
Vol.:(0123456789)

SN Computer Science (2023) 4:35
https://doi.org/10.1007/s42979-022-01456-8

SN Computer Science

ORIGINAL RESEARCH

Projectional Editing of Software Product Lines Using Multi‑variant
Model Editors

Johannes Schröpfer1 · Thomas Buchmann1 · Bernhard Westfechtel1

Received: 30 September 2021 / Accepted: 12 October 2022 / Published online: 1 November 2022
© The Author(s) 2022

Abstract
Model-driven software engineering (MDSE) as well as software product line engineering (SPLE) achieve productivity gains
by raising the level of abstraction and fostering organized reuse. Consequently, the integrating discipline model-driven
software product line engineering (MDSPLE) aims at combining the best of both worlds by creating multi-variant models
which are (automatically) configured into single-variant models which are in turn adapted further (if required). Inherently
complex multi-variant models call for urgently needed tools providing support for editing multi-variant models. In this paper,
we present a framework for projectional multi-variant editors which make complexity manageable using a user-friendly
representation. At all times, a domain engineer is aware of editing a multi-variant model which is necessary to assess the
impact of changes on all model variants. Supporting a clear separation of product space (domain model) and variant space
(variability annotations), our projectional multi-variant editors provide a novel approach to representing variability informa-
tion which is displayed non-intrusively. Furthermore, the domain engineer may employ a projectional multi-variant editor
to adapt the representation of the multi-variant domain model in a flexible way, according to the current focus of interest.

Keywords Model-driven development · Software product lines · Multi-variant model · Projectional editing · Ecore ·
Generic framework

Introduction

In model-driven software engineering (MDSE) [1], soft-
ware systems are developed by creating high-level models
which are analyzed, simulated, executed, or transformed into
code. In this context, models are structured artifacts which
are instantiated from metamodels. A metamodel defines the
types of elements from which models are composed and

the rules for their composition. For metamodels, the Object
Management Group (OMG) has defined the MOF standard
(Meta Object Facility) a subset of which is implemented as
Ecore in the Eclipse Modeling Framework (EMF) [2].

Models may be represented in a variety of different ways,
including diagrams, trees, tables, or human-readable text.
Different kinds of editors may be employed to create and
modify models. In the case of a textual representation, a
syntax-based editor may be used which persists the text and
derives the underlying model by an incremental parsing
process. In the EMF ecosystem, the Xtext1 framework is
frequently used to generate syntax-based editors from lan-
guage descriptions.

In contrast, projectional editors provide for commands
operating directly on the model and project the model onto
a suitable representation [3, 4]. A projectional editor may
ensure syntactic correctness of models and enjoys further
advantages concerning tool integration. In particular, since
models are stored as instances of metamodels, unique identi-
fiers may be assigned to model elements such that they may
be referenced in a reliable way.

Communicated by Slimane Hammoudi and Luis Ferreira Pires.

This article is part of the topical collection “Model-Driven
Engineering and Software Development” guest edited by Slimane
Hammoudi and Luis Ferreira Pires.

 * Johannes Schröpfer
 Johannes.Schroepfer@uni-bayreuth.de

 Thomas Buchmann
 Thomas.Buchmann@uni-bayreuth.de

 Bernhard Westfechtel
 Bernhard.Westfechtel@uni-bayreuth.de

1 Applied Computer Science I, University of Bayreuth,
95440 Bayreuth, Germany 1 https:// www. eclip se. org/ Xtext.

http://orcid.org/0000-0001-6801-8731
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01456-8&domain=pdf
https://www.eclipse.org/Xtext

 SN Computer Science (2023) 4:3535 Page 2 of 17

SN Computer Science

Software product line engineering (SPLE) [5] is a disci-
pline which is concerned with the systematic development
of families of software systems from reusable assets. To this
end, common and discriminating features of family members
are captured in a variability model, e.g., a feature model
[6]. In domain engineering, a variability model is developed
along with a set of reusable assets which are used in applica-
tion engineering to derive product variants.

Product variants may be constructed in different ways. In
case of positive variability, they are composed from reusable
modules. In case of transformational variability, product
variants are constructed by applying a sequence of trans-
formations. In case of negative variability, multi-variant
artifacts are represented as superimpositions of annotated
elements. An annotation constitutes a presence condition
over features. A product variant is defined by a feature con-
figuration, stating which features have to be included and
excluded, respectively. To construct a single-variant artifact,
all elements are removed from a multi-variant artifact whose
annotations evaluate to false.

Model-driven software product line engineering
(MDSPLE) combines MDSE with SPLE. Thus, SPLE is
applied to models. While most SPLE approaches focus on
source code rather than models, a number of MDSPLE tools
have been developed, e.g., FeatureMapper [7], FAMILE [8],
and SuperMod [9] all of which are based on EMF.

Contribution

This paper is a significant extended version of [10] and pre-
sents a framework for generating projectional multi-variant
model editors. This framework is based on our previous
work on projectional single-variant editors for models in
the technological space of EMF. As described in [11], a
projectional editor may be generated from a metamodel for
domain models (an Ecore model defining classes, attributes,
and references) and a syntax definition which maps model
elements to a human-readable textual representation. In the
work presented in this paper, we have extended the frame-
work for single-variant model editors into a framework for
building multi-variant editors. This extension is generic, i.e.,
it depends neither on the underlying metamodel nor on the
syntax definition. Thus, no additional development effort is
required to turn a single-variant editor into a multi-variant
editor. The extensions compared to [10] comprise a much
more in depth description of the editor and its underlying
architecture as well as a complete new running example.

A projectional multi-variant editor which has been built
with the help of our framework is characterized by the fol-
lowing properties:

1. So far, our projectional editors support human-readable
text as the external representation of EMF models. In

MDSE, human-readable text is becoming increasingly
popular. One example constitutes the UML-based tex-
tual language Action Language for Foundational UML
(ALF) [12] that also comes along with appropriate tool
support in EMF [13]. The editor’s design is extensible;
further representations such as diagrams may be added
in the future.

2. Projectional multi-variant editors are based on negative
variability (probably the main-stream SPLE approach).
Thus, engineers do not have to learn new languages.
Rather, domain models are augmented with annotations.

3. For modeling variability, feature models (the most wide-
spread notation in SPLE) are used. All annotations refer
to features and attributes from a feature model for the
software product line.

4. Projectional multi-variant editors are designed to sup-
port domain engineering. Since multi-variant models are
the artifacts of domain engineering, a projectional multi-
variant editor directly operates on a multi-variant model.
Thus, all variants may be considered by the domain
engineer during editing. Furthermore, each command
has a uniquely determined semantics. These properties
distinguish our approach from variation control systems
[14] which are faced with view-update problems and
limited awareness in filtered views.

5. Internally, annotations of model elements are stored in
a separate mapping model [8]. Thus, existing domain
metamodels may be reused. Furthermore, the relation-
ships between features in the feature model and elements
of domain models are captured in one single central data
structure. This approach facilitates traceability and prop-
agation of changes from the feature model to annotated
domain models.

6. The mapping model is shielded from the user. Rather,
annotations are displayed intuitively along with the
model elements in a single representation. Therefore,
the user does not have to deal with the internal con-
cepts and structure of the mapping model. In contrast
to approaches based on preprocessor directives, annota-
tions are separated clearly from domain model elements
in the representation of a multi-variant model.

7. Projectional multi-variant editors include commands
for projectional editing of annotations. Thus, annota-
tions are handled as structured objects rather than as
text strings. Context-free correctness of annotations is
guaranteed by the projectional editor.

