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Abstract

Noether’s theorem is familiar to most physicists due its fundamental role in linking the

existence of conservation laws to the underlying symmetries of a physical system. Typically

the systems are described in the particle-based context of classical mechanics or on the basis

of field theory. We have recently shown (2021 Commun. Phys. 4 176) that Noether’s reasoning

also applies to thermal systems, where fluctuations are paramount and one aims for a statistical

mechanical description. Here we give a pedagogical introduction based on the canonical

ensemble and apply it explicitly to ideal sedimentation. The relevant mathematical objects,

such as the free energy, are viewed as functionals. This vantage point allows for systematic

functional differentiation and the resulting identities express properties of both macroscopic

average forces and molecularly resolved correlations in many-body systems, both in and

out-of-equilibrium, and for active Brownian particles. To provide further background, we

briefly describe the variational principles of classical density functional theory, of power

functional theory, and of classical mechanics.

Keywords: statistical mechanics, density functional theory, power functional theory,

invariance, Noether’s theorem, liquid state theory, sum rules
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1. Introduction

Symmetries and their breaking in often stunningly beautiful

ways are at the core of a broad range of phenomena in physics,

from phase transitions in condensed matter to mass generation

via the Higgs mechanism. Most readers will be very familiar

with the importance of symmetry operations, including com-

plex operations such as CPT-invariance in high energy physics

as well as the simple challenge of centering the webcam while

having mirroring switched off in a video call.
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The exploitation of the underlying symmetries of a phys-

ical system is an important and central concept that allows

to simplify the mathematical description and arguably more

importantly to gain physical insights and achieve an under-

standing of the true mechanisms at play. This is what

the mathematician Emmy Noether did in her groundbreak-

ing work in functional analysis early in the twentieth

century [1].

Noether analyzed carefully the changes that occur upon per-

forming a symmetry operation on a system. Her work solved

the then open deep problems of energy conservation in general

relativity, as the new theory of gravity that Einstein had just

formed.Noether considered the formulation of general relativ-

ity via Hilbert’s action integral, which is a formal object—a

functional—that generates Einstein’s field equations. Nowa-

days Noether’s theorems [1–3] are widely known and used to
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connect each continuous symmetry of a system with a corre-

sponding conservation law. Noether’s work therefore forms a

staple of physics, relevant from introductory classical mechan-

ics to advanced theories such as the standard model of high

energy particle physics.

In practice the theorems are usually applied to the action

functional in a Lagrangian or Hamiltonian theory. This strat-

egy is not of mere historic interest, as much active current

research is being carried out, see e.g. recent developments that

addressed the action functional for systems that include ran-

dom forces [4–6] and work that shows, starting from the sym-

metry of an action functional, that the thermodynamic entropy

can be viewed as a Noether invariant [7–9]. However, from

a mathematical point of view, Noether’s theorem is actually

not restricted to the specific case of the action integral. The

theorem rather applies to a much more general class of func-

tionals, where it specifies general consequences of invariance

under continuous symmetry transformations.

We recall some basics of functional calculus. A functional

is a mathematical object that maps an entire function, i.e. the

function values together with the corresponding values of the

argument, to a single number. A popular introductory example

of a functional is the definite integral, say over the unit interval

from 0 to 1. When viewed as a functional, the definite integral

accepts the integrand (a function) and it returns a number (the

area under the curve that the function represents). Although

the functional point of view might appear slightly uncom-

mon (or even trivial in this case), the inherent abstract concept

allows to formulate very significant insights and use powerful

mathematical techniques of variational calculus which can be

straightforwardly and widely applied.

The occurrence of functionals in physics is not restricted

to the study of behaviour at very large length scales, such as

that of the cosmos in the case of general relativity, or to very

high energies, as is the case for fundamental theories of ele-

mentary particles. In fact the mathematical concept of a func-

tional dependence is very general. Hence there is an according

wide variety of objects in physics, such as e.g. the partition

sum and the free energy in statistical mechanics that can be

viewed as being a functional [10–13]; we give an introduc-

tion below. As soon as one is willing to accept this notion,

makingmuch headway is possible by analyzing physical prop-

erties of the considered system from this formal point of

view.

To perform the transfer and use Noether’s theorem for ther-

mal systems, from a formal point of view one would need both

to identify a suitable functional as well as a symmetry transfor-

mation under which this functional is invariant. One primary

candidate for the choice of the functional is the partition func-

tion, which constitutes an integral over the high-dimensional

phase space of classical mechanics. Within this context, phase

space describes all degrees of freedom, i.e. the positions and

momenta of all particles in the system. The partition sum itself

is hence an integral over all these variables. Its integrand is,

up to a constant, the Boltzmann factor of the energy function

that characterizes the system. So the partition sum actually

complies with the nature of a functional as it maps this func-

tion to just a number, i.e. the value of the partition sum. (As

detailed below the interesting functional dependence is that

on the external potential.) The partition sum is arguably the

most fundamental object in statistical physics, as all thermody-

namic quantities, such as thermodynamic potentials including

the free energy, the equation of state, but also position-resolved

correlation functions can be obtained from it, at least in

principle.

Within statistical mechanics, where one identifies the free

energy with the negative logarithm of the partition sum, ordi-

nary (parametric) derivatives of the free energy with respect

to e.g. temperature and other thermodynamic variables gen-

erate thermodynamic quantities [11–13]. While the familiar

process of building the derivative of a function, as giving a

measure of the local slope, is a concept that dates back to

Newton and Leibniz, functional differentiation is slightly less

common. However, functionals can be differentiated in much

the same way that functions can be differentiated. In case of

the free energy, functional derivatives give microscopically

resolved correlation functions [11–13]. These are quantities,

such as the structure factor of a liquid, that are measurable in a

lab, say with a scattering apparatus or even with a microscope

upon further data processing.

When applying Emmy Noether’s thinking to the free

energy, one could expect mere abstraction to result, but that is

not the case [14]. Consider the invariance under a spatial shift.

This classical application of Noether’s theorem to the action

functional yields the well-known result of momentum conser-

vation. When rather exploiting the invariance of the partition

function and hence of the free energy with respect to shift-

ing, what follows are fundamental statements about forces that

act in the system [14]. One of them states that the total inter-

nal force vanishes. Here the total internal force is that which

arises from the interactions only between the constituents of

the system. The famous Baron Munchausen tale of bootstrap-

ping himself out of the swamp by pulling on his own hair

is identified as a fairytale by the Noetherian argument. The

impossibility of this feat holds on the scale of his entire body,

but also when locally resolving his structure on the molecular

scale.

In addition to shifting, one can also consider rotations. In

case of the action functional being invariant under rotations

Noether’s theorem implies that the angular momentum around

the rotation axis is conserved. If the free energy has rotational

symmetry, fundamental statements about torques emerge

[14, 15]. These sum rules express inherent coupling of spin and

orbital degrees of freedom. Figuratively speaking, the identi-

ties state that a bolt cannot screw itself into the wall and that

a Baron Munchausen stuck in mud cannot spontaneously start

to rotate by twisting his head.

