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ABSTRACT

The use of machine learning (ML) models to screen new materials is becoming

increasingly common as they accelerate material discovery and increase sus-

tainability. In this work, the chemical structures of 16 epoxy resins and 19 curing

agents were used to build an ML ensemble model to predict the glass transition

(Tg) of 94 experimentally known thermosets. More than 1400 molecular

descriptors were calculated for each molecule, of which 119 were chosen based

on feature selection performed by principal component analysis. The quality of

the trained model was evaluated using leave-one-out cross-validation, which

yielded a mean absolute error of 16.15�C and an R2 value of 0.86. The trained

model was also used to predict Tg for 4 randomly selected resin/hardener

combinations for which no experimental data were available. The same com-

binations were then prepared and measured in the laboratory to further validate

the ML model. Excellent agreement was found between experimental and

predicted Tg values. The current ML model was created using only theoretical

features, but could be further improved by adding experimental or quantum

mechanical properties of the individual molecules as well as experimental

processing parameters. The results presented here contribute to improving

sustainability and accelerating the discovery of novel materials with desired

target properties.
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GRAPHICAL ABSTRACT

Introduction

In recent years, the demand of epoxy resins in

industry has increased continuously because of their

great potential in various sectors like adhesives,

coatings, construction applications, electronic pack-

aging materials, or composites. Due to their superior

physical–mechanical properties, chemical and tem-

perature resistance, dimensional stability, versatility,

and processability, they are especially used for

applications with increased performance require-

ments [1–4]. This especially holds true for glass or

carbon fiber reinforced composites used in aerospace,

automotive, and sports industries where their higher

specific strength is superior to metallic materials such

as aluminum or steel [5, 6]. The glass transition

temperature (Tg) is considered a critical property for

polymers because it is an important indicator of

processing and performance properties such as stiff-

ness, heat resistance, and adhesion. In addition, Tg

defines and limits the application temperature of the

material. Typically, Tg is measured using differential

scanning calorimetry (DSC) or dynamic mechanical

thermal analysis (DMTA) [7]. However, achieving a

target value for Tg of a resin/hardener system is so

far largely a trial-and-error process based on the

experience of the researcher. As a result, the devel-

opment of new thermoset systems and process opti-

mization is often an inefficient, costly, and time-

consuming process [8].

Due to the importance of Tg, there exist several

modeling approaches in polymer research to predict

it. Weyland et al. developed the basis of the group

additive property method (GAP), which predicts the

Tg of polymers from the sum of calibrated contribu-

tions with respect to typical monomer substructures

[9]. This triggered a series of further works to

improve the model’s accuracy, which showed good

predictive correlations, but were only applicable to

polymers whose chemical structure groups had

beforehand been experimentally investigated. Since

the late 1980s various more general QSPR (quantita-

tive structure–property relationships) models using

descriptors for Tg prediction were developed [10–15].

However, all of the previous discussed prediction

models were built on the basis of homopolymers,

even though thermoset systems like epoxy-amine

systems are of great importance for many high-per-

formance applications.

Nevertheless, there are some approaches to predict

the Tg of cross-linked thermoset systems, which,

however, are limited to relatively few epoxy systems

[16–18]. Bellenger et al. [16] presented a predictive

model for the glass transition temperature of epoxy

resin systems using an additivity law for copolymers

and the contribution of cross-linked structures, using

a total of 40 systems. Morrill et al. [18] developed a

model that predicts the dependence of Tg on the

stoichiometric ratio of co-monomers in amine-cured

resins of bisphenol A diglycidyl ether.

