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Abstract
The phase-field method provides a powerful framework for microstructure evolution modeling in complex systems, as often 
required within the framework of integrated computational materials engineering. However, spurious grid friction, pinning 
and grid anisotropy seriously limit the resolution efficiency and accuracy of these models. The energetic resolution limit is 
determined by the maximum dimensionless driving force at which reasonable model operation is still ensured. This limit 
turns out to be on the order of 1 for conventional phase-field models. In 1D, grid friction and pinning can be eliminated by a 
global restoration of Translational Invariance (TI) in the discretized phase-field equation. This is called the sharp phase-field 
method, which allows to choose substantially coarser numerical resolutions of the diffuse interface without the appearance 
of pinning. In 3D, global TI restricts the beneficial properties to a few specific interface orientations. We propose an accu-
rate scheme to restore TI locally in the local interface normal direction. The new sharp phase-field model overcomes grid 
friction and pinning in three-dimensional simulations, and can accurately operate at dimensionless driving forces up to the 
order of 104 . At one-grid-point interface resolutions, exceptional degrees of isotropy can be achieved, if further the largely 
inhomogeneous latent heat release at the advancing solid-liquid interface is mitigated. Imposing a newly proposed source 
term regularization, the new model captures the formation of isotropic seaweed structures without spurious dendritic selec-
tion by grid anisotropy, even at one-grid-point interface resolutions.

Keywords  Phase-field modeling · Solidification · Nonlinear preconditioning · Finite differences

1  Introduction

Diffuse interface descriptions, such as phase-field models, 
are widely used within the framework of integrated com-
putational materials engineering, and more specifically for 
the microscopic modeling of solidification [1–3]. Quantita-
tive simulations require a proper numerical resolution of 
the diffuse solid/liquid interface, i.e., the diffuse interface 
profile has to be resolved by a certain minimal amount of 
grid points. In case of numerical under-resolution, the simu-
lation is subjected to spurious grid anisotropy as well as grid 
friction, which in the worst case leads to the “pinning” of 

the diffuse interface on the computational grid. We define 
the dimensionless profile resolution number 𝜆̃ = 𝜆∕Δx 
as the ratio of the half profile width � to the spacing Δx 
between next neighboring grid points. The half profile 
width � refers to the equilibrium phase-field profile func-
tion �

�
(x) = {1 − tanh(2x∕�)}∕2 , which is received upon 

a cut through the diffuse interface in normal direction. In 
conventional phase-field models, the minimal number of 
grid points used to resolve the profile is about 4 [4],which 
corresponds to the dimensionless profile resolution number 
𝜆̃ = 2 . However, depending on the accuracy demands of the 
simulation, the double, triple or even quadruple profile reso-
lution numbers can be required.

Recently, Finel et al. found a striking new way to elimi-
nate grid friction and pinning in one dimension, called the 
sharp phase-field model [5]. This method is conceptually 
related to other techniques to improve the performance of 
phase-field models based on the phase-field profile func-
tion, such as the nonlinear preconditioning of the phase-field 
equation [6–12]. The 1D sharp phase-field model operates at 
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one-grid-point profile resolutions ( ̃𝜆 = 0.5 ) and below with-
out the occurrence of grid pinning!

However, besides the profile resolution, there is one other 
important aspect that limits the spatial resolution efficiency 
of phase-field models in general: They cannot operate at 
arbitrarily small interface energy densities Γ . Consider an 
interface between two phases at different bulk free energy 
density levels. The latter, also called the driving force � , 
induces an interface motion lowering the total free energy 
of the system. For too small interface energies or too large 
driving forces, either the high energy phase turns unstable 
(phase stability limit) or the phase-field profile is spuri-
ously altered. The alternation is accompanied by strong grid 
friction effects. We define the dimensionless driving force 
𝜇̃ = 𝜇Δx∕Γ , which relates to the spatial resolution of the 
simulation via the grid spacing Δx . Imposing constant driv-
ing forces, we consider the simulation of stationary interface 
motion in 1D at different dimensionless spatial resolution 
numbers 𝜆̃, 𝜇̃ . Reasonable model operation at the resolution 
𝜆̃, 𝜇̃ is said to require phase stability as well as less than 
10% relative deviations from the theoretically expected inter-
face velocity. Further information on this study is given in 
Sect. 3.1. In Fig. 1, we compare the resulting parameter win-
dows of reasonable model operation for the most frequently 
used conventional phase-field model (blue) and the sharp 
phase-field model (green). The elimination of spurious grid 
friction in the sharp phase-field model allows for orders of 
magnitude more efficient simulations, than possible with the 
conventional phase-field model.

