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variability prevented any significant difference in 
BNF and nifH gene abundance between tree spe-
cies identities of deadwood. Still, higher BNF and 
nifH gene abundances occurred in the group of dif-
fuse-porous angiosperms compared to ring-porous 
angiosperms and gymnosperms. Positive relation-
ships between BNF rates and molybdenum, phos-
phor, sulfur, and N suggested co-limitation of BNF by 
several nutrients in deadwood. Relatively high NSC 
concentrations indicated good carbon availability for 
diazotrophs. Furthermore, structural equation mod-
eling highlighted the importance of water content for 
BNF and nifH gene abundance, although the overall 
explanatory power was low. In conclusion, BNF is a 
ubiquitous microbial process in deadwood of native 
European tree species and the comparison with other 
studies suggests no down-regulation of BNF by high 
N deposition in Central Europe.
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Introduction

Deadwood is an essential ecological component in 
forest ecosystems, whose function as habitat and 
resource for xylobiontic organisms is related to its 
nutrient availability (Purahong et  al. 2016). Among 
other nutrients, nitrogen (N) availability is particularly 

Abstract  Deadwood is an extremely nitrogen (N) 
poor plant litter whose decomposition may rely on 
external N sources. Biological N2 fixation (BNF) by 
free-living diazotrophs, encoded with the nifH gene, 
is a potential pathway of N acquisition in deadwood. 
Still, the control of this process by tree species spe-
cific traits is hardly known. Here, we examined (1) 
BNF rates and nifH gene abundances in deadwood 
of 13 tree species after 12  years of decomposition 
and (2) how BNF was related to nutrient concentra-
tions and non-structural carbohydrates (NSC). Com-
paring our BNF rates with the literature revealed no 
difference for angiosperms but gymnosperms. Large 
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low (Rinne et al. 2017). It constrains the growth and 
expansion of fungal hyphae (Hodge et al. 2000) as N 
is, for instance, crucial for the synthesis of the fungal 
cell-wall constituent chitin. Low N availability can 
slow down the decay process of deadwood, especially 
during the initial phase (Noh et al. 2017). A gradual 
increase in N concentration with proceeding decay 
improves the growth conditions for xylobiontic 
organisms (Rinne et al. 2017; Pastorelli et al. 2020).

A part of the increase in N concentration results 
from the loss of carbon (C) and the simultaneous 
retention of N in deadwood during the decay process. 
Another part of N in decaying deadwood may 
originate from different sources. Besides the input of 
reactive N via atmospheric deposition as ammonia 
(NH3) and nitrate (Lladó et al. 2017; Romashkin et al. 
2018), and the translocation of N from underlying soil 
into deadwood via fungal hyphae (Lindahl and Finlay 
2006; Palviainen et  al. 2010), asymbiotic biological 
N2 fixation (BNF) can contribute to N enrichment in 
deadwood (Boring et  al. 1988). BNF in deadwood 
provided up to 14% of the N input (Hicks 2000). 
However, BNF rates can enormously vary between 
study sites, wood compartments, and tree species 
(Hendrickson 1988; Cushon and Feller 1989; Griffiths 
et al. 1993). Most BNF measurements originate from 
studies in western North America or boreal regions 
in Europe (Mäkipää et  al. 2018a). Compared to 
North America or Northern Europe, atmospheric 
N deposition is higher in Central European forests 
(Borken and Matzner 2004; Bobbink et  al. 2010). 
Therefore, the function of diazotrophs is potentially 
not mandatory for satisfying N demands of wood-
decaying organisms. High availability of reactive N 
can even suppress BNF (Reed et  al. 2011), though 
this relationship has not been reported for deadwood 
yet.

The process of asymbiotic BNF in deadwood 
depends on several factors. These include climatic 
(Roskoski 1980; Mäkipää et  al. 2018b) and site 
factors, such as exposition (Gómez-Brandón et  al. 
2020) and seasonal differences (Roskoski 1980; Hicks 
2000), but also the acidity of deadwood (Tláskal 
et  al. 2021), and nutrient availability. Molybdenum 
(Mo) is a vital nutrient for BNF because of its 
function as a metal cofactor of the diazotrophic key 
enzyme nitrogenase. The nitrogenase catalyzes the 
reduction of N2 to NH3 and is responsible for BNF 
(Hardy et  al. 1971). BNF rates vary with the decay 

stages in deadwood, but the variation is not consistent 
among studies. The highest BNF rates can occur in 
the early (Tláskal et  al. 2021), intermediate (Wei 
and Kimmins 1998; Hicks et  al. 2003; Rinne et  al. 
2017), or advanced decay stages (Spano et al. 1982). 
Those differences can be attributed to changes in the 
microbial community structure (Hicks et  al. 2003), 
the need for N, particularly in early decay stages 
(Kuramae et  al. 2019), or decreasing wood density 
(Mäkipää et  al. 2018b). As nitrogenase is a highly 
energy-demanding process, C availability is another 
limiting factor for the activity of diazotrophs (Khan 
et al. 2021). Jurgensen et al. (1984) showed increasing 
BNF rates with decreasing total carbohydrates and 
water-soluble sugars within the decay process in 
logs of Pseudotsuga  menziesii. However, a study 
relating BNF rates in deadwood and various non-
structural carbohydrates (NSC), such as glucose, 
xylose, and arabinose, is not known to us. Hence, the 
availability of an energy source to diazotrophs can 
be considered limited by NSC (Khan et al. 2021), as 
NSC concentrations changed with decomposition: 
arabinose, glucose, xylose, and galactose peaked in 
the second decay stage at one site but remained the 
same at another. In contrast, fructose and mannose 
did not change during decay (Di Lella et al. 2019).

Deadwood of different tree species differs by lignin, 
cellulose, and hemicellulose composition (Rowell 
et al. 2005; Zhang et al. 2014), nutrient concentrations 
(Bonanomi et  al. 2021), or decomposability (Kahl 
et al. 2017). However, a tree species effect on BNF is 
not consistent among studies, ranging from no effect 
(Griffiths et  al. 1993; Brunner and Kimmins 2003; 
Hicks et  al. 2003) to a significant impact on BNF in 
deadwood (Hendrickson 1988; Mäkipää et  al. 2018a; 
Törmänen and Smolander 2022). Due to the missing 
consistent tree species effect, Hicks et  al. (2003) 
suggested that differences are more likely to occur 
between angiosperms and gymnosperms, as the factors 
controlling the BNF mentioned above seem to differ 
more between angiosperms and gymnosperms rather 
than between individual tree species of the same group. 
To date, research about BNF in logs has focused mainly 
on gymnosperms, such as Tsuga heterophylla, Picea 
sitchens, Pseudotsuga menziesii, and Pinus ponderosa 
(Griffiths et  al. 1993; Brunner and Kimmins 2003; 
Chen and Hicks 2003; Hicks et al. 2003) whereas few 
studies are available for angiosperms (Hendrickson 
1988; Mäkipää et  al. 2018a). A comprehensive study 
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examining BNF in deadwood of many tree species was 
not yet performed to the best of our knowledge.

The BNF activity is encoded in the nifH gene within 
the enzyme complex nitrogenase (Hsu and Buckley 
2009). The presence and expression of these genes 
highly depend on deadwood tree species, decay stage, 
and the N concentration in the logs (Hoppe et al. 2014). 
However, studies relating the nifH gene quantity with 
the BNF rate in deadwood are rare (Mäkipää et  al. 
2018b). The existing literature focuses either on one 
tree species (Gómez-Brandón et  al. 2020; Tláskal 
et al. 2021) or on the diazotrophic abundance without 
a relation to BNF rates (Hoppe et  al. 2014; Gómez-
Brandón et  al. 2020). Due to limited knowledge of 
diazotrophic abundance and activity in deadwood of 
temperate forest sites, it is unclear how factors, such 
as C, NSC, and nutrients, influence the abundance of 
diazotrophs and the process of BNF or vice versa.