8. To cope with complexity, projectional multi-variant edi-
tors provide several commands for adapting the repre-
sentation of an annotated model to the current focus of
interest. For example, annotations may be hidden com-
pletely or selectively. In this way, the representation of
the model may be simplified. It should be noted, how-

SN Computer Science (2023) 4:35 Page 3 of 17 35

SN Computer Science

ever, that all editing commands still refer to the underly-
ing multi-variant model.

Overview

The rest of this paper is structured as follows: Section 2
explains the background of our research and related work.
Section 3 describes the functionality and the user interface
of projectional multi-variant editors. An example is given
in Sections 4 and 5 outlines the model-based internal archi-
tecture underlying these editors. Section 6 details a specific
aspect of the realization: the mapping between domain
models and feature models. Finally, Section 7 concludes
the paper.

Background and Related Work

As stated in the previous section, the main goal of soft-
ware product line engineering is to (automatically) derive
single applications from a common platform by employ-
ing organized reuse. A special development process is a
crucial prerequisite in order to be successful. In the SPLE
literature [5, 15], a typical development process has been
established which distinguishes between the sub-disci-
plines domain engineering and application engineering as
shown in Fig. 1. During domain engineering, the product
domain is analyzed, capturing the results in a variability
model (e.g., a feature model). Typically, Feature-Oriented
Domain Analysis (FODA) [6] or one of its descendants (like
FORM [16]) is used to analyze the domain. Furthermore, an

implementation—the so called platform—is provided at the
end of domain engineering. The platform comprises a set of
reusable development artefacts that contain all commonali-
ties and variabilities of the products being in the scope of
the product line. In this regard, evolution of software product
lines poses a significant field of research [17–19].

Typically, the variability is captured and expressed in a
variability model. Different formalisms exist to describe
commonalities and differences among members of the prod-
uct line. As one representative, feature models [6, 20] use
features as boolean properties of a software system which
can be either present or absent in a specific product. Features
are arranged in an AND/OR-tree. In the case of an AND-
decomposition, all of its child features have to be selected
when the parent is selected. In contrast, for an OR-decom-
position, at least one child has to be selected. Additionally,
XOR-decompositions enforce the selection of exactly one
child. Depending on the respective variant of feature models,
refining modeling constructs are provided, such as requires
and excludes relationships [21] or cardinality-based feature
modeling [22]. While feature models describe the variability
of the entire product line, feature configurations describe the
characteristics of individual products thereof.

Application engineering on the other hand deals with the
construction of specific product variants by employing and
exploiting the reusable assets developed in domain engi-
neering. Deriving products can be achieved following three
different approaches:

Positive Variability This approach fosters build-
ing variable artifacts around

Fig. 1 Software product line
engineering process distinguish-
ing between domain engineer-
ing and application engineering
[5]

Product
Management

Domain
Requirements

Engineering

Domain
Design

Domain
Realiza�on

Domain
Tes�ng

Applica�on
Requirements

Engineering

Applica�on
Design

Applica�on
Realiza�on

Applica�on
Tes�ng

gnireenignE
noitacilppA

gnireenignE
nia

moD

Domain Artefacts incl. Variability Model

Applica�on N - Artefacts incl. Variability Model

Applica�on 1 - Artefacts incl. Variability Model

Requirements ArchitectureRequirements Components Tests

 SN Computer Science (2023) 4:3535 Page 4 of 17

SN Computer Science

a common core which is
shared by all variants. Com-
position techniques [23]
are used to derive the final
products.

Transformational Variability This approach uses a
sequence of transforma-
tions which are performed
in a predefined order to con-
struct products [24].

Negative Variability This approach relies on a
superimposition of all vari-
ants which is created in the
form of a multi-variant
product [25, 26]. Specific
products are derived by
removing all fragments
of artifacts implement-
ing features which are not
contained in the desired
product.

In all three cases, the application engineer binds the
variability by creating a feature configuration. In a feature
configuration, a selection state (selected or deselected) is
assigned to each feature variable. A feature configuration
is consistent if the provided selections conform to the con-
straints defined in the feature model. However, a consistent
feature configuration cannot guarantee a consistent product
in general [27].

For the reminder of this paper we want to put our empha-
sis on negative variability. Negative variability extends sin-
gle- to multi-variant artifacts by annotating artifact elements.
In contrast to positive and transformational variability, exist-
ing languages for single-variant artifacts may be reused.
Thus, SPL engineers do not have to learn new languages
and furthermore, existing implementation artifacts may be
easily integrated into the platform. However, editing multi-
variant artifacts poses a significant cognitive challenge: For
example, editing source code written in the programming
language C turns out to be difficult because preprocessor
directives realizing annotations are intermingled with ordi-
nary C code.

Therefore, dedicated multi-variant editors are required for
making the complexity manageable. To date, quite a num-
ber of rather different approaches have been proposed and
implemented. All of these approaches suffer from different
shortcomings:

Virtual separation of concerns [25, 28] applies C-like
preprocessor directives to Java code. A syntax-based

editor supports separation of concerns by assigning colors
to features and by eliding deselected program fragments.
It is obvious that coloring works only for a small set of
features and furthermore, preprocessor directives are still
intermingled with ordinary code. Consequently, two differ-
ent aspects of the software product line are mixed in one
physical resource: features and their implementing source
code artifacts. In addition, as soon as a product is derived,
the traceability links between features and code are lost, as
the preprocessor removes all preprocessor directives before
passing the source code to the language compiler.

Model-driven tools such as FeatureMapper [7] and
FAMILE [8] follow a different approach: Annotations are
stored and visualized in a dedicated mapping model. While
annotations are separated from models, the SPL engineer
is exposed to an internal data structure which should be
hidden from the user. Furthermore, it is hard to understand
the relationships between model elements and annotations.
Eventually, the mentioned tools support domain engineer-
ing only. As soon as a product is derived, the connection
to the platform of the product line (including the mapping
information) is lost.

In contrast to the approaches having been discussed
above, variation control systems reduce complexity by
filtered editing [14]. From a multi-variant artifact called
source, a view is materialized in which variability has been
resolved completely or partially. After editing of the view
has been finished, the performed changes are propagated
back to the source. Variation control systems are faced with
two problems: Limited awareness of the context in which
editing is performed and delineation of the scope of the
change in the variant space. While the other tools mentioned
above primarily display and edit artifacts of domain engi-
neering, and provide (filtered) views of the multi-variant
domain model, variation control systems operate on (par-
tially configured) products. Thus, the software product line
engineer works on specific variants (as in application engi-
neering) and domain engineering is performed implicitly
when a commit into the version repository is executed.

In contrast to the approaches mentioned above, our
approach completely hides the mapping model from the
user. The SPL engineer is empowered to use feature annota-
tions in the concrete syntax in an intuitive way. Furthermore,
the annotations may be hidden in the editor at any time.
Sophisticated visualizations allow for different views of the
multi-variant domain model ranging from fine-grained views
showing single features only over partial feature configura-
tions to a view of the complete multi-variant domain model.

In our approach, application engineering is a fully auto-
mated process where the final products are derived from
the multi-variant domain model using a feature configura-
tion. The derived artifacts comprise traceability links to the
multi-variant domain model which is a significant aspect

SN Computer Science (2023) 4:35 Page 5 of 17 35

SN Computer Science

for evolution. If the derived products are modified and/or
completed, changes can be propagated back into the multi-
variant model employing the tracability links. In addition,
this process requires a specification describing which vari-
ants are supposed to be affected by these remote changes
(apart from the derived product variant itself).

