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Wearable full-body motion tracking of 
activities of daily living predicts disease 
trajectory in Duchenne muscular dystrophy

Valeria Ricotti    1,2,13, Balasundaram Kadirvelu3,4,5,13, Victoria Selby1,2, 
Richard Festenstein6,7,8, Eugenio Mercuri9,10, Thomas Voit    1,2 & 
A. Aldo Faisal    3,4,5,11,8,12 

Artificial intelligence has the potential to revolutionize healthcare, yet clinical 
trials in neurological diseases continue to rely on subjective, semiquantitative 
and motivation-dependent endpoints for drug development. To overcome 
this limitation, we collected a digital readout of whole-body movement 
behavior of patients with Duchenne muscular dystrophy (DMD) (n = 21) 
and age-matched controls (n = 17). Movement behavior was assessed while 
the participant engaged in everyday activities using a 17-sensor bodysuit 
during three clinical visits over the course of 12 months. We first defined 
new movement behavioral fingerprints capable of distinguishing DMD 
from controls. Then, we used machine learning algorithms that combined 
the behavioral fingerprints to make cross-sectional and longitudinal 
disease course predictions, which outperformed predictions derived from 
currently used clinical assessments. Finally, using Bayesian optimization, 
we constructed a behavioral biomarker, termed the KineDMD ethomic 
biomarker, which is derived from daily-life behavioral data and whose value 
progresses with age in an S-shaped sigmoid curve form. The biomarker 
developed in this study, derived from digital readouts of daily-life movement 
behavior, can predict disease progression in patients with muscular dystrophy 
and can potentially track the response to therapy.

Advanced medicines including gene and cell therapies are rapidly 
emerging as disease-modifying treatment routes for rare or degen-
erative diseases. Drug development, however, is complicated mainly 
because clinical trials are hampered by the need for large cohorts 

difficult to realize in rare disease and because of the clinical bias and 
imprecision inherent to currently used trial endpoints. In many genetic 
and degenerative diseases, primary trial endpoints are still typically 
focused on behavioral assessments—‘by eye’ observations—of patients’ 
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At recruitment, 21 males with DMD with a mean age 9.4 years (range: 
6–17 years), 18 ambulant and 3 non-ambulant were included in this 
study. Furthermore, 17 age-matched healthy controls, mean age 10.4 
years (range: 4–16 years) were recruited. Individuals with DMD and 
healthy controls were followed over the course of 12 months and were 
examined at baseline, 6 and 12 months at Great Ormond Street Hospital 
(healthy controls at baseline and 12 months). Each visit involved the 
performance of the three clinical assessments: 6-min walk distance 
test (6MWD), North Star Ambulatory Assessment (NSAA) and the Per-
formance of the Upper Limb (PUL) test, which are all used as primary 
endpoints in most clinical trials of DMD (Methods) as well as captur-
ing the patients’ unconstrained daily-life movement behavior before 
and after their assessments on that day. Our cohort with DMD did not 
undergo any magnetic resonance imaging (MRI) scans on the day of 
the assessment.

We have used wearables to systematically quantify movement 
behavior in its complexity by using full-body motion capture allowing 
full freedom of range and movement (that is, behaviorally ‘sequencing’ 
the normal movement behavior of individuals). Our approach allowed 
us to select distinguishing behavioral fingerprints in a small cohort of 
patients with DMD (n = 21). We compared these fingerprints against 
age-matched healthy controls (n = 17), established their cross-sectional 
and longitudinal predictive capacity using machine learning and tested 
the effectiveness of our predictions against the current standard obser-
vational approach using data from a separate, larger natural history 
study in children with DMD (n = 44), referred to as the Gemelli study.

Ethomic fingerprints
In the following, we describe the development and validation of our 
approach step by step. Since we did not want to impose assumptions 
about what elements of movement of the body were more impor-
tant, we simply collected movement data from the whole body and 
later used the data to find what was best suited for characterizing the 
disease, thereby avoiding observer bias. We used a wearable sensor 
‘suit’ (a set of wristwatch-sized (4.7 × 3.0 × 1.3 cm) sensors attached 
with Velcro to the body or clothing of the individuals) that allowed 
us to capture the motion trajectory of all limbs and the body—from 
foot to hip, from hand to shoulder and from hip to head at a temporal 
resolution of 60 Hz. In the first step, we compared the joint kinematics 
of ADLs between healthy controls and patients with DMD and already 
found significant distinguishing elements: the distribution of joint 
angles across almost all body joints showed differences between DMD 
and controls (Fig. 1b and Extended Data Fig. 1). These quantitative 
differences are consistent with the qualitative descriptions of DMD 
in several ways. First, by inspecting the histograms of skeletal joint 
movement throughout ADLs (Fig. 1b and Extended Data Fig. 1 for all 
major joints) we saw reflection of hyperlordosis in the DMD posture: 
the right shifted distribution of the angles subtended by the hip joint 
with respect to healthy controls and correspondingly a stronger flexion 
(left shift of the distribution) of the knee joint. Similarly, the overall 
stiffer posture in DMD upper-body poses is reflected by the more 
contracted distribution of the DMD elbow joint angles compared to 
healthy controls. Second, the characteristic DMD Trendelenburg sign 
(waddling gait) is reflected in the joint angular velocity correlation 
matrix of ADLs (Fig. 1c) where across the lower extremities we saw 
less anticorrelation between joints moving in the sagittal plane (knee 
and hip flexion) and more correlation in the coronal plane (sideways 
abduction of the hips) that reflect waddling.

We then moved from descriptive statistics to more principled 
data-derived fingerprints of human movement behavior (Methods). 
These fingerprints characterized movement trajectories of the full 
body (that is, all joint angles). Specifically, our fingerprints were not 
meant to measure any specific activity (such as walking) but charac-
terize human movement behavior in a more holistic way. Fingerprints 
included the mean velocities of the extremities, the hip movement 

functional capability that predate the invention of computers. Yet, 
artificial intelligence (AI) is now a major driving force behind the rapid 
advances in digital healthcare1 by enabling more objective, data-driven 
approaches to understand2 and treat disease3. Digital biomarkers4, 
defined as objective, quantifiable data measured by means of digital 
devices, have recently seen increasing applications in clinical trials to 
overcome the intra- and interrater errors caused by subjective clinical 
scales. However, these digital biomarkers are not making full use of the 
true power of AI and data revolution in healthcare because they often 
just measure surrogates of existing markers, such as the number of 
steps or distance walked, markers originally chosen by human observer 
bias. Thus, they merely digitally replicate the ability of human observ-
ers, instead of embracing the possibility of going above and beyond 
human perceptual capabilities by looking at vastly more data in more 
detail. Human movement behavior is highly variable and complex5 
and so the data are difficult to analyze, which is why traditional clinical 
trial endpoints using conventional or even new digital methods have 
focused for decades on old human-defined outcome measures.

