orange arrows represent the external laser
driving adjusted to the two-photon transition between |G〉
and |B〉. The laser is detuned from the exciton energy by
the value ∆0 = EB/2. The energy of the two degenerate but
orthogonally polarized cavity modes (red and blue arrows) is
described by the cavity-laser detuning ∆.

the QD-cavity Hamiltonian is given by [10, 21]

ĤQD-C = ∆0 (|XH〉〈XH|+ |XV〉〈XV|)
+ (2∆0 − EB) |B〉〈B|
+
∑

`=H,V

∆â†` â` +
∑

`=H,V

g
(
â†`σ̂` + â`σ̂

†
`

)
,

(2)

where the energy of the ground state is used as the zero
of the energy scale, ∆0 := ~ (ωX − ωL) is the energetic
detuning between the exciton states and the laser en-
ergy, and EB denotes the biexciton binding energy. The
electronic transitions of the QD are described by the op-
erators

σ̂H = |G〉〈XH|+ |XH〉〈B| (3a)

σ̂V = |G〉〈XV|+ |XV〉〈B| (3b)

and are coupled to two energetically degenerate, but or-
thogonally polarized cavity modes with energy ~ωC. The

bosonic operator â†H/V creates a cavity photon with the

respective polarization, H or V , and the QD-cavity cou-
pling strength g is assumed to be equal for all transi-
tions. The energy of the cavity modes is described by
the cavity-laser detuning ∆ := ~ (ωC − ωL).

An external laser with driving strength Ω and con-
stant frequency ωL continuously excites the QD. Fol-
lowing Ref. 10 the frequency is adjusted to the two-
photon transition between ground and biexciton state,
i.e., ∆0 = EB/2, and the polarization is chosen to be di-
agonal in the basis spanned by H and V . In the rotating
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frame, the respective Hamiltonian is given by

ĤL = Ω
(
σ̂D + σ̂†D

)
; σ̂D = (σ̂H + σ̂V) /

√
2. (4)

The coupling to LA phonons is described by

ĤPh = ~
∑

q

ωqb̂
†
qb̂q + ~

∑

χ,q

nχ

(
γXq b̂

†
q + γXq

∗
b̂q

)
|χ〉〈χ|,

(5)

where the bosonic operator b̂q destroys a phonon in mode
q with energy ~ωq. γXq denotes the exciton-phonon cou-
pling strength and nχ = {0, 1, 1, 2} is the number of exci-
tons present in the QD state |χ〉 ∈ {|G〉, |XH〉, |XV〉, |B〉}.

Furthermore, important loss channels, namely cavity
losses with rate κ and radiative decay with rate γ, are
incorporated into the model via Lindblad operators [59]

LÔ,Γρ̂ =
Γ

2

(
2Ôρ̂Ô† − Ô†Ôρ̂− ρ̂Ô†Ô

)
, (6)

where Ô is the system operator associated with a loss
process with rate Γ.

The dynamics of the statistical operator of the system
ρ̂ is described by the Liouville-von Neumann equation

d

dt
ρ̂ = Lρ̂ := − i

~

[
Ĥ, ρ̂

]
(7)

+
∑

`=H,V

{
Lâ`,κ + L|G〉〈X`|,γ + L|X`〉〈B|,γ

}
ρ̂

Ĥ = ĤQD-C + ĤL + ĤPh. (8)

where [·, ·] denotes the commutator. Employing a real-
time path-integral method (consult Refs. 60–64 for de-
tails) the time-evolution of the reduced density matrix of
the QD-cavity system is evaluated in a numerically exact
manner. For our numerical calculations, we assume that
the phonons are initially in thermal equilibrium at tem-
perature T and that the QD-cavity system is initially in
the ground state |G〉 without any cavity photons.

Following Refs. 10 and 21 we choose realistic param-
eters for the QD-cavity system that are summarized in
Table I. Furthermore, we consider a spherically symmet-
ric GaAs QD with a harmonic oscillator confinement and
an electron (hole) confinement length ae = 3 nm (ah =
ae/1.15). The deformation potential coupling of the QD
to LA phonons enters the path-integral calculations via
the phonon spectral density J(ω) =

∑
q |γXq |2 δ(ω− ωq).

An explicit expression for this quantity, assuming a lin-
ear dispersion relation, and the used material parameters
can be found in Appendix A.

III. ENTANGLEMENT DETERMINATION

A. Two-photon density matrix

In a typical experimental setup the two-photon den-
sity matrix ρ2p is reconstructed using quantum state

TABLE I. Fixed system parameters used in the calculations.

Parameter Value

QD-cavity coupling strength g 0.051 meV

Biexciton binding energy EB 20g = 1.02 meV

Detuning ∆0 EB/2 = 0.51 meV

Cavity loss rate κ 0.1g/~ ≈ 7.8 ns−1

Radiative decay rate γ 0.01g/~ ≈ 0.78 ns−1

tomography [65]. This reconstruction scheme relies
on polarization-resolved two-time correlation measure-
ments. The detected signals in these measurements are
proportional to two-time correlation functions

G
(2)
jk,`m(t, τ ′) =

〈
â†j(t)â

†
k(t+ τ ′)âm(t+ τ ′)â`(t)

〉
, (9)

where {j, k, `,m} ∈ {H,V }. Here, t is the time when
the first photon is detected and τ ′ the delay time until a
subsequent, second photon is detected. Although Eq. (9)
describes cavity photons, it can also be used to model
correlation functions for photons measured in the free
space outside the cavity, when the outcoupling of light
from the cavity into the free space is assumed to be a
Markovian process [7].

