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Abstract
Model-driven software engineering (MDSE) as well as software product line engineering (SPLE) achieve productivity gains 
by raising the level of abstraction and fostering organized reuse. Consequently, the integrating discipline model-driven 
software product line engineering (MDSPLE) aims at combining the best of both worlds by creating multi-variant models 
which are (automatically) configured into single-variant models which are in turn adapted further (if required). Inherently 
complex multi-variant models call for urgently needed tools providing support for editing multi-variant models. In this paper, 
we present a framework for projectional multi-variant editors which make complexity manageable using a user-friendly 
representation. At all times, a domain engineer is aware of editing a multi-variant model which is necessary to assess the 
impact of changes on all model variants. Supporting a clear separation of product space (domain model) and variant space 
(variability annotations), our projectional multi-variant editors provide a novel approach to representing variability informa-
tion which is displayed non-intrusively. Furthermore, the domain engineer may employ a projectional multi-variant editor 
to adapt the representation of the multi-variant domain model in a flexible way, according to the current focus of interest.

Keywords Model-driven development · Software product lines · Multi-variant model · Projectional editing · Ecore · 
Generic framework

Introduction

In model-driven software engineering (MDSE) [1], soft-
ware systems are developed by creating high-level models 
which are analyzed, simulated, executed, or transformed into 
code. In this context, models are structured artifacts which 
are instantiated from metamodels. A metamodel defines the 
types of elements from which models are composed and 

the rules for their composition. For metamodels, the Object 
Management Group (OMG) has defined the MOF standard 
(Meta Object Facility) a subset of which is implemented as 
Ecore in the Eclipse Modeling Framework (EMF) [2].

Models may be represented in a variety of different ways, 
including diagrams, trees, tables, or human-readable text. 
Different kinds of editors may be employed to create and 
modify models. In the case of a textual representation, a 
syntax-based editor may be used which persists the text and 
derives the underlying model by an incremental parsing 
process. In the EMF ecosystem, the Xtext1 framework is 
frequently used to generate syntax-based editors from lan-
guage descriptions.

In contrast, projectional editors provide for commands 
operating directly on the model and project the model onto 
a suitable representation [3, 4]. A projectional editor may 
ensure syntactic correctness of models and enjoys further 
advantages concerning tool integration. In particular, since 
models are stored as instances of metamodels, unique identi-
fiers may be assigned to model elements such that they may 
be referenced in a reliable way.

Communicated by Slimane Hammoudi and Luis Ferreira Pires.

This article is part of the topical collection “Model-Driven 
Engineering and Software Development” guest edited by Slimane 
Hammoudi and Luis Ferreira Pires.

 * Johannes Schröpfer 
 Johannes.Schroepfer@uni-bayreuth.de

 Thomas Buchmann 
 Thomas.Buchmann@uni-bayreuth.de

 Bernhard Westfechtel 
 Bernhard.Westfechtel@uni-bayreuth.de

1 Applied Computer Science I, University of Bayreuth, 
95440 Bayreuth, Germany 1 https:// www. eclip se. org/ Xtext.

http://orcid.org/0000-0001-6801-8731
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01456-8&domain=pdf
https://www.eclipse.org/Xtext


 SN Computer Science (2023) 4:3535 Page 2 of 17

SN Computer Science

Software product line engineering (SPLE) [5] is a disci-
pline which is concerned with the systematic development 
of families of software systems from reusable assets. To this 
end, common and discriminating features of family members 
are captured in a variability model, e.g., a feature model 
[6]. In domain engineering, a variability model is developed 
along with a set of reusable assets which are used in applica-
tion engineering to derive product variants.

Product variants may be constructed in different ways. In 
case of positive variability, they are composed from reusable 
modules. In case of transformational variability, product 
variants are constructed by applying a sequence of trans-
formations. In case of negative variability, multi-variant 
artifacts are represented as superimpositions of annotated 
elements. An annotation constitutes a presence condition 
over features. A product variant is defined by a feature con-
figuration, stating which features have to be included and 
excluded, respectively. To construct a single-variant artifact, 
all elements are removed from a multi-variant artifact whose 
annotations evaluate to false.

Model-driven software product line engineering 
(MDSPLE) combines MDSE with SPLE. Thus, SPLE is 
applied to models. While most SPLE approaches focus on 
source code rather than models, a number of MDSPLE tools 
have been developed, e.g., FeatureMapper [7], FAMILE [8], 
and SuperMod [9] all of which are based on EMF.

Contribution

This paper is a significant extended version of [10] and pre-
sents a framework for generating projectional multi-variant 
model editors. This framework is based on our previous 
work on projectional single-variant editors for models in 
the technological space of EMF. As described in [11], a 
projectional editor may be generated from a metamodel for 
domain models (an Ecore model defining classes, attributes, 
and references) and a syntax definition which maps model 
elements to a human-readable textual representation. In the 
work presented in this paper, we have extended the frame-
work for single-variant model editors into a framework for 
building multi-variant editors. This extension is generic, i.e., 
it depends neither on the underlying metamodel nor on the 
syntax definition. Thus, no additional development effort is 
required to turn a single-variant editor into a multi-variant 
editor. The extensions compared to [10] comprise a much 
more in depth description of the editor and its underlying 
architecture as well as a complete new running example.

A projectional multi-variant editor which has been built 
with the help of our framework is characterized by the fol-
lowing properties: 

1. So far, our projectional editors support human-readable 
text as the external representation of EMF models. In 

MDSE, human-readable text is becoming increasingly 
popular. One example constitutes the UML-based tex-
tual language Action Language for Foundational UML 
(ALF) [12] that also comes along with appropriate tool 
support in EMF [13]. The editor’s design is extensible; 
further representations such as diagrams may be added 
in the future.

2. Projectional multi-variant editors are based on negative 
variability (probably the main-stream SPLE approach). 
Thus, engineers do not have to learn new languages. 
Rather, domain models are augmented with annotations.