The use of machine learning in materials science is

a growing area which shows large potential in
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predicting material properties, such as the Tg of

polymers. Data-driven approaches are a great way to

optimize the thermoset development process in terms

of efficiency, speed, and sustainability. In the field of

homopolymers, there exist several promising

attempts to predict the Tg using machine learning

[19–23]. However, in the field of thermosets, there are

few approaches that use machine learning applica-

tions for Tg prediction. These are trained either on

very small datasets and/or predominantly on data-

sets obtained using molecular dynamics [24, 25]. Jin

et al. [24] described an optimization method for

multicomponent epoxy resin systems using an arti-

ficial neural network (ANN), where molecular

dynamics simulation was used to obtain the input

data for the ANN. In the same work, Tg was one of

six predicted values of the model. In addition, only

two different hardeners and resins based on 30 dif-

ferent data points were used, making it more difficult

to use this model for screening more diverse resin/

hardener combinations. Higuchi et al. [25] estab-

lished a model which predicts the glass transition

temperatures of linear homo-/heteropolymers and

cross-linked epoxy resins. In addition, a consensus

model is presented that links the two different kinds

of models. The thermoset-specific model was trained

with just 50 data points and six different epoxy

resins. The data came exclusively from the literature

where different methods (DSC, DMTA, TMA) and

different specimen geometries were used. The per-

formance of their consensus model (homo- and

heteropolymers) was good (R2 = 0.848), while the

thermoset-only model gave poorer results (R2 =

0.687). Yan et al. [26, 27] developed the state-of-the-

art model currently available for predicting Tg of

thermoset shape memory polymers (TSMPs), whose

mean absolute percentage error for the test set was

13.91 %. The model is based on a variational

autoencoder trained with drug molecules and adap-

ted to TSMPs with transfer learning, combined with a

weighted vector combination method and a convo-

lutional neural network as regressor.

The use of atomistic molecular dynamics or mul-

tiscale simulations to add features to the dataset is

another strategy to improve the performance of the

model [28], but these theoretical methods are not

trivial to implement for polymers, time-consuming,

and their accuracy still needs to be improved, the

latter possibly having a negative impact on the

predictive ability of the model. On the other hand,

using available experimental data from different

works to extend and improve the dataset is also

challenging, as the experimental techniques for

preparing and measuring the Tg of materials are not

standardized, as often found in the literature.

This work aims to predict the Tg for resin-hardener

thermosets using an ML ensemble approach based

solely on theoretical molecular descriptors that can be

easily calculated for any molecular structure present

in the thermoset. To this end, we will present a

variety of systems studied in our group using, among

others, standardized internal DMTA measurements

of Tg to improve the generalizability of the final ML

model. The molecular descriptors are calculated from

the SMILES representation of the resins and hard-

eners, whose information is initially used to train

different linear and nonlinear individual ML models,

prior to combining them into one single ML ensemble

model. Finally, the experimental validation of the

ensemble model will be demonstrated by preparing

and measuring new thermosets whose compositions

and Tg were first suggested by the ML model itself.

Methods

The workflow for creating the machine learning

model was inspired by the Crisp-DM model, the

quasi-standard framework for data mining (DM) [29].

In total 6 steps were necessary to produce the results

presented in this paper. The DM process is embed-

ded in real experiments and measurements in the lab,

both for data generation and for validation of the

model, see Figure 1. The different steps of the

workflow are chronologically described in detail in

the next subsections.

Data generation/experiments

The experimental data were generated by DMTA

carried out at a heating rate of 3 K/min in torsional

mode at an elastic deformation of 0.1 % and an

applied frequency of 1 Hz using a Rheometrics Sci-

entific ARES RDA III (Germany). The specimens had

a rectangular shape with 50x10x2 mm3 according to

standard ISO 6721-7. Tg was determined via DMTA

measurements by the peak value of the loss factor

(tan(d)). For multiple measurements of the same

material system, the average value for Tg was used.
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The resins and hardeners combinations were mixed

stoichiometrically and cured in the oven to the

maximum degree of cure under optimized thermal

conditions. Subsequently, multiple measurements

were carried out in the DMTA for one material. The

epoxy equivalent weight (EEW) of the epoxy resins

from the dataset has a range from 101 g/eq to 187 g/

eq, while the functionality ranges from 2 to 4.5. The

amine equivalent weight (AHEW) of the curing

agents has a range of 12.05 to 221.67, while the

functionality is between 1 and 7. The technical data

such as EEW were taken from the suppliers’ technical

data sheets. Figure 2 shows the distribution of Tg

values in the dataset corresponding to 94 combina-

tions of 16 resins and 19 hardeners. All resins and

hardeners used in this work were those available in

our laboratory and are shown in the SI. The lowest Tg

value (77.91�C) is shown by the system DGEBF/

D230, while the system Tactix742/4,4-DDS exhibited

the highest Tg (333.51�C).