In [29] the authors present a multi-view projectional edi-
tor for software product lines based on JetBrains MPS.2 In
contrast to our approach which is generic and allows for
reusing existing EMF technology (modeling languages,
model transformations, code generators), the PEoPL solu-
tion focuses on combining annotative and compositional
editing of software product lines for a specific modeling
language.

Functionality and User Interface

This section illustrates the functionality of the editor frame-
work. Before considering the different kinds of annota-
tions, the general functionality of the editors with respect to
creating and modifying multi-variant models is described.
Finally, some aspects regarding the integration of this frame-
work are summarized.

The Framework in General

Figure 2 depicts the different roles of users and their use
cases within the framework. The context of the framework
is the Eclipse Modeling Framework, i.e., all metamodels
of the considered models are instances of the Ecore meta-
model. First, the editor developer configures the editor for
the respective (domain-specific) language. The description
of the lexical and contextfree syntax is specified by means

of projection rules which map classes and structural features
from the metamodel (abstract syntax) to concrete text. In
addition, static semantics with respect to scoping and valida-
tion rules may be added programmatically by implementing
generated classes that are initially empty.

The domain engineer specifies the feature model for the
respective product line. By using commands within the
projectional editor, the multi-variant domain model is built
and modified. The editor visualizes the domain model as an
abstract syntax tree—by interpreting the syntax definition
specified by the editor developer—augmented with appropri-
ate annotations which refer to the feature model. Projectional
editor commands are provided to add and remove objects
or to set attribute values and cross links—with respect to
domain model elements as well as their annotations. Fur-
thermore, the framework also persists the representation of
the underlying model. While commands regarding the multi-
variant domain model affect the representation respectively,
the domain engineer can also modify the layout directly, e.g.,
by adding additional whitespace characters or line breaks.
The domain engineer may create feature configurations to
visualize filtered views of the multi-variant model including
fully configured previews of single-variant products.

Eventually, the application engineer derives single vari-
ants from the multi-variant model. To this end, feature con-
figurations are created. Note that the role of the application
engineer is not considered in this paper. Nevertheless, fea-
ture configurations also play a significant role for the editor
within domain engineering as (potentially partial) feature
configurations can be used for defining arbitrarily filtered
views of the multi-variant model.

All in all, we differentiate three different roles two of
which are the typically considered roles in product line engi-
neering. While the syntax definition, the editor providers,
and the representation are specific to the editor framework,
the multi-variant domain model, the feature model, and the
feature configuration—that constitute the relevant artifacts

Fig. 2 Overview of roles and
modeling artifacts within the
editor framework. The applica-
tion engineer’s role is not
considered in this paper

Feature
Configuration

Feature
Model

Projectional
Editor

Syntax
Definition

Editor
Providers

Multi-variant
Domain Model

Representation
Editor

Developer
Application
Engineer

Domain
Engineer interprets uses

instantiates references
creates for
derivation

creates for
preview

issues
command

specifies
uses

modifies
semantics

modifies
layout

propagates
changes

derives
from

specifies

customizes

2 https:// www. jetbr ains. com/ mps/.

https://www.jetbrains.com/mps/

 SN Computer Science (2023) 4:3535 Page 6 of 17

SN Computer Science

within the product line context—can be (re-)used outside
the framework, as well.

The editor combines the different types of commands
in one integrated view of the multi-variant domain model.
The editor visualizes an arbitrary abstract syntax tree or an
appropriate subtree. Figure 3 shows the editor for an exam-
ple ALF model. The major part constitutes the main pane
(cf. part 1) that visualizes the multi-variant domain model.
The annotations are depicted by labels between the code
lines. When selecting model elements in the main pane, the
respective information about the model element is shown
(cf. part 2). In the upper-left corner, the editor provides but-
tons for general commands, e.g., the common editor opera-
tions Undo and Redo as well as the validation process (cf.
part 3) which do not depend on the currently chosen mode.
In addition, mode-specific commands (depending on the
mode that is chosen) may be executed by clicking buttons
(cf. part 4) that depend on the current mode and the selected
model element.

With respect to the models affected by the editor com-
mands, the editor differentiates two modes (cf. part 5).
Within the data mode, the domain model as well as the map-
ping model is modified before the representation is adjusted
accordingly. The view mode offers purely representation
commands, e.g., adding line breaks or whitespaces.

The annotations are displayed as labels between the lines
that contain the respective model elements. With respect to
the visualization of the annotations, three different modes
are supported (cf. part 6). The domain engineer may choose
whether no annotations are visible at all—that results in
an editor without product line context—, whether all

annotations of the represented domain model subtree are
visible, or whether an arbitrary subset of all annotations is
visible (selected annotations), e.g., annotations that contain
a certain feature.

While domain model, mapping model, and the repre-
sentation model are edited by means of commands within
the editor, the feature model is built and modified using an
extra editor. Currently, the generic EMF tree editor is used
to this end. For future work, we plan a more adequate pro-
jectional editor with a simple and intuitive textual syntax.
The respective metamodel for feature models is applied to
our framework; thus, a projectional editor is used for both
feature model and domain model which furthermore mini-
mizes the dependencies to other tools.

Support for Domain Engineering

The editor always visualizes one representation model. Each
representation refers to one subtree of a domain model.
Therefore, one domain model can be represented by several
representation models each of which corresponds to another
subtree of the domain model. Eventually, the product line
may be realized by several domain models. Thus, a product
line of multiple domain models is represented by multiple
representation models that are visualized by multiple editors
providing different views of the range of domain models. In
case of the example, there is exactly one domain model. This
model consists of an ALF package which contains several
classes. Each representation model refers to a class, i.e., each
class is visualized by an own editor—analogously to Java

Fig. 3 Screenshot of the editor
user interface for a small exam-
ple ALF model

1

2
3

4

5

6

SN Computer Science (2023) 4:35 Page 7 of 17 35

SN Computer Science

classes, for instance. The ALF class shown here contains
two properties and one generalization.

Annotations contain links to features and attributes in the
feature model within boolean expressions that are built by
means of common logical operators (conjunction, ex- and
inclusive disjunction, negation). Annotations are internally
represented as subtrees. Projectional commands allow for
adding and removing objects, restructuring expression sub-
trees, and setting links in the editor. Within the user inter-
face, the annotations are located between the physical lines
representing the domain model. For each physical line, the
annotations referring to its elements are shown above the
line.

Annotations can be created and modified using the
respective editor commands. The framework provides three
different kinds of annotations depending on the kind of the
multi-variant model element the respective annotation refers
to. As shown in Fig. 3, coloring is used to differentiate these
different kinds. To this end, the following general classifica-
tion is performed:

• Visibilities of Objects and Values A single object or value
is annotated by means of a boolean expression that indi-
cates its visibility. The element is present in the product if
the expression evaluates to true for the respective feature
configuration and vice versa. In the shown example, the
class object is bound to the feature Whole and the proper-
ties are bound to the features ChildOne and ChildTwo,
respectively. If the respective feature is set, the corre-
sponding annotation evaluates to true and the object is
visible in the derived product.

• Visibilities of Optional Elements This category captures
optional model elements in general. Optional fragments
may comprise numerous artifacts as objects, links, val-
ues, or keywords. For a single optional unit, the annota-
tion is a boolean expression that indicates its visibility.
The element is present in the product if the expression
evaluates to true for the respective feature configuration
and vice versa. In the example, the optional fragment for
the superclass is bound to the optional feature Generali-
zation. Furthermore, the initializer expression of the first
property is optional and bound to the feature InitValue.
The code fragments are visible in the editor—and thus,
the child objects are contained in the domain model—if
the respective feature is set.