3. For modeling variability, feature models (the most wide-
spread notation in SPLE) are used. All annotations refer 
to features and attributes from a feature model for the 
software product line.

4. Projectional multi-variant editors are designed to sup-
port domain engineering. Since multi-variant models are 
the artifacts of domain engineering, a projectional multi-
variant editor directly operates on a multi-variant model. 
Thus, all variants may be considered by the domain 
engineer during editing. Furthermore, each command 
has a uniquely determined semantics. These properties 
distinguish our approach from variation control systems 
[14] which are faced with view-update problems and 
limited awareness in filtered views.

5. Internally, annotations of model elements are stored in 
a separate mapping model [8]. Thus, existing domain 
metamodels may be reused. Furthermore, the relation-
ships between features in the feature model and elements 
of domain models are captured in one single central data 
structure. This approach facilitates traceability and prop-
agation of changes from the feature model to annotated 
domain models.

6. The mapping model is shielded from the user. Rather, 
annotations are displayed intuitively along with the 
model elements in a single representation. Therefore, 
the user does not have to deal with the internal con-
cepts and structure of the mapping model. In contrast 
to approaches based on preprocessor directives, annota-
tions are separated clearly from domain model elements 
in the representation of a multi-variant model.

7. Projectional multi-variant editors include commands 
for projectional editing of annotations. Thus, annota-
tions are handled as structured objects rather than as 
text strings. Context-free correctness of annotations is 
guaranteed by the projectional editor.

8. To cope with complexity, projectional multi-variant edi-
tors provide several commands for adapting the repre-
sentation of an annotated model to the current focus of 
interest. For example, annotations may be hidden com-
pletely or selectively. In this way, the representation of 
the model may be simplified. It should be noted, how-
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ever, that all editing commands still refer to the underly-
ing multi-variant model.

Overview

The rest of this paper is structured as follows: Section 2 
explains the background of our research and related work. 
Section 3 describes the functionality and the user interface 
of projectional multi-variant editors. An example is given 
in Sections 4 and 5 outlines the model-based internal archi-
tecture underlying these editors. Section 6 details a specific 
aspect of the realization: the mapping between domain 
models and feature models. Finally, Section 7 concludes 
the paper.

Background and Related Work

As stated in the previous section, the main goal of soft-
ware product line engineering is to (automatically) derive 
single applications from a common platform by employ-
ing organized reuse. A special development process is a 
crucial prerequisite in order to be successful. In the SPLE 
literature [5, 15], a typical development process has been 
established which distinguishes between the sub-disci-
plines domain engineering and application engineering as 
shown in Fig. 1. During domain engineering, the product 
domain is analyzed, capturing the results in a variability 
model (e.g., a feature model). Typically, Feature-Oriented 
Domain Analysis (FODA) [6] or one of its descendants (like 
FORM [16]) is used to analyze the domain. Furthermore, an 

implementation—the so called platform—is provided at the 
end of domain engineering. The platform comprises a set of 
reusable development artefacts that contain all commonali-
ties and variabilities of the products being in the scope of 
the product line. In this regard, evolution of software product 
lines poses a significant field of research [17–19].

Typically, the variability is captured and expressed in a 
variability model. Different formalisms exist to describe 
commonalities and differences among members of the prod-
uct line. As one representative, feature models [6, 20] use 
features as boolean properties of a software system which 
can be either present or absent in a specific product. Features 
are arranged in an AND/OR-tree. In the case of an AND-
decomposition, all of its child features have to be selected 
when the parent is selected. In contrast, for an OR-decom-
position, at least one child has to be selected. Additionally, 
XOR-decompositions enforce the selection of exactly one 
child. Depending on the respective variant of feature models, 
refining modeling constructs are provided, such as requires 
and excludes relationships [21] or cardinality-based feature 
modeling [22]. While feature models describe the variability 
of the entire product line, feature configurations describe the 
characteristics of individual products thereof.

Application engineering on the other hand deals with the 
construction of specific product variants by employing and 
exploiting the reusable assets developed in domain engi-
neering. Deriving products can be achieved following three 
different approaches: 

Positive Variability  This approach fosters build-
ing variable artifacts around 

Fig. 1  Software product line 
engineering process distinguish-
ing between domain engineer-
ing and application engineering 
[5]
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a common core which is 
shared by all variants. Com-
position techniques [23] 
are used to derive the final 
products.

Transformational Variability  This approach uses a 
sequence of transforma-
tions which are performed 
in a predefined order to con-
struct products [24].

Negative Variability  This approach relies on a 
superimposition of all vari-
ants which is created in the 
form of a multi-variant 
product [25, 26]. Specific 
products are derived by 
removing all fragments 
of artifacts implement-
ing features which are not 
contained in the desired 
product.

In all three cases, the application engineer binds the 
variability by creating a feature configuration. In a feature 
configuration, a selection state (selected or deselected) is 
assigned to each feature variable. A feature configuration 
is consistent if the provided selections conform to the con-
straints defined in the feature model. However, a consistent 
feature configuration cannot guarantee a consistent product 
in general [27].

For the reminder of this paper we want to put our empha-
sis on negative variability. Negative variability extends sin-
gle- to multi-variant artifacts by annotating artifact elements. 
In contrast to positive and transformational variability, exist-
ing languages for single-variant artifacts may be reused. 
Thus, SPL engineers do not have to learn new languages 
and furthermore, existing implementation artifacts may be 
easily integrated into the platform. However, editing multi-
variant artifacts poses a significant cognitive challenge: For 
example, editing source code written in the programming 
language C turns out to be difficult because preprocessor 
directives realizing annotations are intermingled with ordi-
nary C code.