This study was part of a long-term experiment on 
deadwood decay of 13 tree species at nine forest sites 
at the Hainich-Dün exploratory in Central Germany. 
Our objective was to assess BNF rates and nifH gene 
copy numbers in logs of 13 tree species after 12 years 
of decay and identify potential relationships between 
wood traits and BNF rates. Moreover, we compiled 
available BNF rates in deadwood from the litera-
ture, considering tree species, location, and applied 
method, and compared the BNF rates with this study. 
We hypothesized that (1) BNF rates differ between tree 
species or between phylogenetic clades (gymnosperms, 
ring-porous, and diffuse-porous angiosperms) because 
of differences in deadwood traits, (2) nifH gene abun-
dance is higher in angiosperms than in gymnosperms, 
and BNF correlate positively to nifH gene abundance, 
and (3) BNF rates increase with increasing concen-
trations of nutrients and NSC. Moreover, we used a 
structural equation model (SEM) to examine direct 
and indirect relationships between BNF rate, nifH gene 
abundance, nutrients, NSC, water content (WC), and 
respiration rate.

Material and methods

Study region and experimental design

This study was part of the long-term experiment 
BELongDead within the Biodiversity Explorato-
ries project, which focuses on the interactions of tree 

species, microbial communities, and local condi-
tions at three exploratories in Germany (Schwäbische 
Alb, Schorfheide-Chorin, and Hainich-Dün). In each 
exploratory, forest plots with different management 
intensities in threefold repetition were chosen to repre-
sent local management practices (Kahl et al. 2015).

The forests in the Hainich-Dün exploratory in 
Central Germany (50°56′14’’-51°22′43’’N/10°10′24
’’–10°46′45’’E) were dominated by European beech 
(Fagus sylvatica). The study region was characterized 
by mean annual temperatures of 6.5 to 8  °C, mean 
annual precipitation of 500 to 800 mm, and altitude 
from 285 to 550 m a.s.l. Soils were characterized as 
Luvisols and Stagnosols, which developed on calcar-
eous bedrock with a loess layer (Fischer et al. 2010; 
Kahl et al. 2017). N deposition was 10.1 ± 0.8 kg ha−1 
per vegetation period in the Hainich-Dün exploratory 
(Schwarz et  al. 2014). Different forest management 
practices include selective timber forest, timber for-
est, and unmanaged forest (Fischer et al. 2010).

On each of the nine experimental plots in 
Hainich-Dün, all located in European beech forests, 
the BELongDead experiment was established 
in the winter of 2008/09. Freshly cut logs (4  m 
length, ~ 31  cm diameter) of 13 tree species were 
placed on the soil in random order within 1  m 
distance to each other. The 13 tree species included 
four gymnosperms (Larix decidua, Picea abies, Pinus 
sylvestris, and P. menziesii), seven diffuse-porous 
angiosperms (Acer spp., Betula pendula, Carpinus 
betulus, F. sylvatica, Populus spp., Prunus avium, 
and Tilia spp.) and two ring-porous angiosperms 
(Fraxinus excelsior and Quercus spp.) (Kahl et  al. 
2017). All logs originated from the state forest of the 
Federal State of Thuringia in Central Germany and 
were thus grown under similar climatic conditions.

Sample collection

In June 2020, deadwood samples were cut laterally 
with an electric saw from the outer 7 cm of each log. 
Deadwood samples consisted almost exclusively of 
sapwood, but mixtures of sapwood and heartwood 
were taken from Quercus logs due to the decay and 
loss of sapwood. One part of the sample was stored 
in a plastic bag in the field and kept cool (~ 5  °C) 
until further treatment. A second part of the sample 
(sawdust) was transferred into a 15  mL falcon tube 
in the field. After that, 10  mM bromodeoxyuridine 
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(BrdU) was added sufficiently until the sawdust was 
completely soaked with solution. The falcon tubes 
were placed in an upright position and covered 
with aluminum foil, followed by incubation at room 
temperature for 48 h. The samples were then frozen at 
−80 °C in the laboratory before the characterization 
of the abundance of metabolically active diazotrophs 
(see below).

BNF

At the laboratory, deadwood samples (~ 20 cm3) 
were saturated with water for 16 h to achieve maxi-
mum water holding capacity in all samples, then 
drained, and weighted into glass flasks (~ 131  mL, 
Media Bottle Rasotherm ISO, GL45). After five days 
of acclimatization in the dark at 20 °C, the lids were 
equipped with a 6  mm thick chlorobutyl septum. 
After closure, the glass flasks were flushed for 10 min 
with a prepared gas mixture consisting of 8% oxygen 
(O2), 30% nitrogen (N2), and 62% helium (Riessner-
Gase GmbH, Lichtenfels, Germany). To determine 
the BNF rate (Weaver and Danso 1994), 25  mL of 
acid-washed 15N2 (99.1%, batch number MBBC7366, 
Sigma-Aldrich Inc., St. Louis, MI, USA) was added to 
each glass flask using a syringe. The gas pressure was 
measured before and after the addition of 15N2 to cal-
culate the exact proportion of 15N2 in the headspace 
of glass flasks. After adding 15N2, the samples were 
incubated at 20  °C for 72  h in the dark. The flasks 
were then opened, and the samples were immediately 
dried at 60 °C for at least 72 h until mass constancy to 
terminate the incubation and to determine the water 
content. Dried samples were ground at low tem-
peratures using a ball mill (MM400, Retsch GmbH, 
Haan, Germany). Incubated and respective non-incu-
bated subsamples were analyzed for δ15N signatures 
and N concentration at the Centre for Stable Isotope 
Research and Analysis, Göttingen, using an element 
analyzer (Euro EA 3000, EuroVector S.p.A., Milano, 
Italy), coupled to a Delta C isotope mass spectrom-
eter with a ConFlo III interface (Thermo Electron, 
Bremen, Germany) and an element analyzer (Euro 
MA 3000, EuroVector S.p.A., Milano, Italy), coupled 
to a Delta C isotope mass spectrometer with a Con-
FloII interface (Thermo Electron, Bremen, Germany) 
for natural abundance and 15N enriched samples, 
respectively.

As certified 15N2 gas (Sigma-Aldrich Inc., St. 
Louis, MI, USA) contained significant amounts of 
NH3 and N oxides (Dabundo et  al. 2014), the 15N2 
gas was acid-washed before adding to deadwood 
samples. For this purpose, an acid solution with a pH 
of 3 to 4 was produced by adding 100 mL deionized 
water and ~ 2 µL of 2  M H2SO4 (95%, Chemsolute, 
Th. Geyer GmbH & Co.KG, Renningen, Germany) 
to a 650 mL glass flask. The flask was closed with a 
screw cap and a gas-tight, 6 mm thick chlorbutyl sep-
tum. After that, the bottle was evacuated to 200 mbar, 
flushed with helium for 15 min, and then shaken over-
head (6  rpm) for 1 h. This procedure of evacuating, 
flushing, and shaking was repeated three times. After-
wards, the bottle was evacuated to 200  mbar, and 
15N2 gas was transferred directly from the 15N2 gas 
container to the flask up to a pressure of ~ 2200 mbar. 
The glass flask was shaken overhead for 1  h, left 
standing overnight, and shaken again for 1  h before 
use. Gas pressure measurements determined the pro-
portion of 15N2 in the headspace before and after 15N2 
addition. Finally, the purification and repeated refill-
ing with the 15N2 gas  amounted to a 15N2 concen-
tration of 98 to 99% in the headspace of the 650mL 
glass flask. To determine potential contamination 
of the 15N2 gas, four wood samples were autoclaved 
at 121  °C with 1  bar overpressure for 20  min. The 
samples were incubated and processed as described 
above. The enrichment in the δ15N signature in 
the autoclaved deadwood samples was neglectable 
(0.003 ± 0.0007 µg 15N per ml 15N2).