• Elementary Values of Attributes In addition to annota-
tions posing visibilities, values can be annotated with
references to feature attributes (from the feature model).
In this case, a value in the domain model is bound to a
feature attribute. The multi-variant domain model stores
the default value depending on the respective type of
the attribute. When a product is derived, values for the
feature attributes are provided by the feature configura-

tion, as well. In the depicted model, the concrete integer
value that constitutes the initial value of the first property
is bound to the feature attribute number. In the multi-
variant model, the default value 0 is stored.

For annotations describing visibilities of model elements,
the principle of top-down propagation of annotations is
applied. A model element is visible if and only if its annota-
tion evaluates to true and all annotations that refer to (direct
or transitive) container elements evaluate to true, as well.

Limitations of Integration

As outlined above, the context of this framework is the
Eclipse modeling framework. Thus, we deal with EMF
models with metamodels constituting instances of the Ecore
(meta-)metamodel. As concrete syntax, merely textual syn-
tax is provided so far. We assume that each product line
implemented by this framework refers to one global feature
model that is used to be referenced by annotations. A prod-
uct line may comprise several domain models persisted by
separated file resources.

For describing the abstract syntax of the multi-variant
models, the framework requires one or more metamodels
which are instances of the Ecore metamodel. Our restrictions
of variability result from the assumption that the multi-var-
iant model is a valid instance of the respective metamodel.
In particular, values of single-valued properties cannot vary.

Note that no more technical restrictions with respect to
the metamodels are present. Furthermore, the derived sin-
gle variants can be reused by other modeling tools or code
generators which are not aware of any product line context.
Also the configuration of the editor is conceptually separated
from the product line context. As a consequence, variability
does not have to be taken into account when designing the
(domain-specific) language with its syntax and semantics. In
particular, artifacts from existing (single-variant) languages
can be implemented. All in all, the editor framework may
be flexibly applied to pretty arbitrary textual languages even
without any product line context.

Example

This section describes an example use case of the frame-
work. The projectional editor has been configured for the
textual language ALF. It is used to implement the Calculator
product line. Note that in this section, we only consider the
role of the domain engineer and the related workflow. We
assume that the respective ALF editor was already config-
ured by an editor developer.

Figure 4 depicts the feature model of the Calculator
product line in textual notation. The feature Calculator

 SN Computer Science (2023) 4:3535 Page 8 of 17

SN Computer Science

constitutes the root feature. It contains the mandatory fea-
tures Arithmetic and Trigonometry as well as the optional
feature Description. The feature Arithmetic contains the
usual operations represented by the mandatory child features
Addition, Multiplication, and Logarithm. The value of a log-
arithm is specified by an expression and a base value (two
parameters). The optional child feature Default provides
operations for computing logarithms for a certain default
base value (only one parameter). In addition, if only default
logarithms are supposed to be considered, the optional fea-
ture OnlyDefault may be selected. For the default base value,
the real attribute defaultBase is provided.

The feature Trigonometry consists of the mandatory
features Functions and Measurement. Representing the
provided functions, the child features Sine, Cosine, and
Tangent are present which are all optional. The selection
range of the parent feature Functions requires a selection
of at least two child features. For the measurement of the
angles, the optional features Degree, Radian, and Gradian
are considered. In this case, the selection range of the par-
ent feature Measurement requires a selection of at least one
child feature which describes the behavior of an inclusive
OR-group of features. Note that for simplification reasons,
only a pretty small subset of possible operations is captured
by the product line.

The product line comprises one ALF model as its single
domain model. Fig. 5 shows the initial domain model the

framework is applied to. The domain model has an ALF root
package that contains several classes, associations, and an
enumeration implementing the functionality. Each represen-
tation model refers to one packaged element; we focus upon
the ALF class Arithmectic.

Within the editor, the initially empty class is extended
with domain model elements which is presented below.
After that, annotations are inserted to get a multi-variant
domain model. Note that these two steps are separated only
for presentation reasons. In the tool, domain model elements
and annotations my be created and modified in an arbitrary
order in one integrated view of the multi-variant domain
model.

Figure 6 illustrates the succeeding steps of extending the
initial ALF class. First, an object is inserted for the default
base value of logarithms. Using projectional commands,
the ALF property (step 1 → 2) with a real literal as its ini-
tial expression (step 2 → 3) is added. Next, the operations
used for calculation are inserted (steps 3 → 4 → 5). For the
sake of readability, only a subset of all operations is created;
furthermore, the operation bodies are left empty. The class
Arithmetic is supposed to inherit from the abstract super-
type CalcModule which provides an operation that returns
a description of the respective module within the calcula-
tion package. To this end, a generalization object has to be
inserted (steps 5 → 6 → 7). In concrete syntax, the super-
type of a class is an optional fragment. This option is ena-
bled before the generalization object is added. Finally, layout
commands are used to add some extra lines (step 7 → 8).

After building the domain model, it is augmented with
annotations by means of the respective editor commands.
Note that in general, domain model commands and annota-
tion commands may be intermixed freely. Figure 7 shows

Calculator [2..3]
Arithmetic [3..3]
Addition
Multiplication
Logarithm [0..1]
Default [0..1]
OnlyDefault
defaultBase : REAL

Trigonometry [2..2]
Functions [2..3]
Sine
Cosine
Tangent

Measurement [1..3]
Degree
Radian
Gradian

Description

Fig. 4 Feature model of the Calculator example in tree notation.
Mandatory features are marked by filled circles and optional ones
by hollow circles. A filled rectangle represents a feature attribute.
For each parent feature, the respective selection range referring to its
child features is notated after the name of the feature

: Unit

: Package

: Class

: Class

: Association

: Class

: Class

: Association

: Enumeration

definition

namespace

ownedMember

ownedMember

ownedMember

ownedMember
ownedMember

ownedMember

ownedMember

name = calc

name = Calculator

name = CalcModule
abstract = true

name = ProvArithm

name = Arithmetic

name = Trigonometry

name = ProvTrigon

name = Measurement

Fig. 5 The initial domain model of the example

SN Computer Science (2023) 4:35 Page 9 of 17 35

SN Computer Science

1

2

3

4

56

7 8

Fig. 6 The succeeding steps of adding domain model elements to the initial model. The different steps are performed by means of different pro-
jectional editor commands

 SN Computer Science (2023) 4:3535 Page 10 of 17

SN Computer Science

the annotated model. For the whole class Arithmetic, the
feature Arithmetic is referenced by the annotation expres-
sion. The operations add and mult are bound to the cor-
responding features, analogously. For computing the loga-
rithm, two different operations are provided. The operation
log has a parameter for the base and one for the expres-
sion; its annotation constitutes a conjunction of a reference
to the feature Logarithm and a negation of a reference to
the feature OnlyDefault.

In addition, the operation logDef only contains a param-
eter for the expression and employs the stored default
value for the base; its annotation constitutes a reference
to the feature Default. The same annotation is used for the
property defaultBase. The real value within its expression
is bound to the corresponding feature attribute default-
Base. Note that this value will be replaced with the value
of the feature attribute specified in a feature configura-
tion used to configure the domain model for application
engineering.

Eventually, the annotations referring to the feature
Description are added. First, the generalization relationship
is linked. To this end, the optional fragment representing the
inheritance—including the keyword specializes and the gen-
eralization object referencing the superclass—is annotated

with the reference to the feature Description. Furthermore,
the operation getInfo() is annotated analogously.