We focused on the combination of wearable sensor technology 
and machine learning methods to overcome these limitations. We 
hypothesized that these methods would allow us to identify barely 
perceptible complex patterns in patient movement behavior, thus 
overcoming clinical or observer bias6. To this end, we also needed to 
overcome a limitation of observational endpoints, namely that they 
require preprescribed activities that have been historically believed to 
be useful, such as ‘walking for 6 min’ or ‘touching the tip of the nose’, 
but have never been grounded in how relevant these activities are for 
patients in their daily life. Thus, we applied our ability to define with 
AI a digital biomarker by not only relying on prescribed observational 
assessment activities but also by challenging ourselves to use infor-
mation from unconstrained datasets, by simply observing patients 
performing activities of daily living (ADLs). In the same way that sys-
tematic approaches in comprehensively collecting a full picture of the 
genome sparked the genomics revolution, we believe that systematic 
approaches in ‘sequencing’ and understanding human natural move-
ment behavior (that is, human ethology in health and disease) could 
allow us to pursue an approach7–9. Therefore, we pursue here the con-
ception of ethomic biomarkers for human clinical use. We hypothesized 
that AI could fundamentally change disease characterization, develop 
objectively quantifiable readouts and thereby reduce necessary cohort 
sample size and time- to-endpoint. We used DMD, the most common 
fatal neuromuscular disease with a mean survival into the late second 
to third decade10–13 as a model because over 80 clinical trials are cur-
rently active in DMD14 and a number of these are microdystrophin 
gene transfer clinical trials15–17. Drug development for DMD has proven 
a particularly stony path due to the relentless degeneration of the 
skeletal and heart muscles but also due to methodological standstill 
of trial methodology largely using disease state-specific, observer- and 
motivation-dependent endpoints18–22.

Results
Overview of the approach
In our approach (Fig. 1a) we developed a fully data-driven, whole-body 
movement behavior analytics methodology to derive new digital bio-
markers. We strove to develop an approach that is objective, quantifi-
able, investigator- and motivation-independent and that can seamlessly 
capture motor performance from early childhood to adulthood, 
thereby reliably recording the whole-body kinematic behavior of an 
individual in spontaneous movement across the entire disease trajec-
tory.

Our clinical trial included two cohorts (see Methods for the full 
trial details): male individuals with DMD and age/sex-matched healthy 
controls (HC). Clinical diagnosis of DMD was genetically confirmed 
by multiplex ligation-dependent probe amplification (MLPA), full 
gene sequencing or any other state-of-the-art diagnostic technique. 
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Fig. 1 | Overview of ethomic fingerprinting of natural movement behavior 
of individuals with DMD and healthy controls. a, Overview of our system, in 
which ethomic fingerprints were extracted from the digital twin (avatar) of a 
participant, which was created using the suit data of natural movement behavior. 
A supervised machine learning algorithm, GP regression, was then used to derive 
the digital biomarker from the ethomic fingerprints. b, Probability distribution 
of joint angles at three exemplary skeletal joints (from left to right: right elbow 
flexion, left hip joint flexion, left knee joint flexion) for natural movement 
behavior data of individuals with DMD (blue) and healthy controls (red). Shaded 

regions denote the standard error and the stars denote a significant difference 
(P < 0.05, Kruskal–Wallis one-way ANOVA). c, Holistic view of whole-body 
coordination in ADLs. The correlation matrix (that is, the Pearson correlation 
coefficient of the joint angular velocities) for major skeletal joints is shown 
for healthy controls (left) and individuals with DMD (middle); the difference 
is shown on the right. The value in the color bars corresponds to the Pearson 
correlation coefficient. For a complete list of the joints for which movement data 
were obtained, see Supplementary Table 3.
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orbit and the volumetric workspaces of various joints (Fig. 2a–c for 
examples and Table 1 and Methods for a list of all identified finger-
prints). Importantly, some of our movement behavior fingerprints 

have not been described in the context of DMD before (see Ethomic 
fingerprints subsection of Methods). Digital fingerprinting of move-
ment behavior involves applying each fingerprint to the time series of 
movements and obtaining the strength of its presence. Each fingerprint 
could individually already distinguish individuals with DMD from 
healthy controls and correlated well with clinical scales (Extended Data  
Figs. 2–5 for their results).

Cross-sectional predictions of clinical scales
We then asked if we could make cross-sectional predictions from 
real-life-derived movement behavioral fingerprints to predict clini-
cal scales (Fig. 3a top for cross-sectional test points in our trial), and if 
confirmed, extrapolate to longitudinal predictions (Fig. 3a bottom for 
how we mapped the longitudinal test points to our trial). Crucially, our 
ethomic fingerprints can be applied to any human kinematic activity. 
This means we can use it to characterize structured functional assess-
ments but also characterize unstructured-unconstrained ADLs giving 
us a measure in a common ‘currency’ of motor capability across all these 
possible activity settings (Fig. 3b). Indeed, each of our ethomic finger-
prints showed individually no or only little overlap between healthy con-
trols and individuals with DMD (Extended Data Figs. 2–4). This could be 
further improved by combining all the individual ethomic fingerprints 
via state-of-the-art supervised machine learning using Gaussian pro-
cess regression (Methods, Gaussian process regression). This allowed 
us to use unstructured movement behavior data of ADLs of children 
to predict at a cross-sectional level three very different clinical func-
tional assessments (Fig. 3c): 6MWD (R2 = 0.92, root-mean-squared-error 
(RMSE) = 26.74); NSAA (R2 = 0.92, RMSE = 1.98); and PUL (R2 = 0.74, 
RMSE = 2.20). We have also included our successful results (R2 = 0.67, 
RMSE = 7.82) for a new force-based biomarker, MyoGrip (Extended 
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Fig. 2 | Three exemplary ethomic fingerprints. a, Left: workspace volume 
density plot generated using the 3D location of joints from a typical individual. 
Right: comparison of the workspace volume of individuals with DMD and healthy 
controls. The space is segmented in blocks of size 2 × 2 × 2 cm and the color of 
each block represents the frequency (shown on a log10 scale in the color bar) of 
any joint visiting the block. The workspace volume of the healthy controls was 
significantly greater than that of individuals with DMD (Kruskal–Wallis one-way 
ANOVA, where *P ≤ 0.05, **P ≤ 0.01 and ***P ≤ 0.001). b, Left: hip trajectory 
of a typical individual with DMD. Right: comparison of the hip orbit area of 
individuals with DMD and healthy controls. The hip orbit area of ambulatory 
individuals with DMD was significantly lower compared to the healthy controls 
(P < 0.05, Kruskal–Wallis one-way ANOVA). c, Comparison between the mean 
velocities of the extremities of individuals with DMD and healthy controls. 
The mean velocity of healthy controls was significantly greater than that of 
individuals with DMD for all four extremities (P < 0.01, Kruskal–Wallis one-way 
ANOVA). a–c, Data are presented as the mean ± standard error. (n = 46 visits of 
individuals with DMD (41 ambulatory) and n = 21 healthy control visits). For a 
complete list of movement behavioral fingerprinting features and the exact P 
values of the Kruskal–Wallis one-way ANOVA tests, see Supplementary Table 5.

