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Abstract
We propose a p-adaptive quadrature-free discontinuous Galerkin method for the shal-
low water equations based on a computationally efficient adaptivity indicator which
works without any problem-dependent parameters. The error and smoothness of the
solution are detected using the information collected for slope limiting and, for piece-
wise constant discretizations, by carrying out a reconstruction procedure. The accuracy
and robustness of the new scheme are evaluated using several benchmarks and com-
pared to other adaptivity indicators. Our results indicate that the proposed indicator
finds a good balance between solution quality and computational overhead.

Keywords p-adaptivity · Error and smoothness indicator · Discontinuous Galerkin
method · Quadrature-free · Shallow water equations · Ocean modeling

Mathematics Subject Classification 65 · 76 · 86

1 Introduction

Discontinuous Galerkin (DG) methods combine some of the most attractive features
of the classical (continuous) finite element and finite volume methods; they are widely
used nowadays inmany areas of computational science, particularly for fluid dynamics
simulation. Thanks to local approximation stencils, DG schemes have a very favorable
computation/communication ratio and are therefore well suited for high performance
computing applications that utilize distributed memory parallelization or heteroge-
neous hardware architectures.
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One of the most interesting aspects of the DG methodology is the support for
the computational mesh (h-) or the local approximation space (p-) adaptivity. How-
ever, adaptive discretizations need indicators to guide the refinement/derefinenement.
A wide variety of different error and smoothness indicators exists in the literature (see,
for example, an overview in Naddei et al. 2019). Generally, these approaches can be
subdivided into several classes according to the information used to evaluate the local
discretization error (or the local solution regularity). A simple and computationally
efficient scheme (Eskilsson 2011; Tumolo et al. 2013) measures the so-called local
spectral decay of the DG solution, i.e., compares the absolute or relative magnitudes of
the degrees of freedom corresponding to different polynomial orders. Another indica-
tor, which has been already successfully used for the shallow water equations (SWE),
estimates local solution gradients (Kubatko et al. 2009; Michoski et al. 2011). In
Michoski et al. (2011), the first attempt was made to combine a slope limiter with a p-
adaptiveDGmethod; however, contrary to our approach, no slope limiting information
was utilized by the adaptivity procedure and vice versa.

Our indicator uses techniques introduced in Krivodonova et al. (2004) for so-called
non-conformity estimators whichmeasure the absolute or relative size of discontinuity
between the element-local solutions – mostly by integrating solution jumps over the
inter-element boundaries. However, a new indicator became necessary due to addi-
tional requirements resulting from the specifics of our application:

• Highly dynamic character of typical simulation scenarios for the SWE (e.g., tidal
waves or tsunamis) requires a computationally efficient procedure,

• Support for piecewise constant polynomial spaces – the indicator must be able to
detect local errors using the lowest order approximation space—cannot beprovided
using, e.g., the spectral decay methods.

The adaptivity indicator proposed in thiswork aims to fulfill the above requirements,
does not need any problem-specific (e.g. sensitivity) parameters, and is integrated into
the vertex-based slope limiter (Aizinger 2011; Kuzmin 2010; Aizinger et al. 2017;
Hajduk et al. 2018, 2019) further reducing the total computational cost of the scheme.
In addition, our DG discretization based on modal hierarchical bases is highly suited
for p-adaptive schemes – even more so since it relies on a quadrature-free formulation
introduced in Faghih-Naini et al. (2020). Analytic evaluation of all element and edge
integrals completely avoids themain overhead of varying-order approximation spaces:
The necessity to use the most accurate (and thus the most expensive) quadrature rule
or to maintain several quadrature rules of different orders.

We begin, in the next section, by introducing the mathematical model and its dis-
cretization by a quadrature-free DG method. Section 3 details our adaptivity indicator
and two other indicators used for comparison. Numerical results evaluating the per-
formance of our scheme are presented in Sect. 4 followed by a short Conclusions and
outlook section.
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2 Quadrature-free DG formulation for the shallowwater equations

2.1 Governing equations

The presentation in this section closely follows (Faghih-Naini et al. 2020) and is
included here for completeness.We start with the classical 2D shallowwater equations
defined on some 2D domain Ω and given by

∂tξ + ∇ · q = 0, (1)

∂tq + ∇ ·
(
qqT /H

)
+ τbfq +

(
0 − fc
fc 0

)
q + gH∇ξ = F, (2)

where ξ represents the elevation of the free water surface with respect to some datum
(e.g., themean sea level). Using hb to denote the bathymetric depth, H = hb+ξ is then
the total water depth. q := (U , V )T denotes the depth integrated horizontal velocity
field, fc the Coriolis coefficient, g the gravitational acceleration, τbf the bottom friction
coefficient, and F the body force accounting for the variable atmospheric pressure and
tidal potential.

Introducing the notation c := (ξ,U , V )T , system (1), (2) can be re-formulated in
the following compact form:

∂t c+ ∇ · Ã(c) = r(c), (3)

where

Ã =
⎛
⎜⎝

U V
U2

H + gξ(H+hb)
2

UV
H

UV
H

V 2

H + gξ(H+hb)
2

⎞
⎟⎠ , r =

⎛
⎝

0
−τbfU + fcV + gξ∂xhb + Fx
−τbfV − fcU + gξ∂yhb + Fy

⎞
⎠ .