Architecture

This section describes the architecture of the framework.
The technical context of our framework is the Eclipse Mod-
eling Framework that comes along with the Ecore meta-
model. Basically, each product line bases upon one global
feature model. Furthermore, the traces connecting domain
model elements with the respective elements from the fea-
ture model are stored within one global mapping model.
Analogously to the mapping model providing links between
domain model elements and their annotations in the product
line context, one global correspondence model captures the
connections between the models which are necessary for the
internal functionality of the editor.

Overview

Figure 8 illustrates the architecture of the models and the
corresponding editors as well as their dependencies. All
models are based on the ECORE metamodel. The core edi-
tor (EDITOR) is a projectional editor without any product
line context. The projectional editor with product line sup-
port (PL-EDITOR) is an extension of that editor. Each editor
instance refers to exactly one domain model as an abstract
syntax tree (AST); within the editor, either the complete
model or a subtree is presented. There are not any assump-
tions about the respective metamodel; the domain meta-
model (ASTM) may be arbirary.

The traces that link the domain model elements with
artifacts from the feature model are persisted in the (prod-
uct line) mapping model (PL-MAPP). In general, the map-
ping model contains mapping elements for domain model
elements contained in several abstract syntax trees. Each
annotation is contained in an adequate mapping element
and comprises a subtree that constitutes the structure of the
respective annotation expression. Both the metamodel of
the feature models (FEATM) and the metamodel of the map-
ping models (PL-MAPP

M) are generic and fixed, internal
artifacts of the framework. For creating and modifying the
feature model, an extra editor is used. Currently, the default
EMF tree editor is employed; future work will provide for a
comfortable projectional editor.

While the mapping model connects the domain model
with the feature model in the product line context, the cor-
respondence model (CORR) serves as the central model
that combines the models that are necessary for the inter-
nal editor functionality. The editor instances visualize the
representation models (REPR) that are referenced by the
correspondence model and connected to the abstract syntax

Fig. 7 The annotated ALF class Arithmetic in the domain model

SN Computer Science (2023) 4:35 Page 11 of 17 35

SN Computer Science

trees as well as the model containing the concrete syntax
definition (CSYN). In addition, in case of the extended edi-
tor within product line context, the correspondence model
refers to the mapping model; consequently, internal editor
correspondences and product line mappings are conceptu-
ally and physically separated. All the respective metamodels
for the correspondence models (CORRM), the representation
models (REPRM), and the syntax definitions (CSYNM) are
fixed, internal artifacts. When the representation model is
used by the extended editor including product line support, it
contains elements for annotations and their contents; further-
more, the correspondence model refers to these objects by
means of respective correspondence objects for the expres-
sion objects within annotations.

Each editor instance refers to one representation model
from which the presentation is derived. The representation
model comprises model elements such as blocks, line, and
cells; analogously, the editor pane visualizes geometri-
cal objects (rectangles and labels) corresponding to the

abstract model elements. To bundle the traces between
representation elements in the representation model
(REPR) and presentation elements created by the editor
(EDITOR), an internal, transient data structure (UI-MAPP)
is employed; these transient traces are not stored when
the editor is closed. The concrete syntax definition model
(CSYN) is constructed from a set of textually notated pro-
jectional rules that has been defined by the editor devel-
oper using an extra text editor (CSYN-EDITOR).

All in all, the architecture allows for a flexible informa-
tion exchange between the involved models. For a repre-
sentation element that is selected within the editor, the
respective internal correspondence element is detected
in order to get access to the represented domain model
element, the referenced product line mapping element (if
any) as well as the applied projection rule. The intercon-
nected system of models establishes the logical basis for
the functionality of the different editor commands with
and without product line support.

Product Line
Context

Editor ContextFEAT-EDITOR PL-EDITOR

EDITOR

CSYN-EDITOR

UI-MAPP
FEATM

PL-MAPPM

FEAT

PL-MAPP

AST

ASTM
ECORE

CORR REPR

CSYN
CORRM

REPRM

CSYNM

[1]

[1]

[?]

[*]

[1]

[?] [1]

[*]
[1]

[*]

[1]

[1]
[1]

[*]

[1]

[1]

[1]

[1]

[1]

[1]

[*]

[1]

[*]

[1]

[*]

[1]

[1]

[1]

[1] [1]

[1]

[1]

Tool editor (user interface)

Variable model (persisted)

Fixed model (persisted)

Transient data structure

References
Is instance of

Extends
Modifies

Fig. 8 Megamodel describing the architecture of the framework com-
prising the different models within one product line and their rela-
tions. In case of the dependencies References and Modifies, the UML
multiplicities [1] (exactly one element) and [*] (arbitrarily many ele-

ments) are used; the multiplicity [?] describes optional single ele-
ments (in UML 0..1) depending on the fact whether the extended edi-
tor is used (including product line support) or not [10]

 SN Computer Science (2023) 4:3535 Page 12 of 17

SN Computer Science

Example Scenario

In order to depict an exemplary system of models accord-
ing to this architecture, we refer to the very small example
shown in Section 3. Figure 9 illustrates the system of the
involved models for a cutout of the domain model which
contains the classes ExampleClass and SuperClass as well as
two properties; for the sake of readability, only inter-model
references and no cross references between model elements
are visualized. As each ALF class within the domain model
(AST) is shown in an own editor instance, two representation
models (REPR 1 and REPR 2) are present. Both represen-
tation models possess blocks as their root elements which
represent the ALF classes.

The correspondence model (CORR) provides an object
correspondence for each object that is represented by a rep-
resentation model and visualized in an editor. The corre-
spondence element connects the representation element as
well as the domain model element and links to the respective
projection rule within the syntax definition model (CSYN) as
well as the product line mapping element that is contained
in the PL-MAPP model. In this case, the ALF class Exam-
ple (1) is represented by a root block (2). This relationship

is stored by an object correspondence (3) which links to
the projectional rule for ALF classes (4) and the product
line mapping element (5). Container objects of the ALF
classes—e.g., the ALF package—are not presented in the
editor; thus, neither representation elements nor correspond-
ence elements are present for the respective container ele-
ments in the domain model and their mapping elements in
the product line mapping model.

In general, the containment hierarchy of the domain
model is also applied for the correspondence model and
the representation models. For instance, in case of the class
ExampleClass that contains the property firstAttr within the
domain model, the representation element for the property
is a transitive child element of the representation element for
the class and the correspondence element for the property
is contained in the correspondence element for the class.
Furthermore, this containment structure is also visible in the
mapping model; more details about the product line mapping
models are provided by Section 6.

