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1. Summary

1.1 Graphical abstract
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Summary

1.2 German summary

Die heutige Biodiversität ist durch den menschengemachten Klimawandel stark gefährdet.
Eines der Kernziele der ökologischen Forschung zum Schutz der Biodiversität ist es daher, das
zugrundeliegende Verständnis der Prozesse zu verbessern, die zum Artensterben führen
können. Das Vorhandensein von non-linearen Dynamiken, multiplen Gleichgewichten,
Schwellenwerten und internen Rückkopplungen in ökologischen und klimatischen Systemen
erschwert jedoch oft ein mechanistisches Verständnis.

Eines dieser grundlegenden Probleme für Studien die sich mit Aussterbeereignissen und
Klimawandel beschäftigen ist, dass aktuelle Ereignisse immer von vergangenen Bedingungen
abhängen. In der Ökologie wird diese Abhängigkeit von aktuellen Biodiversitätsdynamik vom
vergangenen Klima allgemein als „Climate Legacy“, respektive Klimavermächtnisse, bezeichnet.
Diese Klimavermächtnisse können aus einer Vielzahl von ökologischen Prozessen entstehen.
Als Folge der dynamischen Natur ökologischer Muster und Prozesse kann außerdem davon
ausgegangen werden, dass Klimavermächtnisse in allen Ökosystemen vorhanden sind. Wenn
sie nicht berücksichtigt werden, können Klimavermächtnisse die Messung und Quantifizierung
echter ökologischer Reaktionen auf den Klimawandel behindern oder sogar verhindern.
Allerdings beziehen nur wenige Studien, die sich mit Aussterbeereignissen und Klimawandel
beschäftigen, diese Klimavermächtnisse mit ein. Noch weniger Studien gehen über die bloße
Diskussion möglicher Auswirkungen von Klimavermächtnissen hinaus und beziehen sie in ihren
empirischen Rahmen ein. Diejenigen Studien, in denen Klimavermächtnisse einbezogen und
quantifiziert wurden, fanden einen großen Einfluss dieser Klimavermächtnissen auf
Aussterbeereignisse.

In dieser Dissertation stelle ich einen methodischen Rahmen für die Quantifizierung von
Effekten vor, die sich aus Klimavermächtnissen in biotischen Systemen jeder zeitlichen
Größenordnung ergeben. Ich führe zunächst das Konzept der “Climate Interactions”, respektive
Klimawechselwirkungen ein, die die potenzielle Abhängigkeit des Aussterberisikos vom
vorhergenden klimatischen Kontext beschreiben und quantifizieren. Klimawechselwirkungen
entstehen aus Klimavermächtnissen, die über Tage bis Millionen von Jahren wirken, und
könnten ein charakteristisches Muster in Aussterbeereignissen erzeugen. Sie bieten daher
einen einheitlichen Rahmen für die Untersuchung der Folgen von Klimavermächtnissen in
Ökosystemen. Das erwartete charakteristische Muster besteht aus einem höheren
Aussterberisiko, wenn klimatische Veränderungen vorangegangene Trends verstärken (z. B.
wenn ein Temperaturanstieg das Klima vorangegangener Erwärmungen weiter erwärmt). Es
wird die Hypothese aufgestellt, dass diese synergistischen Klimawechselwirkungen zunächst zu
Umweltbedingungen führen, die sich zunehmend von anfänglichen Anpassungen von Arten
unterscheiden, was dann zu einem höheren Aussterberisiko für diese Arten führt. Eine
antagonistische Klimawechselwirkung, bei der ein kurzfristiger Klimawandel einen früheren
langfristigen Trend umkehrt (z. B. wenn auf eine lange andauernde Erwärmung eine kurzzeitige
Eiszeit folgt), könnte zu einem allgemein geringeren Aussterberisiko führen, da klimatische
Bedingungen dann mehr den bevorzugten klimatischen Bedingungen der untersuchten Arten
entsprechen.

Dieser vorgeschlagene methodische Rahmen der Klimawechselwirkungen wird im Folgenden
auf eine Vielzahl von marinen und terrestrischen Ökosystemen angewendet, wobei ich
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insbesondere die Entstehung der erwarteten Muster teste. Da klimabedingte
Aussterbeereignisse in heutigen Ökosystemen selten sind, verwende ich hierzu die
Informationen über vergangene Reaktionen von Organismen auf Klimaveränderungen, die
Fossilien bereitstellen. Vier Manuskripte dieser Dissertation testen die mithilfe der
Klimawechselwirkungen entwickelte Hypothese und liefern Evidenzen für die erwarteten
Auswirkungen bei Aussterbe- und Evolutionsereignissen während des Phanerozoikums, bei
Migrationsdynamiken während des Quartärs, und bei Vegetationsdynamiken während des
Holozäns. Ein weiteres Manuskript liefert dringend benötigte Klimadaten für das katastrophalste
Massensterben in der Erdgeschichte, und ein anderes Manuskript diskutiert im Zuge der
Klimawechselwirkungen, wie man Rückschlüsse auf zeitgenössische ökologische Dynamiken
mit paläoökologischen Perspektiven in einem transdisziplinären Rahmen kombinieren kann.

Die sechs Manuskripte dieser Dissertation liefern daher methodologische, empirische und
theoretische Beiträge, die darauf abzielen, das mechanistische Verständnis von
Klimavermächtnissen und den resultierenden Mustern im Laufe der Erdgeschichte zu
verbessern, insbesondere durch die Anwendung des Konzeptes der Klimawechselwirkungen.
Basierend auf den Ergebnissen wird eine synergistische Klimawechselwirkung, definiert als
klimatische Veränderung welche vorangegangene Trends verstärkt, negative Auswirkungen auf
die Artenvielfalt haben. Der aktuelle monotone Erwärmungstrend des menschengemachten
Klimawandels erhöht die Wahrscheinlichkeit des Auftretens synergistischer
Klimawechselwirkungen mit potenziell schwerwiegenden Auswirkungen auf die Biodiversität in
der Zukunft. Die Zusammenführung der Ergebnisse der einzelnen Forschungsprojekte dieser
Arbeit mit ihren Erkenntnissen über biotische Reaktionen auf Klimaänderungen ermöglicht ein
verbessertes Verständnis der Auswirkungen des zukünftigen menschengemachten
Klimawandels auf die Biosphäre.
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1.3 English summary

Biodiversity is critically endangered by anthropogenic climate change. One of the core goals of
ecological research and conservation science is therefore to enhance the mechanistic
understanding of the processes that cause species to go extinct, particularly in light of
anthropogenic climate change. However, the presence of non-linearities, multiple equilibria,
thresholds, and internal feedbacks within ecological and climatic systems often impedes a
mechanistic comprehension.

One fundamental issue for extinction studies using contemporary data is that this data is
always dependent on past conditions. Within ecology, the dependence of contemporary
biodiversity dynamics on past climate is generally termed “climate legacy”. Climate legacies can
arise from a multitude of ecological processes, such as time lags, niche conservatism,
physiological thresholds, or cascading effects. Further, climate legacies can be assumed to be
present in all ecological systems as a consequence of the dynamic nature of ecological patterns
and processes. If not accounted for, climate legacies can hinder or even prevent the detection of
true ecological responses to climate change. However, few studies on the relationship between
extinction dynamics and climate include these climate legacies. Even less studies reach beyond
merely discussing potential impacts of climate legacies and include them in their empirical
framework. Those studies where climate legacies were included and quantified found a large
impact of these legacy effects on extinction dynamics.

In this thesis, I introduce a methodical framework for the quantification of effects arising from
climate legacies in biotic systems of any temporal scale. I first introduce the concept of climate
interactions, which describe and quantify the potential dependence of extinction risk on the
long-term climatic context. Climate interactions might create a characteristic pattern in extinction
dynamics and can arise from climate legacies acting over days to millions of years. They
therefore provide a unifying framework for studying the consequences of climate legacies in
ecosystems. The expected characteristic pattern consists of higher extinction risk, or related
measures, when climatic changes add to previous trends in the same direction (such as a
short-term warming adding to a long-term warming trend). It is hypothesised that these
synergistic climate interactions first lead to environmental conditions increasingly different from
initial adaptations of taxa, which then result in a higher extinction risk for these taxa. An
antagonistic climate interaction, where a short-term climate change reverses a previous
long-term trend (such as short-term cooling adding to a long-term warming trend), might result in
a generally lower extinction risk through climatic conditions being more similar to initial
adaptations of taxa.

This methodical framework of climate interaction is then applied to a variety of ecosystems,
both marine and terrestrial, where I test the emergence of expected patterns. As
climate-induced extinction events are rare in contemporary ecosystems, I take advantage of the
fossil record with its rich information of past responses of organisms to climatic changes. Four
manuscripts of this thesis test the hypothesis developed under climate interactions, and provide
evidence for the expected effect in extinction and origination events throughout the
Phanerozoic, in migration dynamics throughout the Quaternary, and in compositional turnover of
plant assemblages throughout the Holocene. One additional manuscript provides crucially
needed climatic data for the most catastrophic mass extinction event in Earth’s history, and
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another manuscript discusses how to combine inferences about contemporary ecological
dynamics with palaeoecological perspectives in a transdisciplinary framework.

The six manuscripts of this thesis therefore provide methodological, empirical, and theoretical
contributions that aim to enhance the mechanistic understanding of climate legacies and their
emerging patterns throughout Earth’s history, particularly through the application of the climate
interaction framework. Based on the findings, a synergistic climate interaction, defined as a
short-term climate change adding to a long-term trend in the same direction, will have more
deleterious impacts on biodiversity. The current monotonic warming trend of anthropogenic
climate change increases the occurrence probability of synergistic climate interactions, with
potentially severe implications for biodiversity in the future. Bringing together the findings of the
individual research projects of this thesis, with their insights about biotic responses to climatic
changes, yields the chance to increase our ability to correctly assess the impact of future
anthropogenic climate change on the biosphere.
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2. Introduction

“Don’t panic.”

– Douglas Adams

2.1. Motivation

Biodiversity is critically endangered by current climate change (Pecl et al., 2017). The potential
to predict the impact of future climate change on the biosphere is strongly dependent on our
understanding of underlying mechanisms and interactions (Brook & Alroy, 2017; Kerr et al.,
2007; Stigall, 2013). Enhancing our understanding of the mechanisms that drive taxa into
extinction or extirpation is hence among the most fundamental objectives of ecological research
and conservation science.

While there has been enormous progress in the general understanding of the current state of
the climate (Masson-Delmotte et al., 2021), the presence of non-linearities, multiple equilibria,
thresholds, and internal feedbacks often impedes a mechanistic comprehension. Similarly, the
biosphere comprises a multitude of complex adaptive systems that display multiple alternating
states and can shift from one to another in abrupt ways (Solé & Levin, 2022). Studying the
intersection between the climate system and the biosphere is therefore a highly complex task
but simultaneously offers the potential to provide insights into one of the most pressing
questions of the 21st Century: How can we mitigate the impact of anthropogenic climate
change?

2.2. Structure of this thesis

My thesis starts with examining general patterns of extinction dynamics arising from climate
change throughout Earth’s history. It subsequently introduces the concept of climate legacy, a
process that might explain how extinction patterns emerge from climate change. Ecological
mechanisms through which climate legacies can act are thereafter shortly summarised. This is
followed by a comprehensive meta-analysis, aiming to answer (i) how many studies covering
extinction and climate change have incorporated or discussed climate legacies and (ii) what the
effect of climate legacies on extinction risk was when included in the focal study. Based on the
results of this meta-analysis, I identify gaps in the literature and I develop a novel research
hypothesis extending the concept of climate legacy. The findings of the six manuscripts of this
thesis, which test and extend the above mentioned hypothesis, are then shortly summarised
and my contribution to them is clarified. Lastly, I provide an outlook on how these findings might
be used to mitigate the effects of a changing climate on the biosphere in the future.

I have included citations from Douglas Adams in this thesis, as it is my belief that science is
best served with dry humour. His book on a variety of endangered species (“Last Chance To
See”) sparked my interest in conservation science when I was a teenager, and his writing,
particularly on the intersection of evolution and computer science, still provides me with
inspiration for my scientific endeavours to this day.
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2.3. The role of temperature in extinction dynamics

“There is a theory which states that if ever anyone discovers exactly what the Universe is
for and why it is here, it will instantly disappear and be replaced by something even more

bizarre and inexplicable.
There is another theory which states that this has already happened.”

– Douglas Adams

Anthropogenic climate change has already caused substantial damages in terrestrial,
freshwater, and marine ecosystems (Pörtner et al., 2022). Reliable assessments of extinction
risk arising from climate change are thus crucial for the effective protection of the biosphere
(Mathes, van Dijk, et al., 2021; Pecl et al., 2017). While a wave of extinctions is predicted for the
near future (Urban, 2015), only few global species extinctions are thought to have been caused
by anthropogenic climate change (Cahill et al., 2013; IUCN, 2022). The low amount of recent
extinctions attributable to climate change renders it difficult to study the relationship between
climate and extinction dynamics. However, the rich information on past biotic responses to
climate change provided by the fossil record can fill this crucial information gap (Calosi et al.,
2019; Finnegan et al., 2015; Harnik, Lotze, et al., 2012). Palaeontological records, together with
palaeoclimatic data, comprise the potential to understand how the biosphere has responded to
past climate changes, as well as to quantify the adaptive capacity and vulnerability of
ecosystems (Pörtner et al., 2022).

Palaeontologically informed models have demonstrated a strong link between temperature
stress and extinction risk (Bond & Grasby, 2017; Penn et al., 2018; Reddin et al., 2022). The
extinction risk in fossil taxa increases with distance from the climatic conditions they are adapted
to (Beaugrand, 2015; Lord et al., 2017; Wiens & Graham, 2005), indicating that extinction risk is
dependent on both the rate and magnitude of climate change. Studies on the fossil record also
deepened our understanding of intrinsic thresholds of the biosphere: Mass extinctions, events
with an extinction rate significantly above the background rate, occurred when the magnitude of
temperature change exceeded 5.2°C (Song et al., 2021).

Throughout Earth’s history, various events of abrupt climate warming occurred (Foster et al.,
2018). These so-called hyperthermal events are characterised by rapid warming of >1°C, and
may coincide with severe mass extinctions (Benton, 2018; Bond & Grasby, 2017). Particularly
the rapid but long lasting climatic changes during the end of the Permian period (~ 252 million
years ago, Ma) resulted in devastating biotic responses, with 81% of marine animal species and
70% of terrestrial tetrapod species going extinct (Stanley, 2016). Other examples include the
rapid global warming at the end-Cretaceous period (~ 66 Ma), where around 75% of species
were wiped out (Bond & Grasby, 2017). However, some hyperthermals did not result in profound
extinctions, despite their high rate of warming. The Palaeocene-Eocene Thermal Maximum (~
56 Ma), together with other hyperthermal events during the Quaternary, showed fewer extinction
events as would be expected from the rate of warming during these times (Botkin et al., 2007;
Foster et al., 2018). This incongruence in the relationship between climate change and
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extinction risk is noted as a big “conundrum” of modern science (Botkin et al., 2007). Solving
this conundrum holds the potential to provide crucial information for conserving Earth’s
biodiversity under anthropogenic climate change.

2.4. Climate legacies in biotic systems

“Time is an illusion. Lunchtime doubly so.”

– Douglas Adams

Data in environmental and (palaeo-)ecological studies typically consist of a sequence of
observations collected over time (Bence, 1995). In these so-called time series, the value of an
observation at time t is to some degree dependent on the value of the previous observation at
t-1. This effect is termed “autocorrelation”, and treating the time series as observations would
be independent (i.e. ignoring autocorrelation) can lead to severe misinterpretation of the data at
hand (Hurlbert, 1984). One consequence arising from autocorrelation in time series is a moment
of inertia: The effect of a parameter ɑ on a dependant variable β at time t is influenced by the
previous values of ɑ (Figure 1). However, when studying the effect of climate change on the
biosphere, this moment of inertia is often ignored, potentially leading to a misinterpretation of
the apparent relationship (Mathes, van Dijk, et al., 2021; Ogle et al., 2015).

Figure 1: The effect of a parameter ɑ on a dependent variable β at time t is influenced by the
previous values of ɑ through temporal autocorrelation. This effect is termed “climate legacy”
when the effect of a climate parameter on an ecological dependent variable is measured.
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Within ecology, the dependence of biodiversity patterns on climate dynamics and their
autocorrelation is generally termed “climate legacy” (Svenning et al., 2015). While the
theoretical mechanisms of these legacy effects in ecological and environmental studies are well
known, only a few studies have incorporated them in their methodological framework until
recently (Ogle et al., 2015; Svenning et al., 2015). This is particularly intriguing, as climate
legacy can be assumed to be present in all ecological systems as a consequence of the
ubiquitous autocorrelation in climatic and ecological systems and the dynamic nature of
ecological patterns and processes (Chave, 2013). While the magnitude of these climate
legacies might be strongly scale dependent, the general presence of climate legacies can arise
from any length of time in the past (Svenning et al., 2015). Climate legacies can manifest
through a multitude of ecological processes but the main mechanisms through which past
climate can act on the biosphere and on the extinction risk of taxa within largely reflect four
categories: (i) time lags, (ii) niche conservatism, (ii) physiological thresholds, and (iv) cascading
effects. While cascading effects can occur on any temporal scale, it is likely that the remaining
categories act on different timescales and durations (Svenning et al., 2015). While time lags and
in particular migration lags are likely to dominate over timescales of hundred to a few thousand
years, niche conservatism may be more important on coarser timescales covering millions of
years. Physiological thresholds, on the contrary, may lead to severe climate legacies over
seconds to years. Understanding these mechanisms and their complex interactions is crucial
when studying the effect of climatic changes on ecosystems, particularly in light of the ongoing
anthropogenic climate change and the predicted biodiversity crisis.

2.4.1. Time lags

Time lags comprise the amount of time between an extrinsic perturbation to a system and the
return to a state of equilibrium (Hastings, 2004). In ecological systems, these time lags
constitute a frequent phenomenon and can have severe ecological consequences (Svenning &
Sandel, 2013). Extinction debt, the delay between extinction or extirpation of a species following
habitat loss or degradation, is one prominent example of an ecological time lag (Kuussaari et
al., 2009). Similarly, climate induced extinctions can lead to long-lasting legacy effects
determining the susceptibility to climatic changes of the remaining species within an ecosystem
(Calosi et al., 2019). Non-random species loss as a consequence of climate change hereby
determines the ability of the remaining species to respond to future climate change. This has
been exemplary shown for tree community dynamics (García‐Valdés et al., 2018) but is also
well known from the fossil record (Svenning et al., 2015). In general, climate shows a strong
selective pressure on functional traits (Wright et al., 2005), shaping the susceptibility of an
assemblage to future climate change (Couvreur et al., 2015).

Ecosystem functioning in recent ecosystems is strongly driven by time lags as well. Past
climate conditions can leave biophysical legacies, resulting in lagged effects into the future
(Bunting et al., 2017). For example, wet and dry climatic regimes of the previous year determine
the ecosystem dynamics of forests (Anderegg et al., 2013; Lenihan et al., 2003), grasslands
(Kuneš et al., 2015), and shrubland ecosystems (Bunting et al., 2017). Precipitation and
temperature patterns of past months, seasons, or years can also impact ecosystem productivity
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(Coops et al., 2007; Leuning et al., 2005; Reichmann et al., 2013; Sala et al., 2012). Predictions
for ecosystems under future climate change similarly show lagged dynamics (Chapin &
Starfield, 1997; Normand et al., 2013; Svenning et al., 2015).

Species adapted to a particular climate niche can follow this niche as it shifts with climate
change by migrating along the latitudinal temperature gradient. However, climate changes as
fast as those of ice age cycles may cause migration lags (Stephens et al., 2019; Svenning &
Skov, 2004), potentially resulting in extinctions (Normand et al., 2011). These migration lags are
related to the migration capacity of species (Normand et al., 2011), but biotic interactions may
also have a significant impact. (Dormann et al., 2018). Particularly priority effects, defined as the
process that earlier arriving species have on establishment success of later arriving species
(Chase, 2003), may significantly slow down or even prohibit the establishment of species in a
suitable habitat on both ecological (Fukami, 2015) and geological time scales (Schueth et al.,
2015). Through time lags, such priority effects consequently determine transient dynamics of
ecological systems (Fukami & Nakajima, 2011).

Time lags are thought to have influenced patterns in species richness and composition of
ecosystems. As known from the fossil record (Bond & Grasby, 2017; Mathes, Kiessling, et al.,
2021; Penn et al., 2018), speciation and extinction rates may depend mechanistically on
climate. Under the assumption of higher speciation and lower extinction rates in high-energy
climates, past climate could have shaped the modern-day latitudinal diversity gradient
(Mittelbach et al., 2007). Tree species richness within recent biomes is more correlated to
environmental conditions of the past than to recent environmental conditions (Fine & Ree,
2006). Similarly, the recent species richness of the four major terrestrial vertebrate groups is
best determined by past climate (Jetz & Fine, 2012). All this indicates that recent patterns of
biodiversity contain a strong signal of the past, with time lags providing a mechanistic
explanation on how these patterns emerged.

2.4.2. Niche conservatism

Niche conservatism, which is the relative stability of a lineage's niche during evolutionary
change (Hopkins et al., 2014; Wiens & Graham, 2005), can generate long-lasting climate
legacies in ecological systems (Mathes, van Dijk, et al., 2021; Svenning et al., 2015). In these
ecological systems, a clear signature of evolutionary rescue (i.e. rapid evolutionary adaptations
to climatic changes) is rare (Carlson et al., 2014). Fossil studies have similarly shown that the
preference of taxa for a particular niche stays constant through time (Antell et al., 2021;
Lieberman & Saupe, 2016). If taxa do not adapt to climate changes over evolutionary
timescales, then these changes will successively move taxa out of their adaptation space
(Mathes, van Dijk, et al., 2021). Taxa that have experienced climatic changes are consequently
expected to show different susceptibility to new climatic changes compared to taxa that are in
full equilibrium with their adaptation space.

Additionally, niche conservatism might generate climate legacies through phylogenetic
clustering in novel climates (Hawkins et al., 2014; Miller et al., 2013). Under this hypothesis,
niche conservatism determines the phylogenetic structure and composition of regional species
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pools, thereby impacting how these assemblages respond to future climatic changes. Niche
conservatism and climatic lags arising from it might further explain recent patterns of
biodiversity, such as the latitudinal diversity gradient. For example, many groups of organisms
are globally widespread in tropical regions, but have not successfully invaded or radiated in
temperate regions, potentially due to niche conservatism (Wiens & Donoghue, 2004). This
tropical niche conservatism might have led to a disparity in species richness over time, and
consequently a higher species richness in low latitudinal zones (Wiens & Donoghue, 2004;
Wiens & Graham, 2005).

2.4.3. Physiological thresholds

Physiological mechanisms are thought to underlie differential ability of species to tolerate
stress and differential extinction of species under climate change. This has been shown in
various experimental settings as well as for extinction events in the fossil record (Reddin et al.,
2020). The ability of taxa to respond to climatic changes is therefore dependent on their
physiological tolerances of such changes (Calosi et al., 2019). Past climatic changes may have
already impacted the fitness of individual taxa, shaping their tolerance to future climate
changes. Crossing physiological thresholds is therefore more likely if previous climatic changes
have impacted taxa negatively. These climate legacies arising from general physiological
limitations are thought to act over finer temporal scales (Svenning et al., 2015) but can add up
to be detectable in large scale fossil systems (Reddin et al., 2022). Interacting with time lags,
they can hamper the identification of areas or groups most relevant for conservation efforts
(Ogle et al., 2015).

Besides these endogenic physiological thresholds, climate legacies can be generated from
exogenic processes affecting the limitations to performance. For example, legacies of land use
history affect the representation of traits related to plant performance of peanut plants (Li et al.,
2019) and past pollution still determines the performance of aquatic organisms years after
(Johnson et al., 2013). Despite a limited understanding of mechanisms underpinning the
tolerance of taxa to climate change as a function of physiology (Hofmann & Todgham, 2010;
Somero, 2012), inferences from physiological limitations and their interactions with climate
legacies will likely increase the capacity to identify sensitive and tolerant taxa under
anthropogenic climate change (Calosi et al., 2019).

2.4.4. Cascading effects

A fourth and less concrete mechanism that may generate climate legacies are cascading
effects and tipping points (Beaugrand, 2015; Holling, 1973; Lord et al., 2017). The biosphere
consists of complex adaptive systems that display multiple alternating states, which can shift
from one to another in abrupt ways (Solé & Levin, 2022). Exceeding certain temperature
thresholds under climate change might trigger unforeseen reinforcing processes that cause
significant changes in the Earth system (Friedlingstein et al., 2001; Ren & Leslie, 2011).
Crossing critical thresholds could hereby cause ecosystems to switch from one state to another
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(Beaugrand, 2015; Rocha et al., 2015). Since effects differ between trophic levels (Thackeray et
al., 2010), it is likely that even resilient species will be impacted by changes on other trophic
levels. While identifying the exact mechanisms causing such changes is challenging, it is
undisputed that past climate, and hence climate legacies, strongly influences whether or not
ecosystems reach critical thresholds (Ogle et al., 2015). For example, if a period of warming
adds to a previous period of warming, ecological systems are more likely to reach a trigger point
for major system changes than if the warming just reverses a previous cooling (Mathes, van
Dijk, et al., 2021).

2.5. Systematic review and meta-analysis of the published literature

“It can be very dangerous to see things from somebody else's point of view without the
proper training.”

– Douglas Adams

2.5.1. Systematic review

I have conducted a systematic review of the published literature on extinction risk arising from
climate legacies, aiming to answer (i) how many studies covering extinction and climate change
have incorporated or discussed climate legacies and (ii) what the effect of climate legacies on
extinction risk was when included in the focal study. For this, I searched for published studies on
the 6th of April 2022 on Web of Science citation database (www.webofknowledge.com) and the
Scopus (www.scopus.com) citation database with keywords as follows: “(TI=((‘extinct*’ OR
‘extirpat*’) AND (‘climate change’ OR ‘changing climate’ OR ‘temperature’))) AND DT=(Article)”
for the Web of Science (288 results); “TITLE(("extinct*" OR "extirpat*") AND ("climate change"
OR "changing climate" OR "temperature")) AND DOCTYPE(ar)” for Scopus (313 results). This
corresponds to a literature search for studies which have either extinction or extirpation in
combination with climate change in their title. I then used the R programming software (R Core
Team, 2021) to find duplicate entries, using R version v.4.1.2. After removing duplicates, the
data set contained 351 publications. All code and data can be accessed on github
(https://github.com/Ischi94/lit_review_past_climate). I then manually checked the abstract of the
remaining publications for relevance, i.e. whether the study covers the effect of climate changes
on extinction risk of organisms or a related measure. 144 publications were removed in this
step, resulting in 207 remaining publications. I then went through each of the 207 publications
and recorded the following meta-data wherever possible: year of publication, biotic unit of the
studied taxa (e.g. species, population, …), the kingdom of the studied taxa, the temporal scale
of the climate change, the methodology used to assess the impact of climatic changes on taxa,
whether climate legacies were included, whether these climate legacies where quantified, the
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assumed ecological mechanism of the climate legacy, the temporal scale of the climate legacy,
and the effect size of the climate legacy.

2.5.2. Meta-analysis

Based on the data retrieved from the systematic review, I have conducted a meta-analysis
using the R programming software and the tidyverse consortium of R packages (Wickham et al.,
2019). Effect sizes of the focal climate legacy were transformed to the Cohen’s d effect size
metric using common formulas in meta-analyses (Lipsey & Wilson, 2001), to present the
magnitude of the reported effects in a standardised, scale-independent metric. I conducted the
meta-analysis via partial pooling through a linear mixed effect model (Bolker et al., 2009),
whereby studies were used as a random effect and the variance of each study was incorporated
via a variance function structure. I further tested for a trend in the inclusion of climate legacies
through time via a logistic regression. All code and data can be accessed on github
(https://github.com/Ischi94/lit_review_past_climate).

2.5.3. Results

Most studies covered either animals (137) or plants (56), with a few studies on fungi (2),
protozoans (2), or chromista (2). The most common biotic unit was on species-level (118),
followed by population (32) and genus (11), and a few studies with even higher resolution up to
tribes (1) or individuals (1). Five studies were using simulated biotic units (meta-species or
meta-populations). The temporal scale of the focal climate change hereby ranged from days to
millions of years (Figure 2).
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Figure 2: The temporal scale of each study of the systematic literature review on extinction risk
and climate change. Studies that do not include climate legacies, neither in their methodological
framework nor in their discussion, are shown in grey. Studies including climate legacies are
shown in yellow.

Out of 193 studies, only 14 included climate legacies either in their methodological framework
or discussed them in text (Figure 2). 7 of these 14 studies were quantifying the effect of the
climate legacy measure on the extinction parameter, whereas the remaining 7 discussed the
effect of climate legacies qualitatively. From the 7 studies quantifying the focal effect, 6 were
reporting sufficient information to convert the effect size into the Cohen’s d effect size metric and
were subsequently used in the meta-analysis. There is a modest trend in the inclusion of climate
legacies in studies covering extinction risk and climate change through time (Figure 3). With
each year, the probability that a study is including climate legacies either in their methodological
framework or in their discussion is growing, on average, by 2.3% (95% Confidence Interval (CI)
[-3%, 10% ]). Based on this, a randomly selected study from 1980, for example, would have a
probability of including climate legacies of 5.2% (95% CI [0%, 16.6%]. Whereas a study that is
going to be published next year, in 2023, would have a probability of 13% (95% CI [4.9%, 21%])
of including climate legacies, based on the estimated relationship. The general probability that a
study would include climate legacies was therefore low but slightly growing with time.
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Figure 3: The temporal trend of the inclusion of climate legacies in studies on extinction risk and
climate change. The y-axis shows the probability of climate legacies being included as a
function of time. The trend was estimated by a logistic regression, whereby grey points indicate
studies not including climate legacies, and yellow points indicate studies including climate
legacies. The grey line shows the mean trend, with the yellow shaded areas depicting the 50%,
80%, and 95% confidence intervals around this trend.

The discussed mechanisms through which climate legacies could affect extinction risk were
highly diverse. The most common mechanisms discussed were migration lags (Lunney et al.,
2014; Sax et al., 2013; Wiens et al., 2019; Yalcin & Leroux, 2018). Other studies included time
lags in their methodological framework but did not discuss the underlying ecological rationale for
doing so (Mayhew et al., 2008; Saltré et al., 2016; Xenopoulos et al., 2005). Contrarily, Keith et
al. (2014) discussed the presence of time lags in a variety of population metrics but did not
include them in the methodological risk assessment.

Baseline conditions were the second most common mechanisms discussed, particularly how
they shape susceptibility to climate change and how they serve as a potential trigger for
cascading effects. Riquelme et al. (2020), for example, discussed a secular effect of long-term
warming on the carrying capacities of populations. In a forest succession model, García-Valdés
et al. (2018) showed how climate change-driven extinctions of tree species affect forest
functioning more than random extinctions, with the remaining community being more
susceptible to future climatic changes. Similarly, climatic induced removal of individuals in
Ginseng populations was found to be associated with changes in reproductive rates and
inbreeding, shaping population functioning (Souther & McGraw, 2014). Urban et al. (2012) found
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a cascading dynamic in the response of species to climate change, with competition creating
range lags, and those range lags subsequently modifying the ability of the community to
respond to further climatic changes. On a coarser temporal scale ranging from 21 thousand
years to 2 million years, baseline climatic conditions were discussed to affect the ability of taxa
to respond to environmental perturbations, such as during the Late Quaternary mammalian
extinctions (Varela et al., 2015), the Cretaceous-Paleogene mass extinction (Zhang et al.,
2018), or the end-Triassic mass extinction (Petryshyn et al., 2020).

Physiological thresholds were commonly discussed to create climate legacies. Sinervo et al.
(2018) looked at pre-existing thermoregulatory adaptations to climate, whereas other
physiological thresholds arising from initial adaptations to climate included juvenile recruitment
(Butler et al., 2017), susceptibility to drought conditions (Pomara et al., 2014), reproductive
success as a function of snow-free grounds in the previous year (Imperio et al., 2013), and
growth and reproduction influenced by autocorrelated temperature (Griebeler & Gottschalk,
2000). A mechanism closely related to physiological thresholds, niche conservatism, was
discussed as well (Mathes, van Dijk, et al., 2021).

Those six studies directly incorporating and quantifying climate legacies in their methodological
framework found a large impact of the focal climate legacy on the extinction risk metric (Figure
4). The overall effect size, as estimated by the meta-analysis and expressed as Cohen’s d, was
1.02 (95% CI [0.49, 1.56]), and can be interpreted as large (Sawilowsky, 2009). The individual
studies showed similarly large effect sizes, with their corresponding confidence intervals ranging
from medium to very large effect sizes. I found this to be independent of the temporal scale the
assessed climate legacy was covering, with studies showing large effect sizes from climate
legacies covering years (Butler et al., 2017; Griebeler & Gottschalk, 2000; Imperio et al., 2013),
thousands of years (Varela et al., 2015), or millions of years (Mathes, van Dijk, et al., 2021;
Mayhew et al., 2008). The meta-analysis indicates that once climate legacies are methodically
included in the study and quantified, large impacts of those legacies are found on extinction risk
and its corresponding metrics. While it is possible and probable that positive and large effect
sizes from climate legacy are more likely to be reported, the overall agreement of the studies
and the comprehensiveness of the systematic literature review point towards a large relevance
of climate legacies in extinction studies.
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Figure 4: Results of the meta-analysis. The temporal scale of the focal climate legacy studied as
a function of the absolute effect size of each individual study quantifying the impact of climate
legacies on extinction dynamics. Points show the mean estimate per study and the lines the
corresponding 95% confidence interval. The interpretation of the absolute Cohen’s d effect
sizes, ranging from small to very large, follows general recommendations (Sawilowsky, 2009).
The yellow point and line indicates the overall effect size, averaged across studies through
partial pooling.
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2.6. Climate interactions as a unifying framework

“We demand rigidly defined areas of doubt and uncertainty!”

– Douglas Adams

2.6.1. Differential extinction risk resulting from long-term climate changes

As the systematic review and meta-analysis has shown, only a few studies on the relationship
between extinction dynamics and climate included climate legacies (Figure 2 and 3), but those
who did found large effect sizes (Figure 4). This estimated large effect size was present across
a wide range of temporal scales and hypothesised mechanisms. Individually, these mechanisms
are well-known and studied (Svenning et al., 2015) but a solid understanding of their
interactions and feedbacks is currently lacking (Ogle et al., 2015). In light of anthropogenic
climate change, analytical frameworks summarising the patterns arising from those interactions
and feedbacks, while simultaneously quantifying the ecological consequences of climate
legacies, are needed.

One crucial, yet largely unstudied, framework consists of climate interactions, which describe
and quantify the potential dependence of extinction risk on the long-term climatic context
(Mathes, van Dijk, et al., 2021). Climate interactions might create a characteristic pattern in
extinction dynamics and can arise from any of the above mentioned climate legacies such as
niche conservatism, time lags, physiological thresholds, or cascading effects. They therefore
provide a unifying framework for studying the consequences of climate legacies in ecosystems.
The expected characteristic pattern consists of higher extinction risk, or related measures, when
climatic changes add to previous trends in the same direction (e.g. a short-term warming adding
to a secular warming trend, Figure 5). These synergistic interactions might create environmental
conditions increasingly different from previous adaptations of taxa, leading to a high extinction
risk. On the contrary, climatic change might be less deleterious for species when added to a
long-term temperature trend in the opposite direction (e.g. a short-term warming following a
prolonged cooling trend, Figure 5). These antagonistic interactions might create environmental
conditions more similar to initial adaptations of taxa, resulting in a generally lower extinction risk.
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Figure 5: A similar temperature increase, illustrated in yellow, might have differential effects on
biota, depending on if it follows after a period of long-term cooling (antagonistic interaction) or
warming (synergistic interaction). Environmental conditions, illustrated by the grey bar, are more
similar to initial conditions after antagonistic climate interactions, whereas environmental
conditions are increasingly different from previous adaptations under synergistic climate
interactions.

The differential extinction risk resulting from climate interactions can arise from at least four
known mechanisms, potentially interacting with each other. Over very long timescales, such as
millions of years, the relative stability of lineage’s niches during evolutionary change (Hopkins et
al., 2014; Wiens & Graham, 2005) might determine the response of taxa to climate change,
depending on the preceding long-term climatic changes. If taxa show a strong preference for a
particular climatic niche through time, then the probability that the adaptive evolutionary
potential cannot keep up with the selective pressure imposed by synergistic climate interactions
increases. On the contrary, environmental conditions might be more similar to the preferred
climatic niche of taxa under antagonistic climate interaction, where a short-term temperature
change cancels out the environmental changes of a previous long-term change. Some taxa
might therefore be able to return to the centre of their initial adaptation under antagonistic
climate interaction, but are potentially moved out of their adaptation space under synergistic
climate interaction. There is growing evidence for these ecological consequences arising from
niche conservatism - for example the past niche evolution of species has been shown to
determine susceptibility to climate changes (Lavergne et al., 2013). Additionally, consequences
of niche conservatism have been described over various temporal scales, ranging from months
and decades (Peterson, 2011), through millenia (Antell et al., 2021), to millions of years
(Hopkins et al., 2014; Stigall, 2014).
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A differential response of taxa to climate changes, depending on the preceding long-term
changes, might also arise from accumulated migration lags. The ability to keep pace with
shifting habitats under climate change is a key determinant of extinction risk (Reddin et al.,
2018). Migration lags can hereby occur from reduced migration capacity of species (Normand et
al., 2011), biotic interactions (Dormann et al., 2018), a delayed ecological response (Ogle et al.,
2015), or migration barriers (Dullinger et al., 2012). Under antagonistic climate interactions,
species can overcome migration lags by persisting in climate refugia (Gavin et al., 2014). This
has been prominently shown for range dynamics in response to cyclical warming and cooling of
Quaternary ice age dynamics (Tzedakis et al., 2002). Contrarily, suitable climatic conditions will
not return under synergistic climate interactions and climate refugia will therefore no longer
facilitate survival. The current monotonic warming trend of anthropogenic climate change is one
example for this (Keppel et al., 2012). Accumulated migration lags might hence lead to more
severe extinction responses when a climate change follows a long-term trend in the same
direction (synergistic interaction), compared to when the same climate change opposes the
direction of the previous long-term trend (antagonistic interaction).