During diffusion-limited solidification, the complex 
evolution of the solid/liquid interface undergoes a branch-
ing instability [13]. In a fully isotropic system, this leads 
to the self-organized formation of so-called isotropic dense 

branching or seaweed microstructures [14], as visible in the 
inset of Fig. 1. The structure shows a characteristic distance 
between branches, which nontrivially relates to the atomis-
tically small capillary length d0 , that is proportional to the 
interface energy density Γ [1]. A fundamental challenge 
in solidification modeling is the fact that the microscopic 
distance between branches is typically several orders of 
magnitude larger than a central aspect of its cause, i.e., the 
atomistically small capillary length. If, however, the phase-
field model is able to stably operate at a certain small inter-
face energy or, in other words, a certain large dimensionless 
driving force, then the grid spacing Δx can exceed d0 in a 
respective proportion [15].

Here, we propose a new sharp phase-field model, which 
captures the 3D formation of isotropic dense branching even 
at one-grid-point profile resolutions ( ̃𝜆 = 0.5 ), see Fig. 1. 
The absence of any spurious dendritic selection by the com-
putational grid indicates quite high degrees of isotropy [16, 
17]. This denotes remarkable methodological progress in the 
modeling of microscopic solidification. Before, the phase-
field method was understood to be substantially less efficient 
than respective cellular automata models, where the trans-
formation from the liquid to the solid phase is carried by 
single cells. The advantage of the phase-field method is that 
the inefficient, diffuse interfaces of large widths naturally 
provide enormously high degrees of isotropy in the descrip-
tion, which can hardy be reached by the cellular automata 
[1, 18]. Now, with one-grid-point interface resolutions, 
the sharp phase-field model is able to reach fully isotropic 
solidification conditions at the efficiency scale of respective 
cellular automata models!

During simulations of diffusion-limited solidification, as 
for instance shown in Fig. 1, the driving forces are largely 
inhomogeneous. We visualize the respective driving force 
distribution by a boxplot with whiskers to the maximal 
and minimal value. In this work, we show that the sharp 
phase-field model provides quantitative interface veloci-
ties within the full range of different driving forces! To 
achieve a comparable accuracy over a similarly wide range 
of driving forces, the conventional phase-field model would 
require profile resolutions of 𝜆̃ = 5 , as shown in Fig. 1. In 
this regard, the new sharp phase-field model allows for 3D 
simulations of isotropic solidification with a 103×more effi-
cient spatial resolution.

The article is structured as follows: The derivation of 
different models based on the sharp phase-field method is 
presented in Sect. 2, where the central new aspects are the 
locally adaptive restoration of Translational Invariance (TI), 
as discussed in Sect. 2.1, and the newly proposed regulari-
zation of the latent heat release at the solid/liquid interface, 
discussed in Sect. 2.2. Detailed information on the calibra-
tion of the different models is given in Sect. 2.3, and an over-
view on the construction of the different models is presented 

Fig. 1   Evaluation of the principle capability of phase-field models to 
operate at different dimensionless spatial resolutions 𝜆̃ and 𝜇̃ (Crite-
ria: phase stability and stationary interface motion with relative errors 
< 0.1 ). The different possible resolution ranges are compared for two 
different models: The most frequently used conventional model (blue 
area) and the sharp phase-field model (green area)
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in Sect. 2.4. This is followed by the results and discussion 
Sect. 3. First, we discuss the constantly driven stationary 
motion of planar interfaces, in Sect.. 3.1, which provides the 
basic operational frame of the different models. The simula-
tions of quantitative stationary solidification with inhomo-
geneous driving forces are discussed in Sect. 3.2. Finally, in 
Sect. 3.3, we discuss the application of different models to 
the case of isotropic diffusion-limited solidification.

2 � Sharp phase‑field modeling

The derivation of the different models is started from a dis-
crete Helmholtz free energy functional F

�
�
�

�
=
∑

�
f
�
Δx3 , 

where � denotes the locations of the grid points within the 
simple cubic 3D numerical lattice with a grid spacing Δx . In 
the following, we describe orientations and directions rela-
tive to our simple cubic computational grid using a Miller 
index notation system, where the principle ⟨100⟩-vectors 
correspond to the basis vectors of the grid. The discrete 
Helmholtz free energy density f

�
 associated with the grid 

point � is

We restrict the formulation to grid point interactions 
up to the first three neighboring shells j=1, 2, 3 , with 
���k��j=

√
jΔx and �k being a numerical lattice vector that 

connects two neighboring grid points along the direction 
k . �+

k
�
�
 denotes the discrete directional derivative, which 

is approximated by the forward finite difference expression 
�+
k
�
�
≡ (�

�+�k
−�

�
)∕||�k|| . For a given neighboring shell with 

mj neighboring nodes, the coefficients �j=3∕mj correct for 
the multiplicity of the shell. Similar to [5], the ponderation 
coefficients �j are chosen to get best possible energetic equal-
ity of differently oriented ideal interfaces.

The equilibrium potentials gk(�) are minimal at �=0 and 
�=1 , which corresponds to the two distinct phases of the 
system. � denotes the width of the diffuse interface, Γ is 
the interface energy density, and CΓ is the interface energy 
calibration parameter. A positive bulk free energy density 
difference �

�
 favors the growth of phase �=0 on the expanse 

of phase �=1 . Concerning the interpolation function h(�) , 
we focus on the natural interpolation h3=�2(3−2�) [5] and 
the most frequently used polynomial h5 =�3(10−15�+6�2) 
[19–24].