Therefore, dedicated multi-variant editors are required for 
making the complexity manageable. To date, quite a num-
ber of rather different approaches have been proposed and 
implemented. All of these approaches suffer from different 
shortcomings:

Virtual separation of concerns [25, 28] applies C-like 
preprocessor directives to Java code. A syntax-based 

editor supports separation of concerns by assigning colors 
to features and by eliding deselected program fragments. 
It is obvious that coloring works only for a small set of 
features and furthermore, preprocessor directives are still 
intermingled with ordinary code. Consequently, two differ-
ent aspects of the software product line are mixed in one 
physical resource: features and their implementing source 
code artifacts. In addition, as soon as a product is derived, 
the traceability links between features and code are lost, as 
the preprocessor removes all preprocessor directives before 
passing the source code to the language compiler.

Model-driven tools such as FeatureMapper [7] and 
FAMILE [8] follow a different approach: Annotations are 
stored and visualized in a dedicated mapping model. While 
annotations are separated from models, the SPL engineer 
is exposed to an internal data structure which should be 
hidden from the user. Furthermore, it is hard to understand 
the relationships between model elements and annotations. 
Eventually, the mentioned tools support domain engineer-
ing only. As soon as a product is derived, the connection 
to the platform of the product line (including the mapping 
information) is lost.

In contrast to the approaches having been discussed 
above, variation control systems reduce complexity by 
filtered editing [14]. From a multi-variant artifact called 
source, a view is materialized in which variability has been 
resolved completely or partially. After editing of the view 
has been finished, the performed changes are propagated 
back to the source. Variation control systems are faced with 
two problems: Limited awareness of the context in which 
editing is performed and delineation of the scope of the 
change in the variant space. While the other tools mentioned 
above primarily display and edit artifacts of domain engi-
neering, and provide (filtered) views of the multi-variant 
domain model, variation control systems operate on (par-
tially configured) products. Thus, the software product line 
engineer works on specific variants (as in application engi-
neering) and domain engineering is performed implicitly 
when a commit into the version repository is executed.

In contrast to the approaches mentioned above, our 
approach completely hides the mapping model from the 
user. The SPL engineer is empowered to use feature annota-
tions in the concrete syntax in an intuitive way. Furthermore, 
the annotations may be hidden in the editor at any time. 
Sophisticated visualizations allow for different views of the 
multi-variant domain model ranging from fine-grained views 
showing single features only over partial feature configura-
tions to a view of the complete multi-variant domain model.

In our approach, application engineering is a fully auto-
mated process where the final products are derived from 
the multi-variant domain model using a feature configura-
tion. The derived artifacts comprise traceability links to the 
multi-variant domain model which is a significant aspect 
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for evolution. If the derived products are modified and/or 
completed, changes can be propagated back into the multi-
variant model employing the tracability links. In addition, 
this process requires a specification describing which vari-
ants are supposed to be affected by these remote changes 
(apart from the derived product variant itself).

In [29] the authors present a multi-view projectional edi-
tor for software product lines based on JetBrains MPS.2 In 
contrast to our approach which is generic and allows for 
reusing existing EMF technology (modeling languages, 
model transformations, code generators), the PEoPL solu-
tion focuses on combining annotative and compositional 
editing of software product lines for a specific modeling 
language.

Functionality and User Interface

This section illustrates the functionality of the editor frame-
work. Before considering the different kinds of annota-
tions, the general functionality of the editors with respect to 
creating and modifying multi-variant models is described. 
Finally, some aspects regarding the integration of this frame-
work are summarized.

The Framework in General

Figure 2 depicts the different roles of users and their use 
cases within the framework. The context of the framework 
is the Eclipse Modeling Framework, i.e., all metamodels 
of the considered models are instances of the Ecore meta-
model. First, the editor developer configures the editor for 
the respective (domain-specific) language. The description 
of the lexical and contextfree syntax is specified by means 

of projection rules which map classes and structural features 
from the metamodel (abstract syntax) to concrete text. In 
addition, static semantics with respect to scoping and valida-
tion rules may be added programmatically by implementing 
generated classes that are initially empty.

The domain engineer specifies the feature model for the 
respective product line. By using commands within the 
projectional editor, the multi-variant domain model is built 
and modified. The editor visualizes the domain model as an 
abstract syntax tree—by interpreting the syntax definition 
specified by the editor developer—augmented with appropri-
ate annotations which refer to the feature model. Projectional 
editor commands are provided to add and remove objects 
or to set attribute values and cross links—with respect to 
domain model elements as well as their annotations. Fur-
thermore, the framework also persists the representation of 
the underlying model. While commands regarding the multi-
variant domain model affect the representation respectively, 
the domain engineer can also modify the layout directly, e.g., 
by adding additional whitespace characters or line breaks. 
The domain engineer may create feature configurations to 
visualize filtered views of the multi-variant model including 
fully configured previews of single-variant products.

Eventually, the application engineer derives single vari-
ants from the multi-variant model. To this end, feature con-
figurations are created. Note that the role of the application 
engineer is not considered in this paper. Nevertheless, fea-
ture configurations also play a significant role for the editor 
within domain engineering as (potentially partial) feature 
configurations can be used for defining arbitrarily filtered 
views of the multi-variant model.

All in all, we differentiate three different roles two of 
which are the typically considered roles in product line engi-
neering. While the syntax definition, the editor providers, 
and the representation are specific to the editor framework, 
the multi-variant domain model, the feature model, and the 
feature configuration—that constitute the relevant artifacts 

Fig. 2  Overview of roles and 
modeling artifacts within the 
editor framework. The applica-
tion engineer’s role is not 
considered in this paper
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within the product line context—can be (re-)used outside 
the framework, as well.

The editor combines the different types of commands 
in one integrated view of the multi-variant domain model. 
The editor visualizes an arbitrary abstract syntax tree or an 
appropriate subtree. Figure 3 shows the editor for an exam-
ple ALF model. The major part constitutes the main pane 
(cf. part 1) that visualizes the multi-variant domain model. 
The annotations are depicted by labels between the code 
lines. When selecting model elements in the main pane, the 
respective information about the model element is shown 
(cf. part 2). In the upper-left corner, the editor provides but-
tons for general commands, e.g., the common editor opera-
tions Undo and Redo as well as the validation process (cf. 
part 3) which do not depend on the currently chosen mode. 
In addition, mode-specific commands (depending on the 
mode that is chosen) may be executed by clicking buttons 
(cf. part 4) that depend on the current mode and the selected 
model element.