Because in standard experiments the measurement
data is typically averaged over finite real and delay time
intervals, the reconstructed two-photon density matrix is
theoretically calculated as [10, 21]

ρ2p
jk,`m =

G
(2)

jk,`m

Tr
{
G

(2)
} (10a)

G
(2)

jk,`m =
1

∆t τ

t0+∆t∫

t0

dt

τ∫

0

dτ ′G(2)
jk,`m(t, τ ′) (10b)

where t0 is the starting time of the coincidence measure-
ment and τ (∆t) the used delay time (real time) window.
The trace Tr {·} in Eq. (10) is introduced for the purpose
of normalization. Note that, in principle, ρ2p depends on
all three measurement parameters: t0, ∆t, and τ [23].

Throughout this article, the two-photon density matrix
is determined for the steady state ρ̂s of the system defined
as d

dt ρ̂s = Lρ̂s = 0. Thus, in the calculation scheme, the
time t0 is chosen such that it occurs after the system has
reached a stationary density matrix in the time evolution.

Note that in this situation G
(2)

jk,`m and therefore also ρ2p

become independent of t0 and ∆t. Thus, the two-photon
density matrix does only depend on the delay time win-
dow, which we fix to a value of τ = 50 ps [66]. For details
on the evaluation of multi-time correlation functions in
the path-integral framework, we refer to Ref. 67.

After the two-photon density matrix has been ob-
tained, the type of entanglement can be determined di-
rectly from its form. One encounters a ΦBS (ΨBS) when
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the corresponding occupations of the two-photon states
|HH〉 and |V V 〉 (|HV 〉 and |V H〉) dominate.

B. Concurrence

The degree of entanglement associated with a given
two-photon density matrix ρ2p is quantified by the con-
currence [57]. The concurrence C has a one-to-one cor-
respondence to the entanglement of formation, which in
turn represents the minimal amount of pure-state entan-
glement that is at least present in a mixed state described
by a given two-qubit density matrix [23, 57]. In con-
trast to the latter, the concurrence can be calculated di-
rectly from the two-photon density matrix ρ2p according
to [10, 57, 65]

C = max
{

0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

}
, (11)

where λj ≥ λj+1 are the (real and positive) eigenvalues
of the matrix

M = ρ2p T (ρ2p)∗ T. (12)

Here, T is an anti-diagonal 4×4-matrix with elements
{−1, 1, 1,−1} and (ρ2p)∗ denotes the Hermitian conju-
gated two-photon density matrix. Because ρ2p depends
in principle on the parameters t0, ∆t, and τ , the same
applies to the concurrence.

Altogether, the type and degree of entanglement is ob-
tained as follows: (i) The averaged two-photon correla-

tions G
(2)

jk,`m are calculated for the steady state employing
the path-integral method. (ii) The two-photon density
matrix ρ2p is calculated according to Eq. (10) and the
type of entanglement can be identified. (iii) The con-
currence is evaluated for the obtained density matrix ρ2p

using Eq. (11).

IV. PHONON-INDUCED PHASE TRANSITION

A. Phonon-free results

Because the parameter space of the considered system
is quite large, we restrict our study to the parameters,
where the highest degrees of entanglement are obtained
in the phonon-free case. In Ref. 10, the phonon-free case
was analyzed in detail for a general four-level quantum
emitter and it was demonstrated that the resulting type
of entanglement and its degree depend on the applied
driving strength Ω and the used cavity laser detuning ∆.
Furthermore, it was shown that a high degree of either
ΦBS or ΨBS entanglement can only be achieved when
the cavity modes are close to resonance with a direct
two-photon transition between the laser-dressed states of
the four-level emitter.

Due to the constant laser excitation, transitions do not
take place between the bare states |G〉, |XH/V〉, and |B〉

FIG. 2. Energies of the four laser-dressed states |U〉, |M〉,
|N〉, and |L〉 as a function of the driving strength Ω. The
cavity modes are always tuned to match the two-photon res-
onance between |U〉 and |L〉. For two exemplary driving
strength values, the energy of the cavity modes ∆ (in a frame
co-rotating with the laser frequency) is indicated as green
double-headed arrows.

but rather between eigenstates of the constantly driven
QD, i.e., the four laser-dressed states which we denote
as |U〉 (“uppermost”), |M〉 (“middle”), |N〉 (“null”),
and |L〉 (“lowest”). The corresponding eigenenergies are
given by [10]

EU =
1

2

(
∆0 +

√
∆2

0 + 8Ω2

)
(13a)

EM = ∆0 (13b)

EN = 0 (13c)

EL =
1

2

(
∆0 −

√
∆2

0 + 8Ω2

)
(13d)

and depicted in Fig. 2. Note that these energies, and in
turn the transition energies between them, depend on the
driving strength.

The transition that yields the highest degree of entan-
glement was identified to be the two-photon resonance
between the uppermost and lowest laser-dressed state.
The chosen resonance is selected by adjusting the cavity-
laser detuning to [10]

∆ =
∆UL

2
:=

EU − EL

2
=

1

2

√
∆2

0 + 8Ω2, (14)

which corresponds to tuning the cavity mode energy to
~ωC = ∆UL/2 − ∆0 + ~ωX . Note that the cavity-laser
detuning in Eq. (14) depends on the external driving
strength Ω. Thus, in the following, this detuning is
changed alongside Ω in order to keep the desired two-
photon resonance condition, cf., Fig. 2.