Taking into account the relation q = uH , where u = (u, v)T is the depth averaged
velocity, system (3) can be re-formulated as follows:

∂t c+ ∇ · A(c, u) = r(c), (4)

uH = q, (5)

where

A(c, u) =
⎛
⎝

U V
Uu + gξ(H+hb)

2 Uv

Vu V v + gξ(H+hb)
2

⎞
⎠ . (6)

With the help of the auxiliary vector u calculated diagnostically from (5), this formu-
lation, first presented in Faghih-Naini et al. (2020), avoids fraction-type nonlinearities
in the momentum equation (2) and is better suited for quadrature-free integration.
This work uses the following types of boundary conditions for the SWE:
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Land boundary: At a land boundary, we assume no normal flow

q · n = 0.

Open-sea boundary: Denoting by ξ̂ the prescribed free surface elevation we set at
open sea boundaries

ξ(t, x) = ξ̂ (t, x).

River boundary: For supercritical flow examples, we set the following river (inflow)
boundary conditions:

qn(t, x) = q̂n(t, x), qτ (t, x) = q̂τ (t, x), ξ(t, x) = ξ̂ (t, x)

with the normal and tangential integrated velocities q̂n(t, x) and q̂τ (t, x).
Radiation boundary: At the outflow boundary of supercritical flow examples, we
specify radiation boundary conditions where no unknowns are prescribed.

Lastly, we provide initial conditions for the elevation and integrated velocity

ξ(0, x) = ξ0(x), q(0, x) = q0(x). (7)

2.2 Spatial discretization by a quadrature-free DGmethod

For {TΔ}Δ>0, a family of triangulations of Ω ⊂ R
2, let Ωe be an element of TΔ. The

variational formulation of system (4), (5) is obtained bymultiplicationwith sufficiently
smooth test functions φ and ψ followed by the integration by parts on each element
Ωe ∈ TΔ (we use the standard notation (·, ·)Ωe and 〈·, ·〉∂Ωe for the L

2-scalar products
on elements and edges, respectively)

(∂t c,φ)Ωe
− (A,∇φ)Ωe

+ 〈A · ne,φ〉∂Ωe = (r,φ)Ωe
, (8)

(uH ,ψ)Ωe
= (q,ψ)Ωe

, (9)

where ne denotes an exterior unit normal to ∂Ωe.
Denoting by P

p(Ωe) the polynomial space of order (i.e. the highest polynomial
degree) p on Ωe, the initial conditions for the semi-discrete problem are generated
using an L2-projection of (7) into the corresponding discrete space. The (local) semi-
discrete formulation is then obtained from (8), (9) by replacing c and u by their finitely-
dimensional counterparts cΔ, uΔ and utilizing test functions φΔ ∈ P

p(Ωe)
3, ψΔ ∈

P
p(Ωe)

2:

(
∂t cΔ,φΔ

)
Ωe

− (
A,∇φΔ

)
Ωe

+ 〈̂A,φΔ〉∂Ωe = (
r,φΔ

)
Ωe

, (10)
(
uΔHΔ,ψΔ

)
Ωe

= (
qΔ,ψΔ

)
Ωe

. (11)

The edge flux A(cΔ, uΔ) · ne is approximated on ∂Ωe by a numerical flux
̂A(cΔ, uΔ, c̃Δ, ũΔ, ne) that depends on discontinuous values of the solution on ele-
ment Ωe (without tilde) and on its edge neighbors (with tilde). On exterior domain
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boundaries, the specified boundary values of the elevation and velocity are utilized
in the flux computation. In this work, we rely – unless specified otherwise – on the
Lax–Friedrichs flux (Hajduk et al. 2018) defined as

̂A
LF

(cΔ, uΔ, c̃Δ, ũΔ, ne) = 1

2

(
A(cΔ, uΔ) + A(c̃Δ, ũΔ)

) · ne + λ

2
(cΔ − c̃Δ),

where λ denotes the largest (in absolute value) eigenvalue of ∂
∂c

˜A(c) · ne. Denoting
by x f the midpoint of edge f ⊂ ∂Ωe, our quadrature-free scheme uses the following
approximation of λ| f :

λ| f :=max
{∣∣uΔ(x f ) · ne

∣∣ , ∣∣ũΔ(x f ) · ne
∣∣} + max

{√
gHΔ(x f ),

√
gH̃Δ(x f )

}
.

(12)
Since the Lax–Friedrichs flux sometimes leads to rather diffusive results, we use in

some cases the FORCE flux (Toro et al. 2009) instead with λ as described above. The
FORCE flux can be constructed as the arithmetic mean between the Lax–Friedrichs
flux and the two-step version of the Lax–Wendroff flux

̂A
F = 1

2

(
̂A
LF + ̂A

LW)
(13)

where the latter is defined as ̂A
LW = A

(
QLW )

with

QLW (cΔ, uΔ, c̃Δ, ũΔ, ne) = λ

2

(
A(cΔ, uΔ) − A(c̃Δ, ũΔ)

) · ne + 1

2
(cΔ + c̃Δ).

Since the FORCE flux is more computationally expensive, it is only used if the Lax–
Friedrichs flux produces too much numerical diffusion. Note that with either Lax–
Friedrichs or FORCE flux and the parameter λ approximated as in (12), our semi-
discrete formulation (10), (11) only contains nonlinearities in product form, thus all
edge integrals are well suited for an analytical integration using a quadrature-free
approach.