With respect to the models affected by the editor com-
mands, the editor differentiates two modes (cf. part 5). 
Within the data mode, the domain model as well as the map-
ping model is modified before the representation is adjusted 
accordingly. The view mode offers purely representation 
commands, e.g., adding line breaks or whitespaces.

The annotations are displayed as labels between the lines 
that contain the respective model elements. With respect to 
the visualization of the annotations, three different modes 
are supported (cf. part 6). The domain engineer may choose 
whether no annotations are visible at all—that results in 
an editor without product line context—, whether all 

annotations of the represented domain model subtree are 
visible, or whether an arbitrary subset of all annotations is 
visible (selected annotations), e.g., annotations that contain 
a certain feature.

While domain model, mapping model, and the repre-
sentation model are edited by means of commands within 
the editor, the feature model is built and modified using an 
extra editor. Currently, the generic EMF tree editor is used 
to this end. For future work, we plan a more adequate pro-
jectional editor with a simple and intuitive textual syntax. 
The respective metamodel for feature models is applied to 
our framework; thus, a projectional editor is used for both 
feature model and domain model which furthermore mini-
mizes the dependencies to other tools.

Support for Domain Engineering

The editor always visualizes one representation model. Each 
representation refers to one subtree of a domain model. 
Therefore, one domain model can be represented by several 
representation models each of which corresponds to another 
subtree of the domain model. Eventually, the product line 
may be realized by several domain models. Thus, a product 
line of multiple domain models is represented by multiple 
representation models that are visualized by multiple editors 
providing different views of the range of domain models. In 
case of the example, there is exactly one domain model. This 
model consists of an ALF package which contains several 
classes. Each representation model refers to a class, i.e., each 
class is visualized by an own editor—analogously to Java 

Fig. 3  Screenshot of the editor 
user interface for a small exam-
ple ALF model

1

2
3

4

5

6



SN Computer Science (2023) 4:35 Page 7 of 17 35

SN Computer Science

classes, for instance. The ALF class shown here contains 
two properties and one generalization.

Annotations contain links to features and attributes in the 
feature model within boolean expressions that are built by 
means of common logical operators (conjunction, ex- and 
inclusive disjunction, negation). Annotations are internally 
represented as subtrees. Projectional commands allow for 
adding and removing objects, restructuring expression sub-
trees, and setting links in the editor. Within the user inter-
face, the annotations are located between the physical lines 
representing the domain model. For each physical line, the 
annotations referring to its elements are shown above the 
line.

Annotations can be created and modified using the 
respective editor commands. The framework provides three 
different kinds of annotations depending on the kind of the 
multi-variant model element the respective annotation refers 
to. As shown in Fig. 3, coloring is used to differentiate these 
different kinds. To this end, the following general classifica-
tion is performed:

• Visibilities of Objects and Values A single object or value 
is annotated by means of a boolean expression that indi-
cates its visibility. The element is present in the product if 
the expression evaluates to true for the respective feature 
configuration and vice versa. In the shown example, the 
class object is bound to the feature Whole and the proper-
ties are bound to the features ChildOne and ChildTwo, 
respectively. If the respective feature is set, the corre-
sponding annotation evaluates to true and the object is 
visible in the derived product.

• Visibilities of Optional Elements This category captures 
optional model elements in general. Optional fragments 
may comprise numerous artifacts as objects, links, val-
ues, or keywords. For a single optional unit, the annota-
tion is a boolean expression that indicates its visibility. 
The element is present in the product if the expression 
evaluates to true for the respective feature configuration 
and vice versa. In the example, the optional fragment for 
the superclass is bound to the optional feature Generali-
zation. Furthermore, the initializer expression of the first 
property is optional and bound to the feature InitValue. 
The code fragments are visible in the editor—and thus, 
the child objects are contained in the domain model—if 
the respective feature is set.

• Elementary Values of Attributes In addition to annota-
tions posing visibilities, values can be annotated with 
references to feature attributes (from the feature model). 
In this case, a value in the domain model is bound to a 
feature attribute. The multi-variant domain model stores 
the default value depending on the respective type of 
the attribute. When a product is derived, values for the 
feature attributes are provided by the feature configura-

tion, as well. In the depicted model, the concrete integer 
value that constitutes the initial value of the first property 
is bound to the feature attribute number. In the multi-
variant model, the default value 0 is stored.

For annotations describing visibilities of model elements, 
the principle of top-down propagation of annotations is 
applied. A model element is visible if and only if its annota-
tion evaluates to true and all annotations that refer to (direct 
or transitive) container elements evaluate to true, as well.

Limitations of Integration

As outlined above, the context of this framework is the 
Eclipse modeling framework. Thus, we deal with EMF 
models with metamodels constituting instances of the Ecore 
(meta-)metamodel. As concrete syntax, merely textual syn-
tax is provided so far. We assume that each product line 
implemented by this framework refers to one global feature 
model that is used to be referenced by annotations. A prod-
uct line may comprise several domain models persisted by 
separated file resources.

For describing the abstract syntax of the multi-variant 
models, the framework requires one or more metamodels 
which are instances of the Ecore metamodel. Our restrictions 
of variability result from the assumption that the multi-var-
iant model is a valid instance of the respective metamodel. 
In particular, values of single-valued properties cannot vary.

Note that no more technical restrictions with respect to 
the metamodels are present. Furthermore, the derived sin-
gle variants can be reused by other modeling tools or code 
generators which are not aware of any product line context. 
Also the configuration of the editor is conceptually separated 
from the product line context. As a consequence, variability 
does not have to be taken into account when designing the 
(domain-specific) language with its syntax and semantics. In 
particular, artifacts from existing (single-variant) languages 
can be implemented. All in all, the editor framework may 
be flexibly applied to pretty arbitrary textual languages even 
without any product line context.