Table 1 | Overview of the ethomic fingerprints

No. Name of ethomic 
fingerprint

Description No. of 
dimensions in 
each fingerprint

1 Workspace volume Volume occupied by 
the joints calculated 
using the 3D location of 
the joints

3

2 Hip orbit area Area generated by the 
hip movement in the 3 
planes

3

3 Extremities velocity Average and variance 
of the velocities of the 
extremities (hands and 
feet) in space

8

4 Average joint velocity Average of the joint 
angular velocities

9

5 Autocorrelation 
full-width at 
half-maximum

Measure of the rate of 
change in individual 
joint angles

17

6 Variability of the joint 
angle velocities

Scale parameter of the 
logistic distribution 
of the joint angular 
velocities

8

7 Skeletal joints linear 
correlations

Pearson correlation 
coefficient of the joint 
angular velocities

15

8 Duty cycle Fraction of time a joint 
is in motion

15

9 Acceleration of the body 
segments

Average and variance 
of the acceleration of 
the body segments

9

Please see the Methods for the definitions of the fingerprints, Supplementary Table 5 for their 
detailed list and Fig. 2 and Extended Data Figs. 2–4 for the results for each fingerprint.
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Data Fig. 6a). Further, we were also successful at predicting the clini-
cal scales from the ethomic fingerprints from the 6MW test data alone 
(Extended Data Fig. 6c for the results).

We tested if any of the three criterion standard clinical functional 
assessments could be used to predict each other’s scores (Extended 
Data Fig. 6b) but the criterion standard measures were not good at 
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Fig. 3 | KineDMD trial structure and cross-sectional predictions. a, Pictorial 
representation of the KineDMD clinical trial structure and the different types 
of predictions done in the study. b, Pictorial representation of the Gemelli and 
KineDMD studies showing the data source, measurement method and outcomes. 
c–e, Plots of actual versus predicted values for 6MWD (c), NSAA (d) and PUL 
(e). Cross-sectional predictions of these clinical scales were made using the 

ethomic fingerprints. Each point represents the actual versus predicted score 
for a patient’s visit. A LOSO cross-validation and Gaussian process regression 
were used to find a mapping between the ethomic fingerprints from the natural 
movement behavior of the patients with DMD and the different clinical scales 
of 6MWD (n = 17 ambulatory individuals, 37 visits), NSAA (n = 18 ambulatory 
individuals, 41 visits) and PUL (n = 21 individuals, 45 visits).

http://www.nature.com/naturemedicine


Nature Medicine | Volume 29 | January 2023 | 95–103 100

Article https://doi.org/10.1038/s41591-022-02045-1

predicting each other’s scores; only our ethomic fingerprints could 
predict each and all three. (See Supplementary Figs. 1–3 for the finger-
prints selected by the feature selection algorithm for cross-sectional 
predictions of the clinical scales.) This confirmed that our digital fin-
gerprinting could at least recreate criterion standard measures in 
terms of performance, making it a useful tool to provide digital ver-
sions of the clinical functional assessments but also suggesting that 
it captured more information about disease state than each and all 
criterion standard measures.

Longitudinal predictions of clinical scales
Next, we tackled the challenge of predicting longitudinal disease pro-
gression accurately, which is a key requirement of drug development 
(Fig. 4 and Extended Data Fig. 7d for MyoGrip). To build the longitudinal 
disease prediction models using the clinical scales of 6MWD, NSAA and 
PUL scores as predictors, we used the data from the combined cohort of 

the KineDMD study (n = 13 individuals, 24 visits) and the larger Gemelli 
study (n = 44 individuals, 122 visits) to allow a larger data size for the 
models using the clinical scales. First, we characterized the considerable 
amount of variability that patients show over 6 months in the criterion 
standard clinical scales in terms of disease progression (Fig. 4a,d,g). 
To compute the ability of criterion standard clinical scales (6MWD, 
NSAA and PUL) to carry information about disease evolution, we used 
Gaussian process regression to predict their scores 6 months into the 
future (Fig. 4b,e,h, red bar; 6MWD RMSE = 53.40; NSAA RMSE = 3.01; PUL 
RMSE = 2.34) with the clinical scales as predictors. This was in contrast 
to the ethomic fingerprinting-based predictions (Fig. 4b,e,h, blue bar; 
6MWD RMSE = 31.08; NSAA RMSE = 2.34; PUL RMSE = 1.72), which were 
systematically more accurate in predicting the disease course over the 
next 6 months (Extended Data Fig. 7a–c for the R2 of the predictions). 
This implies that our approach of movement behavioral fingerprinting 
to use high-resolution kinematics from daily life contained sufficiently 
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Fig. 4 | Longitudinal predictions of the clinical scales. a, Scatter plot of the 
6MWD from the visit at time T against the 6MWD from the visit at time T + 6 
months from both the KineDMD study (n = 13 individuals with 24 longitudinal 
visits) and the Gemelli study (n = 44 individuals with 122 longitudinal visits).  
A small jitter was added to the points to show any overlapping points.  
b, Comparison of the aggregate RMSE of the LOSO cross-validated predictions 
of the 6MWD at T + 6 months by the ethomic fingerprints from visit T (blue 
bar) and the 6MWD at visit T (red bar). The LOSO cross-validated prediction of 
the 6MWD at T + 6 months using the 6MWD at T months was performed on the 
combined cohort of KineDMD (n = 13 individuals, 24 visits) and Gemelli studies 
(n = 44 individuals, 122 visits). The LOSO cross-validated prediction of the 6MWD 

at T + 6 months using the ethomic fingerprints at T months was performed 
on the KineDMD cohort (n = 13 individuals, 24 visits). c, Plot of the aggregate 
LOSO cross-validated RMSE of the predictions of the 6MWD at T + 6 months 
as a function of the number of individuals used to build the machine learning 
model. The model using ethomic fingerprints achieves better performance with 
a smaller number of individuals (marked by the vertical dotted lines) compared 
to the model using 6MWD from the combined data of the KineDMD and Gemelli 
studies. The shaded regions indicate the s.d. of the results from different models 
built for each number of individuals. d–f, Corresponding results for NSAA.  
g–i, Corresponding results for PUL.
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rich information not only to score the disease state of the patient in the 
present but also predict how the patient would evolve (Supplementary 
Figs. 4 and 5 for the fingerprints selected by feature selection algorithm 
for longitudinal predictions of the clinical scales).

We then plotted the error of the longitudinal predictions as a func-
tion of the number of individuals used to build the machine learning 
models (Fig. 4c,f,i). The models built using the ethomic fingerprints 
from a smaller number of individuals (n = 13 individuals, 24 visits) 
achieved a lower error compared to the models built using the clinical 
scales from a larger cohort from the combined KineDMD and Gemelli 
studies (n = 44 individuals, 122 visits). In addition, the prediction error 
obtained using the ethomic fingerprints was substantially smaller in 
variance (for number of individuals = 10, an s.d. of 8.13 versus 33.63 
for 6MWD, 1.24 versus 1.87 for NSAA, 0.35 versus 1.67 for PUL) when 
compared to the prediction error obtained from the criterion standard 
clinical measures. Thus, both accuracy and precision are multiples 
higher for our ethomic fingerprints even when using a much smaller 
cohort, than those of the criterion standard clinical scales. By accu-
rately predicting the disease progression of each individual patient, 
in the context of clinical trials (Extended Data Fig. 7f), the ethomic 
fingerprints may thus be used to quantify the degree of deviation 
from this trajectory in the context of a disease-modifying therapy. 
Moreover, our work establishes that a small population size is suf-
ficient to build prediction models with high accuracy when using the 
rich set of ethomic fingerprints applied to natural data, which would 
considerably reduce the number of patients required in the context of 
drug development (Fig. 4c,f,i).