While migration lags are presumably most important over timescales of hundred to a few
thousand years (Svenning et al., 2015), physiological thresholds might create differential
extinction responses from climate interactions over seconds to years. It is more likely that
lineages approach physiological limits under synergistic climate interactions, as monotonic
climatic changes might create unsuitable environmental conditions. Once physiological
thresholds are reached, escaping environmental pressure is only feasible through major
innovations in the genepool (Merilä, 2012). These events, however, are rare (Carlson et al.,
2014). Reaching physiological thresholds faster under synergistic climate interactions may
therefore increase the extinction risk of taxa, in strong contrast to antagonistic interaction where
preferred conditions are retained.

Significant cascading effects in biotic systems can be expected under synergistic climate
interactions, as they lead to increasingly different environmental conditions compared to initial
adaptations. These cascading effects can arise from all previously described ecological
mechanisms, such as retained niche preferences, accumulated migration lags, or crossed
physiological thresholds, as well as from interactions and feedbacks between these
mechanisms. The quantitative assessment of ecological consequences from climate
interactions is complicated by these interactions and feedbacks (Kinzig et al., 2006), but it is
more important than ever given the potential harm to biodiversity and ecosystems (Murphy et
al., 2020; Parmesan, 2006). A theoretical framework identifying the patterns and quantifying the
consequences arising from climate interactions is therefore needed. Chapter 2.6.2. of this thesis
is aiming to fill this research gap through the development and description of a novel
methodological framework. The remaining chapters will then illustrate applications of this
framework and will provide further implications of my findings.

2.6.2. Quantification of climate interactions

As climate interactions can arise from any of the above mentioned ecological mechanisms,
acting over timescales ranging from seconds to millions of years (see Chapter 2.4.), a

20

https://www.zotero.org/google-docs/?9PSbix
https://www.zotero.org/google-docs/?9PSbix
https://www.zotero.org/google-docs/?vBmgSz
https://www.zotero.org/google-docs/?vBmgSz
https://www.zotero.org/google-docs/?MUPRBp
https://www.zotero.org/google-docs/?3vuC6k
https://www.zotero.org/google-docs/?3vuC6k
https://www.zotero.org/google-docs/?5YOePB
https://www.zotero.org/google-docs/?8UXGTq
https://www.zotero.org/google-docs/?QiQDZx
https://www.zotero.org/google-docs/?aGRfgX
https://www.zotero.org/google-docs/?9ZbF9A
https://www.zotero.org/google-docs/?ISVQXB
https://www.zotero.org/google-docs/?1IPqyj
https://www.zotero.org/google-docs/?1IPqyj
https://www.zotero.org/google-docs/?O26WhD
https://www.zotero.org/google-docs/?r3WWrj
https://www.zotero.org/google-docs/?r3WWrj


Introduction

scale-independent framework is needed to quantify the consequences arising from climate
interactions. For this, I developed a flexible analytical approach for evaluating the influence of
climate interactions in ecosystems, allowing for the quantification of the length, temporal pattern,
and magnitude of patterns arising from climate legacies. The approach consists of four steps,
each described in detail in the following and visually explained by Figure 6.

The first step consists of the preparation of environmental data for the analysis. This
environmental data could describe temperature, precipitation, soil water estimates or any
environmental parameter of interest, as long as it is available in the form of a time series
spanning the time range relevant for the focal study. As climate interactions are based on
directional changes of these environmental parameters, the time series of observational values
needs to be transformed into a time series of trends. This means quantifying the specific rate of
change from one observation to the previous observation, in the following named Δchange. If, for
example, the temperature at t-1 is 10°C, and at t 14°C, and the time span between the two
observations spans one year, then Δchange is 4°C per year. The calculation of Δchange can either
be done by subtracting the environmental value at t-1 from the value at t, or by using the slope
of a linear regression of these two observations. After calculating Δchange for all observations of
the environmental parameter, the preceding long-term trends need to be quantified. These
long-term trends will be named Δtrend in the following. Δtrend similarly consists of the rate of
change between two values, but instead of calculating the change between t and t-1, the
change between preceding values and t-1 is used. Δtrend therefore quantifies the rate of change
in environmental parameters before Δchange, enabling the independent calculation of the climate
interactions. Δtrend can be computed by using the slope of a linear regression between two
observations and subsequently dividing the slope estimate by the time span between the two
observations. While the length of Δchange is determined by the temporal resolution of the
environmental parameters, Δtrend can span any arbitrary length in a successively growing way,
such as the change between t-2 and t-1, t-3 and t-1, t-4 and t-1 …, t-n and t-1. The appropriate
length of Δtrend can be assessed by means of model comparison, which is incorporated in the
third step succeeding the model fitting procedure explained in the following paragraph. At the
end of the first step, all observations of the environmental parameter have an associated value
for Δchange and various values for Δtrend.

In a second step, the change and trend estimates for the environmental parameters are
combined with the response variable in a model setting. The response variable should consist of
a time series with the same resolution as the environmental time series, and can comprise any
metric appropriate for the measure of extinction risk in ecological systems, such as, for example,
direct extinction events, change in population size, or change in geographical range. The
additive and multiplicative effects of climate interactions, defined as the interacting effects of
Δchange and Δtrend , on the response variable, can then be estimated in a modelling framework in
the form:

Response Variable ~ Δchange : Δtrend + random structure.
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The random structure variable in the model should be used to account for any intrinsic
correlation of the response variable, such as dependence of observations in time series or
phylogenetic relationship between taxonomic groups. This can be done by using random effects
within a mixed effect model framework (Bolker et al., 2009). The likelihood and link-function of
the mixed effect model should be chosen based on the distribution of the response variable. For
example, for a response variable that measures when taxa went extinct versus when they
survived, a binomial likelihood with a logit link might be most suitable. While these mixed effect
models can be fitted in a Frequentist modelling framework, Bayesian models should be
preferred as they can ensure an appropriate model fitting even under a highly complex random
structure of the response variable (McElreath, 2020). The model fitting procedure should be
done for every calculated length of Δtrend.

The third step consists of quantifying temporal memory of the models, which corresponds to
quantifying the best performing length of Δtrend. By calculating one model for each long-term
temperature trend (Δtrend), it is possible to choose the trend explaining the most variation of
extinction risk in interaction with short-term change. This can be done by means of model
comparison, which consists of comparing the model performance of each model to models with
a different length of Δtrend. The model performance can be assessed through any measure of
goodness of fit of the model, such as the Akaike information criterion (Burnham, 1998) in a
Frequentist setting or Pareto smoothed importance sampling (Vehtari et al., 2017) in a Bayesian
modelling framework. This model comparison should not result in the removal of all models with
a worse performance than the model with the best performing Δtrend (i.e. model selection), but
instead the following inference should be based on all models weighed by their importance. This
can either be done by doing the following step four for every individual model, or by averaging
inference estimates across models (i.e. model averaging).

In step four, the fitted models are used to estimate the effect of a short-term change (Δchange)
on the response variable, depending on the preceding long-term trend (Δtrend). For this, a grid of
equally spaced short-term changes with equally spaced long-term trends can be created. The
range of the grid should capture the vast majority of environmental changes and trends
observed in the actual data. For example, a study on the temperature change in the glacial
cycles of the past 700 thousand years should use a grid of values between -2°C and 2°C, as
this range captures most of the observed temperature changes. Models can then be used to
predict values over this grid, meaning that the estimated relationship of the climate interaction
within a model is used to predict the response variable across all combinations of Δchange and
Δtrend of the grid. By doing so, one can for example estimate the effect of a 1°C warming on the
response variable, and can compare this estimated effect between a scenario where a
long-term cooling preceded the warming and a scenario where a long-term warming preceded
the warming. This procedure further ensures capturing a range of potential long-term trends and
short-term changes while having the same amount of observations per climate interaction.
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Introduction

Figure 6: Methodological framework for the quantification of extinction risk from climate legacies
in ecological systems through climate interactions. In the first step, short-term changes (Δchange)
and long-term trends (Δtrend) for the climatic variable of interest are calculated. The second step
consists of combining those changes and trends with the ecological response variable of
interest in an interaction model. Each long-term trend is hereby included through an individual
model. In the third step, temporal memory of each model gets quantified, which corresponds to
identifying the best performing length of Δtrend. This performance measure can then be used to
weigh estimates from each model in the fourth step. In this last step, the effect of each climate
interaction on the ecological variable is estimated through an extinction risk assessment. For
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this, the effect of a short-term change in the climatic variable on the ecological variable can be
estimated through the models, and this estimated effect can be compared between a scenario
where a long-term decrease in the climatic variable preceded the short-term change and a
scenario where a long-term increase preceded the short-term change. The figure illustrates the
concept for one time slice shown by the dotted line. The final models, however, integrate across
all time slices. Modified after Mathes, van Dijk et al. (2021).

The proposed analytical approach can be used for ecological and environmental data on any
scale, and has the advantage of quantifying consequences of climate legacies without having to
disentangle underlying processes. It further allows for the quantification of the temporal pattern
of climate legacies (i.e. temporal memory) and can be used to estimate ecological
consequences of climate legacies under future climate change, by taking advantage of the
estimated relationship between the response variable and climate changes within each model.
The overall modelling framework aims to provide a flexible analytical tool to evaluate the role of
climate legacies in shaping extinction risk throughout Earth's history. I designed the framework
to be useful in revealing novel insights throughout a wide variety of biotic systems. In the
following chapter, I will illustrate this through a set of studies covering timescales from the
geological deep time up to modern ecosystems, with examples from marine and terrestrial fossil
extinction events, evolutionary bursts, range dynamics, and compositional change within
ecosystems.
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3. Synopsis

“I may not have gone where I intended to go, but I think I have ended up where I needed
to be.”

– Douglas Adams

The identification and comprehension of basic patterns or regularities that appear at certain
scales or may even be scale-independent is one of ecology's primary objectives (Rosenzweig,
1995; Steinbauer, 2013). Within the introduction, I provided a general overview of patterns and
regularities arising from climate legacies in extinction dynamics. I further developed a heuristic
framework that unifies these patterns, which can be used in any ecological setting irregardless
of the temporal scale. In the following, I will briefly illustrate applications of this framework in six
manuscripts with different degrees of complexity and varying timescales (Figure 7). The
manuscripts of this thesis all deal with environmental parameters and how they are associated
with ecological dynamics in time. Combining the findings from these studies allows for a detailed
examination and discussion of how climate legacies shaped extinction risk throughout Earth’s
history.

Manuscript 1 provides a comprehensive application of the climate interaction framework to
fossil extinction events. It is shown that the majority of taxa known for their good fossil record
exhibit substantially increased extinction rates after they experienced synergistic climate
interactions (i.e. a short-term temperature change on top of a long-term trend in the same
direction). The effect size of palaeoclimate interaction is hereby similar to other key drivers of
extinction risk. The results illustrate that without explicit integration, palaeoclimate interaction
could blur or even reverse apparent extinction patterns and prevent useful predictions for future
scenarios.

To be able to study the relationship between extinction dynamics and climate, high resolution
time series of climate data are needed. Manuscript 2 provides this high resolution climate data
for a period of the largest biological crisis in Earth’s history, the end-Permian mass extinction.
Additionally, intricate feedback mechanisms of weathering processes are discussed, providing
crucial insights into the global carbon cycle.

Manuscript 3 assesses the relationship between deep-time evolutionary processes and
climate by means of the climate interaction framework. Biodiversity is determined by both
extinction and origination dynamics. While Manuscript 1 revealed that extinction dynamics are
substantially driven by climate interactions, Manuscript 3 illustrates the same for origination
rates. Using the marine fossil record, it is shown that origination probability substantially
increases when a short-term climate cooling adds to a long-term cooling trend. The discussed
mechanisms for this effect include niche conservatism and time lags such as migration or range
lags.
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Manuscript 4 examines the dynamics of migration and range lags through time and how
climate interactions might explain arising patterns. Using the exceptional fossil record of
planktonic foraminifera hereby allowed for a view into the composition of marine assemblages in
the past with an extraordinary temporal and spatial resolution. It is demonstrated that high
magnitudes of temperature changes led to large and often irreversible compositional changes,
pointing towards the presence of critical tipping points within these marine assemblages.

As climate interactions can arise from processes acting over timescales from the geological
deep time up to modern ecosystems, transdisciplinary research is needed to correctly estimate
the effect of climate interactions in biotic systems. Manuscript 5 discusses opportunities and
benefits of an interdisciplinary integration between macroecology and palaeoecology, and how
scales can be bridged using this approach. It is in particular demonstrated that climate legacies
can only be identified and quantified when both macroecological and palaeoecological
perspectives are combined within a holistic framework.

Manuscript 6 shows the prevalence of climate interactions in global vegetation dynamics over
previously unassessed timescales. It is shown that vegetation change through space and time is
substantially greater after synergistic climate interactions. While Manuscript 1 and 3 quantify the
impact of climate interactions in deep-time biotic systems (millions of years), and Manuscript 4
in Cenozoic ecosystems (several hundred thousand years), Manuscript 6 covers ecological
timescales (centuries to millennia). This high temporal resolution allows for a prediction of global
vegetation dynamics under anthropogenic climate change, where I show that terrestrial plant
assemblages are likely to shift into rates of change unprecedented throughout the previous 21
thousand years.

Figure 7: Temporal scale of each manuscript of this thesis, along with the discussed sources of
climate legacies.
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3.1. Climate interactions in the geological deep-time

Palaeontological records, together with palaeoclimatic data, comprise the potential to
understand how the biosphere has adapted to previous climate shifts, as well as to measure the
adaptability and fragility of ecosystems (Pörtner et al., 2022). Using the rich information on past
biotic responses to climate change provided by the fossil record can shed light on the general
impact of climate legacies in the biosphere (Svenning et al., 2015), and can help to predict biotic
responses under anthropogenic climate change (Dietl & Flessa, 2011). The following three
manuscripts cover evolutionary and climatic dynamics in the geological deep-time across the
Phanerozoic. The main goals of this chapter of my thesis on the geological deep-time are to (i)
test the hypothesis developed under the climate interaction framework that synergistic
interactions have a more deleterious impact on the biosphere compared to antagonistic
interactions, (ii) to describe general climatic processes related to mass extinction events, and
(iii) to study the effects of climate interactions on origination and speciation processes.

3.1.1. Manuscript 1

Mathes GH, van Dijk J, Kiessling W, Steinbauer MJ (2021) Extinction risk controlled by
interaction of long-term and short-term climate change, Nature Ecology & Evolution, doi:
https://doi.org/10.1038/s41559-020-01377-w

Assessing extinction risk from climate drivers is a major goal of conservation science
(Barnosky et al., 2011; Brook & Alroy, 2017). Biotic responses to climatic changes are, however,
mediated by past conditions (Ogle et al., 2015). Ignoring this dependency on the past can
potentially lead to a misinterpretation of the apparent relationship between climate and
extinction dynamics (Svenning et al., 2015). Here I tested the hypothesis that a temperature
change leads to more extinction events when it follows on a preceding long-term temperature
trend in the same direction (synergistic interaction), as compared to when the preceding
long-term trends was in the opposite direction (antagonistic interaction). For this, I analysed the
extinction dynamics of eight fossil clades (arthropods, bivalves, cnidarians, echinoderms,
foraminifera, gastropods, mammals, and reptiles) across the past 485 million years. By
combining these groups known for their good fossil record (Reddin et al., 2018) with
reconstructed temperature changes, I was able to show that synergistic climate interactions can
significantly elevate the temperature-related extinction risk of both marine and terrestrial
organisms. The effect size of palaeoclimate interaction was hereby similar to other key drivers of
extinction risk such as geographic range (Finnegan et al., 2015; Foote et al., 2008; Harnik,
Lotze, et al., 2012), abundance (Harnik, 2011; Payne et al., 2011), or clade membership (Harnik,
Simpson, et al., 2012; McKinney, 1997).

The temporal memory of this climate legacy effect, the length over which preceding long-term
trends still had an effect on extinction dynamics, was up to 60 million years long. This might
have implications for the predicted biodiversity crisis under anthropogenic climate warming,
where a short-term warming is preceded by a long-term cooling trend during the Paleogene and
Neogene. If this antagonistic climate interaction is not incorporated in assessments of extinction
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risk under future warming, predictions may overestimate the apparent risk. However, this direct
projection of the studied climate interactions into the near-time future is hampered by the
temporal resolution of the study, calling for the need of quantifying consequences of climate
interactions in biotic systems with a finer temporal resolution.

Three different climate legacy concepts are discussed to cause the increase in extinction risk
after synergistic climate interaction. Niche conservatism (Hopkins et al., 2014; Wiens & Graham,
2005), migration lags (Normand et al., 2011; Svenning & Skov, 2004), and cascading effects
(Beaugrand, 2015; Lord et al., 2017) are all based on the concept of niche stability over
geological time scales and imply that synergistic temperature changes successively move taxa
out of their adaptation space. This mismatch with existing climate could then lead to a higher
extinction risk.

In conclusion, this study was the first to show that extinction dynamics can be explained by the
proposed climate interaction framework. While the effect on extinction dynamics was found to
be large, insights arising from climate interactions for anthropogenic climate change need to be
verified in biotic systems with a finer temporal resolution.

3.1.2. Manuscript 2

Joachimski MM, Müller J, Gallagher TM, Mathes GH, Chu DL, Mouraviev F, Silantiev V, Yadong
DS, Tong JN (2022) Five million years of high atmospheric CO2 in the aftermath of the
Permian-Triassic mass extinction. Geology, doi: https://doi.org/10.1130/G49714.1

To deduce general extinction patterns from climate legacies, high-resolution data for
environmental data during extinction events are needed. The most catastrophic mass extinction
event in the Phanerozoic occurred during the Permian-Triassic transition (Sepkoski, 1981). The
extinction event was accompanied by 8°C to 10°C low latitudinal warming and extensive global
ocean anoxia (Joachimski et al., 2020; Sun et al., 2012), representing a fossil analogue to
anthropogenic climate warming (Payne & Clapham, 2012). One of the main drivers of extinction
selectivity during this period was arguably hypercapnic stress from elevated pCO2 (Knoll et al.,
2007; Payne & Clapham, 2012). However, there has been so far no empirical study approach
that investigated atmospheric CO2 dynamics of the late Permian to Early Triassic hothouse
period.

In this study, atmospheric CO2 history throughout the late Permian and Early Triassic was
reconstructed by using the paleosol pCO2 proxy record. A fourfold increase in atmospheric
pCO2 across the Permian-Triassic boundary to high and intermediate CO2 levels in the Early
Triassic was found, which is in line with documented greenhouse warming and hot Early Triassic
oceans. These elevated pCO2 values persisted for more than five million years, suggesting that
silicate weathering failed to draw down CO2 until the latest Early Triassic. These findings may
enhance the mechanistic understanding of biotic responses to extreme climatic changes, and
add crucially needed data and insights to one of the most important analogues for
anthropogenic climate warming.
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3.1.3. Manuscript 3

Mathes GH, Kiessling W, Steinbauer MJ (2021) Deep-time climate legacies affect origination
rates of marine genera, PNAS, doi: https://doi.org/10.1073/pnas.2105769118

While previous analysis has shown that climate interactions control extinction risk throughout
the Phanerozoic (Mathes, van Dijk, et al., 2021), the effect of these climate legacies on
deep-time origination is largely unknown. Due to niche conservatism (Hopkins et al., 2014;
Wiens & Graham, 2005), synergistic climate interactions might lead to taxa having less
adaptations to the climatic situation than under antagonistic climate interactions. This lack of
adaptation to climatic conditions might result in ecological releases, bottleneck, and subsequent
founder effects (Button, 2017; Gilman et al., 2010; Raup, 1979), which are known to influence
rates of evolution and speciation (Templeton, 2008; Wahl et al., 2002).

Building on these ecological mechanisms, I hypothesised and showed that climate interaction
was a strong determinant of origination rates in the deep-time fossil record. I analysed how
global trajectories of past climate can affect the origination probabilities of twelve marine fossil
phyla (Annelida, Arthropoda, Brachiopoda, Bryozoa, Chordata, Cnidaria, Echinodermata,
Foraminifera, Hemichordata, Hyolitha, Mollusca, and Porifera) throughout the last 485 million
years. The results showed a substantial increase in origination rates when a short-term cooling
added to a long-term cooling. This increase in origination rates might occur through increased
habitat fragmentation. Cooling–cooling climate interaction might therefore cause a drop in
eustatic sea level due to glaciation, leading to reduced continental shelf area and emerging
barriers in this main habitat of the majority of the studied fossil groups. Increased habitat
fragmentation might then lead to higher allopatric speciation through vicariance (Mayr, 1963;
Peters, 2005), explaining the observed increase in origination rates.

In conclusion, this study showed that the effect of climate interaction on evolutionary dynamics
is not restricted to extinction patterns, but seems to determine origination probability as well.
While the underlying ecological mechanisms such as niche conservatism and time lags might
be the same as in extinction events, the emerging patterns of increased allopatric speciation
through vicariance provided novel insights into the relationship of temperature and biodiversity
in Earth’s history.
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3.2. Climate interactions throughout the Quaternary

The effect of climate change on spatio-temporal patterns in assemblages on a global scale is
poorly understood (García Molinos et al., 2016). The majority of research focuses on individual
species rather than examining changes in assemblages. (Dornelas et al., 2014). Due to its
unique capacity to record how animals responded to a wide variety of climatic changes, the
fossil record offers the opportunity to bridge this crucial knowledge gap of changes within
assemblages. However, most studies taking advantage of the fossil record are either limited to
single historical timesteps (Greenstein & Pandolfi, 2008; Kiessling et al., 2012) or cover scales
of 106 to 107 years (Kocsis et al., 2018; Martin-Garin et al., 2012; Reddin et al., 2018), which are
considerably above timescales relevant for modern ecosystems. The high resolution fossil
record of microfossil and pollen assemblages provide an excellent opportunity to fill this
research gap and to study the effect of climate interactions of finer temporal scales within the
Quaternary. The main goals of this chapter of my thesis on the Quaternary are to (i) to test
whether climate interaction remains a strong determinant of extinction dynamics over finer
temporal scales than covered by previous analysis, and (ii) to provide and describe a holistic
framework that allows to study the effect of climatic interactions across different temporal scales
through transdisciplinary research.

3.2.1. Manuscript 4

Mathes GH, Reddin CJ, Kiessling W, Antell GS, Saupe EE, Steinbauer MJ (2022) Nowhere to
run: Lagged responses of tropical and polar planktonic foraminifera over 700,000 years of
climate change, Global Ecology and Biogeography, in submission

One key response of marine assemblages exposed to a changing climate is by tracking
climatic niches in space via distribution shifts (Chen et al., 2011; Pinsky et al., 2013;
Poloczanska et al., 2013). However, if marine organisms can fully adapt to climatic changes via
dispersal remains uncertain (García Molinos et al., 2016; Munday et al., 2013). While individual
marine ectotherm species are projected to closely follow their thermal limitations (Sunday et al.,
2012), assemblages are unlikely to travel cohesively (Graham et al., 1996; Reddin et al., 2018;
Walther et al., 2002), resulting in a disequilibrium or lag that causes a mismatch between
ambient temperatures and those preferred by assemblages (Devictor et al., 2012; Menéndez et
al., 2006; Svenning & Sandel, 2013).

In this study, I investigated these disequilibrium dynamics over the past 700,000 years of
glacial-interglacial cycles at a 8 thousand year resolution, using the theoretical framework of
climate interactions. For this, I used the exceptional fossil record of planktonic foraminifera
(Protista), which are primary components of marine food webs and biogeochemical cycles, in
combination with a coupled Atmosphere–Ocean Generalised Circulation Model. Results showed
that assemblages were not able to move ranges fast enough to track shifts in suitable climates
when climatic changes were high, pointing towards the presence of critical tipping points within
these marine assemblages.
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How well assemblages were able to react to climatic changes was mediated by the long-term
climatic context, illustrating the importance of climate interactions at timescales of millennia to
hundred thousand years. Overall, these findings indicate that the vulnerability of marine
assemblages to climate change is potentially more extensive than previously anticipated.

3.2.2. Manuscript 5

Flantua SGA, Mottl O, Felde VA, Giesecke T, Hooghiemstra H, Irl S, Lenoir J, Mathes GH,
McMichael C, Seddon A, Steinbauer MJ, Tovar C, Vetaas O, Birks HJB, Grytnes JA (2022) The
joint world of macroecology and terrestrial palaeoecology, Global Ecology and Biogeography,
in review

A fundamental issue for studying ecosystem processes from contemporary data is that
assemblages and observed metrics are always dependent on past conditions (Svenning et al.,
2015). This issue can only be overcome by incorporating knowledge and data about preceding
ecological dynamics (Ogle et al., 2015), and by developing solid approaches to assess temporal
processes by means of time series (Sugihara et al., 2012). In this study, a conceptual synthesis
is developed to combine inferences about contemporary ecological dynamics with
palaeoecological perspectives. Key research topics which can benefit from transdisciplinary
research between macroecology and palaeoecology are highlighted, and a conceptual
framework for the successful integration of these two research fields is provided.

It is in particular demonstrated that climate legacies can only be identified and quantified when
both macroecological and palaeoecological perspectives are combined within such a holistic
framework. The processes and timescales over which climate interactions act can only be
determined through transdisciplinary research. Both research fields have ample opportunities to
contribute to this transdisciplinary research, and these potential contributions are identified and
described throughout the manuscript.

3.3. Climate interactions throughout the Holocene

While previous analyses (Manuscript 1, 3 and 4) have shown that climate interactions are an
important determinant of evolutionary dynamics in both deep-time biotic systems and Cenozoic
ecosystems, the legacy effects arising from climate interactions have not yet been quantified for
modern global ecosystems (Benito et al., 2020). Under anthropogenic climate change, the
ecological consequences from climate interaction might even be further exacerbated by the
increased occurrence of climate extremes and compound climatic hazards (AghaKouchak et al.,
2020). The last chapter of my thesis therefore aims to test whether climate interaction remains a
strong determinant of extinction dynamics over timescales with direct relevance to the current
anthropogenic climate change.
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3.3.1. Manuscript 6

Mathes GH, Kiessling W, Mottl O, Flantua SGA, Birks HJB, Grytnes JA, Steinbauer MJ (2022)
Climate legacies accelerated global rates of change in plant assemblages over the last 21000
years, Nature Communications, in review

A major obstacle for conserving biodiversity and the diverse services that terrestrial
ecosystems provide lies in understanding how terrestrial organisms will adapt to climate change
(Jump & Peñuelas, 2005; Urban, 2015; Warren et al., 2013). Responses of plant assemblages
to a wide variety of climate changes are preserved through palynological proxies (Giesecke et
al., 2017; Williams et al., 2004), offering the potential to study the relationship between
assemblage turnover and climate change through time, particularly within the framework of
climate interactions.

Here I tested the hypothesis that a temperature change leads to more assemblage turnover
when it follows on a preceding long-term temperature trend in the same direction (synergistic
interaction), as compared to when the preceding long-term trends was in the opposite direction
(antagonistic interaction). For this, I was using a global database of pollen sequences, recording
the responses of plant assemblages to climatic changes of the past 21,000 years. The
high-resolution record of pollen sequences allowed for the quantification of effects arising from
climate interactions over previously unassessed timescales, with short-term temperature change
capturing a period of 100 years. Results were similar to assessments of climate interaction
throughout the Quaternary and the geological deep-time, with synergistic climate interactions
resulting in a substantial increase of turnover in plant assemblages. The temporal memory of
this effect ranged from 100 to 1,000 years. This allowed me to estimate the response of plant
assemblages to future climate change, by using the temperature trajectories of the last 1,000
years together with different climate change scenarios under various shared socioeconomic
pathways. Under these scenarios, I predict an unprecedented turnover of plant assemblages as
compared to a pre-human baseline.

In conclusion, climate interactions were indeed a major determinant of turnover in plant
assemblages, which can be interpreted as a proxy for extinction and extirpation risk of individual
taxa within those assemblages. The temporal scale of this study allowed for quantifying
potential ecological responses to climate interactions under future climate change scenarios,
which has been called for in Manuscript 1, 3, and 4. Climate legacies, and the arising patterns
captured in the heuristic framework of climate interactions, might therefore be a crucial concept
for the conservation of biodiversity under the accelerating warming trend of anthropogenic
climate change.

32

https://www.zotero.org/google-docs/?iZOPu7
https://www.zotero.org/google-docs/?IYJ50c
https://www.zotero.org/google-docs/?IYJ50c


Author contributions

4. Author contributions

Manuscript 1:

Authors: Mathes GH, van Dijk J, Kiessling W, Steinbauer MJ
Title: Extinction risk controlled by interaction of long-term and short-term climate change
Journal and status: Nature Ecology & Evolution, 5, 304-310 (2021)
Own contribution: conceptualization: 50%, formal analysis: 90%, visualisation: 100%, writing:
80%, corresponding author

Manuscript 2:

Authors: Joachimski MM, Müller J, Gallagher TM, Mathes GH, Chu DL, Mouraviev F, Silantiev V,
Yadong DS, Tong JN
Title: Five million years of high atmospheric CO2 in the aftermath of the Permian-Triassic
mass extinction
Journal and status: Geology, 50, 650-654 (2022)
Own contribution: statistical data processing: 100%, writing: 20%

Manuscript 3:

Authors: Mathes GH, Kiessling W, Steinbauer MJ
Title: Deep-time climate legacies affect origination rates of marine genera
Journal and status: Proceedings of the National Academy of Sciences, 118, e2105769118
(2021)
Own contribution: conceptualization: 80%, formal analysis: 95%, visualisation: 100%, writing:
85%, corresponding author

Manuscript 4:

Authors: Mathes GH, Reddin CJ, Kiessling W, Antell GS, Saupe EE, Steinbauer MJ
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Journal and status: Global Ecology and Biogeography, in submission
Own contribution: conceptualization: 90%, formal analysis: 95%, visualisation: 100%, writing:
80%, corresponding author
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5. Main research

Manuscript 1

Extinction risk controlled by interaction of long-term and short-term climate change

Nature Ecology & Evolution 5 (2021) DOI: https://doi.org/10.1038/s41559-020-01377-w

Gregor H. Mathes1,2* , Jeroen van Dijk1 , Wolfgang Kiessling1, Manuel J. Steinbauer2,3

1 Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander
University Erlangen-Nürnberg (FAU), Erlangen, Germany.
2 Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth,
Bayreuth, Germany.
3 Department of Biological Sciences, University of Bergen, Bergen, Norway.
* Corresponding author: gregor.mathes@uni-bayreuth.de

ABSTRACT

Assessing extinction risk from climate drivers is a major goal of conservation science. Few
studies, however, include a long-term perspective of climate change. Without explicit integration,
such long-term temperature trends and their interactions with short-term climate change may be
so dominant that they blur or even reverse the apparent direct relationship between climate
change and extinction. Here we evaluate how observed genus-level extinctions of arthropods,
bivalves, cnidarians, echinoderms, foraminifera, gastropods, mammals and reptiles in the
geological past can be predicted from the interaction of long-term temperature trends with
short-term climate change. We compare synergistic palaeoclimate interaction (a short-term
change on top of a long-term trend in the same direction) to antagonistic palaeoclimate
interaction such as long-term cooling followed by short-term warming. Synergistic palaeoclimate
interaction increases extinction risk by up to 40%. The memory of palaeoclimate interaction
including the climate history experienced by ancestral lineages can be up to 60 Myr long. The
effect size of palaeoclimate interaction is similar to other key factors such as geographic range,
abundance or clade membership. Insights arising from this previously unknown driver of
extinction risk might attenuate recent predictions of climate change-induced biodiversity loss.
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INTRODUCTION
Biodiversity and ecosystems are critically endangered by current climate change(García Molinos
et al., 2016; Pecl et al., 2017). Reliable assessments of extinction risk are thus essential for the
effective protection of biodiversity (Barnosky et al., 2011; Brook & Alroy, 2017). Whereas several
assessments categorize extinction risk from climate change (Urban, 2015, 2015), relatively few
studies make use of the rich information on past biotic responses to climate changes provided
by the fossil record (Collins et al., 2018; Finnegan et al., 2015; van Woesik et al., 2012).
Palaeontologically informed models have proven to be powerful in discerning biotic factors that
determine future extinction vulnerability (Calosi et al., 2019; Harnik, Lotze, et al., 2012; Kiessling
& Kocsis, 2016). Numerous reports demonstrate that the impact of climatic changes increases
with distance from the climatic conditions species are adapted to (Beaugrand, 2015; Lord et al.,
2017; Wiens & Graham, 2005). Additionally, a strong link between temperature stress and
extinction risk is also known from the fossil record (Bond & Grasby, 2017; Penn et al., 2018;
Reddin et al., 2020). However, one potentially crucial factor of extinction dynamics, the
interaction of long-term temperature trends with short-term temperature change, has not been
investigated until now.

Here, we quantify how the interaction of long-term temperature trends with short-term
temperature change can affect temperature-related extinction probabilities. We expect
temperature change to be more critical when it adds to previous trends in the same direction
(synergistic interactions) because taxa then face conditions increasingly different from previous
adaptations. To the contrary, current anthropogenic warming occurs after a 40-Myr cooling
trend, raising the possibility that many modern clades are increasingly exposed to climates they
experienced during their origination. Such change may be less harmful. Understanding the
effect of this palaeoclimate interaction could hence provide crucial insights into extinction
mechanisms and lead to improved mitigation efforts for biodiversity under current climate
change.

We analysed eight fossil clades, both marine and terrestrial, each containing more than 400
genera. We implemented generalized linear mixed effect models with binomial family error
(GLMMs) (Bolker et al., 2009) to explain how survival and extinction on genus level is affected
by palaeoclimate interaction (Fig. 1). Besides quantifying effect size, we also estimated the
temporal memory of this effect. We then compared these models containing information about
both long-term temperature trends and short-term changes to models including short-term
temperature changes only using model selection (Burnham, 1998).
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Figure 1: Schematic of analytical protocol. a, For each geological stage, we calculated the
magnitude in temperature change compared to the previous stage (∆Tchange) and long-term
temperature trends with varying duration (∆Ttrend). b,c, The extinction/survival signal from fossil
range data (b), where 1 depicts the extinction of a genus, was combined with the
palaeotemperature information using generalized linear mixed effect models (c). The figure
illustrates this for one time slice shown by the dotted line. The implemented mixed effect
models, however, integrate all time slices in one joint model. d, In a last step, we quantified the
effect of palaeoclimate interaction on intrinsic extinction risk for each palaeoclimate interaction
using the results of our models. We subsequently applied the same model structure to simulated
fossil data and compared them to our results for statistical inference.

RESULTS
Palaeoclimate interactions improved model performance in seven out of eight clades when
compared to models including short-term temperature changes only on the basis of Akaike’s
Information Criterion (AIC) (Fig. 2). Only mammals showed a deteriorating model performance
for short-term cooling when palaeoclimate interaction was included.

Short-term climate change adding to a previous temperature trend in the same direction
(synergistic palaeoclimate interaction) increased extinction risk in all significant models (Fig. 3
and Extended Data Fig. 1). Model predictions showed an increase in extinction risk between 10
and 40% after such a synergistic palaeoclimate interaction for arthropods, bivalves,
foraminifera, mammals and reptiles. The synergistic interaction of long-term cooling with
short-term cooling yielded the most severe impact on extinction risk with a 40% increase for
mammals and 33% for foraminifera.

We observe a negative relationship between extinction risk predicted by the interaction models
and the duration of genera (Fig. 4). The effect of palaeoclimate interaction on extinction is
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strongest for clades with short-duration genera, whereas clades with greater durations of genera
experienced a lower change in extinction risk. The climatic history of each genus accounted for
37% variation of median and 40% of mean duration (adjusted R2; based on F statistics).

Figure 2: Model comparison. Model performance of traditional models (change only) was
compared to model performance taking palaeoclimate interaction into account (change and
trend). Model performance was evaluated using AIC. The figure shows the proportional change
in AIC of the traditional model compared to the performance of the model including
palaeoclimate interactions, for each individual clade. Values above zero (blue points) show a
model improvement for palaeoclimate interactions and values below zero (red point) a model
deterioration.

The extinction risk of marine and terrestrial taxa is dependent on temperature trends extending
over a period of 5 to 60 Myr or up to ten geological stages. For each genus within a clade, we
calculated up to ten long-term temperature trends interacting with short-term temperature
change. We subsequently determined the period of time where the interaction resulted in the
strongest change in intrinsic extinction risk (that is, temporal memory; Extended Data Fig. 2).
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Some clades such as arthropods, foraminifera and reptiles are more responsive to temperature
changes with geologically short durations (5 to 24 Myr), while bivalves, cnidarians, echinoderms,
gastropods and mammals respond more strongly to interactions with geologically long climate
trends (24–60 Myr). The temporal memory of the interaction effect was independent from the
durations of genera (Extended Data Fig. 3).

Null models of temperature-independent extinction/survival processes were used to test the
robustness of our analytical results (Extended Data Fig. 4; Methods). These simulations
resulted in negligible changes of intrinsic extinction risk suggesting that we reveal biologically
meaningful patterns.

Figure 3: Change in extinction risk due to palaeoclimate interaction of all studied fossil clades.
Red data points show change in extinction risk of fossil taxa after warming–warming
palaeoclimate interaction compared to all antagonistic interactions of short-term warming. Blue
points show change in extinction risk after cooling–cooling interaction compared to antagonistic
interactions of short-term cooling. Points are placed at the median of results and error bars
denote 95% Wald confidence intervals as estimated by Wilcoxon rank sum tests (Methods).
Grey points and confidence intervals demarcate insignificant results based on simulated null
models and F statistics, and the grey-shaded rectangle shows the range of simulated null
models (Methods).

DISCUSSION
We show that palaeoclimatic interactions can significantly elevate the temperature-related
extinction risk of organisms and that this increase is negatively linked to the durations of fossil
genera. Our results are consistent with previous findings, revealing profound impacts of
temperature change on extinction risk (Bond & Grasby, 2017; Penn et al., 2018; Reddin et al.,
2020). However, the effect of palaeoclimate interaction is so strong, that both neontological and
palaeontological studies may either overestimate or underestimate the impact of short-term
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temperature change when ignoring the interaction with long-term trends. Incorporating long-term
temperature trends and thus climate history, generally improves model performance and can
increase inferred extinction risk by up to 40% when compared to antagonistic palaeoclimate
interaction. Considering the vast amount of additional biotic and abiotic factors that contribute to
extinction risk (McKinney, 1997), the explanatory power of palaeoclimate interaction compared
to traditional models is remarkable. Our results indicate that the effect size of palaeoclimate
interaction is on par with other key factors such as geographic range (Finnegan et al., 2015;
Foote et al., 2008; Kiessling & Kocsis, 2016), abundance (Harnik, 2011; Payne et al., 2011) or
clade membership (Collins et al., 2018; Harnik, Simpson, et al., 2012; McKinney, 1997).