The annotations refer to features contained in the fea-
ture model. For the expressions, the product line mapping
model contains respective elements which are children of the
respective mapping elements. Besides objects representing

PL-EDITOR 1 PL-EDITOR 2

UI-MAPP 1 UI-MAPP 2

REPR 1 REPR 2
CORR

PL-MAPP

AST

CSYN

: ObjMapping

: ObjMapping

: ObjMapping : ObjMapping

: ObjMapping : ObjMapping

: Annotation : Annotation

: Annotation : Annotation

: Unit

: Package

: Class : Class

: Property : Property

: ObjCorr : ObjCorr

: ObjCorr : ObjCorr

: AnnotCorr : AnnotCorr

: AnnotCorr : AnnotCorr

: Block : Annotation

: Cell

: Line

: Cell

: Cell

: Body

: Line : Line

: Fragment : Fragment

: Annotation : Annotation

: Cell : Cell

: Block

: Annotation

: Cell

: BlockPattern : LinePattern

1

2

3

4

5
6

7

8

name = random

name = ExampleClass name = SuperClass

name = firstAttr name = secondAttr

label = Whole

label = public

label = class

label = ChildOne label = ChildTwo

label = Generalization

name = Class name = Property

Fig. 9 An exemplary system of models with inter-model dependen-
cies (cutout). It describes the simple example shown in Fig. 3. AST
objects that are visible within the editors, their representation ele-
ments, and related elements have a red filling while annotations and

their corresponding elements are marked by a yellow filling. AST
objects which are not visualized by the editors and the respective
mapping elements are grayed out. Diamond arrows stand for (direct
or transitive) containment relations between model elements

SN Computer Science (2023) 4:35 Page 13 of 17 35

SN Computer Science

domain model elements, the representation models exhibit
objects representing annotations and their cells. In this
example, for the annotation Whole (6), a representation
object (7) is provided as well as an annotation correspond-
ence element (8). In case annotations are hidden in the edi-
tor, this circumstance is persisted by a boolean flag within
the representation model.

Each representation model is presented by one specific
editor where the traces between representation elements and
presentation elements within the editor pane are persisted by
a specific transient data structure (UI-MAPP). While the rep-
resentation models contain geometrical objects for blocks,
bodies, lines, cells, and annotations, the editor consists of
corresponding graphical elements. In case of hidden annota-
tions, there are representation objects within the model that
do not have corresponding elements presented by the editor.

Mapping Model and Annotations

In this section, we describe some details about implementing
variability in the domain models with our approach. After an
overview of the metamodel for feature models, the product
line mapping models are considered which serve as the con-
nection between domain models and feature model.

Feature Models

The metamodel for feature models is depicted in Fig. 10.
A feature model constitutes a tree of features. Each feature
exhibits a name and can be mandatory which enforces that a
valid feature configuration must mark the feature as selected.
The tree of features is augmented with named feature attrib-
utes for which concrete values are set in the feature configu-
ration. Each feature may possess arbitrarily many attributes
for boolean, integer, real, and string values.

Each feature is annexed to a selection range that indicates
how many child features have to be selected at least (mini-
mum number) and can be selected at most (maximum num-
ber). The maximum number must be larger than or equal to
the minimum number. Consequently, the minimum number
must be larger than or equal to the number of mandatory
child features. Analogously, the maximum number must be
less than or equal to the number of all child features regard-
less whether mandatory or not. This concept of selection
ranges constitutes a flexible mechanism that allows for real-
izing many restrictions including the semantics of OR- and
XOR-groups which are commonly supported by feature
models.

The tree structure of the feature model implicates sev-
eral dependencies between the features; due to the contain-
ment relationship, the selection of a child feature enforces
the selection of its enclosing parent feature. Furthermore,
the selection ranges provide some restrictions among sib-
ling features. Additional dependencies may be implemented
precisely using an expression language with the common
logical operators.

Mapping Models

The features and their attributes contained in the feature
model are referenced by annotations that augment the
domain model. Annotations are stored in the mapping model
that connects feature model elements and domain model
elements. As described in Section 5, the mapping model
which captures annotations in logical expressions and is
specific to the product line is conceptually separated from
the correspondence model that constitutes the internal, cen-
tral model of the editor in order to provide its functionality.
Since annotations are visualized together with domain model
elements within one integrated view, the domain engineer
is not directly exposed to the internal structure of the map-
ping model.

The metamodel of the mapping model is depicted in
Fig. 11. A mapping model is a tree that contains different
Mapping instances as its elements. The annotations referring
to domain model elements are stored as subtrees within the
respective mappings. As described in Section 3, different
kinds of annotations are provided by the editor. To this end,
the mapping model contains different kinds of mappings
depending on the domain model element the annotation
refers to.

• All ObjectMapping instances correspond to objects
within the domain model, i.e., arbitrary EObject
instances. Annotations within object mappings represent
annotations of objects in the domain model.

• As direct child objects of object mappings, Proper-
tyMapping instances refer to their structural features

Model

Feature

�enumeration�

AttributeType

Atomic Group SelectionRange

Attribute

model 0..1

1 root
1

feature

attributes

*

children

*

0..1 parent

range

1

name : EString
mandatory : EBoolean

minimum : EInt
maximum : EInt

name : EString
type : AttributeType

BOOLEAN
INTEGER
REAL
STRING

Fig. 10 The metamodel of feature models [10]

 SN Computer Science (2023) 4:3535 Page 14 of 17

SN Computer Science

(attributes and references), i.e., EStructuralFeatures
instances that are provided by the respective EClass
instances. Annotations within property mappings rep-
resent annotated options in the domain model.

• While object mappings correspond to objects, Val-
ueMappings relate to values of attributes or links of
cross references. Annotations within value mappings
represent annotations of values of objects in the domain
model.

The mapping elements and their containment relation-
ships within the mapping model form a tree the structure
of which reflects the corresponding containment hierarchy
within the domain model. Direct child mappings of object
mappings always constitute property mappings. The prop-
erty mappings refer to the structural features that are pro-
vided by the object which is referenced by the container
object mapping. The child objects—in case of containment
references—or the values and links—in case of attributes
and cross references—in the domain model are represented
by object mappings and value mappings which are the direct
child mappings of the respective property mappings. In order
to distinguish the value mappings standing for a collection of
different values or links of a multi-valued attribute or cross
reference, value mappings exhibit index values describing
the position in the respective collection in the domain model.
Note that in case of multi-valued structural features, EMF
provides ordered collections.

The analogous structure of domain model and mapping
model leads to a simple strategy of locating mapping ele-
ments by employing the location of referenced elements in
the domain model. With respect to modifying the mapping
model, the principle of lazy creation and deletion is applied:
When a new annotation is created by a respective editor
command, only the mapping elements are constructed which
are necessary to internally create and store the annotation;
an annotation needs the mapping element the annotation is
directly contained in as well as all recursively containing
mappings up to the mapping referring to the domain model
root. Furthermore, when an annotation is deleted, its ref-
erencing mapping element is not removed from the map-
ping model directly; rather, mapping elements are deleted
if and only if the corresponding domain model elements are
deleted, as well.

Annotations are stored as Annotation instances each of
which contains a subtree that corresponds to the logical
structure of the respective boolean expression. The Expres-
sion object that poses the root of the annotation expression
is directly referenced by the Annotation object. Subexpres-
sions may be nested arbitrarily respecting the operator prec-
edences. References to the features and their attributes con-
stitute the atomic expressions and therefore the leaf objects
of the subtree.

Exemplary Mapping Model

A cutout of the internal structure of the mapping model from
the Calculator example in Section 4 is shown in Fig. 12.
The different annotations are subtrees of different mapping
objects. A path of containment relations within the domain
model leads to an alternating sequence of object mappings
and containment mappings within the mapping model. For
instance, the ALF class Arithmetic is contained in an ALF
package. The object mapping for the package contains a
containment mapping object for its containment reference
ownedMember that also comprises the classes within the
package. This containment mapping contains the object
mapping for the class.