AI-derived biomarker
The deficiencies of current criterion standard clinical measures (6MWD, 
NSAA, PUL) are further highlighted by the fact that DMD is a geneti-
cally based continuously progressing disease from fetal conception to 
death. Yet criterion standard clinical measures do not progress with age 
as the disease does; instead they can show transient improvement in 
motor function (Fig. 5a–c) since they are confounded by the children’s 
development and ‘improved’ motor performance up to the age of 7 
years. This transient and apparent improvement is followed later by 
a rapid change induced by functional decline, such as loss of ambula-
tion, which causes disproportionate functional loss in 6MWD or NSAA 
assessments. Also, we observed a vast variability across individuals for 
the criterion standard functional biomarkers (Fig. 5a–c shaded area). 
In addition, 6MWD or NSAA are motivation-dependent, which further 
limits their use as endpoints in clinical trials. Therefore, especially in 
the context of drug development, they are not ideal markers of the 
global disease, leading to artificial subdivision of therapeutic windows 
assessed in DMD clinical trials.
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Fig. 5 | Current clinical scales and the KineDMD ethomic biomarker. a–c, 
Longitudinal history of the 6MWD (a), NSAA (b) and PUL (c) scores of individuals 
with DMD from the KineDMD and Gemelli studies as a function of age plotted 
on the x axis. The score at the first visit of the individual (black dots) and 
subsequent visits (lines flowing from the dot) shows the evolution of the clinical 
scale of the individual across visits. The line is colored green if the clinical scale 
decreases between visits and red if the scale increases between visits. The blue 
line is the best-fit Gaussian process regression over the data (the blue shaded 
area represents the 95% confidence intervals of the fit). d, Plot of the KineDMD 
biomarker scale (solid blue line) along with the ethomic fingerprint-derived 
scores (lines flowing from the black dots) of the individuals with DMD from 
the KineDMD study as a function of age plotted on the x axis. e, Comparison 
of the KineDMD biomarker scale with an alternative quantification of disease 
progression in terms of actual muscle loss, as measured by a muscle MRI fat 
fraction of the vastus lateralis23 (the orange curve and shaded area represent the 
95% confidence intervals based on data extracted from Naarding et al.23) on an 
age range of 0–25 years. Note that plot d is a zoomed in version of plot e for the 
age range 5–12 years.
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We developed an AI system for discovering a better biomarker 
among the infinitely many ways one could define one. Specifically, 
we used the Bayesian optimization methodology (Methods) to find 
a digital biomarker that would encapsulate biomedical invariants, 
which in a genetic disease such as DMD invariably progresses with age. 
At the same time, the rate of disease progression may vary over time. 
Therefore, we tasked the AI search to find a better biomarker, which is 
self-consistent with the observational data. Specifically, we constrained 
the Bayesian optimization to search for a monotonically increasing 
biomarker that starts at 0 at age 0 and reaches the maximum value of 
1 at 25 years of age. Of all the many possible models satisfying these 
constraints, we defined the KineDMD ethomic biomarker as the model 
that can be best-fitted using the ethomic fingerprints. This AI search 
produced the new KineDMD ethomic biomarker, which progresses 
with age in an S-shaped sigmoid curve form and is entirely defined by 
daily-life data. The marker showed small variability across the indi-
viduals in our cohort (Fig. 5d compared to Fig. 5a–c). To validate our 
KineDMD ethomic biomarker, we compared its age dependence with 
an indirect quantification of disease progression, percentile curves 
derived from muscle MRI quantifying muscle loss by fat replacement23 
(Fig. 5e). Interestingly, the exact mathematical shape of the KineDMD 
biomarker lies within error margins of the percentage fat fraction MRI 
data, even though at no point did we use information on the MRI curve 
in the development of our biomarker.

Discussion
Advanced therapies such as gene therapies are rapidly progressing 
toward the clinic for degenerative and rare diseases. Yet, the meth-
odology for assessing these new therapies in clinical trials, the clini-
cal endpoints, have not kept up with the pace of progress and have 
remained largely unchanged for half a century (for example, the 6MWD 
test was developed almost 60 years ago24), and are in stark contrast to 
high-performance medicine2. Existing movement behavioral biomark-
ers for DMD reported in the literature4 are often digital in that they 
use digital sensors and are focused on single features for measuring 
disease, such as the mean number of steps walked25,26, stride length to 
height ratio27, hip kinetics during gait28, upper extremity reachable 
workspace29 and the 95th percentile stride velocity30 (which has now 
been validated as a secondary endpoint by the European Medicines 
Agency31). Unlike our daily-life settings, most of these measures are 
obtained in laboratory-based settings with the exception of ActiMyo32. 
Moreover, many of these movement behavioral markers are focused on 
lower-body performance, which precludes them from capturing DMD 
progression after loss of ambulation, unlike our ethomic biomarker. 
The ability of our KineDMD biomarker to match data spanning the 
whole lifetime disease trajectory suggests that we have distilled essen-
tial elements of the disease’s impact on daily-life movement behav-
ior and these will also enable the study of patients with DMD across 
life-changing milestones, such as loss of ambulation. It is therefore plau-
sible that such a biomarker can be used in clinical trials as an endpoint.

We are proposing a principled approach for using all-body meas-
ures that are obtained from holistic daily life-based assessment of 
patients in their normal life. This makes ethomic biomarkers uniquely 
reflective of the actual functional whole-body capacity of the indi-
vidual. Hence, this principled allows us to predict disease trajectory 
accurately. This was a challenge historically because natural human 
movement behavior is highly variable and it is by eye difficult to spot an 
underlying simplicity that reflects on changes in disease mechanisms5. 
However, AI and machine learning have been leveraged to identify 
complex interactions and disease patterns directly from the clinical 
data generated, thereby avoiding observer-introduced biases3,6,33 and 
thus exceeding the performance of human experts34.

Our study has some limitations. Our cohort does not cover the full 
age range of 25 years used in the ethomic biomarker prediction. We are 
extrapolating beyond the age range of our population. Larger cohorts 

of individuals across different ambulatory status and application of the 
methodology in interventional trials will be essential to strengthen the 
points of acceptability, assessment of bias, validity and corroborate 
further the predictive capacity of our approach. Another limitation of 
our study is the use of the PUL scale, which is known to have a ceiling 
effect in the younger population. However, we selected the PUL scale in 
our study because it is the most widely used clinical scale for upper-limb 
assessment in clinical trials.

By combining an approach that embraces daily-life movement 
behavior with machine learning and ethomics, our AI biomarker pro-
vides a systematic pathway for determining when a new therapy effect 
occurs or weans off in real time. Focusing on natural movement behav-
ior instead of reductionistic clinical assessments provides both greater 
coverage and a more robust measure of a patient’s motor capability. 
Moreover, in the context of drug development, AI and machine learning 
can be used to identify and characterize new disease features that are 
not driven by clinical biases and may reliably measure disease progres-
sion and potential response to new therapies. This ethomic approach 
promises to shorten the duration and cost of clinical trials but also 
allows to reduce the sample size required since patient recruitment 
is often a major challenge in developing drugs for rare or complex 
diseases. Our approach can be easily applied to other neuromuscular, 
neurodegenerative or acquired neurological diseases such as stroke 
and dementia but also in other areas of medicine wherever a patient’s 
disease state is reflected in how they are able to conduct their daily life, 
such as with heart or lung diseases. Thus, our work has the potential to 
accelerate the development of new therapies for many rare diseases 
and beyond, especially where progression is slow or discontinuous 
and difficult to detect.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41591-022-02045-1.