Figure 3(a) depicts the concurrence as a function of the
driving strength Ω at the two-photon transition between
the laser-dressed states |U〉 and |L〉. The results in the
phonon-free situation (solid line) are in accordance with
those presented in Ref. 10. A region of high ΦBS (ΨBS)
entanglement, indicated by blue (red) curve segments, is
found for low (high) driving strength values. In between
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FIG. 3. (a) Concurrence as a function of the driving strength Ω (in units of the coupling strength g) without phonons (solid
line) and with phonons at a temperature of 4 K (green dots). The phonon-free curve is color coded: Blue (red) indicates ΦBS
(ΨBS) entanglement. Three driving strength values, that are associated with either a high concurrence or a vanishing degree
of entanglement in the phonon-free situation, are marked with straight vertical lines. Note that the cavity laser detuning
∆ = ∆UL =

√
∆2

0 + 8Ω2/2 is changed alongside Ω to keep the desired resonance condition. (b) Corresponding two-photon
density matrices (absolute values) for the three driving strengths Ωj indicated in panel (a). Results are shown for calculations
without phonons (upper row) and including phonons at T = 4 K (lower row). (c) Two-photon density matrix calculated from
the thermally distributed state as described in Eqs. (22) and (23).

the two regions of high entanglement a special point oc-
curs at Ωsp =

√
3/8∆0 ≈ 6.12g where the concurrence

drops to zero. The corresponding two-photon density
matrix, calculated for three selected driving strength val-
ues Ωj and illustrated in the upper row of Fig. 3(b),
clearly shows the transition from a state that is close
to a maximally entangled ΦBS (cf., Ω1) to an entangled
ΨBS with high concurrence (cf., Ω3).

The reason for this behavior is analyzed in detail in
Ref. 10. With increasing driving strength the compo-
sition of the individual laser-dressed states changes, re-
sulting in changing optical selection rules between them.
Around the driving strength Ω1, the system emits pre-
dominantly two equally polarized photons when a direct
transition between the uppermost dressed state into the

lowest one occurs and, consequently, one finds a ΦBS.
With rising driving strength the probability for the simul-
taneous emission of two photons with opposite polariza-
tions increases. At the driving strength Ωsp =

√
3/8∆0

both type of processes have the same probability and
the degree of entanglement vanishes. When the driving
strength is increased beyond this point, the latter be-
comes more and more dominant until a direct transition
between the dressed states |U〉 and |L〉 is almost exclu-
sively accompanied by the emission of two photons with
opposite polarization. Thus one obtains a ΨBS in this
regime.
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B. Results including LA phonons

This well understood behavior changes drastically
when the interaction to LA phonons is included in the
calculations [green dots in Fig. 3(a)], already at a very
low temperature of T = 4 K. Besides a reduced concur-
rence at small driving strength values and the fact that
a maximum concurrence of only C ≈ 0.4 is reached, the
interaction with LA phonons also alters the curve quali-
tatively.

Although, for small Ω, the concurrence follows the
phonon-free result, it starts to decrease already after
reaching a maximum around Ω ≈ 3g, and drops to zero
well before the special point at Ω ≈ Ω2. In stark con-
trast to the phonon-free results, the concurrence remains
zero for Ω > Ω2 and no subsequent region of neither
ΦBS nor ΨBS entanglement emerges. It is important to
stress that LA phonons do not fully destroy the degree of
entanglement in systems without constant laser driving,
especially when the fine-structure splitting between the
exciton states is zero [22]. In this special situation, theo-
retical calcualtions of the dynamcis of initially prepared
biexciton states even predict a maximally entangled two-
photon state, even when phonons are taken into account
[22, 26].

In contrast, the constantly driven system demonstrates
a behavior similar to a phase transition, where an en-
tangled photon pair is generated only when the driving
strength is below a critical value. Above this value the
degree of entanglement, as measured by the concurrence,
remains strictly zero. Therefore, the concurrence takes
on the role of the order parameter, indicating either an
entangled or nonentangled photon pair. In the following
we provide an explanation for the observed phase tran-
sition behavior. To this end, we first examine the two-
photon density matrix at T = 4 K and infer the resulting
concurrence. In a second step, we consider the role of LA
phonons and explain why they lead to the obtained form
of the density matrix. Finally, we turn to other proper-
ties associated with a phase transition, e.g., its critical
temperature and exponent.

C. Concurrence and density matrices at 4 K

The second row of Fig. 3(b) depicts the two-photon
density matrix at T = 4 K obtained for three selected
driving strength values Ωj . In the case of the small driv-
ing strength Ω1 = 4g the characteristics of ρ2p resemble
the two-photon density matrix in the phonon-free case.
The occupations of the states |HH〉 and |V V 〉 and their
coherences (blue bars) dominate over the remaining ele-
ments. Thus, one detects a finite degree of ΦBS entangle-
ment. A more detailed comparison to the phonon-free re-
sult reveals that the coherence associated with the matrix
element |HH〉〈V V | is reduced by a factor of 2 due to the
phonon interaction, and the occupations and coherences
associated with a ΨBS (red bars) are enhanced at the ex-

pense of the blue bars. These two effects combined lead to
a finite, but reduced degree of entanglement. When the
driving strength is increased at T = 4 K, similar trends
can be observed if one compares the subsequent density
matrices for Ω1, Ω2 and Ω3. With increasing driving
strength, the coherence |HH〉〈V V | is further reduced,
while the elements linked to a ΨBS (red bars) increase.