Example

This section describes an example use case of the frame-
work. The projectional editor has been configured for the 
textual language ALF. It is used to implement the Calculator 
product line. Note that in this section, we only consider the 
role of the domain engineer and the related workflow. We 
assume that the respective ALF editor was already config-
ured by an editor developer.

Figure 4 depicts the feature model of the Calculator 
product line in textual notation. The feature Calculator 
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constitutes the root feature. It contains the mandatory fea-
tures Arithmetic and Trigonometry as well as the optional 
feature Description. The feature Arithmetic contains the 
usual operations represented by the mandatory child features 
Addition, Multiplication, and Logarithm. The value of a log-
arithm is specified by an expression and a base value (two 
parameters). The optional child feature Default provides 
operations for computing logarithms for a certain default 
base value (only one parameter). In addition, if only default 
logarithms are supposed to be considered, the optional fea-
ture OnlyDefault may be selected. For the default base value, 
the real attribute defaultBase is provided.

The feature Trigonometry consists of the mandatory 
features Functions and Measurement. Representing the 
provided functions, the child features Sine, Cosine, and 
Tangent are present which are all optional. The selection 
range of the parent feature Functions requires a selection 
of at least two child features. For the measurement of the 
angles, the optional features Degree, Radian, and Gradian 
are considered. In this case, the selection range of the par-
ent feature Measurement requires a selection of at least one 
child feature which describes the behavior of an inclusive 
OR-group of features. Note that for simplification reasons, 
only a pretty small subset of possible operations is captured 
by the product line.

The product line comprises one ALF model as its single 
domain model. Fig. 5 shows the initial domain model the 

framework is applied to. The domain model has an ALF root 
package that contains several classes, associations, and an 
enumeration implementing the functionality. Each represen-
tation model refers to one packaged element; we focus upon 
the ALF class Arithmectic.

Within the editor, the initially empty class is extended 
with domain model elements which is presented below. 
After that, annotations are inserted to get a multi-variant 
domain model. Note that these two steps are separated only 
for presentation reasons. In the tool, domain model elements 
and annotations my be created and modified in an arbitrary 
order in one integrated view of the multi-variant domain 
model.

Figure 6 illustrates the succeeding steps of extending the 
initial ALF class. First, an object is inserted for the default 
base value of logarithms. Using projectional commands, 
the ALF property (step 1 → 2 ) with a real literal as its ini-
tial expression (step 2 → 3 ) is added. Next, the operations 
used for calculation are inserted (steps 3 → 4 → 5 ). For the 
sake of readability, only a subset of all operations is created; 
furthermore, the operation bodies are left empty. The class 
Arithmetic is supposed to inherit from the abstract super-
type CalcModule which provides an operation that returns 
a description of the respective module within the calcula-
tion package. To this end, a generalization object has to be 
inserted (steps 5 → 6 → 7 ). In concrete syntax, the super-
type of a class is an optional fragment. This option is ena-
bled before the generalization object is added. Finally, layout 
commands are used to add some extra lines (step 7 → 8).

After building the domain model, it is augmented with 
annotations by means of the respective editor commands. 
Note that in general, domain model commands and annota-
tion commands may be intermixed freely. Figure 7 shows 

Calculator [2..3]
Arithmetic [3..3]
Addition
Multiplication
Logarithm [0..1]
Default [0..1]
OnlyDefault
defaultBase : REAL

Trigonometry [2..2]
Functions [2..3]
Sine
Cosine
Tangent

Measurement [1..3]
Degree
Radian
Gradian

Description

Fig. 4  Feature model of the Calculator example in tree notation. 
Mandatory features are marked by filled circles and optional ones 
by hollow circles. A filled rectangle represents a feature attribute. 
For each parent feature, the respective selection range referring to its 
child features is notated after the name of the feature

: Unit

: Package

: Class

: Class

: Association

: Class

: Class

: Association

: Enumeration

definition

namespace

ownedMember

ownedMember

ownedMember

ownedMember
ownedMember

ownedMember

ownedMember

name = calc

name = Calculator

name = CalcModule
abstract = true

name = ProvArithm

name = Arithmetic

name = Trigonometry

name = ProvTrigon

name = Measurement

Fig. 5  The initial domain model of the example



SN Computer Science (2023) 4:35 Page 9 of 17 35

SN Computer Science

1

2
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56
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Fig. 6  The succeeding steps of adding domain model elements to the initial model. The different steps are performed by means of different pro-
jectional editor commands
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the annotated model. For the whole class Arithmetic, the 
feature Arithmetic is referenced by the annotation expres-
sion. The operations add and mult are bound to the cor-
responding features, analogously. For computing the loga-
rithm, two different operations are provided. The operation 
log has a parameter for the base and one for the expres-
sion; its annotation constitutes a conjunction of a reference 
to the feature Logarithm and a negation of a reference to 
the feature OnlyDefault.

In addition, the operation logDef only contains a param-
eter for the expression and employs the stored default 
value for the base; its annotation constitutes a reference 
to the feature Default. The same annotation is used for the 
property defaultBase. The real value within its expression 
is bound to the corresponding feature attribute default-
Base. Note that this value will be replaced with the value 
of the feature attribute specified in a feature configura-
tion used to configure the domain model for application 
engineering.

Eventually, the annotations referring to the feature 
Description are added. First, the generalization relationship 
is linked. To this end, the optional fragment representing the 
inheritance—including the keyword specializes and the gen-
eralization object referencing the superclass—is annotated 

with the reference to the feature Description. Furthermore, 
the operation getInfo() is annotated analogously.

Architecture

This section describes the architecture of the framework. 
The technical context of our framework is the Eclipse Mod-
eling Framework that comes along with the Ecore meta-
model. Basically, each product line bases upon one global 
feature model. Furthermore, the traces connecting domain 
model elements with the respective elements from the fea-
ture model are stored within one global mapping model. 
Analogously to the mapping model providing links between 
domain model elements and their annotations in the product 
line context, one global correspondence model captures the 
connections between the models which are necessary for the 
internal functionality of the editor.