After the conversion of δ15N signatures of  
enriched and non-enriched (natural abundance, NA) 
deadwood samples into 15N atom fractions, BNF rates 
(µg N g−1 d−1) referring to the dry weight of dead-
wood was calculated using Eq. 1:

where N is the amount of N in deadwood (µg), 
15Nenriched is 15N atom% in deadwood after incubation, 
15NNA is the 15N atom% natural abundance in 
deadwood, DW is the dry weight of deadwood (g), t 
is the incubation time (d), and HS is the ratio of 15N2 
to total N2 in the headspace of incubation flasks.

(1)BNF =
N ×

(

15Nenriched −
15NNA

)

DW × t × HS × 100
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Respiration rate

The respiration rate of deadwood was determined 
by measuring the increase in carbon dioxide (CO2) 
concentration during the incubation. Gas samples 
of 100 µL were taken with a syringe from the glass 
jars after 21  h (t1) and 45  h (t2) after flushing 
with the CO2-free gas mixture at t0 (see above). 
The gas samples were directly injected into a gas 
chromatograph (SRI 8610C, SRI Instruments, 
Torrance, CA, USA) equipped with a flame ionization 
detector coupled to a methanizer catalyst. Certified 
gas standards (10,000 and 20,000 ppm CO2, Riessner 
Gase, Lichtenfels, Germany) were used to calibrate 
the gas chromatograph.

The respiration rate (µg C g−1 h−1) was calculated 
using Eq. 2:

where ΔCO2 Δt−1 (ppm h−1) is the change in CO2 
concentration within the incubation flasks during 
the incubation, assuming that the initial CO2 
concentration was 0 ppm after flushing, Vgas (m3) is 
the gas volume of the incubation flasks, DW (g) is the 
dry weight of the deadwood sample, ρair (Pa) is the air 
pressure, R (8.314  J  K−1  mol−1) is the gas constant, 
Tair (K) is the air temperature, and M (g mol−1) is the 
molar mass of C.

NSC and elemental analyzes

The concentrations of ethanol-soluble NSC 
were measured at the Max Planck Institute 
of Biogeochemistry, Jena, as reported earlier 
(Landhäusser et  al. 2018). Briefly, 1.5  mL of 80% 
ethanol was mixed with 30  mg of ground wood 
sample and heated to 90  °C. After cooling down to 
room temperature, the mixture was centrifuged at 
13,000 g for 1 min. The supernatant was filtered, and 
about 1  mL was injected into a High-Performance 
Anion Exchange Chromatograph with Pulsed 
Amperometric Detection (DIONEX ICS-3000 with 
CarboPac columns, Thermo Fisher Scientific Inc., 
Waltham, MA, USA) to analyze concentrations of 
glucose, arabinose, xylose, galactose, and total NSC. 
We assumed that starch was not present in deadwood 
after 12 years of decay.

(2)respiration rate =
ΔCO

2

Δt
×
Vgas

DW
×

ρair

R × Tair
×M

Moreover, the concentrations of calcium (Ca), 
magnesium (Mg), potassium (K), phosphor (P), 
sulfur (S), manganese (Mn), and Mo were determined 
using pressure digestion. 1  g of dried wood sample 
was filled in vessels, and 12  mL of HNO3 (65%, 
Chemsolute, Th. Geyer GmbH & Co.KG, Renningen, 
Germany) was added. The mixture was microwaved 
(MARS6, CEM Corporation, Matthews, NC, USA) 
and filtered using sterile syringe filters (0.45  µm). 
Afterwards, the supernatant was analyzed at the 
Analytical Chemistry Lab, University Bayreuth, using 
an ICP-MS (Agilent 7500ce, Cetac ASX-510, Santa 
Clara, CA, USA) for Mo and an ICP-OES (Varian, 
Vista-Pro radial, Palo Alto, CA, USA) for Ca, Mg, K, 
P, S and Mn according to manufacture’s instructions. 
The C concentration was analyzed with a vario Max 
CN element analyzer (elementar Analysensysteme 
GmbH, Hanau, Germany) With the concentrations of 
C and N (see above), the CN ratio was calculated.

In‑situ deadwood BrdU labeling and molecular 
biological analysis

For in-situ labeling with BrdU, 1  mL of 10  mM 
BrdU solution (Sigma-Aldrich Inc., St. Louis, MI, 
USA) was added directly after sampling to each 
deadwood sample (~ 1  g) and incubated in sterile 
50 mL tubes covered with aluminum foil with loose 
cap for 48 h at room temperature as explained earlier 
(Purahong et al. 2022). Only the metabolically active, 
replicating cells can incorporate the BrdU during 
DNA synthesis (McMahon et al. 2011). According to 
the manufacturer’s instructions, DNA was extracted 
from the BrdU-treated deadwood samples using 
Quick-DNA Fecal/Soil Microbe Miniprep Kit (Zymo, 
California, USA). We named this total DNA as it 
included all types of genomic DNA (dormant cells, 
dead cells, metabolically active, and replicating 
cells). As outlined earlier (McMahon et  al. 2011; 
Purahong et al. 2022), this immunocapture approach 
was employed to separate the BrdU-labeled DNA 
from the total DNA. Briefly, for each sample, 2  μL 
monoclonal BrdU antibodies (1 mg μL–1 mouse anti-
BrdU, clone BU-33, Sigma-Aldrich Inc., St. Louis, 
MI, USA) were added to 18  mL denatured herring 
sperm DNA (1.25  mg  mL–1 in phosphate buffer 
saline (PBS), Promega, Walldorf, Germany), and 
then incubated for 45 min at 30 °C to form antibody-
herring sperm DNA complex. Denatured sample 
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DNA (25 μL; ∼200 ng DNA + 10 μL PBS) was then 
mixed with antibody-herring sperm DNA complex 
and incubated for 30 min at 30 °C to capture BrdU-
labeled DNA. 6.26  µL washed Dynabeads™ Goat 
Anti-Mouse IgG (Invitrogen, Life Technologies 
GmbH, Darmstadt, Germany) were then added to the 
incubated solution and rotated (66 rpm) for 30 min at 
room temperature on an RM-2 roll mixer (Carl Roth 
GmbH, Karlsruhe, Germany) to form the Dynabead 
complex (Dynabead-BrdU antibodies-BrdU-labeled 
DNA). After that, the Dynabead complex was treated 
eight times with 100 μL PBS–BSA solution (0.05 g 
bovine serum albumin in 50 mL phosphate-buffered 
saline) and washed with a DynaMag™-2 (Invitrogen, 
Life Technologies GmbH, Darmstadt, Germany). 
BrdU-labeled DNA was isolated from the washed 
Dynabead complex by adding 20  μL BrdU solution 
(1.7  mM) followed by 35  min incubation under 
slow rotation. Finally, the BrdU-labeled DNA was 
separated from the Dynabeads using a DynaMag™ 
-2 (Life Technologies GmbH, Darmstadt, Germany), 
thereafter named active DNA.