Disregarding other (insignificant) coherences (purple
bars), the two-photon density matrices at T = 4 K can
all be well represented by matrices with 4 independent
entries having the form

ρ2p =




a 0 0 c

0 b d 0

0 d∗ b 0

c∗ 0 0 a


 , (15)

where the parameters fulfill the requirements for an ar-
bitrary density matrix

a, b ∈ R+
0 ; 2(a+b) = 1; c, d ∈ C; |c| ≤ a; |d| ≤ b. (16)

For the case a > b, which we encounter here, it can be
shown that the concurrence defined in Eq. (11) reduces
to

C =

{
2 (|c| − b) , |c| > b

0, |c| ≤ b. (17)

The behavior of the concurrence at T = 4 K shown
in Fig. 3(a) is thus directly linked to the difference be-
tween two elements in the two-photon density matrix.
With increasing driving strength, the elements corre-
sponding to c are reduced, while the occupations b are
enhanced. Thus the concurrence decreases with rising
driving strength and drops to zero once the condition
|c| = b is reached, i.e., when the coherence corresponding
to |HH〉〈V V | is reduced to the level of the occupations
of |HV 〉 and |V H〉. Afterwards, the concurrence remains
zero as c decreases further. This indicates the existence
of a critical driving strength, where the generated photon
pair transforms from an entangled phase to a nonentan-
gled one. Note, that in the case without constant laser
excitation the situation |c| ≤ b can never occur. Start-
ing from an initially prepared biexciton, the states |HV 〉
and |V H〉 cannot be reached in the undriven dynamics,
i.e., b = 0 in this case. Further note that when examin-
ing the two-photon density matrix at Ω2 [cf., Fig. 3(b)
lower row, middle panel], one realizes that at T = 4 K
the phase transition occurs before the special point of
the phonon-free curve, i.e., before the regime of ΨBS is
reached.

At the critical driving strength, the two-photon state
transforms from an entangled phase with a finite degree
of entanglement to a nonentangled phase. This can be re-
garded as a phase transition where the concurrence is the
corresponding order parameter that is finite below the
critical driving strength and strictly zero above it. Be-
cause a vanishing concurrence has a well defined physical
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meaning, the character of the two-photon state, as de-
scribed by the density matrix ρ2p, changes qualitatively
at the transition point. Due to the one-to-one correspon-
dence between the concurrence and the entanglement of
formation, a vanishing concurrence is linked to a distinct
physical property of the generated two-photon state.

If the concurrence vanishes, the density matrix ρ2p can
be decomposed into a statistical mixture

ρ2p =
∑

j

pj |ψj〉〈ψj | (18)

where all pure two-photon states |ψj〉 = |ψj,1〉 ⊗ |ψj,2〉
can be factorized into a product of single-photon states
which describe only the first and second detected photon,
respectively. pj is the probability to find the system in
the corresponding pure state. For the two-photon den-
sity matrix of the form in Eq. (15), an explicit expression
for a possible decomposition is provided in Appendix B.
Therefore, above the critical driving strength, the two-
photon state can always be expressed as a statistical mix-
ture of factorizeable states. This property changes when
the driving is below its critical value, where no such de-
composition is possible. The practical implication of a
system being in a factorizable state is that performing a
measurement on the first photon has no implication on
the outcome of a subsequent measurement on the sec-
ond photon, in sharp contrast to what is found for an
entangled state.

D. Phonon influence on the two-photon density
matrix

Because the phase transition and the behavior of the
concurrence can be traced back to the form of the two-
photon density matrix, the remaining task is to un-
derstand the phonon influence on the system and on
ρ2p. To this end, we consider the laser-dressed states
χ ∈ {U,M,N,L} accompanied by two-photon states
with different combinations for the photon polarizations,
i.e., system states |χ, 2, 0〉, |χ, 1, 1〉 and |χ, 0, 2〉. Here
a state |χ, nH, nV〉 denotes a state with nH (nV) hori-
zontally (vertically) polarized photons inside the cavity.
The numerical results for the driving strength Ω = Ω3

show that two-photon states associated with a fixed laser-
dressed state enter the steady state of the system with
almost equal occupation probabilities but vanishing co-
herences between them. This steady state results directly
in the obtained two-photon density matrix that can be
well described by

ρ2p =
1

6




2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2


 (19)

In the following we provide a simplified argument why
the interaction with LA phonons leads to this type of

steady state and two-photon density matrix. In the ab-
sence of further relaxation processes, e.g., cavity losses
and radiative decay, phonons lead to a steady state which
is close to a thermal distribution over the eigenstates |ϕν〉
of the system Hamiltonian without the phonon contribu-
tion that can be reached from the initial state. [68–70].
Here, the Hamiltonian describing the driven QD-cavity
system without phonons is Ĥ0 := ĤQD-C + ĤL. The
analyses in Ref. 10 suggest that the interaction with the
cavity modes introduces a weak coupling between laser-
dressed states with different numbers of photons inside
the cavity. Hence the eigenstates of the full Hamiltonian
Ĥ0 are best described by

|ϕν〉 =
∑

χ,nH,nV

aν(χ, nH, nV)|χ, nH, nV〉 (20)

where the mixing coefficients aν(χ, nH, nV) depend on the
cavity coupling strength g, and the energetic placement
of the cavity modes, i.e., the cavity-laser detuning ∆.