The functional derivative of the discrete Helmholtz free 
energy is given by ��F=��f�−

∑
j,k �

−
k
(�+
(�k�)

f
�
), where the 

second directional derivative �−
k

 is approximated by 
�−
k

(
�f

�

)
≡
(
�f

�
−�f

�−�k

)
∕||�k|| . The phase-field evolution 

equation demands that the time derivative �t��
 is 

(1)f
�
=

Γ

CΓ�

∑

j,k

�j�j

(
�2

2
(�+

k
�
�
)2+gk(��

)
)
+�

�
h(�

�
).

proportional to −��F  . We write, 3�Γ�t��
=−2M��F  , 

where M  is a kinetic coefficient with the dimension 
[M]=m2s−1[25]. Then, the phase-field equation is given as

where ��=�∕�� denotes the partial phase-field derivative. 
A constant driving force � results in stationary interface 
motion, whereas total energy conservation demands the 
velocity to be �th =−M�∕Γ . The phase-field equation pro-
motes solutions of the form

where � is the unit normal interface vector and cn=�tht 
denotes the central interface position moving with the veloc-
ity �th . It can be shown, that this function is an analytic solu-
tion of the non-equilibrium, continuum phase-field Eq. (2), 
if g(�)=

∑
j,k gk≡8�2(1−�)2 and h(�)=h3=�2(3−2�) . 

Within the distance 2� the phase-field value undergoes 96.4% 
of its total transition from �=0 to �=1 ( tanh 2≃0.964 ) [26]. 
The hyperbolic tangent function provides the following addi-
tion property,

which can be reformulated in terms of the phase-field profile 
function (3)

where we introduce the grid coupling parameters 
ak(�) = tanh

(
2�k ⋅�∕�

)
 , which depend on the interface nor-

mal vector. For vanishing driving forces �=0 and no phase-
field motion �t�=0 , the phase-field equation (2) reduces to

This discrete force density equilibrium condition (6) holds, 
if all 1D k-components are simultaneously satisfied. The 
individual k-component can be satisfied at any real time 
during the propagation of the interface using the addition 
property of the hyperbolic tangent profile. Inserting (5) into 
the k-th component of the equilibrium condition (6) yields

After integration, we obtain the k-th component of the modi-
fied equilibrium potential

(2)
�t��

=
2M

3CΓ

∑

j,k

�j�j

(
�−
k

(
�+
k
�
�

)
−

1

�2
��gk(��

)
)

−
2M

3�Γ
�
�
��h(��

),

(3)�
�
=
(
1 − tanh 2

(
� ⋅ � − cn

)
∕�

)
∕2,

(4)tanh (p ± q) =
tanh (p) ± tanh (q)

1 ± tanh (p) tanh (q)
,

(5)�
�±�k

=

(
1 ± ak

)
�
�

1 ±
(
2�

�
− 1

)
ak
,

(6)
∑

j,k�j�j{�
2(�

�+�k
−2�

�
+�

�−�k
)∕�2

k
− ��gk} = 0,

(7)��gk(�) = a2
k

�2

�
2

k

4�(1 − �)(1 − 2�)

1 − a2
k
(1 − 2�)2

.
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which further satisfies gk(�=0,1)=0 , to allow an easy 
calculation of the system’s total interface energy by 
Fint (��

)=
∑

�
f�=0 for an arbitrary phase-field [27, 28]. In 

the continuum limit ||�k||→0 , Eq. (8) converges to the con-
ventional Continuum Field (CF) potential g∞

k
=8�2(1−�)2.

The grid coupling parameters as well as the modified 
equilibrium potential (8) depend on the a priorily unknown 
interface orientation. To get a globally determined modified 
equilibrium potential (8), Finel et al. proposed to concentrate 
on interface orientations, which usefully relate to certain lat-
tice plane families of the computational grid [5]. In our nota-
tion, this corresponds to replacing the a priorily unknown 
interface normal vector � by a globally constant unit vector 
� , which is pointing in the direction normal to the lattice 
plane (hkl) . Then, a 3D sharp phase-field model can be con-
structed based on the globally constant set of grid coupling 
parameters ak(�) = tanh

(
2�k ⋅�∕�

)
. Finel et al. have shown, 

that the resulting model provides the Translational Invari-
ance (TI) for planar interfaces with an orientation normal 
to all the equivalent directions ⟨hkl⟩ [5]. The maximal pos-
sible number of different equivalent directions can be 24, if 
h ≠ k ≠ l . We refer to the class of globally constant sharp 
phase-field models as the TI⟨hkl⟩-models, where the index 
indicates the constant directions of restored translational 
invariance.