Overview

Figure 8 illustrates the architecture of the models and the 
corresponding editors as well as their dependencies. All 
models are based on the ECORE metamodel. The core edi-
tor (EDITOR) is a projectional editor without any product 
line context. The projectional editor with product line sup-
port (PL-EDITOR) is an extension of that editor. Each editor 
instance refers to exactly one domain model as an abstract 
syntax tree (AST); within the editor, either the complete 
model or a subtree is presented. There are not any assump-
tions about the respective metamodel; the domain meta-
model ( ASTM ) may be arbirary.

The traces that link the domain model elements with 
artifacts from the feature model are persisted in the (prod-
uct line) mapping model (PL-MAPP). In general, the map-
ping model contains mapping elements for domain model 
elements contained in several abstract syntax trees. Each 
annotation is contained in an adequate mapping element 
and comprises a subtree that constitutes the structure of the 
respective annotation expression. Both the metamodel of 
the feature models ( FEATM ) and the metamodel of the map-
ping models (PL-MAPP

M ) are generic and fixed, internal 
artifacts of the framework. For creating and modifying the 
feature model, an extra editor is used. Currently, the default 
EMF tree editor is employed; future work will provide for a 
comfortable projectional editor.

While the mapping model connects the domain model 
with the feature model in the product line context, the cor-
respondence model (CORR) serves as the central model 
that combines the models that are necessary for the inter-
nal editor functionality. The editor instances visualize the 
representation models (REPR) that are referenced by the 
correspondence model and connected to the abstract syntax 

Fig. 7  The annotated ALF class Arithmetic in the domain model
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trees as well as the model containing the concrete syntax 
definition (CSYN). In addition, in case of the extended edi-
tor within product line context, the correspondence model 
refers to the mapping model; consequently, internal editor 
correspondences and product line mappings are conceptu-
ally and physically separated. All the respective metamodels 
for the correspondence models ( CORRM ), the representation 
models ( REPRM ), and the syntax definitions ( CSYNM ) are 
fixed, internal artifacts. When the representation model is 
used by the extended editor including product line support, it 
contains elements for annotations and their contents; further-
more, the correspondence model refers to these objects by 
means of respective correspondence objects for the expres-
sion objects within annotations.

Each editor instance refers to one representation model 
from which the presentation is derived. The representation 
model comprises model elements such as blocks, line, and 
cells; analogously, the editor pane visualizes geometri-
cal objects (rectangles and labels) corresponding to the 

abstract model elements. To bundle the traces between 
representation elements in the representation model 
(REPR) and presentation elements created by the editor 
(EDITOR), an internal, transient data structure (UI-MAPP) 
is employed; these transient traces are not stored when 
the editor is closed. The concrete syntax definition model 
(CSYN) is constructed from a set of textually notated pro-
jectional rules that has been defined by the editor devel-
oper using an extra text editor (CSYN-EDITOR).

All in all, the architecture allows for a flexible informa-
tion exchange between the involved models. For a repre-
sentation element that is selected within the editor, the 
respective internal correspondence element is detected 
in order to get access to the represented domain model 
element, the referenced product line mapping element (if 
any) as well as the applied projection rule. The intercon-
nected system of models establishes the logical basis for 
the functionality of the different editor commands with 
and without product line support.

Product Line
Context

Editor ContextFEAT-EDITOR PL-EDITOR

EDITOR

CSYN-EDITOR

UI-MAPP
FEATM

PL-MAPPM

FEAT

PL-MAPP

AST

ASTM
ECORE

CORR REPR

CSYN
CORRM

REPRM

CSYNM

[1]

[1]

[?]

[*]

[1]

[?] [1]

[*]
[1]

[*]

[1]

[1]
[1]

[*]

[1]

[1]

[1]

[1]

[1]

[1]

[*]

[1]

[*]

[1]

[*]

[1]

[1]

[1]

[1] [1]

[1]

[1]

Tool editor (user interface)

Variable model (persisted)

Fixed model (persisted)

Transient data structure

References
Is instance of

Extends
Modifies

Fig. 8  Megamodel describing the architecture of the framework com-
prising the different models within one product line and their rela-
tions. In case of the dependencies References and Modifies, the UML 
multiplicities [1] (exactly one element) and [*] (arbitrarily many ele-

ments) are used; the multiplicity [?] describes optional single ele-
ments (in UML 0..1) depending on the fact whether the extended edi-
tor is used (including product line support) or not [10]



 SN Computer Science (2023) 4:3535 Page 12 of 17

SN Computer Science

Example Scenario

In order to depict an exemplary system of models accord-
ing to this architecture, we refer to the very small example 
shown in Section 3. Figure 9 illustrates the system of the 
involved models for a cutout of the domain model which 
contains the classes ExampleClass and SuperClass as well as 
two properties; for the sake of readability, only inter-model 
references and no cross references between model elements 
are visualized. As each ALF class within the domain model 
(AST) is shown in an own editor instance, two representation 
models (REPR 1 and REPR 2) are present. Both represen-
tation models possess blocks as their root elements which 
represent the ALF classes.

The correspondence model (CORR) provides an object 
correspondence for each object that is represented by a rep-
resentation model and visualized in an editor. The corre-
spondence element connects the representation element as 
well as the domain model element and links to the respective 
projection rule within the syntax definition model (CSYN) as 
well as the product line mapping element that is contained 
in the PL-MAPP model. In this case, the ALF class Exam-
ple (1) is represented by a root block (2). This relationship 

is stored by an object correspondence (3) which links to 
the projectional rule for ALF classes (4) and the product 
line mapping element (5). Container objects of the ALF 
classes—e.g., the ALF package—are not presented in the 
editor; thus, neither representation elements nor correspond-
ence elements are present for the respective container ele-
ments in the domain model and their mapping elements in 
the product line mapping model.