References
1.	 Yu, K.-H., Beam, A. L. & Kohane, I. S. Artificial intelligence in 

healthcare. Nat. Biomed. Eng. 2, 719–731 (2018).
2.	 Topol, E. J. High-performance medicine: the convergence of 

human and artificial intelligence. Nat. Med. 25, 44–56 (2019).
3.	 Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C. & Faisal, A. 

A. The artificial intelligence clinician learns optimal treatment 
strategies for sepsis in intensive care. Nat. Med. 24, 1716–1720 
(2018).

4.	 Youn, B.-Y. et al. Digital biomarkers for neuromuscular disorders: a 
systematic scoping review. Diagnostics (Basel) 11, 1275 (2021).

5.	 Faisal, A. A., Selen, L. P. J. & Wolpert, D. M. Noise in the nervous 
system. Nat. Rev. Neurosci. 9, 292–303 (2008).

6.	 Deo, R. C. Machine learning in medicine. Circulation 132,  
1920–1930 (2015).

7.	 Reiser, M. The ethomics era? Nat. Methods 6, 413–414 (2009).
8.	 Branson, K., Robie, A. A., Bender, J., Perona, P. & Dickinson, M. H. 

High-throughput ethomics in large groups of Drosophila. Nat. 
Methods 6, 451–457 (2009).

9.	 Corrales-Carvajal, V. M., Faisal, A. A. & Ribeiro, C. 
Internal states drive nutrient homeostasis by modulating 
exploration-exploitation trade-off. eLife 5, e19920 (2016).

10.	 Landfeldt, E. et al. Life expectancy at birth in Duchenne muscular 
dystrophy: a systematic review and meta-analysis. Eur. J. 
Epidemiol. 35, 643–653 (2020).

11.	 Ishikawa, Y. et al. Duchenne muscular dystrophy: survival by 
cardio-respiratory interventions. Neuromuscul. Disord. 21, 47–51 
(2011).

http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41591-022-02045-1


Nature Medicine | Volume 29 | January 2023 | 95–103 103

Article https://doi.org/10.1038/s41591-022-02045-1

12.	 Eagle, M. et al. Managing Duchenne muscular dystrophy—the 
additive effect of spinal surgery and home nocturnal ventilation in 
improving survival. Neuromuscul. Disord. 17, 470–475 (2007).

13.	 Moxley, R. T. 3rd, Pandya, S., Ciafaloni, E., Fox, D. J. & Campbell, 
K. Change in natural history of Duchenne muscular dystrophy 
with long-term corticosteroid treatment: implications for 
management. J. Child Neurol. 25, 1116–1129 (2010).

14.	 ClinicalTrials.gov. https://clinicaltrials.gov/ct2/results?cond= 
Duchenne+Muscular+Dystrophy&Search=Apply&recrs=b&recrs= 
a&recrs=f&recrs=d&age_v=&gndr=&type=&rslt= (2022).

15.	 ClinicalTrials.gov. A Study to Evaluate the Safety and Tolerability 
of PF-06939926 Gene Therapy in Duchenne Muscular Dystrophy 
https://clinicaltrials.gov/ct2/show/NCT03362502 (2022).

16.	 ClinicalTrials.gov. A Randomized, Double-Blind, 
Placebo-Controlled Study of SRP-9001 (Delandistrogene 
Moxeparvovec) for Duchenne Muscular Dystrophy (DMD)  
https://clinicaltrials.gov/ct2/show/NCT03769116 (2022).

17.	 ClinicalTrials.gov. Microdystrophin Gene Transfer Study in 
Adolescents and Children With DMD (IGNITE DMD) 
 https://clinicaltrials.gov/ct2/show/NCT03368742 (2022).

18.	 Mayhew, A. et al. Moving towards meaningful measurement: 
Rasch analysis of the North Star Ambulatory Assessment in 
Duchenne muscular dystrophy. Dev. Med. Child Neurol. 53, 
535–542 (2011).

19.	 Mazzone, E. et al. North Star Ambulatory Assessment, 6-minute 
walk test and timed items in ambulant boys with Duchenne 
muscular dystrophy. Neuromuscul. Disord. 20, 712–716 (2010).

20.	 Mayhew, A. et al. Development of the performance of the upper 
limb module for Duchenne muscular dystrophy. Dev. Med. Child 
Neurol. 55, 1038–1045 (2013).

21.	 McDonald, C. M. et al. The 6‐minute walk test as a new outcome 
measure in Duchenne muscular dystrophy. Muscle Nerve 41, 
500–510 (2010).

22.	 Mazzone, E. S. et al. 24 month longitudinal data in ambulant boys 
with Duchenne muscular dystrophy. PLoS ONE 8, e52512 (2013).

23.	 Naarding, K. J. et al. MRI vastus lateralis fat fraction predicts loss 
of ambulation in Duchenne muscular dystrophy. Neurology 94, 
e1386–e1394 (2020).

24.	 Balke, B. A Simple Field Test for the Assessment of Physical Ftness 
(Civil Aeromedical Research Institute, 1963).

25.	 Fowler, E. G. et al. Longitudinal community walking activity in 
Duchenne muscular dystrophy. Muscle Nerve 57, 401–406 (2018).

26.	 Lowes, L., Miller, N., Iammarino, M., Dugan, M. & Alfano, L. Activity 
monitoring in neuromuscular disease: successes, challenges, and 
a path forward (P5. 6-016). Neurology 92, P5.6-016 (2019).

27.	 Henricson, E. et al. Duchenne muscular dystrophy—
physiotherapy: P.315Stride to height ratio as a new ambulatory 
outcome measure in Duchenne muscular dystrophy. 
Neuromuscul. Disord. 28, S125–S126 (2018).

28.	 Heberer, K. et al. Hip kinetics during gait are clinically  
meaningful outcomes in young boys with Duchenne muscular 
dystrophy. Gait Posture 48, 159–164 (2016).

29.	 Han, J. J. et al. Reachable workspace reflects  
dynamometer‐measured upper extremity strength in 
facioscapulohumeral muscular dystrophy. Muscle Nerve 52, 
948–955 (2015).

30.	 Lilien, C. et al. Factors influencing spontaneous maximal stride 
speed in individ-ual Duchenne muscular dystrophy boys. 
Neuromuscul. Disord. 28, S125 (2018).

31.	 Haberkamp, M. et al. European regulators’ views on a 
wearable-derived performance measurement of ambulation for 
Duchenne muscular dystrophy regulatory trials. Neuromuscul. 
Disord. 29, 514–516 (2019).

32.	 Lilien, C. et al. Home-based monitor for gait and activity analysis. 
J. Vis. Exp. (150), https://doi.org/10.3791/59668 (2019).

33.	 Bai, W. et al. A population-based phenome-wide association 
study of cardiac and aortic structure and function. Nat. Med. 26, 
1654–1662 (2020).

34.	 McKinney, S. M. et al. International evaluation of an AI system for 
breast cancer screening. Nature 577, 89–94 (2020).