The most important two-photon states in a thermal-
ized distribution, which should define the character of
the two-photon density matrix ρ2p, are the energetically
lowest ones. In the considered system, these are the
three two-photon states accompanied by the laser-dressed
state |L〉, i.e., |L, 2, 0〉, |L, 1, 1〉 and |L, 0, 2〉. These three
states are precisely the ones distinct by the chosen (two-
photon) resonance condition. Using a Schrieffer-Wolff
transformation [71, 72] an effective Hamiltonian describ-
ing this two-photon resonance can be constructed. The
explicit epression for this effective Hamiltonian, in the
basis |U, 0, 0〉, |L, 1, 1〉, |L,Φ+〉 = (|L, 2, 0〉+|L, 0, 2〉)/

√
2,

and |L,Φ−〉 = (|L, 2, 0〉 − |L, 0, 2〉)/
√

2, is [10]

ˆ̃H
(2)
UL ≈ EU14 + g2




δUL γUL
1 −γUL

2 0

γUL
1 −δUL

2 αUL 0

−γUL
2 αUL −δUL

2 0

0 0 0 −δUL
2


 (21)

with

c =
2Ω√

8Ω2 +
(

∆0 +
√

∆2
0 + 8Ω2

)2

c̃ =

√
1

2
− c2

δUL =
(
c̃2 − c2

)
(

2

∆0
+

4
(
c̃2 − c2

)

∆UL

)

δUL
2 = δUL + δUL

3

δUL
3 =

8
(
c̃2 − c2

)2

3∆UL
+

2c̃2

∆UL + ∆0/2
+

2c2

∆UL −∆0/2

γUL
1 = 4cc̃

1

∆0
− 16cc̃

(
c̃2 − c2

) 1

∆UL

γUL
2 = 16cc̃

(
c̃2 − c2

) 1

∆UL

αUL =
1

∆0
−
(
1− 16c2c̃2

) 1

∆UL
− 1

2
δUL
3 +

2c̃2

∆UL + ∆0/2
.
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where 14 is the 4-dimensional identity matrix. All cou-
plings associated with two-photon process (γ’s and α’s)
and energy shifts (δ’s) in this effective Hamiltonian are
on the order of g2/∆0. Therefore, the energetic split-

ting between the four eigenstates |ϕUL
ν 〉 of ˆ̃H

(2)
UL is on

the same order. For our realistic parameters, the energy
g2/∆0 = 0.1g ≈ 5 µeV is already two orders of magnitude
smaller than the thermal energy kBT at T = 4 K. Conse-
quently, in a thermalized distribution all four eigenstates
|ϕUL
ν 〉 should appear with the same weights.
Note that, if no further loss mechanism are consid-

ered, the state |L,Φ−〉 is decoupled from the inital state
|G, 0, 0〉 and cannot occur in a thermalized distribution
[70]. But, due to cavity losses and radiative decay, this
state can be reached during the system dynamics and,
thus, should appear in our situation. In general, the ex-
act steady state of systems with both type of relaxation
mechanisms, LA phonon-induced relaxation and further
loss processes, is difficult to predict and may differ quali-
tatively from what is expected in the limiting cases where
only one type of relexation mechanism is considered [63].

However, under the assumption that phonon-induced
relaxations dominate over the latter, a steady state
should emerge, where the leading two-photon contribu-
tion is proportional to a thermal distribution over all four
eigenstates |ϕUL

ν 〉:

ρ̂UL
th =

1

Z

4∑

ν=1

exp

[
− εUL

ν

kBT

]
|ϕUL
ν 〉〈ϕUL

ν |

≈1

4

4∑

ν=1

|ϕUL
ν 〉〈ϕUL

ν |

=
1

4
(|U, 0, 0〉〈U, 0, 0|+ |L, 1, 1〉〈L, 1, 1|

+ |L, 2, 0〉〈L, 2, 0|+ |L, 0, 2〉〈L, 0, 2|)

(22)

where εUL
ν are the corresponding energies.

One can calculate a first approximation for the two-
photon density matrix due to this contribution

(ρ2p
th )jk,`m ≈ NTr

{
âmâ`ρ̂

UL
th â

†
j â
†
k

}
=

1

6




2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2




(23)

where N is a normalization constant and one assumes
that the delay time window is small and therefore the
limit τ → 0 is used.

This thermal two-photon density matrix ρ2p
th is also de-

picted in Fig. 3(c) for comparison. This density matrix is
almost identical to the one obtained for Ω3 at T = 4 K.
Thus, although the presented argument is only a sim-
plified analysis, it fits quite well to the numerical ob-
servations: (i) two-photon states with different combina-
tions of the polarization appear with the same occupa-
tion probabilities and vanishing coherences, c.f., Eq. (22).

(ii) The two-photon density matrix ρ2p
th associated with

a phonon-induced thermalization is close to the one en-
countered in the numerical simulations.

This implies that the role of phonons is a thermaliza-
tion in laser-driven eigenstates. Furthermore, the two-
photon density matrix at Ω2 is also close to ρ2p

th , the main
difference being small, finite coherences. Thus, in this
case, the thermalization process is not complete. This
points to a competition between different relaxation pro-
cesses that, each on their own, lead to different steady
states in the system dynamics. While the interaction
with LA phonons on its own leads to a thermalization
and, consequently, to the thermal two-photon density
matrix ρ2p

th , the other relaxation processes, i.e., cavity
losses and radiative decay, result in the steady state asso-
ciated with the phonon-free result given in the row above.
The imprint of this competition is even more prominent
in the two-photon density matrix for the driving strength
Ω1 at 4 K. Here, ρ2p describes a two-photon state roughly
in between the two limiting cases, that are given by the
corresponding phonon-free result and ρ2p

th .