Data preparation and preprocessing

For each resin and hardener, the chemical structure of

the molecule was drawn with the visualization pro-

gram Avogadro and saved in the mol2 format, which

is a plain text table format that represents a single or

multiple chemical structures and contains atomic

coordinates, chemical bonding information, and

metadata of the molecule [30, 31]. The mol2 files were

then converted into the corresponding SMILES

(Simplified Molecular Input Line Entry System)

notation [32]. The cheminformatics libraries Mordred

[33] and RDKit [34] were used to convert each

SMILES notation into the corresponding 2D descrip-

tors, providing an initial set of 1613 descriptors per

molecule. RDKit is a Python library for building,

manipulating, analyzing, and automatically design-

ing molecules [34]. MordRed is a descriptor generator

available on Github, which can calculate more than

1800 descriptors [33]. A molecular descriptor trans-

forms chemical information encoded within a sym-

bolic representation of a molecule into a useful

number or the result of some standardized

Figure 1 Workflow for creating the machine learning model and performing a practical application.

Figure 2 Distribution of experimental Tg values of the resin/

hardener systems of the dataset; blue line represents the kernel

density estimation.
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experiment. Molecular descriptors are used to pre-

sent molecular characteristics in cheminformatics and

therefore are useful for feature engineering in data

mining [33, 35]. The 1613 molecular descriptors

available at the Mordred library for 2D structures

were initially reduced to 1435 after removing non-

numerical (e.g., Boolean) and missing/non-com-

puted values, which were subsequently reduced to

119 descriptors per molecule (resin or hardener) after

feature selection (see the next subsection). The

molecular descriptors for the resin/hardener pair

DEN431/D230 before and after feature selection are

shown in the SI.

At the end of this stage, the dataset consisted of 94

samples, each containing 2 x 1435 features (or inde-

pendent variables) corresponding to each resin/

hardener pair, and the target property (or dependent

variable), Tg. 70 % of the dataset was used as training

set, which was also used to optimize the hyperpa-

rameters of individual ML models by leave-one-out

cross-validation to decrease overfitting. The final

model was tested using 30 % of the dataset, as shown

in the next sections. All features and target property

were preprocessed to have unit variance and zero

mean using the mean and variance of the training set.

Feature selection

In order to obtain the greatest possible information

content for model training, feature selection was

performed. Too many features lead to too much

complexity of the dataset and may result in poorer

performance. Therefore, feature selection was carried

out via principal component analysis (PCA). PCA

decomposes a multivariate dataset into a set of suc-

cessive orthogonal components that explain a maxi-

mum of variance [36]. By using PCA, the descriptive

variance of a feature can be determined over the

dataset. By looking at the weight coefficient (also

called loading) of each feature on the resulting

uncorrelated linear combinations of each principal

component, the amount of descriptive variance of the

feature can be determined: The higher the weight of

one feature, the greater its descriptive variance and

thus the greater its information content. Features

with little information content were filtered out of the

dataset by setting a minimum threshold for the

weight of all features. The evaluation of the model’s

performance for different thresholds allowed to

determine the final descriptors to be used as features

in the model, strongly reducing the total number of

features from 1435 to 119 per molecule.

Modeling and validation

Modeling and evaluation do not take place separately

in the workflow, but are performed iteratively (see

Figure 1), as already shown in the previous subsec-

tion to find the best threshold for feature selection. To

find the best ML model, the following three-step

procedure was used:

1. Pre-screening of different linear and nonlinear

ML models with unoptimized hyperparameters.