Figure 4: Change in extinction risk of fossil clades related to median duration. Red points show
change in extinction risk of fossil taxa with warming–warming palaeoclimate interaction. Blue
points show change in extinction risk with cooling–cooling interaction. Grey area depicts the
95% confidence interval of the regression slope. Trend line and R2 value are based on
univariate linear regression across all points and significance, indicated by the asterisks
(P < 0.01), is based on F statistics.

Hypothetically, the effect of synergistic temperature change on extinction risk can be caused by
three (or potentially more) ecological mechanisms: niche conservatism (Hopkins et al., 2014;
Wiens & Graham, 2005), migration lags (Normand et al., 2011; Svenning & Skov, 2004) and
cascading effects (Beaugrand, 2015; Lord et al., 2017). All three mechanisms are based on the
concept of niche stability over geological timescales and imply that synergistic temperature
changes successively move taxa out of their adaptation space. An additional short-term
perturbation in the same direction as the trend is thus expected to increase extinction risk.
Although variable among major clades, evidence for niche stability abounds in the fossil record
(Hopkins et al., 2014; Stigall, 2014).
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Figure 5: Palaeoclimate interactions through the Late Cretaceous and Cenozoic and potential
implications for future climate changes. Moderate extinction rates during the PETM
hyperthermal could be explained by a long-term cooling trend throughout the Late Cretaceous,
as cooling–warming interaction potentially mitigates extinction risk. Contrarily, high extinction
rates throughout the Late Eocene–Oligocene Cooling (LEOC) could be explained by a previous
long-term cooling trend, reinforcing extinction risk. Current palaeontologically informed models
did not consider long-term climate trends, which potentially overestimates extinction risk of
modern taxa due to current climate change (cooling–warming interaction). Future temperature
predictions are taken from the IPCC for surface air temperature (Masson-Delmotte et al., 2018)
and illustrated by the dotted line. Colours show the direction of temperature trends for both
long-term trajectories and short-term change, where red illustrates warming and blue cooling. K,
Cretaceous; Pg, Palaeogene; Ng, Neogene; Q, Quaternary.

Understanding the mechanisms of palaeoclimate interaction is particularly relevant for
palaeontologically informed models to assess extinction risk under current climate change.
Previous models (Collins et al., 2018; Finnegan et al., 2015; van Woesik et al., 2012) were
calibrated in a trend of long-term cooling during the Palaeogene and Neogene. Within this
nearly monotonic long-term cooling, only two types of palaeoclimate interactions can occur:
antagonistic short-term warming on top of a cooling trend and synergistic short-term cooling on
top of a cooling trend, with the latter being more common. On the basis of our results, previous
predictions may overestimate the extinction risk of modern taxa under current climate change
(Fig. 5).

Directly projecting palaeoclimate interactions into the near-time future is hampered by
insufficient knowledge of underlying mechanisms and potential scaling effects. Our analysis
covers long geological time spans and does not take short-scale climatic variations into account.
Hence, assessing the effect of palaeoclimate interaction on extinction risk over shorter
timescales (millennia or even centuries) should be the focus of future research. We show that
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the effect of palaeoclimate interaction can prevail over millions of years. However, niche stability
has been ascertained over different spatial and temporal scales, as well as taxonomical
hierarchies (Hopkins et al., 2014; Steinbauer et al., 2016; Wiens & Graham, 2005). Likewise,
our proposal that synergistic temperature changes successively move taxa out of their
adaptation space and hence increase their extinction risk remains valid over ecological time
spans such as centuries (Beaugrand, 2015; Lord et al., 2017; Normand et al., 2011; Svenning &
Skov, 2004; Wiens & Graham, 2005). We thus expect palaeoclimate interaction to be a key
mechanism of extinction risk over shorter timescales as well. Besides contributing to improved
baseline estimates of vulnerability for the future, our findings also provide insights into the past.
As the palaeoclimatic history a clade has experienced is a strong determinant of its fate, studies
about extreme climate change events in the geological past should take climatic developments
before such an event into account. Hyperthermal events represent natural examples of abrupt
climate changes (Foster et al., 2018). These abrupt climate changes may coincide with severe
mass extinctions (Barnosky et al., 2011; Leckie et al., 2002) but not necessarily so. The
Palaeocene–Eocene Thermal Maximum (PETM), for example, was not associated with
profound extinctions (Foster et al., 2018). The effect of palaeoclimate interaction could provide
an explanation for this conundrum, as short-term warming in the PETM follows a general
long-term cooling trend in the Late Cretaceous (Fig. 5). This is particularly important, as the
PETM is often used as an analogue of anthropogenic climate change and for testing climate
models (Foster et al., 2018). Major biotic turnovers during short-term cooling at the
Eocene–Oligocene boundary (Coxall & Pearson, 2007), on the other hand, were potentially
amplified by a previous long-term cooling trend throughout the Palaeogene (Fig. 5).

By providing insights into an understudied key mechanism of extinction processes, our findings
may hence facilitate the interpretation of temperature-driven extinction events. Without explicit
integration, palaeoclimate interaction could blur or even reverse apparent extinction patterns
and prevent useful predictions for future scenarios, as has been shown for other complex
ecological interactions (Ritterbush & Foote, 2017; Stigall, 2013). Current assessments of
extinction vulnerability under future climate change include neither palaeoclimatic interactions
nor a long-term temperature history of the studied taxa. Given the long-term cooling that most
living taxa have experienced in their duration, extinction risk under future warming might be less
severe than these assessments predict.

METHODS
Fossil data
Occurrences of post-Cambrian arthropods, bivalves, gastropods, reptiles (including birds and
dinosaurs), cnidarians and echinoderms were downloaded from the Paleobiology Database
(PaleoDB, paleobiodb.org) on 21 September 2020. We further downloaded occurrence data for
Cenozoic mammals from the New and Old Worlds Database (NOW,
www.helsinki.fi/science/now/) on 23 September 2020. We favoured NOW over the PaleoDB for
mammal data, as mammal occurrences are continuously controlled and revised by NOW
advisory board members. Stratigraphic range data for post-Cambrian large benthic foraminifera
were compiled from a comprehensive reference work on larger foraminifera (Boudaugher-Fadel,
2018) and merged with occurrence data downloaded for planktonic foraminifera from the
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Neptune Database (nsb-mfn-berlin.de) accessed on 23 September 2020. For each download,
we included all occurrences with current latitude and longitude, the actual taxonomic name by
which the occurrence was identified and additional information about the taxonomic
classification.

We included marine invertebrate clades (cnidarians, gastropods, bivalves, echinoderms,
foraminifera and arthropods) known for their good fossil record (Reddin et al., 2018) in our
analysis and added terrestrial vertebrate animals (reptiles and mammals) to ensure coverage of
all possible lifestyles and habitats. Each clade contained >400 genera, adding up to >14,900
analysed genera after applying our cleaning protocol (Extended Data Fig. 5).

All analyses were conducted at the genus level. This taxonomic level is a compromise between
uncertainty in the species-level taxonomy of fossils and data loss at coarser taxonomic
resolutions (Valentine, 1974). To ensure uniformity of datasets, we applied a standardized
cleaning protocol to all of them including removal of genera ranging to the recent, uncertain
taxonomical ranks, duplicates in bins, single-collection and single-reference taxa as well as
missing higher-level taxonomy. We then transformed occurrence data into ranges congruent to
a time series with one single origination and extinction event for each genus using the R
package divDyn (Kocsis et al., 2019).

We subsequently binned the data into one of 80 geological stages (Gradstein et al., 2012),
ranging from the Ordovician to the Pleistocene. The Holocene was excluded from the analysis.
Additionally, taxa confined to a single stage (singletons) were excluded for all datasets as they
tend to produce undesirable distortions of the fossil record (Foote, 2000).

Climate proxy data
To reconstruct temperature change over time, we used the tropical whole surface water (mixed
layers <300 m deep) oxygen isotope dataset from a compilation of marine carbonate isotopes
(Veizer & Prokoph, 2015). The δ18O values of well-preserved calcareous shells are often
considered as the best available temperature proxy for the fossil record (Song et al., 2019).To
reduce bias while calculating palaeotemperature from the raw δ18O values, we followed the data
processing of Reddin et al. (2018). This includes adjustments for the secular trend in oxygen
isotopic composition of seawater using the equation: δ18Opw (‰) = t2 + 0.0046‰ t, with pw being
Phanerozoic seawater in standard mean ocean water and t being age in million years ago, as
well as averaging of tropical and subtropical records. We subsequently binned temperature data
on the basis of isotope values to geological stages to provide global mean temperature for each
of the 80 stages. We emphasize that the interpretation of δ18O values in deep time is a subject
of considerable debate (Grossman, 2012; Henkes et al., 2018; Ryb, 2018; Song et al., 2019;
Veizer & Prokoph, 2015). Throughout our data processing, we follow the argumentation of
Veizer and Prokoph (Veizer & Prokoph, 2015), inferring a secular increase in seawater δ18O
values due to changes in how surficial oxygen reservoirs are exchanged with the vastly larger
oxygen reservoir in crust and mantle silicates.
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Generalized linear mixed effect models
All analyses were carried out in R (R Core Team, 2021) using R v.4.0.2. We used the lme4
package (Bates et al., 2015) to perform the analysis and the ggplot2 package (Wickham et al.,
2019) to visualize results.

We quantified the effect of temperature change interacting with past temperature trends on
extinction risk using generalized linear mixed effect models with a binomial family error
(GLMMs, Fig. 1) (Bolker et al., 2009; Malik et al., 2020; Quené & van den Bergh, 2008). The
additive and multiplicative effects of cumulative temperature change were tested against the
probability of extinction in each time interval in the form: glm (extinct ~∆Ttrend:
∆Tchange + (stage|genus), family = binomial).

In a first step, we aligned the climate proxy data with the fossil data. Each genus was hence
represented as a time series of repeated survivals followed by one extinction event. Each
observation within this time series was associated with a specific magnitude in temperature
change compared to the previous observation (∆Tchange), assessed by using the slope of a linear
regression of these two observations. Additionally, we computed long-term temperature trends
(∆Ttrend). Each of these long-term trends was evaluated by the slope of a linear regression
across temperature estimates of 1–10 time intervals before a focal interval. In this way, ∆Tchange,
defined as the change in temperature compared to the previous stage, was excluded from
∆Ttrend, enabling the independent calculation of palaeoclimate interaction. Each of the trends
covered a successively growing time of temperature history: trend.st1 ranged one stage back,
trend.st2 two stages, …, trend.st10 ten stages (Fig. 1).

We controlled for the fact that observations on the same genus are non-independent by
including genus identity as a random effect. By also setting stage as a random effect, we
allowed for a random slope of each stage within each genus with correlated intercept,
accounting for the temporal structure of the data (Bolker et al., 2009; Zuur et al., 2009). For
each fossil clade, we calculated up to ten GLMMs for cooling–cooling and warming–warming
interaction, respectively. Within these models, ∆Tchange was fixed as the short-term temperature
change leading up to the extinction event of a genus. The value ∆Ttrend varied for each model on
the basis of long-term trends.

The model performance of GLMMs with different long-term trends were compared using AIC
(Burnham, 1998) and for each group one final model was selected on the basis of AIC for
further analytical evaluation. Results remained the same when using Bayesian Information
Criteria for model performance. We additionally determined the significance of palaeoclimate
interaction on extinction risk for each model using maximum likelihood.

Model comparison
Palaeontological studies on temperature-related extinctions usually rely on the temperature
change from the previous geological stage to the focal stage, defined here as short-term
change. To test if models improve when long-term temperature trends are included, we
compared GLMMs including short-term change only to GLMMs including the palaeoclimatic
interaction of short-term change with long-term trends. For models taking only short-term
change into account, we used the same data processing as aforementioned but excluded
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long-term trends from the final model: glm (extinct ~∆Tchange + (stage|genus),
family = binomial).

Quantifying change in intrinsic extinction risk
We extracted the results of each final GLMM using the predict() function. To quantify the effect
of cumulative temperature change on extinction risk, we transformed the results from odds ratio
to probability. We compared the effect of cooling–cooling interaction on extinction risk with every
other possible interaction of short-term cooling and vice versa the effect of warming–warming
interaction with every other possible interaction of short-term warming (Extended Data Fig. 1).
To do so, we used Wilcoxon rank sum tests with continuity correction to compare effect sizes.
Results were recorded including 95% Wald confidence intervals derived from the Wilcoxon rank
sum tests.

Finally, we compared these results to the simulated effect range of null models to test if results
could be produced by a random structure (Null models below). This significance testing
approach was implemented with Wilcoxon rank sum tests with continuity correction comparing
simulated distributions with results based on observed data.

Assessing temporal memory of past climate change effects
By calculating one GLMM model for each long-term temperature trend (∆Ttrend), we were able to
choose the trend explaining the most variation of extinction risk in interaction with short-term
change. The model with the lowest AIC also showed the highest effect of past temperature
change on extinction risk. Effect size decreased with increasing AIC of the remaining models,
enabling determination of the temporal memory of the effect on the basis of the AIC (Extended
Data Fig. 2).

Null models
Estimating the parameters of a statistical model is a key step in statistical analyses. However,
fitting fixed-effect parameters of a GLMM can lead to biased statistical inference (Bolker et al.,
2009). To avoid this bias, we applied our model structure to randomly generated data (Extended
Data Fig. 4). We then used the results of these ‘random’ models as a distribution to compare
with empirical results. This approach enabled the determination of type I error rates of our
models and the probability of obtaining results as strong as those observed from a random
structure with intrinsic biases of non-fossil data, such as serial autocorrelation of climate proxy
data. Incorporating this two-tailed null hypothesis testing in addition to the maximum likelihood
framework renders our statistical inference highly robust and reliable (Fox et al., 2015). This
multiple testing approach is conservative at the cost of increased type II error rates (Lieberman
& Cunningham, 2009). Our analysis therefore tends to discard palaeoclimate interactions with
moderate intensity as insignificant, even when these interactions had a measurable effect on
extinction risk.

Null models started with generating first appearance datums (FAD) using a random number
generator. We generated 3,000 FADs from a uniform distribution. Last appearance datums
(LAD) were assigned by drawing a number from the durations of all genera with replacement

45



Main research

from our observed data and subtracting it from the FAD. Distributions of the generated datasets
therefore simulated observed conditions (a log-normal distribution). For each of these genus
ranges, we generated higher taxonomic ranks applying the same simulation approach as for
genera and subsequently merged these two datasets. Again, we imitated the number of higher
taxonomical ranks from observed data. Each observation in the generated dataset was then
binned to one of 80 geological stages. We subsequently applied the same data processing to
the simulated ranges as for the observed data including the calculation of short-term and
long-term temperature trends for each genus on the basis of our climate proxy data.

Our simulations thus had random (independent from temperature) LADs and FADs but
non-random numbers of higher taxonomic ranks and durations and were linked to our climate
proxy data. Finally, we extracted 900 datasets with number of observations ranging from 1,000
to 30,000 by sampling from the simulated dataset with 3,000 observations (with replacement).
We then applied the GLMMs to these datasets and stored the results. For each dataset, we
calculated ten models. Subsequently, we quantified the change in intrinsic extinction risk of each
model on the basis of the simulated extinction signal and observed climate proxy data. We
repeated this step 100 times for each dataset. The simulations hence captured intrinsic biases
of both climate proxy data and our applied model structure. We then used the range of variation
for the simulated models for significance testing (Fig. 3).

Robustness testing
Our simulations have shown that a minimum number of 1,000 observations is needed to
produce statistically robust results (Extended Data Fig. 4). We therefore did not apply any
subsampling method or sampling standardization to the observed data, as reducing the number
of observations used in our analysis could increase type II errors. Further, GLMMs do not
depend on perfect time continuous data record (Bolker et al., 2009) and are thus suitable for the
imperfect nature of deep-time biotic data used in our analysis. Subsampling all our data would
hence only increase statistical uncertainty without improving our analysis. Nevertheless, we
tested for a systematic bias in our results by applying two subsampling methods to two fossil
clades which had a sufficient number of genera (bivalves and reptiles). Subsampling did not
alter results for these two clades, as model comparisons for subsampled data still indicated an
improved model performance when a long-term temperature perspective is included (Extended
Data Fig. 6). As expected, subsampling increased statistical uncertainty resulting in lower
differences between AIC values.

We further tested if autocorrelation between the extinction signal and climate proxy data could
bias our results (Extended Data Fig. 7). For this, we generated autocorrelated random time
series for both extinction and climate proxy data and grouped them in a similar structure as our
empirical data. We then processed these autocorrelated datasets using the same cleaning
protocol as for our empirical data and applied our GLMM model structure to extract the
simulated change in extinction risk for autocorrelated data. We did this for 900 datasets with
directly correlated extinction/climate time series (red noise) and for 900 datasets with inversely
correlated time series (blue noise). The intensity of autocorrelation for both red and blue noise
differed for each simulated dataset. Results are within the same range as our null model with a
mean change in extinction risk of 0 for red noise and 0.001 for blue noise (mean change of null
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model = −0.001). This shows that our model framework accounts for autocorrelation of the
underlying data and that our null model simulation is appropriate to evaluate the probability of
obtaining values as extreme as our empirical models. Additional to this, we tested for serial
autocorrelation within each final empirical model. We simulated residuals for each model and
calculated the Durbin–Watson statistic for temporal autocorrelation (Durbin & Watson, 1971). No
model showed values below 1 or above 3 for the Durbin–Watson statistic, indicating low serial
autocorrelation throughout our analysis (Extended Data Fig. 7).

Further robustness testing included assessing the impact of mass extinctions on the observed
effect. We fitted GLMMs on all fossil groups and all stages and compared these with models
excluding stages where the big five mass extinctions occurred (End-Ordovician, Late Devonian,
End-Permian, End-Triassic and End-Cretaceous). Model comparison was based on the
conditional coefficient for determination (pseudo-R2) for GLMMs (Nakagawa et al., 2017).
Models without mass extinctions showed a slightly increased pseudo-R2, indicating that the
effect of palaeoclimate interactions on extinction risk is more severe during background
extinction events (Extended Data Fig. 8).
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Extended Data

Extended Data Fig. 1: Density distribution of GLMM results. The difference in distributions were
used to assess change in extinction probability of taxa due to paleoclimate interaction. Upper
row blue areas show distributions of extinction risk subsequent to cooling–cooling interaction.
Upper row red area cooling–warming interaction. Lower row blue area warming-cooling
interaction. Lower row red area warming–warming interact
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Extended Data Fig. 2: Temporal memory of the effect of paleoclimate interaction compared to
the intensity of the effect. The model with the lowest ∆AIC (here representatively shown for
cooling–cooling of bivalvia) universally showed the highest effect of past temperature change on
extinction risk. Effect intensity decreased with increasing AIC of the remaining models, enabling
determination of the temporal memory of the effect. Trends one to ten covered a successively
growing time of temperature history: Trend1 ranged one stage back, trend2 two stages, …,
trend10 ten stages (methods)
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Extended Data Fig. 3: Temporal memory of paleoclimate interaction for fossil clades related to
genus duration. a, Temporal memory versus median durations of fossil clades and (b) mean
durations. Grey area depicts the 95 % confidence interval of the regression slope. Trend line
and R2 value are based on univariate linear regression and are not significant (p-value for
median duration = 0.79 and for mean duration = 0.63).
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Extended Data Fig. 4: Results of simulations for null model. Change of extinction risk of null
models based on simulated data for datasets with varying sizes for warming–warming
palaeoclimate interaction is shown in (a), and for cooling–cooling interaction in (b). We
simulated datasets with increasing number of observations and calculated 100 GLMM’s for each
to determine Type I Error rate of models used in our analysis. The shaded area shows the
distribution of all 100 model results for warming–warming and cooling–cooling interaction
respectively. The mean for each number of observations and its corresponding 95 % Wald
Confidence Interval is shown in (c), where the red points and shaded intervals show the
simulated response to warming–warming palaeclimate interaction, and blue points and shaded
intervals to cooling–cooling.
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Extended Data Fig. 5: Number of fossil genera within datasets. The number of genera is shown
for each fossil clade and for each stage. This is based on raw data (before filtering and
processing of data).
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Extended Data Fig. 6: Model comparison of subsampled data for robustness testing for bivalves
and reptiles. Values show AIC values after shareholder quorum subsampling (SQS) and
classical rarefaction (CR). After subsampling, model quality of traditional models (change only)
is compared to quality of models taking palaeoclimate interaction into account (change & trend),
to test if models improve when long-term temperature trends are included. Red text indicates an
improved model performance when palaeoclimate interactions are included. We used a
shareholder quorum of 0.4 and classical rarefaction with 50 occurrences.
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Extended Data Fig. 7: Simulations for potential autocorrelation bias. a, Simulations were used to
test if autocorrelation between the extinction signal and climate proxy data could bias our
results. The results from these simulations show that the simulated extinction risk for both blue
(inversely correlated) and red noise (positively correlated) is within the range of the null models,
indicating that autocorrelation does not bias our results. b, We additionally tested for serial
autocorrelation of the final GLMMs. No model shows indication for a strong serial
autocorrelation. Durbin–Watson statistic values below 1 generally indicate a strong positive
autocorrelation, values above 3 a strong negative autocorrelation and values around 2 no
autocorrelation.
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Extended Data Fig. 8: The effect of mass extinctions on the observed effect. Models fitted on all
fossil groups and all stages were compared to models excluding stages where the big five mass
extinctions occurred (End-Ordovician, Late Devonian, End-Permian, End-Triassic and
End-Cretaceous). For each model, the proportion of the variance using the conditional
coefficient for determination (pseudo-R2) was quantified.
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ABSTRACT

The end-Permian mass extinction, the largest biological crisis in Earth history, is currently
understood in the context of Siberian Traps volcanism introducing large quantities of
greenhouse gases to the atmosphere, culminating in the Early Triassic hothouse. In our study,
the late Permian and Early Triassic atmospheric CO2 history was reconstructed by applying the
paleosol pCO2 barometer. Atmospheric pCO2 shows an approximate 4× increase from mean
concentrations of 412–919 ppmv in the late Permian (Changhsingian) to maximum levels
between 2181 and 2610 ppmv in the Early Triassic (late Griesbachian). Mean CO2 estimates for
the later Early Triassic are between 1261–1936 ppmv (Dienerian) and 1063–1757 ppmv
(Spathian). Significantly lower concentrations ranging from 343 to 634 ppmv are reconstructed
for the latest Early to Middle Triassic (Anisian). The 5 m.y. episode of elevated pCO2 suggests
that negative feedback mechanisms such as silicate weathering were not effective enough to
reduce atmospheric pCO2 to precrisis levels and that marine authigenic clay formation (i.e.,
reverse weathering) may have been an important component of the global carbon cycle keeping
atmospheric pCO2 at elevated levels.
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INTRODUCTION
The end-Permian mass extinction (ca. 252 Ma) coincided with the onset of intrusive Siberian
Traps volcanism, which was likely responsible for outgassing of large quantities of CO2, CH4,
and halogens by thermogenic heating of volatile-rich sediments (Courtillot and Renne, 2003;
Svensen et al., 2009; Burgess and Bowring, 2015). The inferred increase in greenhouse gas
concentrations has been interpreted to have resulted in a dramatic 8–10 °C increase in
low-latitude sea-surface temperature (SST), with high ocean temperatures persisting into the
Early Triassic (e.g., Sun et al., 2012; Joachimski et al., 2020). However, a proxy record for
atmospheric pCO2 has yet to be established for the late Permian to Early Triassic.

We reconstructed the late Permian to Middle Triassic atmospheric CO2 record by applying the
carbonate paleosol pCO2 barometer to soil carbonates from sections in northwest China
(Xinjiang Province), north China (Henan and Shanxi Provinces), Russia (South Ural foreland
basin), South Africa (Karoo Basin), and the United Kingdom (Dorset) (Fig. 1; Table S1 in the
Supplemental Material1). Stratigraphically, the samples cover the Changhsingian (late Permian)
to earliest Griesbachian, late Griesbachian to Dienerian, and Spathian to Anisian (Early to
Middle Triassic). Reconstructed atmospheric CO2 levels suggest an approximate 4-fold increase
in pCO2 from the latest Permian to Early Triassic, high to intermediate CO2 levels in the Early
Triassic, and a decline to precrisis levels in the latest Early Triassic.

Paleosol pCO2 barometer
We calculated atmospheric CO2 concentrations from the carbon isotopic composition of
microsampled micritic soil carbonate precipitated in the well-drained soils by applying a
two-component carbon isotope mixing model, given that soil CO2 is a mixture of two isotopically
different CO2 sources (soil-respired CO2 and atmospheric CO2; Cerling, 1991):

Here, S(z) is the soil-derived (respired) component of total soil CO2, and δ13Cs, δ13Cresp, and
δ13Catm represent the carbon isotopic compositions of total soil CO2, soil-respired CO2, and
atmospheric CO2, respectively. The δ13Cs, δ13Cresp, and δ13Catm values were calculated from the
measured δ13C value of pedogenic carbonate, soil organic matter (SOM) occluded in the
carbonate nodules, and marine carbonate, respectively.

The soil-derived contribution of CO2, S(z), and the soil temperature must be assumed,
presenting the main uncertainties for paleo-pCO2 reconstructions. While earlier studies used
high S(z) values of 5000 ppmv (e.g., Ekart et al., 1999), representing soil CO2 concentrations of
the mean growing season, later studies observed that pedogenic carbonate precipitation mainly
occurs during warm and dry periods characterized by a relatively low soil pCO2 due to
moisture-limited soil respiration (Breecker et al., 2009). We assumed S(z) values between 500
and 1500 ppmV following Montañez (2013), who used the δ13C difference between modern soil
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carbonate and SOM (Δcarb-org) to constrain S(z) for different soil orders (see the Supplemental
Material for details).

Figure 1: The Permian-Triassic atmospheric CO2 record. Symbols represent mean values of
atmospheric pCO2 calculated based on the distribution of all possible values by varying soil
temperature (T), soil-respired CO2 concentration [S(z)], and δ13C of atmospheric CO2. Vertical
bars are 95% credible intervals for each estimate, calculated using quantile intervals of
distribution of all possible values of each sample. Horizontal bars give sample age uncertainties.
Trend line represents the Locfit (https://cran.r-project.org/web/packages/locfit/index.html)
regression (α = 0.6). Stratigraphic scheme and absolute ages are according the Geological
Time Scale 2020 (Ogg and Chen, 2020). Permian-Triassic paleogeographic reconstruction with
study locations after Scotese and Moore (2014). Changhsing—Changhsingian;
Diener—Dienerian.
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Soil temperature has to be estimated in order to calculate δ13Cresp from the δ13C value of
pedogenic carbonate, utilizing the temperature-dependent carbon isotope fractionation between
CO2 and CO3

2– (Romanek et al., 1992). Soil temperatures for the calcisols formed at various
paleolatitudes were estimated using low-latitude SSTs (Sun et al., 2012; Joachimski et al.,
2020), a low-latitudinal temperature gradient for warm climatic conditions (0.2 °C per 1° latitude;
Zhang et al., 2019), air temperatures 3 °C lower than SSTs (Zhang et al., 2019), and 2–4 °C
warmer soil temperatures compared to atmospheric temperatures (Hu and Feng, 2003; Table
S2).
Atmospheric pCO2 was calculated for each possible combination of S(z), soil temperature (Table
S2), and δ13C of atmospheric CO2 (Table S3) by varying S(z) from 500 to 1500 ppmv in 100 ppm
steps, increasing soil temperature in 1 °C steps (using a ±5 °C temperature range around
estimated average soil temperature), and δ13C of atmospheric CO2 in 0.1‰ steps. Mean
atmospheric CO2 concentrations for each sample were then calculated based on the distribution
of all possible values. The 95% credible interval (CI) for each estimate and sample was
calculated using the quantile intervals (95% CI [lower quantile, upper quantile]) of the
distribution of all possible values of each sample (Table S4).

RESULTS
Studied paleosols
All studied paleosols were classified as Calcisols because they are characterized by rare to
common carbonate nodules (up to several centimeters in size; stage II nodules) or layers with
stacked carbonate nodules and rhizocretions (stage II; Fig. S1). Of a total of 105 pedogenic
carbonate samples, 46 carbonates showed characteristic pedogenic features (Fig. S2) as well
as carbon isotope values indicative of carbonate precipitation under the influence of
atmospheric CO2, and these were accepted as having formed in the nonsaturated zone and
used for atmospheric pCO2 reconstruction (see the Supplemental Material).

Permian–Triassic Atmospheric pCO2

Mean atmospheric pCO2 showed a significant increase from the latest Permian (Changhsingian)
to Early Triassic, with elevated pCO2 persisting until the latest Early Triassic (Fig. 1). Late
Changhsingian mean atmospheric pCO2 estimates derived from Russian, North China, and
Karoo samples are generally between 412 (95% CI [162, 688]) and 949 ppmv (95% CI [400,
1743]; n = 9). Atmospheric CO2 started to increase before the Permian-Triassic boundary (PTB)
to levels between 1031 ppmv (95% CI [419, 1966]) and 1558 ppmv (95% CI [676, 2789]; n = 6).
Sample PY2 (north China) yielded a lower atmospheric CO2 content of 483 ppmv (95% CI [214,
833]). In the earliest Griesbachian, the mean pCO2 was at 1606 ppmv (95% CI [689, 2919]).
Atmospheric pCO2 in the late Griesbachian (Xinjiang) ranged from 2181 (95% CI [1025, 3516])
to 2610 ppmv (95% CI [1224, 4226]; n = 4), being on average 4× higher than Changhsingian
background levels. Estimates for the Dienerian (Xinjiang) are between 1261 (95% CI [596,
2009]) and 1936 ppmv (95% CI [921, 3104]; n = 6), while estimates for the Spathian paleosols
(Russia, North China, and Xinjiang) range from 1063 (95% CI [490, 1765]) to 1757 ppmv (95%
CI [792, 2994]; n = 11), except sample DYLY, which yielded a CO2 concentration of 671 ppmv
(95% CI [306, 1124]). Terminal hothouse (latest Spathian and Anisian) pCO2 estimates based on
paleosols from Xinjiang, North China, and the United Kingdom are between 343 (95% CI [155,
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575]) and 634 ppmv (95% CI [285, 1067]; n = 6), i.e., considerably lower than most Early
Triassic pCO2 estimates but comparable to Changhsingian CO2 levels.

Figure 2: Comparison of Permian-Triassic atmospheric pCO2 estimates, low-latitude
sea-surface temperature (SST; Sun et al., 2012; Joachimski et al., 2020), conodont 87Sr/86Sr,
and modeled ratio of terrestrial Sr (Fw) versus mantle Sr (Fm) flux (Song et al., 2015). Red trend
line represents the Locfit (https://cran.r-project.org/web/packages/locfit/index.html) regression (α
= 0.6) for mean paleosol pCO2 estimates. Note the relatively good correspondence among
pCO2, SST, and modeled Fw/Fm, suggesting that although continental weathering increased,
atmospheric pCO2 and SSTs stayed at high levels. Siberian Traps volcanism is from Burgess
and Bowring (2015). Changh—Changhsingian; Diener—Dienerian. Chert and reef record
modified after Chen and Benton (2012).
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DISCUSSION
The atmospheric pCO2 estimates are in good agreement with published pCO2 reconstructions
from paleosol nodules (Karoo Basin—Gastaldo et al., 2014; India—Roy et al., 2021), stomatal
index data (Li et al., 2019; Retallack and Conde, 2020), and in part with estimates based on C3

plant carbon isotope fractionation (Wu et al., 2021; Fig. 2). However, the reliability of this latter
method is controversial (e.g., Lomax et al., 2019). This could explain the significant drop in
pCO2 above the PTB reconstructed by Wu et al. (2021), which is at odds with increasing
low-latitude SSTs as well as high Dienerian and Spathian pCO2 values (this study; Fig. 2).
Published Anisian paleosol pCO2 estimates were recalculated (Fig. 1), as they had originally
been calculated with S(z) of up to 5000 ppmv (Ekart et al. 1999; Prochnow et al. 2006). Most
importantly, the generally good agreement among pCO2 estimates reconstructed from
time-equivalent paleosols from distant sites (this study; Fig. 1) and the comparable estimates
derived from other CO2 proxies (Fig. 2) underline the validity of the atmospheric CO2 record
presented here. However, the evolution of atmospheric pCO2 during most of the Griesbachian
and the Smithian remains unresolved because no suitable pedogenic carbonates have been
found for these periods.

Early Triassic Greenhouse
Siberian Traps volcanism is interpreted as a proximate cause of the 4× increase in atmospheric
CO2 from the latest Permian (Changhsingian) to Early Triassic (late Griesbachian). The onset of
Siberian effusive volcanism has been dated prior to 252.2 ± 0.1 Ma (Burgess and Bowring,
2015), ~300 k.y. before the end-Permian mass extinction. Subsequent intrusive magmatism
starting at 251.9 ± 0.067 Ma probably produced >100.000 GT of CO2 and CH4 by thermogenic
heating of sediments around large sill intrusions (Svensen et al., 2009; Augland et al., 2019).
This massive emission of greenhouse gases (depleted in 13C) has been suggested as the main
cause of dramatic global warming, as well as of the negative carbon isotope excursion recorded
globally in the latest Changhsingian to early Griesbachian (Fig. 2).
Parallel to the reconstructed rise in atmospheric pCO2 from 412–949 ppmv in the latest
Changhsingian to 2181–2610 ppmv in the late Griesbachian, low-latitude SSTs calculated from
oxygen isotopes measured on conodont apatite (Fig. 2) increased by 7–10 °C, from 25–28 °C to
>35 °C (Joachimski et al., 2020). With the decrease in pCO2 in the late Spathian to Anisian,
SSTs decreased again (Sun et al., 2012; Fig. 2). Thus, pCO2 as well as SSTs persisted at high
levels for almost 5 m.y. (Fig. 2), representing an unusually long time interval. High atmospheric
pCO2 conditions could only be sustained either by continuous and massive CO2 outgassing from
Siberian Traps or by reduced CO2 consumption by continental silicate weathering and biological
uptake. The emplacement of large volumes of subvolcanic intrusions (sills and dikes) started in
the latest Changhsingian but continued for only 0.5 m.y. into the Early Triassic (Augland et al.,
2019; Burgess and Bowring, 2015). Although large igneous province volcanism has been
reported to have been active until the end of the Middle Triassic (Ivanov, 2007), published
geochronological data have large uncertainties of ~5 m.y. and cannot resolve whether contact
metamorphism resulted in prolonged degassing after the initial violent pulse (Augland et al.,
2019). Notably, Hg concentrations in marine carbonates argue for massive volcanic activity at
the Permian-Triassic transition, in accord with the Siberian Traps record, but for reduced
volcanic emissions in the later Early Triassic (Wang et al., 2018).
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Early Triassic Atmospheric pCO2 Regulated by Weathering
Assuming that the outgassing of large volumes of volcanic CO2 faded after the initial
0.5-m.y.-long phase, atmospheric pCO2 is expected to have been drawn down relatively fast by
continental silicate weathering—the most effective mechanism by which to extract CO2 from the
atmosphere and to buffer Earth's climate. However, pCO2 stayed at elevated levels for ~4 m.y.
after the Griesbachian CO2 maximum.
Warm temperatures, water availability, and continental plates located within the humid climatic
belt are the main factors favoring silicate weathering. Weathering of freshly deposited
continental flood basalts would have been particularly effective at consuming atmospheric CO2,
with weathering rates of basalts being 10 times greater compared to weathering rates of granitic
continental rocks (Dessert et al., 2003). This efficiency has been documented for Late Triassic
Central Atlantic Magmatic Province (CAMP) volcanism, when individual volcanic pulses resulted
in a doubling of atmospheric pCO2 followed by a striking decrease to pre-eruption levels within
only ~300 k.y. (Schaller et al., 2012). While CAMP volcanism occurred in warm equatorial
latitudes favorable for CO2 consumption by silicate weathering, the Siberian Traps erupted at
~60°N, with silicate weathering potentially less efficient due to colder conditions. However, the
latest Permian increase of low-latitude SSTs likely resulted in an amplified warming of higher
latitudes. In conjunction with intensified higher-latitude precipitation as suggested by climate
modeling (Winguth et al., 2015), weathering of freshly deposited Siberian lavas should have had
the potential to consume atmospheric CO2. In contrast, Kump (2018) argued that low continental
fragmentation and high continentality in Pangea's interiors combined with minimum uplift rates
depressed CO2 uptake by silicate weathering. However, this interpretation seems to be at odds
with strontium as well as osmium isotope records (Song et al., 2015; Liu et al., 2020), which
indicate an increase in continental weathering, especially in the Early Triassic (Fig. 2).
Silicate weathering can be modulated by reverse weathering, whereby non-kaolinite
phyllosilicates form on the seafloor, leading to consumption of dissolved silica and alkalinity
sourced from weathering on land and, most important, the addition of CO2 to the
ocean-atmosphere system (Isson and Planavsky, 2018). Reverse weathering has been
suggested as a mechanism to maintain high pCO2 in the Precambrian, when oceans were
probably characterized by high dissolved silica concentrations (Maliva et al., 2005) before the
advent of silica-secreting organisms. Interestingly, while the Permian is known for extensive
chert deposition, cherts disappeared almost completely from the rock record in the Early
Triassic (Beauchamp and Baud, 2002). A low abundance of silica-secreting organisms, warm
ocean temperatures (increasing silica solubility), and supply of silica from land probably led to
high dissolved silica concentrations in Early Triassic oceans, which should have promoted
reverse weathering. Cherts re-occurred in the Spathian and Anisian (Sperling and Ingle, 2006)
in conjunction with the diversification of radiolarians (O’Dogherty et al., 2010) and the late
Spathian decrease in pCO2.
In summary, the 4× increase in atmospheric pCO2 across the Permian-Triassic boundary to high
and intermediate CO2 levels in the Early Triassic is in agreement with low-latitude SSTs
documenting greenhouse warming and hot Early Triassic oceans. Elevated atmospheric pCO2

persisted for ~5 m.y., suggesting that warm-climate–enhanced silicate weathering, although
indicated by geochemical proxies, failed to draw down CO2 until the latest Early Triassic. This
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apparent contradiction may indicate that the exceptional conditions in Early Triassic oceans led
to an intensification of marine authigenic clay formation and contribution of CO2 to the
ocean-atmosphere system, counteracting CO2 consumption by silicate weathering.
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Supplemental material

Sample locations
Late Permian and Early to Middle Triassic pedogenic carbonate samples derive from sections in
Russia (Southern Ural foreland basin), China (Shanxi, Shaanxi, Henan and Xinjiang provinces),
South Africa (Karoo Basin) and the UK (Devon). Early Triassic pedogenic carbonates from
Russia derive from the Southern Ural foreland basin (Orenburg area) which during Late
Permian to Early Triassic times was at paleolatitudes of 30–35◦ N (Van der Voo and Torsvik,
2004; Newell et al., 1999). Late Permian overbank deposits with channeled sandstone deposits
are overlain by coarse fluvial conglomerates and sandstones of Early Triassic age (Newell et al.,
1999). The continental succession was dated primarily using biostratigraphy (ostracods and
vertebrates) and magnetostratigraphy (Newell et al., 1999; Tverdokhlebov et al., 2005). The
Late Permian and Early Triassic paleosols were studied in detail by Kearsey et al. (2012) with
both calcitic and dolomitic pedogenic nodules occurring. Dolomitic paleosols are most abundant
in the late Changhsingian, while Early Triassic paleosols contain no dolomite. The micro- to
cryptocrystalline matrix of dolomitic nodules is composed of dolomitic rhombs of 2 to 5 µm size
and shows a clotted texture, commonly associated with formation in vadose environments. The
observation that secondary diagenetic carbonate in veins and open space structures is
exclusively represented by calcite and never by dolomite as well as that dolomitic nodules only
occur in latest Permian but not in the Early Triassic sediments has been taken as evidence that
dolomite was precipitated as a primary mineral phase during pedogenesis (see Kearsey et al.
(2012) for further details). Further, pCO2 estimates from paleosols from China and South Africa
agree relatively well with pCO2 estimates derived from the dolomitic pedogenic nodules from the
Ural foredeep giving us confidence that the dolomitic nodules represent primary precipitates.
The Taodonggou section (NW China, Xinjiang Province) is located in the southern foothills of
the Bogda Mountains in the northwestern part of the Turpan-Jungar Basin which during the Late
Permian to Early Triassic was located at around 45° N. The sedimentary environment is
interpreted as fluvial and deltaic in the Late Permian and as mudflat (lake plain) and floodplain
with fluvial channels in the Early Triassic (Thomas et al. 2011, Yang et al., 2010). The
Permian-Triassic transition has been placed biostratigraphically (Liao et al., 1987; Liu, 2000)
within a 30 m thick interval at the transition of the Guodikeng (Changhsingian) to Juicaiyuan
Formation (Induan). The Late Permian and Early Triassic in North China (Henan, Shaanxi and
Shanxi provinces) is represented by bioturbated fine-grained sandstones, reddish siltstones and
mudstones containing Paleozoic-type plants (Sunjiagou Fm., Changhsingian) followed by
mainly non-bioturbated reddish to brown-reddish fine-grained sandstones (Liujiagou Fm., Early
Triassic) with the Early Triassic plant Pleuromeia occurring the upper part of the formation (Chu
et al., 2017).
The sedimentary sequence in the Karoo Basin has been studied intensively for sedimentary
facies and tetrapod populations (Keyser and Smith, 1978; Rubidge et al., 1995). Based on
abundant tetrapod faunas, the Permian-Triassic boundary has traditionally been placed at the
transition of the Daptocephalus tetrapod assemblage Zone (AZ; Late Permian) to the
Lystrosaurus AZ (Early Triassic). The Daptocephalus AZ fauna occurs in greyish siltstones with
intercalated ribbon sandstones and thin sand sheets of the Late Permian Balfour Fm. These
sediments were deposited in a meandering fluvial setting. A change to red-coloured siltstones

71



Main research

with an increasing frequency and thickness of intercalated sandstones characterizes the
Palingkoff Mb. (Uppermost Beaufort Fm.; latest Permian to earliest Triassic). Sediments of the
Palingkoff Mb. were interpreted to have been deposited in wide ephemeral streams (Smith,
1995) forming the precursors of the braidplains that characterize the depositional setting of the
overlying Early Triassic sediments of the Katberg Fm. Sample NWP1 was taken from the New
Wapadsberg pass section from approximately 70 m below the assumed PTB (see Gastaldo et
al. (2014) for detailed description). Sample OLP4 is from the Old Lootsberg pass section and
represents a carbonate nodule from a pedogenic nodule conglomerate (lag deposit) from the
lower Katberg Fm. (Early Triassic; see Neveling et al. (2016)for detailed description). The Otter
Sandstone Fm. exposed at the south Devon coast (Great Britain) is of lower to middle Anisian
age (Hounslow and McIntosh, 2003) and is represented by aeolian and stacked fluvial channel
sandstones with locally reworked calcretes in channel lags as well vertical rhizoconcretions
(Purvis and Wright, 1991). Samples were collected from the coastal exposures east of Budleigh
Salterton (East Devon).
Relative ages of the samples were estimated based on the position of the samples in the
measured sections and the available magnetostratigraphic and biostratigraphic information by
assuming constant sedimentation rate for the dated time intervals.