In general, the containment hierarchy of the domain 
model is also applied for the correspondence model and 
the representation models. For instance, in case of the class 
ExampleClass that contains the property firstAttr within the 
domain model, the representation element for the property 
is a transitive child element of the representation element for 
the class and the correspondence element for the property 
is contained in the correspondence element for the class. 
Furthermore, this containment structure is also visible in the 
mapping model; more details about the product line mapping 
models are provided by Section 6.

The annotations refer to features contained in the fea-
ture model. For the expressions, the product line mapping 
model contains respective elements which are children of the 
respective mapping elements. Besides objects representing 

PL-EDITOR 1 PL-EDITOR 2

UI-MAPP 1 UI-MAPP 2

REPR 1 REPR 2
CORR

PL-MAPP

AST

CSYN

: ObjMapping

: ObjMapping

: ObjMapping : ObjMapping

: ObjMapping : ObjMapping

: Annotation : Annotation

: Annotation : Annotation

: Unit

: Package

: Class : Class

: Property : Property

: ObjCorr : ObjCorr

: ObjCorr : ObjCorr

: AnnotCorr : AnnotCorr

: AnnotCorr : AnnotCorr

: Block : Annotation

: Cell

: Line

: Cell

: Cell

: Body

: Line : Line

: Fragment : Fragment

: Annotation : Annotation

: Cell : Cell

: Block

: Annotation

: Cell

: BlockPattern : LinePattern

1

2

3

4

5
6

7

8

name = random

name = ExampleClass name = SuperClass

name = firstAttr name = secondAttr

label = Whole

label = public

label = class

label = ChildOne label = ChildTwo

label = Generalization

name = Class name = Property

Fig. 9  An exemplary system of models with inter-model dependen-
cies (cutout). It describes the simple example shown in Fig. 3. AST 
objects that are visible within the editors, their representation ele-
ments, and related elements have a red filling while annotations and 

their corresponding elements are marked by a yellow filling. AST 
objects which are not visualized by the editors and the respective 
mapping elements are grayed out. Diamond arrows stand for (direct 
or transitive) containment relations between model elements
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domain model elements, the representation models exhibit 
objects representing annotations and their cells. In this 
example, for the annotation Whole (6), a representation 
object (7) is provided as well as an annotation correspond-
ence element (8). In case annotations are hidden in the edi-
tor, this circumstance is persisted by a boolean flag within 
the representation model.

Each representation model is presented by one specific 
editor where the traces between representation elements and 
presentation elements within the editor pane are persisted by 
a specific transient data structure (UI-MAPP). While the rep-
resentation models contain geometrical objects for blocks, 
bodies, lines, cells, and annotations, the editor consists of 
corresponding graphical elements. In case of hidden annota-
tions, there are representation objects within the model that 
do not have corresponding elements presented by the editor.

Mapping Model and Annotations

In this section, we describe some details about implementing 
variability in the domain models with our approach. After an 
overview of the metamodel for feature models, the product 
line mapping models are considered which serve as the con-
nection between domain models and feature model.

Feature Models

The metamodel for feature models is depicted in Fig. 10. 
A feature model constitutes a tree of features. Each feature 
exhibits a name and can be mandatory which enforces that a 
valid feature configuration must mark the feature as selected. 
The tree of features is augmented with named feature attrib-
utes for which concrete values are set in the feature configu-
ration. Each feature may possess arbitrarily many attributes 
for boolean, integer, real, and string values.

Each feature is annexed to a selection range that indicates 
how many child features have to be selected at least (mini-
mum number) and can be selected at most (maximum num-
ber). The maximum number must be larger than or equal to 
the minimum number. Consequently, the minimum number 
must be larger than or equal to the number of mandatory 
child features. Analogously, the maximum number must be 
less than or equal to the number of all child features regard-
less whether mandatory or not. This concept of selection 
ranges constitutes a flexible mechanism that allows for real-
izing many restrictions including the semantics of OR- and 
XOR-groups which are commonly supported by feature 
models.

The tree structure of the feature model implicates sev-
eral dependencies between the features; due to the contain-
ment relationship, the selection of a child feature enforces 
the selection of its enclosing parent feature. Furthermore, 
the selection ranges provide some restrictions among sib-
ling features. Additional dependencies may be implemented 
precisely using an expression language with the common 
logical operators.

Mapping Models

The features and their attributes contained in the feature 
model are referenced by annotations that augment the 
domain model. Annotations are stored in the mapping model 
that connects feature model elements and domain model 
elements. As described in Section 5, the mapping model 
which captures annotations in logical expressions and is 
specific to the product line is conceptually separated from 
the correspondence model that constitutes the internal, cen-
tral model of the editor in order to provide its functionality. 
Since annotations are visualized together with domain model 
elements within one integrated view, the domain engineer 
is not directly exposed to the internal structure of the map-
ping model.

The metamodel of the mapping model is depicted in 
Fig. 11. A mapping model is a tree that contains different 
Mapping instances as its elements. The annotations referring 
to domain model elements are stored as subtrees within the 
respective mappings. As described in Section 3, different 
kinds of annotations are provided by the editor. To this end, 
the mapping model contains different kinds of mappings 
depending on the domain model element the annotation 
refers to.

• All ObjectMapping instances correspond to objects 
within the domain model, i.e., arbitrary EObject 
instances. Annotations within object mappings represent 
annotations of objects in the domain model.

• As direct child objects of object mappings, Proper-
tyMapping instances refer to their structural features 

Model

Feature

�enumeration�

AttributeType

Atomic Group SelectionRange

Attribute

model 0..1

1 root
1

feature

attributes

*

children

*

0..1 parent

range

1

name : EString
mandatory : EBoolean

minimum : EInt
maximum : EInt

name : EString
type : AttributeType

BOOLEAN
INTEGER
REAL
STRING

Fig. 10  The metamodel of feature models [10]
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(attributes and references), i.e., EStructuralFeatures 
instances that are provided by the respective EClass 
instances. Annotations within property mappings rep-
resent annotated options in the domain model.