2. Hyperparameter optimization of the most accu-

rate ML models found in a).

3. Creation of an optimized ensemble using the ML

models found in b).

The leave-one-out validation method was used to

improve statistics in all steps. Here, the learning

algorithm is applied once for each data point, using

all other instances as the training set and the selected

data point as the test set with a single sample. The

methodology is a special case of cross-validation

where the number of folds is equal to the number of

data points in the dataset [37] and is time-consuming

for middle-to-large datasets, since one different ML

model is trained for each sample. The mean absolute

error (MAE), mean absolute percentage error (MAPE)

and the coefficient of determination (R2 score) were

used as model evaluation metrics. MAE is given by:

MAE ¼ 1

n

Xn

i¼1

j yi � ŷi j ð1Þ

where n is the number of samples, and yi and ŷi are

the true and predicted target property, respectively,

for sample i. MAPE is given by:

MAPE ¼ 1

n

Xn

i¼1

j yi � ŷi j
j yi j

� 100%: ð2Þ

The coefficient of determination (R2 score) is the

quotient of the explained variation to the total vari-

ation in a regression model. It is often expressed as a

percentage.

R2ðy; ŷÞ ¼ 1 �
Pn

i¼1ðyi � ŷiÞ
2

Pn
i¼1ðyi � �yÞ2

: ð3Þ
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Seven different regression models were prescreened,

whereby their MAE and R2 scores were compared via

leave-one-out cross-validation. The ML methods are

briefly summarized below and are described in more

detail in refs [38, 39].

Linear Regression (LR). The LR fits a linear model

with coefficients w ¼ ðw1; :::;wpÞ to decrease the

residual sum of squares between the observed data

points, and the predicted data points by the linear

approximation [40].

K-nearest-neighbors regression (KNN). The KNN

classification methodology selects a set of K objects in

the training set that are closest to the test object and

appoints a label based on the most dominant class in

that neighborhood. Neighbors-based regression can

be used in cases where the data labels are continuous

[41].

Random Forest Regression (RFR). Random Forest is

an ensemble learning approach in which ‘‘weak

learners’’ collaborate to form ‘‘strong learners’’ using

a large collection of uncorrelated decision trees.

However, instead of building a solution based on the

results of a single deep tree, Random Forest aggre-

gates the results of a set of shallow trees. RFR is built

by growing trees depending on a random vector such

that the tree predictor takes on numerical values as

opposed to class labels [42].

Gradient Boosting Regression (GBR). GBR builds an

additive model step wisely, allowing the optimiza-

tion of arbitrary differentiable loss functions. At each

stage, a regression tree is fitted to the negative gra-

dient of the given loss function [43].

Kernel Ridge Regression (KRR). KRR merges ridge

regression [44] with the kernel trick [45]. Thus, it

learns a linear function in the space generated by the

kernel and the data. This corresponds to a nonlinear

function in the original space of the dataset.

Support Vector Regression (SVR). Support vector

machines solve binary classification problems by

formulating them as optimization problems to find

the maximum edge that separates the hyperplane

while correctly classifying as many training points as

possible. The optimal hyperplane is represented with

support vectors. SVR is achieved by formulating an

optimization problem by defining a convex �-insen-

sitive loss function to be minimized and finding the

flat tube that contains most of the training instances

[46].

Lasso regression. Lasso regression is a linear model

combined with the estimation of sparse coefficients

via L1-regularization. This is particularly useful in

the context of feature selection, as it tends to favor

solutions with fewer nonzero coefficients, effectively

reducing the number of features upon which the

given solution depends [47].