For simplicity, we formulate ourmethodology in the remainder of this section and in
Sect. 3 for a generic scalar function w(x) defined on Ω and its discretized counterpart
wΔ(x). Given ϕei (x), i = 1, . . . , P(p), a basis of Pp(Ωe), wΔ can be represented as

wΔ(t, x)|Ωe =
P(p)∑
i=1

wei (t) ϕei (x) =: w
p
e ,

that is, the superscript indicates the approximation order; no superscript means the
default (full) approximation order. We also use a short-hand notation p0, p1, . . . for
piecewise constant, linear, . . . approximation spaces. The number of basis functions
P(p) depends on the respective polynomial order and the space dimension; it has the
following values in R

2: P(0)=1, P(1)=3, and P(2)=6. The basis functions used
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in this work are chosen to be orthonormal with respect to the L2-scalar product on Ωe

(see, for example, Frank et al. 2015).

2.3 Temporal discretization and slope limiting

To avoid spurious oscillations in linear and superlinear DG solutions, we apply a
vertex-based slope limiter following (Aizinger 2011;Kuzmin 2010) to piecewise linear
and higher order approximations where appropriate. For orthonormal basis functions
used in our work, the local representation of the limiting operator Π : Pp(Ωe) →
P
p(Ωe) can be given by

Π
(
wΔ)|Ωe

) = we1ϕe1 + αe

P(p)∑
i=2

wei ϕei (14)

where the limiting factor αe ∈ [0, 1] is computed as follows:

αe = min
i∈{1,2,3}

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min

(
1,

wmax
i −w0

e
we(aei )−w0

e

)
, if we(aei ) − w0

e > ε,

min

(
1,

wmin
i −w0

e
we(aei )−w0

e

)
, if we(aei ) − w0

e < −ε,

1, otherwise,

(15)

choosing ε = 10−5 in the following. wmax
i and wmin

i denote the solution bounds given
by the maximum and minimum of piecewise constant solutions w0

e on all elements
sharing vertex aei . Note that for an orthonormal basis, one has

w0
e = 1

|Ωe|
∫

Ωe

wΔ(t, x)|Ωedx.

If (15) results in αe < 1, all degrees of freedom corresponding to superlinear
(quadratic and higher) basis functions in (14) are set to zero. In such cases, this
limiting does not guarantee the exact preservation of bounds wmax

i and wmin
i , but the

solution is mostly oscillation-free in most practical scenarios.
The temporal discretization of system (10), (11) is performed using a SSP (strong

stability preserving) Runge–Kutta method (Gottlieb and Shu 1998). Following the
presentation in Reuter et al. (2016), let 0 = t1 < t2 < · · · < tend be a not necessarily
equidistant decomposition of the time interval and Δnt := tn+1 − tn the size of the
nth time step. The update scheme of the s-stage SSP Rung–Kutta method (including
limiting) is then given by

c(0)Δ := cΔ(tn, ·),
c(i)Δ := Π

(
ωi c

(0)
Δ + (1 − ωi )

{
c(i−1)
Δ + Δnt L(c(i−1)

Δ , tn + δiΔnt)
})

, i = 1, . . . , s,

cΔ(tn+1, ·) := c(s)Δ ,

123



GEM - International Journal on Geomathematics (2022) 13 :18 Page 7 of 25 18

where L denotes the spatial discretization operator specified by (10), (11). In the test
cases presented in Sect. 4, we use a two-stage SSP Runge–Kutta method with the
coefficients ω1 = 0, ω2 = 1/2, δ1 = 0, δ2 = 1 (cf. Eq. (2.4) (Gottlieb and Shu
1998).

3 Adaptivity indicators

3.1 Design of a new parameter-free adaptivity indicator

The goal of the new indicator, which will be referred to as JRL (Jump-Reconstruction-
Limiting), is to identify resolved and under-resolved solution parts while distinguish-
ing between smooth and non-smooth regions (e.g., shocks). Non-constant smooth
regions should be approximated by piecewise linear or quadratic polynomials, con-
stant regions should automatically revert to constant approximations. In regions with
shocks or discontinuities, over- and undershoots should be avoided either by limiting,
where possible, or by reducing the approximation order where necessary. Among the
existing techniques in this area particularly relevant for our approach are the following
ones:

• for continuous finite element methods, (Kuzmin and Schieweck 2013) utilized a
gradient reconstruction (using a local L2-projection) as a parameter-free smooth-
ness indicator for the unsteady linear advection equation;

• (Aizinger et al. 2017) introduced a flux-based gradient reconstruction which was
then employed in the framework of anisotropic slope limiters for the DG method.

The indicator’s scheme is shown in Fig. 1; it combines the above two ideas with a
vertex-based slope limiter to re-use pre-computed data in an effort to increase computa-
tional efficiency and to smoothly blend p-adaptivity with slope limiting. The following
subsections detail indicator’s working principles.

3.1.1 Error detection

First, we need to introduce some notation. For the base approximation order b :=
max {p − 1, 0}, the jump of element Ωe is defined as

�w�e :=
∫

∂Ωe∩∂Ωẽ

∣∣∣w p
e − wb

ẽ

∣∣∣ ds =
∫

∂Ωe∩∂Ωẽ

∣∣∣∣∣∣

P(p)∑
i=1

weiϕei −
P(b)∑
i=1

wẽiϕẽi

∣∣∣∣∣∣
ds, (16)

where ẽ denotes the index of the edge-neighbor of element Ωe. The base jump of
element Ωe is the jump when using the base order approximation on Ωe

�wb�e :=
∫

∂Ωe∩∂Ωẽ

∣∣∣wb
e − wb

ẽ

∣∣∣ ds

It is mainly used in combination with �w�e to estimate the solution regularity. In the
numerical results section (Sect. 4), the adaptivity indicator as shown in Fig. 1 is applied
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Fig. 1 Flow chart of adaptivity indicator JRL for orders 0, 1, and 2. Values in gray boxes stand for different
adaption cases, zero means no adaption, negative values indicate a decrease, and positive ones point to an
increase of the approximation order
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to the free surface elevation, that is, w = ξ . The decisions are made depending on the
following thresholds: ε0 = 0.01, ε1 = 0.005, ε2 = 0.001 and ε̃1 = 0.01, which are
problem independent and remain constant for all test cases and resolutions.