Classification of pedogenic nodules
A total of 105 pedogenic carbonate samples were collected from the various sections (Table
S1). Most carbonate nodules were collected from 40 to 150 cm below overlying fluvial silt to
sandstone beds generally cutting into the floodplain deposits. We rarely observed larger scale
paleosol structures (e.g. slickensides) or distinct erosive boundaries within the 50 cm of
overlying sediment. Given compaction as well as erosional removal of the topmost parts of the
soil profiles, we assume that carbonate nodules formed at > 50 cm depth in the soils.
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Figure S1: Calcisols (Stage II) from NW China and Russia showing rare to abundant pedogenic
nodules (stage II). A - Taondonggou W Section (Xinjiang Province, Northwest China; sample
TD5) showing rhizoconcretions and carbonate nodules ; B - Taondonggou W Section (Xinjiang
Province, Northwest China; sample TD14); C - Boyevaya Gora section (Southern Ural foredeep,
Russia; sample DYL-Z); D - Liulin Section (Shanxi Province, North China; sample LL 6); E -
Boyevaya Gora Section (Southern Ural foreland basin, Russia; sample BG 5); F - Dayulin
section (Henan Province, North China; sample BG12). Size of sample bags is 12 x 8 cm
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All studied paleosols were classified as calcisols (Mack et al., 1993; except pedogenic nodule
conglomerate from Old Lootsberg Pass/Karoo which represents a fluvial lag deposit) and are
characterized by rare to common carbonate nodules (up to several cm in size; Stage II; Figure
S1) or more rarely by stacked nodules and rhizocretions (Stage II). Thin sections of all samples
were studied for pedogenic features in order to characterize the environment of formation (e.g.
non-saturated vs. saturated soil zone; Figure S2). Based on thin section features and carbon
isotope ratios (δ13Chypo, see below), 46 pedogenic carbonate samples were accepted as
having formed in the non-saturated soil zone and used for atmospheric CO2 reconstruction
(Table S4). The matrix of the nodules is characterized by a crystic plasmic fabric (Brewer 1964)
with patches of crystal sizes ranging from micrite to microspar with a clear dominance of micrite.
Most nodules exhibit alpha-fabric (abiogenic) features as floating, etched or exploded grains,
circum-granular cracking and globular structures. Beta-fabric (biogenic, mainly fungal and root
related) features as rhizoliths were present as root molds and root tubules preserved as
roundish voids of 0.1 to 1 mm diameter cemented by sparite. The rhizoliths either consist of
relatively homogenous micrite distinctly separated from the carbonate matrix by color or grain
size or show a more complex structure of concentric laminae or a cellular structure. In part,
rhizoliths are encompassed by circum-granular cracks resulting from displacive carbonate
growth. Alveolar septal structures (Wright 1986) were frequently observed in nodules comprising
rhizoliths.
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Figure S2: Thin section photomicrographs showing typical pedogenic features of abiogenic
alpha and biogenic beta fabrics. TD16: well-developed floating grain (fg) fabric and
circumgranular cracking (cgc), both related to displacive carbonate precipitation in soils.
Structures attributed to root growth include rhizocretions (rhi) as well as irregular and roundish
root molds or casts filled by sparite. TD17: fg fabric, rhizocretion and cgc. Irregular voids filled by
sparite resembling root casts or molds. BG4: fg fabric and abundant and distinct glaebules (gl)
or peloids surrounded by cgc. Aggregated coated grain (acg) in the lower left. DYL-X: Glaebular
fabric with cgc and matrix brecciation as a result of displacive carbonate precipitation. TD 13:
Rhizocretion with concentric micritic to microsparitic laminae surrounded by cgc. SMB 4b:
Carbonate nodule showing pronounced fg fabric and features as cgc and gl. TD - Taodonggou
section (Xinjiang/China), DYL – Dayulin B section (Henan/North China), BG - Boyevaya Gora
section (South Urals/Russia), SMB – Sambullak section (South Urals/Russia).
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Formation in the non-saturated zone was further evaluated by comparing the carbon isotope
ratios of soil carbonate and soil organic matter. For soil carbonates precipitated under
wellaerated or non-saturated conditions, total soil CO2 is derived from microbial oxidation of soil
organic matter (SOM), root respiration as well as atmospheric CO2. Instead in waterlogged
soils, atmospheric CO2 will not contribute to total soil CO2 (Cerling, 1984; Tabor et al. 2007).
Pedogenic carbonate formed under closed system conditions will be around 14.8‰ (exact value
depends on soil temperature) heavier than oxidizing organic matter, while carbonates formed in
open system conditions will have higher δ13C values due to the admixture of atmospheric CO2

enriched in 13C.
In order to further evaluate whether studied pedogenic carbonates were precipitated under open
system conditions, the carbon isotope composition of a hypothetical carbonate (δ13Chypo)
precipitated from soil-CO2 derived exclusively from the oxidation of SOM was calculated by
applying a +4.4‰ correction to account for the more rapid diffusion of 12CO2 relative to 13CO2

through the soil matrix (Cerling, 1984) and the temperature dependent carbon isotope
fractionation between soil CO2 and carbonate (Romanek et al., 1992). δ13Chypo is in all cases
lower than δ13C of studied pedogenic calcites and dolomites which further supports the
interpretation that the carbonates formed in open system conditions under the influence of
atmospheric CO2 (Table S4).

Material and Methods
Stable isotope analyses
Micritic areas were microsampled for carbonate carbon isotope analysis from polished rock
slabs using a hand-held microdrill as micrite is considered as the most appropriate texture to
ensure that pedogenic calcite preserves records of open system exchange with atmospheric
CO2 (Cerling, 1984; Tabor et al., 2007). Carbonate powders were reacted with 100% phosphoric
acid at 70°C using a Gasbench II connected to a ThermoFisher Delta V Plus mass
spectrometer. All values are reported in per mil relative to V-PDB ((ViennaPDB). Reproducibility
and accuracy were monitored by replicate analysis of laboratory standards calibrated by
assigning δ13C values of +1.95‰ to NBS19 and -46.6‰ to LSVEC and δ18O values of -2.20‰ to
NBS19 and -23.2‰ to NBS18. Reproducibility for δ13C was ±0.06‰ (1σ).
δ13C of organic carbon was measured on sedimentary organic carbon (SOM) occluded in the in
the pedogenic nodules. Powdered pedogenic carbonates were dissolved in 10% HCl. Insoluble
residues were neutralized by washing repeatedly with de-ionized water, dried at 60°C and
following homogenized and weighed for isotope analysis. Carbon isotope analyses of SOM was
performed with a Flash EA 2000 elemental analyzer connected online to ThermoFisher Delta V
Plus mass spectrometer. All carbon isotope values are reported in the conventional δnotation in
permil relative to V-PDB. Accuracy and reproducibility of the analyses were determined by
replicate analyses of laboratory standards calibrated to international standards USGS 40 and
41. Reproducibility was ±0.05‰ (1σ). The carbon isotope values of organic carbon were not
corrected by -1‰ for a potential enrichment in 13C during organic carbon decomposition (e.g.
Myers et al. 2016).
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Paleosol pCO2 barometer
Atmospheric CO2 concentrations were calculated from the carbon isotopic composition of soil
carbonate precipitated in the well-drained soils by applying the two-component carbon isotope
mixing model given that soil CO2 is a mixture of two isotopically different CO2 sources, soil
respired CO2 and atmospheric CO2 (Cerling, 1984;1991).
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2
]
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S(z) is the soil respired CO2 concentration, δ13Cs, δ13Cresp and δ13Catm represent the carbon
isotopic composition of total soil CO2, soil respired CO2 and atmospheric CO2, respectively.
δ13Cs, δ13Cresp and δ13Catm are calculated from the measured carbon isotope composition of
pedogenic carbonate, soil organic matter (SOM) and marine carbonate, respectively. We
estimated S(z) following Montanez (2013) who compiled a large stable isotope dataset for
Holocene soils to determine S(z) for different soil orders. The difference in δ13C of modern soil
carbonate and SOM (∆carb-org) was used to further constrain S(z). For modern protosols and
calcisols having ∆carb-org of 12.2 to 15.8‰, a S(z) range of 500 to 2500 ppmV with a best S(z)
estimate between 1500 and 2000 ppmv is observed (Montanez 2013). However, all studied
Permian and Early Triassic calcisols show ∆carb-org values > 15.8‰ (Table S4) suggesting that
carbonate precipitation occurred during periods of low soil productivity and that atmospheric
CO2 was probably a large component of soil CO2. In our study, ∆carb-org is in all cases > 16‰ and
for 75% of all samples > 18‰. According to Montanez (2013), ∆carb-org > 16‰ is indicative of soil
atmospheres ≤2000 ppmv, while for ∆carb-org > 18‰ or higher, soil respired CO2 is likely ≤1000
ppmv. Following, we argue that carbonate nodules originated from low-productivity drylands with
S(z) between 500 to 1500 ppmV.
δ13Cresp equals δ13C of organic matter of the pedogenic nodules. δ13Ca (Table S3) is calculated
from δ13C of marine carbonates utilizing the CO2(g) - calcite fractionation factor of Romanek et
al. (1992). As the carbon isotope fractionation between carbon dioxide and calcite is dependent
on temperature, water temperature during precipitation of the marine carbonates has to be
assessed. We use the carbon isotope record (Sun et al. 2012; Shen et al. 2013) as well oxygen
isotope temperatures (Joachimski et al. 2012, Sun et al. 2012) published for South China as
conodonts analyzed for oxygen isotopes derive from the same carbonates used to reconstruct
the carbon isotope record. By this we make sure that reconstructed temperatures are close to
water temperature during carbonate precipitation. Soil temperature and S(z) in particular are the
variables that most strongly influence the calculated atmospheric CO2 concentrations, as shown
in Figure S3.

Statistical data processing
We used the Tidyverse package (Wickham et al., 2019) for data processing. Quantile intervals
have been calculated according to Kruschke, J. K. (2011). All scripts used to conduct analyses
are available at https://github.com/Ischi94/Joachimski.
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Figure S3: Effect of S(z) and soil temperature (T) on reconstructed atmospheric pCO2 illustrated
for samples BG5 (Changhsingian) and TD18 (Griesbachian): A-B) S(z) varying between 500 to
2000 ppmV, all other variables including soil temperature constant; C-D) Soil temperature
varying by ± 5°C around reconstructed mean soil temperature, all other variables constant
including S(z). Vertical dotted lines corresponds to measured δ13C of pedogenic calcite,
horizontal dotted lines give calculated minimum and maximum atmospheric pCO2. Note
significant influence of S(z) on pCO2.
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ABSTRACT

Biodiversity dynamics are shaped by a complex interplay between current conditions and
historic legacy. The interaction of short- and long-term climate change may mask the true
relationship of evolutionary responses to climate change if not specifically accounted for. These
paleoclimate interactions have been demonstrated for extinction risk and biodiversity change,
but their importance for origination dynamics remains untested. Here, we show that origination
probability in marine fossil genera is strongly affected by paleoclimate interactions. Overall,
origination probability increases by 27.8% [95% CI (27.4%, 28.3%)] when a short-term cooling
adds to a long-term cooling trend. This large effect is consistent through time and all studied
groups. The mechanisms of the detected effect might be manifold but are likely connected to
increased allopatric speciation with eustatic sea level drop caused by sustained global cooling.
We tested this potential mechanism through which paleoclimate interactions can act on
origination rates by additionally examining a proxy for habitat fragmentation. This proxy,
continental fragmentation, has a similar effect on origination rates as paleoclimate interactions,
supporting the importance of allopatric speciation through habitat fragmentation in the deep-time
fossil record. The identified complex nature of paleoclimate interactions might explain
contradictory conclusions on the relationship between temperature and origination in the
previous literature. Our results highlight the need to account for complex interactions in
evolutionary studies both between and among biotic and abiotic factors.
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INTRODUCTION

Biodiversity responses to modern climate change are dependent on past climate (Antão et al.,
2020; Mathes et al., 2021; Svenning et al., 2015). Climate legacies were important drivers of
both extinction and diversification dynamics in the Quaternary (Lister, 2004; Maldonado-Coelho,
2012; Postigo-Mijarra et al., 2010; Svenning et al., 2015). However, the effect of these legacies
on deep-time origination dynamics is largely unknown.
The interaction of climate change with previous climate might affect origination dynamics
through a variety of ecological mechanism. If short-term change adds to a long-term
temperature trend in the same direction (e.g., a short-term cooling following a prolonged cooling
trend), species are less likely to have adaptations to the climatic situation due to niche
conservatism (Hopkins et al., 2014; Stigall, 2014; Wiens & Graham, 2005). This lack of
adaptation to climatic conditions might result in bottleneck and subsequent founder effects, as
well as ecological releases (Button, 2017; Gilman et al., 2010; Raup, 1979). Such ecological
effects influence rates of evolution and speciation (Templeton, 2008; Wahl et al., 2002).
Additionally, climate history can hypothetically drive origination rates of marine genera through
global sea level changes, affecting the amount of habitat fragmentation in the continental shelf
area. Habitat fragmentation and loss is correlated with the intensity of ecological interactions
(Schuler et al., 2017; Tilman, 1994; Valentine, 1968) and speciation rates (Alroy, 2008; Mayr &
O’Hara, 1986).
Building on these ecological concepts through which past climate might affect origination
dynamics, we expect that the interaction between climate change and previous temperature
trends is a strong determinant of origination rates in the deep-time fossil record. We hypothesize
that origination processes are more strongly influenced by temperature change if the change
adds to a previous temperature trend in the same direction (synergistic paleoclimate interaction)
rather than if the focal change withdraws previous trends (antagonistic paleoclimate interaction).
Among synergistic paleoclimate interactions, we expect to detect a weakened origination signal
after cooling–cooling due to the “common cause” of sampling biases and biological signal that is
driven by low sea levels (Peters, 2005).
Here, we analyze how the global trajectories of past climate can affect the origination
probabilities of 12 marine fossil phyla in the last 485 million years (Annelida, Arthropoda,
Brachiopoda, Bryozoa, Chordata, Cnidaria, Echinodermata, Foraminifera, Hemichordata,
Hyolitha, Mollusca, and Porifera). We use paleoclimate interactions as explanatory variables,
which are defined as the interaction of short-term temperature change with long-term
temperature trends. We first apply regression models using paleo-temperature estimates and
sample-standardized genus-level fossil data using a dynamic modeling framework. Dynamic
implies that we let the long-term trend vary for each paleoclimate interaction and subsequently
select the best performing model. We then test whether cumulative paleoclimate interactions
increase the origination probability of fossil taxa. Our results show, on average, a substantial
increase in origination rates when a short-term cooling adds to a long-term cooling trend. To
estimate whether this increase is caused by a reduction in available habitat space subsequent
to cooling–cooling paleoclimate interaction, we also analyze the effect of a proxy for shelf area
habitat space on origination rates using the same modeling framework.
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RESULTS
Origination probability
Cooling–cooling paleoclimate interactions concurred with an increased origination probability
(Fig. 1 and SI Appendix, Table S1). We compared the origination probability for marine groups
per paleoclimate interaction, based on the output of our regression models. The overall
origination probability was lower after cooling–warming, warming–cooling, and
warming–warming paleoclimate interactions compared to the average origination probability of
13.3% per geological stage. To the contrary, cooling–cooling paleoclimate interactions coincides
with an increased mean origination probability of 15.1%, whereas the origination probability in
all other cases was 11.4%.

Figure 1: Origination probability. Total response distributions to paleoclimate interactions as
predicted by GLMMs. Thick gray lines show the median origination probability per paleoclimate
interaction, and the black line depicts the median probability for all interactions combined.

Effect size
The effect of cooling–cooling paleoclimate interactions on origination probability is large (Fig. 2
and SI Appendix, Table S2). The absolute difference between the mean origination probability of
cooling–cooling compared to all other paleoclimate interactions was 3.7 [95% CI (3.7, 3.8)]. This
difference represents a 27.8% percentage increase compared to all other interactions [95% CI
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(27.4%, 28.3%)]. We used the Cohen’s d statistic to compute the effect size as a standardized
measure. The Cohen’s d for cooling–cooling was greater than 1, indicating a large effect size.
All results for the absolute difference, the percentage change, and the effect size are based on
generalized mixed effect models and stay consistent when analyzed in a Bayesian regression
framework (Fig. 2).

Figure 2: Effect size. (A) Difference in medians between origination probability after
cooling–cooling compared to all other paleoclimate interactions. (B) Overall increase of
origination probability after cooling–cooling paleoclimate interactions compared to baseline
probability. (C) Cohen’s d effect size of the observed change in probability after cooling–cooling
paleoclimate interactions. Points show median estimates. Light gray lines delineate 95% CIs
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based on nonparametric bootstrapping. Dark gray lines depict 89% highest posterior density
intervals (HPDIs) based on Bayesian regression.

Group differences
We additionally tested whether cooling–cooling paleoclimate interactions raised the origination
probability of all studied marine groups and whether the signal remains robust through time (Fig.
3 and SI Appendix, Table S3). This was the case for all major phyla with sufficient data and
throughout all 80 geologic stages, as all log-odds values including 95% CIs were above zero.
Among all groups, Arthropoda, Brachiopoda, and Bryozoa showed an above average response
to cooling–cooling paleoclimate interactions. Through time, the Paleozoic Era showed the
highest origination probabilities, which then decrease through time, with the lowest values
present in the Cenozoic Era. This decrease over time is mainly driven by changing abundances
of taxa (SI Appendix, Fig. S13). Note that we excluded the Cambrian from the analysis due to
insufficient data (see Materials and Methods). Genera from onshore settings showed a greater
response to cooling–cooling paleoclimate interactions of 8.5% [95% credible interval (7.1%,
9.8%)] compared to genera from offshore settings (SI Appendix, Fig. S1). Our large effect size
of cooling–cooling interactions on origination probability remained consistent throughout all
studied groups and throughout the whole Phanerozoic.

Figure 3: Group differences. Origination likelihood for all major phyla and across time after
cooling–cooling compared to all other paleoclimate interactions. The red point shows the overall
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response, gray points per phyla, and brown points response per era. Gray lines show 95% CIs.
The phyla Hemichordata and Nematoda, as well as the Cambrian, were removed from the
analysis due to insufficient data. The red line delineates a log-odds ratio of zero. Values above
this line indicate a higher probability to originate after cooling–cooling compared to all other
paleoclimate interactions.

Continental fragmentation
Approximating potential causal paths through which paleoclimate interactions can act on
origination rates, we further tested the effect of continental fragmentation on origination within
our modeling framework. We found that a short-term increase in continental fragmentation
following on a long-term increase coincides with a substantial spike in origination rates (Fig. 4).
The origination probability after such a continental fragmentation interaction was 22% [95% CI
(21.1%, 23%)] greater than the average origination rate.

Figure 4: Continental fragmentation. Median origination response per continental fragmentation
interaction as predicted by GLMMs based on a continental fragmentation index. The black line
depicts the median origination probability for all marine genera, and gray lines delineate 95%
CIs.
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DISCUSSION
The interplay of short-term climate cooling adding to a long-term average global cooling
coincided with a profound increase of origination probability. We found this effect to be
consistent through time and across all studied groups. Previous studies on the relationship
between temperature and origination came to ambiguous conclusions, ranging from a negative
relationship (Mayhew et al., 2008) to no relationship (Alroy et al., 2000; Prothero, 1999) to a
positive one (Mayhew et al., 2012). Our results show that the relationship between origination
rates and temperature is dependent on baseline conditions, which were not previously
considered. The large effect size and the conditional dependency of paleoclimate interactions
may have obscured any apparent relationship between temperature and origination in previous
analysis. Explicitly accounting for dynamic interactions will hence provide a more robust
foundation to assess the relationship between Phanerozoic marine diversity and climate. This
has been recently demonstrated for modern terrestrial and marine assemblages, for which
biodiversity responses to recent climate change were conditional on the baseline climate (Antão
et al., 2020).
Our results are remarkable, as we expected to detect a weakened origination signal after
cooling–cooling paleoclimate interactions due to the “common cause” hypothesis (Peters,
2005). Sampling biases caused by low sea levels partly arise from the removal of originating
taxa from the fossil record or a shift of their detection to a later origination datum, leading to an
artificially reduced origination probability. These extrinsic biases of fossil data cannot be
addressed by sampling standardization (Peters, 2006). The large effect size of cooling–cooling
paleoclimate interactions might hence even be an underestimation of the true magnitude.
However, we only tested the effect of temperature on origination rates and did not include other
environmental parameters (e.g., sea level, nutrient input), which could be more direct drivers of
origination rates than temperature (Cárdenas & Harries, 2010). Nevertheless, current research
shows that temperature remains a significant predictor of origination rates after accounting for
additional environmental parameters (Mayhew et al., 2012). Furthermore, temperature can act
as a top-down effect, driving the change in other environmental parameters such as sea level
and shelf area weathering. Directly correlating temperature to origination rates instead of fitting
additional mediatory variables might hence give a more precise estimate of the relationship
between climate and origination dynamics.
Other abiotic factors affecting origination probability are not related to temperature. Continental
fragmentation can increase the number of geographic barriers, restricting animal movement and
thus enhancing allopatric speciation rates (Kiessling, 2010; Valentine & Moores, 1970; Zaffos et
al., 2017). Our results show that the effect of fragmentation on origination rates is particularly
large when an increase in continental fragmentation adds to a previous long-term increase. A
drop in eustatic sea level is an additional driver for habitat fragmentation. Cooling–cooling
paleoclimate interaction, resulting in a drop in eustatic sea level due to glaciation, leads to
reduced continental shelf area and emerging barriers in this main habitat of the majority of the
studied fossil groups. Changes in habitat fragmentation are correlated to the rate of ecological
interactions (Schuler et al., 2017; Tilman, 1994; Valentine, 1968) and speciation rates (Alroy,
2008; Mayr & O’Hara, 1986). Both variables used in our analysis, paleoclimate and continental
fragmentation, thus share a common causal mechanism to drive origination probabilities. Our
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results may therefore support the importance of allopatric speciation through vicariance in the
deep-time fossil record (Eldredge, 1971; Mayr, 1963).
Habitat fragmentation may not only drive origination rates but also influence the effect of
paleoclimate interactions on extinction. Cooling–cooling paleoclimate interactions have also
been shown to drive temperature-related extinctions in the fossil record, with warming–warming
interactions showing the same signal, albeit with lower effect size (Mathes et al., 2021).
Vicariance might explain why the effect size for warming–warming interactions on extinction risk
is reduced compared to cooling–cooling, even though the supposed underlying mechanism of
niche conservatism does not differentiate between the two types of synergistic paleoclimate
interactions (Hopkins et al., 2014; Stigall, 2014; Wiens & Graham, 2005). During
warming–warming paleoclimate interaction, marine taxa could potentially escape an adverse
environment through range shifts. During cooling–cooling, however, geographic barriers
resulting from sea level drop might impede migration, resulting in the observed increased
extinction risk (Mathes et al., 2021) and origination probability (this study) compared to
warming–warming and all antagonistic paleoclimate interactions. Our findings agree with this
proposed mechanism, as we found that paleoclimate interactions have a stronger impact on the
origination rate of shallow-water taxa, for which a drop in sea level does result in more habitat
fragmentation than for offshore taxa (SI Appendix).
Our study supports that evolutionary processes interact with climate by complex effects showing
conditional dependencies. Explicitly integrating these interactions within a dynamic modeling
framework leads to an improved discernment of origination patterns in the fossil record.
Previous studies on the relationship of temperature and biodiversity in Earth’s history came to
ambiguous conclusions, a nonconformance likely to be fixed in the future by accounting for
paleoclimate interactions (SI Appendix, Figs. S2 and S3). However, the mechanisms underlying
the grand association between evolution and the observed effect are still unclear. The
interpretation offered here, a combination of niche conservatism and ecological effects arising
from sea level change resulting in vicariance and allopatric speciation, could be at least partially
tested by comparing responses of terrestrial and marine fossil groups to paleoclimate
interactions. If sea level change plays a key role, terrestrial groups should show a distinctively
different response to cooling–cooling compared to marine groups. Given the large effect of
paleoclimate interactions on both extinction and origination, as well as the consistency of this
effect through time and studied groups, determining the underlying causes of paleoclimate
interactions will improve our mechanistic comprehension of evolutionary dynamics in Earth’s
history (Jablonski, 2008).
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MATERIAL AND METHODS
Fossil data
All analyses were conducted at the genus level. We accessed data from the Paleobiology
Database (PaleoDB, paleobiodb.org) on 21 April 2021, including all occurrences from the
Ediacaran to the Holocene. We filtered the data to only comprise marine animal taxa and
heterotrophic protists, i.e., the same taxonomic groups listed in Sepkoski’s (Sepkoski, 2002)
compendium, following common processing recommendations (Kocsis et al., 2019). Previous
studies on the relationship between temperature and biodiversity were mainly based on
Sepkoski’s compendium, rendering these data optimal for comparison purposes of our model
structures. We binned the data to one of 80 geological stages (Ogg et al., 2016), ranging from
the Ordovician to the Pleistocene. Ordovician stages were resolved using biozone and
formation entries due to potential stratigraphic errors (Kocsis et al., 2019). Further data cleaning
included removal of uncertain taxonomical ranks, duplicates in bins, single-collection and
single-reference taxa, and missing higher-level taxonomy. Taxa confined to a single stage
(singletons) were excluded, as they tend to produce undesirable distortions of the fossil record
(Foote, 2000). Collections from unlithified sediments were omitted to reduce sampling bias . We
then applied shareholder quorum subsampling (SQS) for sampling standardization (Foote,
2000), using the divDyn R package (Kocsis et al., 2019). SQS is based on frequency distribution
coverage of taxa, drawing collections until estimated coverage reaches a fixed target (i.e., until
a shareholder quorum is attained). For this, we used a shareholder quorum of 0.8. SQS was
applied excluding dominant taxa from all calculations involving frequencies and with a separate
treatment of the largest collection in each time slice. We then used the first-appearance datum
of a genus as its time of origination. The origination signal for each genus was then expressed
with a 1 for the time of origination and a 0 for each time interval the genus was found in the
fossil record after the time of origination. The final dataset contained 12 major marine fossil
phyla with sufficient data to include in the subsequent analysis (SI Appendix, Fig. S4 and Table
S4).

Climate proxy data
To reconstruct temperature change over time, we used the tropical whole-surface water (mixed
layers <300 m deep) oxygen isotope data set from a compilation of marine carbonate isotopes
(38). This temperature proxy is based on δ18O values of well-preserved calcareous shells. To
get from raw δ18O values to temperature estimates, we applied the recommended data
processing steps of Veizer and Prokoph (Veizer & Prokoph, 2015). We first adjusted for the
long-term trend in oxygen isotopic composition of seawater and averaged records from tropical
and subtropical records. We then assigned the temperature data to geological stages to provide
global mean temperature for each of the 80 stages used in our analysis. We additionally tested
whether our choice in δ18O source and processing method biased our inference by repeating
our whole analysis with δ18O isotope values from a different compilation and a different
conversion of isotope values to temperature (SI Appendix).

Generalized linear mixed effect models
All analyses were carried out in R (R Core Team, 2021). We used the lme4 package (Bates et
al., 2015) to perform the regression analysis and the tidyverse package compendium (41) for
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data processing and visualization. We quantified the effect of temperature change interacting
with past temperature trends on origination probability using generalized linear mixed effect
models (GLMMs) with a binomial family error (Bolker et al., 2009). We used the origination
signal from the fossil data as a response variable and a single interaction term including the
long-term temperature trend and the short-term temperature change as a predictor variable:
GLM (Origination ∼ Trend : Change +(1|Genus), Family = Binomial).

Using the genus level as a random effect, we accounted for the multiple occurrences of the
same genus within the time-series fossil data. Additionally including stages as a second random
effect did not increase model performance (SI Appendix, Table S8 and Fig. S5).
The short-term temperature change was calculated as the change in temperature for each
geologic stage compared to the previous stage. Long-term temperature trends were calculated
using ordinary least squares following the processing steps of Mathes et al. (2021). For each
stage included in the analysis, we calculated 10 stages starting one stage prior to the focal
stage, each covering a successively growing time of temperature history. We then used a
dynamic model framework to select the best performing long-term trend (SI Appendix, Table
S5). This implies calculating 10 GLMMs for each trend while keeping the short-term change
fixed. From these 10 GLMMs, we then selected the best performing model using Akaike’s
information criterion (AIC). Instead of calculating one model for all short-term changes, we
distinguished short-term warming from short-term cooling. This enabled us to quantify the
differences in origination probability per paleoclimate interaction (cooling–cooling,
warming–cooling, cooling–warming, and warming–warming, for which the first word denotes the
long-term temperature trend and the second word the short-term temperature change). We used
AIC for comparison of model performance. For likelihood approximation, we applied adaptive
Gauss-Hermite quadrature (Pinheiro & Chao, 2006), which reduces bias and is more robust
than other approximation methods (Bolker et al., 2009). We used 25 quadrature points per
scalar integral, which is the maximum number of nodes in the quadrature formula of the lme4
package.

Origination probability
We separated the predicted origination response of each type of paleoclimate interaction from
our GLMMs using the predict() function on the actual fossil data. Any resulting distributions for
the origination probability hence reflect climate conditions experienced by the focal fossil group.
We calculated the average origination probability as the mean of both model intercepts (i.e., of
the model for short-term warming and for short-term cooling).

Effect size
We applied nonparametric bootstrapping (Mooney, 1996) (SI Appendix, Fig. S6) and Bayesian
estimation (Kruschke, 2013) to the predicted origination response of our GLMMs to calculate the
difference in means between origination probability after cooling–cooling compared to all other
paleoclimate interactions. While doing so, we accounted for the nonparametric nature of the
data (SI Appendix, Fig. S7). Bootstrapping was conducted via the infer package (Bray et al.,
2021) based on 2000 repetitions. For Bayesian estimation, we used a Markov chain Monte
Carlo method with four chains, 1000 iterations, and 500 warm-up iterations via the brms
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package (Bürkner, 2017). We used a weakly informed prior for the group mean based on
realistic values for origination rates. We further constrained this prior to values between 0 and
100, representing the absolute minimum and maximum values for origination rates expressed in
percentage points. The prior for the response variable was sampled from the Student’s t
distribution, rendering the model more robust against outliers. We further modeled the sigma
coefficient for each paleoclimate interaction individually, allowing groupwise comparisons. The
prior for these group variances was sampled from the Cauchy distribution. All model estimates
successfully converged using these priors and model parameters. The overall increase of
origination probability after cooling–cooling paleoclimate interactions was calculated by dividing
the estimated difference of means by the baseline probability of origination. Furthermore, we
calculated the Cohen’s d effect size based on the raw output of our GLMMs as well as posterior
distributions after Bayesian estimation using the formula:
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We then calculated 95% Wald CIs for the applied nonparametric bootstrapping results and 89%
highest posterior density intervals for the Bayesian estimation (McElreath, 2020). Cohen’s d is
reported to present the magnitude of the reported effects in a standardized, scale-independent
metric and is aimed to facilitate the incorporation of our results in a meta-analytical framework.

Group differences
Based on the results from our GLMMs, we calculated the log-odds ratio for each major fossil
group and for each Phanerozoic Era spanning all studied stages. A second approach was to
group geologic stages together to get to a finer temporal resolution than the Phanerozoic Eras
(SI Appendix, Table S3). Grouping of the stages was necessary to obtain a sufficient number of
observations to calculate the log-odds ratio and was based on the number of stages included,
resulting in evenly spaced intervals. The oldest interval ranged from the Tremadocian to
Lochkovian, the second from the Pragian to the Artinskian, the third from the Kungurian to the
Pliensbachian, the fourth from the Toarcian to the Turonian, and the youngest period from the
Coniacian to the Pleistocene. We did not calculate group differences for phyla for which data
were insufficient to get a log-odds ratio estimate. To compare changes between shallow and
deep-water taxa, we used the environmental information included in the fossil occurrence
dataset. We separately predicted the origination response for onshore and offshore taxa using
our GLMMs. We then calculated the difference in means between origination probability after
cooling–cooling compared to all other paleoclimate interactions for each group using Bayesian
estimation. The comparison between onshore and offshore taxa was then conducted using
samples from the posterior of the Bayesian estimation model (SI Appendix, Fig. S1).

Continental fragmentation
To estimate whether habitat space and vicariance might be the mechanisms through which
paleoclimate interactions act on origination probability, we included continental fragmentation as
an explanatory variable in our model framework. We used a continental fragmentation index
(Zaffos et al., 2017) (SI Appendix, Fig. S8) accessed via the accompanying GitHub repository
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(https://github.com/UW-Macrostrat/PNAS_201702297) (Zaffos et al., 2017). Data processing
was similar to processing of temperature data, including the calculation of short-term changes
and long-term trends in continental fragmentation. We then compared the origination probability
for marine genera for each possible interaction of short-term and long-term continental
fragmentation (increase-increase, increase-decrease, decrease-increase, and
decrease-decrease) using the same analysis as for paleoclimate.

Robustness testing
We further conducted additional tests on both raw data and our models to test for explicit biases
in our analytical framework. These robustness tests and their results are described in detail in
the accompanying supporting information file and include a model comparison between
traditional model estimates and paleoclimate interactions, cross-correlation tests for temperature
data and the continental fragmentation index, tests for the inclusion of an additional random
effect in the GLMMs, tests for the dependence of inference on δ18O isotope data for
paleo-temperature estimation, and posterior predictive checks as well as convergence
diagnostics for the Bayesian estimation.