Recognizing the functional dependence of the free energy

allows to build a theory fully founded on a variational prin-

ciple of thermal systems, as formulated by Mermin [10] and

Evans [11, 12]. Their so-called density functional theory is a

well-accepted and widely used theory, see reference [13] for

a textbook presentation and reference [16] for an overview of

recent work. Excellent approximations are available for rel-

evant model fluids, such as for hard spheres [17, 18] (see
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reference [19] for recent work addressing hard sphere crys-

tal properties). The density functional approach hence allows

explicit calculations to be carried out to predict the behavior

of a wide range of physical systems, including solvation [20],

hydrophobicity [21–23], critical drying of liquids [24], sol-

vent fluctuations [25], electrolyte solutions near surfaces [26],

interpretation of atomic force microscopy data [27], temper-

ature gradients at fluid interfaces [28], and local fluctuations

[22–25, 29]. In reference [14] we also apply Noether’s

thinking to a very recent variational approach for dynam-

ics, called power functional theory [30, 31], which propels

the functional concepts from equilibrium to nonequilibrium

[30–45], including the recently popular active Brownian par-

ticles [46–52]. The generalization is important, as it shows

that not only a dead Munchausen cannot bootstrap himself

out of his misery, but that being alive does not help (in this

particular case).

In the present contribution we demonstrate that the con-

cepts of reference [14] apply to the canonical ensemble, as is

relevant for confined systems [53–55] and for the dynamics

[56–58]. Hence having an open system with respect to parti-

cle exchange is not necessary for the Noetherian arguments to

apply. We give a detailed and somewhat pedagogical deriva-

tion of the fundamental concepts and also make much rele-

vant background explicit, which has not been spelled out in

reference [14].

The paper is organized as follows. In section 2 we go

into some detail and we present in the following the arguably

simplest example of the application of Noether’s theorem to

statistical mechanics. We expect the reader to be familiar with

Newtonian mechanics and to ideally know about classical

mechanics formulated in a more formal setting (we supply

some basic notions thereof below). We lay out the canoni-

cal ensemble and averages in section 2.1. Forces and their

relation to symmetries are addressed in section 2.2. Statistical

functionals and their invariances are described in section 2.3.

As an example we describe the application to sedimentation

in section 2.4. The relationship of the Noether invariance to

correlation functions is laid out in section 2.5. We give fur-

ther background that is relevant for reference [14], such as the

details of the grand canonical treatment and the variational

principles of density functional theory and of power func-

tional theory, in section 2.6. We present our conclusions in

section 3.

2. Theory

2.1. Canonical ensemble and averages

We consider a system with fixed number of particles N. The

state of the system is characterized by all positions r1, . . . , rN
and momenta p1, . . . , pN , where the subscript labels the N

particles, which we take to all have identical properties. We

assume that the total energy consists of kinetic and potential

energy contribution, according to

H =

N
∑

i=1

p2i
2m

+ u(r1, . . . , rN)+

N
∑

i=1

Vext(ri). (1)

Here H is the Hamiltonian of the system, with the interpar-

ticle interaction potential u(r1, . . . , rN) and the external one-

body potential Vext(ri) acting on particle i. The equations of

motion are generated via ṙi = ∂H/∂pi and ṗi = −∂H/∂ri,
where the overdot indicates a time derivative, m is the parti-

cle mass, and the index i = 1, . . . ,N. Using the explicit form

(1) of the Hamiltonian then leads to the equations of motion in

the familiar form

ṙi =
pi
m
, (2)

ṗi = fi, (3)

where fi indicates the force on particle i, which consists of

a contribution from all other particles as well as the external

force. Explicitly, the force on particle i is given by

fi = −∇iu(r1, . . . , rN)−∇iVext(ri), (4)

where ∇i denotes the derivative with respect to ri. (Build-

ing the derivative by a vector implies building the derivative

with respect to each component of the vector, hence ∇i can

be viewed as building the gradient with respect to ri.) Cer-

tainly we could have written down the equations of motion (2)

and (3) a priori. Equation (2) expresses the standard relation

of velocity ṙi with momentum pi, and (3) is Newton’s second

law. Hence we have reproduced the Newtonian theory within

the Hamiltonian formalism.

So far everything has been deterministic and we were con-

cerned with obtaining a description on the level of individual

particles. As our aim is to describe very large systems, wewish

to ‘zoom out’ and investigate and describe the macroscopic

properties of the system, as they result from the above for-

mulated microscopic picture. Statistical mechanics provides

the means for doing so. We will not attempt to give a com-

prehensive description of the concepts of this theory. Rather

we will guide the reader through some essential steps, includ-

ing in particular how thermal averages are built, to see how

Noether’s theorem applies in this context. As we will see, both

the physical concept and the outcome are different from the

standard application of Noether’s theorem based on the action

expressed as a time integral over a Lagrangian that corresponds

to (1); we give a brief description of this standard argument at

the end of section 2.2.

Statistical mechanics rests on the concept of having a sta-

tistical ensemble, in the sense of the collection of microstates

r1, . . . , rN , p1, . . . , pN , i.e. all phase space points. These

are transcended beyond classical mechanics by each being

assigned a probability for its occurrence. (There is much

discussion about who throws the dice here; we recommend

Zwanzig’s cool-headed account [59].) The microstate prob-

ability distribution is given by a standard Boltzmann form,

Ψ(r1, . . . , rN , p1, . . . , pN) =
e−βH

ZN
, (5)

where the inverse temperature is β = 1/(kBT), with the Boltz-
mann constant kB and absolute temperature T. Here ZN is the

partition sum, and it acts to normalize the probability distribu-

tion to unity, when summed up over all microstates. The sum

overmicrostates is in practice a high-dimensional integral over

phase space, explicitly given as
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ZN =
1

N!h3N

∫

dr1 . . . drN dp1 . . . dpN e
−βH , (6)

where h indicates the Planck constant. Here each position

integral and each momentum integral runs over R3. (We are

considering systems in three spatial dimensions.) The system

volume is rendered finite by confining walls that are modelled

by a suitable form of the external potential Vext(r). As a note

on units, recall that h carries energy multiplied by time, i.e. Js,

such that the partition sum (6) carries no units.

The purpose of the probability distribution (5) is to build

averages. Taking the Hamiltonian (1) as an example, we

can express the total energy, averaged over the statistical

ensemble, as

E =
1

N!h3N

∫

dr1 . . . rN dp1 . . . dpNHΨ. (7)

Here we recall the dependence of the Hamiltonian (1) on the

phase space point, and in the notation we have left away the

arguments r1 . . . , rN , p1, . . . , pN of both H and Ψ.