Furthermore, to avoid frequent in- and decrements in the local approximation order,
we add an additional constraint: once the order is increased, it cannot be decreased
for a fixed number of time steps chosen equal to 10 in all our test cases. Additionally,
the approximation order of an element can only be increased by one at a time. This
explains why the jump definition in (16) is somewhat different from the standard jump
definition (cf. (20) in Sect. 3.2.1) where a full order approximation is considered. Our
approach is independent of the decisions on approximation order in- and decrements
involving neighboring elements—since we only permit changes by one polynomial
order.

3.1.2 Gradient reconstruction

For a p0 solution w0
Δ(t, x) with �w0�e

|∂Ωe| ≤ 0.01 · |w0
e |, we construct a linear solution as

follows using a rotationally invariant gradient reconstruction

R(wΔ)|Ωe = w0
e + ∂w1

e

∂x
ψe2(x) + ∂w1

e

∂ y
ψe3(x). (17)

This reconstruction uses the linear Taylor basis functions ψei as in Eq. (6) of (Kuzmin
2010) defined on the element Ωe as

ψe1(x) = 1, ψe2(x) = x − xce , ψe3(x) = y − yce ,

where xce = (xce , y
c
e )

T = 1
3 (ae1 + ae2 + ae3) denotes the centroid of Ωe. The first

coefficient is just the mean of the solution, the other two are obtained by taking
the directional derivatives on all edges. Consider Ωẽ with centroid x̃c = (x̃ c, ỹc)
sharing an edge with Ωe. The directional derivative of we on ∂Ωe ∩ ∂Ωẽ in direction
d ẽ = xcẽ − xce can then be approximated by

∂we

∂d ẽ
≈ w0

ẽ − w0
e

|d ẽ| . (18)

After computing the directional derivatives, we solve a least squares problem to obtain
the gradient. Let N be the matrix containing the directions d ẽ in its rows, and let νe
be the vector of directional derivatives defined in (18) for all neighboring elements
Ωẽ. The missing coefficients from (17) are then obtained as the solution of the least
squares problem:

(
∂w1

e

∂x
,
∂w1

e

∂ y

)T

= (NT N )−1NT νe. (19)
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Finally, the solution is transformed back into the orthonormal basis. For elements at
the boundary of Ω , one can define the directional derivatives using a ghost layer. The
above approach trivially generalizes to arbitrary polygons.

3.2 Two further indicators for comparison

To evaluate the performance of our new indicator, we perform in Sect. 4 comparisons
to two other types of adaptivity indicators. The first one, described in Sect. 3.2.1, is a
well established scheme which uses inter-element jumps to assess the local solution
regularity. The other one, described in Sect. 3.2.2, is our own version of the gradient
indicator enhanced in order to be applicable for p0 discretizations. It needs to be noted
here that these two indicators need either one (cf. Sect. 3.2.1) or three (cf. Sect. 3.2.2)
user-defined thresholds as input parameters. These parameters have to be calibrated
manually and may differ for different scenarios, for limited and unlimited simulations
as well as for different refinement levels of the same scenario.

3.2.1 Jump indicator

The indicator introduced in Remacle et al. (2003) computes the sum of the jumps
across the edges of an element Ωe, in our notation as

�wΔ(t, x)�e :=
∫

∂Ωe∩∂Ωẽ

∣∣w p
e − w

p
ẽ

∣∣ ds. (20)

The local approximation order is then increased if the total jump over the element is
greater than the user-provided threshold, and a decrease is performed if it is smaller
(also here the minimum of ten time steps between an increase and a decrease is
enforced). This indicator can be considered as a simplified version of the JRL indicator
since it also uses jumps for error detection. We apply it to the free surface elevation,
that is set w = ξ , and refer to it in the following as JE (Jump-Estimation).

3.2.2 Gradient indicator

There exist gradient indicators in the literature such as the one introduced in Burbeau
and Sagaut (2005) for the compressible Navier-Stokes equations and employed for the
SWE in Kubatko et al. (2009). It computes gradients using the element-local solutions
and therefore cannot be applied to p0-discretizations. To address this deficiency we
designed a new scheme by taking directional derivatives in the directions d f = x f −
xce, where x f denotes the midpoint of edge f ⊂ ∂Ωe. The directional derivative is
then approximated using the element centroid value and the edge midpoint values
taken from the current element and from its edge neighbor as follows

∂we

∂d f
≈ we(x f ) − we(xce)

|d f | and
∂w̃e

∂d f
≈ wẽ(x f ) − we(xce)

|d f | .
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To decide, whether an increment in the approximation order is necessary, comparison
is done by evaluating

∣∣∣∣
∂we

∂d f
− ∂w̃e

∂d f

∣∣∣∣ < εw(Δe)
p. (21)

whereΔe = √
2|Ωe|. In our implementation, this indicator is applied to three primary

unknowns, that is, w ∈ {ξ,U , V }, in the following way. If the inequality does not
hold for all directions and all three unknowns, the local approximation order of the
respective element is increased. If all of them hold, the same comparison (21) is
performed for the base order solution wb

e (see Sect. 3.1.1) on the current element
and using (Δe)

b in the upper bound in (21). If the criterion still holds for wb
e , then

the solution is approximated well enough by the lower order approximation, thus the
order is decreased. The threshold εw has to be chosen individually for every unknown
and scenario but can be chosen the same for different mesh resolutions. We refer to
this indicator as the GRE (Gradient-Reconstruction-Extended).