The most promising models were followed up and

had their hyperparameters optimized. In the last

step, two or more single models were combined into

an ensemble with the goal of minimizing MAE. For

this purpose, the predictions of the individual ML

models were combined via a weighted average

whose weight coefficients were optimized to mini-

mize MAE. Eq. 3 describes how to obtain the

ensemble prediction:

ŷi ¼
Pm

j¼1 aj � ŷijPm
j¼1 aj

ð4Þ

where m is the number of individual ML models, a is

the weight coefficient (or importance) of each model

inside the ensemble, ŷij is the predicted target prop-

erty of sample i carried out using model j, and ŷi is

the final ensemble prediction for sample i. The

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-

rithm was used to find the weighting factors of the

individual ML models that minimize MAE of the

ensemble predictions. All codes used in the workflow

were written in Python (version 3) using Jupyter

Notebook. The ML models were built using the

Sklearn library [48].

Practical application

The optimized hyperparameters of the final ensemble

model were then used to train a fresh model with the

full dataset (training and test sets) and subsequently

used to predict all 210 possible resin/hardener com-

binations for which no experimental data were

available. Four of the new combinations were chosen

to be prepared and measured in the laboratory to

further validate the ML model. The first two formu-

lations (Table 1) were chosen based on high and low

target Tg values randomly selected. The remaining

ones (Table 2) were randomly chosen from the pool

of 210 possible combinations.

All four new systems were then prepared as fol-

lows. Resin and hardener were mixed stoichiometri-

cally and degassed in a vacuum chamber below 50
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mbar. After degassing, the mixtures were poured into

steel molds and curing was performed according to

the specific curing cycles shown in Tables 1 and 2.

Results and discussion

This work shows that it is not only possible to obtain

a predictive model for Tg of thermosets, but also to

get some insight into the influence of molecular

structures of resins and hardeners on the Tg of ther-

mosets. Feature selection using PCA was carried out

to reduce the total number of descriptors from 1435 to

119. The GBR and KRR models provided the best

individual predictions, with MAE/R2 values of

16.64/0.84 and 17.82/0.83, respectively, evaluated for

the test set. The detailed evaluations of these models,

together with their optimized hyperparameters, are

shown in the Supporting Information.

Optimized ensemble model

The composition of the optimized ensemble model in

terms of individual ML models and their corre-

sponding model importances were: GBR (53 %) and

KRR (47 %). The performance of the trained ensemble

model evaluated using the test set is shown in

Figure 3, where MAE = 16.15�C and R2 = 0.86. The

ensemble model was more accurate and had a larger

coefficient of determination than the best individual

ML model (GBR), which shows that the ensemble

technique described here (Eq. 4) is an effective way to

increase the models’ performance. The results are

Table 1 Model-proposed thermoset systems for targeted (high and low) Tg. The predicted Tg shown in the last column was calculated

using the trained ensemble model. The supplier and trading names are given

Resin Curing agent Curing cycle Target Tg

Hexion, Epikote 862a Huntsman, Jeffamine D400b 1h@25�C 4h@60�C 1h@100�C 82�C

Huntsman, Tactix742c Lonza, Lonzacure CAFd 1h@120�C 3h@180�C 2h@250�C 310�C

Chemical names: aDGEBF,bPoly(propylene glycol) bis(2-aminopropyl, ether), cTris-(hydroxylphenyl)methane-based epoxy,d9,9-Bis(4-

amino-3-chlorophenyl)fluorene

Table 2 Randomly selected formulations for evaluation of Tg predictions. The predicted Tg shown in the last column was calculated using

the trained ensemble model. The supplier and trading names are given

Resin Curing agent Curing cycle Target

Tg

Huntsman Araldite MY 0610

CHa

Huntsmann Jeffamine D400e 1h@25�C 4h@60�C

1h@100�C

104�C

DIC HP7200H b Huntsman, Aradur HY 906c ? 1 wt% Evonik, Curezole

2E4MZd

1h@120�C 3h@180�C

2h@250�C

259�C

Chemical names: aTGMAP,bDicyclopentadiene-type epoxy, cNMA, d2E4MZ, ePoly(propylene glycol) bis(2-amino propyl, ether)

Figure 3 Comparison between experimental (True) and predicted

Tg using the optimized ensemble model with composition 53 %

GBR and 47 % KRR. The predictions were performed for the test

(29 samples) using the model trained with the training set (65

samples). MAPE = 9.38 % (accuracy = 90.62 %).
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promising, since the model’s features were purely

theoretical, solely based on the chemical structures of

the molecules. The performance in terms of MAPE

(9.38 %) was slightly better than relatively complex

models published elsewhere [26, 27].