Publisher’s note Springer Nature remains neutral with regard  
to jurisdictional claims in published maps and institutional 
affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/naturemedicine
https://clinicaltrials.gov/ct2/results?cond=Duchenne+Muscular+Dystrophy&Search=Apply&recrs=b&recrs=a&recrs=f&recrs=d&age_v=&gndr=&type=&rslt=
https://clinicaltrials.gov/ct2/results?cond=Duchenne+Muscular+Dystrophy&Search=Apply&recrs=b&recrs=a&recrs=f&recrs=d&age_v=&gndr=&type=&rslt=
https://clinicaltrials.gov/ct2/results?cond=Duchenne+Muscular+Dystrophy&Search=Apply&recrs=b&recrs=a&recrs=f&recrs=d&age_v=&gndr=&type=&rslt=
https://clinicaltrials.gov/ct2/show/NCT03362502
https://clinicaltrials.gov/ct2/show/NCT03769116
https://clinicaltrials.gov/ct2/show/NCT03368742
https://doi.org/10.3791/59668
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Medicine

Article https://doi.org/10.1038/s41591-022-02045-1

Methods
Observational study information
The present study was conducted with approval from the appropriate 
research ethics committees and host institutions (ref. no. 18/SW/0012 
South West—Cornwall & Plymouth Research Ethics Committee). It was 
conducted in full conformity with all applicable laws and regulations, 
including the International Conference on Harmonization Guidelines 
for Good Clinical Practice (CPMP/ICH/135/95) and relevant articles of 
the Declaration of Helsinki (seventh revision, 2013). The study protocol 
is provided in the Supplementary Note. All individuals were recruited 
between May 2018 and April 2019 and participated at Great Ormond 
Street Hospital, London, UK. Written informed consent was obtained 
from each study participant and their parents/legal guardians. Data 
from one individual’s visit could not be included in the analysis because 
his data files were corrupted. No other individuals were affected by this 
issue. One of the individuals refused to complete the 6MWD test on two 
of his visits because of behavioral issues. Two individuals refused to 
complete the 6MWD on one of their visits. Only the 6MWD data from 
those individuals were not included in the analysis and the rest of the 
data from those individuals were included. PUL data from one visit were 
not included for technical reasons. MyoGrip data were not recorded for 
two visits because of equipment issues. The study was registered at the 
UK DMD Hub website https://dmdhub.org/trials/kinedmd/. Additional 
data on the 6MWD, NSAA and PUL clinical scales from a larger cohort 
with DMD were provided by Ospedale Gemelli (institutional review 
board no. 16464/16 ID:1161, Fondazione Policlinico Gemelli Istituto 
di Ricovero e Cura a Carattere Scientifico). Informed consent was 
obtained from all participants of the Gemelli study.

Participant characteristics
The clinical trial included two cohorts: male individuals with DMD 
and age-matched male healthy controls. Clinical diagnosis of DMD 
was genetically confirmed by MLPA, full gene sequencing or any other 
state-of-the-art diagnostic technique. At recruitment, 21 males with 
DMD with a mean age of 9.4 years (range: 6–17 years), 18 ambulant 
and 3 non-ambulant were included in this study. Furthermore, 17 
age-matched healthy controls, mean age of 10.4 years (range: 4–16 
years) were recruited. Individuals with DMD and healthy controls were 
followed over the course of 12 months and were examined at baseline, 
6 and 12 months at Great Ormond Street Hospital (healthy controls at 
baseline and 12 months). A summary of baseline characteristics of the 
enrolled individuals is provided in Supplementary Table 1 for individu-
als with DMD and Supplementary Table 2 for healthy controls.

The Gemelli data included 88 male individuals with DMD (292 vis-
its) with a mean age of 9.2 years (range: 4–24 years). Of the 88 individu-
als, 27 had only 1 visit. Of the remaining 61 individuals who had more 
than 1 visit, 44 had a visit in the same range as the 6 monthly visits of 
the KineDMD study. See Supplementary Table 3 for the characteristics 
of the entire Gemelli cohort.

Assessments/procedures
The assessment of each individual followed standard physiotherapy 
and clinical assessment procedures at each hospital visit and followed 
the presented order. All assessments were carried out in and around 
Great Ormond Street Hospital: (1) recording of medical history and 
medication history; (2) height and weight measurement; (3) physical 
examination including vital signs; (4) fitting of motion capture suit, 
calibration and testing of wearing comfort (10 min); (4) motor func-
tional and strength tests including the following: (a) NSAA; (b) 6MWD; 
(c) PUL scales for ambulant and non-ambulant individuals; (d) hand 
strength by MyoGrip.After step (4) and between assessments (step 
(5) a–d) or thereafter individuals had considerable time off ‘by design’. 
We set aside specifically these longer periods of unconstrained, free 
movement behavior as separate data collection periods. Individuals 
and their carers were given full freedom to engage in spontaneous 

behavior of everyday activities. While data collection was continuing 
without limiting the individuals, they could move freely and engage 
in activities such as visiting play areas indoors and outdoors. Specific 
activities were carried out by all males, including dressing (donning and 
doffing a coat), eating, drinking, playing on a gaming device, construct-
ing something with Lego building blocks, reading a book, writing or 
coloring depending on age and ability, resting lying down to simulate 
sleeping and watching TV. For those who were able, walking along the 
corridors and going up and down the stairs were also completed. Par-
ticipants were given free time to explore open spaces both indoors and 
outdoors to engage in activities they chose such as football, basketball 
or pool. Our cohort with DMD did not undergo any MRI scans on the 
day of the assessment because MRI is not considered standard of care 
for routine assessments in DMD.

NSAA and timed test
The NSAA is a clinician-administered scale that rates an individual’s 
performance on various functional activities18,19. During this assess-
ment, individuals are asked to perform 17 different functional activi-
ties including standing, walking, standing up from a chair, single-leg 
stance (right then left), ascending and descending a 15-cm high step, lift 
head while supine, lying to sitting, lying to standing, standing on heels, 
jumping, hopping on the right leg, hopping on the left leg. Patients will 
be graded as follows: 2 = normal, no obvious modification of activity; 
1 = modified method but achieves goal independently of physical 
assistance from another; and 0 = unable to achieve goal independently.

PUL
The PUL 2.0 is an outcome measure that has been developed and vali-
dated for use in late ambulant and non-ambulant patients with DMD20. 
PUL 2.0 has 22 items, which measure strength and function using spe-
cific tasks and are categorized into shoulder, elbow and distal domains. 
Each participant was assessed for the entry point of the PUL 2.0 using 
the modified Brooke test. The PUL 2.0 was then carried out using the 
standardized protocol and scoring criteria.

6MWD
The 6MWD is an assessment of ambulation using a modified version 
of the American Thoracic Society guidelines. The modified version 
has been used in many clinical trials in DMD as a primary endpoint 
for therapies such as eteplirsen, ataluren and microdystrophin gene 
transfer. The test requires the child to walk for 6 min along a taped 
25-m course21,22.

The assessors in this study were experienced neuromuscular physi-
otherapists (supervised by V.S.), who were individually trained and 
assessed in the independent use of the sensor suit.

MyoGrip
MyoGrip is a very sensitive myometer that evaluates hand grip 
strength35–37

MyoGrip data were collected for each participant using a three-trial 
maximal effort grip strength protocol. Raw data, collected in kg, were 
then analyzed using the percentage predicted38.