It is useful to introduce more compact notation, as this

reduces clutter and allows to express the structure of the the-

ory more clearly. Let us denote the integral over phase space,

together with its normalizing factor in (6) as the ‘classical

trace’ operation, hence defined as

TrN =
1

N!h3N

∫

dr1 . . . drN dp1 . . . dpN , (8)

which is to be understood as acting on an integrand, such as

on HΨ in the example (7) above. Equation (7) can hence be

expressed much more succinctly as

E = TrN HΨ. (9)

In a similar waywe can express other averaged quantities, such

as the average external (potential) energy,

Uext = TrN Ψ

N
∑

i=1

Vext(ri). (10)

In order to build some trust for the compact notation, we use

(5) and (8) to re-write (10) explicitly as

Uext =
1

N!h3N

∫

dr1 . . . drN dp1 . . . dpN

×
e−βH

ZN

N
∑

i=1

Vext(ri). (11)

This allows to see explicitly thatUext depends on the number of

particle N and on the temperature T (via the Boltzmann factor

and the partition sum). Surely (10) allows to see the physical

content, that of an average being carried out, more clearly than

(11) and we will continue to use the compact notation. (Read-

ers who wish to familiarize themselves more intimately with

these benefits are encouraged to put pen to scratch paper and

re-write the following material in explicit notation.)

2.2. Forces and symmetries

Before continuing with thermal concepts, such as the free

energy, we take a detour from standard paths in statistical

mechanics, and return to forces. After all, it was the micro-

scopically and particle-resolved forces fi in (4) that formed

the starting point for the description of the coupled system. As

an example, let us hence consider the total external force that

acts on the system, in the sense that we sum up the external

force that acts on each individual particle, −∇iVext(ri). This

accounting results in −
∑

i∇iVext(ri). Note that this expres-

sion still applies per microstate, or in other words, the total

external force varies in general across phase space. As a cau-

tionary note on terminology,we use throughout the term ‘total’

in the above sense of denoting a global, macroscopic, exten-

sive quantity. This usage is different from the also frequent

meaning of total referring to the sum of intrinsic and external

contributions.

In order to obtain the macroscopic description we need

to trace over phase space and respect the probability for the

occurrence of each given microstate. Hence the average total

external force is given by

Fo
ext = −TrN Ψ

N
∑

i=1

∇iVext(ri). (12)

Due to the structure of (12), Fo
ext depends on the number of par-

ticles N (via the upper limit of the sum and the dimensionality

of the phase space integrals), on temperatureT (via the thermal

distributionΨ, cf (5) and (6)), and it of course also depends on

the form of the function Vext(r). Note that the function Vext(r)

appears both explicitly in the gradient in (12) as well as in

a more hidden form in the probability distribution Ψ, cf (5)

and (1).

Let us halt for a moment and ponder the physics. Imagine

having a vessel with impenetrable walls, such that the system

stays confined inside of the vessel. Furthermore, to add some

flavour, imagine an external field such as gravity acting on the

system. Then the external potential consists of two contribu-

tions, i.e. the potential energy that the container walls exert on

each given particle plus the gravitational energy. In an equilib-

rium situation, what wouldwe expect the total external force to

be like? Surely, it should not change in time. (Technically any

time evolution had been superseded by the ensemble, which is

a static one in the present case.) The reader might expect that

Fo
ext = 0, (13)

because otherwise the system would surely start to move!

However, as for any given microstate the total external force

will in general not vanish, (13), if true, is a nontrivial property

of thermal equilibrium. See figure 1 for an illustration of this

concept, based on a system confined in a spherical cavity.

Hence we wish to address carefully in the following whether

we can prove (13) from first principles.

In the followingwe give two derivations of (13), which both

rest on spatial translations of the system. The first derivation

only requires vector calculus. The second derivation shows

the Noetherian symmetry argument based on the functional

4
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Figure 1. Three representative microstates rN for N = 3 particles
inside of a spherical cavity modelled by a confining external
potential Vext(r) (orange). Shown are the particle positions ri (pink
dots) and the respective external force −∇iVext(ri) acting on particle
i (black arrows). The resulting total external force

F̂o
ext = −

∑
i∇iVext(ri) is shown for each microstate (blue arrows

and blue dot, the later indicating zero). Although F̂o
ext for each

microstate is in general nonzero, the average over the thermal

ensemble vanishes, Fo
ext = 〈F̂o

ext〉 = 0.

setting. This requires to adopt the notion of functional depen-

dencies, which we have used only implicitly so far. In the fol-

lowing wemake these relationships and dependencies explicit.

We also supply the necessary methodology of functional dif-

ferentiation and will attempt to convince the reader that their

background in ordinary calculus can be flexed in order to

follows these steps.

The fundamental ingredients to both derivations are identi-

cal though.We use the free energy and we monitor its changes

upon spatial displacement of the system. The free energy, and

more generally thermodynamic potentials, are central to ther-

mal physics, and the following material can be viewed as a

demonstration why this indeed is the case.

The free energy FN , or more precisely: the total Helmholtz

free energy is given by

FN = −kBT ln ZN , (14)

where ZN is the partition sum, as defined in (6). One can show

that the relation of free energy and internal energy is given

by the thermodynamic identity FN = E − TS, where S is the

entropy, here defined on a microscopic basis and the internal

energy E is given by (9). One can surely be surprised by the

promotion of the rather banal normalization factor ZN to such

a prominent and as we show decisive role. We demonstrate in

the following that ZN had been a dark horse, and that its status

to generate the free energy via (14) is well-deserved.

Besides the free energy, the second ingredient that we

require is a spatial shift of the entire system according to a

displacement vector ǫ of the system. We hence displace the

external potential spatially by a constant vector ǫ. (Although

we Taylor expand in ǫ below, the displacement ǫ can be finite

and arbitrary.) The displaced system is then under the influ-

ence of an external potential which has changed according to

Vext(r)→ Vext(r+ ǫ). (15)

Formally, the free energy of the displaced system will depend

on the displacement vector, i.e.

FN → FN(ǫ), (16)

where FN is the free energy (14) expressed in the original

coordinates, and the new free energy is given by

FN(ǫ) = −kBT ln ZN(ǫ). (17)

Here the partition sum of the shifted system is

ZN(ǫ) = TrN exp

[

−β

(

Hint +
∑

i

Vext(ri + ǫ)

)]

, (18)

where the intrinsic part Hint of the Hamiltonian consists of

kinetic energy and interparticle interaction potential energy

only, i.e. Hint =
∑

i p
2
i /(2m)+ u(r1, . . . , rN).

We proceed by first recognizing that the shift does not

change the value of the free energy (in other words, the choice

of origin of the coordinate system does not matter). We can

see this explicitly by performing a coordinate transformation

ri → ri − ǫ. This leaves Hint invariant, as the momenta are

unaffected and the internal interaction potential is unaffected.

Recall that the interparticle energy only depends on relative

particle positions, which remain invariant under the transfor-

mation: ri − r j → (ri − ǫ)− (r j − ǫ) = ri − r j. Furthermore,

due to the simplicity of the coordinate transformation that the

shift represents, the phase space integral, cf the classical trace

(8), is unaffected as the Jacobian of the transformation is unity.

Note that in the shifting operation, the momenta are unaf-

fected and their behaviour remains governed by the Maxwell

distribution throughout. Hence we have shown that the orig-

inal free energy is identical to the free energy of the shifted

system

FN = FN(ǫ), (19)

for any value of the displacement vector ǫ.

At this point one could conclude mission accomplished.