2.1 � Locally adaptive translational invariance

Here, we propose a new sharp phase-field model. It uses a 
locally adaptive modified equilibrium potential (8) based on 
locally determined grid coupling parameters ak(�) . This is 
difficult in two respects: First, usual finite difference expres-
sions for the calculation of the unit normal vector � can not 
be applied. Those expressions do not provide a sufficiently 
accurate determination of the normal direction in case of 
small profile resolution numbers 𝜆̃ . To provide the necessary 
accuracy, we calculate preliminary grid coupling parameters 
by âk=(â+

k
+â−

k
)∕2 , with

which is a reformulation of Eq. (5).
The second difficulty arises from the necessary interac-

tion between the different directions k within the formula-
tion: Using the modified equilibrium potentials the explicit 
dependence of the phase-field equation on the profile width 
� cancels out. Then, � is solely controlled by the preliminary 
grid coupling parameters, which at the same time contain 

(8)gk(�)
�
2

k

�2
= �(1−�) +

1−a2
k

4a2
k

ln

(
1−a2

k

1−a2
k
(1−2�)2

)
,

(9)â±
k
=

±
(
𝜙
�±�k

− 𝜙
�

)

𝜙
�
− 2𝜙

�±�k
𝜙
�
+ 𝜙

�±�k

,

the a priori unknown interface normal vector �̂ . Thus, 
without length control of �̂ the profile width � would not 
be defined in the model. Therefore, we locally calculate all 
components of the preliminary interface normal vector by, 
n̂k=𝜆 arctanh(âk)∕

||2�k|| , restore unit length via �= �̂∕|�̂| , 
calculate the corrected grid coupling parameters as

and finally insert those into the derivative of the modified 
equilibrium potential (7) to solve the phase-field equation in 
the current time step. In the following, we refer to this model 
as the TI

�
-model, which provides the local restoration of TI 

in the direction of the local interface normal �.
Next, we evaluate the theoretic ability of the different 

models to restore Translational Invariance (TI) of the profile 
function (3) within discrete the phase-field equation. There-
fore, we consider a discrete 3D system with a phase-field as 
represented by an array of floating point numbers, each asso-
ciated with a grid point within the simple cubic numerical 
lattice of size 300 × 1 × 1 (excluding the one stencil bound-
ary halo). The phase-field values are initialized according 
to the ideal profile function (3), such that the interface is 
sitting in the middle of the system. The total force acting on 
the interface in equilibrium is given by the system integral 
over (6). While the continuum force integral clearly van-
ishes in equilibrium, the discrete force integral can oscillate, 
when the ideal profile is moved on the computational grid. 
In Fig. 2, we plot the oscillation amplitude A of the dis-
crete interface force as a function of the interface orientation 
for different models. Without restoration of TI, the system 
integral over Eq. (6) oscillates, when the ideal profile (3) 
is moved in such a way that the interface center cn passes 

(10)ak(�) = tanh

(
2�k ⋅�

�

)
,

Fig. 2   Model comparison with respect to the theoretic ability to 
restore Translational Invariance (TI). For each model, we plot the 
oscillation amplitude A of the total discrete interface force (i.e.  the 
system integral over Eq.  (6)) using the moving, ideal profile func-
tion (3) for different interface orientation angles �[001] and �[011] . The 
black solid curve shows the Continuum Field (CF) model, where no 
TI is restored. The different TI⟨hkl⟩ models use global equilibrium 
potentials (8), that restore TI for interfaces oriented normal to the 
⟨hkl⟩-directions. The TI�-model (green curve) provides TI locally in 
the interface normal direction � . The profile resolution number is 
𝜆̃=𝜆∕Δx=0.5 ; system size 300×1×1
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several grid points. The conventional Continuum Field (CF) 
model (black curve) provides the largest equilibrium force 
oscillations, which indicates fully broken TI.

Finel et al. proposed to restore TI using globally con-
stant grid coupling parameters ak(�) based on a unit vector 
� , pointing in the direction normal to the lattice plane (hkl) 
[5]. This provides vanishing force oscillations only for those 
interface orientations, that match with one of the equivalent 
numerical lattice directions ⟨hkl⟩ : When the grid coupling 
parameters are, for instance, calculated from a unit lattice 
vector � parallel to the [110]-direction (TI⟨110⟩ : dark blue 
curve in Fig. 2), then vanishing force oscillations are found 
for interface normal vectors pointing in all the ⟨110⟩-direc-
tions. This study denotes an independent confirmation of 
the statements and derivatives given in [5]. However, it is 
further visible in Fig. 2, that for a profile resolution of 𝜆̃=0.5 
the TI⟨hkl⟩-models provide quite narrow interface orientation 
windows, in which the force oscillation amplitudes are found 
to be below 10−4 . This highlights the sensitivity of the TI 
restoration method with respect to interface orientations. 
The newly proposed TI

�
-model (green curve) uses grid 

coupling parameters calculated from accurately determined 
local interface normal directions. This model provides very 
small equilibrium force oscillations regardless of the inter-
face orientation, which indicates that the TI

�
-model success-

fully restores TI for arbitrary planar interfaces in 3D.