Consequently, the two-photon state at T = 4 K is a re-
sult of two competing relaxation mechanisms, that, each
on their own, would result in a different steady state
in the system dynamics, but that act on different time
scales. While the time scale of the cavity losses and ra-
diative decay is independent of the driving strength Ω,
the time scale of the thermalization is reduced with in-
creasing Ω, and thus the two-photon density matrix ap-
proaches its thermal limit. The reason for this reduc-
tion lies in the phonon spectral density. As the driving
strength increases, the transition energies between the
laser-dressed states increase as well. Therefore, the main
contribution of the phonon spectral density J(ω) has to
be evaluated at a higher frequency. In the parameter
range considered in this work, this results in a higher
value of J which translates to a stronger average phonon
coupling, cf. Appendix A. Consequently the thermaliza-
tion process should become more dominant with increas-
ing driving strength, pulling the two-photon density ma-
trix closer to ρ2p

th .

The rates leading to thermalization are estimated us-
ing Fermi’s golden rule for the phonon-induced rates
Γχχ′ between the laser-dressed states |χ〉 and |χ′〉 with
χ, χ′ ∈ {U,M,N,L} associated with phonon emission
and absorption processes. Based on this estimate, two
finite rates ΓUN and ΓNL are extracted, cf. Appendix C,
which are shown in Fig. 4 as a function of the driv-
ing strength. As expected, in the considered parameter
range, both rates increase with Ω, supporting the pre-
vious argument on the increasing role of phonons. In-
terestingly, for Ω ≈ 5g, i.e., around the driving strength
where the concurrence vanishes, both rates become larger
than the cavity loss rate 2κ associated with a two-photon
state. Thus, above this point both phonon-related rates
exceed the most important cavity or radiate loss rate
in the system. According to this estimate, above this
point the phonon-induced thermalization dominates the
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FIG. 4. Phonon-induced transition rate ΓUL (ΓNL) between
the laser-dressed states |U〉 and |L〉 (|N〉 and |L〉) as a func-
tion of the driving strength Ω. Additionally, a dashed (solid)
horizontal black line indicates the value of the cavity loss rate
2κ (κ) associated with a two-photon (one-photon) state.

system dynamics, leading to a vanishing entanglement.

E. Phase transition - critical temperature

A phase transition, here between an entangled and
nonentangled phase of the emitted photon pair, is char-
acterized by its critical temperature. It depends on other
parameters, for example the external driving strength Ω.
In order to determine the critical temperature, we now
analyze the temperature dependence of the concurrence.
In Fig. 5(a) the concurrence is shown as a function of the
temperature T for different driving strength values be-
tween 2.0g and 4.5g. The results further support the idea
that a phonon-induced phase transition is taking place.
At a given driving strength the concurrence decreases
monotonically with rising temperature before vanishing
at a certain critical temperature. The concurrence re-
mains zero when the temperature is further increased.
Furthermore, as the driving strength increases, the drop
becomes more rapid.

Figure 5(b) depicts the critical temperatures calculated
for the six driving strength values in panel (a). It is ev-
ident that the critical temperature decreases with rising
driving strength Ω. As shown in the previous section, a
higher driving strength leads to larger phonon-induced
rates and faster thermalization. Thus, the critical tran-
sition temperature is the lower the higher the applied
driving strength. The results imply that even moder-
ate degrees of entanglement in the constantly driven sys-
tem can be achieved only at temperatures below 30 K.
Furthermore at temperatures of 4 K and above the gen-
eration of ΨBS seems to be no longer possible. We find
that, for realistic parameters, phonon interactions lead to
a vanishing concurrence for driving strengths far below
the value needed to switch from ΦBS to ΨBS. Therefore,
we observe no ΨBS in simulations accounting for phonons
for all parameters considered here.

The average number of phonons in the thermal equilib-

rium and, thus, the phonon influence increases with rising
temperature. As a result, the competition between loss
processes, i.e., cavity losses and radiative decay, on one
hand and the thermalization due to phonons on the other
hand, is more and more dominated by the latter. There-
fore, the degree of entanglement decreases with rising
temperature as the two-photon density matrix is again
pulled towards the thermal one. At a certain, critical
temperature Tcrit the phase transition takes place and
the order parameter, i.e., the concurrence, drops to zero.
At this critical temperature, the coherence between |HH〉
and |V V 〉 is reduced to the level of the occupations |HV 〉
and |V H〉, i.e., the two-photon density matrix can be ex-
pressed as a statistical sum of factorizable two-photon
states. Because the phonon influence only increases at
larger temperatures, the concurrence remains zero.

F. Phase transition - critical behavior and
exponent

Next, we turn to another aspect associated with a
phase transition: the critical behavior near the phase
transition and the corresponding critical exponent. In
the case of a phase transition, the behavior of the order
parameter, i.e., the concurrence, when approaching the
critical temperature should be given as a power law

C ∝
(

T

Tcrit
− 1

)β
(24)

where the critical exponent β is independent of the driv-
ing strength Ω. Indeed, we find that the critical behavior
follows this dependence with the same value β = 1 for
all driving strength values considered in Fig. 5. To illus-
trate this, Fig. 6 depicts the concurrence as a function of
the reduced temperature for two selected driving strength
values. In both cases, when the temperature approaches
the corresponding critical value, the concurrence is de-
scribed by a power law with the critical exponent β = 1
and fitted amplitudes AΩ.