This is not what Emmy Noether did in her mathematical for-

mulation of the problem—wehint at her variational techniques

below.Theway forward at this point is to rather ignore (19) and

return to the explicit expression (17) for the free energy in the

shifted system. We consider small displacements ǫ and Taylor

expand to first order,

FN(ǫ) = FN +
∂FN(ǫ)

∂ǫ

∣

∣

∣

∣

ǫ=0

· ǫ, (20)

where quadratic and higher order terms in ǫ have been omitted.

The partial derivative in (20) can be calculated explicitly:

∂FN(ǫ)

∂ǫ
= −

kBT

ZN(ǫ)

∂

∂ǫ
ZN(ǫ) (21)

= −
kBT

ZN(ǫ)
TrN

∂

∂ǫ
e−βH(ǫ) (22)

= −
kBT

ZN(ǫ)
TrN e

−βH(ǫ) ∂

∂ǫ
(−β)

N
∑

i=1

Vext(ri − ǫ),

(23)

where in the first step (21) the partition sum in the denomina-

tor arises from the derivative of the logarithm in (17) and in the

5
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second step (22) we have interchanged the phase space integra-

tion (as notated by TrN , cf (8)) and the ǫ-derivative. The third

step (23) follows directly from the structure of the Hamilto-

nian (1) and the fact thatHint is independent of ǫ. We continue

to obtain

∂FN(ǫ)

∂ǫ
= TrN

e−βH(ǫ)

ZN(ǫ)

N
∑

i=1

∂

∂ǫ
Vext(ri − ǫ) (24)

= −TrN Ψ(ǫ)

N
∑

i=1

∂

∂ri
Vext(ri − ǫ), (25)

where in (24) we have pulled the partition sum as a constant

inside of phase space integral and have moved the ǫ-derivative

inside the sum over all particles. In (25) we have combined the

Boltzmann factor with the partition sum in order to express

the many-body probability distribution function in the shifted

system, Ψ(ǫ) = exp(−βH(ǫ))/ZN(ǫ), in generalization of (5).
Furthermore the spatial derivative of the external potential is

re-written via using ∂/∂ǫ = −∂/∂ri (which is valid due to

the dependence on only the difference ri − ǫ). Considering the

case ǫ = 0 allows us to conclude that

∂FN(ǫ)

∂ǫ

∣

∣

∣

∣

ǫ=0

= −TrN Ψ

N
∑

i=1

∂

∂ri
Vext(ri). (26)

Remarkably the right-hand side is the average total exter-

nal force as previously defined in (12). The left-hand side is

identically zero, as ǫ is arbitrary in (20) and the linear order

(as well as all higher orders) need to vanish in the Taylor

expansion (20) by virtue of the invariance (19) of the free

energy upon spatial displacement. Hence

− TrN Ψ

N
∑

i=1

∂

∂ri
Vext(ri) = 0, (27)

which proves constructively the anticipated vanishing (13) of

the average total external force (12).

As a preliminary summary, we have shown that the invari-

ance of a global thermodynamic potential, the Helmholtz free

energy expressed in the canonical ensemble, against spatial

displacement (as generated by a shift of the external potential)

leads to the non-trivial force identity of vanishing total exter-

nal force. This identity holds true for any value of the number

of particles in the system, at arbitrary temperature, and most

notably irrespective of the precise form of the external poten-

tial. Hence we refer to statements such as Fo
ext = 0, cf (13),

as a Noether identity or Noether sum rule. Clearly the con-

cept is general, as both the symmetry operation can be altered

(rotations are considered in reference [14]) as well as the type

of thermodynamic object can be changed (the grand potential

and the excess free energy density functional are considered in

reference [14] and we shift the total external energyUext below

in section 2.5).

We have presented here the shifting from the point of

view that the actual physical system is moved to a different

location. Alternatively, one could adopt a ‘passive’ point of

view and displace only the origin of the coordinate system,

in the sense of using shifted coordinates that still describe

an unchanged physical system. Then going through a chain

of arguments analog to those given above yields identical

results.

For completeness we contrast the present statistical

mechanical treatment with the standard application of

Noether’s theorem to deterministic dynamics. We keep the

same N-body classical many-body system as before, i.e. with

Hamiltonian H given by (1). The equations of motion (2) and

(3) follow from the action integral S =
∫ t2
t1
dtL, where the

Lagrangian L is obtained via L =
∑

i piṙi − H and t1 and t2
are two fixed points in time.We apply the global shifting trans-

formation ri → ri − ǫ, as before, to all particle coordinates in

the system and at all times. As a consequence, the Lagrangian

acquires a corresponding dependence on ǫ. Taylor expanding

the action to first order in ǫ then yields

S(ǫ) = S +
∂S(ǫ)

∂ǫ

∣

∣

∣

∣

ǫ=0

· ǫ (28)

= S +

∫ t2

t1

dt
∂L

∂ǫ

∣

∣

∣

∣

ǫ=0

· ǫ (29)

= S −

∫ t2

t1

dt
∑

i

∂L

∂ri

∣

∣

∣

∣

ǫ=0

· ǫ (30)

= S −

∫ t2

t1

dt
∑

i

dpi
dt

· ǫ (31)

= S −
∑

i

pi

∣

∣

∣

∣

∣

t2

t1

· ǫ, (32)

where S = S(ǫ = 0) is the action in the original unshifted

system; we have used the representation of S(ǫ) as the time

integral of the Lagrangian in the derivation of (29), the iden-

tity ∂L/∂ǫ = −
∑

i ∂L/∂ri to obtain (30), the Lagrangian

equations of motion dpi/dt = ∂L/∂ri to derive (31), and the

fact that the integrand of (31) is a total time differential to

obtain (32).

Suppose now that the system is invariant under the dis-

placement, such that S = S(ǫ) for any value of ǫ and the sec-
ond term in (32) needs to vanish. This implies that the global

momentum Po
=

∑

i pi is conserved, i.e. P
o(t2) = Po(t1).

2.3. Functionals and invariances

The abstraction that is yet to be performed and that allows to

see the above statistical mechanical force result in an even

wider setting, is based on functional methods. As we had

hinted at in the introduction, integrals often allow for direct

interpretation as functionals as they map their integrand (or

part thereof) to the value of the quadrature. In the specific

case at hand, we stay with the canonical free energy FN and

observe that its value certainly depends on the form of the

external potential Vext(r), cf its occurrence in the Hamilto-

nian (1), which via the partition sum (6) enters the free energy

(14). Hence we have FN[Vext], where we indicate the func-

tional dependence by square brackets (and leave away in the

6
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notation the position argument r, despite the fact that the func-

tional depends on the entire function). In order to highlight

this point of view, we rewrite (14) and (6), respectively, in the

form

FN[Vext] = −kBT ln ZN[Vext], (33)

ZN[Vext] = TrN exp

(

−βHint − β

N
∑

i=1

Vext(ri)

)

, (34)

where still the partition sum, viewed now as a functional of the

external potential,ZN[Vext] is given by its elementary form, i.e.

the right-hand side of (6). In a more compact form, eliminating

ZN[Vext] as a standalone object, we have

FN[Vext] = −kBT ln TrN exp

(

−βHint − β
N
∑

i=1

Vext(ri)

)

.