4 Numerical results

To evaluate the accuracy and robustness of the proposed adaptivity indicator, we use
three different benchmarks representing a wide range of spatial (constant, smoothly
varying, shocks) and temporal (stationary, time-varying) flow regimes. In addition to
our indicator, simulations utilizing two other indicators described in Sect. 3.2 were
carried out and used for comparison purposes.

The simulations were performed with the ExaStencils code generation framework
(Lengauer et al. 2020), which is based on the domain-specific language ExaSlang
(Schmitt et al. 2014b) and outputs an optimizedC++ or CUDAcode. Ourwork extends
the framework using a Python frontend – called GHODDESS and available at https://
i10git.cs.fau.de/ocean/ghoddess-release – responsible for mapping the DG scheme to
ExaSlang (Faghih-Naini et al. 2020). Recently, much effort was put into improving
the performance of our p-adaptive scheme via algorithmic optimizations and various
hybridization strategies controlling the distribution of the compute kernels between
CPUs and GPUs. Runs on different architectures showed a speedup compared to a
pure CPU or GPU implementation (see Faghih-Naini et al. 2023).

Note that no bottom friction τbf, Coriolis force fc, or forcing F is used in any of
the following test examples (cf. (2)).

4.1 Radial dam break

The radial dam break example is based on (LeVeque 2002; Hajduk 2021). We set
Ω = [0, 5] × [0, 5], g = 1, and a constant bathymetry hb = 0. To make the test
problem better suited for a p-adaptive approach, we chose the initial condition as
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Fig. 2 Radial dam break solution for t = 0.1 s (left), t = 1 s (middle), and t = 3 s (right): constant (p0)
(top), limited linear (p1) (middle), and limited linear (p1) on a twice uniformly refined mesh using the
FORCE Riemann solver (bottom)

ξ(x, y, t) =
{
2 + 0.5 e−15((x−2.5)2+(y−2.5)2), if (x − 2.5)2 + (y − 2.5)2 < 0.25,

1, otherwise,

U (x, y, t) = 0, V (x, y, t) = 0.

The simulation results shown in Fig. 2 (top and middle) were obtained on a uniform
mesh with 32768 triangles, whereas those displayed in Fig. 2 (bottom) used the same
mesh refined twice in a uniform fashion. The latter solution serves as a reference for
our comparisons and, in order to reduce numerical diffusion, employs the FORCE
(see (13)) instead of the Lax–Friedrichs flux. Since all external boundaries use land
boundary conditions, the wave is reflected as illustrated in Fig. 2 (right) which corre-
spond to t = 3 s. For better comparability, we limit the free surface elevation for the
non-adaptive cases and show limited and unlimited results for the adaptive ones.

A comparison between the p-adaptive solutionswith different indicators is shown in
Fig. 3(a) for t = 0.1 s, in Fig. 3(b) for t = 1 s, and in Fig. 3(c) for t = 3 s, respectively.
For indicator JE, a threshold value of 0.0003 led to the best results. For indicator GRE,
in the unlimited case, the threshold for the free surface elevation of 0.8 and for the
velocities of 1.7, and, in the limited case, the threshold for the free surface elevation of
0.2 and for the velocities of 0.5 produced the best solution. Our new indicator avoids
over- and undershoots while not suffering from excessive numerical diffusion such
as shown by the JE indicator with and without limiting. The GRE indicator produces
a reasonable solution if limiting is active; otherwise, it is very diffusive and leads to
over- and undershoots.
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Fig. 3 Radial dam break: Free surface elevation at different time levels. Adaption range: Constant-linear
(p0-1) or constant-quadratic adaptive (p0-2). Indicator: JRL, JE, JE limited, GRE, GRE limited. Local
approximation order p ∈ {0, 1, 2}. Adaption case: see Fig. 1

These findings are further corroborated by the difference plots for the free surface
elevation ξ − ξre f shown in Fig. 4 and the L1-errors with respect to the reference
solution listed in Table 1 alongside the fraction of elements with a specific order and
the number of degrees of freedom. For t = 0.1 s in the adaptive cases, more than 93%
of the elements are approximated by order 0, and only between 35% and 40% of the
degrees of freedom of the linear approximation are needed to reach comparable L1-
errors. For t = 1 s, in order to reach a comparable L1-error, one needs up to approx.
61% of degrees of freedom of the uniformly linear approximation for p0-1 and up to
approx. 82%of degrees of freedom for p0-2. Here, a significant amount of p1 elements
is necessary to represent the curvature correctly. For t = 3 s, the distribution of the
approximation order is somewhat more dependent on the resolution, i.e., for higher
resolutions, the fraction of lower order elements is higher and vice versa. Yet even in
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Fig. 4 Radial dam break: ξ − ξre f difference plots at different time levels

the worst case only approx. 81% of the degrees of freedom compared to the uniform
higher order approximation are needed. The highest resolution solution suffers from
excessive numerical diffusion for orders 0 and 1 which can be remedied for order 1
by using the FORCE flux.
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Table 1 Radial dam break: L1-error for the free surface elevation, fraction of elements of each discretization
order, number of degrees of freedom (dof), and time step used throughout the simulation. Color coding
indicates the quality/efficiency (green = good, red = poor)