Final molecular descriptors

The most important descriptors affecting Tg were

identified using the Lasso regression trained using

the entire dataset, since it does by default feature

selection [47], meaning that only the most important

features will be associated with nonzero weight

coefficients. In addition, the weight coefficients (ci) of

Lasso enable one to easily interpret the relation

between the features and the target property (e.g.,

property ¼ c1 � feature1

þc2 � feature2 þ :::þ cn � featuren þ b), which is not

possible with other ML models like GBR or KRR.

Table 3 shows the five descriptors that have the lar-

gest influence on the predicted Tg. The column

‘‘Molecule’’ describes whether the descriptor refers to

the resin or hardener component of the thermoset. In

addition, in the column ‘‘Effect,’’ the characters (?, –)

describe whether the descriptor has a positive or

negative influence on Tg.

Descriptors directly related to aromaticity and

polarity were also inside the pool of 119 descriptors

used in the ML models, although their weight coef-

ficients were not among the largest ones. The two

most important descriptors were SlogP_VSA and

SMR_VSA. The former is a metric of hydrophobicity

and the latter accounts for molecular size and polar-

izability. The first two lines of Table 3 reveal that

epoxy systems tend to exhibit higher Tg when the

resin counterpart is more hydrophobic and smaller

and less polarizable. These properties can be linked

indirectly to aromatic structures, which generally

possess higher Tg.

The interpretation of different descriptors is not

always simple or intuitive, and the fact that the final

ML model considers a great number of them, shows

that this task is even more challenging. There seems

to exist a trade-off between interpretability and pre-

diction capability: simpler models are very easy to

interpret but do not necessarily deliver the best

predictions.

New Tg predictions

Based on the dataset, which consists of 16 different

resins and 19 different hardeners and experimental

Tg values available for only 94 out of 304 total resin/

Table 3 Five most important molecular descriptors for Tg prediction according to the Lasso model using the whole dataset

Descriptor Description Molecule Effect

MoeType

SlogP_VSA

MOE-type descriptors using Crippen–Wildman atom classification system for atom-based

calculation of octanol–water partition coefficient (log P) (hydrophobicity) [49]

Resin ?

MoeType

SMR_VSA

MOE-type descriptors using Crippen–Wildman atom classification system for atom-based

calculation of molar refractivity (sterics and polarizability) [49]

Resin –

Autocorrelation

ATS(0,’dv’)

Broto–Moreau autocorrelation of a topological structure of order 0 weighted by valence

electrons [50]

Resin ?

PathCount Total number of paths of length m in the molecular graph [49] Hardener –

Autocorrelation

ATS(0,’dv’)

Broto–Moreau autocorrelation of order 0 weighted by valence electrons [50] Hardener –

Figure 4 Distribution of the Tg values predicted by the optimized

ensemble model for 210 new resin/hardener thermoset

combinations.
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hardener combinations, a total of 210 new resin/

hardener combinations were predicted by the trained

ML ensemble model. In the histogram of predicted Tg

values, the distribution ranges from 81 to 318�C

(Figure 4), which indicates that the model depicts the

maximum variance of the available experimental

glass transition temperatures.

Practical application

The comparison between the experimental and pre-

dicted Tg for the four selected resin/hardener sys-

tems described in Tables 1 and 2 is depicted in

Figure 5.