The abundance of nifH gene copy numbers in dead-
wood samples of the total and active DNA fraction was 
accessed by quantitative PCR (qPCR). Diazotrophic 
gene copy numbers were quantified by the primer set 
PolF and PolR (Poly et  al. 2001). All reactions were 
performed in 96-well plates using the CFX96™ Real-
Time System (Bio-Rad Laboratories GmbH, Feld-
kirchen, Germany), and nuclease-free master mix 
blanks were run as a negative control. Gene copy 
number was calculated by comparing PCR-cycle 
threshold values (CT) to a standard curve of triplicate 
tenfold dilutions of genomic DNA. Genomic DNA 
extracted from a culture of Azotobacter vinelandii 
(DSM 2289) by employing the Quick-DNA Fecal/Soil 
Microbe Miniprep Kit was used to establish quantifica-
tion standards for generating a standard curve. Petroff 
counting chamber (Paul Marienfeld GmbH, Germany) 
was used to determine the genomic DNA concentration 
(gene copies µL−1). A five‐point tenfold serial dilution 
of the A. vinelandii genomic DNA (10–100,000  fg) 
was run in triplicate with each set of reactions to gener-
ate the standard curve. For nifH gene-based qPCR, the 
reactions were performed in 10  µL assays containing 
5 µL SYBR® Green Supermix (Bio-Rad Laboratories 
GmbH, Feldkirchen, Germany), PolF and PolR prim-
ers (0.5 µL each of the primer (2.5 µM)), 3 µL sterile 
and nuclease-free water (Carl Roth GmbH, Karlsruhe, 

Germany) and 1 µL of either 1:10 diluted DNA-
extract, ten-fold diluted standard DNA or 1 µL water 
as no template control. After an initial denaturation at 
94 °C for 5 min, 40 amplification cycles (regardless of 
the active or total fraction) were performed for 1 min 
at 95  °C (denaturation), 1  min at 55  °C (annealing), 
and 1 min 30 s at 72 °C (extension), followed by a final 
extension of 5  min at 72  °C. Runs were completed 
with a melting analysis starting from 65 °C to 95 °C 
with temperature increments of 0.5 °C and a transition 
rate of 5 s to check for product specificity and poten-
tial primer dimer formation. The purity of the ampli-
fied products was checked by electrophoresis on a 1.5% 
agarose gel. Multiple dilutions (non-dilution, with 1:10 
and 1:100 dilution) were run simultaneously to check 
for inhibitors in qPCR assays. We observed no inhibi-
tion as the CT value shifted for each decimal dilution 
step in the same CT gap. CT and efficiency were calcu-
lated automatically by the Bio-Rad software CFX man-
ager version 3.1. Both, total and active nifH gene copy 
numbers refer to the dry mass of deadwood samples.

Data collection from the literature

Available BNF rates in deadwood were compiled to 
the best of our knowledge to compare our BNF rates 
with the values from the literature (Online Resource 
Table  S1). BNF rates were taken from tables or 
graphs and transformed into µg N g−1 d−1 when 
values were only presented as ethylene production, 
based on the acetylene reduction assay (ARA, see 
Hardy et al. (1971)). For the transformation, we used 
deadwood studies in which ARA was calibrated 
with the 15N2 approach (Roskoski 1981; Silvester 
et  al. 1982; Silvester 1989; Chen and Hicks 2003; 
Hicks et  al. 2003; Burgoyne 2007; Burgoyne and 
DeLuca 2009; Benoist et  al. 2022). A mean ratio 
of 3.9:1 (range from 0.8:1 to 8.5:1) was used to 
estimate the BNF rate from ethylene production. 
Information about phylogenetic clade, tree species, 
deadwood age, decay stage, location, climate zone, 
incubation method, and incubation temperature were 
summarized for an overview of BNF in deadwood 
(Online Resource Table S1).

Statistical analyses

Statistics were performed using R version 4.0.4 (R 
Core Team 2021) with additional packages. Data 
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were screened visually for outliers with box plots 
and Cleveland’s dot plots. Normal distribution was 
checked with histograms, quantile–quantile plots, 
and the Shapiro–Wilk-Test. Significant differences 
(p < 0.05) were calculated using the Kruskal–Wallis-
Test and pairwise Wilcoxon Rank Sum test for non-
normal distributed data between tree species and 
phylogenetic clades (gymnosperms, diffuse-porous 
and ring-porous angiosperms). Due to the non-
normal distribution of the data, correlations were 
assessed with Spearman’s rank correlation coefficient. 
Graphics were generated with the package ggplot2 
(Whickham 2016).

To find direct and indirect effects of nifH gene 
abundance, BNF rate, respiration rate (as a proxy 
for fungal activity), WC, NSC, Mo, P, and N, a SEM 
was applied. Before analysis, a theory model with 
possible connections was built based on theoretical 
knowledge (Online Resource Fig. S1) and the 
significant correlation of BNF with all measured 
parameters. The package piecewiseSEM version 
2.1.0 (Lefcheck 2016) was used for the analysis, 
as plot identity was included as a random factor. 
Before fitting the piecewise SEM, the single linear 
mixed-effect models within the SEM were checked 
for meeting model assumptions, using the package 
nlme version 3.1–152 (Pinheiro et al. 2021). For the 
piecewise SEM, the model fitting and the detection 
of missing paths were accomplished by Fisher’s 
C and Shipley’s test of d-separation, respectively 
(Shipley 2013). Models were considered valid when 
the model’s p-value was > 0.05 and the degrees of 
freedom (df) > 1, meaning that the piecewise SEM 
was not different from our data but displayed the data. 
For endogenous, response variables (BNF, nifH gene 
abundance, and respiration rate), a conditional Rc

2 
is given. Standardized path coefficients determine 
relationships between variables.

Results

BNF rates compared to the literature

BNF rates from the BELongDead experiment 
ranged from 0.05 to 0.10 µg  N  g−1 d−1 in the gym-
nosperms and from 0.03 to 0.28 µg N g−1 d−1 in the 
angiosperms (Fig.  1). The median BNF rates in the 

gymnosperms were significantly (p = 0.04) lower in 
the literature (0.005  µg  N  g−1 d−1) compared to the 
BELongDead experiment (0.075  µg  N  g−1 d−1). In 
contrast, angiosperms in the literature fixed similar 
N (both 0.14  µg  N  g−1 d−1). Deadwood of gymno-
sperms exhibited significantly (p = 0.02) lower BNF 
rates than angiosperms in the literature, but not in the 
BELongDead experiment.

BNF and nifH gene abundance

The highest median BNF rates were detected in Pop-
ulus (0.30  µg  N  g−1 d−1), Tilia, and Fraxinus (both 
0.16 µg Ng−1 d−1), whereas the lowest rates occurred 
in Fagus (0.03  µg  N  g−1 d−1), Quercus, and Larix 
(both 0.02  µg  N  g−1 d−1) (Fig.  2). Tree species had 
no significant effect on BNF due to the large varia-
tion within each tree species. However, BNF rate 
was significantly (p = 0.04) lower for gymnosperms 
(0.05  µg  N  g−1 d−1) than for diffuse-porous angio-
sperms (0.09  µg  g−1 d−1). In contrast, ring-porous 
angiosperms’ BNF rates were not significantly 
different from gymnosperms and diffuse-porous 
angiosperms.

The total nifH gene abundance within the logs of 
all tree species was averaged at a median of 19.2 × 
106 copies g−1, ranging from 0.2 to 239.5 × 106 copies 
g−1 (Fig. 3a). Low abundances were found in Quercus 
(7.2 × 106 copies g−1) and Picea (7.3 × 106 copies g−1) 
compared to higher abundances in Populus (53.1 × 106 
copies g−1), Tilia (48.4 × 106 copies g−1), and Betula 
(46.0 × 106 copies g−1). A tree species effect on the 
total nifH gene abundance could not be detected, but 
all diffuse-porous angiosperms (27.3 × 106 copies g−1) 
had significantly higher (p = 0.01) abundances than the 
gymnosperms (13.0 × 106 copies g−1).

The active nifH gene abundance ranged from 
0.0016 × 106 copies g−1 to 5.2 × 106 copies g−1 with 
a median of 0.11 × 106 copies g−1 (Fig. 3b). No sig-
nificant differences occurred between tree species or 
phylogenetic clades. The highest values were found in 
Tilia (0.99 × 106 copies g−1) as opposed to the lowest 
values in Quercus and Picea (both 0.04 × 106 copies 
g−1). Diffuse-porous angiosperms (0.18 × 106 copies 
g−1) showed slightly higher abundances than ring-
porous angiosperms (0.13 × 106 copies g−1) and gym-
nosperms (0.09 × 106 copies g−1). The active diazo-
trophic community accounted for 0.06 to 11.4% of the 
total nifH gene abundance based on BrdU analysis.
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Relationship between BNF and nifH gene abundance

Correlating BNF and total nifH gene abundances 
showed a non-significant linear increase (R = 0.18, 
p = 0.62) (Fig. 4). However, low BNF rates occurred 
when low total nifH gene abundances were observed. 