Data availability
Raw and processed data and code data have been deposited in GitHub
(https://github.com/Ischi94/palint-origin) and Figshare
(https://figshare.com/s/a789b5bdd52035d59dfd).
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Supplementary information

Model comparison
Previous studies used different estimates of temperature to deduce an association between
origination and temperature (Cárdenas & Harries, 2010; Krug et al., 2009; Mayhew et al., 2008,
2012). Generally, simple models correlate static temperature estimates at each interval to
biodiversity in the same interval. More complex models include temporal lags of temperature,
allowing for a suspended response of biota to temperature change (Cárdenas & Harries, 2010;
Mayhew et al., 2008). Most recent models are based on both estimates but additionally allow for
interactions of static estimates and temporal lags (Mayhew et al., 2012). To test whether
paleoclimate interactions perform better than these traditional model estimates, we calculated a
GLMM for each model structure from simple to complex (static temperature, temporal lags,
interactions). We then compared the performance of each model to a model allowing for
paleoclimate interactions. The paleoclimate interaction models were based on the same model
structure, but explicitly allowed for interactions of long-term temperature trends and short-term
climate changes within a dynamic modeling framework. Comparison of model performance was
based on AIC values with results being consistent with Bayesian information criterion (Table
S6). We found that models including dynamic paleoclimate interactions performed better than
their traditional counterparts in all 6 cases (Fig. S2). Models covering short-term cooling
improved on average by 586 AIC values, and models covering short-term warming by 218 AIC
values (Fig. S3). Our model comparison hence indicates that models including paleoclimate
interactions are more parsimonious than their counterparts, despite their increased complexity.
The large effect size and the cascading nature of paleoclimate interactions might have obscured
or even inverted the apparent relationship between temperature and origination in traditional
models, as it has been shown for other interactions in the fossil record (Ritterbush & Foote,
2017; Stigall, 2013). This might particularly be the case for cooling periods in Earth’s system, as
the model comparison shows that models with paleoclimate interactions have a sufficiently
improved predictive accuracy for the response to cooling as compared to traditional models.
The difference between model types is not as pronounced when dealing with warming periods,
which we account to the lower effect size of paleoclimate interactions on both short-term and
long-term warming (Fig. 1). Explicitly accounting for dynamic interactions within a flexible
modeling framework as presented in our analysis might provide a more robust foundation to
assess the relationship between Phanerozoic marine diversity and climate.

Cross-correlation
Testing a potential mechanism through which paleoclimate interactions can act on origination
rates, we found that continental fragmentation shows a similar impact on origination rates as
paleoclimate interaction (Fig. 4). We then account this similarity to a shared causal path through
which both parameters, paleo-temperature and continental fragmentation, affect origination
rates. However, the effect similarity might not only arise by a shared causal path but can be
potentially biased by a high cross-correlation between both parameters. Especially a high
correlation in time intervals with pronounced cooling might distort our interpretation, as both
parameters showed an increase in origination rates subsequent to these (Fig. 1 and 4).
Accordingly, we tested for crosscorrelation between our paleo-temperature estimates and the
continental fragmentation index. As our analytical framework included a long-term trend going
back up to ten stages, we additionally checked the cross-correlation ten stages prior and after
the focal bin. We used Pearson's product moment correlation coefficient to estimate the
correlation and the Fisher z-transformation to get confidence intervals (Fisher, 1921). We first
detrended both time series, temperature and the continental fragmentation index, using first
differences and additionally tested for auto-correlation in the residuals of the cross-correlation
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test by applying the Durbin-Watson test (Farebrother, 1980). We found no indication for a high
cross-correlation, neither within the whole data set nor in the subset only including time intervals
with cooler temperature than the average. Additionally dividing the data into the three
chronological Eras (Paleozoic, Mesozoic, Cenozoic) yielded no significant crosscorrelation as
well (Fig. S9, Table S7). Our analytical framework is hence not biased by a high correlation
between parameters used to estimate effect sizes and can be applied for biologically meaningful
inferences about dynamics in Earth’s system.

Additional random effect
Fossil genera are repeatedly sampled throughout time in occurrence data. To account for these
multiple occurrences, we used the genus-level as a random effect in our regression framework.
However, it might be reasonable to add geological stages as a second random effect to account
for auto-correlation within the time series data. We hence tested for the inclusion of this second
random effect term in our analysis by comparing a model with both random effects to a model
with genus-level variation and a second constant random effect by means of AIC ((Galwey,
2007). We found no support for the inclusion of geological stages as a second random effect in
our models as AIC values showed that models with a constant random effect instead of stages
performed better (Table S8). Additionally, re-running our whole analysis with models where
stages were added as a second random effect showed no deviation from the original results,
neither in the direction of the effect nor in magnitude (Fig. S5). We hence decided to restrict our
models to one random effect (genus-level) as inference was robust to choice of random effects,
and as we found no support for the inclusion of stages as a second term. Restricting the models
to one random effect additionally yielded the possibility to use Gauss-Hermite quadrature for
likelihood approximation (Pinheiro & Chao, 2006). Gauss-Hermite quadrature is less prone to
biases and more precise compared to Laplace approximation (Bolker et al., 2009), which is
used for any models with more than one random effect in the R package used for our model
fitting (Bates et al., 2015).

Bayesian estimation
We applied two statistical approaches to calculate the effect (difference in means) from the
predicted origination response of our GLMMs: Non-parametric bootstrapping and Bayesian
estimation. Returning complete distributions of credible values for the effect and additionally for
group means and their standard deviations (and the difference of group-wise standard
deviations), Bayesian estimation provides richer information about samples compared to
bootstrapping and other frequentist approaches (Kruschke, 2013). This increase in information
comes with additional complexity and requires additional tests to secure a valid estimation of the
effect size (McElreath, 2020). Visually inspecting the samples for each parameter from the
Hamiltonian MCMC used to conduct our Bayesian estimation shows fast and good convergence
of the sampling procedure. Similarly, rank histograms of the sampling procedure show good
convergence and mixing of chains. The ratios of the effective sample size to total sample size
from the joint posterior indicate low auto-correlation in parameters and a good model fit to the
data. Rhat values, a common convergence diagnostic calculated by comparing the between-
and within-chain estimates, show a good convergence and efficiency of the model fit for all
parameters as well. A posterior predictive check of the Bayesian estimation comparing the
observed outcome variable to simulated data sets from the posterior predictive distribution
shows a good fit to the actual data distribution (Fig. S10). All diagnostics for the Bayesian
estimation hence show that the reported effect and accompanying parameter estimates are
robust and reliable.

Temperature data
To get an estimate of the global mean temperature for each geologic stage, we used the δ18O
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values of well-preserved calcareous shells which are often considered as the best available
temperature proxy for the fossil record (Song et al., 2019) (Fig. S11). Conversion of δ18O values
into temperature requires to account for the composition of seawater δ18O in deep time. The
exact composition is unknown and can only be estimated. We followed the argumentation of
Veizer and Prokoph (2015), inferring a secular increase in seawater δ18O values as a result of
changes in how oxygen reservoirs are exchanged with the vastly larger oxygen reservoir in
crust and mantle silicates. We adjusted for the secular trend in oxygen isotopic composition of
seawater with the equation: δ18Opw (‰) = t2 + 0.0046‰ t, where pw denotes Phanerozoic
seawater in standard mean ocean water and t age in million years ago. We further averaged
tropical and subtropical records. We subsequently binned temperature data on the basis of
isotope values to geological stages to provide global mean temperature for each of the 80
stages used in our analysis (Fig. S8). We emphasize however that there are still many
uncertainties about reconstructing paleo-temperature from δ18O values and that the conversion
we used for our analysis is commonly accepted and widely used but remains subject of
considerable debate (Song et al., 2019; Veizer & Prokoph, 2015). To check whether our choice
in δ18O source and processing method biased our inference, we repeated our whole analysis
with δ18O isotope values from a different compilation. We downloaded the pre-processed data
file from the supplementary material of Song et al. (2019) containing sea surface temperature
estimates for the whole Phanerozoic. The underlying data base of isotope data from which the
paleo-temperature was estimated contains both phosphatic and calcareous fossils. In stark
contrast to Veizer and Prokoph (2015), an invariant oxygen isotope composition of seawater
was assumed to convert the δ18O isotope values to paleo-temperature estimates. The data was
therefore suitable for our robustness test. Re-running our whole analysis with the data from
Song et al. resulted in an overall smaller but still robust and substantial effect size (Table S9).
Both the direction and the magnitude of the effect remained the same. We were hence able to
detect the large effect of paleoclimate interaction on origination rates regardless of the
underlying estimation for paleo-temperature, rendering this effect robust against underlying
assumptions of temperature data processing.

Origination likelihood through time
The origination likelihood after cooling-cooling compared to all other paleoclimate interactions
shows a decreasing trend through time (Fig. 3), with more variation over shorter timescales
(Table S3). This trend might potentially show a decreasing importance of paleoclimate
interactions through time on geologic scales, with a strong effect on the origination likelihood in
the Paleozoic and less but still significant impact in more recent stages. An explanation for this
might be that taxa generally showing an attenuated response to cooling-cooling are becoming
more abundant in the Mesozoic and Cenozoic compared to taxa that are more responsive to
cooling-cooling (Fig. S12). However, various unmeasured factors can potentially influence this
trend as well, such as the extent of epicontinental seas or relative sea level changes. To
quantify the importance of these unmeasured factors, we conducted an additional analysis
estimating the proportion of variance in the origination likelihood that can be explained by the
relative abundance of climate sensitive taxa through time alone. For this, we counted the
occurrence of each phylum within five evenly spaced intervals spanning the Phanerozoic (see
methods section). We then multiplied the log-odds ratio of each focal phylum with the number of
occurrences per interval, and took the mean across all phyla for each interval. To allow a
comparison between intervals, we then normalized the mean by dividing through the total
number of occurrences within the interval. The resulting estimate ranged between zero and one
and encapsulated the variation in the origination likelihood solely explained by the changing
abundance of taxa through time. We then compared this estimate to the observed log-odds
ratios per interval. If the estimated log-odds ratios would align with the observed values (i.e.
showing a perfect correlation), then the overall decreasing trend would be solely driven by the
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changes in abundance of taxa through time. Any deviation from this alignment would indicate
the impact of other, unobserved factors. Our results show an overall good alignment with some
variability (Fig. S13). We then took the absolute difference between the estimated log-odds
ratios and a perfect alignment (i.e., the variation that is not explained by the changes in
abundance of taxa through time) and correlated them with the observed log-odds ratios. We
found that these absolute differences were generally low during intervals with high observed
log-odds ratios, and high during intervals with low ratios (Fig. S13). This might indicate that
unobserved factors have a stronger impact when the overall effect of cooling-cooling on the
origination likelihood is less pronounced. The decreasing trend through time, however, is mainly
driven by the changing abundance of taxa as we found a good alignment of our estimated and
observed log-odds ratios.

Dynamics of origination and extinction
Cooling-cooling paleoclimate interactions have also been shown to drive temperature related
extinctions in the fossil record (Mathes et al., 2021). A high correlation between extinction rates
and the origination signal used in our analysis would impede to causally disentangle whether
paleoclimate interaction impacts origination, extinction, or both. If, for example, paleoclimate
interactions increase the extinction rate but do not impact origination rates, a regression
analysis would falsely show an effect on both origination and extinction if they are highly
correlated. We therefore tested for cross-correlation between a variety of metrics for extinction
rates and the origination signal used in our analysis, by calculating the Pearson's product
moment correlation coefficient to estimate the correlation and the Fisher z-transformation to get
confidence intervals (Fisher, 1921). The extinction metrics were calculated using the divDyn
package (Kocsis et al., 2019) from the same data used to calculate the origination signal. Our
results showed no substantial cross-correlation, neither with raw values nor after detrending the
time series by first differences (Fig. S14). However, extinction rates could still affect the reported
effect of paleoclimate interaction on origination rates, as extinction rates in the fossil record are
known to be correlated with origination rates approximately 10 million years later (Alroy, 2008;
Kirchner & Weil, 2000). High extinction rates in one bin could therefore affect the origination rate
in the subsequent bin. Origination rates would hence follow the extinction signal, which itself is
partly caused by paleoclimate interaction (Zaffos et al., 2017). Accordingly, we tested for a
positive cross-correlation in our data between the extinction signal at one time bin and the
origination signal at the following time bin. We found no indication for a positive
cross-correlation, neither in the raw lagged data nor after detrending with first differences (Fig.
S15). This indicates that the effect we report here reveals biologically meaningful patterns and is
not substantially biased by the delayed recovery of biota from extinction.

99



Main research

Supplementary figures

Fig. S1. Density plots of the origination response to cooling-cooling paleoclimate interaction per
environment in which the fossil data was found (onshore versus offshore). A) Difference in
medians between origination probability after cooling-cooling compared to all other paleoclimate
interactions. B) Difference between the origination responses per environment as visualized in
A). C) Difference between the origination responses per environment compared to baseline
probability. Density is estimated from 2000 posterior samples of the Bayesian estimation. White
points show the median values of the posterior. Thick black lines depict the 89% credible
intervals, and the thinner black lines the 95% credible intervals.
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Fig. S2. Comparison of model performance for traditional models covering first- and
second-order relationships of origination and temperature versus models allowing for
paleoclimate interactions. Models allowing for paleoclimate interactions are based on the same
model structure, but explicitly allow for interactions of long-term temperature trends and
short-term climate changes within a dynamic modeling framework.

101



Main research

Fig. S3. Comparison of model performance for traditional models covering first- and
second-order relationships of origination and temperature versus models allowing for
paleoclimate interactions. The latter are based on the same model structure, but explicitly allow
for interactions of long-term temperature trends and short-term climate changes within a
dynamic modeling framework.
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Fig. S4. A) Total number of observations per phyla and stage. B) Percentage of total number of
observations per phyla and stage. Stage 14 (Tremadocian, 485 to 477 Ma) is the oldest, and
stage 95 (Holocene, 0.01 to 0 Ma) the youngest interval.
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Fig. S5. Comparison of reported results to values based on re-running the whole analysis with
models where stages were added as a second random effect. A) The raw difference in medians
between origination probability after cooling-cooling compared to all other paleoclimate
interactions. B) Overall increase of origination probability after cooling-cooling paleoclimate
interactions compared to baseline probability. Results for the additional random effect are
calculated using a similar Bayesian estimation model as for the reported results. Grey lines
show 89% credible intervals based on the highest posterior density interval. Points show
median estimates.
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Fig. S6. Difference in means of origination responses after cooling-cooling compared to all other
paleoclimate interactions, based on bootstrap resampling. A) Bootstrapped distribution of
differences in medians. Red line shows observed difference and shaded area shows the 95%
confidence interval. B) Simulation-based null distribution of difference in means compared to the
observed difference (red line).
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Fig. S7. Quantile-quantile plots for predicted responses of marine fossil groups after
paleoclimate interactions. As these plots indicate deviations from normality, further estimates
(difference in medians, percentage change, effect change) were calculated using
non-parametric methods.
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Fig. S8. Data used throughout the analytical framework. A) Origination events per stage used as
the response variable in the GLMMs. Points are highlighted in the same color as the geologic
period they belong to. B) The continental fragmentation index through the Phanerozoic (21). C)
Mean by-stage global temperatures through the Phanerozoic as deduced from oxygen isotopes
(17), used as the predictor variable in the GLMMs.
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Fig. S9. Cross-correlation between paleo-temperature and the continental fragmentation index.
We calculated the Pearson's product moment correlation coefficient and 95% confidence
intervals for the correlation between the detrended time-series using first differences. The data
was further divided in a subset where temperature is cooler than the mean temperature and into
the three chronological Eras (Paleozoic, Mesozoic, Cenozoic).
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Fig. S10. Posterior predictive check for the Bayesian estimation model. The thick, darker
red line shows the distribution of the observed data (y) and the lighter red lines show 10
simulations from the posterior distribution (yrep). The good fit of the model to the
observed data indicates that the reported effect and accompanying parameter estimates
are robust and reliable.
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Fig. S11. Raw δ18O compilation of well-preserved calcareous shells throughout the
Phanerozoic and conversion of δ18O values into paleo-temperature.
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Fig. S12. Changes in the origination likelihood for all major phyla and across time after
cooling-cooling compared to all other paleoclimate interactions. The origination likelihood is
expressed as standardized log-odds ratios, where we multiplied the average origination
likelihood of each phylum with the number of occurrences for each stage. The standardized
log-odds hence additionally show when a phylum was most abundant. Phyla are arranged
based on their average origination likelihood, with Arthropoda showing the highest and
Foraminifera the lowest average origination likelihood (compare Fig. 3).
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Fig. S13. Results of the analysis estimating the proportion of variance in the origination
likelihood that can be explained by the abundance of taxa through time. A) Normalized log-odds
ratios showing values if all variation would be explained by abundance of taxa through time
alone, plotted against the actual normalized log-odds ratios on the x-axis. The dotted line
delineates a perfect agreement between these parameters. Black lines show 95% confidence
intervals. B) The difference between the actual values in A) and a perfect agreement (the dotted
line) regressed against the observed log-odds ratio for each period. The annotation shows the
overall Pearson r correlation coefficient with 95% confidence intervals. The blue line shows the
overall trend based on linear regression, and the gray area the 95% confidence interval around
this trend. Labels depict the period for which log-odds ratios were calculated (see methods
section).
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Fig. S14. The Pearson's product moment correlation coefficient for the correlation between the
origination signal used in our analysis and various metrics for extinction, including 95%
confidence intervals. A) Direct correlations between raw data. B) Correlation between detrended
data using first differences. Metrics where calculated using the divDyn R package (18). tExt
stands for the number of taxa getting extinct, extProp for the proportional extinctions including
single-interval taxa, extPC for the per capita extinction rate, extGF for the gap-filler extinction
rate, extC3t for the corrected three-timer extinction rate, ext3t for the three-timer extinction rate,
ext2f3 for the secondfor-third extinction rate, and E2f3 for the second-for-third extinction
proportion.
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Fig. S15. The Pearson's product moment correlation coefficient for the correlation between
various metrics for extinction at one time bin and the origination signal used in our analysis at
the following time bin, including 95% confidence intervals. A) Direct correlations between raw
data. B) Correlation between detrended data using first differences. Metrics where calculated
using the divDyn R package (18). tExt stands for the number of taxa getting extinct, extProp for
the proportional extinctions including single-interval taxa, extPC for the per capita extinction
rate, extGF for the gap-filler extinction rate, extC3t for the corrected three-timer extinction rate,
ext3t for the threetimer extinction rate, ext2f3 for the second-for-third extinction rate, and E2f3
for the second-for-third extinction proportion.
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Supplementary tables

Table S1. Distribution of origination probability after each paleoclimate interaction for all studied
fossil groups based on predictions of final GLMMs.

Table S2. Effect size estimates for the difference in medians of origination probability, overall
increase of origination probability and Cohen’s d effect size including lower and upper bounds
for 95% confidence intervals (Bootstrapping, Cohen’s D) and 89% highest posterior density
estimates (Bayesian Estimate).
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Table S3. Origination probability for all major phyla and throughout time after cooling-cooling
compared to all other paleoclimate interactions calculated as log odds ratio, including 95%
confidence intervals. The Tremadocian is the oldest stage included in the analysis, and the
Pleistocene the youngest. The phyla Hemichordata and Nematoda were removed from the
analysis due to insufficient data.
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Table S4. Number of classes, order, families, and genera within every major phylum after data
cleaning and sampling-standardization.
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Table S5. Selection of the final model using a dynamic model framework. 10 GLMMs for each
long-term trend per time bin were calculated while keeping the short-term change fixed. The
final model for both short-term warming and cooling was then selected using the AIC of each
model. Asterisk indicate the significance based on Gauss-Hermite quadrature, where one
asterisk means p ≤ 0.05, two asterisk p ≤ 0.01, and three asterisk p ≤ 0.001.
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Table S6. Comparison of model performance for traditional models covering first- and second
order relationships of origination and climate versus models allowing for paleoclimate
interactions. The latter are based on the same model structure, but explicitly allow for
interactions of long-term temperature trends and short-term climate changes within a dynamic
modeling framework (+ Pal. Int). Each model was tested for overdispersion including
significance (indicated by stars, based on adaptive Gauss-Hermite quadrature approximation).
Model comparison was based on Akaike’s information criterion (AIC) and is consistent with
Bayesian information criterion (BIC).

119



Main research

Table S7. The Pearson's product moment correlation coefficient for the correlation between
paleo-temperature and the continental fragmentation index (R) and the coefficient of
determination (R-squared), including 95% confidence intervals for R (Lower and Upper CI). The
data was further divided in a subset where temperature is cooler than the mean temperature
and into the three chronological Eras (Paleozoic, Mesozoic, Cenozoic). We additionally tested
for auto-correlation of disturbances using the Durbin-Watson test and report p-values (DW
p-value).
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Table S8. Results for the test for inclusion of a second random effect on geologic stages within
the regression framework. For both models covering short-term warming (Type = Warming) and
short-term cooling (Type = Cooling), we calculated an additional model with a second random
effect on stages (Added effect), as well as a null model with a constant second effect. Models
where then compared by means of AIC and BIC values and the log-likelihood of each model.

Table S9. Effect estimates for different data sources for the paleo-temperature data. The
reported results are based on δ18O processed as recommended by Veizer and Prokoph 2015.
Repeating the whole analysis and estimating the effect (the difference in medians and the
percentage change) including 89% credible intervals (CI) from highest posterior density intervals
results in similar estimates.
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Data and code availability
All data and code necessary to run analyses and produce final results are deposited in a public
GitHub repository (https://github.com/Ischi94/palint-origin), including instructions on how to
reproduce results and all figures. The unprocessed data file containing fossil occurrences is
freely available via Figshare.com
(https://figshare.com/articles/dataset/Raw_fossil_data/14528925) or can be directly download
from the Paleobiology Database (https://paleobiodb.org/data1.2/occs/list.csv?show=full).
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ABSTRACT

Marine ecosystems are increasingly affected by anthropogenic climate change. It is unknown
whether marine assemblages are able to shift their distributions fast enough to track suitable
climate. We investigate the capacity of planktonic assemblages to keep pace with temperature
changes using a 700,000 years fossil record of globally ubiquitous marine zooplankton (2,657
planktonic foraminifera assemblages composed of 38 species). By integrating across
spatiotemporal scales, we provide powerful insights into faunal responses to a wide variety of
climate change. Comparisons with paleoclimate reconstructions show that planktonic
foraminifera assemblages generally tracked modest changes in temperature. However,
disproportionately large climatic lags, in terms of range shifts required to match thermal optima,
are accumulated by high latitude assemblages responding to climate warming and low latitude
assemblages responding to climate cooling. High magnitudes of temperature changes led to
large and often irreversible assemblage changes, pointing towards the presence of critical
tipping points within these marine assemblages. The inability to move ranges fast enough to
track shifts in suitable climates when climatic changes were high led to average range lags up to
554 km. How well assemblages react to climate warming or cooling was also dependent on the
long-term climatic context. Our observations show that the vulnerability of marine assemblages
to climate change is potentially more extensive than previously anticipated.
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Introduction

Anthropogenic climate warming is threatening marine ecosystems (Pörtner et al., 2022). One
key response of marine assemblages exposed to a changing climate is by tracking climatic
niches in space via distribution shifts (Chen et al., 2011; Pinsky et al., 2013; Poloczanska et al.,
2013). However, the potential for marine organisms to cope with climate change via dispersal
remains uncertain (García Molinos et al., 2016; Munday et al., 2013). While individual species of
marine ectotherms are predicted to closely track their thermal limits (Sunday et al., 2012),
assemblages are unlikely to migrate cohesively (Graham et al., 1996; Reddin et al., 2018;
Walther et al., 2002), leading to a disequilibrium or lag that generates a mismatch between
ambient temperatures and conditions preferred by assemblages (Devictor et al., 2012;
Menéndez et al., 2006; Svenning & Sandel, 2013). This may make certain assemblages
vulnerable to population loss and even extinction under particular climate change scenarios
(Reddin et al., 2022; Stuart-Smith et al., 2015) but more information is needed on the
consistency and generality of responses. Climatic lags are well studied in terrestrial ecosystems
but less so in marine, whose species distributions should better track climatic variables (Sunday
et al., 2011), as long-term studies of climate change in the oceans are rare (Rosenzweig et al.,
2008).

The exceptional fossil record of planktonic foraminifera (Protista) renders them an ideal model
system to investigate climatic lags in marine zooplankton. Planktonic foraminifera are a globally
ubiquitous component of marine zooplankton. Their calcite shells (tests) are well-preserved in
seafloor sediments, allowing for a view into the composition of marine assemblages in the past
with an extraordinary temporal and spatial resolution. Their tests have been used to investigate
climatic and ecological changes in both modern and fossil systems (Antell et al., 2021; Ezard et
al., 2011; Jonkers et al., 2019; Morard et al., 2015). Modern planktonic foraminifera
assemblages show changes in community structure as a response to anthropogenic climate
warming, but whether these assemblages lag behind the rate of climatic change is unknown
(Jonkers et al., 2019). As individual foraminifera species show high niche stability over time
(Antell et al., 2021), changes in assemblage composition in response to climatic changes can
only occur through reorganization via shifts in species distribution, changes in relative
abundance, or local extinction (Jackson & Sax, 2010).

The effect of climate change on spatio-temporal patterns in assemblages on a global scale is
poorly understood (García Molinos et al., 2016). Most studies are limited to individual species
rather than investigating shifts in assemblages (Dornelas et al., 2014). The fossil record poses
the chance to fill this critical knowledge gap of changes within assemblages with its unique
capacity to record how organisms responded to a wide range of climatic changes. As unique
combinations of climatic variables existed in the past (Williams & Jackson, 2007) and are
predicted to emerge in the future (Williams et al., 2007), crucial information for biotic responses
to climate conditions outside modern human experience can be obtained from the fossil record.
However, most studies taking advantage of the fossil record cover scales of 106 to 107 years
(Kocsis et al., 2018; Martin-Garin et al., 2012; Reddin et al., 2018), far above timescales of
modern relevance, or are restricted to single historical time steps (Greenstein & Pandolfi, 2008;
Kiessling et al., 2012). The time continuous fossil record of planktonic foraminifera assemblages
thus provides an exceptional opportunity to study the effect of climate change on
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spatio-temporal patterns in assemblages on a temporal scale relevant for modern-day
ecosystem functioning.

Here we investigate the capacity of planktonic foraminifera assemblages to keep pace with
climatic changes over the past 700,000 years of glacial-interglacial cycles at a 8 thousand year
(ka) resolution. We base our analysis on a global dataset of Quaternary planktonic foraminifera
records, being widely distributed within all oceans, together with a coupled Atmosphere–Ocean
Generalized Circulation Model (AOGCM). For each foraminiferal assemblage, we calculate the
climatic lag as the difference between the temperature estimated at the location and the
temperature bio-indicated by the assemblage structure (i.e., the optimal temperature for the
local assemblage given the preferred temperature niche of individual species, Fig. 1). A large
value of the climatic lag (both positive and negative) means that the assemblage is not in
equilibrium with adjacent temperatures. We then implement linear mixed effect models to
quantify the climatic lag as a function of temperature change both on a global basis and within
latitudinal bands (at low, mid, and high latitudes). We further model the global climatic lag
through time and investigate how climatic lags can arise from the cyclicity of the
glacial-interglacial periods. We expect fossil planktonic foraminifera assemblages to closely
track climate change given the scale of our study, emphasizing long-term species turnover in
response to long-term climatic processes.

Figure 1: Calculation of the climatic lag of a planktonic foraminifera assemblage. (a)
Individual planktonic foraminifera species occupy a specific temperature niche. By
tracking the occurrences of fossil foraminifera species along the univariate axis of mean
annual temperature, this temperature niche can be estimated for each species. (b) An
assemblage of planktonic foraminifera consists of various species, each displaying a
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characteristic temperature niche. The temperature an assemblage is preferring can be
estimated by integrating the temperature niches of individual species via an ecological
transfer function, which takes both species composition and relative abundance of
species into account. We termed this preferred temperature of an assemblage the
‘assemblage temperature’. (c) The climatic lag of the assemblage is then the difference
between the actual temperature at the location of the assemblage and the assemblage
temperature. The climatic lag therefore quantifies the mismatch between actual and
preferred temperature of an assemblage.

MATERIAL AND METHODS

Fossil data

We compiled foraminiferal occurrences over the past 700 ka from various data sources and
processed them following Antell et al. (2021). Sources include datasets from the PANGAEA
Open Access library (www.pangaea.de), the Neptune database (Renaudie et al. 2020,
nsb.mfn-berlin.de), and the ForCenS database (Siccha & Kucera, 2017). We harmonized the
taxonomy based on currently valid nomenclature (Antell et al., 2021). Macro- and microperforate
species were included, but benthic foraminifera were excluded. We excluded two species that
originated within the last 700 ka and eight species that went extinct over that span to ensure all
study species were extant throughout the entire study interval. All specimens were collected
from sediment cores and core tops, with no live-collection samples, such as from plankton tows.
Even the youngest sediment samples are estimated to be centuries or millennia in age (Jonkers
et al., 2019). Thus, all specimens reflect preindustrial species distributions, predating
anthropogenic global warming. Paleocoordinates were reconstructed by rotating modern
coordinates according to a plate model, in accordance with Neptune methods (Matthews et al.,
2016). We omitted records from sites at shallow depths (<100 m) where planktonic foraminifera
cannot establish viable populations (Darling et al., 2007), under the assumption that any
foraminifera at those sites drifted in from elsewhere. The exact minimum depth for reproduction
is unknown and may vary with water conditions. We kept only those foraminifera occurrences
with information about their relative abundance. The final dataset contained 38 species with
98,297 occurrences (Supplementary Data Table 1). These occurrence records were binned into
88 intervals of 8 ka resolution, from the recent subfossil record to 700 ka. The chosen bin length
reflects the resolution of the coupled Atmosphere–Ocean Generalized Circulation Model outputs
(4 ka), the time-averaging of fossil assemblages and imprecision in fossil ages [up to a few
thousand years (Martin, 1999)], and the rate of climatic change (fluctuation from glacial
minimum to interglacial maximum approximately every 50 ka). To minimize error in bin
assignments due to age uncertainty, records were omitted if age estimates were derived from
foraminiferal zones or had confidence intervals longer than 2 ka. Remaining records could be
assigned confidently to a single time bin based on the mean age estimate. We use the term
assemblage to refer to all species present within a sediment core at the same time bin-. The
final dataset contained 2,657 assemblages (Supplementary Data Table 2).
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Temperature data

Temperature is the single most important explanatory variable in regard to geographic
distribution of foraminifera (Antell et al., 2021; Fenton et al., 2016; Yasuhara et al., 2020). The
temperature in prehistoric oceans can be reconstructed using a coupled Atmosphere–Ocean
Generalized Circulation Model (AOGCM). We obtained mean annual temperature estimates
(MAT) from the UK Met Office Unified Model Hadley Centre Coupled Model, with the MOSES
2.1 land-surface model and top-down representation of interactive foliage and flora including a
dynamic global vegetation model (Cox, 2001), following the precise configuration as stated in
Antell et al. (2021). Fossil foraminifera occurrences were paired with AOGCM data from the
midpoint of time bins (e.g., climate was modeled at 12 ka for occurrences 16 to 8-ka old).
Foraminiferal species inhabit specific and consistent vertical ranges and do not participate in
vertical diel migration as do some other plankton, although these protists do migrate to the
mixed-layer depth to breed (Meilland et al., 2019). Therefore, we performed our analysis in the
following two ways: using MAT at the sea surface or using MAT extracted from each focal
species’ depth range. We used the quantitative information on each species’ modern depth
range provided by Antell et al. (Antell et al., 2021) to assign taxa to one of the three following
depth habitats: surface (40 m in the AOGCM), surface–subsurface (78 m), or subsurface (164
m).

Statistical analysis

Climatic lag:

All analyses were carried out in R v.4.1.2 (R Core Team, 2021). We used the tidyverse collection
of R packages (Wickham et al., 2019) to transform and visualize data. We defined climatic lag
as an accumulated delay in species’ response to the change in temperatures, which we
hypothesize as attributable to a species’ inability to track climate change. Previous studies have
used the term “climatic debt” for this metric (Bertrand et al., 2016; Devictor et al., 2012).
However, the notation of ‘debt’ might imply that individuals within populations are stressed or
threatened, which might not be the case with highly mobile planktonic organisms. We therefore
use the term “climatic lag” for the accumulated delay throughout this study. To quantify the
climatic lag, we first calculated the preferred temperature of each foraminiferal species by an
ecological transfer function via the rioja R package (Juggins, 2020). As an ecological transfer
function, we used weighted averaging partial least squares (WA-PLS) regression and calibration
(Ter Braak et al., 1993). Performance of the WA-PLS transfer function was determined via
leave-one-out cross-validation (Supplementary Data Fig. 1). WA-PLS requires the development
of a calibration training set, which is then used to model the relationship between assemblages
and temperature. We calibrated the WA-PLS function using a training set from time steps within
the interquartile range of all temperature variation throughout the last 700 ka. This enabled us to
estimate the relationship between each foraminiferal species and temperature at background
times (i.e., during times of average climatic). We then used this relationship based on WA-PLS
to calculate the assemblage temperature of each planktonic foraminifera assemblage in time
(i.e., the preferred temperature as indicated by composition and relative abundance of individual
species within an assemblage). The assemblage temperature is therefore informed by the sum
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of individual temperature niches of species within an assemblage. A temporal increase in the
assemblage temperature directly reflects that the assemblage is increasingly composed of
individuals belonging to species preferring higher temperature. In the next step, we calculated
the climatic lag of each assemblage in time as the difference between the assemblage
temperature (as calculated by WA-PLS) and the empirical seawater temperature (as estimated
by the AOGCM). We then modeled the change in climatic lag as a function of temperature
change. For this, we used linear mixed effect models [(lmm, (Bates et al., 2015)] with a random
effect on temporal bins, in order to account for differential sampling effort within those bins. We
calculated lmm’s for the general global climatic lag as well as for latitudinal zones. We defined
assemblages located between 0° and 30° absolute latitude as low latitude; between 30° and 60°
as mid latitude; and above 60° as high latitude. To quantify uncertainty around the trend
estimates based on the lmm, we used parametric bootstrapping. We additionally used these
lmm’s for the quantification of changes in climatic lag when the temperature increases by 1 to 3
degrees Celsius under a climate warming scenario.

Climatic lag through time:

We calculated the global climatic lag through time by summarizing the climatic lag of individual
assemblages within each time bin, and calculated uncertainty around this average trend via
bootstrapping. As planktonic foraminifera assemblages were unsampled in some time bins
between 460 and 444 ka (Supplementary Data Fig. 2), the resulting global bin-to-bin climatic lag
around this interval can be considered unreliable. Similarly, we calculated the mean global
temperature by summarizing the mean annual seawater temperature estimates from the
AOGCM of assemblages within each bin. We then correlated the global climatic lag through
time with the mean global temperature to test how climatic lag is arising from temperature
changes in time. We did this correlation for the global temperature at the focal time bin of each
global climatic lag estimate and then added preceding temperature trends to the correlation
model to test for legacy effects (Mathes et al., 2021; Svenning et al., 2015). These preceding
temperature trends ranged back 8 ka (lag 1), 16 ka (lag 2), and 24 ka (lag 3). We additionally
calculated a null model based on an intercept-only regression for means of comparison. For
each model (null model, temperature at bin, temperature at bin and lag 1, temperature at bin
and lag 2, temperature at bin and lag 3) we calculated the Akaike’s Information Criterion [AIC,
(Burnham, 1998)] to quantify model performance. We additionally quantified the uncertainty of
each AIC value via leave-one-out cross validation. We then performed a model comparison by
means of delta-AIC, which is calculated as the difference in AIC of each model to the model with
the lowest AIC (i.e., with the best performance). By doing so, we were able to quantify the time
range over which climate legacy effects had the strongest influence on global climatic lag while
simultaneously showing the relative impact of global temperature (by comparison with the null
model).

Climatic lag without relative abundance changes:

The climatic lag as calculated by means of WA-PLS is taking the relative abundance of
individual species into account. To estimate the degree to which planktonic foraminifera
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assemblages respond to climatic changes by relative abundance changes of individual species,
we additionally estimated climatic lag after omitting abundance changes of species. To do so,
we calculated a species temperature index for each species as the average temperature of the
species range based on occurrences. The assemblage temperature, the preferred temperature
of an assemblage based on its species composition, is then calculated, for a given assemblage,
as the average of all species’ temperature indices. Climatic lag is then again calculated by the
difference in assemblage temperature and the surface temperature estimate based on the
AOGCM. This climatic lag estimate is hence only based on distribution shifts of individual
species and is not taking relative abundance changes of species within assemblages into
account. By comparing the trends of this occurrence based climatic lag to trends of the original
climatic lag (based on relative abundance), it is possible to estimate the importance of
abundance changes when assemblages respond to changes in temperature.

Surface-depth comparison:

We originally calculated the climatic lag for planktonic foraminifera assemblages based on the
mean annual temperature estimate of the AOGCM at the surface. To test whether this biases
our results, we additionally calculate climatic lag based on the temperature estimate at the
preferred depth of each foraminifera species. We then compared resulting patterns and trends
in the climatic lag between these two temperature estimate approaches. The differences
between the two methods were small and resulting latitudinal patterns in climatic lag stayed the
same (Supplementary Data Table 3). This is in line with previous studies of foraminifera ecology,
where equivalent results were obtained based on data from the sea surface or at depth (Antell
et al., 2021; Richter et al., 2019).

Range lag:

We calculated range lag as the difference between the required range velocity to track climatic
changes and the realized velocity of assemblages, following Devictor et al. (Devictor et al.,
2012). We first modeled the general trend in assemblage temperature from the equator to the
poles for all observations across time via a linear regression model. We defined this as the
spatial gradient in assemblage temperature, expressed in °C km-1. We then calculated the
temporal trend of the assemblage temperature in response to climate change as °C 8 ka-1 via a
lmm, accounting for differential sampling effort between bins using a random effect on temporal
bins. Similar to climate velocity (Burrows et al., 2011), the ratio between the temporal trend in
assemblage temperature and the spatial gradient in assemblage temperature then resulted in
the velocity of assemblage temperature (°C km-1/°C 8 ka-1 = km 8 ka-1). Similarly, we
calculated the temporal trend in temperature change (°C 8 ka-1) and divided it by the spatial
gradient in temperature from the equator to the poles (°C km-1), to get the velocity of
temperature change (km 8 ka-1). The difference between the spatiotemporal velocity of
temperature and the velocity of assemblage temperature then resulted in the range lag,
quantifying how much assemblages lag behind temperature changes in terms of range velocity.
We calculated this range lag for all latitudinal zones (low, mid, high) responding to temperature
warming or cooling.
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RESULTS

Planktonic foraminifera assemblages generally track climatic changes over the past 700,000
years when those changes were minor but substantial climatic lags emerged under high climate
change (Fig. 2, Supplementary Data Fig. 3). Assemblages responded to climatic changes by
species turnover and/or abundance changes and were in equilibrium with adjacent climatic
conditions when no climatic changes occurred through time (Fig. 2b). However, under a
changing climate, assemblages were not able to closely track the new climatic conditions,
resulting in a mismatch between the actual temperature at the site and the preferred
temperature of the assemblage. This global climatic lag grew on average by 0.56°C (95%
confidence interval (CI) [0.4, 0.7]) with every 1°C temperature change (Fig. 2b).