(35)

We dwell on the functional concept and demonstrate some

practical consequences. As an analogy, viewing the functional

dependence in (35) akin to the dependence of an ordinary

function f (x) on its argument x brings concepts of calculus

immediately to mind, such as building the derivative f ′(x) and

investigating its properties.

This analogy extends to functionals and their derivatives

with respect to the argument function, in a process referred

to as functional differentiation. For the present case, function-

ally deriving Fext[Vext] with respect to Vext(r) can be viewed

as monitoring the change of the value of the functional upon

changing its argument function at position r. The change will

in general depend on position r, hence building functional

derivatives creates position dependence. (The result of the

functional derivative is again a functional, as the dependence

on the argument function persists.) Functional calculus is in

many ways similar to ordinary multi-variable calculus. We do

not attempt to give a tutorial here (see e.g. the appendix of ref-

erence [31] for a very brief one), but rather present a single

example that is relevant for the present physics of invariance

operations applied to many-body systems.

We use standard notation and denote the functional deriva-

tivewith respect to the functionVext(r) as δ/δVext(r). Applying

this procedure to the free energy (33) yields

δFN[Vext]

δVext(r)
= −kBT

δ

δVext(r)
ln ZN[Vext] (36)

= −
kBT

ZN[Vext]

δ

δVext(r)
ZN[Vext], (37)

where in the first step we have taken the multiplicative con-

stant −kBT out of the derivative and in the second step have

used the ordinary chain rule, which also holds for functional

differentiation. We next use the explicit form (34) to obtain

δFN[Vext]

δVext(r)
= −

kBT

ZN[Vext]
TrN

δ

δVext(r)
e−βH (38)

= −
kBT

ZN[Vext]
TrN e

−βH δ

δVext(r)
(−βH)

(39)

=
1

ZN[Vext]
TrN e

−βH δ

δVext(r)

N
∑

i=1

Vext(ri), (40)

where we have first exchanged the order of the functional

derivative and the phase space integral, i.e. moved the deriva-

tive inside of the trace in (38), then in the second step (39) have

used the chain rule to differentiate the exponential, and in the

last step (40) have exploited the structure (1) of the Hamil-

tonian. Moving the derivative inside of the sum over i and

identifying the many-body probability distribution functionΨ

according to (5) yields the final result

δFN[Vext]

δVext(r)
= TrN Ψ

∑

i

δ(r− ri) ≡ ρ(r), (41)

where we have used one central rule of functional dif-

ferentiation: differentiating a function by itself gives

δVext(ri)/δVext(r) = δ(r− ri), where the result δ(·) is the

Dirac delta distribution (here in three dimensions, as its

argument is a three-dimensional vector).

Notably in (41) we have arrived at the form of a thermal

average over the statistical ensemble; recall the generic form

exemplified by the average internal energy (9). Rather than the

expectation value of the Hamiltonian, the present case rep-

resents the average of the microscopically resolved density

operator
∑N

i=1 δ(r− ri), which can be viewed as an indicator

function thatmeasureswhether any particle resides at the given

position r. The result of the average is the one-body density

distribution, or in short the density profile ρ(r). That functional
differentiation yields useful, spatially-resolved (‘correlation’)

functions is a generalmechanism. See e.g. [13] formuch back-

ground on correlation functions and their generation via func-

tional differentiation.Reference [14] carries this conceptmuch

further than we do here.

We return to the shifting symmetry operation of above, but

now monitor the system response via tracking the changes in

the function Vext(r) that are induced by the spatial shifting.

Recall the elementary Taylor expansion

Vext(r+ ǫ) = Vext(r)+ ǫ · ∇Vext(r), (42)

where ∇ indicates the derivative (gradient) with respect to r

and we have truncated at linear order. See figure 2 for an illus-

tration. The first order term in (42) can be viewed as a local

change in the external potential, δVext(r), which is given by

δVext(r) ≡ ǫ · ∇Vext(r). (43)

In order to capture the resulting effect on the functional, we

can functionally Taylor expand the dependence of the free

energy on Vext(r)+ δVext(r) around the function Vext(r). To

linear order in δVext(r) the functional Taylor expansion reads

FN[Vext + δVext] = FN[Vext]+

∫

dr
δFN[Vext]

δVext(r)
δVext(r) (44)

= FN[Vext]+

∫

drρ(r)ǫ · ∇Vext(r), (45)

where in (45) we have used the explicit form (43) of δVext(r)

as it arises from the fact that the variation in the shape of the

7
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Figure 2. Illustration of the shifting. A sinusoidal external potential
Vext(r) (blue lines) is spatially displaced by a displacement −ǫ (blue
arrows). The density profile ρ(r) (amber lines) measures the local
probability to find a particle; it hence has e.g. peaks at the troughs of
the external potential and it is shifted accordingly (amber arrows).
Also shown is the magnitude of the external force density
−ρ(r)∇Vext(r) (green line); the green arrows represent its local
direction. The horizontal dashed line is a guide that indicates the
position of locally vanishing external force density.

external potential is specifically generated by a spatial dis-

placement, cf (42). Furthermore we have used (41) to identify

the functional derivative in (44) as the density profile.

The result (45) is based on the properties of functional cal-

culus alone. Hence the identity is general and holds, to linear

order in ǫ, irrespective of any invariance properties. For the

case of the total free energy, which as we have shown above in

(19) is invariant under spatial displacement, we have

FN[Vext] = FN[Vext + δVext], (46)

where δVext(r) is generated from the spatial displacement of

the system, cf (43). Hence (43) together with (46) express in

functional language the translational symmetry properties of

the free energy.

From the identity (46) and the linear Taylor expansion (45)

we can conclude that the correction term needs to vanish,

∫

drρ(r)ǫ · ∇Vext(r) = 0. (47)

The displacement vector ǫ is arbitrary, as there was no restric-

tion on the direction of the shift. Hence the above expression

can only identically vanish provided that [14, 66]

Fo
ext = −

∫

drρ(r)∇Vext(r) = 0, (48)

where we have multiplied by −1 in order to identify the one-

body expression for the total external force Fo
ext; the equiv-

alence with the many-body form (12) is straightforward to

show upon using the definition of the density profile (41). See

figure 2 for an illustration of the local force density profile, i.e.

the integrand of (48).

2.4. Application to sedimentation

We exemplify the general result (48) using the concrete

example of a thermal system under gravity, such that

sedimentation-diffusion equilibrium is reached. Recall that we

consider systems at finite temperature, where entropic effects

compete with ordering generated by the potential energy. We

first omit the interparticle interactions, and hence consider the

classical monatomic ideal gas. We assume that the external

potential consists of a gravitational contribution, mgz, where

g indicates the gravitational acceleration and z is the height

variable. Furthermore due to the presence of a lower container

wall, there is a repulsive contribution, which we take to be a

harmonic potential with spring constant α acting ‘inside’ the

wall, i.e. at altitudes z < 0. Hence the specific form of the total

external potential is

Vext(z) = mgz+
αz2

2
Θ(−z), (49)

whereΘ(·) indicates the Heaviside (unit step) function, which
ensures that the parabolic potential only acts for z < 0. There

is no need for the presence of an upper wall to close the

system, as gravity alone already ensures that Vext →∞ for

z→∞. Themagnitude of the external force field is obtained as

−V ′
ext(z) = −mg− αzΘ(−z), see figure 3 for an illustration

(blue line).