Higher total nifH gene abundances resulted in only 
a slight increase in the BNF rate. The highest BNF 
rates appeared seemingly arbitrary when only a low 
total nifH gene abundance was present. Compared to 
the total nifH gene abundance, the active diazotrophic 
abundance had less effect on the BNF rate (R = 0.053, 

Fig. 1   BNF rates in deadwood of angiosperm (a) and gym-
nosperm (g) tree species from the BELongDead experi-
ment (BLD) and the literature (lit). For the BNF rates in the 
BELongDead experiment, the mean for each tree species was 
calculated. For the literature, one mean BNF rate per study 
was calculated. Corresponding references and BNF rates are 
given in Online Resource Table S1. The number of repetitions 

(n) per boxplot is given above the boxplot. Boxplots show the 
median of the values. Each boxplot’s upper and lower edges 
represent the 25 and 75% quartile, respectively. The whisk-
ers represent the 1.5 × inter-quartile range. Points beyond the 
whiskers are outliers. Significant differences between all box-
plots are denoted as capital letters (p < 0.05)

Fig. 2   BNF rates in 
deadwood after 12 years of 
decomposition of 13 tree 
species. Boxplots show the 
median of the values. Each 
boxplot’s upper and lower 
edges represent the 25 and 
75% quartile, respectively. 
The whiskers represent the 
1.5 × inter-quartile range. 
Points beyond the whiskers 
are outliers. Significant dif-
ferences between phyloge-
netic clades are denoted as 
capital letters (p < 0.05)
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p = 0.58) (data not shown). Even though only a small 
number of diazotrophs were metabolically active, 
their activity did not correlate with BNF. Apart 
from BNF rates, active and total nifH gene abun-
dances were significantly correlated with each other 
(R = 0.67, p < 0.001) (data not shown).

Respiration rate

The respiration rate in deadwood ranged from 1 
to 58  µg C g−1  h−1 (Fig.  5). The effect of tree spe-
cies was significant (p < 0.001) between some tree 

species, mainly angiosperms to gymnosperms. The 
highest rates occurred in Tilia (29 µg C g−1 h−1) and 
Carpinus (28  µg C g−1  h−1) compared to the low-
est rates in Picea and Pinus (both 8  µg C g−1  h−1). 
Diffuse-porous (21  µg C g−1  h−1) and ring-porous 
angiosperms (20 µg C g−1  h−1) showed significantly 
(p < 0.001 and p = 0.02, respectively) higher respira-
tion rates than gymnosperms (8 µg C g−1 h−1). Respi-
ration rate had a significant effect on BNF (R = 0.29, 
p = 0.002) (Online Resource Fig. S2).

Fig. 3   Abundance of total 
(a) and active (b) nifH 
gene copy numbers in 
deadwood after 12 years of 
decomposition of 13 tree 
species. Boxplots show the 
median of the values. Each 
boxplot’s upper and lower 
edges represent the 25 and 
75% quartile, respectively. 
The whiskers represent the 
1.5 × inter-quartile range. 
Points beyond the whiskers 
are outliers. Significant dif-
ferences between phyloge-
netic clades are denoted as 
capital letters (p < 0.05)
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NSC and nutrient concentrations in deadwood and 
relationships to BNF

Deadwood showed a wide variety of glucose (0 to 
8 mg  g−1), arabinose, xylose (both 0 to 1.1 mg  g−1) 
and galactose (0 to 0.2 mg g−1) (Table 1). The most 
abundant NSC was glucose, with around 74% of 
total NSC. Diffuse-porous angiosperms showed 
higher glucose, xylose, and total NSC concentrations 
than ring-porous angiosperms and gymnosperms. 
Differences were partly significant, especially for 
angiosperms and gymnosperms. C concentrations 
were similar for all deadwood logs (~ 47%).

Similar to NSC, nutrient concentrations showed a 
great spread within the deadwood logs, such as Mo (0 

to 1.6 µg g−1), Ca (0.2 to 17.5 mg g−1), Mg (0.04 to 
2.5 mg g−1), K (0.03 to 4 mg g−1), P (0 to 0.6 mg g−1), 
S (0.03 to 0.9  mg  g−1), and Mn (0 to 1.4  mg  g−1) 
(Table  2). Diffuse-porous angiosperms showed 
significantly higher concentrations of Mg (p < 0.001) 
and non-significant higher concentrations of Mo, Ca, 
P, S, and Mn compared to ring-porous angiosperms 
and gymnosperms. Significant differences for S 
were found between diffuse-porous angiosperms and 
gymnosperms (p = 0.008). Mo and P did not show 
significant differences between phylogenetic clades.

The relationship between BNF, NSC and nutrients, 
including N, was investigated using a Spearman rank 
correlation coefficient (Online Resource Fig. S2). 
There were significant, slightly positive correlation 
between BNF and Mo (R = 0.21, p = 0.04), P 
(R = 0.26, p = 0.007), S (R = 0.22, p = 0.02), and 
N (R = 0.43, p < 0.001). Glucose had an almost 
significant positive effect on BNF (R = 0.18, 
p = 0.06). Concentrations of Mn, Ca, Mg, K, xylose, 
galactose, and total NSC had a non-significant effect 
on the BNF rate.

Structural equation modeling

As variability in BNF rates and nifH gene abundance 
could not be explained by tree species and only par-
tially by a variety of other factors (see above), a SEM 
was applied to determine both direct and indirect 
effects of the significant, most correlated parameters 
on BNF and nifH gene abundance (Fig. 6). The SEM 

R = 0.18, p = 0.062
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Fig. 4   Relationship between BNF rates and total nifH gene 
abundance of logs from 13 tree species

Fig. 5   Respiration rate in 
deadwood after 12 years of 
decomposition of 13 tree 
species. Boxplots show the 
median of the values. Each 
boxplot’s upper and lower 
edges represent the 25 and 
75% quartile, respectively. 
The whiskers represent the 
1.5 × inter-quartile range. 
Points beyond the whiskers 
are outliers. Significant 
differences between phylo-
genetic clades are denoted 
as capital letters, between 
tree species in small letters 
(p < 0.05)
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revealed that the selected parameters only partially 
explained the nifH gene abundance (Rc

2 = 0.15) and 
the BNF rates (Rc

2 = 0.10). BNF rates were signifi-
cantly correlated with WC (standardized path coef-
ficient 0.27, p = 0.02), while nifH gene abundance 
was significantly correlated to total NSC (stand-
ardized path coefficient 0.28, p = 0.006) and WC 
(standardized path coefficient 0.35, p = 0.004). No 
significant correlation was found between nifH gene 
abundance and BNF (standardized path coefficient 
0.06, p = 0.59).

Discussion

BNF in deadwood – comparison to the literature

Substantial BNF rates in deadwood were observed 
in almost all studies, but the variability within and 
among the studies is high. As we found no signifi-
cant differences between individual tree species (see 
below), we compared available BNF rates of angio-
sperms and gymnosperms. Despite different tech-
niques, decay stages, and incubation temperatures 
(Online Resource Table  S1), median BNF rates of 

angiosperms were similar in our study and the litera-
ture. By contrast, BNF rates of gymnosperms were 
15 times higher in our study than in the literature 
(Fig.  1). We attributed the high BNF rates of gym-
nosperms in our study primarily to the N saturation 
of forests in Central Europe, resulting from decades 
of increased N deposition (Borken and Matzner 2004; 
Ackerman et  al. 2019). All other studies on BNF in 
deadwood of gymnosperms were performed in North 
America or Northern Europe, where N deposition is 
much smaller (Ackerman et al. 2019). Since specific 
N availability is required to develop and establish 
diazotrophic communities (Reed et  al. 2011), low 
initial N concentrations may particularly limit BNF 
in deadwood of gymnosperms (see below). The fact 
that no difference was found for deadwood of angio-
sperms between our study and the literature could be 
explained by generally higher N concentrations in 
angiosperm deadwood.