We also observe an interesting side aspect: when the
temperature is decreased further, the concurrence evalu-
ated for the two driving strengths still exhibits the same
behavior. Both curves can be well described by a power
law extended by an additional term with a fitted expo-
nent 9/4 and amplitudes BΩ. This feature holds for all
driving strength values considered in Fig. 5 (not shown).

V. CONCLUSION

In conclusion, we have investigated the influence of
phonons on entangled photon pairs generated from a con-
stantly driven QD-cavity system. We find a strong re-
duction and a severe qualitative impact on the degree of
entanglement, as measured by the concurrence, already
at temperatures as low as 4 K. Unlike in the phonon-free
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FIG. 5. (a) Concurrence as a function of the temperature (above 4 K) for different driving strength values Ω between 2.0g and
4.5g. (b) Critical temperature Tcrit of the phonon-induced phase transition for the driving strength values in panel (a). The
dashed line is a guide-to-the-eye.
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FIG. 6. Critical behavior and exponent. Concurrence as a
function of the reduced temperature for two different driving
strength values Ω = 4.0g and 2.5g (dark and light green solid
lines, respectively). In addition, corresponding fits to power
laws containing only the critical exponent β = 1 (doted lines)
and one additional term (dashed lines) are shown with the
same color.

situation, the influence of phonons suppresses the gen-
eration of ΨBS entanglement in the studied parameter
range, even at low temperatures. The concurrence de-
creases with increasing temperature and driving strength
until a critical parameter value is reached where it drops
to zero and remains so at larger values. This behavior is
similar to a phase transition where the concurrence rep-
resents the order parameter, indicating either an entan-
gled or nonentangled phase. Consequently, we encounter
a phonon-induced phase transition, which cannot take
place in a situation without constant laser excitation.
The reason behind this phenomenon is a competition be-
tween two different mechanisms, a thermalization due to
phonons and other loss processes, i.e., radiative decay
and cavity losses, that determines the steady state of

the system. A higher temperature or driving strength
gives rise to a stronger phonon impact. Eventually, the
thermalization dominates, driving the two-photon state
towards a thermal state with vanishing degree of entan-
glement. Thus, the emitted photon pair transforms from
an entangled towards a nonentangled phase.
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Appendix A: GaAs parameters and phonon spectral
density

In this article a spherically symmetric self-assembled
GaAs QD with a harmonic oscillator confinement and
an electron (hole) confinement length ae = 3 nm (ah =
ae/1.15) is considered. Furthermore a linear dispersion
relation is assumed for the LA phonons. In this situation,
the explicit expression for the phonon spectral J(ω) is
[63, 69]

J(ω) =
ω3

4π2~ρDc5S

[
De e

−ω2a2e/(4cS)2 −Dh e
−ω2a2h/(4cS)2

]2

(A1)
The necessary material parameters are taken from litera-
ture [73] and listed in Tab. II. For these parameters, the
resulting spectral density is shown in Fig. 7. Note that
using a spherical QD model provides for the calculation
of the reduced density matrix as considered here no loss
of generality as shown in Ref. 74.
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TABLE II. GaAs material parameters taken from Ref. 73.

Parameter Value

Mass density (kg/m3) ρD 5370

Sound velocity (m/s) cS 5110

Electron deformation potential (eV) De 7.0

Hole deformation potential (eV) Dh -3.5
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FIG. 7. Phonon spectral density for the considered GaAs
QD with electron (hole) confinement length ae = 3 nm (ah =
ae/1.15) and material parameters listed in Tab. II.

Appendix B: Decomposition in factorizable states

Due to the interaction with LA phonons, we encounter
two-photon density matrices that can, in good approxi-
mation, be described as

ρ2p =




a 0 0 c

0 b d 0

0 d∗ b 0

c∗ 0 0 a


 , (B1)

in the basis {|H1H2〉, |H1V2〉, |V1H2〉, |V1V2〉}, where the
index refers to the first or second detected photon. The
parameters fulfill the requirements for an arbitrary den-
sity matrix

a, b ∈ R+
0 ; 2(a+ b) = 1; c, d ∈ C; |c| ≤ a; |d| ≤ b.

(B2)
In the case a > b, the corresponding concurrence is given
by

C =

{
2 (|c| − b) , |c| > b

0, |c| ≤ b. (B3)

Because the concurrence has a one-to-one correspondence
to the entanglement of formation, obtaining a vanishing
concurrence has a well-defined physical meaning: in this
situation, there exists at least one decomposition of the
density matrix

ρ2p =
∑

j

pj |ψj〉〈ψj | (B4)

where all pure (two-photon) states |ψj〉 factorize into
quantum states that describe only the first or second de-
tected photon. pj is the probability to encounter this
pure state in the mixed state described by ρ2p. Since the
concurrence vanishes for |c| ≤ b, such a decomposition
must exist in this situation. Here, we give an explicit
expression for a possible decomposition.

After introducing the phase ϕ and θ for the parameter
c = |c|eiϕ and d = |d|eiθ, respectively, we re-write the
two-photon density matrix. In the situation a ≥ b ≥ |c|,
our decomposition depends on the relation between |c|
and |d|.