The root object mapping refers to the ALF unit element
which is the root of the domain model. The annotations of
objects are child elements of the respective object mappings.
For instance, the annotation Arithmetic is contained in the
object mapping referring to the ALF class of the same name.
In case of annotations of optional elements, the property
mappings that refer to the respective structural features are
employed. In this example, the generalization dependency is
annotated; therefore, the annotation is a child element of the
containment mapping for the generalization containment ref-
erence within the object mapping for the surrounding ALF
class. The annotation that references the feature attribute
is contained in the value mapping that corresponds to the

Expression

UnaryExpression

NotParen

BinaryExpression

And Xor OrFeatureReference

(from feat)

Feature

AttributeReference

(from feat)

Attribute

Annotation

Mapping

ObjectMapping

(from ecore)

EObject

Model

(from feat)

Model

ValueMapping PropertyMapping

(from ecore)

EStructuralFeature

AttributeOrCrossMapping

ContainmentMapping

rootMappings

0..*

container 1..1

properties

0..*

0..1

containment

children 0..*

1..1 property

values 0..*

annotation 0..1

root

1..1

expression 1..1

1..1 left 1..1 right

mappedObject 1..1 mappedProperty 1..1

1..1 featModel

1..1

feature

1..1

attribute

index : EInt

Fig. 11 The metamodel of product line mapping models [10]

SN Computer Science (2023) 4:35 Page 15 of 17 35

SN Computer Science

: Model

: ObjectMapping

: ContainmentMapping

: ObjectMapping

: ContainmentMapping

: ObjectMapping: Annotation

: ContainmentMapping

: ObjectMapping

: Annotation

: ContainmentMapping

: ObjectMapping

: AttributeOrCrossMapping

: ValueMapping

: Annotation

: ObjectMapping

: Annotation

: ObjectMapping

: Annotation

: ContainmentMapping

: Annotation

Unit

Package

Class Arithmetic

Property logBase

Natural Literal

Operation log Operation logDef

Namespace::ownedMember Classifier::generalization

Arithmetic

Default

defaultBase

Logarithm AND
NOT OnlyDefault

Default

Description

rootMappings

container

properties

containment

children

container

annotation

properties

containment

children

container

properties

container

children

annotation

container

properties

containment

children

container

properties

property

values

annotation

children

annotation

children

annotation

properties

annotation

Fig. 12 The internal structure of the mapping model of the Calculator product line shown in Fig. 7. The referenced AST objects and the annota-
tion expressions are notated next to the model objects

 SN Computer Science (2023) 4:3535 Page 16 of 17

SN Computer Science

respective value. The value mapping is contained in the
property mapping for the value within the object mapping
which refers to the natural literal.

Note that all leaf mappings contain annotations. In this
state, the mapping model does not comprise mapping objects
for ALF parameters in the domain model as they do not
exhibit annotations. If, for example, the annotation for the
operation log was removed, the annotation object would be
deleted without any impact on the mapping object. Rather,
the object mapping would be deleted if the ALF operation
was completely removed.

Conclusion

We presented a generic framework for constructing projec-
tional multi-variant editors that are based on feature mod-
els for modeling variability. In this paper, we applied our
framework to an exemplary product line including a concise
domain model and a few features. Our approach employs
negative variability by using feature expressions as annota-
tions of domain model elements. The editor can be config-
ured for arbitrary textual languages with respective meta-
models. Both domain model and annotations are visualized
within an integrated view including a clear optical separa-
tion between both kinds of artifacts. Within the editor, vari-
ability information may be shown and hidden in the editor
in a pretty flexible way by means of respective commands.

Projectional multi-variant model editors have not purely
been designed for model-driven engineering; they have also
been realized with model-driven engineering. Therefore,
projectional multi-variant model editors pose a complex use
case for applying model-driven engineering. The internal
architecture of multi-variant model editors (cf. Section 5)
has been designed by means of megamodels describing
the relationships between different models; to this end, we
devised an extra notation for megamodels. One important
design concept of the architecture is the separation of dif-
ferent concerns: The models that are necessary internally
in order to assure the functionality of the editor are strictly
separated from the models within the product line context.

The work presented here is still ongoing. Future work
will provide for configuring multi-variant models by means
of total or partial feature configurations. In this context,
ensuring well-formedness of configured domain models
constitutes a significant challenge that will be addressed
along the lines of our previous work on FAMILE [8]. Con-
figurations of feature and domain models is essential for
application engineering. Nevertheless, it poses an important
research area for domain engineering, as well. Total or par-
tial feature configurations may be used to derive previews
of configured products by coloring and eliding. In addition,
these configured views could support filtered editing that

is well-known in the context of variation control systems;
since the underlying artifact is the multi-variant model and
the editor commands ensure its correctness, the common
view-update problems of variation control systems are not
relevant for our approach.

All in all, our framework allows for a user-friendly
domain engineering process. To evaluate our approach, we
plan a more practical example product line with a more com-
plex feature model including several dependencies between
the features. By employing various metrics, we will analyse
how the configured multi-variant model editors cope with
larger feature models with numerous constraints, a higher
number of annotated elements, more complex annotations,
etc. As an appropriate and intuitive textual language in the
world of modeling, we want to adhere to ALF as the underly-
ing language for the projectional editor.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Availability of Data and Material, Code Availability Currently not
available.

Declarations

Conflict of Interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Völter M, Stahl T, Bettin J, Haase A, Helsen S. Model-driven
software development: technology, engineering, management.
Hoboken: Wiley; 2006.

 2. Steinberg D, Budinsky F, Paternostro M, Merks E. EMF eclipse
modeling framework. 2nd ed. In: The Eclipse Series. Boston:
Addison-Wesley; 2009.

 3. Völter M, Siegmund J, Berger T, Kolb B. Towards user-friendly
projectional editors, vol. 8706 of Lecture Notes in Computer Sci-
ence. Berlin: Springer; 2014. p. 41–61. https:// doi. org/ 10. 1007/
978-3- 319- 11245-9_3.

 4. Berger T, Voelter M, Jensen HP, Dangprasert T, Siegmund J,
Tichy M, Bodden E, Kuhrmann M, Wagner S, Steghöfer J, editors.
Efficiency of projectional editing. In: Tichy M, Bodden E, Kuhr-
mann M, Wagner S, Steghöfer J, editors. Software engineering
und software management 2018, Fachtagung des GI-Fachbereichs

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-319-11245-9_3
https://doi.org/10.1007/978-3-319-11245-9_3

SN Computer Science (2023) 4:35 Page 17 of 17 35

SN Computer Science

Softwaretechnik, SE 2018, Ulm, Germany, 5-9 März 2018, vol.
P-279 of LNI, 153–154 (Gesellschaft für Informatik, 2018); 2018.
https:// dl. gi. de/ 20. 500. 12116/ 16335.

 5. Pohl K, Böckle G, van der Linden F. Software product line
engineering—foundations, principles, and techniques. Berlin:
Springer; 2005. https:// doi. org/ 10. 1007/3- 540- 28901-1.

 6. Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS. Feature-
oriented domain analysis (FODA) feasibility study. Tech. Rep.
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University; 1990.

 7. Heidenreich F, Kopcsek J, Wende C, Schäfer W, Dwyer MB,
Gruhn V. editors. Featuremapper: mapping features to models. In:
Schäfer W, Dwyer MB, Gruhn V. editors. 30th International Con-
ference on software engineering (ICSE 2008), Leipzig, Germany,
May 10–18, 2008, Companion Volume, pp. 943–944, ACM; 2008.
https:// doi. org/ 10. 1145/ 13701 75. 13701 99.

 8. Buchmann T, Schwägerl, F, Störrle H, et al. editors. FAMILE:
tool support for evolving model-driven product lines. In: Störrle
H, et al. editors. Joint proceedings of co-located events at the 8th
European conference on modelling foundations and applications
(ECMFA 2012), CEUR WS, Technical University of Denmark
(DTU), Kongens Lyngby; 2012. p. 59–62.