Different measurement techniques probably caused 
differences in BNF rates between our and other stud-
ies. Previous studies almost exclusively used ARA 
as an indirect measurement of nitrogenase activity 
(Hardy et  al. 1971). Methodological problems could 
have led to an over- or underestimation of BNF rates. 

Table 1   Mean concentrations (n = 9, ± SD) of C, N, CN 
ratio, glucose, arabinose, xylose, galactose, and total NSC of 
deadwood from 13 tree species and phylogenetic clades  (DP 

= diffuse-porous, RP = ring-porous). Significant differences 
between phylogenetic clades are denoted as capital letters 
(p < 0.05)

Tree species/
phylogenetic 
clade

C (%) N (%) CN ratio Glucose (mg g−1) Arabinose (mg g−1) Xylose (mg g−1) Galactose (mg g−1) Total NSC (mg g−1)

 Acer 46.8 ± 1.7 0.38 ± 0.23 171 ± 101 0.47 ± 0.30 0.010 ± 0.02 0.13 ± 0.10 0.01 ± 0.02 0.63 ± 0.35
 Betula 47.2 ± 1.1 0.27 ± 0.12 193 ± 52 2.34 ± 2.58 0.000 ± 0.00 0.41 ± 0.40 0.02 ± 0.02 2.77 ± 2.98
 Carpinus 46.6 ± 1.3 0.44 ± 0.26 144 ± 77 0.70 ± 0.48 0.007 ± 0.01 0.16 ± 0.10 0.01 ± 0.01 0.88 ± 0.56
 Fagus 47.8 ± 1.4 0.38 ± 0.16 147 ± 76 0.85 ± 0.34 0.003 ± 0.01 0.18 ± 0.19 0.01 ± 0.01 1.05 ± 0.36
 Populus 47.2 ± 1.3 0.39 ± 0.19 152 ± 86 0.91 ± 0.51 0.007 ± 0.02 0.14 ± 0.14 0.00 ± 0.01 1.06 ± 0.61
 Prunus 48.1 ± 1.3 0.41 ± 0.29 161 ± 82 0.68 ± 0.84 0.006 ± 0.01 0.18 ± 0.18 0.04 ± 0.08 0.90 ± 0.98
 Tilia 46.5 ± 1.4 0.41 ± 0.27 144 ± 59 1.91 ± 2.00 0.002 ± 0.01 0.20 ± 0.24 0.01 ± 0.01 2.13 ± 2.21
 Fraxinus 48.0 ± 0.5 0.29 ± 0.12 192 ± 75 0.69 ± 0.43 0.004 ± 0.01 0.14 ± 0.15 0.03 ± 0.02 0.86 ± 0.53
 Quercus 47.9 ± 1.0 0.28 ± 0.16 226 ± 116 0.92 ± 0.60 0.449 ± 0.45 0.21 ± 0.19 0.04 ± 0.06 1.62 ± 1.09
 Larix 47.3 ± 0.5 0.12 ± 0.08 621 ± 449 0.21 ± 0.14 0.235 ± 0.27 0.10 ± 0.25 0.06 ± 0.04 0.96 ± 0.97
 Picea 48.5 ± 1.8 0.19 ± 0.12 398 ± 246 0.48 ± 0.48 0.017 ± 0.03 0.15 ± 0.27 0.01 ± 0.02 0.65 ± 0.79
 Pinus 47.4 ± 0.9 0.16 ± 0.08 439 ± 395 0.52 ± 0.17 0.029 ± 0.03 0.14 ± 0.10 0.01 ± 0.02 0.69 ± 0.23
 Pseudotsuga 47.9 ± 1.1 0.21 ± 0.10 344 ± 290 0.27 ± 0.24 0.021 ± 0.03 0.03 ± 0.05 0.01 ± 0.02 0.33 ± 0.28
 DP angio-

sperms
47.1 ± 1.4A 0.39 ± 0.22A 158 ± 75A 1.16 ± 2.58A 0.005 ± 0.01A 0.21 ± 0.23A 0.01 ± 0.03A 1.39 ± 1.65A

  RP angio-
sperms

47.9 ± 0.8A 0.28 ± 0.14A 209 ± 97A 0.80 ± 0.34A 0.227 ± 0.38B 0.18 ± 0.17A 0.03 ± 0.05A 1.24 ± 0.92A

 Gymno-
sperms

47.8 ± 1.2A 0.17 ± 0.10B 450 ± 355B 0.37 ± 0.24B 0.071 ± 0.15B 0.11 ± 0.19B 0.02 ± 0.03A 0.66 ± 0.66B
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Table 2   Mean concentrations (n = 9, ± SD) of Mo, Ca, Mg, 
K, P, S, and Mn, and WC of deadwood from 13 tree species 
and phylogenetic clades  (DP = diffuse-porous, RP = ring-

porous). Significant differences between phylogenetic clades 
are denoted as capital letters (p < 0.05)

Tree species /
phylogenetic 
clade

Mo (μg g−1) Ca (mg g−1) Mg (mg g−1) K (mg g−1) P (mg g−1) S (mg g−1) Mn (mg g−1) WC (g g−1)

 Acer 0.651 ± 0.60 4.80 ± 3.16 0.82 ± 0.61 0.74 ± 0.39 0.18 ± 0.11 0.32 ± 0.16 0.25 ± 0.49 4.60 ± 2.83
 Betula 0.025 ± 0.03 1.48 ± 1.01 0.17 ± 0.11 0.63 ± 0.46 0.11 ± 0.06 0.14 ± 0.06 0.20 ± 0.12 5.04 ± 4.27
 Carpinus 0.025 ± 0.02 4.60 ± 5.07 0.32 ± 0.21 0.60 ± 0.40 0.18 ± 0.15 0.31 ± 0.23 0.22 ± 0.13 4.35 ± 2.77
 Fagus 0.029 ± 0.04 3.55 ± 2.18 0.50 ± 0.45 0.78 ± 0.34 0.17 ± 0.11 0.29 ± 0.16 0.31 ± 0.40 5.66 ± 3.22
 Populus 0.022 ± 0.02 5.21 ± 4.92 0.75 ± 0.59 1.53 ± 0.91 0.21 ± 0.10 0.30 ± 0.15 0.18 ± 0.24 7.46 ± 4.83
 Prunus 0.028 ± 0.02 1.95 ± 1.42 0.15 ± 0.11 0.41 ± 0.34 0.18 ± 0.22 0.22 ± 0.25 0.05 ± 0.05 3.23 ± 3.16
 Tilia 0.073 ± 0.12 3.41 ± 1.48 0.58 ± 0.78 0.89 ± 0.54 0.20 ± 0.15 0.31 ± 0.18 0.06 ± 0.08 6.43 ± 2.72
 Fraxinus 0.028 ± 0.03 2.80 ± 1.44 0.25 ± 0.09 0.98 ± 0.39 0.15 ± 0.06 0.24 ± 0.07 0.16 ± 0.39 3.15 ± 2.20
 Quercus 0.029 ± 0.02 2.44 ± 2.50 0.10 ± 0.12 0.50 ± 0.31 0.11 ± 0.17 0.18 ± 0.20 0.10 ± 0.16 2.29 ± 1.46
 Larix 0.020 ± 0.02 2.20 ± 2.16 0.53 ± 0.80 0.96 ± 1.19 0.11 ± 0.11 0.16 ± 0.13 0.03 ± 0.03 2.51 ± 2.06
 Picea 0.017 ± 0.02 1.43 ± 0.64 0.16 ± 0.12 0.55 ± 0.36 0.06 ± 0.05 0.11 ± 0.05 0.17 ± 0.15 2.80 ± 1.15
 Pinus 0.031 ± 0.02 2.26 ± 1.99 0.25 ± 0.23 1.09 ± 1.33 0.25 ± 0.21 0.34 ± 0.31 0.11 ± 0.06 3.59 ± 2.44
 Pseudotsuga 0.023 ± 0.02 1.17 ± 1.46 0.15 ± 0.21 0.54 ± 0.71 0.12 ± 0.11 0.16 ± 0.15 0.07 ± 0.07 3.01 ± 2.23