2.2 � Latent heat release

Here, we discuss the solidification specific aspects of the 
models. The advancing solidification is accompanied by a 
release of latent heat at the solid/liquid interface [29]. Thus, 
the dimensionless temperature field U

�
=C(T

�
−TM)∕L is 

introduced, where TM , L and C denote the melting tempera-
ture, latent heat and heat capacity, respectively [30]. The 
driving force for solidification is given by �

�
=−U

�
Γ∕d0 , 

where d0=ΓTMC∕L
2 denotes the capillary length. The tem-

perature obeys a diffusion equation,

with the assumption of equal diffusion coefficients D in 
the solid and liquid phases. For small profile resolutions, 
�∕Δx≤2 , and R=1 , we observe spuriously inhomogeneous 
releases of latent heat, whenever the progressing interface 
center passes a grid point. The spurious heat release pro-
vides oscillations in the solidification velocity as well as 
some degree of kinetic anisotropy. Therefore, we propose 
the regularization R(�

�
) in the diffusion equation

(11)�tU�
=D∇2U

�
+R(�

�
)��h�t��

,

(12)R(�
�
) =

3CR

4

a[100]�

Δx

(
1 − a2

[100]

(
1 − 2�

�

)2)−2

,

where the grid coupling parameter is a[100] = tanh 2Δx∕� 
and CR denotes a calibration constant, which is required to 
maintain total energy conservation during solidification. The 
numerical description of the Laplace operator in the thermal 
diffusion equation includes interactions with the second to 
next nearest neighboring grid points, in order to obtain an 
increased degree of isotropy. More specifically, we imple-
ment the 19-point finite difference formula for the Laplace 
operator provided by Kassner et al. (see appendix on page 
17 in [29]).

The idea behind the source term regularization R(�) 
Eq. (12) is to distribute the latent heat release over a slightly 
enlarged range, involving more than just a single grid point. 
The different heat release ranges of different source term 
variants are compared in Fig. 3. The regularization requires 
a profile resolution dependent calibration procedure. For a 
given profile resolution, the calibration parameter CR has to 
take a specific value to ensure the conservation of the total 
energy in the system. Using some arbitrary starting value 
for CR , we perform long-term simulations of solidification 
until quasi two phase equilibrium in a small, thermally iso-
lated, one-dimensional system with an initially homogene-
ous undercooling temperature of U0=−0.7 . Then, based on 
the deviation of the measured solid-phase fraction from the 
expected outcome of 0.7, we successively optimize the CR 
value.

2.3 � Model calibration

The interface energy calibration CΓ is calculated via 
CΓ=

∑
�[100]

�[100] ⋅�f (��
(�))�=0∕Γ , where �[100] denotes a unit 

vector pointing in the [100]-direction of the computational 
grid, 

∑
�[100]

 denotes the sum in the [100]-direction, � is 
again the direction normal to the interface, and the phase-
field values �

�
(�) are given by the ideal profile (3) with 

interface orientation � . For the determination of CΓ , we 
chose the [100]-direction as interface orientation. The 
determination of the energy calibration factor is 

Fig. 3   Comparison of the heat release range of the source term 
S(�)=��h�t�∼��h

2(�) with ( ̃𝜆=0.4 ) and without ( ̃𝜆=2 ) the regu-
larization factor R(�) Eq. (12). The comparison is based on the ideal 
phase-field profile function (3)
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independent from the choice of the ponderation coeffi-
cients. Figure 4 shows the profile resolution dependence 
of the different calibration factors. The continuum limit 
for the calibration factor, C∞

Γ
=2∕3 , is indicated by the 

solid black line in Fig. 4. For sharp diffuse interfaces with 
a profile resolution below 𝜆̃<2 , we obtain substantially 
smaller values for the calibration line integral as compared 
to the limiting value.

For the determination of the ponderation coefficients an 
optimization procedure similar to the one proposed by 
Finel et al. [5] has been developed. The ponderation coef-
ficients �j should be chosen such that the interface energy 
becomes as isotropic as possible, i.e., the discrete interface 
energy integral Γ(�)=

�∑
�[100]

�[100] ⋅�f (��
(�))�=0

�
cn

 should 
dependent on the interface orientation � as little as pos-
sible. Since at least some of these line integrals may not 
be Translationally Invariant, we further average over a 
number of different values obtained for different positions 
cn of the interface center, as denoted by the angle brackets 
with index cn . Given a starting set for the ponderation coef-
ficients �j , we calculate the following three different inter-
face energy densities: Γ([100])=Γj=1 , Γ([110])=Γj=2 and 
Γ([111])=Γj=3 . As a measure for interface energy isotropy 
and as the minimization target, the square root of the sum 
of the deviations from the average interface energy value 
in square of these three energy densities is chosen. i.e., 

with Γ=
∑

j Γj∕3 . The optimal choice for the ponderation 
coefficients 

{
�j
}
 , with respect to this minimization target 

and under the constraint 
∑

j �j=1 , has been calculated by 
a simple steepest decent algorithm. In Fig. 4, the optimal 
ponderation coefficients are plotted as function of the profile 
resolution for the TI

�
-model (solid curves) as well as for the 

TI⟨100⟩-model (dashed curves). The ponderation coefficients 
obtained for the CF-model are nearly identical to those of 
the TI⟨100⟩-model.