Figure 2: Trends in climatic lag. (a) Global distribution of foraminifera assemblages used
in this work, coloured by latitudinal zones, 0-30, 30-60, 60-90 degrees absolute latitude.
(b) The global climatic lag of all foraminifera assemblages as a function of temperature
change. The horizontal equilibrium line shows complete temperature tracking when
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assemblages respond ideally to a temperature change (e.g., 1°C warming leads to an
assemblage showing preference for a 1°C warmer climate, resulting in zero climatic
lag). The no response line shows no temperature tracking when assemblages are
unable to respond to a temperature change (e.g., when assemblages show no
community changes even if the temperature increases by 1°C, the resulting climatic lag
is 1°C). (c) Latitudinal patterns of climatic lag as a function of temperature change. The
coloured areas depict the 95% confidence interval of the focal regression slope.

Assemblages in high latitudes showed a similar response of moderate climatic lags under
climate cooling but accumulated substantial climatic lags under a warming scenario (Fig. 2c).
With every 1°C warming, the climatic lag in assemblages in high latitudes grew by 3.4°C (95%
CI [2.0, 4.8]). Conversely, assemblages in low latitudes were least able to track climatic changes
under a cooling scenario while being more in equilibrium with climate when the temperature
increased. The mismatch between preferred and actual temperature in these low latitude
assemblages grew by 4.4°C (95% CI [3.1, 5.8]) with every 1°C cooling. Surprisingly, low latitude
assemblages showed a slightly decreasing climatic lag with increasing magnitude of warming
(-0.4°C per 1°C warming, 95% CI [-0.7, 0]).

The range lag, the difference between the required range velocity to track climatic changes and
the realized velocity, was substantially increased in high latitude assemblages after a period of
warming (Fig. 3). While the absolute range lag for most assemblages was between 12 and 198
km per 8 ka, these high latitude assemblages experiencing warming accumulated a range lag of
553 km 8 ka-1 (95% CI [530, 575]). This indicates that planktonic assemblages were generally
not in full equilibrium with climate, with the biggest mismatch arising in high latitudes after a
warming period.

On a global scale, planktonic foraminifera assemblages were generally in equilibrium with
climate throughout the past 700 ka (Fig. 4). The average global climatic lag fluctuated between
-2°C and 2°C (Fig. 4a), with a period of significantly decreased values between 460 and 440 ka,
which was artificially generated by a sampling hiatus in this period (Supplementary Data Fig. 2).
How well assemblages react to climate warming or cooling was dependent on the long-term
climatic context, with climatic changes over 16 ka having the strongest impact (Fig. 4 b and c).
These 16 ka lasting climate legacies can explain up to 13.3% of variance of climatic lag
(bootstrapped R-squared, 95% CI [13.1%, 13.4%]). This indicates that responses of
assemblages to climatic changes were conditional on the preceding climate, such that climatic
lag after a warming event was pronounced when the climate was generally warming over the
preceding 16 ka and less so when the preceding 16 ka trend showed a climate cooling
(Supplementary Data Fig. 4). Vice versa, climatic lag after a cooling period was increased after
a 16 ka cooling trend but generally lower after a 16 ka warming trend.
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Figure 3: The range lag in km 8 ka-1, which is the difference between the required
range velocity to track climatic changes and the realized velocity. The range lag here is
summarized across either temperature cooling or temperature warming across the past
700 ka. The range lag is shown in orange and the range of the corresponding 95%
confidence interval is in square brackets. A range lag of zero means assemblages are
able to track climatic changes, with a higher range lag indicating higher disequilibrium
dynamics. Coloured circles show mean estimates and lines show 95% confidence
intervals for the realized velocity (the actual range velocity of assemblages as estimated
from fossil data) in black, and the required velocity (the range velocity of assemblages
needed to stay in equilibrium with climate) in gray. The point color indicates latitudinal
zones.

We repeated all analyses after first using temperature at the sea surface with the temperatures
derived at each species’ preferred depth layer, whereby the magnitude and trends in climatic lag
stayed the same (Supplementary Data Table 3). Similarly, calculating climatic lag on
occurrences instead of relative abundance of individual foraminifera species revealed the same
trends but resulted in higher magnitudes in climatic lag, for both the global climatic lag
(Supplementary Data Fig. 5) and for latitudinal zones (Supplementary Data Fig. 6). This
indicates that species within assemblages not only respond to climatic changes by shifting their
distribution, but also by changing their abundance.
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Figure 4: Global climatic lag across the past 700 ka and model comparison of its
correlation with temperature changes. (a) Mean global climatic lag through time in
orange along with the 95% confidence interval in gray. As planktonic foraminifera
assemblages were unsampled in some time bins between 460 and 444 ka
(Supplementary Data Fig. 2), the resulting global bin-to-bin climatic lag around this
interval can be considered unreliable. (b) The mean global temperature through time as
estimated by a coupled Atmosphere–Ocean Generalized Circulation Model. (c) Model
performance for the correlation of the global temperature at the focal time bin and the
global climatic lag (temperature), and preceding temperature trends (see Methods) to
test for legacy effects. The null model was based on an intercept-only regression. Model
comparison was based on AIC values, whereby the best performing model displays a
delta-AIC of zero. Orange points show the mean estimate for the delta-AIC and the gray
circles display the standard deviation around the mean estimate.

DISCUSSION

Our results show, over a global area and for 38 species, the ability of planktonic foraminifera
assemblages to keep pace with climate change over the past 700 ka by both species
distribution shifts and changes in relative abundances. However, this ability to track climate was
not spatially consistent. Assemblages in high latitudes during warming and assemblages in low
latitudes during cooling showed a high accumulation of lags in their biotic response to climate
change, which we term climatic lag. This climatic lag may be surprising given the 8 ka resolution
of our study, where we expected to see a higher ability of assemblages to track climate change
over this ecologically long timescale (Hutchins & Fu, 2017), as marine species may be better
able to track climate velocities (Lenoir et al., 2020; Pinsky et al., 2013; Sunday et al., 2012).
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However, having ‘nowhere to run to’ may explain the extraordinarily high accumulation of lags of
polar species during warming and tropical species during cooling.

Assemblages in particular latitudinal bands showing unexpectedly high climatic lags can be
explained by the geometry of the globe in combination with a latitudinal diversity gradient and
ecological priority effects. For example, high latitude assemblages are thought to show high
rates of turnover under climate warming (Antão et al., 2022; Koltz et al., 2018) but our results
indicate that for the past this supposedly high turnover was not sufficient to stay in equilibrium
with climate (Fig. 2 and 3). Under climate warming, high latitude assemblages experience the
greatest proportional loss of available habitat space (Reddin et al., 2022; Stanley, 1987).
Whereas low latitude assemblages under climate warming can benefit from the higher species
pool in the tropics as well as the novel equatorial climate suitable for range expansions,
potentially resulting in the observed decrease in climatic lag. This explanation of high latitude
assemblages accumulating large climatic debt under climate warming with low latitude
assemblages not showing the same trend is in line with existing literature (Reddin et al., 2018,
2022; Storch et al., 2014; Walters et al., 2012). Under climate cooling, warm-adapted species in
low latitudes are impeded from closely tracking preferred climates as the suitable habitat is no
longer available (Stanley, 1987), potentially leading to the observed high climatic lags of tropical
assemblages under cooling. The combination of geographic constraints at the equator and the
poles with available diversity could similarly explain the pattern in range lags (Fig. 3). The
particularly high range lag for high latitude assemblages during a climate warming, however,
might also result from the generally higher rates of warming during deglaciation as opposed to
the rates of ice sheet growth during glacial cycles (Lisiecki & Raymo, 2007).

Tipping points might be another potential explanation for the disproportionate response of low
latitude assemblages to climatic cooling (1°C of cooling resulted in assemblages showing a
preference for a 4.4°C cooler climate, on average) and high latitude assemblages responding to
a warming scenario (1°C of warming resulted in assemblages showing a preference for a 3.4°C
warmer climate, on average). If the degree of warming is exceeding a threshold, cool-adapted
species at high latitudes are restricted to a smaller habitat area toward the poles where they
might outnumber other species, leading to the observed pattern. Similarly, low latitude
assemblages might be propelled into a new state of dominating warm-adapted species if the
degree of cooling is high enough, as the remaining warm-adapted species are restricted to a
smaller habitat area. The existence of tipping points within planktonic foraminifera assemblages
might have far ranging implications for marine ecosystems under anthropogenic climate change
(Pecl et al., 2017), if other marine plankton groups are showing the same response.

Climatic lag in general is a direct measure of the disequilibrium of assemblages with climate
change (Bertrand et al., 2016; Garcia et al., 2014), which is arising from a combination of biotic
and abiotic processes (Essl et al., 2015; Svenning & Sandel, 2013). However, long lasting
legacies may be present in contemporary assemblages (Mathes et al., 2021; Svenning et al.,
2015), impeding the identification of these processes. We found indication for such legacies in
our analysis, with effects of past temperatures ranging back as far as 16 ka explaining up to
13% of variance in global climatic lag. The response of planktonic foraminifera assemblages to
climate warming might therefore be conditional on the preceding climate, as it has been found
for other marine groups as well (Burrows et al. 2019; Antão et al. 2020; Mathes et al. 2021a).
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This dependency on the preceding climate might have implications for future climate change,
with a longer-lasting climate warming potentially leading to ecological cascades within
assemblages (Beaugrand 2015). Without considering how historical factors shape modern-day
dynamics, current assessments of biodiversity as well as predictions under future climate
change might hence be erroneous.

The mismatch of high latitudinal assemblages to a warming climate is particularly alarming as
polar regions are projected to experience rapid and significant changes under anthropogenic
climate change (Pörtner et al., 2022). If holoplankton assemblages in high latitudes are not able
to adapt to these changes, as indicated by our data for foraminifera (Fig. 2 and 3 and
Supplementary Data Fig. 7), substantial and long-lasting effects on ecosystem functioning are
likely to emerge from local extirpations, novel species interactions and cascading effects
(Bertrand et al., 2016; Svenning et al., 2015; Walther et al., 2002). Within assemblages in mid
and low latitudes, anthropogenic climate warming may lead to species emerging as winners or
losers resulting from asynchronous responses of individual species within assemblages and
habitat contractions through poleward migration (Reddin et al., 2022). This can either reduce or
impose constraints on species fitness, abundance and distributions (Antão et al., 2022), leading
to community change. While severe climatic lags are likely for high latitudinal planktonic
assemblages in the future, shifts in species distributions with widespread implications can hence
be expected for all planktonic assemblages.

CONCLUSIONS

Here we showed how planktonic foraminifera assemblages, which are primary components of
marine food webs and biogeochemical cycles, have responded to environmental change over
past millennia in order to identify what makes certain assemblages more vulnerable to recent
and future climate change. While planktonic foraminifera assemblages were on average in
equilibrium with climate, substantial climatic lags emerged in high and low latitudes under
specific temperature change scenarios. Understanding the underlying processes of these
climatic lags, which occur when assemblages are no longer in equilibrium with climate, is crucial
for predicting responses of assemblages under anthropogenic climate change, informing
conservation planning, as well as understanding likely changes in ecosystem functioning
(Svenning & Sandel, 2013).
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Supplementary data

Supplementary Data Fig. 1: Weighted averaging partial least squares (WA-PLS) regression was
used to estimate the relationship between assemblage composition of planktonic foraminifera
and ambient temperature. (a) The performance of the model was assessed on the training
subset (black line and points) and by leave-one-out cross-validation (orange line and points) via
the root mean square error (RMSE). The appropriate number of components to use in the
subsequent analysis was chosen by minimizing the cross-validated RMSE, which resulted in 4
components. (b) The R2 value for the WA-PLS regression based on cross-validation (orange)
and test subset (black) as a function of the number of components.
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Supplementary Data Fig. 2: The number of planktonic foraminifera assemblages through time.
As planktonic foraminifera assemblages were unsampled in some time bins between 460 and
444 ka, the resulting global bin-to-bin climatic lag around this interval can be considered
unreliable. Note that the number of assemblages is plotted on a logarithmic scale.
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Supplementary Data Fig. 3: The global climatic lag of all foraminifera assemblages as a function
of temperature change, without adjusting for differential sampling effort within bins. The
horizontal equilibrium line shows complete temperature tracking when assemblages respond
ideally to a temperature change (e.g., 1°C warming leads to an assemblage showing preference
for a 1°C warmer climate, resulting in zero climatic lag). The no response line shows no
temperature tracking when assemblages are unable to respond to a temperature change (e.g.,
when assemblages show no community changes even if the temperature increases by 1°C, the
resulting climatic lag is 1°C).
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Supplementary Data Fig. 4: Legacy effects of past temperature on the response of planktonic
foraminifera assemblages to climate change. The climatic lag as estimated by linear mixed
effect models was conditional on whether the preceding 16 ka temperature trend showed a
cooling or warming. Coloured points are showing the mean estimate for the climatic lag and
lines the 95% confidence interval per latitudinal zone. The orange line is showing the average
trend.
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Supplementary Data Fig. 5: The global climatic lag of all foraminifera assemblages as a function
of temperature change, based on the preferred temperatures of assemblages estimated by
including the relative abundance of individual species (orange line), or by occurrences only
(gray line). The gray area depicts the 95% confidence interval of the regression slope. The
global climatic lag of all foraminifera assemblages as a function of temperature change, based
on the preferred temperatures of assemblages estimated by including the relative abundance of
individual species (orange line), or by occurrences only (gray line). The gray area depicts the
95% confidence interval of the regression slope.
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Supplementary Data Fig. 6: The climatic lag of foraminifera assemblages per latitudinal zone as
a function of temperature change, based on the preferred temperatures of assemblages
estimated by occurrences only. The coloured areas depict the 95% confidence interval of the
focal regression slope.
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Supplementary Data Fig. 7: The estimated percentage change in climatic lag based on linear
mixed effect models when ambient temperatures increase by 1°C, 2°C, or 3°C. Coloured points
show the mean estimate for the percentage change per latitudinal zone and lines indicate the
focal 95% confidence interval.
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Supplementary Data Table 1: Number of occurrences per species for the cleaned dataset for the
whole time period (total) and latitudinal zones, 0-30, 30-60, 60-90 degrees absolute latitude.
The dataset contains 38 species with 98,297 total occurrences.

Species Total High Mid Low

Beella digitata 3,336 11 1,028 2,297

Beella megastoma 35 35

Beella praedigitata 28 16 12

Globigerina bulloides 6,358 468 2,536 3,354

Globigerina falconensis 4,384 75 1,727 2,582

Globigerina umbilicata 32 32

Globigerinella adamsi 193 193

Globigerinella calida 4,276 3 1,242 3,031

Globigerinella siphonifera 5,274 14 1,569 3,691

Globigerinoides conglobatus 3,186 660 2,526

Globigerinoides ruber 5,564 23 1,808 3,733

Globoconella inflata 4,442 254 2,373 1,815

Globoquadrina conglomerata 986 6 42 938

Globorotalia flexuosa 19 19

Globorotalia tumida 2,891 9 194 2,688

Globorotalia ungulata 28 28

Globorotaloides hexagonus 1,016 105 911

Globoturborotalita rubescens 3,150 2 797 2,351

Globoturborotalita tenella 3,485 3 852 2,630
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Hirsutella hirsuta 2,465 31 1,356 1,078

Hirsutella scitula 4,000 90 1,682 2,228

Hirsutella theyeri 373 373

Menardella menardii 3,747 480 3,267

Neogloboquadrina dutertrei 5,141 110 1,468 3,563

Neogloboquadrina pachyderma 3,854 765 1,984 1,105

Orbulina suturalis 40 40

Orbulina universa 5,029 72 1,867 3,090

Pulleniatina obliquiloculata 3,607 476 3,131

Sphaeroidinella dehiscens 1,641 111 1,530

Trilobatus sacculifer 4,768 2 1,063 3,703

Trilobatus trilobus 3,595 2 794 2,799

Truncorotalia crassaformis 2,767 8 758 2,001

Truncorotalia crassula 65 65

Truncorotalia tosaensis 15 4 11

Truncorotalia truncatulinoides 3,998 13 2,012 1,973

Turborotalita cristata 48 48

Turborotalita humilis 865 10 490 365

Turborotalita quinqueloba 3,596 694 1,900 1,002
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Supplementary Data Table 2: Number of assemblages sampled in the northern hemisphere
(Global North) and the southern hemisphere (Global South), for each latitudinal zone, 0-30,
30-60, 60-90 degrees absolute latitude.

Latitudinal Zone Global North Global South

High 423 1

Mid 607 326

Low 782 528
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Supplementary Data Table 3: The mean estimate for the change in climatic debt if temperature
increases by 1°C (red background) or decreases by 1°C (blue background), for each latitudinal
zone, 0-30, 30-60, 60-90 degrees absolute latitude. The estimate is based on linear mixed effect
models and was calculated either based on the surface temperature (Surface) or the
temperature derived at each species’ preferred depth layer (Preferred Depth). Values in square
brackets indicate the 95% confidence interval.

Latitudinal Zone Surface Preferred Depth

High
3.42 [2.02, 4.81] 3.42 [2.08, 4.75]

0.36 [0.05, 0.67] 0.36 [0.06, 0.66]

Mid
0.25 [-0.62, 1.11] 0.25 [-0.64, 1.13]

0.43 [0, 0.87] 0.43 [0.01, 0.86]

Low
-0.36 [-0.72, 0.01] -0.36 [-0.75, 0.03]

4.44 [3.08, 5.8] 4.44 [3.09, 5.79]
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ABSTRACT

Background: We discuss opportunities for transdisciplinary research between terrestrial
macroecology and palaeoecology, and highlight key research topics that benefit from an
interdisciplinary integration in terms of a common understanding of robust data practices and
the successful interchange of methodologies and approaches

Research challenges and opportunities: We highlight the pitfalls related to the increasing
availability of palaeoecological data should the two disciplines continue to work separately with
discipline-centred methods (i.e. ‘multidisciplinary isolation’). We briefly address differences in
perspectives on niche space, adaptation, and fossil pollen assemblages, among others, while
also arguing that macroecology and palaeoecology have more in common than is often
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perceived. Many opportunities are at hand that can strengthen both disciplines and we specify
research topics in need of a strong integration

Outlook: We advocate for the need for cross-discipline-friendly guidelines that explain the
foundational data knowledge by users from any discipline and which will guide the user to best
practices with specific recommendations for filtering procedures of palaeoecological data. We
also highlight the high potential in methodological interchange between macroecology and
palaeoecology (‘methodological recycling’) in quantitative analysis where macroecology can
contribute with its solid experience of handling large datasets and innovative advances in
numerical ecology of large, complex datasets heterogeneous across space and time. Sharing
palaeoecological perspectives and supporting correct use of open-access palaeoecological
databases can provide the needed integration with macroecology to achieve a holistic
understanding of global-change ecology on multiple spatial and temporal scales.

INTRODUCTION

The importance of long-term data for understanding ecological patterns

With biodiversity loss being one of the major challenges of our society and the rising concern
that an increasing wave of extinctions may be imminent (McCauley et al., 2015), enhancing our
understanding of natural processes and biotic responses to global change is crucial. The
potential to predict the impact of future stressors strongly depends on our understanding of
general mechanisms and interactions (Brook & Alroy, 2017; Flessa & Jackson, 2005a; Kerr et
al., 2007; Stigall, 2013). Macroecology plays an essential role in understanding the threats that
global changes pose to biodiversity. Still, Brown emphasised already in 1989 the importance of
long-term history and historical ecology when studying macroecological patterns in the present
and future (Brown, 1989). Through fossil pollen sequences, and the determination of larger
plant fossils, palaeoecology has provided detailed information on the vegetation history of
thousands of localities worldwide. It has enhanced our understanding of local-to-regional
variation in climate, human impact, and other environmental drivers over time. Integrating
research ideas, data and analytical approaches from macroecology and palaeoecology will
enhance our ability to quantify and model natural processes and develop new research
questions much needed in global-change ecology.

Here, we reflect on opportunities for global-change ecology by enhancing ‘transdisciplinary
research’ between macroecology and palaeoecology, and highlight key macroecological
questions that benefit from integrating time series of the past (Fig. 1). Such research is much a
joint effort using shared conceptual frameworks drawing together on disciplinary-specific
theories, concepts, and approaches to address common problems and research topics
(Aagaard-Hansen, 2007). We first discuss the obstacles hindering a more widespread use of
fossil pollen data – and highlight the potential and pitfalls related to the increasing availability of
palaeo-data when used in a more isolated ‘multidisciplinary manner’ (Researchers work in
parallel or sequentially from a disciplinary-specific base to address common problems but in a
separate manner; adjusted from Aagaard-Hansen (2007); Fig. 2A). We discuss the prospects
for combining the two disciplines into ‘interdisciplinary research’ (Researchers work jointly but
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still from disciplinary-specific bases to address common problems; Aagaard-Hansen, 2007), with
a focus on the Quaternary using fossil plant remains. The latter reflects the authors’ greater
familiarity with the terrestrial fossil pollen record.

We also highlight specific topics of common interest to macroecology and palaeoecology where
we see that macroecological patterns could benefit from incorporating a palaeoecological
perspective. We acknowledge that our selected topics are limited compared to the exciting
research we foresee. Notwithstanding, we hope that the reader will appreciate the highlighted
topics, including niche space, no-analogue assemblages and climates, speciation, and
extinction.

The temporal dimensions of ecological fields

The field of ‘Ecology’ (coined in 1866 by Ernst Haeckel: Egerton, 2013) has branched out into
multiple disciplines that study the relationships between organisms, ecosystems, and the
physical environment at all scales of space and time (Odum & Barrett, 2004). Temporal scale is
a key axis to subdivide a number of ecological disciplines from palaeontology and palaeobiology
through palaeoecology and historical ecology to modern ecology (Fig. 1).

A major division in palaeoecology (Fig. 1) is between Quaternary-time palaeoecology (i.e. last
2.58 million years (Ma)) and deep-time palaeoecology (Jackson, 2001). A clear difference
between ‘historical’, ‘long-term’, and ‘deep-time’ ecology is currently lacking, and their varying
usage in the literature exemplifies how these concepts are discipline dependent (Giesecke et al.
2018: Rull 2012). Some have suggested ‘long-term ecology’ to refer to observational ecological
datasets at the scale of a decade to a century (up to 180 yr in some exceptions; Lindenmayer et
al., 2012; Magurran et al., 2010) while others suggest palaeoecology to be ‘true long-term
ecology’ (Rull 2012) though the latter can also cover decadal research. Macroecology is
cross-temporal research field (Fig. 1) within ecology with a long history (e.g. Alexander von
Humboldt used macroecological approaches; Schrodt et al., 2019), but it was not until 1989 that
the field of macroecology was first described as a separate and standalone discipline (Brown &
Maurer, 1989; Brown, 1995).

An increasing number of recent papers have called for the integration between the ‘newly arisen
and maturing’ macroecology and well-established palaeoecology. From the side of
macroecology, excellent overviews have been provided (Beck et al., 2012; Lyons and Smith,
2010; McGill, 2019; Kerr & Dobrowski, 2013), for instance the combination of macroecology with
deep-time (faunal) palaeoecology (Fritz et al., 2013) and with marine palaeoecology (Yasuhara
et al., 2017). Especially in the field of nature conservation, palaeoecologists have long called for
the addition of long-term or pre-historical (observed beyond modern science) perspectives (Box
1; e.g. Birks, 1996, 2012, 2019a; Delcourt & Delcourt, 1998; Flessa & Jackson, 2005; Rull 2012,
2014; Vegas-Vilarrúbia et al., 2011; Willis & Birks, 2005). Perhaps this integration is more
imminent than previously envisioned as palaeoecology has a strong macroecological character
in terms of the taxonomic and temporal scale dealing with ecological patterns over periods
ranging from decades to millions of years. In addition, the number of palaeoecological studies
that cover large spatial scales has increased thanks to the substantial and expanding amount of
open-access data (Williams et al. 2018). With the definition used for ‘macroecology’ (Box 1) –
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large in at least one of the scale (taxonomic, temporal, or spatial), with a strong emphasis on
statistical descriptions of ecological attributes and geographical patterns – we argue that
palaeoecological research is essentially moving to be macroecological palaeoecology.

Figure 1 | Different ecology disciplines and their temporal time scales on which data are
gathered and assessed. (Adapted from Rull, 2020).

THE ERA OF PALEO-DATA AVAILABILITY

Many broad-scale ecological patterns can now be assessed using an unprecedented quantity of
palaeoecological data, covering the three dimensions of space, time, and taxonomy at the same
time (Table 1). For example, the open-access database of Neotoma has a global coverage
consisting of more than 5000 Quaternary pollen-stratigraphic datasets (Williams et al., 2018)
providing an open source archive for a range of proxy data for any interdisciplinary user. In fact,
palaeoecology has a long history of making data freely accessible (Table 1; Brewer et al., 2012;
Goring et al., 2015) and easy sourcing of the database is now facilitated by web APIs and
accompanying R packages (neotoma and neotoma2). However, critical challenges and pitfalls
arise regarding the use of palaeodata when disciplines continue to work in parallel and
separately (multidisciplinary research, see Fig. 2A) without knowing about typical pitfalls (cf. the
‘knowns’) within a given discipline.
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Figure 2 | A holistic view of the opportunities and challenges in global-change ecology in a
trans-disciplinary macro-palaeo world. a) In the use of palaeo-data and the analyses of large
palaeoecological dataset compilations, there are known and unknown matters for both the fields
of macroecology and palaeoecology. With the development of cross-discipline-friendly
guidelines and open-science research in terms of methods and coding, the integration of
macroecology and palaeoecology can move from doing ‘multidisciplinary research’ to
‘interdisciplinary research’, and more excitingly towards collaborating closely in ‘transdisciplinary
research’ in global-change ecology. b) Achievable research themes are equally dependent on
the degree of integration between the two fields in which it is pivotal to understand the strengths
(knowns) and challenges (unknowns) of each field, and where opportunities are at hand to
jointly address and circumvent these challenges to explore exciting new research grounds.
Definitions: Multidisciplinary research: Researchers work in parallel or sequentially from a
disciplinary-specific base to address common problems but in a separate manner (adjusted from
Aagaard-Hansen, 2007). Interdisciplinary research: Researchers work jointly but still from
disciplinary-specific bases to address common problems (Aagaard-Hansen, 2007).
Transdisciplinary research: Researchers work jointly using a shared conceptual framework
drawing together disciplinary-specific theories, concepts, and approaches to address common
problems and research topics (adjusted from Aagaard-Hansen, 2007). Multidisciplinary
isolation: The situation in which researchers from different disciplines use the same data and
perhaps also target similar research questions but nevertheless work in isolation. This setting
substantially increases the risk of being unaware of crucial background knowledge needed for
proper data handling and analysis, which consequently jeopardises the robustness of the
outcomes of analyses on these data. *Quaternary climate dynamics: refers here to “snapshot”
research (Flantua et al. 2020) for hypothesis formulation and research themes highly focused
on the present (interglacial period) while disregarding the dynamic past of the Quaternary in
which >80% were glacial and cool interstadial conditions. The “extreme” snapshot at LGM is a
poor representation for the rest of the Quaternary (Flantua et al. 2020)
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The use of palaeoecological data by users from other disciplines is hampered by its specialised
terminology and multidimensional complexity at coarser temporal and taxonomic resolution
compared to modern ecological data (Fig. 2; Birks, 2012; Blois, 2012; Rull, 2014). Handling
such uncertainties is challenging but should not impede the wider use of palaeoecological data.
A protocol or guide for the use of such data is however missing to date and this hampers
integration with macroecology by inadequate use of the data (Wuest et al., 2020). The strongest
and fastest integration between disciplines will be achieved from open-source software and data
accompanied by ‘cross-discipline-friendly guidelines’, i.e. guidelines made specifically for users
of any scientific background focused on clarifying concepts but also to guide the user to best
practices with data specific recommendations. Any data user needs to know the specific
‘knowns’ in palaeoecology that are ‘unknowns’ outside the field (Fig. 2A) that will inevitably and
critically affect analyses and conclusions if not accounted for (Blois, 2012; Brewer et al., 2012;
Pardoe et al. 2021). Examples include: (i) dealing with taxonomic and temporal uncertainties in
the palaeoecological record; (ii) the relevance of taphonomic processes related to depositional
environments; and (iii) knowledge about criteria to identify the quality of the sampled
sequences. In an attempt to fulfil such needs for fossil pollen sequences to be used for
continental and global analyses, [For review: Authors anonymous] et al. (GEB, in review)
present a stepwise guide to process and standardise data from public and private sources
including a protocol for best practices and sets of inferences (related to the above mentioned
issues) for appropriate data analyses. For other valuable palaeoecological proxies, such as
diatoms and phytoliths, such guides are still missing but soon in high demand as more
open-access databases become available (e.g. Benito et al. 2022).

Table 1: Past and present databases containing Quaternary fossil pollen data at historical to
deep-time scales.

Database Time period Region Existence Key papers

ACER Last glacial cycle

(73-15 ka)

global Part of publication, now in

PANGAEA

Sánchez Goñi

et al. 2017

African Pollen

Database

1 Ma to present Africa Started in 1996 and developed

independently.

Vincens et al.

2007; Ivory et

al. 2020;

Runge et al.,

2021

Alpine Pollen

Database

1 Ma to present Eurasian Developed in parallel to the EPD

with open access sequences

moved to the EPD, since 2019

constituent database of Neotoma

van der

Knaap et al..

2005.

157



Main research

Canadian Pollen

Database

1 Ma to present Started in the 1980s, many

datasets became part of the

North American Pollen Database

and subsequently Neotoma

Chinese Pollen

Database

1 Ma to present Private initiative, some

sequences in Neotoma

Herzschuh et

al., 2019

Cooperative

Holocene

Mapping

Project

(COHMAP)

Holocene Started in the 70s and 80s and

became the seed of the North

American Pollen Database

COHMAP

Members

1988, Wright

et al. 1993

Deep-time

Palynology

Database

30 Ma – 10 Ma Global,

mostly

South

America

New constituent database inn

Neotoma to host deep-time

datasets

East Asian

fossil Pollen

Database

1 Ma to present East Asia Private initiative Cao et al.

2013 RPP;

Cao et al.

2022

EMBSeCBIO

pollen database

Holocene? Eastern

Mediterr

anean-Bl

ack

Sea-Casp

ian-Corri

dor

Private initiative,

https://researchdata.reading.ac.u

k/309/

Marinova et

al. 2017

European

Pollen Database

(EPD)

1 Ma to present Started in 1989, since 2016

constituent database of

Neotoma with data available

through Neotoma since 2022

Fyfe et al.

2009,

Giesecke et

al. 2014

Global Pollen

Database (GPD)

Developed out of a combination

of pollen databases and became

Grimm et al.

2013
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the seed data for the

development of Neotoma 2006

Iberian

Peninsula

database

Holocene Private initiative,

https://researchdata.reading.ac.u

k/369/

Harrison et al.

2022

Indo-Pacific

Database

1 Ma to present Initially part of the BIOME6000

project, currently in CABAH

database and partly in Neotoma

Japanese Pollen

Database

1 Ma to present Initially private initiative, now

constituent database in Neotoma

Takahara et

al. 2000

Latin American

Pollen Database

1 Ma to present Mexico,

Central

and

South

America

Started in 1994, did not develop

its own storage facilities, but

became part of the GPD and

now a constituent database of

Neotoma

Flantua et al.

2015

Neotoma Global Established in 2006, received the

GPD and constituent databases

over the course of the 2010s.

Williams et

al., 2018

https://www.n

eotomadb.org/

North American

Pollen Database

1 Ma to present Started in 1990, part of the GPD

and thus Neotoma

Paleobiology

database

10 Ma to 100 kyr Started in 1998 in the

Phanerozoic Marine Paleofaunal

Database initiative (1998-2000)

and further expanded with

additional funding in the

following years

https://paleobi

odb.org;

http://www.pb

db.org/

PANGAEA 1 Ma to present Global Partial overlap with Neotoma Diepenbroek,

2018

Pollen Database

for the Russian

Far East

(PDSRFE)

Started in 1995, then part of the

GPD, and now in Neotoma. Will

be supervised by EPD in the

future.

Bartlein &

Webb, 2021
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Siberia

(Northern

Asian) fossil

pollen database

Last 40 kyr Available at

https://doi.pangaea.de/10.1594/P

ANGAEA.898616

Cao et al.

2020.

A potential knowledge gap, leading to misunderstandings, in the use of palaeoecological data
from a macroecological perspective is the interpretation of the observed palaeoecological
community (Fig. 2B). Fossil assemblages are indirect observations of the actual past plant
community, where biases exist in the representation of taxa from temporal and spatial averaging
(Bush, 1995 ; Cleal et al. 2021; Pardoe et al. 2021). For example, the source area of an
observed pollen assemblage can be quite large (e.g. medium-sized lakes of 100–200 km2 with a
substantial basin size from where pollen are captured), and it is therefore necessary to find
ways to handle false absences (i.e. some pollen taxa are not well preserved, or plants produce
very little pollen) and false presences (i.e. well-preserved taxa, well distributed and can come
from far distances which does not imply their presence at the study site). As a result,
observations based on fossil data cannot be directly compared with modern ecological studies
(e.g. Bush 1995; Giesecke et al. 2017). Recent reviews by Cleal et al. (2021) and Pardoe et al.
(2021), however, provide valuable overviews of the strengths and weaknesses of existing
measures of taxonomic diversity from palaeo-data. A key and still open question in
global-change ecology pushed by transdisciplinary research is how to develop measures for
diversity that can link both the past and present observations (e.g. essential biodiversity
variables derived from palaeoecological data), and better predict the future changes?

METHODOLOGICAL APPROACHES AND NUMERICAL ANALYSIS

Macroecology and palaeoecology share many numerical methods developed in community
ecology to handle species composition data, e.g. to quantify similarity and/or dissimilarity of
different species/taxa assemblages or to present various summaries of sample properties such
as the number of taxa and their relative abundances (diversity estimation). Both disciplines have
adopted multivariate methods such as ordinations and classification approaches (Fig. 2A,
known-knowns), although multivariate analysis circumventing the temporal and taxonomic
uncertainties in palaeoecological data is still a major challenge (Birks, 2019a; Cleal et al. 2021;
Huntley, 1996; Pardoe et al. 2021; Rull, 2014). Multivariate methods are essential to compare
assemblages of taxa in different vegetation and biomes, and along environmental gradients
(e.g. climate, elevation, latitude, etc) to detect patterns and trends that can be explained
ecologically. Also, just as spatial autocorrelation is a key factor to consider in macroecological
studies (e.g. Legendre & Legendre, 2012, Kissling & Carl et al. 2007; Dormann et al. 2007)
likewise the stratigraphical order needs to be considered in palaeoecological studies (e.g.
Gordon & Birks, 1972; Fig. 2A).

Palaeoecological inferences are based on our mechanistic understanding of natural processes
deduced from modern and macroecological studies, and present-day distributions are used to
understand and reconstruct the past (hindcasting from present-day calibration). A popular
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example is the ‘biomisation technique’ in which fossil pollen or macrofossil data are assigned to
plant functional types and biomes based on knowledge of the present, which are then used to
reconstruct biomes in the past (Prentice et al., 1996; see schematic figure 2 in Marchant et al.,
2001). In palaeoecology, this has been very common due to difficulties in obtaining direct
environmental data (e.g. temperature) to model past biome distributions. Such approaches have
even been adapted for macroecological research. For instance, weighted-average partial least
squares regression (WA-PLS) is an approach that was initially developed to reconstruct
environmental conditions from fossil pollen assemblages (Birks, 1994; Birks et al., 1990; ter
Braak & Juggins, 1993; ter Braak et al., 1993), and has now been adapted and implemented for
modern-day datasets covering decades (e.g. Bertrand et al. 2011, Bhatta et al. 2018). On the
other hand, macroecological approaches could be applied to palaeoecological data to
reconstruct climatic conditions, such as the use of the community temperature index to assess
thermophilisation rates. Indeed, many macroecological studies have replaced the WA-PLS
approach with a Species Temperature Index approach (STI, popularised by studies such as
Devictor et al. 2012) to compute community weighted mean values based on species optima
estimated from an independent data set. This exemplifies how, between macroecology and
palaeoecology, there is a great potential for assimilating, adjusting, and combining approaches
for advanced transdisciplinary analysis (Fig. 2A), and thus for tackling long-identified, urgent
research questions that have been hindered until now by scale, data complexity, and a lack of a
common language (Rapacciuolo & Blois, 2019. This methodological interchange between
disciplines we call ‘methodological recycling’ which is the implementation, integration, and
adaptation of methodologies from other disciplines to different sets of data than those they were
initially developed for but similar in nature.

Building bridges between macroecology and palaeoecology for transdisciplinary research
involves not only understanding and acknowledging the limitations of data but also finding ways
to target exciting, achievable questions at hand. For instance, studying macroecological
responses at the species level is essential for many questions related to how species and
ecosystems respond to environmental change in different parts of the world (e.g. Antao et al.
2020; Lenoir et al. 2020; Vellend et al. 2012). However, macroecologists focusing on
species-level research questions with palaeoecological data will likely be quickly disappointed
by the taxonomic uncertainties surrounding such data. Although species-level analysis of
range-shifts dynamics, for instance, has been performed in numerous palaeoecological studies
(e.g. Giesecke et al. 2017), the number of species for which similar spatio-temporal analyses
can be carried out is limited.