The density distribution of the isothermal ideal gas is given

by the generalized barometric law [13],

ρ(z) = Λ
−3 e−β(Vext(z)−µ), (50)

where Λ is the thermal de Broglie wavelength which arises

from carrying out the momentum integrals in TrN (this is ana-

lytically possible due to the simple kinetic energy part of the

Boltzmann factor). The chemical potential µ in (50) is a con-

stant that ensures the correct normalization,
∫

dzρ(z) = N/A,
where A is the lateral system size (i.e. the area perpendicu-

lar to the z-direction). That the value of the chemical potential

µ controls the number of particles in the system is universal.

However, themathematical formulation in the grand ensemble,

where the particle number in the system can fluctuate, is very

different from the present canonical treatment. (Some basics

of the grand canonical description, as used in reference [14],

are described below in section 2.6.)

The general expression for the total external force (48)

together with the specific density profile (50) gives

Fo
ext = −

Aez

Λ
3

∫ ∞

−∞

dz e−β(Vext(z)−µ)V ′
ext(z) (51)

=
Aez

Λ
3β

[

e−β(Vext(z)−µ)
]∞

−∞
(52)

= 0, (53)

where ez is the unit vector pointing into the positive z-direction

and the prime denotes differentiation with respect to the argu-

ment, hence ∇Vext(r) = V ′
ext(z)ez. The integrand in (51) is a

total differential, d e−β(Vext−µ)/dz, which upon integration gives

8
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Figure 3. Illustration of sedimentation of a fluid against a lower soft
wall represented by a harmonic potential. The total external
potential is Vext(z) = mgz+Θ(−z)αz2/2. The resulting external
force field is −V ′

ext(z) ≡ −∂Vext(z)/∂z = −mg−Θ(−z)αz (blue
line). The direction of both force contributions is indicated in the
inset (arrows), where pink dots represent particles. In the main plot
the density profile ρ(z) (amber line) decays for large and for small
values of z. The external force density is the product −ρ(z)V ′

ext(z)
(green line). The total external force (per unit area) is the integral
−
∫
dzV ′

ext(z)ρ(z) = 0; note that the shaded green areas cancel each
other. Representative values of the parameters are chosen; the unit of
length is the sedimentation length kBT/(mg) and all energies are
scaled with kBT.

(52); for (53) we have exploited that for z→±∞ the exter-

nal potential Vext →∞, leading to vanishing Boltzmann fac-

tor. We have hence shown explicitly the vanishing of the total

external force acting on a bounded ideal gas in thermal equilib-

rium under gravity. Figure 3 illustrates the density profile ρ(z)
and the force density profile −V ′

ext(z)ρ(z) for representative
values of the parameters.

We briefly sketch the effect of interparticle interactions. On

a formal level, and returning to the general case of arbitrary

form of Vext(r), the density profile is given by a modified form

of (50), which reads

ρ(r) = Λ
−3 e−β(Vext(r)−µ)+c1(r), (54)

where the so-called one-body direct correlation function

[11, 13] c1(r) contains the effects of the interparticle inter-

actions. The total interparticle force density is then given by

Fo
int = kBT

∫

drρ(r)∇c1(r) = 0. (55)

Here the vanishing of the total internal force can be viewed as

a consequence of Newtons’ third law actio equals reactio; see

reference [14] for the derivation. Note the formal similarity of

the total external and total intrinsic force Noether sum rules,

cf (48) and (55). The no-bootstrap theorem (55) holds beyond

equilibrium, as shown in reference [14], and it hence debunks

any swamp escape myths.

An alternative derivation of (55) rests on the Noether invari-

ance of the free energy, where the later is constructed to be a

functional of the density profile; we refer the reader to refer-

ence [14] for a description of these considerations and com-

ment briefly on the embedding into the frameworks of classical

density functional theory and power functional theory below in

section 2.6.

2.5. Relationship to correlation functions

Global identities, such as the sum rules of vanishing exter-

nal force (48) and of vanishing internal force (55), can be

used as a starting point to obtain position-resolved identities.

Functional differentiation with respect to an appropriate field

creates dependence on position. Integrating over these addi-

tional variables (or ‘root points’ [13]) then yields novel global

identities. While we refer the reader to reference [14] for this

treatment, we wish to demonstrate here the direct derivation of

such global identities.

We stick to the canonical ensemble and as a specific case

return to our initial example of a thermal average, i.e. the

global external potential energyUext, as equivalently expressed

in compact notation (10) or the explicitly written out phase

space integral (11). Let us shift! The external energy in the

new system is then given by

Uext(ǫ) = TrN
e−βH(ǫ)

ZN(ǫ)

N
∑

i=1

Vext(ri − ǫ). (56)

We Taylor expand to first order,

Uext(ǫ) = Uext +
∂Uext(ǫ)

∂ǫ

∣

∣

∣

∣

ǫ=0

· ǫ. (57)

Here the derivative of (56) can be calculated via the product

rule as

∂Uext(ǫ)

∂ǫ

∣

∣

∣

∣

ǫ=0

= Tr
∂Ψ(ǫ)

∂ǫ

N
∑

i=1

Vext(ri)

− TrΨ

N
∑

i=1

∇iVext(ri). (58)

We can recognize the second term as the average external

force, which we have proven to vanish, cf (27). The first term

in (58) requires carrying out the derivative ofΨ(ǫ) with respect

to the displacement ǫ, which yields

∂Uext(ǫ)

∂ǫ

∣

∣

∣

∣

ǫ=0

= −TrΨ

N
∑

i=1

βVext(ri)

N
∑

j=1

∇ jVext(r j). (59)

Here an additional term, generated by the derivative, vanishes:

−βUextF
o
ext = 0, again due to (27).

Clearly (59) is the correlator of the global external potential

energy and the global external force. Using the by now familiar

invariance argument, we argue that the value of Uext(ǫ) is an

invariant under the displacement, and that hence the first order

9
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term in (57) needs to be zero. As ǫ is arbitrary, we conclude

− TrΨ

N
∑

i=1

Vext(ri)

N
∑

j=1

∇ jVext(r j) = 0, (60)

where we have divided by β. Hence the global exter-

nal potential,
∑

i Vext(ri), and the global external force,

−
∑

j∇ jVext(r j), are uncorrelated with each other. The sum

rule (60) is derived in reference [14] via the route of integration

over free position variables (root points), cf (5) in reference

[14] for the order n = 2 of the sum rule hierarchy. An impor-

tant distinction in the presentation though lies in the choice

of ensemble, which is an issue to which we turn in the next

subsection.

As a final comment, when applied to the above example

of sedimentation against a lower harmonic wall, (60) can be

explicitly verified by carrying out the z-integral, which yields

−A
∫∞

∞ dzρ(z)Vext(z)V
′
ext(z) = 0.