2.4 � Construction of the different models

Here, we explain how the different models are constructed 
from the given finite difference equations. An overview over 
all the different models is given in Tab. 1. The models differ 
by different choices for the equilibrium potentials gk(�) and 
for the interpolation function h(�) . Further, the source term 
regularization factor R(�) can be either imposed or other-
wise set to unity. All models are separately calibrated. Thus, 
the imposed calibration parameters, CΓ , �j , can be different 
for the different models. The Continuum Field (CF) model 
is obtained in the limit lim|�k|→0 . In this limit the equilibrium 
potentials (8) converge to the classical quartic double-well 
potential. For the CF-model, we impose the equilibrium 
potentials g∞

k
= 𝜈̄8𝜙2(1−𝜙)2 , where the multiplicity correc-

tion 𝜈̄=1∕3 equilibrates for the overweighting by the sum in 
the equilibrium potentials within each neighboring shell j . 
Further, the most frequently used interpolation function 
h5=�3(10−15�+6�2) is applied, which provides phase sta-
bility for infinitely large driving forces.

Translational Invariance (TI) is obtained when the new 
equilibrium potentials Eqs. (8) are imposed in conjunction 
with the natural interpolation function h3 . When all the grid 
coupling parameters ak in the equilibrium potentials are set 
as fixed, based on the globally fixed lattice vector �=[100] , 
then TI is restored for all equivalent ⟨100⟩-directions of the 
computational grid. This model is denoted as TI⟨100⟩ + h3 . 
A combination of the new equilibrium potentials with the 
other interpolation function is not useful, because the non-
equilibrium phase-field profile alternation destroys the care-
fully restored TI again. In case of the TI

�
-models, the locally 

(13)
�
�j
�
∶min

�∑
j(Γ − Γj)

2,

Fig. 4   Plot of the different calibration parameters CΓ (solid green), 
C
CF
Γ

 (dashed green), C
R
 (red) and the ponderation coefficients �

2
 (vio-

let) and �
3
 (blue) as a function of the dimensionless profile resolution 

𝜆̃ . �
1
=1−�

2
−�

3

Table 1   Overview over the 
different models constructed 
from the sharp phase-field 
formulation

Model Equilibrium pot. Interpolation Regul. Calibration

CF+h
5 g∞

k
= 𝜈̄8𝜙2(1−𝜙)2 h5 =�3(10−15�+6�2) – CCF

Γ
, �CF

j

TI⟨100⟩+h3 gk: (8), ak(�⟨100⟩) h
3
=�2(3−2�) – CΓ, �

TI⟨100⟩
j

TI
�
+h

3
gk: (8), ak(�) h

3
=�2(3−2�) – CΓ, �

TI
�

j

TI
�
+h

3
+R gk: (8), ak(�) h

3
=�2(3−2�) R: (12) CΓ, �

TI
�

j
,CR
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calculated and length corrected grid coupling parameters 
ak(�) (see Eq. (9) ff.) are used in the equilibrium potentials 
gk(�) Eq. (8).

3 � Results and discussion

3.1 � Stationary interface motion

Here, we consider the simulation of planar interface motion 
in one dimension driven be a constant chemical potential 
� . After some transient period of time a stationary state 
of motion is reached. In this case, the interface velocity is 
exactly know from energy conservation principles, and is 
given as

If further the natural interpolation function h3=�2(3−2�) 
is imposed, then the phase-field profile function (3), with 
cn=�tht , turns out to be an analytic solution of the nonlinear, 
nonequilibrium phase-field Eq. (2). The stationary interface 
velocity as well as the interface profile, as received from 
the different simulations, are compared to these analytic 
predictions.

In Fig.  5, we compare mean errors in the interface 
velocities and widths (solid lines) as well as their relative 

(14)�th =−M�∕Γ.

oscillation amplitudes (colored areas) for different models. 
The colored areas start from the relative value of the oscilla-
tion amplitude and end at the mean value. When the colored 
area is found above the mean value, we have the “healthy” 
situation that the measured value oscillates around the theo-
retic expectation. In contrast, colored areas below the mean 
value denote the “unhealthy” case, when the theoretic expec-
tation is located outside the oscillation interval. While the 
conventional Continuum Field (CF) model is subjected to 
pinning, the sharp phase-field model allows for arbitrarily 
small driving forces.

The condition of phase stability demands the driving 
force to be small enough to guarantee meta-stability of 
the high energy phase: The two local minima of the poten-
tial energy density at � = 0, 1 have to be separated by a 
maximum. The TI+h3-model provides a profile resolution 
dependent stability limit, which can be surprisingly high. 
For instance, imposing the profile resolution 𝜆̃ = 0.4 , then 
the limiting driving force is ̃|𝜇|𝜆̃=0.4 ≲ 7200 ! The theo-
retic stability limits for the different profile resolutions 
𝜆̃ = 𝜆∕Δx = 4.0, 3.0, 2.5, 0.5 have been indicated by the 
vertical dashed green lines in Fig. 5. These theoretical limits 
nicely reflect the behavior of the sharp phase-field model.