 9. Schwägerl F, Westfechtel B. Integrated revision and variation
control for evolving model-driven software product lines. Softw
Syst Model. 2019;18(6):3373–420. https:// doi. org/ 10. 1007/
s10270- 019- 00722-3.

 10. Schröpfer J, Buchmann T, Westfechtel B, Hammoudi S, Pires LF,
Seidewitz E, Soley R. editors. A framework for projectional multi-
variant model editors. In: Hammoudi S, Pires LF, Seidewitz E,
Soley R. editors. Proceedings of the 9th International Conference
on model-driven engineering and software development, MOD-
ELSWARD 2021, Online Streaming, February 8–10, 2021, pp.
294–305, SCITEPRESS; 2021. https:// doi. org/ 10. 5220/ 00103
10102 940305.

 11. Schröpfer J, Buchmann T, Westfechtel B, Hammoudi S, Pires LF,
Selic B, editors. A generic projectional editor for EMF models.
In: Hammoudi S, Pires LF, Selic B, editors. Proceedings of the
8th international conference on model-driven engineering and
software development (MODELSWARD 2020). INSTICC, SciTe-
Press; 2020. p. 381–92.

 12. OMG. Action language for foundational UML (Alf). for-
mal/2017-07-04. Needham: Object Management Group; 2017.

 13. Guermazi S, et al. Executable modeling with fuml and alf in papy-
rus: tooling and experiments. In: Mayerhofer T, Langer P, Seide-
witz E, Gray J, editors. Proceedings of the 1st international work-
shop on executable modeling co-located with ACM/IEEE 18th
international conference on model driven engineering languages
and systems (MODELS 2015), Ottawa, Canada, 27 September
2015, vol. 1560 of CEUR workshop proceedings, 3–8, CEUR-WS.
org; 2015. http:// ceur- ws. org/ Vol- 1560/ paper1. pdf.

 14. Linsbauer L, Schwägerl F, Berger T, Grünbacher P. Concepts of
variation control systems. J Syst Softw. 2021;171:25. https:// doi.
org/ 10. 1016/j. jss. 2020. 110796.

 15. Clements P, Northrop L. Software product lines: practices and
patterns. Boston: Addison-Wesley; 2001.

 16. Kang KC, et al. Form: A feature-oriented reuse method with
domain-specific reference architectures. Ann Softw Eng.
1998;5:143–68.

 17. Quinton C, et al. Evolution in dynamic software product lines. J
Softw Evol Process. 2021. https:// doi. org/ 10. 1002/ smr. 2293.

 18. Michelon GK et al. Locating feature revisions in software systems
evolving in space and time. In: Lopez-Herrejon, RE. editor. SPLC
’20: 24th ACM International Systems and Software Product Line
Conference, Montreal, Quebec, Canada, October 19–23, 2020,
Volume A, pp. 14:1–14:11, ACM; 2020. https:// doi. org/ 10. 1145/
33820 25. 34149 54.

 19. Mauro J, Nieke M, Seidl C, Yu IC ter Beek MH et al. editors.
Anomaly detection and explanation in context-aware software
product lines. In: Beek MH et al. editors. Proceedings of the 21st
International Systems and Software Product Line Conference,
SPLC 2017, Volume B, Sevilla, Spain, September 25–29, 2017,
18–21, ACM; 2017. https:// doi. org/ 10. 1145/ 31097 29. 31097 52.

 20. Batory DS, Obbink JH, Pohl K. editors. Feature models, gram-
mars, and propositional formulas. In: Obbink JH, Pohl K. edi-
tors. Proceedings of the 9th International Software Product Line
Conference (SPLC’05), Vol. 3714 of Lecture Notes in Computer
Science, 7–20, Springer Verlag, Rennes, France; 2005.

 21. Schobbens P, Heymans P, Trigaux J. Feature diagrams: a sur-
vey and a formal semantics. In: 14th international conference on
requirements engineering (RE 2006). IEEE; 2006. p. 136–45.

 22. Czarnecki K, Helsen S, Eisenecker UW. Formalizing cardinal-
ity-based feature models and their specialization. Softw Process
Improv Pract. 2005;10(1):7–29.

 23. Apel S, Kästner C, Lengauer C. FeatureHouse: language-inde-
pendent, automated software composition. In: 31st international
conference on software engineering (ICSE 2009). IEEE; 2009. p.
221–31.

 24. Schaefer I, Müller P, Schaefer I. editors. A personal history of
delta modelling. In: Müller, P, Schaefer I. editors. Principled soft-
ware development—essays dedicated to Arnd Poetzsch-Heffter on
the Occasion of his 60th Birthday, pp. 241–250. Springer; 2018.
https:// doi. org/ 10. 1007/ 978-3- 319- 98047-8_ 15.

 25. Apel S, Kästner C. Virtual separation of concerns—a second
chance for preprocessors. J Object Technol. 2009;8(6):59–78.
https:// doi. org/ 10. 5381/ jot. 2009.8. 6. c5.

 26. Buchmann T, Schwägerl F, Schaefer I, Thüm T. editors. Ensuring
well-formedness of configured domain models in model-driven
product lines based on negative variability. In: Schaefer I, Thüm T.
editors. 4th International Workshop on feature-oriented software
development, FOSD ’12, Dresden, Germany - September 24—25,
2012, pp. 37–44. ACM; 2012. https:// doi. org/ 10. 1145/ 23778 16.
23778 22.

 27. Heidenreich F. Towards systematic ensuring well-formedness of
software product lines. Denver: ACM; 2009. p. 69–74.

 28. Hunsen C, et al. Preprocessor-based variability in open-source and
industrial software systems: an empirical study. Empir Softw Eng.
2016;21(2):449–82. https:// doi. org/ 10. 1007/ s10664- 015- 9360-1.

 29. Mukelabai M et al. Multi-view editing of software product lines
with people. In: Chaudron M, Crnkovic I, Chechik M, Harman
M. editors. Proceedings of the 40th International Conference on
software engineering: companion proceedings, ICSE 2018, Goth-
enburg, Sweden, May 27–June 03, 2018, pp. 81–84. ACM; 2018.
https:// doi. org/ 10. 1145/ 31834 40. 31834 99.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://dl.gi.de/20.500.12116/16335
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1145/1370175.1370199
https://doi.org/10.1007/s10270-019-00722-3
https://doi.org/10.1007/s10270-019-00722-3
https://doi.org/10.5220/0010310102940305
https://doi.org/10.5220/0010310102940305
http://ceur-ws.org/Vol-1560/paper1.pdf
https://doi.org/10.1016/j.jss.2020.110796
https://doi.org/10.1016/j.jss.2020.110796
https://doi.org/10.1002/smr.2293
https://doi.org/10.1145/3382025.3414954
https://doi.org/10.1145/3382025.3414954
https://doi.org/10.1145/3109729.3109752
https://doi.org/10.1007/978-3-319-98047-8_15
https://doi.org/10.5381/jot.2009.8.6.c5
https://doi.org/10.1145/2377816.2377822
https://doi.org/10.1145/2377816.2377822
https://doi.org/10.1007/s10664-015-9360-1
https://doi.org/10.1145/3183440.3183499

	Projectional Editing of Software Product Lines Using Multi-variant Model Editors
	Abstract
	Introduction
	Contribution
	Overview

	Background and Related Work
	Functionality and User Interface
	The Framework in General
	Support for Domain Engineering
	Limitations of Integration

	Example
	Architecture
	Overview
	Example Scenario

	Mapping Model and Annotations
	Feature Models
	Mapping Models
	Exemplary Mapping Model

	Conclusion
	References