2.6. Density functional and power functional

In all of the above,we have described the thermal systemon the

basis of the canonical ensemble, as specified by the classical

phase space, the probability distribution (5) and the canoni-

cal partition sum (6). Hence the system is coupled to a heat

bath at temperature T , where the value of T determines the

mean energy E in the system, cf the form of E as an expecta-

tion value (7). The system is thermally open, and hence energy

fluctuations occur between system and bath.

Corresponding fluctuations in particle number N can be

implemented in the grand canonical ensemble where the sys-

tem is furthermore coupled to a particle bath. The particle

bath sets the value of the chemical potential µ, which then

determines the average number of particles N̄ in the system.

(This mechanism is analogous to the relationship of T and

E described above.) Although the grand canonical formalism

poses this additional level of abstraction, and the bare formu-

lae increase somewhat in complexity due to the average over

N, in typical theoretical developments this framework is signif-

icantly more powerful andmore straightforward to use. (There

is no need having to implement N = const, which in practice

can be awkward.) We briefly sketch the essentials of the grand

ensemble as they underlie reference [14].

The grand canonical ensemble consists of the microstates

given by phase space points ofN particles, with N being a non-

negative integer, which is treated as a random variable. The

corresponding probability distribution is

Ψ(r1, . . . , rN , p1, . . . , pN ,N) =
e−β(H−µN)

Ξ
, (61)

where the grand partition sum is given by

Ξ = Tr e−β(H−µN), (62)

with the grand canonical trace operation defined by

Tr =

∞
∑

N=0

TrN (63)

=

∞
∑

N=0

1

h3NN!

∫

dr1 . . . drN dp1 . . . dpN , (64)

where we have obtained (64) by using the explicit form (8)

for the canonical trace. The thermodynamic potential which

is fundamental for the grand ensemble is the grand potential

(also referred to as the grand canonical free energy) and it is

given by

Ω = −kBT ln Ξ, (65)

with the grand partition sum Ξ according to (62). Note

the strong formal analogy with the corresponding canonical

expressions for: the probability distribution (5) with (61); the

partition sum (6), i.e. ZN = TrN e
−βH , with (62); the trace (8)

with (63); and the free energy (14) with (65).

Despite the system being open to particle exchange,

Noether’s reasoning continues to hold [14]. Briefly, the grand

potential is a functional of the external potential, Ω[Vext] (we

suppress the dependence on the thermodynamic parameters

µ, T), and Ω[Vext] is invariant under spatial displacements

according to (15). As a consequence, the sum rule of vanishing

external force (13) emerges, expressed in the form (27) with

TrN replaced by Tr, as is appropriate for the open system.

Why is the functional point of view important? In what we

have presented above it had played the role of adding abstrac-

tion and re-deriving results that we could obtain via more

elementary arguments. The importance of the variational for-

mulation stems from two sources, one being that it provides

a mechanism for the generation of correlation functions via

functional differentiation, in extension of the generation of the

density profile via (41), see e.g. references [13] for a com-

prehensive account. The second point lies in the variational

principle itself which formulates the many-body problem in

a way that allows to systematically introduce approximations

and make much headway in identifying and studying phys-

ical mechanisms in complex, coupled many-body problems.

While giving a self-contained overview of these concepts is

beyond the scope of the present contribution (see reference

[31] for a recent account), we wish to briefly describe certain

central points, to—hopefully—provide motivation for further

study.

We hence sketch the two variational principles as they are

relevant for equilibrium (classical density functional theory)

and for the dynamics (power functional theory); these form the

basis of reference [14]. Classical density functional theory is

based on treating the density profile ρ(r), rather than the exter-
nal potential Vext(r), as the fundamental variational field. The

grand potential, when viewed as a density functional [11, 12],

has the form

Ω[ρ] = F[ρ]+

∫

drρ(r)(Vext(r)− µ), (66)

where F[ρ] is the intrinsic Helmholtz free energy functional.

Crucially, F[ρ] is independent of the external potential, which

10
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features solely in the second term in (66). Here ρ(r) is concep-
tually treated as a variable; its true form as the equilibrium

density profile is that which minimizes Ω[ρ] and for which

hence the functional derivative vanishes,

δΩ[ρ]

δρ(r)
= 0 (min). (67)

Inserting the split form (66) of the grand potential into the min-

imization condition (67) and using the splitting into ideal gas

and excess (over ideal gas) free energy contributions, F[ρ] =
kBT

∫

drρ(r)[ln(ρ(r)Λ3) − 1]+ Fexc[ρ], yields upon exponen-
tiating the modified barometric law (54). Here the one-body

direct correlation function c1(r) is identified as the functional

derivative of the excess free energy functional, i.e. c1(r) =

−βδFexc[ρ]/δρ(r). As the functional dependence on the den-

sity profile persists upon building the derivative, i.e. in more

explicit notation c1(r, [ρ]), equation (54) constitutes a self-

consistency condition for the determination of the equilib-

rium density profile; determining the solution thereof requires

to have an approximation for Fexc[ρ] and typically involves

numerical work.

Power functional theory generalizes the variational concept

of working on the level of one-body correlation functions to

nonequilibrium. For overdamped Brownian motion, as is a

simple model for the description for the temporal behaviour

of mesoscopic particles that are suspended in a liquid, the

free power is a functional of both the time-dependent density

profile ρ(r, t) and of the locally resolved current distribution

J(r, t), where t indicates time. The power functional has the

form

Rt[ρ, J] = Ḟ[ρ]+ Pt[ρ, J]

−

∫

dr(J(r, t) · fext(r, t)− ρ(r, t)V̇ext(r, t)),

(68)

where Ḟ[ρ] is the time derivative of the intrinsic free energy

functional, Pt[ρ, J] consists of an ideal gas and a superadia-

batic part, where the latter arises from the internal interactions

in the nonequilibrium situation, fext(r, t) is a time-dependent

external one-body force field, which in general consists of a

(conservative) gradient term −∇Vext(r, t) and an additional

rotational (non-gradient, non-conservative) contribution, and

V̇ext(r, t) is the time derivative of the external potential. The

density profile and the current distribution are linked by the

continuity equation, ∂ρ(r, t) = −∇ · J(r, t), which is sharply

resolved on the microscopic scale. The dynamic variational

principle states that Rt[ρ, J] is minimized, at time t, by the

physically realized current,

δRt[ρ, J]

δJ(r, t)
= 0 (min). (69)

Inserting the splitting (68) of the total free power into the mini-

mization condition (69) yields the formally exact force density

relationship,

γJ(r, t) = −kBT∇ρ(r, t)+ Fint(r, t)+ ρ(r, t)fext(r, t), (70)

where γ is the friction constant of the overdamped motion,

such that the left-hand side constitutes the (negative) fric-

tion force density at position r and time t. The right-

hand side of (70) consists of an ideal, an internal and an

external driving contribution, with Fint(r, t) being the inter-

nal force density distribution, as it arises from the effect

of all interparticle interactions that act on a given parti-

cle at position r and time t. The internal force density

Fint(r, t) consists of an adiabatic contribution, which fol-

lows from the excess free energy functional via Fad(r, t) =

−ρ(r, t)∇δF[ρ]/δρ(r, t) and an additional genuine nonequi-

librium contribution, i.e. the superadiabatic force density,

Fsup(r, t). Honoring its functional dependence on the kinematic

fields ρ(r, t) and J(r, t) forms the basis for much recent work

in nonequilibrium statistical mechanics based on the power

functional concept. See reference [31] for an overview.