Time
in s # Elements Approximation

order L1-error
Order fraction # dof Time step

size0 1 2

0.1

8 192

0 1.79E-01 1.000 0.000 0.000 24 576 0.01
1 lim 8.26E-02 0.000 1.000 0.000 73 728 0.005
2 lim 9.64E-02 0.000 0.000 1.000 147 456 0.00125

0-1 JRL 8.19E-02 0.938 0.062 0.000 27 624 0.005
0-2 JRL 8.08E-02 0.938 0.042 0.020 29 124 0.005

32 768

0 1.24E-01 1.000 0.000 0.000 98 304 0.005
1 lim 4.02E-02 0.000 1.000 0.000 294 912 0.0025
2 lim 4.64E-02 0.000 0.000 1.000 589 824 0.00625

0-1 JRL 3.95E-02 0.945 0.055 0.000 109 104 0.0025
0-1 JE 4.55E-02 0.939 0.061 0.000 110 292 0.0025

0-1 JE lim 4.19E-02 0.940 0.060 0.000 110 064 0.0025
0-1 GRE 4.32E-02 0.948 0.052 0.000 108 492 0.0025

0-1 GRE lim 4.04E-02 0.936 0.064 0.000 110 820 0.0025
0-2 JRL 3.90E-02 0.945 0.036 0.018 114 468 0.0025

131 072

0 1.15E-01 1.000 0.000 0.000 393 216 0.0025
1 lim force 1.41E-02 0.000 1.000 0.000 1 179 648 0.00125

2 lim 1.94E-02 0.000 0.000 1.000 2 359 296 0.0003125
0-1 JRL 1.60E-02 0.964 0.036 0.000 421 848 0.001
0-2 JRL 1.58E-02 0.962 0.027 0.012 437 016 0.001

1

8 192

0 7.01E-01 1.000 0.000 0.000 24 576
1 lim 1.49E-01 0.000 1.000 0.000 73 728
2 lim 1.69E-01 0.000 0.000 1.000 147 456

0-1 JRL 1.34E-01 0.585 0.415 0.000 44 988
0-2 JRL 1.31E-01 0.580 0.213 0.207 60 510

32 768

0 4.39E-01 1.000 0.000 0.000 98 304
1 lim 7.19E-02 0.000 1.000 0.000 294 912
2 lim 7.68E-02 0.000 0.000 1.000 589 824

0-1 JRL 7.97E-02 0.643 0.357 0.000 168 456
0-1 JE 1.03E-01 0.652 0.348 0.000 166 776

0-1 JE lim 1.36E-01 0.676 0.324 0.000 161 976
0-1 GRE 1.31E-01 0.871 0.129 0.000 123 732

0-1 GRE lim 8.05E-02 0.617 0.383 0.000 173 568
0-2 JRL 7.55E-02 0.641 0.191 0.168 218 472

131 072

0 1.45E+00 1.000 0.000 0.000 393 216
1 lim force 2.47E-02 0.000 1.000 0.000 1 179 648

2 lim 3.39E-02 0.000 0.000 1.000 2 359 296
0-1 JRL 6.43E-02 0.779 0.221 0.000 567 168
0-2 JRL 6.39E-02 0.782 0.133 0.085 664 134

3

8 192

0 1.29E+00 1.000 0.000 0.000 24 576
1 lim 2.16E-01 0.000 1.000 0.000 73 728
2 lim 3.18E-01 0.000 0.000 1.000 147 456

0-1 JRL 2.37E-01 0.292 0.708 0.000 59 400
0-2 JRL 2.26E-01 0.286 0.458 0.255 78 492

32 768

0 8.49E-01 1.000 0.000 0.000 98 304
1 lim 1.04E-01 0.000 1.000 0.000 294 912
2 lim 1.67E-01 0.000 0.000 1.000 589 824

0-1 JRL 1.43E-01 0.770 0.230 0.000 143 532
0-1 JE 2.86E-01 0.682 0.318 0.000 160 812

0-1 JE lim 3.07E-01 0.678 0.322 0.000 161 565
0-1 GRE 3.63E-01 0.916 0.084 0.000 114 732

0-1 GRE lim 1.51E-01 0.590 0.410 0.000 178 860
0-2 JRL 1.41E-01 0.759 0.177 0.065 164 760

131 072

0 2.03E+00 1.000 0.000 0.000 393 216
1 lim force 3.68E-02 0.000 1.000 0.000 1 179 648

2 lim 1.46E-01 0.000 0.000 1.000 2 359 296
0-1 JRL 1.27E-01 0.907 0.093 0.000 466 668
0-2 JRL 1.30E-01 0.902 0.077 0.021 498 808
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Fig. 5 Supercritical flow in a constricted channel: Free surface elevation. Left to right: Block-structured
mesh with 3584 elements, exact solution projected onto a mesh with approx. 230 000 elements, constant
(p0), limited linear (p1), limited quadratic (p2), constant-linear adaptive (p0-1), constant-quadratic adaptive
(p0-2) solution with indicator JRL

4.2 Supercritical flow in a constricted channel

In our next benchmark, we consider a supercritical flow in a constricted channel
(constriction angle of 5 degrees) with constant bathymetry based on the configuration
proposed inZienkiewicz andOrtiz (1995). Flow is induced through the inflow (bottom)
boundary and there is no flow through the left and right boundaries, whereas the
radiation boundary conditions are specified at the outflow (upper) boundary. Denoting
by ui and Hi the axial velocity and water depth at the inlet, respectively, the inlet
Froude number Fr defined by Fr = ui/