DP angio-
sperms

0.120 ± 0.31A 3.61 ± 3.34A 0.48 ± 0.52A 0.81 ± 0.60A 0.18 ± 0.13A 0.27 ± 0.18A 0.18 ± 0.27A 5.33 ± 3.56A

RP angio-
sperms

0.029 ± 0.02A 2.62 ± 1.99A 0.18 ± 0.13B 0.74 ± 0.42A 0.13 ± 0.13A 0.21 ± 0.15AB 0.13 ± 0.29B 2.72 ± 1.87B

 Gymno-
sperms

0.023 ± 0.02A 1.77 ± 1.67A 0.27 ± 0.44B 0.79 ± 0.96A 0.14 ± 0.15A 0.19 ± 0.20B 0.09 ± 0.10AB 2.98 ± 1.98B

Fig. 6   Structural equation 
model for logs from 13 
tree species after 12 years 
of decomposition, relating 
BNF, nifH gene abundance, 
respiration rate, NSC, WC, 
N, P, and Mo. Single-
headed arrows indicate a 
direct effect of one param-
eter on the other, whereas 
double-headed arrows 
indicate a mutual relation-
ship between two param-
eters. Standardized path 
coefficients are shown next 
to the arrow. Solid lines 
indicate significant and 
dashed lines non-significant 
effects (p < 0.05). Rc.2 is 
given under the endogenous 
parameter. Model Fisher’s 
C 7.271 (p = 0.51, df = 8)
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These include highly variable conversion factors from 
reduced acetylene (ethylene) to fixed N2 in deadwood 
and other substrates (Soper et al. 2021) or the damp-
ening activity of acetylene on nitrogenase (de Bont 
and Mulder 1976). Additionally, contamination of 
the 15N2 gas by reactive N overestimates BNF rates 
(Dabundo et al. 2014), particularly in N poor habitats 
such as deadwood. Thus, removing reactive N from 
15N2 gas and sterilized controls is a prerequisite for 
the correct determination of BNF rates.

No tree species effect on BNF

Our first hypothesis that tree species influence BNF in 
logs was not confirmed. The variability of BNF was 
high within each of the 13 tree species and therefore 
did not result in any statistically verifiable difference. 
Still, higher BNF rates were found in diffuse-porous 
angiosperms than in gymnosperms, perhaps due 
to better nutrient availability for diazotrophs (see 
below). The greater mass loss of those logs (Kahl 
et  al. 2017) also indicates the higher activity of 
deadwood degrading fungi and more readily available 
NSC in diffuse-porous angiosperm logs. Low BNF 
rates in Quercus and gymnosperm logs correlate 
with high phenolic compounds, which suppress the 
microbial activity and decay of deadwood (Aloui 
et al. 2004; Kahl et al. 2017). Hence, different levels 
of nutrients, phenolic compounds, and decay stages 
could have contributed to the high variability of BNF 
between the 13 tree species.

In contrast to our study, some studies reported an 
effect of tree species on BNF. Those studies mainly 
examined differences between gymnosperms, such 
as Picea sitchens, Pinus ponderosa, P. menziesii, or 
Tsuga heterophylla (Griffiths et  al. 1993; Chen and 
Hicks 2003; Hicks et  al. 2003). Of the few studies 
comparing angiosperms and gymnosperms, Populus 
tremuloides exhibited two to four times higher BNF 
rates than Acer rubrum, Betula papyrifera, Pinus res-
inosa, and Pinus strobus and ten times higher BNF 
rates than Picea glauca (Hendrickson 1988). Like-
wise, Mäkipää et  al. (2018a) reported higher BNF 
rates in P. abies than B. pendula. However, large dif-
ferences in BNF rates are also known for the same 
tree species as for F. sylvatica and P. abies (Mäkipää 
et al. 2018a, b; Rinne et al. 2017; Tláskal et al. 2021). 
This shows that differences between tree species 

cannot be generalized, and that local factors and 
deadwood traits could affect the BNF rates.

Abundance of nifH genes and relation to BNF

We could not find a tree species effect on nifH gene 
abundance or a positive relationship between BNF 
and nifH gene abundance, leading to rejecting the 
second hypothesis. Analogous to the total nifH 
gene abundance, we could not find a correlation 
between BNF and active diazotrophs. Based on BrdU 
labeling, only 0.1 to 11.4% of the diazotrophs were 
metabolically active under field conditions, suggesting 
an immense potential for diazotrophs in deadwood. 
Incubation under laboratory conditions with adjusted 
temperature and WC could have increased the BNF 
rate, while the activity status in the diazotrophic 
community was recorded directly at the field site. An 
in-situ 15N2 incubation might have resulted in a closer 
relationship between BNF and active diazotrophs. 
Consistent with our study, Mäkipää et  al. (2018b) 
found no association between BNF and nifH genes in 
deadwood. We cannot exclude an underestimation of 
active diazotrophs by incomplete BrdU uptake during 
the 48 h incubation, especially of slow growing taxa 
(Wahdan et al. 2021). Moreover, specific diazotrophic 
community patterns could be responsible for the 
observed patterns in BNF (Das et al. 2020; Wu et al. 
2021). It was shown that the nifH gene abundance 
is not inevitable the best proxy for diazotrophs, as 
pseudo-nifH sequences could over- or underestimate 
the diazotrophic abundance during sequencing (Mise 
et  al. 2021). More research is needed to improve 
our understanding of nitrogen fixation rates and 
functioning of diazotrophs’ nitrogenase enzyme.

Relation between BNF and NSC and nutrients

Our third hypothesis was not confirmed, as BNF rates 
did not increase with the increasing concentration 
of NSC in logs. However, glucose showed a weak 
positive relationship with BNF and made up 47% of 
total NSC. Glucose is an intermediate of cellulose 
degradation, and its concentrations in our samples 
are in the range reported in another study (Di Lella 
et  al. 2019). The exceptional NSC availability 
in deadwood becomes evident when comparing 
glucose availability in other habitats of free-living 
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diazotrophs, such as soils with 1,000 to 10,000 times 
lower NSC concentrations (Ratnayake et  al. 2013). 
Despite strong competition for resources among 
different fungi and other organisms (Hiscox et  al. 
2018), the supply of NSCs to diazotrophic organisms 
appears to be relatively good over many years of log 
decay. NSC is an energy source for many diazotrophs 
(Khan et  al. 2021), and C availability was shown 
to drive BNF (Vitousek et  al. 2002). However, the 
addition of glucose to deadwood led to decreased 
BNF rates (Hendrickson 1991). Some diazotrophs, 
abundant in deadwood, utilize methane as energy 
and carbon source instead of NSC (Mäkipää et  al. 
2018b), especially when methane levels in deadwood 
are higher than in the atmosphere (Covey et  al. 
2016). Other simple C compounds like methanol can 
also be utilized by some diazotrophs (Benoist et  al. 
2022). This repertoire of C sources would reduce the 
direct dependency of many diazotrophs on glucose, 
although glucose can be degraded to methane via 
fermentation processes under anoxic conditions.