• While object mappings correspond to objects, Val-
ueMappings relate to values of attributes or links of 
cross references. Annotations within value mappings 
represent annotations of values of objects in the domain 
model.

The mapping elements and their containment relation-
ships within the mapping model form a tree the structure 
of which reflects the corresponding containment hierarchy 
within the domain model. Direct child mappings of object 
mappings always constitute property mappings. The prop-
erty mappings refer to the structural features that are pro-
vided by the object which is referenced by the container 
object mapping. The child objects—in case of containment 
references—or the values and links—in case of attributes 
and cross references—in the domain model are represented 
by object mappings and value mappings which are the direct 
child mappings of the respective property mappings. In order 
to distinguish the value mappings standing for a collection of 
different values or links of a multi-valued attribute or cross 
reference, value mappings exhibit index values describing 
the position in the respective collection in the domain model. 
Note that in case of multi-valued structural features, EMF 
provides ordered collections.

The analogous structure of domain model and mapping 
model leads to a simple strategy of locating mapping ele-
ments by employing the location of referenced elements in 
the domain model. With respect to modifying the mapping 
model, the principle of lazy creation and deletion is applied: 
When a new annotation is created by a respective editor 
command, only the mapping elements are constructed which 
are necessary to internally create and store the annotation; 
an annotation needs the mapping element the annotation is 
directly contained in as well as all recursively containing 
mappings up to the mapping referring to the domain model 
root. Furthermore, when an annotation is deleted, its ref-
erencing mapping element is not removed from the map-
ping model directly; rather, mapping elements are deleted 
if and only if the corresponding domain model elements are 
deleted, as well.

Annotations are stored as Annotation instances each of 
which contains a subtree that corresponds to the logical 
structure of the respective boolean expression. The Expres-
sion object that poses the root of the annotation expression 
is directly referenced by the Annotation object. Subexpres-
sions may be nested arbitrarily respecting the operator prec-
edences. References to the features and their attributes con-
stitute the atomic expressions and therefore the leaf objects 
of the subtree.

Exemplary Mapping Model

A cutout of the internal structure of the mapping model from 
the Calculator example in Section 4 is shown in Fig. 12. 
The different annotations are subtrees of different mapping 
objects. A path of containment relations within the domain 
model leads to an alternating sequence of object mappings 
and containment mappings within the mapping model. For 
instance, the ALF class Arithmetic is contained in an ALF 
package. The object mapping for the package contains a 
containment mapping object for its containment reference 
ownedMember that also comprises the classes within the 
package. This containment mapping contains the object 
mapping for the class.

The root object mapping refers to the ALF unit element 
which is the root of the domain model. The annotations of 
objects are child elements of the respective object mappings. 
For instance, the annotation Arithmetic is contained in the 
object mapping referring to the ALF class of the same name. 
In case of annotations of optional elements, the property 
mappings that refer to the respective structural features are 
employed. In this example, the generalization dependency is 
annotated; therefore, the annotation is a child element of the 
containment mapping for the generalization containment ref-
erence within the object mapping for the surrounding ALF 
class. The annotation that references the feature attribute 
is contained in the value mapping that corresponds to the 
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respective value. The value mapping is contained in the 
property mapping for the value within the object mapping 
which refers to the natural literal.

Note that all leaf mappings contain annotations. In this 
state, the mapping model does not comprise mapping objects 
for ALF parameters in the domain model as they do not 
exhibit annotations. If, for example, the annotation for the 
operation log was removed, the annotation object would be 
deleted without any impact on the mapping object. Rather, 
the object mapping would be deleted if the ALF operation 
was completely removed.

Conclusion

We presented a generic framework for constructing projec-
tional multi-variant editors that are based on feature mod-
els for modeling variability. In this paper, we applied our 
framework to an exemplary product line including a concise 
domain model and a few features. Our approach employs 
negative variability by using feature expressions as annota-
tions of domain model elements. The editor can be config-
ured for arbitrary textual languages with respective meta-
models. Both domain model and annotations are visualized 
within an integrated view including a clear optical separa-
tion between both kinds of artifacts. Within the editor, vari-
ability information may be shown and hidden in the editor 
in a pretty flexible way by means of respective commands.

Projectional multi-variant model editors have not purely 
been designed for model-driven engineering; they have also 
been realized with model-driven engineering. Therefore, 
projectional multi-variant model editors pose a complex use 
case for applying model-driven engineering. The internal 
architecture of multi-variant model editors (cf. Section 5) 
has been designed by means of megamodels describing 
the relationships between different models; to this end, we 
devised an extra notation for megamodels. One important 
design concept of the architecture is the separation of dif-
ferent concerns: The models that are necessary internally 
in order to assure the functionality of the editor are strictly 
separated from the models within the product line context.

The work presented here is still ongoing. Future work 
will provide for configuring multi-variant models by means 
of total or partial feature configurations. In this context, 
ensuring well-formedness of configured domain models 
constitutes a significant challenge that will be addressed 
along the lines of our previous work on FAMILE [8]. Con-
figurations of feature and domain models is essential for 
application engineering. Nevertheless, it poses an important 
research area for domain engineering, as well. Total or par-
tial feature configurations may be used to derive previews 
of configured products by coloring and eliding. In addition, 
these configured views could support filtered editing that 

is well-known in the context of variation control systems; 
since the underlying artifact is the multi-variant model and 
the editor commands ensure its correctness, the common 
view-update problems of variation control systems are not 
relevant for our approach.

All in all, our framework allows for a user-friendly 
domain engineering process. To evaluate our approach, we 
plan a more practical example product line with a more com-
plex feature model including several dependencies between 
the features. By employing various metrics, we will analyse 
how the configured multi-variant model editors cope with 
larger feature models with numerous constraints, a higher 
number of annotated elements, more complex annotations, 
etc. As an appropriate and intuitive textual language in the 
world of modeling, we want to adhere to ALF as the underly-
ing language for the projectional editor.
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