Sensor suit protocol
On the day of the assessment, each participant and family were met at 
Great Ormond Street Hospital by the study physiotherapist and taken 
to the physiotherapy department or clinical research facility. Consent 
and assent were gained, and the family/participant shown the motion 
capture suit (see next subsection for details). Anthropometric data and 
a brief past medical history were obtained, including details of DMD 
diagnosis, current medication review and therapy input. Once the 
above had been gathered, the Xsens suit, which included 17 wireless 
inertial measurement unit (IMU) sensors, as mentioned in the protocol, 
was donned. The IMUs were placed as per the manufacturer’s guidelines 
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at the head, shoulders, upper arms, forearms, hands, sternum, pelvis, 
thighs, shanks and feet.

Once calibration was complete, each participant was video- 
recorded to allow for visual data to be captured alongside Xsens motion 
data. At this point, the families had a discussion as to whether a parent 
would remain at the appointment or leave the child or a mix. However, 
if parents attended for the appointment, they were not allowed to 
interfere or assist with any assessment or data collection.

While wearing the suit and being video-recorded, each participant 
was asked to complete a series of physiotherapy assessment measures 
according to their ability: NSAA including timed tests of timed rise from 
floor and 10-m walk/run; PUL 2.0; 6MWD; and two different grip and 
pinch strengths using MyoTools (MyoGrip and MyoPinch).

After the formal assessments, there was a period, up to 2 h, where 
guided ADLs were recorded. Guided activities included walking, run-
ning, eating (participants were taken to the hospital canteen for lunch), 
ascending and descending stairs (if able), writing, reading, dressing 
(for example, putting on a coat), resting, playing computer games 
and Lego building.

Once the guided ADL had been completed, each participant was 
allowed up to 1 h of free play. This was directed by the participant 
and included activities such as playing basketball, football, gaming, 
pool. Individuals could choose their degree of activity when playing 
or engaging in snack or lunch activities. There was no maximum 
capability requirement or even encouragement. These activities were 
limited only by safety and requirement to stay within the hospital  
setting.

During the assessment period, any events such as falls or the need 
for recalibration were documented. Recalibration of the motion cap-
ture suit was carried out as and when required in accordance with the 
quality of data being collected and recorded. After the above record-
ings and data collection, the Xsens suit was removed, sensors cleaned 
and recharged for the next participant.

Body sensor network ‘suit’ (wearable full-body motion 
tracking)
Individuals wore a wearable motion tracking suit of 17 wireless IMU 
sensors (Xsens MVN Awinda; Xsens Technologies B.V.) that recorded 
full-body kinematic data at 60 Hz. Data acquisition was controlled 
via the MVN Analyze graphical interface (Xsens Technologies B.V.). 
The Xsens sensors showed high accuracy39,40 and the Xsens MVN 
system has been used and validated in tracking real-world movement 
behavior in many sports including football41, horse-riding42 and snow-
boarding43. The detailed properties of the IMU sensors are available 
in the product documentation from the vendor44. Xsens MVN uses a 
23-segment biomechanical model of the human body with 22 joints 
and proprietary algorithms to reconstruct a three-dimensional (3D) 
human pose45,46 from the raw sensor information. This sequence of 
body poses is represented as a multidimensional time series of vari-
ous joint angles of 22 joints of the body and the relative 3D positions 
of 23 body segments. The suit sensor was streamed wirelessly from 
the body sensor network to a local laptop and stored in an encrypted 
manner. These data were then securely transferred to our secure 
offline data storage for holding, data curation and subsequent  
analysis.

The full-body kinematics data from the Xsens MVN Analyze 
software (2018; 2019 were exported as XML files and were analyzed 
using custom software written in MATLAB (R2019b; MathWorks). We 
smoothened the kinematics data from the MVN export files using a 
centered moving average technique with a window size of 21 before 
further processing.

Note, that the full-body kinematics were extracted in joint angles in 
three d.f. for each joint that followed the International Society of Biome-
chanics recommendations for Euler angle extractions of X (abduction/
adduction), Y (internal/external rotation) and Z (flexion/extension). 

To be clear, this standard approach for full-body kinematics includes 
representing hinge joints of the body (such as the elbow), which have 
only one d.f. but still being represented as three Euler angles (that is, 
three numbers).

Ethomic fingerprints
From the suit data, we extracted a range of ethomic fingerprints (move-
ment behavioral biomarkers) that highlight the differences between 
individuals with DMD and healthy controls. A detailed description of 
each of these ethomic fingerprints is presented below.

Workspace volume
Workspace volume can be described as the volume generated by the 
movements of the limbs in space. The idea of workspace volume is 
illustrated in Fig. 2a. Since our participants were not static and were 
dynamically moving in space, we modified the concept slightly to 
make the estimation of the workspace volume more robust. We fixed 
each individual’s trunk to a single reference point and adjusted the 
location of the rest of the joints with respect to the trunk. Using 
the joints’ 3D locations in space, we separated the space in a grid 
of 2 × 2 × 2 cm voxels and then calculated its occupancy density 
(that is, how often a body part is in that voxel). Therefore, we could 
visualize the workspace volumes of the body as shown in Fig. 2a, 
where the color of each voxel represents the occupancy frequency 
on a log10 scale (blue very low probability, red very high probabil-
ity). Using the generated density space of joint positions, we calcu-
lated the workspace volume by counting the non-empty voxels and 
multiplying the result by the single voxel volume (that is, 8 cm3). 
We calculated the workspace volume for all 22 joints of the body 
(called full-body) and separately for the upper-body and lower-body 
joints. Applying this analysis across all individuals, we observed 
that patients with DMD needed significantly less space than con-
trols (Fig. 2a, P < 0.001, Kruskal–Wallis one-way analysis of variance  
(ANOVA)).

Hip orbit area
As in workspace volume calculations, we used the suit’s biomechani-
cal model and fixed the pelvis to a fixed location. We then calculated 
the location of the hip with respect to the pelvis and calculated the 
area generated by the hip orbit on all three planes (Fig. 2b). Apply-
ing the calculations to all individuals, our results showed a statisti-
cally lower area covered by the patients with DMD than the controls  
(Fig. 2b, P < 0.05, Kruskal–Wallis one-way ANOVA). Post hoc confirma-
tion showed that clinical workers could spot the qualitative difference 
in observations of the hip orbit ‘by eye’ during the trial.

Extremities velocities
Using the 3D locations of the extremities (hands and feet) in space, as 
provided by the suit’s biomechanical model, we calculated the linear 
velocity in each of the three axes of the earth-fixed reference coordinate 
system. We then calculated the magnitude of the velocity by applying 
root-mean-square operation and then calculated the mean and vari-
ance of the magnitude signal for each extremity. A comparison between 
the mean (and variance) of the linear velocities of the extremities of the 
individuals with DMD and healthy controls is presented in Fig. 2c and 
Extended Data Fig. 4b.