New research in functional palaeoecology (Brussel and Brewer, 2021) is now targeting the large
databases of functional traits (the TRY plant trait database, Kattge et al. 2020; the Global
Biodiversity Information Facility, https://www.gbif.org/; BiolFlor, Kühn et al. 2004). Initially
assembled for macroecological purposes, studies to assess temporal changes in plant trait
composition and functional responses are now rapidly increasing (e.g. Brussel & Brewer, 2021;
Fyfe et al. 2010; Van der Sande 2019). Innovative approaches to tackle taxonomic differences
and obtain meaningful assemblage-weighted values are needed (see Veeken et al. 2022 using
Bayesian modelling), while considerable care should be taken in the interpretation of these
pollen-derived proxies (Birks, 2020; Van der Sande 2019). However, undoubtedly, the exciting
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questions ahead in a transdisciplinary macro-palaeo world are those implemented at the
assemblage level after taxonomic and temporal uncertainties are properly dealt with (Fig. 2A,
[For review: Authors anonymous] (GEB, in review); Rapacciuolo & Blois, 2019; Veeken et al.
2022).

BRIDGING SCALES FOR TRANSDISCIPLINARY RESEARCH

Initially, macroecological research focused on describing emerging spatial patterns supported by
correlative methods at broader spatial scales (Blackburn & Gaston, 2006), but then it expanded
to sourcing increasingly larger datasets and using more advanced methods to assess patterns
across space and time (Smith et al., 2008). However, the call to strengthen its mechanistic
understanding of correlative processes behind the patterns has been echoed widely and for
decades (Fig. 2B; Brown, 1999; Beck et al., 2012; Wuest et al., 2020). The main argument is
that macroecology needs to strengthen its capacity to demonstrate cause and effect (Kerr et al.,
2007), not only by correlative means but also by the integration of processes into hypotheses
and models (Cabral et al., 2017; Wuest et al., 2020). One of the issues for macroecological
research when inferring processes from contemporary data is that assemblages and observed
metrics are always dependent on past conditions (e.g. range or migration lags, priority effects,
critical thresholds, cascading effects, disequilibrium dynamics). The only way to integrate these
past drivers is via palaeoecological knowledge and data, and develop solid approaches to
assess temporal processes by means of time series (Detto et al. 2012; Sugihara et al. 2012).

Palaeoecology, on the other hand, has a strong process-based emphasis wherein temporal
patterns are assessed by explicit consideration of the local, ecological processes that
contributed to the observed changes (Birks, 2013b). Such thinking can enrich macroecological
models looking into demographic, spatial, and biotic and abiotic drivers and processes by: (i)
jointly formulating testable predictions and hypotheses; (ii) aiding in the selection of relevant
variables and parameters in models; and (iii) helping the interpretation and/or validation of
model outputs. Palaeoecology can, vice versa, benefit from the strong quantitative modelling
approaches embedded in macroecology (see section V.) and the traditions of merging data over
broad spatial scales to achieve a holistic understanding of global-change ecology (Fig. 2B).

Niche space and “adaptation”

How macroecologists and palaeoecologists understand niche space in relation to adaptation,
speciation, and extinctions is of fundamental importance for the integration of these research
fields. The environmental conditions of the niche space and corresponding range size of any
species are bound by their geographical settings and these conditions vary geographically.
Differences in temperature, precipitation, and partial pressure of CO2 (pCO2) partition the niche
space between taxa at high and low latitudes and elevations, for instance. A climatic niche
(macro- and micro-climate) of a genus or clade may be viewed as a genetically coded tolerance
to, for instance, high temperature and low water-balance. Each species in the same clade (or
genus) will therefore share to a considerable extent an adaptive trait with other species from
the same clade (or genus) (Fig. 3 A,B). This is related to phylogenetic niche conservatism
(Hawkins et al. 2005; Vetaas et al. 2018) where the underpinning assumption is that species
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within a phylogenetic clade inherit certain niche properties from sister species (Araujo et al.,
2013; Hawkins et al., 2014).

Figure 3 | Phylogenetic niche conservatism and influences by climate and humans. a) Different
taxa (a-f) jointly make up the genus-level niche space with (b) overlapping and unique niche
space. c) Genus-level niche space is likely to have been slightly different in the past under
different climatic conditions (dashed) while humans (purple line) often cause (d) current niche
space to appear smaller than potentially available.

Palaeoecological data can give valuable insights into the degree and magnitude of niche
construction by humans related to the habitat reduction or destruction, translocations
(introductions), and extinctions and extirpations, among others (Bolvin et al., 2016; Grace et al.,
2019). Species’ ranges could have been reduced over time due to human influence (Fig. 3 C,D),
causing a mismatch between the present-day range and environmental conditions shaping the
original range size and thus the original niche space occupied by species. This provides strong
evidence that temporal snapshots of models based on the present alone are not necessarily
able to predict reliably the range size dynamics and quantify the fundamental niche and
adaptability of species (see Jackson & Overpeck, 1990).

Ecological niche models (ENMs) coupled with the high spatial and temporal resolution of large
palaeoecological databases seems like a very promising way to identify how individual species
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and/or their ranges as well as different aspects of diversity changed through time (see for
instance Darroch and Saupe, 2018; Macias-Fauria & Willis, 2013; Pardoe et al. 2021; Poli et al.
2022; Villalobos et al. 2015). However, the existence of truncated niches (fundamental niches
that extend beyond the limit of current climatic conditions; Feeley & Silman, 2010), no-analogue
assemblages, and human impact on niche space have significant consequences for ENMs or
species distribution models (SDM) as used abundantly in macroecological, phylogeographical,
and biogeographical studies (Nogués-Bravo, 2009). These factors undermine the usefulness of
these models trained under contemporary conditions for palaeoclimate hindcasting or future
predictions (Collevatti et al., 2013; Fitzpatrick et al., 2018; Ordonez & Williams, 2013; Reitalu et
al. Roberts & Hamann, 2011; Santini et al. 2021). Ignoring such palaeoecological input for
macroecological models, that is, ignoring that truncated niches may exist, inevitably leads to the
overestimated prediction of substantial range-size contractions and extinctions during this
century of climate change (Feeley & Silman, 2010; Sax et al., 2013; Veloz et al., 2012).
Therefore, we support the use of multi-temporal models (Nogues-Bravo et al., 2006) that cover
the complete distribution range of taxa through time (Barbet-Massin et al., 2010; Maiorano et al.,
2013; Darroch et al., 2022), and we join the urgent call for critical consideration and calibration
of ENM and SDM outputs of past and future distributions based on modern niche space alone.
Though hurdles need to be passed to confidently use fossil pollen data in validating ENM and
SDM (i.e. handle taxonomic and temporal uncertainties, effect of taphonomic and dispersal
processes; Cleal et al. 2021), these records are the best available direct evidence we have of
vegetation dynamics through time. Again, palaeocologists will need to provide the means and
guidelines to handle such noise in palaeo-data to consequently be a valuable source of model
validation in interdisciplinary research.

Related to niche space and adaptability, we identify a mixed-use of the terminology ‘adaptation’
within the different disciplinary discourses for which we clarify usage here (see also Cheplick
(2020). Varying meanings of the same terms can pose a serious hurdle to advance inter- and
transdisciplinary research (Aagaard-Hasen, 2007). There exists a loose usage of the word
‘adaptation’ in the ecological literature in such a way that under conditions of environmental
change, it is commonly stated that plants ‘adapt’ their niche space and here phenotypic
plasticity is commonly referred to as ‘adaptation’. However, palaeoecologists assume that plants
are going to make use of the unfilled niche space or tolerance niche that is available (Fig. 3)
supported by research offering insights into the temporal variation in realized niche space (e.g.
Jackson & Williams, 2004; Veloz et al., 2012). Here phenotypic plasticity is considered a
genetically inherited adaptability that requires little to no adaptation in an evolutionary sense. If
we would accept that in an evolutionary sense plants can ‘adapt’ easily to new environmental
conditions, the modern niche would fail to be a reliable reference for any model of deep-time
reconstruction, and the foundations of disciplines such as palaeoecology, geology,
palaeoceanography, and palaeolimnology would crumble. The concepts of realized vs
fundamental niche is certainly a well-known concept in macroecology but palaeoecology has the
advantage of being able to study the temporal variations in realized niches through time.
Therefore, for consistency in terminology, we suggest avoiding the undefined use of ‘adaption’
but specifying either the evolutionary meaning defined by ‘adaptive evolution’ or ‘evolutionary
adaptation’ or ‘phenotypic adaptation’ through phenotypic variation and without mutation (Ho &
Zhang, 2018).
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No-analogue assemblages and climate

For over nine decades, palaeoecology has been engaged in understanding climate tracking (i.e.
range shifts and expansions) of plants in the light of climate variability (i.e. the glacial-interglacial
fluctuations). With the increased availability of modern and fossil pollen datasets, research in
the Northern Hemisphere moved forward in two parallel developments namely (i) the spatial
mapping of taxa (e.g. Huntley & Birks, 1983; Thompson, 1988; Webb, 1988; von Post, 1924)
and (ii) the numerical matching of fossil and modern pollen assemblages using multivariate
distance metrics (‘analogue technique’; Birks & Gordon, 1985; Overpeck et al., 1985; Huntley,
1990).

With the help of increasing data availability and the development of the analogue technique,
important insights have been derived into past assemblage dynamics (Jackson & Williams,
2004). First, late Quaternary map sequences for European and North American pollen taxa
detect substantial differences in the timing, magnitude, and direction of taxa responses to
climate change (Huntley & Birks, 1983; Williams et al., 2004; Birks, 2019a; Giesecke et al. 2017;
Giesecke & Brewer, 2018; Brewer et al., 2017). Second, through the combined use of fossil
pollen data with climate simulations, several studies provide evidence that many taxa in North
America occupied distinct realised niches in the past – today only being a subset (Fig. 3) – in
comparison to the present while other taxa have remained relatively stable (Jackson &
Overpeck, 2000; Veloz et al., 2012; Maiorano et al., 2013; Ordonez, 2013). In addition, Williams
& Webb (2001) show the existence of no-analogue climates (North America) that closely mirror
no-analogue pollen assemblages in terms of timing, magnitude, and location. As novel
(no-analogue to present) combinations of climatic variables existed in the past and are predicted
to emerge in the future (Williams & Jackson, 2007), the correlation structure among these
variables is also likely to change over this century as it has in the past (Jackson et al., 2009;
Jackson & Williams, 2004). This could mean that WA-PLS approaches in palaeoecology and
macroecology might be less reliable than alternative methods based on species-specific
indicator values for community weighted means, but more research is needed to compare such
approaches in different parts of the world.

The advent of accessible climate simulation models covering different periods over the last 21
ka (e.g. Osman et al., 2021) aided the question of whether past no-analogue assemblages were
the consequence of range-shift dynamics that were out of pace with climate (i.e. still catching up
with shifting climate) or whether they represented an equally foreign climate not experienced
today. Therefore, the combined use of fossil pollen databases with palaeoclimate simulations
pushes hypothesis testing on range-shift dynamics to a new level and provides a relatively
recent overlapping field between macroecology and palaeoecology (see for instance Poli et al.,
2022). The development of a multivariate analogue technique in palaeoecology has been
complemented by the concept of ‘climate-change velocity’ (Loarie et al., 2009) as a measure to
compare the velocity of biotic responses, reflected in range-size changes detected by fossil
pollen data, to the spatial rate of climate change. Follow-up papers with a palaeoecological
background now include a combined approach to late-glacial times in North America (Ordonez,
2013; Ordonez & Williams, 2013 ) and Europe (Svenning & Sandel, 2013). The approach
captures the essence of future nature conservation by predicting the likely magnitude of
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vegetation disequilibrium with a no-analogue climate (Birks, 2019a; Fitzpatrick et al., 2017;
Ohlemüller et al., 2006; Svenning & Sandel, 2013; Trisos et al. 2020 ; Willis & Birks, 2005).

Speciation

Although speciation cannot be inferred from pollen morphology – as it is famously known for its
high morphological conservatism (Matamoro-Vidal et al., 2015; Reitalu et al., 2015) –
palaeoecology can offer hints on events of speciation and evolutionary adaptation by the
following:

i. First appearance of a new species: As a species becomes sufficiently abundant and
prevalent to become fossilised, palaeoecological records can detect such
ecological success and provide a potential benchmark for constraining
phylogenetic trees (e.g. Sauquet et al., 2009; Thronhill et al., 2012 ) or the timing of
the uplift of mountain ranges (e.g. Kirschner & Hoorn, 2020; Hoorn et al., 2017), for
instance. Note, however, that the first appearance of a taxon can be the result of
either range-size dynamics or evolutionary adaptation.

ii. Confirmed presence of taxon/genus in a different habitat space (e.g. biome or
elevation): Examples of evolutionary adaptation at the genus level and from
palaeoecological records are rare but illustrative. Especially long fossil pollen
records that overlap with evolutionary and geological time scales provide such key
insights (see global overview of long fossil pollen records by Hooghiemstra et al.,
2022). An example is the neotropical Borreria, which was originally an element of
lowland savannah. A long Andean pollen record covering most of the Pleistocene
(2550 m asl; Funza09, Colombia) shows the appearance of Borreria at 2.02 Ma
within an open-structured forest and later also within closed forest (1.58 Ma;
Hooghiemstra, 1984; Torres et al., 2013). This long-term trend might be taken as
‘adaptation’ in the evolutionary sense and a case where phenotypic plasticity
became ‘fixed’ into genetic adaptation (Price et al., 2003). Alternative hypotheses
are that the genus has a very broad fundamental niche (as many Northern
Hemisphere tree species appear to have) or that different species are involved at
2.02 and 1.58 Ma.

iii. Palaeoenvironmental conditioning of recent evolutionary radiations: Climatic
variability is among the abiotic variables that drive increased rates of speciation
(evolutionary radiations; Nürk et al., 2019). However, it is still widely debated if
either environmental dynamics or stability explains the geographical distribution of
biodiversity hotspots (e.g. Dynesius & Jansson, 2000; Fordham et al., 2019). Long,
continuous fossil pollen records can provide insights into the degree of
environmental variability or stability over Quaternary time scales. For instance, the
reconstruction of range-size dynamics in alpine ecosystems based on such long
records revealed a highly dynamics environment in tropical mountains that likely
were the underlying forces through time to set the stage for hyperdiverse regions
(alpine páramo flora in the Andes; Flantua et al., 2019).
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Extinctions

Building species niches through time can help us understand under which circumstances
extinction results from the disappearance of environmental characteristics matching a species’
fundamental niche (environmental effect). Circumstances include (i) a too rapid shift in the
spatial availability representation of the fundamental niche (dispersal or adaptation lags); (ii) a
decline in the realised niche (biotic interactions by migration or evolution of enemies); (iii) a shift
in the species characteristics (overspecialisation); (iv) failure in developing polyploids which is a
mechanism to overcome damaged gene sets in high mountain taxa in particular where UV
radiation is high (see for instance Kirchheimer et al. 2016).

Total extinction, that is, the loss of a species from Earth that was previously present, is
inherently difficult to quantify as it requires both a sufficiently long time series and global
occurrence records. As processes leading to total extinction under natural conditions can only
be understood when macroecological and palaeoecological data are combined, our knowledge
on extinctions as well as their frequency in Earth history is limited (Conde et al., 2019). For
instance, there appears to be only two documented cases of total extinction of plants by natural
causes in the Quaternary (Aracites interglacialis; Mamakowa & Velichkevich, 1993; Birks,
2019a; Picea critchfieldii; Jackson & Weng, 1999), with none so far in the tropics (Bush &
Mosblech, 2012; Torres et al., 2013) though the latter could be related to the high species
diversity not identified pollen at species level. Even though the coarse taxonomic resolution of
palaeoecological data would miss a certain number of possible extinctions, numbers of
documented extinctions in palaeoecology under substantial climate change periods are orders
of magnitude lower from those predicted by macroecological models based on the present
towards the future (Birks 2019a; Willis & MacDonald, 2011). With very few exceptions, global
extinction should be preceded by a decline in abundance in many local sites ultimately
culminating in the global disappearance of a taxon. Extinction risk can only emerge with a
macroecological, global perspective, while understanding the causes underlying the extinction
process is impossible without a palaeoecological time-series that captures the preceding
population dynamics.

A challenging aspect of extinction processes is the inherent problem of detection. Extinctions
are hard to quantify because they are mainly associated with rare species in the first place, or
taxa that have become rare due to a geographically widespread ecological trend towards local
population extinction. Therefore, a key challenge is to assess how we can extrapolate from
dynamics observed in common species to the dynamics of rare species and thus undetected
extinctions. This is a problem as regions that support large numbers of rare species (such as
islands or mountains) are often small and temporally ephemeral. However, macroecology could
provide mechanistic models to describe macroevolution including speciation and extinctions to
bridge these issues (Maurer, 1999; Velasco & Pinto-Ledezma, 2018; Rangel et al. 2018).
Complementary to that, palaeoecological data can indicate taxon senescence, which links
extinction risk to a taxon’s age and is in fundamental contrast to the Red Queen hypothesis that
states that the probability of a taxon going extinct is independent of its age (Raia et al., 2016;
Žliobaitė et al., 2017). The ‘bad luck of bad genes’ question is thus fundamental not only in
linking macroecology and palaeoecology, but also in integrating the interaction between macro-
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and microevolution by combining time series of species’ traits and distributions on
macroecological scales.

CONCLUSIONS AND PERSPECTIVES FOR GLOBAL-CHANGE ECOLOGY

Here, we discuss the advantages of combining macroecology and palaeoecology in terms of
global-change ecology, and the sharing of data and approaches while discussing the strengths
and challenges ahead in doing so. We elaborate on key topics in both disciplines, such as the
niche concept and the meaning of adaptation, no-analogue climates and assemblages,
speciation, and extinctions. We summarise both disciplines and evaluate their position with
regard to other fields of research, and evaluate key prospects for the integration of these
disciplines and the transdisciplinary opportunities in a macro-palaeoecological integration.

With regard to macroecology, palaeoecology can contribute with cross-discipline-friendly
guidelines and its strong understanding of the influence of deep-time events on present-day
biodiversity and the mechanisms of ecological processes through time; features that have been
called for to strengthen the field of macroecology. The palaeoecological community has offered
ample opportunities to reach out to the broader ecology community in terms of research
questions (e.g. Birks, 1996; 2012; 2019a; Seddon et al. 2014), and statistical techniques (e.g.
Birks & Gordon, 1985; Birks, 2013a). In addition, there has been the rise of ‘spin-off’ fields such
as conservation palaeobiology (Willis & Birks, 2005; Barnosky et al., 2017) in both terrestrial
(Birks, 2012 and references therein; Dietl & Flessa, 2011) and marine ecosystems (e.g. O’Dea
et al., 2017; Yasuhara et al., 2012).

Regarding palaeoecology, macroecology can contribute with its strong understanding of
handling large datasets across broad spatial scales and innovative advances in numerical
ecology and statistical analyses of large and complex data on species assemblages. Especially
the versatile and now increasingly common use in macroecology of sophisticated methods for
statistical inference such as Bayesian networks, Markov networks, generalised additive mixed
models (GAMMs) and generalized linear mixed-effects models (GLMs and GLMMs) or
hierarchical models could be trailblazing approaches for innovative research in palaeoecology.
Macroecology is also moving forward with structural equation modelling (SEMs) approaches
which are additional powerful tools to assess causes and effects in model predictions (Grace et
al. 2010). In a transdisciplinary macro-palaeo world, modelling techniques like GLMMs, GLMs,
GAMs and especially SEMs could become the recommended approaches to use, especially
when extrapolating outside the range of calibration values and dealing with transdisciplinary
research (Fan et al. 2016; Smith et al. 2014).

Palaeoecology and macroecology together can play a key role in advancing global-change
research with the increase of open-access data globally (e.g. sPlotOpen, Bruelheide et al. 2019;
Sabatini et al. 2021; Neotoma, Williams et al. 2018), but here we point to an important aspect
that requires attention in any continental and global syntheses. Our understanding and
assumptions of modern and Quaternary vegetation patterns are mostly based on Northern
Hemispheric patterns, and there is little support at present that such findings can be
extrapolated readily to the tropics (Huntley & Webb, 1988; Lenoir et al. 2020; Ritchie 1985; Rull,
2020). Southern Hemisphere regional or continental syntheses are hampered by the lack of
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open-access datasets to a similar extent as the Northern Hemisphere (but see Carrillo-Bastos et
al., 2012; Flantua et al., 2007; Marchant et al., 2018; Rull & Montoya, 2014; Runge et al. 2021;
Smith & Mayle, 2017). In addition, insights into climate-driven vegetation migration or turnover
since glacial times are hindered by the current lack of tropical records that go back to the LGM
(Flantua et al., 2015: Mottl & Flantua et al 2021). However, re-established data mobilisation
efforts are now underway for different tropical regions (e.g. Lézine et al. 2021), so opportunities
will soon arise to develop inter-hemispheric and cross-tropical hypotheses.

A key aspect to reduce the research gap between the Northern and Southern Hemisphere is the
sharing of analytical tools and the publishing of methodology papers accompanied by detailed
explanations of the data-processing steps and analytical procedures with software source code
(e.g. R, Julia, Python; Rapacciuolo & Blois, 2019; Wolkovich et al., 2012). To lessen this gap,
individual scientists should actively participate and contribute to practical ways to decrease
barriers (Rapacciuolo & Blois, 2019) to truly support global research – perhaps those from the
Global North even more so (Maas et al., 2021). Although ‘palaeoecoinformatics’ has been
around for a few decades now (Brewer et al., 2012; Goring et al., 2015), the more open-access
character in macroecological research of publishing codes for multivariate analyses can
positively influence palaeoecological research. The recent movement to increase the visibility
and development of research software in R (R-universe system and rOpenSci) could serve as
valuable platforms to launch community-driven packages dedicated to providing standardised
and reproducible processing of palaeoecological data (see for instance the frameworks and
R-packages by Blarquez et al. 2014 and [For review: Authors anonymous] (GEB, in review) to
process and standardize sedimentary charcoal and fossil pollen records, respectively).

We hope that the reader can now appreciate the significant added value of integrating
macroecology into palaeoecology and vice versa, the vast opportunities in methodological
recycling, and the valuable place that this integration takes in the overarching field of ecology.
Will macroecology bridge the gap between modern ecology and palaeoecology that many have
been advocating for? Will paleoecology contribute to the adequate use of palaeoecological data
by cross-discipline-friendly guidelines and welcome the implementation of new approaches to
data to tackle new fields in global-change ecology? Perhaps we are heralding an integration
between macroecology and Quaternary palaeoecology that will be the starting point for
ecologists in general to appreciate the vast opportunities lying ahead to integrate philosophies,
data, and methods to answer critical questions in global-change ecology.

BOX 1

Macroecology | Macroecology operates at broad taxonomic, spatial, and/or temporal scales
(Kerr et al., 2007; Smith et al., 2008; McGill, 2019). Macroecology navigates between
biogeography, palaeoecology/palaeobiology, and macroevolution with its strong statistical
approach and search for emergent patterns across space and time, incorporating data from all
time scales (Fig. 1), from modern ecology (hours, days, decades, e.g. Fisher et al., 2010;
Lembrechts et al. 2022 Glob Chang Bio) through historical ecology (centuries, millennia, e.g.
Szabó 2014) to deep-time ecology (geological age; e.g. Butterfield, 2007). The concept of
‘macroecology’ was originally coined by Orians (1989), popularised by Brown and Maurer
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(1989), and finally fully described in the synthetic book by Brown (1995). Initially, macroecology
staged itself using correlative methods to describe spatial patterns, with little attention for the
processes behind them. Through time, macroecology moved from being ‘geographical ecology’,
with abundant use of maps showing concordance (Blackburn & Gaston, 2006), to statistical
descriptions of ecological attributes and geographical patterns using stochastic simulations and
mechanistic modelling (Villalobos & Rangel, 2014). Specifically, macroecology has benefitted
from a few decades of increasing research to use stochastic simulation models and test
biodiversity patterns across space and time (Smith et al., 2008). The position of macroecology
relative to other more specific disciplines or subfields of ecology became further defined and
redefined – and often questioned – through time, such as in comparison to biogeography
(Blackburn & Gaston, 2002; Kent, 2005, 2007) and global change biology (Kerr et al., 2007).
Advocates of macroecology never shied away from positioning this field amidst biogeography,
palaeoecology, palaeobiology, palaeontology, macroevolution, global change biology, and
community ecology, postulating that the top-down statistical approach of macroecology unified
all (Maurer, 2000; Nee, 2002; Kent, 2005).

Palaeoecology of past vegetation | Botanical palaeoecology has provided detailed information
on the vegetation history of thousands of localities worldwide and has enhanced our
understanding of local variation in climate, human impact, and other environmental drivers. Over
the last c. 100 years, numerous cores and profiles have been studied globally for their
palaeoecological proxies, which include fossil pollen, plant macrofossils, diatoms, and
phytoliths, among many others (see recent reviews by Birks & Berglund, 2018 and Daniau et al.,
2019). Initially, palaeoecology was used for temporal correlation between different sediment
cores (similar deposited layers at different localities) and for relative dating, but paleoecology’s
use diversified and deepened after the 1950s when the focus was more on botanical and
ecological reconstructions of past vegetation around the world (Birks, 2005, 2019a). With the
increasing number of fossil pollen sequences, studies focusing on making spatial
reconstructions of vegetation changes through space and time became more attractive.
Pioneering work on regional scales took place in Europe (von Post 1924, Safer 1935, Firbas
1949) even before the development of radiocarbon dating. Initial compilation of independently
dated pollen diagrams were conducted in North America (e.g. Davis, 1976; Bernabo & Webb,
1977) and Europe (e.g. Huntley & Birks, 1983; Birks, 1989), and later on in the tropics (e.g.
Flantua et al., 2007; Jago & Boyd, 2003) and the arctic (e.g. Brubaker et al., 2005). With a root
in deep-time geological sciences, and later incorporating vegetation and ecological sciences,
Quaternary palaeoecology (Fig. 1) has strong affinities to a range of different disciplines (Birks,
2012, and references therein) also welcoming cross-disciplinary approaches (Mayle & Iriarte,
2014; Rull, 2010, 2014). It has long ties with historical ecology, archaeology, and more recent
approaches have been eager to strengthen bridges with biogeography, vegetation modelling,
conservation biology, and restoration ecology, among others (Birks & Berglund, 2018).
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ABSTRACT
Past climate is an important factor for current biodiversity and ecosystem processes, but the
temporal scales of climate legacies in global plant assemblages are currently unknown. Here we
show that global vegetation dynamics over ecological timescales (centuries to millennia) are
affected by the interaction of long-term and short-term climate change. We assess the
responses of terrestrial plant assemblages to the compound effect of climate legacies and
interactions over the past 21,000 years. Based on a global compilation of 1,748 fossil pollen
sequences, we evaluate within a Bayesian framework how rates of palynological change, a
proxy for vegetation change, were driven by the interaction between long-term temperature
trends and short-term temperature changes. We find that vegetation changes were substantially
greater when short-term temperature changes added to long-term trends in the same direction.
Plant assemblages experiencing such synergistic climate interactions over periods of 100 to
1,000 years were on average 15% more likely to show high turnover than under non-synergistic
conditions. We further show that tropical climate zones are particularly more prone to this effect
of climate interactions than cold and dry areas. Using climate estimates during the last 1,000
years together with climate estimates under various shared socioeconomic pathways until 2100,
we predict an increase in global rates of vegetation change between 78% and 125% compared
to a pre-human baseline. Our results illustrate that the response of ecosystems to climate
change is strongly dependent on the preceding climate state, that is the current and future
ecosystem responses carry a strong climate legacy. Ecological studies might substantially
underestimate the impact of the current climate warming when climate history is not taken into
consideration.
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INTRODUCTION

Assessing how terrestrial communities will respond to climate change is a primary challenge in
maintaining biological diversity and the various functions terrestrial ecosystems provide (Jump &
Peñuelas, 2005; Urban, 2015; Warren et al., 2013). Both short-term (decades to centuries) and
long-term (centuries to millennia) climatic history are known to be major drivers of biodiversity
dynamics (Antão et al., 2020; Broderick et al., 2022; Delgado-Baquerizo et al., 2018; Hawkes et
al., 2020; Monger et al., 2015; Ogle et al., 2015; Strickland et al., 2015; Svenning et al., 2015).
The legacy effect of the dynamic interaction of short-term and long-term climate history, though,
has not yet been quantified for modern global ecosystems (Benito et al., 2020). Complex
ecosystem feedbacks arising from climate legacies and interactions might render current
assessments of biodiversity changes under future climate scenarios to be erroneous if
feedbacks are not explicitly taken into consideration (Benito et al., 2020; Ogle et al., 2015).

Species tend to retain ancestral ecological traits through time (Wiens et al., 2010; Wiens &
Graham, 2005), resulting in a characteristic adaptation to climatic conditions. Climate change
can lead to a mismatch between the preferred niche space of taxa and new climatic conditions
(Wiens et al., 2010), especially when the preference for a particular climatic niche is strong (Fig.
1). Climatic change might be less deleterious for species when added to a long-term
temperature trend in the opposite direction (e.g., a short-term cooling following a prolonged
warming trend). On the contrary, a short-term change following a prolonged trend in the same
direction may drive species increasingly out of their climate envelope. Communities under such
synergistic changes would thus need to show high rates of turnover to stay in equilibrium with
climate. We hypothesise therefore that a period of climate warming may have diverging impacts
depending on the previous climatic trajectory (Fig. 1a). Accordingly, we expect plant
assemblages to show higher rates of change under synergistic climate interaction (Fig. 1b). This
effect might be further exacerbated by the potentially increased occurrence of compound
climate extremes (i.e., the interaction of multiple major hazards) after synergistic temperature
changes (AghaKouchak et al., 2020; Zscheischler et al., 2018).

Here we assess the relationship between rates of vegetation change (estimated from pollen
data) and the interaction of short-term temperature change (spanning 100 years) with the
preceding longer-term temperature trend (spanning 100 to 1,000 years) over the past 21,000
years. We base our analysis on 1,465 fossil pollen sequences from the Neotoma Paleoecology
Database (Williams et al., 2018) covering all continents except Antarctica (Extended Data Fig.
1, Extended Data Table 1), with continentally harmonised taxonomies and updated age-depth
models and their uncertainties (Extended Data Fig. 2). We test the expectation of temperature
change to have a higher impact on ecosystem dynamics when added to previous trends in the
same direction (synergistic interactions), by calculating rates of assemblage change for both
synergistic (cooling-cooling, warming-warming) and antagonistic (cooling-warming,
warming-cooling) climate interactions. We then implement generalised linear hierarchical
models to quantify the rate of change as a function of short-term temperature change interacting
with long-term temperature trends. Any difference between the impacts of synergistic and
antagonistic interactions on turnover could have important implications for plant assemblages
under future climate change. We use the insights gained to forecast future rates of vegetation
change under various IPCC scenarios. We employ a Bayesian framework to propagate
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uncertainty from one analytical step to the next and a dynamic multi-model approach to cover a
range of interval lengths (100–1,000 years) for climatic trends. With the latter multi-model
approach, we test whether there is a temporal decay effect of climate legacy on plant
assemblages and over which temporal scales these legacies are detectable and strongest. With
our results we target crucial information for improving forecasts of ecological responses to future
environmental change.

Figure 1: The response of plant assemblages to a climatic change might differ depending on the
preceding long-term climatic changes. (a) As individual species show a specific adaptation to
climate (initial geographic occupation, t0), both a climate cooling and warming (red and blue
arrows) might result in a mismatch between species requirements and actual climatic conditions
(at t1), causing species to migrate. If a short-term warming adds to a previous warming, species
might respond by tracking their preferred climatic conditions through abundance changes and/or
range shifts in distribution, with consequently high rates of change on the pollen sequence level
(at t2). If the same short-term warming adds to a previous cooling period, some species might
be able to return to the centre of their initial occupation, resulting in lower abundance changes
and range shifts and consequently lower rates of change. (b) The expected overlap of the
occupied space at t2 with the initial geographic occupation at t0. (c) Arising from this
hypothesised mechanism that species show less overlap with their initial geographic occupation
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if a short-term climate change adds to a previous long-term trend in the same direction, we
expect higher rates of vegetation change after synergistic climate interactions
(warming-warming, cooling-cooling).

RESULTS

Rate of palynological change (RoC) during the last 21 ka

The global rate of change (RoC) has varied through time but increased towards modern times
(Extended Data Fig. 3). RoC has steadily increased from the end of the last glacial maximum to
approximately 12 thousand calibrated years BP (ka). RoC then remained stable between 9 and
1.6 ka, preceded by a slight drop in RoC between 12 and 9 ka. Beginning at around 1.6 ka, RoC
increased remarkably and reached its maximum in modern times.

Estimated RoC after each climate interaction

Synergistic climate interaction substantially drives high vegetation dynamics expressed by
increased rates of assemblage changes (Fig. 2a). The association is non-linear, with higher
RoC occurring after more intense short-term warming and cooling (Extended Data Fig. 4 and 5).
Antagonistic climate interaction, to the contrary, results in lower global RoC across all long-term
trends. To quantify the difference in legacy effects of synergistic and antagonistic interactions on
vegetation change, we grouped model predictions into a low and high turnover category. Rates
above the median RoC per continent are characterised as “high turnover” and rates below the
continental average as “low turnover”. We then compared the number of high versus low
turnover events per climate interaction (i.e., the turnover ratio). Synergistic interactions increase
the probability for a high turnover by 14.7% [95% CI (3.4%, 25.2%)] compared to antagonistic
interactions (Fig. 2a). The turnover ratio is 1.34 [95% CI (1.07, 1.67)] for synergistic interactions
(Fig. 2b). This indicates that both short-term warming adding to a long-term warming trend and
short-term cooling adding to a long-term cooling trend substantially increase the risk of plant
assemblages shifting into a high turnover state. All calculated risk metrics (turnover ratio,
change in risk, and absolute risk) are mostly outside the region of practical equivalence (a range
of parameter values with practically no effect, Extended Data Fig. 6, Extended Data Table 2),
suggesting that we are revealing ecologically meaningful patterns.

Spatial differences in the turnover ratio

We show a high spatial variability in climate legacies both in terms of magnitude and direction of
turnover (Fig. 3a). Plant assemblages in Europe, Africa, Latin America, and Oceania display
high turnover ratios after a warming-warming or cooling-cooling interaction. North America in
particular shows a relatively low risk of going into a phase of high turnover after cooling-cooling
interactions. After synergistic climate interactions in either direction, tropical climate classes are
up to 28 times more likely to shift into a state of high turnover (Fig. 3b), with highest turnover
detected in tropical rainforests. Climate classes characterised by a temperate climate are
similarly high-risk areas with a substantially increased turnover ratio, but here ratios after
cooling-cooling interactions are generally higher than after warming-warming. In contrast,
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climate classes with a cold and dry climate show a tendency towards lower turnover ratios after
synergistic climate interaction. The majority of climate classes, however, tend to shift into a
phase of high plant assemblage turnover after synergistic climate interactions, while
antagonistic interactions do not result in such a substantial increase. The turnover ratio is
highest at the equator and generally decreases towards the poles (Extended Data Fig. 7a)
reflecting a strong latitudinal gradient of vegetation responses to climate legacies. Similarly,
sequences at the high latitudes generally experience more temperature variability (i.e., standard
deviation in the short-term change) and vice versa (Extended Data Fig. 7b), indicating that
assemblages adapted to a narrower niche are more susceptible to climate legacies and
interactions.

Figure 2: Estimated global turnover metrics after each climate interaction. The type of climate
interaction (cooling-cooling, warming-cooling, warming-warming, cooling-warming) is indicated
by the coloured lines, where the first line represents the long-term temperature trend and the
second line the short-term climate change. Red lines indicate warming, and blue lines cooling.
(a) Estimated change in turnover risk per climate interaction. White points and the label show
the median estimate for the change in turnover risk. Coloured points show the model-wise
estimates covering long-term trends from 100 to 1,000 years. (b) Estimated turnover ratios (the
ratio of high to low turnover events) per climate interaction. White points show the median
estimate for turnover ratio. In both (a) and (b), the thick black line depicts the 55% credible
interval, and the thin black line the 95% credible interval. The shaded grey area indicates the
region of practical equivalence (ROPE), which covers a range of values generated from null
models

Length of long-term trends

Vegetation dynamics carry the ecological memory of past temperature trends at all temporal
scales ranging from 100 to 1,000 years with the strongest legacy effect from a 100 yr back. All
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long-term trends show an increase in RoC after synergistic climate interactions (Extended Data
Fig. 4 and 5). A model comparison based on leave-one-out cross-validation shows that a 100
year long-term trend has the highest model performance but with all models showing a similarly
high performance (Extended Data Fig. 8). This indicates that the legacy effect of climate on
ecological processes driving vegetation dynamics is present on time scales between 100 to
1,000 years. All models performed significantly better than null models (Extended Data Fig. 8a).

Figure 3: Estimated turnover ratios (the ratio of high to low turnover events per climate
interaction) after synergistic climate interactions (warming-warming and cooling-cooling climate
interaction) for each continent and climate class. Note that the turnover ratio is plotted on a
log-transformed scale. (a) The turnover ratio per continent. (b) The turnover ratio per climate
class. Outlined points show the median estimate for turnover ratio. The thicker line depicts the
55% credible interval, and the thinner line the 95% credible interval. Cooling-cooling interactions
are shown in blue, and warming-warming interactions are shown in red. The shaded grey area
indicates the region of practical equivalence (ROPE), which covers a range of values generated
from null models.
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Increase in RoC under shared socioeconomic pathways

The global RoC in terrestrial plant assemblages might increase by up to 117% [95% CI (106%,
125%)] until 2100, relative to the past 21 ka. We used our models trained on RoC over the last
21 ka to predict future rates of change across shared socioeconomic pathways(Riahi et al.,
2017) (SSPs, Fig. 4). We then calculated the increase in RoC due to a warming-warming
climate interaction relative to the average rate over the last 21 ka. In the near term (2021–2040),
all SSPs result in an increase of RoC by approximately 92% [95% CI (85%, 99%)]. Out of 100
predictions under SSP5 (Fossil-fuelled Development) for the long-term period (2081–2100), all
result in a RoC at least twice as high compared to rates during the last 21 ka, reaching a
maximum at an increase of 134%. The average increase in RoC in the long term for SSP1
(Sustainability) is 41% lower than the RoC for SSP5.