√
g Hi is chosen equal to 2.5 corresponding to

a supercritical regime.
For better comparability and to avoid instabilities in the p2 approximation, we limit

the free surface elevation and velocity components using the same limiting factor αe

(15) for the non-adaptive cases and plot limited and unlimited results for the adap-
tive ones. Fig. 5, shows our (topologically) block-structured grid (Zint et al. 2019)
with 3584 elements along with the steady-state solution for different approximations.
Whereas a piecewise constant DG approximation is very diffusive, the limited linear
and quadratic solutions lookmuch better. Thanks to the adaption scheme, the constant-
linear and the constant-quadratic solutions using indicator JRL do not suffer fromover-
or undershoots while representing the jumps very accurately without introducing too
much diffusion.

The robustness and accuracy of our indicator are illustrated in Fig. 6, which details
the local approximation order and the used adaption case (cf. Fig. 1). As expected, the
constant plateaus are approximated by order 0 while higher orders are only activated
in the vicinity of the discontinuities. When comparing the JE and GRE indicators, the
unlimited simulations produce large under- and overshoots in jump regions whereas
the limited JE and GRE indicators demonstrate acceptable performance, even though
the results become somewhat diffusive. For JE, a threshold of 0.005 led to the best
results. ForGRE, the threshold for the free surface elevation of 0.02 and for the velocity
of 0.05 appears to be optimal.

To quantify the performance of different adaptivity indicators, Fig. 7 displays the
difference plots for the free surface elevation ξ − ξexact using the exact solution (this
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Fig. 6 Supercritical flow in a constricted channel. Free surface elevation. Adaption range: Constant-linear
(p0-1) or constant-quadratic adaptive (p0-2). Indicator: JRL, JE, JE limited, GRE, GRE limited. Local
approximation order p ∈ {0, 1, 2}. Adaption case: see Fig. 1. The z-axis is scaled by the factor 50

problem can be solved analytically, see, for example, (Ippen 1951) projected on a high
resolution mesh with approx. 230000 elements as the reference. The constant solution
is clearly diffusive, the limited linear and quadratic solutions look reasonable. The
darker colors in the unlimited constant-linear solutions indicate over- and undershoots
which are absent in the fully limited adaptive solutions and in our adaption schemewith
built-in liming. In Table 2, the L1-errors with respect to the exact solution are listed
next to the fraction of elements with a given approximation order and the total number
of degrees of freedom. It can be seen that between 64% and 82% of the elements use
a constant approximation, and the p-adaptive solutions only need between 45% and
58% of the degrees of freedom of the uniformly linear approximation for p0-1 and
approx. 63% for p0-2.

4.3 Circular hydraulic jump

The last test example used to study our adaptivity indicator considers an instationary
circular hydraulic jump based on the setup presented in Ketcheson and Quezada de
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Fig. 7 Supercritical flow in a constricted channel: ξ − ξexact difference plots using the exact solution
projected to a mesh with approx. 230000 elements as the reference

Table 2 Supercritical flow in a constricted channel: L1-error for the free surface elevation, fraction of
elements of each discretization order, number of degrees of freedom, and time step used throughout the
simulation. Color coding indicates the quality/efficiency (green = good, red = poor)

Approximation
order L1-error

Order fraction # Degrees
of freedom

Time
step size0 1 2

0 1.52e+02 1.000 0.000 0.000 10 752 0.2
1 lim 3.40E+01 0.000 1.000 0.000 32 256 0.1
2 lim 3.37E+01 0.000 0.000 1.000 64 512 0.05

0-1 JRL 3.08E+01 0.645 0.355 0.000 18 390 0.1
0-1 JE 2.98E+01 0.652 0.348 0.000 18 228 0.1

0-1 JE lim 4.48E+01 0.630 0.370 0.000 18 702 0.1
0-1 GRE 2.96E+01 0.809 0.191 0.000 14 850 0.1

0-1 GRE lim 4.97E+01 0.817 0.183 0.000 14 682 0.1
0-2 JRL 3.04E+01 0.654 0.283 0.063 20 211 0.1

Luna (2022). The domain geometry is a quarter annulus with r0 ∈ (0.1, 1) (cf. Fig.
8 (left)) and a constant bathymetry hb = 0.1. The solution to this problem contains
constant plateaus, smoothnon-constant regions, anddiscontinuities. There is a constant
inflow at r0 = 0.1, that is, ξ̂ (r0 = 0.1, t) = 0.2, q̂n(r0 = 0.1, t) = −0.75 and

123



GEM - International Journal on Geomathematics (2022) 13 :18 Page 19 of 25 18

Fig. 8 Hydraulic jump: Computational mesh with the line ‘r’ indicating the position of the line plot in Fig.
11 (left), piecewise constant (p0) reference solution on the twice refined mesh for t = 0.5 s (middle), and
for t = 1.3 s (right)

q̂τ (r0 = 0.1, t) = 0. Differing from the original setup, we prescribe a land boundary
condition at r0 = 1 causing a reflection. The initial conditions are ξ(r0, 0) = 0 and
q(r0, 0) = 0. The gravity acceleration g is set to 1.

The employed block-structured grid (Zint et al. 2019) consists of 48000 triangles,
and r in Fig. 8 (left) indicates the line along which the free surface elevation is plotted
in Fig. 11. In the middle and right panels of Fig. 8, the p0 high-resolution solution at
t = 0.5 s and t = 1.3 s on a mesh with 768000 elements is displayed, which serves
as a reference in the following evaluation.