Switching the interpolation function changes the phase 
stability limits. The most common choice for the interpo-
lation function is h5 = �3(10 − 15� + 6�2) . The CF+h5
-model provides phase stability for infinitely large driving 

Fig. 5   Evaluation of the param-
eter window of reasonable 
model operation based on error 
plots of the stationary interface 
velocity (top row) and the fitted 
interface width (middle row) 
as a function of the dimension-
less driving force 𝜇̃ = 𝜇Δx∕Γ , 
for different profile resolutions: 
𝜆̃ = 𝜆∕Δx = 4.0, 3.0, 2.5, 0.5 . 
Two models are compared: 
(i) Continuum Field (CF) 
model with h

5
 (blue) and (ii) 

the sharp phase-field model 
with Translational Invariance 
(TI+h

3
 ) (green). Solid lines 

denote the mean relative errors 
and the oscillations are indi-
cated as transparently colored 
areas. The time resolution is 
M�Δt∕(ΓΔx) = 1.6 ⋅ 10

−7
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forces! However, using interpolation functions other than 
the natural one leads to altered nonequilibrium phase-field 
profiles. The resulting deviation of the fitted profile width 
�f it from the theoretic expectation � is plotted in the middle 
row of Fig. 5. The profile alternation increases with increas-
ing driving force. Increasingly stronger alternations lead 
to increasingly stronger grid friction effects. Consider the 
resolution numbers 𝜆̃ = 3.0 and 𝜇̃ = 100 , then the diffuse 
interface is compressed down to 22% of its original width. 
Grid friction drops the interface velocity down to about 
5% of the theoretic expectation. Thus, for large dimension-
less driving forces, the CF-model h5 is effectively limited 
by spurious grid friction. The study reveals an unexpected 
limited applicability at large dimensionless driving forces 
also for the CF+h5-model, which provides theoretic phase 
stability for infinite driving forces. Therefore, this serious 
restriction applies to a surprisingly broad class of different 
phase-field models. The operational limits of other types 
of phase-field models, such as, for instance, the models 
with a section-wise defined double obstacle potential, pro-
viding a sinusoidal interface profile [31], will be subject 
of future investigations. Also interesting, in this regard, is 
the behavior of the recently rediscovered class of nonlinear-
preconditioned phase-field models [6–12]. This technique 
to improve the numerical capabilities of phase-field models 
has conceptional relations to the sharp phase-field method, 
as both formulations are based on the nonlinear interface 
profile function.

In the lower part of Fig. 5, we plot the parameter win-
dow of reasonable model operation. The range of reason-
able operation is defined to end when the relative velocity 
error exceeds 0.1. The evaluation of the principle capability 
of the two different phase-field models to operate at differ-
ent dimensionless spatial resolutions 𝜆̃ and 𝜇̃ , as shown in 
Fig. 1, is based on this evaluation of the parameter window 
of reasonable model operation.

3.2 � Quantitative stationary solidification

In Fig. 6a), the configuration of stationary solidification is 
shown. An animation of this figure is provided in the supple-
mentary material. Far in front of the solid/liquid interface, 
the temperature is U(L)=−2.0 . When the system reaches 
a stationary state, the solid phase is found at the minimal 
undercooling temperature of Uint =−1.0 . Then, the theoreti-
cally expected stationary solidification velocity is given by

where M denotes the kinetic coefficient, and d0 is the capil-
lary length [32]. We restrict to the comparison with the sharp 
interface equation and omit more sophisticated thin interface 
corrections [33]. The ratio between the total system length 

(15)�th =−MUint∕d0,

and the theoretic stationary diffusion length lD=2D∕�th is 
chosen to be L∕lD=5 . The system is resolved by 200 grid 
points, i.e. L∕Δx=200 , with a solid-phase fraction of 12% . 
The fraction is kept constant by incremental shifting of the 
whole system [34].

In Fig. 6b) the relative error in the solidification veloc-
ity is plotted as function of the dimensionless driving force 
𝜇̃int =𝜇intΔx∕Γ . The CF+h5-model (blue color) is subjected 
to strong spurious grid friction for both small as well as 
large dimensionless driving forces. In case of 𝜇̃int =100 , 
the observed solidification velocity is 90% smaller than 
the expectation. The TI-models are limited by phase sta-
bility only. This limit is indicated by the vertical dashed 
line in Fig. 6b). The TI+h3-model (red curve) provides 
large oscillations in the interface velocity. These result 
from spuriously inhomogeneous heat release at the solid/
liquid interface, as visible in Fig. 6a). It can be avoided by 
employing the newly proposed source term regularization 
R Eq. (12), see the green curves in Fig. 6.