As a comment on terminology, we note that sometimes

the term Euler–Lagrange equation is applied generically to

refer to the vanishing of the first functional derivative of the

given variational problem, i.e. equation (67) for the case of

DFT and equation (69) for PFT, which respectively turn into

the explicit forms (54) and (70). This terminology is dif-

ferent from the also frequent use of referring specifically to

the Euler–Lagrange equations of motion of classical mechan-

ics, as they result from Hamilton’s principle, i.e. the sta-

tionarity of the action functional (see e.g. the appendix of

reference [31] for a description of the functional methods

involved).

3. Conclusions

In conclusion, we have demonstrated on an elementary level

how fundamental symmetries in statistical mechanics lead

to exact statements (sum rules) about average forces when

considering translations. These considerations also apply to

torques when considering rotations [14]. We have based our

presentation on the canonical ensemble, as is relevant in a vari-

ety of contexts [53–58]. While the canonical ensemble avoids

the complexity of particle number fluctuations that occur grand

canonically, nevertheless an open system is retained with

respect to energy exchange with a heat bath. As we have

shown, treating such fluctuating systems is well permissible

on the basis of Noetherian arguments. The arguably simplest

Noether sum rule is that of vanishing average total external

force in thermal equilibrium. As an application we have pre-

sented the case of a fluid confined inside of a container and

subject to the effect of gravity. While we have selected this

example for its relative simplicity, the influence of gravity on

mesoscopic soft matter is also a topic of relevance for studying

e.g. complex phase behaviour in colloidal mixtures; see e.g.

reference [60] for recent work that addresses colloidal liquid

crystals. Our derivations imply that the symmetry operation is

applied to the entire system. Here the system must be enclosed

by an external potential that represents confinement by e.g.

walls. The shift then applies also to these walls. In cases where

system boundaries are open (as can be suitable for a periodi-

cally repeated system like that shown in figure 2), Noether’s

theorem remains applicable upon taking account of additional
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boundary terms, see reference [14] for a detailed discussion of

such treatment.

In the presented considerations, we have started on the

basis of arguably the most fundamental statistical mechani-

cal object, i.e. the partition sum, as it enters the elementary

definition of the (here canonical) free energy. Investigating

invariance properties of further statistical objects, such as the

global external energy, is also worthwhile, as then Noether’s

reasoning leads to the correlator identity (60) of vanishing

correlation between global external force and global external

potential. Investigating the outcome of invariance applied in

this way constitutes an interesting task for future work.

Statistical mechanical derivations often rely on very simi-

lar reasoning; reference [14] gives an overview. A particularly

insightful example is the work by Bryk et al on hard sphere

fluids in contact with curved substrates [64]. These authors

derive a contact sum rule of the hard sphere fluid against

a hard curved wall. Their argumentation rests on the obser-

vation that the force that is necessary to move the wall by

an amount ǫ is balanced by the presence of the fluid. The

authors then succeed in relating this force to the value of the

density profile close to the wall. Closely related work was

carried out for the shape dependence of free energies [65].

Further studies that are related to Noether’s theorem were

aimed at broken symmetries [66] and emerging Goldstone

modes [67–69].

The general form of Noether’s theorem applies to varia-

tional calculus, and statistical mechanics falls well into this

realm. We have spelled out the connections explicitly, such

as the canonical free energy being viewed as a functional of

the external potential [13]. Notably only elementary statisti-

cal objects such as the partition sum are required. We have

also described two more advanced variational theories. Classi-

cal density functional theory [11–13] allows to view the grand

potential as a functional of the one-body density distribution.

A formally exact minimization principle then reformulates

the physics of system in thermal (and chemical) equilibrium.

The dynamic variational principle of power functional theory

[30, 31] consists of instantaneousminimizationwith respect to

the time- and position-resolved current distribution. Together

with the continuity equation, a formally closed one-body refor-

mulation of the dynamics of the underlyingmany-body system

is achieved.

Both density functional theory and power functional the-

ory can be viewed as systematic approaches to coarse-graining

the many-body problem to the level of one-body correlation

functions. In the static case, the correlation functions hence

depend on position alone, in the dynamics case the depen-

dence is on position and on time. Crucially, a microscopically

sharp description is formally retained, which is important for

the description of correlations on the particle (i.e. molecular

or colloidal) level. One of the most important features of these

theories is the identification of a universal intrinsic functional

that contains the coupled effects of the interparticle interac-

tions, but is independent of the external forces that act on the

system.

A wealth of productive research has been devoted to con-

structing powerful approximations for free energy function-

als for specific model systems. In the context of liquids the

important case of the hard sphere fluid is treated with excel-

lent accuracy within Rosenfeld’s fundamental measure theory

[17, 18], see e.g. reference [61] for a quantitative assessment

of the quality of theoretical density profiles against simula-

tion data. Notable recent progress to incorporate short-ranged

attraction into density functional theory is due to Tschopp,

Brader and their co-workers [62, 63], who systematically

addressed and exploited two-body correlations.

Despite power functional theory [30, 31] being signifi-

cantly younger than density functional theory, its usefulness

has been amply demonstrated, both for formal work as well as

for practical solution of physical problems and the discovery

of novel fundamental mechanisms. The reformulation on the

basis of the velocity gradient [39], instead of the current dis-

tribution, allowed to identify and to study structural forces

[40, 41] in driven systems that are governed by overdamped

Brownian dynamics. The splitting of the total internal force

field into flow and structural contributions is fundamental to

understanding the emerging effects in microscopically inho-

mogeneous flows [41]. Active Brownian particles, as a model

for self-propelled colloids (see e.g. [46–48]), are well suited

for the application of power functional theory. The general

framework [33, 34] for active systems was shown to physically

explain and quantitatively predict the motility-induced phase

separation that occurs in such systems at high enough levels

of driving [35–37]. Interfacial properties such as polarization

[38] and surface tension [35] were systematically studied.

The dynamical sum rules for forces and correlation func-

tions presented in reference [14] offer great potential for

systematic progress in the description of complex tempo-

ral behaviour, including memory [44, 45]. The nonequilib-

rium rules play a similar role than fundamental equilibrium

sum rules such e.g. the Lovett–Mou–Buff–Wertheim equation

[70, 71]. The section on ‘methods’ in reference [14] gives

a detailed description of the relationship of the equilibrium

Noether sum rules to such classical results from the liquid state

literature. Together with the nonequilibriumOrnstein–Zernike

relations [42, 43] the dynamical sum rules provide fertile

ground for making progress in nonequilibrium many-body

physics; see also the recent study of the relevance of invari-

ance in inhomogeneous dense liquids [72] and of the role of

fluctuations when going to effects that are higher than linear

in the displacement [73]. Hence the fundamental character of

Emmy Noether’s work will surely continue to prove its worth

in the future.
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