Figure 4: Predicted increase of rates of vegetation change after warming-warming climate
interaction under shared socioeconomic pathways (SSPs) compared to rates during the last 21
ka. Shaded lines and densities illustrate the distribution of predicted values for each SSP(Riahi
et al., 2017) for a long-term, medium-term, and near-term period. Outlined points show the
median increase in turnover ratio per period.
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DISCUSSION

Ecological memory driven by climate legacy is detectable and quantifiable in vegetation
dynamics through time. Importantly, ecosystem responses differ globally depending on timing,
duration, magnitude and interaction. Short-term temperature change adding to a long-term trend
in the same direction coincides with a substantially increased risk for plant assemblages to shift
into a phase of high turnover, potentially resulting in the emergence of novel communities
(Staples et al., 2022) and long-lasting consequences on ecosystem functioning (Svenning et al.,
2015). This dependency on the preceding temperature is found across multiple scales, with
long-term trends ranging 100 to 1000 years back in time. Particularly tropical climate classes are
highly sensitive to these climate legacies and synergistic climate interactions, being on average
six times more likely to shift into a state of high turnover. As the current climate change exceeds
the temperature of the previous millennia (Arias et al., 2021), considering synergistic climate
interactions is of great importance.

Our results are in line with previous findings from the fossil record spanning millions of years,
where the relationship between evolutionary change and climate change is dependent on the
preceding temperature (Mathes, Kiessling, et al., 2021; Mathes, van Dijk, et al., 2021). For
ecological timescales (centuries to millennia), numerous reports of climate legacies show that
past climate is an important driver for both key ecosystem processes (Benito et al., 2020;
Broderick et al., 2022; Delgado-Baquerizo et al., 2018; Hawkes et al., 2020; Monger et al.,
2015; Ogle et al., 2015; Strickland et al., 2015) and biodiversity (Antão et al., 2020; Svenning et
al., 2015). Climate legacies in current ecosystems arise from the interaction between modern
and preceding climate, and are therefore a specific form of climate interaction. To understand
modern-day biodiversity dynamics responding to current and future climate conditions, climate
interactions are of vital importance. In particular, any changes in either the direction or
magnitude, of either the short-term or the long-term climatic trend, result in varying
consequences to the plant assemblage. If climate interactions and other palaeoclimatic legacies
are not specifically incorporated, assessments of biodiversity dynamics under future climate
change are likely to be erroneous. For example, species distribution models assume equilibrium
between species’ ranges and the environment (De Marco et al., 2008; Spencer, 2020) but such
ranges are likely to be subject to time lags shaped by preceding climatic changes (Svenning et
al., 2011, 2015). In addition, numerous studies train climate-vegetation models aimed at
quantifying climatic lags considering climate during the last century (Bertrand et al., 2011; Ding
et al., 2020; Kelly & Goulden, 2008; Wu et al., 2015), thus fitting assemblages to climatic
conditions that are perhaps the least influential in driving rates of vegetation change (Extended
Data Fig. 8). To overcome these issues and to move towards a mechanistic understanding of
fundamental evolutionary and ecological processes, it is essential to integrate fossil and
contemporary data (Fritz et al., 2013) and to continue the collection of datasets spanning
multiple timescales (Brewer et al., 2012). We therefore argue moving towards a more holistic
approach by integrating all available information about past climate and its feedbacks (i.e.,
climate legacies and interactions) when studying ecological systems.

Climate legacies and interactions influence the applicability of models using so-called climate
analogues, i.e. locations that share statistically similar climates (Koven, 2013; Williams et al.,
2007), either across time (i.e., with past or future climates) or across space (i.e., between
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locations). These analogues have been used to estimate, for example, the impact of future
climate change on crop yields (Pugh et al., 2016) or on economic growth in urban areas
(Hallegatte et al., 2007). If analogue locations, however, have a different climatic history (i.e.,
type and magnitude of climate interaction), locations with apparent analogue climates would
show a deviating response to climate change, rendering the analogue approach unreliable. The
difference in vegetation responses among locations with contemporary similar climate can be
substantial as indicated by our results, where we show that the same climate change can either
increase or decrease assemblage turnover, depending on the preceding climate state.
Therefore, it is pivotal for any model predicting vegetation dynamics based on the climate
analogue approach to incorporate the climatic history.

Tropical climate classes appear to be the places where synergistic climate interactions have the
strongest impact on plant assemblages (Fig. 3). Hypothetically, tropical assemblages may be
more sensitive to climatic change, as they evolved in areas with low temporal temperature
variation (Deutsch et al., 2008; Janzen, 1967; Sheldon et al., 2018). This adaptation to a narrow
climatic niche could explain the observed pattern, as species might reach their niche edges
faster after synergistic climate interactions. This explanation of species with a narrower niche
exhibiting a higher susceptibility to climate interactions is in line with our findings of a decreasing
turnover ratio towards the poles (Extended Data Fig. 7a) and a lower temperature variability at
sequences near the equator (Extended Data Fig. 7b). Alternatively, the exceptionally high
susceptibility of tropical assemblages to synergistic climate interactions can be related to high
internal forest dynamics. Transitions between different forest states as a result of shifting
dominance of taxa have been shown in tropical forests (de Boer et al., 2013; Mayle et al., 2004),
displaying high turnover during hundreds of years. This suggests that at an assemblage level,
tropical systems are expected to show naturally high responsiveness to climate change,
possibly by alternative ecosystem states. Regardless of whether the high rates of change in
tropical assemblages found here are driven by spatial range-shift dynamics (niche tracking) or
changes in plant assemblages (shifting dominance of taxa), tools capable of predicting whether
these high rates of change are indicative of the system approaching a critical threshold are
needed (Brock & Carpenter, 2010; Dakos et al., 2008; Scheffer et al., 2009).

With a prolonged warming trend under anthropogenic climate change, both the frequency and
magnitude of synergistic climate interactions (warming-warming) will increase. According to our
model estimates, global rates of vegetation change will increase substantially in the near,
medium, and long term, even for the most optimistic shared socioeconomic pathway (Fig. 4).
We emphasise, however, that the turnover metric used in this analysis is based on plant
assemblages that might have been time-averaged. The projected increase in vegetation change
under future climate change might therefore be subject to biases. Likewise, we do not include
the impact of human activities on rates of vegetation change in our analysis, as we primarily aim
to analyse the effects of climate interactions. The compound effect of anthropogenic
perturbations and climate interactions might result in a cascading dynamic (Lawrence et al.,
2020), potentially increasing rates of vegetation change even beyond our predictions. With the
current acceleration of rates for both human activities (Steffen et al., 2015) and climate warming
(Smith et al., 2015), we therefore expect global rates of vegetation change to increase to levels
unobserved throughout the last 21 ka. Combining the effect of climate interactions with
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information about human pressure on the Earth System should be the focus of future research.
An integrative approach could be a key step to understanding the complex feedbacks among
humans, climate, and ecosystems (Fritz et al., 2013; Mottl, Flantua, et al., 2021).

In conclusion, our study highlights that current terrestrial ecosystems cannot be studied in an
isolated manner from their past climatic context and that a climatic legacy from as far as 1000
years ago influences plant assemblages of today. We show that the response of plant
assemblages is strongly dependent on the preceding climate, in particular that a short-term
climate change adding to a long-term trend in the same direction substantially increases rates of
vegetation change. We provide evidence that the time period considered to understand current
vegetation dynamics reflected in changes in plant assemblages reaches hundreds of years back
in time and spans multiple scales. The explicit integration of these climate legacies and
interactions may lead to a higher accuracy for assessments predicting biodiversity change
under an accelerating trend of climate warming. As warming-warming climate interactions are
expected to increase in frequency and magnitude in the future, terrestrial plant assemblages are
likely to shift into rates of change unprecedented throughout the previous 21 ka.

MATERIALS AND METHODS

Pollen data

All analyses were carried out in R (R Core Team, 2021) using R v.4.1.2. We used the tidyverse
collection of R packages (Wickham et al., 2019) to transform and visualise data. We obtained
fossil pollen data from the Neotoma Paleoecology Database using the neotoma R package
(Goring et al., 2015) on 2nd May 2022. We followed the methodological approach of Mottl et al.
(2021) to filter and prepare the pollen data for the calculation of rates of palynological change.
To develop age-depth models, we selected control-point types (see the included types in Reimer
et al. (2020)), and calibrated the radiocarbon dates using the IntCal20, SHCal20, or mixed
calibration curves (Hogg et al., 2020; Reimer et al., 2020). Calibration curves were assigned
based on the geographical location of the records and the recommended boundaries (Hogg et
al., 2020). For each sequence with at least five chronological control points, we constructed an
age-depth model using the bchron R package (Haslett & Parnell, 2008) to generate 1000
possible age estimates for all sample depths at the original sampling resolution of the original
fossil pollen sequences. We used these 1000 draws to build posterior estimates of age
uncertainty. We calculated the median age estimate for each sample depth to obtain the default
age used in these analyses. All ages are expressed in calibrated years before radiocarbon
present (cal yr BP, where 0 yr BP = 1950 CE) or as kiloannum BP (ka), also in calibrated years
before radiocarbon present.

We performed our analyses using the following delimitation of continents: North America, Latin
America, Europe, Africa, Asia, and Oceania. The boundary between North America and Latin
America is placed at the border between the US and Mexico, while the boundary between
Europe and Asia is placed at the border between Russia and adjacent countries in Eastern
Europe, including Finland, Belarus, Ukraine, Bulgaria, and Greece. Taxa lists for North America,
Latin America, Europe, Oceania, and Asia were harmonised to the taxonomically
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highest-precision pollen morphotypes identifiable by most palynologists. The European
harmonisation was adjusted from Giesecke et al. (2019) (Level = MHVar2,
http://www.europeanpollendatabase.net/data/downloads/image/EPD_P_VARS_high3.csv).
Taxonomic harmonisations for other regions were developed as part of the HOPE project (North
America, Latin America, Asia, Oceania) and will be made available on Figshare upon
acceptance of the manuscript. Data from African sequences are used at the original site-level
taxonomic resolution.

In order to obtain the highest quality of pollen data we conducted the following filtration
processes:

A. Fossil pollen grain counts: for each fossil pollen sequence, we only include terrestrial
taxa of selected ecological groups (see Mottl et al. (2021)). We have excluded all
samples that contain less than 25 pollen grain counts, and only include sequences if at
least 50% of all samples contain at least 150 pollen grains.

B. Depositional environments: we only include sequences of certain depositional
environments (see Mottl et al. (2021)).

C. Age limitation: we only include sequences which span between 1ka and 6ka (or 1ka and
8ka for Europe and North America). The length of each sequence is determined by the
95% quantile of the age estimation of each level. We exclude all samples whose 95%
quantile is older than 21ka. In addition, we exclude all samples for which the age has
been extrapolated for more than 3000 years.

D. We exclude all sequences with fewer than five samples

For each pollen sequence, we additionally identified the Köppen-Geiger climate classification
following Beck et al. (2018). The number of sequences per climate class used in this work are
listed in Extended Data Table 1.

Rate of change (RoC) analysis

We estimated the magnitude of palynological compositional change per 100 years as rate of
change (RoC) via the R-Ratepol package (Mottl et al., 2020; Mottl, Flantua, et al., 2021; Mottl,
Grytnes, et al., 2021). We smoothed the pollen data using Shepard’s 5-term filter (Davis, 2002;
Mottl, Grytnes, et al., 2021). To reduce bias originating from uneven temporal sampling
resolution in the original pollen sequences, we used the moving window approach implemented
in the R-Ratepol package with a bin width of 500 years and a time increment of 100 years (i.e.,
five window shifts). We also used the chi-squared metric as a dissimilarity index to reduce the
sensitivity of our analysis to the uncertainty associated with rare pollen taxa (Mottl, Grytnes, et
al., 2021). Uncertainties in pollen sampling as well as from age-depth models were propagated
in the calculation of RoC by iteratively sampling pollen grains and age sequences. We repeated
this iteration 1,000 times and subsequently used the median value of all RoC iterations as the
final RoC score (Extended Data Fig. 2 a-c).
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Temperature data

We estimated the mean annual air temperature for each sample depth in a pollen sequence
using the CHELSA-TraCE21k downscaling algorithm and data(Karger et al., 2021) (Extended
Data Fig. 2 d-e). We first extracted the entire temperature time series from the algorithm for one
pollen sequence, spanning the last 21,000 years in 100-year time steps. We then fitted a natural
spline on this time series and selected the temperature at the age of each RoC estimate. We
repeated the process with the age value of each RoC estimate subtracted by 100 years,
estimating the temperature 100 years before the actual observation in the pollen sequence. We
then calculated the 100 year short-term temperature change by subtracting the temperature at
the actual observation with the temperature 100 years ago. To get the 100 year long-term
temperature trend, we subtracted the temperature at age-100 years with the temperature at
age-200 years. Similarly, we calculated the 250 year long-term temperature trend by subtracting
the temperature at age-100 years with the temperature at age-350 years. We then divided the
result by 2.5 to get the trend standardised to 100 years. We repeated this process for the 500
year and 1,000 year long-term temperature trend. Each long-term trend hence reached from the
starting point of the focal interval to the beginning of the short-term change (Extended Data Fig.
2e), and captured the temperature change per 100 years over this interval.

Generalised linear hierarchical models

We quantified the effect of temperature change interacting with past temperature trends on the
RoC using Bayesian generalised linear hierarchical models (GLHMs). We fitted these models
via the Stan probabilistic programming language (Carpenter et al., 2017) and the brms R
package (Bürkner, 2017). For each model, we used a Markov Chain Monte Carlo algorithm with
four chains and 5,000 samples for each chain. Model convergence and fit to the data was
checked thoroughly via convergence diagnostics and the expected log predictive density of a
model (Extended Data Fig. 9, Extended Data Fig. 10, Extended Data Table 3). We fitted an
individual model for each long-term trend ranging from 100 to 1,000 years. The general
equation of each model is:

Rate of Change ~ 𝚫Tchange:𝚫Ttrend +(𝚫Tchange:𝚫Ttrend | Continent / Ecozone / ID)

We thereby allow the effect of the short-term temperature change (𝚫Tchange) interacting with
the long-term temperature trend (𝚫Ttrend) on the RoC to vary within each pollen sequence (ID),
which are nested within climate classes (Ecozone), which are nested within continents
(Continent). This corresponds to a GLHM with a nested random intercept and a nested random
slope term (Bolker et al., 2009). Model errors are assumed to follow a beta family distribution
with a logit-link. Priors were chosen via prior predictive checks by constraining samples from the
prior distribution to a feasible outcome space (McElreath, 2020).

Model comparison

We compared the model performance of each long-term trend varying from a length of 100 to a
length of 1,000 years via the theoretical expected log pointwise predictive density (ELPD)
estimated using cross-validation (Extended Data Fig. 8). For cross-validation, we used efficient
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approximate leave-one-out cross-validation (LOO) via the loo R package (Vehtari et al., 2017).
We fitted multiple models with differing long-term trend length (ranging from 100 to 1,000 years)
to test (1) whether the effect of climate interactions on RoC changes with temporal scale or
whether the inference stays robust independent of the long-term trend length; and (2) to identify
and quantify the period over which the climate legacy has the strongest influence on vegetation
dynamics in terms of rates of palynological change. We additionally fitted null models for the
model comparison, where the rate of change was either assumed to be constant (fixed
intercept) or variable over continents (random effect on continent).

Climate interaction

To interpret model estimates, we created a grid of equally spaced short-term changes from -2°C
to 2°C with equally spaced long-term trends similarly ranging from -2°C to 2°C. This range
captures the vast majority of temperature changes and trends observed in the actual data. We
then sampled from the posterior predictive distribution of each GLHM over this grid via the
tidybayes R package (Kay, 2022). We then summarised all estimated RoC for long-term trends
below 0°C and short-term changes below 0°C as a cooling-cooling climate interaction; all RoC
for long-term trends above 0°C and short-term changes below 0°C as a warming-cooling climate
interaction; all RoC for long-term trends below 0°C and short-term changes above 0°C as a
cooling-warming climate interaction; and all RoC for long-term trends above 0°C and short-term
changes above 0°C as a warming-warming climate interaction.

This procedure ensures capturing a range of potential long-term trends and short-term changes
while having the same amount of observations per climate interaction.

Risk metrics

We used the estimated RoC from our GLHMs to quantify risk metrics for the plant assemblages
(Extended Data Table 2). We grouped individual rates of change into a low and high turnover
category, where rates above the average (median) RoC across all models are characterised as
“high turnover”, and rates below the overall average as “low turnover”. We then divided the
amount of high by the amount of low turnover events per climate interaction. We termed this
metric turnover ratio, which corresponds to a classical relative risk metric. This turnover ratio
enabled us to quantify the risk of shifting into a phase of high turnover after synergistic climate
interaction, compared to antagonistic climate interaction. We additionally calculated the absolute
risk per climate interaction of assemblages to shift into a phase of high turnover by dividing the
number of high turnover events by the total number of events (Extended Data Fig. 6a), showing
the actual difference in risk after synergistic or antagonistic climate change. We then calculated
the risk increase after synergistic climate interaction by subtracting the absolute risk of
antagonistic interaction from the absolute risk of synergistic interaction (Extended Data Fig. 6b).
The risk increase illustrates the estimated difference in the probability of shifting into a phase of
high turnover after synergistic climate interaction compared to antagonistic climate interaction.
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Region of practical equivalence

To test whether estimated risk metrics (turnover ratio/ relative risk, absolute risk, risk increase)
are a result of random chance alone, we calculated a region of practical equivalence (Kruschke,
2018) (ROPE, Extended Data Fig. 11). The ROPE indicates a range of parameter values that
are practically equivalent to the null values, which in this case corresponds to an equal risk after
synergistic and antagonistic climate interactions. Estimated values falling outside this range
indicate a risk difference between antagonistic and synergistic climate interactions that could not
be generated by chance alone. We calculated the ROPE by iteratively simulating RoC
generated from a beta distribution similar to the distribution of RoC in the actual data. We then
randomly assigned those simulated rates to either synergistic or antagonistic climate
interactions. From these distributions, we then calculated risk metrics for each type of climate
interactions and summarised them via 95% credible intervals

Shared socioeconomic pathways

We used our GLHMs trained on the rate of palynological change over the last 21 ka to predict
future rates across shared socioeconomic pathways (Riahi et al., 2017) (SSPs). We extracted
the global mean atmosphere temperature estimate from the CMIP6 models ensemble (Eyring et
al., 2016) for each SSP and each time period (near-term, medium-term, long-term) via the IPCC
interactive atlas (Gutiérrez et al., 2021; Iturbide, Maialen et al., 2021). For this, we selected an
annual season without any aggregation and saved the multidimensional output as NetCDF files.
For each pollen sequence within our data, we then extracted the estimated temperature at the
site for each SSP and period via the NetCDF files. We similarly estimated the temperature for
the years 1950, 1850, 1700, 1450, and 1000 CE for each pollen sequence via the
CHELSA-TraCE21k downscaling algorithm (Karger et al., 2021) and natural splines. Using
these historical temperature estimates and the predicted temperature for each SSP, we then
calculated the 100 year short-term changes and the 100, 250, 500, and 1000 year long-term
trends similar to the long-term estimations approach described above. Using our GLHMs and
the interaction between these short-term changes and long-term trends, we then predicted the
rate of change under each SSP and for each period. In a final step, we calculated the relative
change of these predictions to the average (median) rate of change of the past 21 ka, and
averaged the result over all long-term trends.

Effect of temperature variability on turnover ratio

We estimated the relationship between turnover ratio and latitude as well as the relationship
between turnover ratio and temperature variability to test whether species experiencing less
climatic variability are more susceptible to climate interactions. As we are interested in the
general trend of each relationship, we first standardised the pollen sequence-wise turnover ratio
estimated from GLHMs and regressed it against the latitude of each sequence, as well as the
standard deviation in short-term temperature change across the whole sequence (temperature
variability) via a Bayesian regression with a Gaussian distribution.
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Turnover ratio through time

To calculate the turnover ratio through time, we assigned the RoC values to bins with equal
width (200 years) spanning the last 14 ka (data for ages between 21 and 14 ka were insufficient
to calculate robust estimates for the turnover ratio). We then calculated the turnover ratio of the
increase in turnover events after synergistic climate interaction compared to antagonistic climate
interaction for each bin, averaging over long-term trends (Extended Data Fig. 12b). To check
whether the choice in bin width might bias our estimates, we assigned RoC values to 50 bins
containing an equal number of observations by letting the width of each bin vary (Extended Data
Fig. 12a).

Robustness testing

In addition to the estimation of the region of practical equivalence (ROPE, Extended Data Fig.
11), we performed various robustness tests to check whether our estimates are statistically
sound. We first tested the fit of each final GLHM to the actual pollen data via posterior predictive
checks, comparing draws from the posterior predictive distribution with the distribution of rates
of change from the actual data for each model. Overall, we found a good agreement between
GLHMs and actual data (Extended Data Fig. 9 and Extended Data Fig. 10), indicating that the
model fitting procedure was appropriate for the data at hand. The models themselves
converged successfully, with conventional convergence and efficiency diagnostics for the used
Markov Chain Monte Carlo algorithms showing a high performance (Extended Data Table 3).

As we quantified the RoC over a paleoecological short timespan (i.e., 100 years), the resulting
estimates were comparably low and ranged between 0 and 0.3. To model this distribution of
RoC values for inference, we decided to use a beta family distribution for the likelihood (see
Generalised linear hierarchical models). However, RoC can theoretically reach values higher
than 1 (Mottl et al., 2020; Mottl, Flantua, et al., 2021; Mottl, Grytnes, et al., 2021), which is not
covered by the beta distribution. To test whether this might bias our results, we additionally fitted
a GLHM with a gamma error distribution. This model was based on the 100 year long-term
trend, which showed the best performance in the original models (Extended Data Fig. 8b).
Metrics estimated from this gamma model were in the range of the original model, indicating that
the inference presented here is robust to the choice of the underlying error distribution for the
GLHMs. Turnover ratios after synergistic climate interaction were between 1.04 and 1.19, while
antagonistic climate interactions resulted in values between 0.82 and 1.03. We similarly found
that tropical climate classes were more sensitive to climate changes, with turnover ratios
ranging up to 9.89 based on the gamma model. Predicted increase in RoC across shared
socioeconomic pathways based on the gamma model was between 82.2% (SSP1, long-term)
and 125% (SSP5, long-term), which is in line with our initial results based on models with a beta
family error distribution.

We additionally tested whether the trend in turnover ratio per continent and climate class (Fig. 3)
can be explained by the number of samples for each estimate. For this, we used a Bayesian
measurement error model to estimate the relationship between turnover ratio and sample size.
The model indicated that the turnover ratio slightly decreases with increasing sample size for
both the continent-wide analysis and the climate class analysis (Extended Data Fig. 13a and c),
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but we found the relationship to be not consistent (i.e., the 95% credible interval includes zero
for the slope estimate, Extended Data Fig. 13b and d). This indicates that our results are not
confounded by a sampling bias through variational sampling on the continent or climate class
level.

We further evaluated the power of our statistical procedure by simulating RoC for pollen
sequences and estimating the difference in simulated RoC for antagonistic climate interactions
compared to synergistic climate interactions, as a function of sample size (Extended Data Fig.
14). We performed these power calculations for a difference of 0 between RoC (assessing type I
errors, Extended Data Fig. 14a) and a difference similar to the one we found in the actual data
(assessing type II errors, Extended Data Fig. 14b). According to these simulations, our
analytical framework has excellent power to avoid both false positives and false negatives.
Because of the high statistical power of our procedure, the low dependency on variational
sampling, the good fit of our GLHMs to the data, and the consensus in estimation of all models
spanning different long-term lengths, we are confident that we are describing true ecological
patterns.
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Extended Data

Extended Data Fig. 1: Spatial distribution of pollen sequences used in this work. Fossil pollen
data were obtained from the Neotoma Paleoecology Database and filtered to reduce sampling
biases (see Materials and Methods and Extended Data Table 1).
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Extended Data Fig. 2: Methodological workflow (see Methods section as well). (a) Pollen
sequences are harmonised taxonomically per continent (except for Africa). (b) For each
sequence, we construct a Bayesian age-depth model to generate 1000 possible age estimates
for all sample depths at the original sampling resolution. (c) We sample aged estimates for each
sample depth in a pollen sequence and calculate the rate of change (RoC) score for each depth
via the R-Ratepol package(Mottl et al., 2020). We repeat this whole procedure from the age
estimate sampling to the rate calculation 1000 times and subsequently calculate the median
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RoC as well as the standard deviation for each depth in a focal pollen sequence. (d) Mean
annual air temperature for each sample depth in a pollen sequence is calculated via the
CHELSA-TraCE21k downscaling algorithm using the median age estimate from the Bayesian
age-depth model and the coordinates of the site. (e) We then calculate long-term trends for
each sample depth (depicted by the black point) in the pollen sequence with varying lengths
(depicted by the orange lines). Additionally, we calculate a short-term temperature change
spanning 100 years (depicted by the red line). (f) In a time-continuous analysis, we then regress
the RoC at the sample depth i of the pollen sequence against the interaction of the short-term
change with the long-term trend of the focal sample depth. For this, we use generalised linear
hierarchical models (GLHMs) with a beta error distribution and a log-link, accounting for the
underlying data structure via random effects on the pollen sequence nested within a climate
class nested within a continent.
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Extended Data Fig. 3: The calculated median global rate of vegetation change over time. The
dark yellow line depicts the average trend and the yellow shading the 55% and 95% credible
intervals. The distribution on the top shows the marginal distribution of observations over time.
Coloured rectangles depict anthropogenic changes during the past 10,000 years estimated from
archaeological expert elicitation(Stephens et al., 2019).
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Extended Data Fig. 4: Estimated median trend lines for the global rate of change (RoC) score
as a function of long-term temperature interacting with a short-term change. Model predictions
for the RoC along a gradient of short-term temperature changes, for both long-term cooling
(Long-Term < 0°C) and long-term warming (Long-Term > 0°C), based on a grid of equally
spaced short-term changes from -2°C to 2°C with equally spaced long-term trends similarly
ranging from -2°C to 2°C. Lines show median trends for models with varying length of long-term
trends, ranging from 100 to 1000 years.
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Extended Data Fig. 5: Individual model estimates for the global rate of change (RoC) over a grid
of equally spaced short-term changes from -2°C to 2°C with equally spaced long-term trends
similarly ranging from -2°C to 2°C. Coloured lines are 100 draws from the posterior for each
model, and the thicker grey line shows the median trend averaged over all draws. Estimates are
based on models with varying length of long-term trends, ranging from 100 to 1000 years.
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Extended Data Fig. 6: Absolute risk and difference in absolute risk for plant assemblages to shift
into high turnover state for all climate interactions. (a) The absolute risk conditional on the
long-term temperature trend and a grid of short-term temperature change. Long-term warming is
illustrated in red, and long-term cooling in blue. The points show the average absolute risk to
shift into high turnover, the dark shaded areas show the 55% credible intervals, and the lighter
shaded areas the 95% credible intervals. (b) The difference in absolute risk between long-term
cooling and long-term warming, conditional on short-term changes. During synergistic climate
interactions (long-term cooling adding to a short-term cooling, and long-term warming adding to
a short-term warming), the risk is substantially increased. On the contrary, the risk to shift into
high turnover is low for antagonistic climate interactions (long-term cooling adding to a
short-term warming, and long-term warming adding to a short-term cooling). Red shaded areas
show the long-term warming, and blue areas the long-term cooling trend. Darker shaded areas
depict the 55% credible interval, and lighter shaded areas the 95% credible interval. The grey
area shows the region of practical equivalence.
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Extended Data Fig. 7: Estimated relationship between turnover ratio (ratio of high to low
turnover events) and temperature variability to test whether species experiencing less
temperature variability are more susceptible to climate interactions. (a) The relationship between
standardised turnover ratio and latitude of each pollen sequence. (b) The relationship between
the standard deviation in short-term temperature change across the whole sequence
(temperature variability, standardised) and latitude. Coloured lines show the average trend and
the grey area the 95% credible interval around this trend. Trends were estimated via a Bayesian
regression with a gaussian distribution.
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Extended Data Fig. 8: Model comparison for the models where the rate of change was
regressed against the interaction of a short-term temperature change (spanning 100 years) with
a long-term temperature trend. The comparison was conducted via the expected log predictive
density (ELPD) of a model calculated via leave-one-out cross-validation. Each model was
compared to the best performing model (which has a cross-validated ELPD of zero accordingly),
with a higher divergence indicating a lower model performance.
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Extended Data Fig. 9: Graphical posterior predictive checks for all full models. The thick dark
line depicts the distribution of the actual rate of vegetation change. The thinner coloured lines
show 5 kernel density estimates generated from the posterior predictive distribution. The
posterior predictive draws follow the actual rate of assemblage change distribution closely for all
models, indicating a good fit to the data.
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Extended Data Fig. 10: Graphical posterior predictive checks for all full models. The coloured
histograms show the distribution for the contrast between the actual turnover rate and a draw
from the posterior predictive distribution for all models. The histograms therefore depict the
distribution of predictive errors. The errors are normally distributed for all models and generally
low, indicating a good fit to the data.
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Extended Data Fig. 11: The region of practical equivalence (ROPE) for all risk metrics. The
ROPE indicates a range of parameter values that are practically equivalent to the null values,
which in this case corresponds to an equal risk after synergistic and antagonistic climate
interactions. The coloured histograms show the distribution of simulated metric values. The
points depict the median value for the focal ROPE of the metric, the thicker black line is the 55%
credible interval, and the thinner black line is the 95% credible interval.
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Extended Data Fig. 12: Temporal trend of the turnover ratio after synergistic climate interactions
during the past 14,000 years (data for ages between 21 and 14 ka were insufficient to calculate
robust estimates for the turnover ratio). The blue lines show the trend after cooling-cooling
climate interactions, and the red lines after warming-warming climate interactions. Shaded lines
indicate the 95% credible intervals per climate interaction. The shaded grey areas illustrate the
region of practical equivalence (ROPE), which covers a range of turnover ratio values generated
from null models. (a) All observations assigned to bins with a varying width so that each bin
covered approximately the same number of observations. (b) All observations assigned to bins
with equal width.
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Extended Data Fig. 13: The estimated turnover ratio as a function of actual sample size. (a) The
relationship between the turnover ratio per continent and the number of samples per continent.
(b) The posterior estimate for the change in the turnover ratio per continent if the sample size is
increased by one magnitude. (c) The relationship between the turnover ratio per climate class
and the number of samples per climate class. (b) The posterior estimate for the change in the
turnover ratio per climate class if the sample size is increased by one magnitude.
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Extended Data Fig. 14: Power simulation as a function of sample size. Points show the median
estimate for the effect based on models, and the thick grey line the 55% credible interval, and
the thin grey line the 95% credible interval. (a) The simulated null effect is shown as the red line.
Using simulated data based on this null effect, we fitted distributional models on a subset of the
data and estimated the effect post hoc. This enabled us to quantify the minimum number of
samples required to correctly assess an effect of zero, as well as the type I error rate
(concluding a substantial difference when there is actually none, false positives) for our actual
sample size (depicted by the dashed grey line). (b) We then simulated an effect similar to our
actual results (a turnover ratio around 1.34 for synergistic climate interactions compared to
antagonistic interactions, depicted by the red line). Again, we then subsampled the data and
fitted distributional models. Comparing the range of the credible intervals based on model
estimates to a range of values with practical equivalence (ROPE, shaded grey area) enabled us
to assess the minimum number of samples to correctly assess the alternative effect. This
similarly shows the type II error rate (concluding no difference when there is actually one, false
positives) as a function of sample size.
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Extended Data Table 1: Number of pollen sequences used in this work within continents and
within climate classes.

Continent # Sequences Climate Class

#
Sequence

s

Africa 28

Arid Desert 2

Arid Steppe 4

Polar Tundra 2

Temperate Dry Summer 10

Temperate Dry Winter 6

Temperate Without dry
season 1

Tropical Savannah 3

Asia 149

Arid Desert 5

Arid Steppe 13

Cold Dry Summer 9

Cold Dry Winter 22

Cold Without dry season 76

Polar Tundra 9

Temperate Dry Summer 5

Temperate Dry Winter 4

Temperate Without dry
season 6

Europe 532

Arid Steppe 13

Cold Dry Summer 5

Cold Without dry season 323

Polar Tundra 38

Temperate Dry Summer 18

Temperate Without dry
season 135
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Continent # Sequences Climate Class

#
Sequence

s

Latin America 102

Arid Desert 3

Arid Steppe 3

Cold Dry Summer 3

Polar Tundra 32

Temperate Dry Summer 11

Temperate Dry Winter 7

Temperate Without dry
season 20

Tropical Monsoon 6

Tropical Rainforest 10

Tropical Savannah 7

North America 641

Arid Desert 3

Arid Steppe 14

Cold Dry Summer 59

Cold Without dry season 456

Polar Tundra 41

Temperate Dry Summer 19

Temperate Without dry
season 48

Tropical Savannah 1

Oceania 14

Cold Without dry season 1

Polar Tundra 2

Temperate Without dry
season 6

Tropical Rainforest 5
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Extended Data Table 2: All turnover risk metrics for all long-term trends compared to the region
of practical equivalence (ROPE). The table shows the median risk estimate with the range of the
95% credible interval in square brackets. The grey values show the range of the ROPE for the
focal risk metric.

Absolute Risk
[%]

Risk Difference
[%] Risk Ratio

Overall
57
[52,
63]

[48, 52] 15 [3,
25] [-4, 3]

1.25
[1.07,
1.67]

[0.93,
1.07]

Long-Ter
m 100

54
[51,
56]

[48, 52] 8 [2,
12] [-4, 3]

1.18
[1.05,
1.28]

[0.93,
1.07]

Long-Ter
m 250

61
[52,
63]

[48, 52] 22 [5,
25] [-4, 3]

1.57
[1.1,
1.69]

[0.93,
1.07]

Long-Ter
m 500

59
[54,
59]

[48, 52] 17 [8,
18] [-4, 3]

1.42
[1.18,
1.45]

[0.93,
1.07]

Long-Ter
m 1000

57
[54,
57]

[48, 52] 15 [8,
15] [-4, 3]

1.34
[1.18,
1.35]

[0.93,
1.07]
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Extended Data Table 3: R-hat values for all full models. R-hat indicates the convergence of the
Monte Carlo Markov Chains of a model. Values below 1.01 indicate complete convergence
(good), values between 1.01 and 1.05 indicate partial convergence (mediocre), and values
above 1.05 indicate that some parameters potentially did not converge (bad). All models
converged successfully based on these metrics. No R-hat values were above 1.1 (R-hatmax),
supporting the interpretation of good convergence.

R̂good
R̂mediocr

e
R̂bad R̂max

Long-Ter
m 100 99.3% 0.7% 0% 1.013

Long-Ter
m 250 99.9% 0.1% 0% 1.013

Long-Ter
m 500 100% 0% 0% 1.01

Long-Ter
m 1000 99.4% 0.6% 0% 1.012
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7. Conclusion

“Anything that happens, happens.
Anything that, in happening, causes something else to happen, causes something else to

happen.
Anything that, in happening, causes itself to happen again, happens again.

It doesn’t necessarily do it in chronological order, though.”
– Douglas Adams

Understanding the mechanisms that drive taxa into extinction or extirpation is among the most
fundamental objectives of ecological research and conservation science (Brook & Alroy, 2017;
Dietl & Flessa, 2011; Kerr et al., 2007). One of the fundamental issues for extinction studies
using contemporary data is that this data is always dependent on past conditions (Ogle et al.,
2015). These climate legacies and their causal effects on biotic systems can only be resolved by
means of time series (Sugihara et al., 2012). The fossil record, together with palaeoclimatic
data, provides such time series of ecological responses. Studying the fossil record comprises
the potential to understand how the biosphere has responded to past climate changes, as well
as to quantify the adaptive capacity and vulnerability of ecosystems (Pörtner et al., 2022).
Developing macroevolutionary models that integrate those aspects in a single framework is an
important goal of conservation science (Lawing & Matzke, 2014; Svenning et al., 2015).

Taking advantage of the fossil record, I was able to develop and test a heuristic framework for
the quantification of the effects of climate legacies on ecosystems. In the introduction of this
thesis, I identified general mechanisms that cause climate legacies. While these mechanisms
are well-known (Svenning et al., 2015), they are rarely integrated in studies on the relationship
between extinction risk and climate, as shown by a systematic review of the existing literature. A
meta-analysis based on this systematic review, however, has shown that when these effects are
included and quantified, large effect sizes were found. To facilitate the quantification of these
effects in future research, I therefore developed the concept of climate interactions as a unifying
framework. Under this framework, more deleterious extinction dynamics are expected when a
short-term change adds to a long-term trend in the same direction (synergistic interaction), in
stark contrast to a short-term change opposing the preceding long-term trend (antagonistic
interaction). I tested this hypothesis and found evidence for the expected effect in extinction and
origination events throughout the Phanerozoic (Manuscript 1 and 3), in migration lags
throughout the Quaternary (Manuscript 4), and in compositional turnover of plant assemblages
throughout the Holocene (Manuscript 6). To this evidence, I added baseline climate data for the
most severe mass extinction event in Earth’s history (Manuscript 2), and provided a framework
to combine and integrate contemporary data with past dynamics within ecological systems
(Manuscript 5).

In the introduction, I further showed that there exists a conundrum of temperature-induced
extinction events throughout the Quaternary (Botkin et al., 2007), where high rates of
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Conclusion

temperature change caused mass extinctions at most time intervals but not at all intervals. For
example, moderate extinction events occurred during the Paleocene-Eocene Thermal Maximum
(PETM), despite very high rates of warming (Foster et al., 2018). During the Late
Eocene-Oligocene Cooling (LEOC), on the other hand, major biotic turnovers were found
despite only a modest cooling trend (Coxall & Pearson, 2007). The framework of climate
interactions might provide an explanation to this conundrum. The PETM warming follows a
long-term cooling trend throughout the Cretaceous, which is an antagonistic climate interaction
with lower extinction risk under the climate interaction framework. The LEOC, however, is added
to a long-term cooling trend throughout the Paleogene, which represents a synergistic climate
interaction with higher expected extinction risk.

Besides providing insights for past extinction events, the proposed framework of climate
interaction can also shed light on future extinction dynamics under anthropogenic climate
change. The accelerating warming trend, and therefore increased synergistic climate
interactions, might hereby lead to unprecedented impacts on ecosystems (Manuscript 6). Not
accounting for climate interactions could blur or even reverse apparent extinction patterns and
prevent useful predictions for future scenarios (Manuscript 1). The findings reported in this
thesis can thus pave the way for improved assessments of future extinction risk of taxa. Climate
interactions comprise a scale-independent framework for the quantification of climate legacies in
a variety of biotic systems. Bringing together the findings of the individual research projects of
this thesis, with climate interactions covering timescales from 100 to a few million years, can
form the basis for future research on extinction dynamics throughout Earth’s history.

“Let the past hold on to itself and let the present move forward into the future.”
– Douglas Adams
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