In the case |d| ≥ |c|, we obtain the following possible
decomposition

ρ2p =2 (a− |d|) ρ2p
1 + 2 (b− |d|) ρ2p

2 + 4|c|ρ2p
3

+ 2 (|d| − |c|)
(
ρ2p

4 + ρ2p
5

) (B5)

where all contributions ρ2p
j to the density matrix can be

expressed as a mixed state

ρ2p
j =

1

2

(
|ψ(α)
j 〉〈ψ

(α)
j |+ |ψ

(β)
j 〉〈ψ

(β)
j |
)

(B6)

containing two factorizable pure states |ψ(α/β)
j 〉. The ex-

plicit expressions for these quantities are

ρ2p
1 =

1

2




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


 (B7a)

|ψ(α)
1 〉 = |H1〉|H2〉; |ψ(β)

1 〉 = |V1〉|V2〉 (B7b)

ρ2p
2 =

1

2




0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


 (B7c)

|ψ(α)
2 〉 = |H1〉|V2〉; |ψ(β)

2 〉 = |V1〉|H2〉 (B7d)

ρ2p
3 =

1

4




1 0 0 eiϕ

0 1 eiθ 0

0 e−iθ 1 0

e−iϕ 0 0 1


 (B7e)

|ψ(α/β)
3 〉 =

1√
2

(
|H1〉 ± e−i(ϕ+θ)/2|V1〉

)

× 1√
2

(
|H2〉 ± e−i(ϕ−θ)/2|V2〉

) (B7f)
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ρ2p
4/5 =

1

4




1 0 0 ±1

0 1 eiθ 0

0 e−iθ 1 0

±1 0 0 1


 (B7g)

The contribution ρ2p
4 (ρ2p

5 ), exhibiting the positive (neg-

ative) coherence |H1H2〉〈V1V2|, is a special case of ρ2p
3

with ϕ = 0 (ϕ = π). Thus the corresponding pure states

|ψ(α/β)
4/5 〉 are given as special cases of Eq. (B7f).

In the case |d| < |c|, a possible decomposition can be
constructed in a slightly different form

ρ2p =2 (a− |c|) ρ2p
1 + 2 (b− |c|) ρ2p

2 + 4|d|ρ2p
3

+ 2 (|c| − |d|)
(
ρ2p

6 + ρ2p
7

) (B8)

Again the contributions

ρ2p
6/7 =

1

4




1 0 0 eiϕ

0 1 ±1 0

0 ±1 1 0

e−iϕ 0 0 1


 (B9)

are special cases of ρ2p
3 with θ = 0 and θ = π, respec-

tively. Thus they, can be decomposed into a sum over

two factorizable pure states |ψ(α/β)
6/7 〉 which are special

cases of |ψ(α/β)
3 〉.

Altogether, in the situation a ≥ b ≥ |c|, the two-photon
density matrix in Eq. (B1) can be always expressed as a
sum over 10 or less factorizable pure (two-photon) states

ρ2p =
∑

j

pj
1

2

(
|ψ(α)
j 〉〈ψ

(α)
j |+ |ψ

(β)
j 〉〈ψ

(β)
j |
)

(B10)

where the probabilities pj are the corresponding (real and
positive) prefactors in the expansion (B5) or (B8), respec-
tively. Because at least one decomposition into factoriz-
able pure states exists, the corresponding entanglement
of formation is zero, and in turn the concurrence van-
ishes.

Appendix C: Phonon-induced transition rates
between laser-dressed states

In this section we estimate the phonon-induced rates
that lead to a thermalization of the system. To this end,

we consider the four laser-dressed states [10]

|U〉 = c (|G〉+ |B〉) + c̃ (|XH〉+ |XV〉) (C1a)

|M〉 =
1√
2

(|XH〉 − |XV〉) (C1b)

|N〉 =
1√
2

(|G〉 − |B〉) (C1c)

|L〉 = c̃ (|G〉+ |B〉)− c (|XH〉+ |XV〉) (C1d)

c =
2Ω√

8Ω2 +
(

∆0 +
√

∆2
0 + 8Ω2

)2
; c̃ =

√
1

2
− c2

(C1e)
where Ω is the driving strength and ∆0 the energetic
detuning between exciton states and laser. The corre-
sponding energies Eχ are given in Eq. (13).

According to Fermi’s golden rule, the phonon-induced
rates Γi→f between an initial laser-dressed state with
zero phonons |i〉 and a final dressed-state at lower en-
ergy with one phonon |f〉 can be estimated as

Γi→f =
2π

~
|〈f |ĤPh|i〉|2g(Ef ) (C2)

where g(Ef ) is the density of states at the energy of the
final state. In our situation, using the phonon spectral
density, Eq. (C2) can be re-formulated as

Γχχ′ = 2π |〈χ|V̂Ph|χ′〉|2 J(|Eχ − Eχ′ |/~) (C3)

where χ, χ′ ∈ {U,M,N,L} and the operator V̂Ph takes
the form

V̂Ph =




1 0
√

2c 0

0 1 0 0√
2c 0 1

√
2c̃

0 0
√

2c̃ 1


 (C4)

in the basis {|U〉, |M〉, |N〉, |L〉}.
Using this estimate, we obtain two finite rates

ΓUN = 4πc2J([EU − EN]/~) (C5a)

ΓNL = 4πc̃2J([EN − EL]/~) (C5b)

that are associated with transitions between laser-dressed
states |U〉 ↔ |N〉 and |N〉 ↔ |L〉 due to phonon emis-
sion or absorption processes. These rates depend on the
dressed state energies and the coefficients c, c̃ given by
Eq. (C1e) and thus, in particular, on the driving strength
Ω.
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