Except for C, deadwood is an extremely nutrient-
poor habitat in which several nutrients could concur-
rently limit the growth of diazotrophs. Differences in 
BNF rates between logs of diffuse-porous angiosperm 
and gymnosperm species could be related to the gen-
erally lower nutrient levels in deadwood of gymno-
sperms. Nitrogen had the most positive relation with 
BNF among various analyzed nutrients, suggest-
ing severe N limitation of diazotrophs. Reed et  al. 
(2011) postulated that the growth of diazotrophs or 
BNF could be limited at extremely low N availability. 
With initial N concentrations often < 0.1%, deadwood 
is much more N-depleted than leaf and needle litter 
with 0.5 to 0.6% N (Taylor et  al. 1989; Peršoh and 
Borken 2017; Rinne et al. 2017). It is still uncertain 
whether low N availability in deadwood can hamper 
the establishment of diazotrophic communities. Yet, 
other N sources could contribute to the initial devel-
opment of diazotrophs and fungi in logs. Atmospheric 
deposition together with canopy leaching represent a 
possible pathway for uptake of inorganic and organic 
N. In the Hainich-Dün exploratory, atmospheric N 
deposition was relatively high with 10 kg N ha−1 per 
vegetation period (Schwarz et al. 2014) as compared 
to other regions during the time of the BNF studies, 
such as northwest America and northern Europe (0.8 
to 6  kg  N  ha−1  yr−1) (Sollins et  al. 1980; Vitousek 
1994; Merilä et  al. 2014). Elevated N deposition in 

Central Europe could positively affect BNF in the 
initial phase of log decay since the N level in wood, 
especially of coniferous tree species, is very low 
(Kahl et  al. 2017). Mutually related increases in N 
concentrations and BNF can be assumed for most 
logs in our study since concentrations were still 
relatively low with 0.2 to 0.4% N. Despite the high 
atmospheric N deposition at our study sites, BNF 
is still limited by low N concentration in deadwood 
after 12 years of decay.

Moreover, we could not find a correlation between 
BNF and the δ15N signature, but a tree species effect 
on the δ15N signature (Online Resource Fig. S3). Gen-
erally, BNF reflects the δ15N signature of atmospheric 
N2 (~ 0‰) (Hobbie et al. 2020). However, other pro-
cesses, such as the translocation of N from underlying 
soil into deadwood or atmospheric N deposition, may 
co-occur. These processes change the δ15N signature 
to more negative values (Knorr et al. 2015; Sabo et al. 
2016) and make it difficult to assign the origins of N. 
Additionally, BNF was measured after 12  years of 
decay, but the δ15N signatures partly originate from N 
uptake during the tree´s life.

As for N, the concentrations of P, S, and Mo of 
the 13 log species were also very low and positively 
correlated to BNF. A co-limitation of BNF by these 
essential nutrients was likely. However, it is unclear 
which nutrient had the greatest limiting effect on 
diazotrophs in deadwood. Low levels of available P 
constrained the growth of diazotrophic microorgan-
isms and the ATP-dependent enzymatic conversion 
of N2 to NH3 by nitrogenase (Hardy et al. 1971). The 
average increase in deadwood P concentration by 
75% in our study between 2009 and 2020 (Kahl et al. 
2017, Table 1) resulted mainly from the C loss during 
the decay. In addition, deadwood decaying fungi can 
transfer P from the underlying soil into deadwood via 
their hyphal system to overcome P deficiency (Boddy 
and Watkinson 1995). Enrichment of P could enhance 
the growth of diazotrophs and the BNF rate in logs, 
but studies on the response of BNF to P addition in 
deadwood are lacking to our knowledge. Strong posi-
tive effects of P addition on BNF were reported for 
soil (Barron et al. 2009), mosses (Rousk et al. 2017), 
and leaf litter (Reed et  al. 2013). Although, Barron 
et al. (2009) suggested that P fertilizers could be con-
taminated with Mo, meaning that additional P is not 
exclusively responsible for increasing BNF rates.
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Mo is an essential element for many diazotrophs 
through its function in the transfer of electrons in 
the nitrogenase enzyme complex (Burris and Rob-
erts 1993). Except for Acer, levels of Mo in logs were 
very low, although the correlations to BNF were also 
significant without Acer (not shown). A positive cor-
relation between Mo and BNF has been found in 
studies for soil (Perakis et  al. 2017), mosses (Rousk 
et al. 2017), and litter (Silvester 1989), but no effect 
was found for deadwood (Benoist et  al. 2022). Due 
to the scarcity of Mo in several ecosystems, diazo-
trophs can also fix N using alternative nitrogenases, 
which are encoded as anfH and vnfH and depend on 
iron or vanadium (V) instead of Mo (Bellenger et al. 
2020). Benoist et  al. (2022) suggested that alterna-
tive nitrogenases could play a more prominent role in 
BNF since V is more abundant in deadwood than Mo. 
Hence, vnfH could be responsible for the weak corre-
lation between BNF and nifH gene abundance in our 
study.

Compared to N and P, the relevance of S 
availability for the growth of non-symbiotic 
diazotrophs or BNF was barely studied in terrestrial 
ecosystems (Silvester 1989). Increasing S and K 
concentrations seemed to accelerate deadwood decay 
while other elements had no effect (Kahl et al. 2017). 
The positive correlation between BNF and S points to 
a mutual relation between fungi and diazotrophs, as 
Hoppe et al. (2014) suggested. Since S promotes both 
growth and activity of fungi (Schmalenberger et  al. 
2011), more C and other nutrients, such as P and Mo, 
could become available for diazotrophs (see above). 
In exchange, N becomes available to fungi, thus, 
supporting the idea of a mutual relationship between 
fungi and diazotrophs.

BNF and nifH gene abundance is mainly driven by 
WC

A SEM was applied to explore direct and indirect 
relationships between BNF, nifH abundance, and 
potential drivers. WC was the best explanatory 
variable for BNF and nifH gene abundance, reflecting 
higher diazotrophy and water holding capacity in 
diffuse-porous angiosperms versus ring-porous 
angiosperms and gymnosperms. All deadwood 
samples were adjusted to maximum water holding 
capacity, but WC strongly differed because of 
varying wood densities and capacities to store water. 

Positive correlations of BNF and WC in deadwood 
were associated with O2 availability since O2 is an 
inhibitor of the nitrogenase and can dampen BNF 
(Larsen et al. 1978; Burris and Roberts 1993; Hicks 
2000). Thus, WC below water holding capacity could 
reduce BNF and nifH gene abundance in logs under 
field conditions. Other factors, such as the decay 
stage (Hendrickson 1988) or chemical properties of 
deadwood, including carbohydrates and N (Cushon 
and Feller 1989), play a minor role.

As mentioned above, NSC and nutrients, such as 
Mo, and N, are crucial for the BNF activity as they 
serve as an energy source (Khan et al. 2021), act as 
a metal cofactor in the nifH gene (Bellenger et  al. 
2020) or activate BNF at low N concentrations (Reed 
et  al. 2011), respectively. However, we could not 
find such relationships in the SEM (Online Resource 
Fig. S2), and the SEM explained only a little part of 
the variability. The low explanatory power indicates 
the complex control and high variability of BNF in 
deadwood.

Conclusions

Our literature evaluation demonstrates that BNF is 
a ubiquitous and fundamental microbial process in 
deadwood of all investigated tree species across dif-
ferent biomes. High atmospheric N deposition in 
Central Europe does not suppress BNF in deadwood. 
In contrast, BNF in deadwood of gymnosperms 
with very low N levels could even benefit from this 
atmospheric N input. Regardless of N deposition, 
deadwood from diffuse-porous angiosperm tree spe-
cies with relatively high decomposability and high 
initial nutrient concentrations has greater potential 
for BNF than deadwood from other phylogenetic tree 
clades. The high variability of BNF rates and nifH 
gene abundances within individual tree species sug-
gests a complex control of diazotrophs through abi-
otic factors and saprotrophic organisms. Among the 
abiotic factors, WC and the associated control of O2 
availability are most effective in controlling BNF in 
deadwood. BNF is relevant for the N supply of sap-
rotrophic organisms and can substantially contribute 
to the gradual enrichment of N in deadwood during 
the long-term decay process. Given the low explora-
tory power of abiotic factors, the interspecies inter-
action patterns with the emphasis on diazotrophs 



368	 Biogeochemistry (2022) 161:353–371

1 3
Vol:. (1234567890)

and saprotrophic organisms could strongly affect the 
activity of diazotrophs.
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