To avoid instabilities at the inflow, we limit the free surface elevation and velocity
components with the same limiting factor αe (15) for all cases except for the JRL
indicator. The JRL indicator automatically reduces the local approximation order on
critical elements at the inflow boundary to zero making limiting unnecessary there.
The JE and the GRE indicators fail to detect the need for the lowest approximation
order on critical elements therefore only the limited solution is stable.

The p-adaptive solution with different indicators is shown for t = 0.5 s (Fig. 9a)
and t = 1.3 s (Fig. 9b), respectively. For indicator JE, a threshold of 0.00001 led to
the best results. For indicator GRE, the threshold for the free surface elevation of 0.6
and for the velocities of 1.0 resulted in the best simulation outcome.

The difference plots for ξ − ξre f in Fig. 10 confirm that our indicator is better
at capturing jumps than the two other indicators as pointed out by lighter colors in
the corresponding regions. Furthermore, a linear approximation for the drop-off after
the inflow is correctly identified. The L1-errors with respect to the reference solution
are shown in Table 3 along with the fraction of elements with a given approximation
order. All adaptive cases approximately match the L1-errors of the uniformly linear
solution for t = 0.5 s while using fewer than 44% of the degrees of freedom for p0-1
and approx. 50% for p0-2. The L1-errors of the adaptive solutions (except for the
JE indicator) are even lower for t = 1.3 s when compared to the uniformly linear
approximation and utilize up to approx. 60% of degrees of freedom for the p0-1
approximation and approx. 78% for the p0-2 approximation.
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Fig. 9 Hydraulic jump: Free surface elevation at different time levels. Adaption range: Constant-linear
(p0-1) or constant-quadratic adaptive (p0-2). Indicator: JRL, JE limited, GRE limited. Local approximation
order p ∈ {0, 1, 2}. Adaption case: see Fig. 1

Figure 11 displays the free surface elevation along the line ’r’ highlighted in Fig. 8
(left). Noting that hb=0.1, it shows a very good agreement with Fig. 7 from (Ketcheson
and Quezada de Luna 2022). The zoom-ins also demonstrate a better accuracy of the
approximations using the JRL indicator in the jump regions compared to those relying
on the JE or GRE indicator with limiting.

5 Conclusions and outlook

We presented a parameter-free adaptivity indicator and validated its ability to identify
resolved and underresolved areas of the computational domain while distinguishing
between smooth and non-smooth solution regions and adapting the local approx-
imation order accordingly. On a range of numerical examples, our new indicator
demonstrated comparable or better solution quality than that of a limited uniformly
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Fig. 10 Hydraulic jump: ξ − ξre f difference plots at different time levels

linear approximation. These results were achieved without any calibration parameters
while using significantly fewer degrees of freedom. A comparison to two further indi-
cators suggests that our new scheme achieves a good balance between solution quality
and number of degrees of freedom used.

This work is an integral part of our ongoing effort to produce a p-adaptive DG
solver for the SWE capable of efficient utilization of massively parallel and hetero-
geneous computing architectures (Faghih-Naini et al. 2023). It bundles a number of
other numerical and computational techniques such as a novel block-structured grid
generator for ocean domains (Zint et al. 2019, 2022; Faghih-Naini et al. 2022) and the
code generation framework (Lengauer et al. 2014; Schmitt et al. 2014a; Kuckuk and
Köstler 2016). Our future research goals include adding the FPGA support—already
available for the unstructured-mesh version of the model (Kenter et al. 2021; Faj et al.
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Table 3 Hydraulic jump: L1-error for the free surface elevation, fraction of elements of each discretization
order, number of degrees of freedom, and time step used throughout the simulation. Color coding indicates
the quality/efficiency (green = good, red = poor)

Time
in s

Approximation
order L1-error

Order fraction # Degrees
of freedom

Time
step size0 1 2

0.5

0 1.56E-03 1.000 0.000 0.000 144 000 0.001
1 lim 4.50E-04 0.000 1.000 0.000 432 000 0.0005
2 lim 5.63E-04 0.000 0.000 1.000 864 000 0.0002

0-1 JRL 4.73E-04 0.846 0.154 0.000 188 262 0.0001
0-1 JE lim 4.73E-04 0.873 0.127 0.000 180 696 0.00005

0-1 GRE lim 4.87E-04 0.897 0.103 0.000 173 694 0.0001
0-2 JRL 4.99E-04 0.839 0.100 0.061 216 636 0.00005

1.3

0 3.07E-03 1.000 0.000 0.000 144 000
1 lim 8.67E-04 0.000 1.000 0.000 432 000
2 lim 1.02E-03 0.000 0.000 1.000 864 000

0-1 JRL 6.72E-04 0.593 0.407 0.000 261 132
0-1 JE lim 1.06E-03 0.822 0.178 0.000 195 180

0-1 GRE lim 1.01E-03 0.870 0.130 0.000 181 398
0-2 JRL 7.82E-04 0.580 0.248 0.172 338 988

Fig. 11 Hydraulic jump: Free surface elevation along the line (0.1,0.1) to (1/
√
2,1/

√
2) (cf. the gray line in

Fig. 8 marked as ’r’) for t = 0.5 s (top) and t = 1.3 s (bottom)
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2023)—and implementing semi-implicit time stepping schemes based on the hierar-
chical scale separation (HSS) approach (Aizinger et al. 2015; Schütz and Aizinger
2017) related to the p-multigrid method.
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