The experimental trends were nicely reproduced

by the predicted values. The predictions were much

better for systems with middle to high Tg, as expected

based on the greater availability of data points in that

region to train the ML models, compared to regions

of low Tg (see Fig. 2). In addition, the experimental Tg

used to train the ML models were in the range 78-

334�C (Figure 2), and therefore high and low pre-

dicted Tg values tend to accompany the same range.

Using many experimental data points with Tg smaller

than 78�C to train the ML models would have led to

better predictions below 78�C.

Final considerations

Predicting the final Tg of a relatively complex poly-

meric material by simply using molecular descriptors

of isolated resin/hardener molecules is a rough

approximation assumed in this work. The first vali-

dation of this idea comes from the good model fit-

tings shown in Fig. 3, which suggests that the

property of individual molecules can influence their

interaction and consequently the property exhibited

by the final material. The second validation to sup-

port this approximation comes from Fig. 5, which

shows that using molecular descriptors of individual

molecules to predict the Tg of novel polymeric

materials is feasible, especially in the case of middle-

to-high Tg epoxy systems. Fig. 5 also shows that there

is room for model improvement (vide infra). Most

importantly, the results suggest that cross-linking is

implicitly taken into account by the ML model via

linear and nonlinear combinations of molecular

descriptors of individual (isolated) molecules since Tg

was predicted based on those descriptors. Some

intuition on the approximation described here could

be gained from a chemical point of view. For

instance, if a molecular descriptor reveals that an

(isolated) resin and its hardener counterpart have

high aromaticities, one could expect to have a stabi-

lizing interaction in the polymer between nearby

molecular units, which can increase Tg, as in general

observed experimentally. The assumption made here

would have benefited from a larger number of mea-

surements (as opposed to only 94 data points avail-

able) since this is also expected to improve the model

accuracy.

Conclusions

In this work, it was shown that it is possible to pre-

dict the glass transition of thermoset systems based

solely on the chemical structures of 16 resins and 19

hardeners using ML models. The best individual ML

models combined via an ensemble approach and

trained with 94 resin/hardener combinations were

GBR and KRR, which contributed to 53 and 47 %,

respectively, of the final predicted Tg value. The ML

ensemble model performed quite well (MAE = 16�C

and R2 = 0.86). The analysis of the most important

descriptors used in the Lasso regression has revealed

Figure 5 Comparison between experimental (True) and predicted

Tg for the resin/hardener systems described in Tables 1 and 2.
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that Tg of the thermoset is expected to increase for

smaller, less polarizable, and more hydrophobic

resins. The trained model was used to predict Tg for

the 210 remaining resin/hardener combinations that

had not been previously investigated experimentally.

Four new resin/hardener combinations were ran-

domly chosen from the 210 new predictions and

experimentally prepared and characterized, giving Tg

values in good agreement with the predictions: exp/

theo [�C] = 45/82, 330/310, 54/104, 243/259. This

strategy allows for greatly accelerating the develop-

ment of new resin/hardener systems in a sustainable

fashion, as one avoids trial-and-error procedures to

obtain new thermosets exhibiting any specific Tg

value. By describing the entire workflow, from data

generation to ML modeling to the final practical

application, this work demonstrates how machine

learning can systematically unlock efficiencies in

thermoset development and uncover new relation-

ships. In conclusion, the results discussed help

improve sustainability while accelerating the dis-

covery of novel materials with desired target prop-

erties. Even though the rough approximation made

here through which the features of isolated monomer

units (here, hardener and resin) are used to predict

the Tg of a much more complex, 3D polymeric

material provided a good initial ML model, we are

currently working on its improvement by adding

quantum mechanical properties of the molecules to

the current dataset to further increase the model

accuracy.
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posite Technologien. Carl Hanser Verlag GmbH & Co.

KG,München(2014). https://doi.org/10.3139/978344644080

7.http://www.hanser-elibrary.com/doi/book/10.3139/

9783446440807

[7] Bard, S.,Demleitner, M.,Weber,R.,Zeiler, R.,Altstädt, V.:
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