Fig. 6   Stationary solidification using (i) the Continuum Field model 
(CF+h

5
 ) for 𝜆̃=2 in blue, (ii) the Translationally Invariant model 

(TI+h
3
 ) for 𝜆̃=0.4 in red and (iii) the TI-model with regularization 

(TI+h
3
+R ) in green. (a) Exemplary simulation results and a plot of 

the velocity as function of the interface center ( 𝜇̃int =100 ). The tem-
perature U is given by colored lines and the phase-field values by 
black full symbols. (b) Plot of the interface velocity error as function 
of the dimensionless driving force 𝜇̃int =𝜇intΔx∕Γ
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3.3 � Diffusion‑limited solidification

For dimensionless undercooling temperatures U smaller than 
unity, we obtain diffusion-limited solidification. In this case, 
more latent heat is released at the progressing solid/liquid 
interface, than needed for the heating up of the material from 
the undercooling temperature up to the melting point. Then, 
an increasing heat accumulation at the solid/liquid interface 
must be transported away, before a further progression of 
the solidification is possible. The two coupled governing 
equations are the phase-field equation (2), with a driving 
force proportional to the negative of the dimensionless tem-
perature field, �

�
= −U

�
Γ∕d0 , as well as the diffusion equa-

tion (11). The latter equation couples back to the phase-field 
via the source term, which is responsible for the latent heat 
release during the progressing solidification.

Four comparable simulations are performed using four 
different phase-field models, as shown in Fig. 7. An ani-
mation showing the full courses of all four simulations is 
provided in the supplementary material. The simulations are 
started from the same initial state at U = −0.3 . All bound-
aries are thermally insulating, except for the boundary at 
the [100]-end of the simulation domain on the right hand 
side, which is held at Umax = −0.3 . The initial quasi pla-
nar solid/liquid interface has small bumps at regular inter-
vals of 10Δx . In the beginning, the interface develops the 
Mullins–Sekerka instability [13], since the dimensionless 
capillary length is chosen to be sufficiently small d̃0=0.002 
( 𝜇̃max =Umax∕d̃0=150 ). As soon as the most advanced point 
of the solid/liquid interface exceeds the fraction of 0.7 of 
the simulation domain along the [100]-direction, the whole 
system is shifted back by one grid point [34].

In later stages, the disordered seaweed or dense-branching 
morphology develops [14, 35, 36], if the residual grid anisot-
ropy is sufficiently small. For super efficient one-grid-point 

profile resolutions of 𝜆̃=0.5 , this requires the local restora-
tion of TI in the local interface normal direction as well 
as the inclusion of the source term regularization Eq. (12), 
as shown in first row in Fig. 7. Without regularization the 
simulation shows a spurious dendritic selection in the ⟨110⟩
-directions of the computational grid, which originates 
from the inhomogeneous temperature release via the source 
term in the diffusion equation. The simulations using the 
TI⟨100⟩ - and CF- model show spurious dendritic selection 
in the ⟨100⟩-directions. For the TI⟨100⟩ model, the selec-
tion originates from anisotropic interface kinetics [16, 17], 
which result from residual grid friction for interface ori-
entations that differ from the ⟨100⟩-directions. In case of 
the CF-model, it results from strong grid friction due to the 
alternation of the nonequilibrium phase-field profile at large 
dimensionless driving forces.

4 � Conclusion

A new sharp phase-field model is proposed: Instead of using 
global grid dependent equilibrium potentials (8), that restore 
the Translational Invariance (TI) for a finite amount of fixed 
interface orientations, the newly proposed model restores TI 
locally for the local interface normal direction � . Further-
more, we propose a source term regularization Eq. (12) to 
effectively suppress spurious inhomogeneous temperature 
releases by diffuse interfaces as sharp as 𝜆̃=0.4 , see Fig. 6. 
Compared to the conventional phase-field model with the 
resolution limits 𝜆̃>2.0 and |𝜇̃|<1.0 , the sharp phase-field 
model allows for super efficient quantitative simulations 
of stationary solidification with phase-field profile reso-
lutions of 𝜆̃=0.4 and dimensionless driving forces up to 
𝜇̃=7200 ! The new sharp phase-field model with source term 

Fig. 7   Time series of phase-
field simulations of diffusion-
limited solidification using 
four different models: The 
TI

�
+h

3
 model (i) with and 

(ii) without regularization 
R , (iii) the TI⟨100⟩+h3 model 
each with 𝜆̃=0.5 , and (iv) the 
CF+h

5
-model with 𝜆̃=2.0 . The 

temperature U is visualized by 
the coloring and the phase-field 
is represented by the �=1∕2

-contour. Further parameters: 
d
0
∕Δx=2 ⋅ 10

−3 , D∕M=5⋅10
−3 , 

domain size 120×60×60
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regularization (TI
�
+h3+R ) provides extremely high degrees 

of isotropy. Considering diffusion-limited solidification, it 
provides the expected isotropic seaweed or dense-branching 
morphology with an extraordinary efficient spatial resolu-
tion: 𝜆̃=0.5 and 𝜇̃max =Umax∕d̃0=150 ! The absence of spuri-
ous dendritic selection at such an efficient spatial resolution, 
provides the basis for quantitative phase-field modeling of 
microscopic solidification of the next generation.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00366-​022-​01729-z.
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