Average joint velocity
One of the fingerprints we extracted from the kinematic joint angle 
data was based on the average angular velocities of the joints. DMD 
causes progressive muscle weakness, which should be reflected into 
slower movement speeds. The results in Extended Data Fig. 2a support 
our observations that the velocities achieved by individuals with DMD 
are statistically slower than healthy controls based on a Kruskal–Wallis 
one-way ANOVA test (P < 0.05).
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Autocorrelation full-width at half-maximum of joint angle 
velocities
We explored the joints’ autocorrelation full-width at half-maximum 
(FWHM) as a measure to evaluate the similarity between joint move-
ments across time. This was evaluated by first calculating the auto-
correlation up to a 10-s lag. The output was a single bell-shaped curve 
centered around the 0-s lag. The FWHM is defined as the width of the 
bell-shaped curve at the point when it reaches a 0.5 autocorrelation 
value (half maximum). This metric has been previously used as an indi-
cation of how rapidly the hand joint kinematics change47. We applied 
the FWHM on the joints and the results are shown in Extended Data  
Fig. 2b. The individuals with DMD had a significantly higher autocor-
relation FWHM than healthy controls (P < 0.05, Kruskal–Wallis one-way 
ANOVA), which indicated that the movements of the individuals with 
DMD were changing more slowly.

Variability of the joint angle velocities
From our analysis, we consistently found that the individuals’ joint 
velocities were best described by a logistic probability distribution. 
Therefore, we applied a logistic distribution on all joints and compared 
the scale parameter (σ) across individuals with DMD and healthy con-
trols as a measure of the variability of joint velocities. The results are 
shown in Extended Data Fig. 3a where individuals with DMD exhibited 
a significantly lower σ than healthy controls (P < 0.01, Kruskal–Wallis 
one-way ANOVA) suggesting that individuals with DMD used a much 
smaller range of velocities.

Duty cycle of the joint angle velocities
The next fingerprint we explored in the kinematic data analysis was 
based on each joint’s duty cycle—what percentage of time did indi-
viduals use each individual joint. We applied our motion detection 
algorithm based on the empirical distributions of the joint velocities to 
detect the movements for each individual joint. Our motion detection 
algorithm is based on empirical thresholds estimated by computing a 
histogram (100 bins) evenly spaced over the data range and choosing 
the value for which data had a probability of less than a set threshold. 
The movement regions were then selected by finding the areas that 
exceed the threshold value. The algorithm was applied on each signal 
dimension independently and the results were combined afterwards 
using a logical disjunction operator.

A comparison of the duty cycles of the patients with DMD and the 
healthy controls are shown in Extended Data Fig. 3b. It can be clearly 
seen that the duty cycle of the healthy controls is significantly greater 
than that of the individuals with DMD (P < 0.05, Kruskal–Wallis one-way 
ANOVA), which also agrees with the general observation that individu-
als with DMD moved their joints less compared with healthy controls.

Linear acceleration of the body segments
We calculated the magnitude of the linear acceleration by applying 
root-mean-square operation and then calculated the mean and vari-
ance of the magnitude signal for the different body segments. A com-
parison between the mean and variance of the linear velocities of 
the extremities of the individuals with DMD and healthy controls is 
presented in Extended Data Fig. 4c,d.

Feature selection and model evaluation
We applied a Gaussian process regression algorithm48 to combine the 
ethomic fingerprints and find a mapping against the standard clinical 
scales. Gaussian process regression is a state-of-the-art method that 
applies a nonlinear regression and can capture the uncertainty in the 
presence of high variability in the data in a principled manner. For each 
of our regressions, we used a nested cross-validation procedure for 
feature selection and model evaluation (to avoid leakage of the test 
data during the feature selection process). The inner cross-validation 
loop was used for the feature selection and the outer cross-validation 

loop was used to evaluate the performance of the model. We used a 
leave-one-subject-out (LOSO) (leave the rows corresponding to all 
visits of an individual) for both the inner and outer cross-validation 
loops. We used a combined forward and backward wrapper feature 
selection approach to select the most optimal subset of features in the 
inner cross-validation loop.

For s number of individuals with each v visits, the data consists 
of s × v rows and the outer cross-validation splits the data into s folds 
(ensuring all the visits of an individual are in a single fold and each fold 
contains only the rows corresponding to the visits of a single individual). 
So, we have s training and test folds. For each of the s training folds, a 
combined forward and backward feature selection was done using the 
LOSO cross-validation error of the inner cross-validation loop as the 
objective function; thus, a subset of features were generated for each 
of the s training folds. The most frequent subset among the s subsets 
was selected as the optimal subset because the frequency of the subset 
of features is a measure of the robustness of the subset of selected fea-
tures to changes in the training data. Finally, the overall performance 
of the GP regression was evaluated for the selected optimal subset of 
features using the outer cross-validation for the s test sets. This nested 
cross-validation approach ensured that the test data in each fold of the 
outer cross-validation loop was never used during feature selection 
in the inner cross-validation loop and therefore provides a reliable 
estimate of model performance. The hyperparameters of the Gaussian 
process were chosen based on the cross-validation error on the inner 
nested loop. The predicted values from all the test folds of the outer fold 
were aggregated and the aggregate root mean squared error (RMSE) and 
coefficient of determination (R2) was calculated and reported.

Cross-sectional and longitudinal predictions
The cross-sectional predictions of the 6MWD and NSAA scores were done 
only for ambulant individuals. In longitudinal prediction comparisons, 
the longitudinal prediction of the conventional biomarkers (6MWD, 
NSAA and PUL) using the biomarkers themselves (for example, predict-
ing NSAA at T + 6 months using NSAA at T + 0 months) was compared 
against the longitudinal prediction of the conventional biomarkers 
using our ethomic fingerprints (predicting NSAA at T + 6 months using 
ethomic fingerprints at T + 0 months). The longitudinal prediction of the 
conventional biomarkers (6MWD, NSAA and PUL) at T + 6 months using 
the biomarker themselves at T + 0 months was done on the combined 
cohort of KineDMD and Gemelli studies to give more prediction power 
to the conventional biomarkers. The longitudinal prediction of the con-
ventional biomarkers (6MWD, NSAA and PUL) at T + 6 months using the 
ethomic fingerprints at T + 0 months was done on the KineDMD cohort.

For the longitudinal results (Fig. 4c,f,i), which show the perfor-
mance of the predictions as a function of the number of individuals 
used to build the machine learning models, nCk (up to a maximum of 
1,000) combinations (where n is the total number of individuals in the 
dataset and k is the number of individuals used to build the machine 
learning model) of the models were built for each k and the mean and 
s.d. of the aggregate performance of the nCk models was reported.

KineDMD ethomic biomarker modeling using Bayesian 
optimization
We chose hyperbolic tangent functions to model the KineDMD ethomic 
biomarker because the family of hyperbolic tangent functions can 
exhibit different monotonically increasing behaviors (such as lin-
ear, exponentially increasing with differing slopes, S-shaped sigmoid 
curves) for different parameter values. We used the following equa-
tion to model the KineDMD ethomic biomarker Y as a monotonically 
increasing function of age:

Y (age) = ((tanh (X) − tanh (Xmin)) / (tanh (Xmax) − tanh (Xmin))

where X = α × age – β; Xmin = X(0) and Xmax = X(25); 0 ≤ α ≤ 0.5 and 0 ≤ β ≤ 5
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The equation constrains the biomarker to be 0 at age 0 and mono-
tonically increases and reaches the maximum value of 1 at 25 years of 
age. For different values of α and β, the equation generates different 
monotonically increasing behaviors such as linear, exponentially 
increasing with differing slopes, S-shaped sigmoid curves and so on. 
Of all the possible models of biomarker, we wanted to find the model 
that can be best-fitted using the ethomic fingerprints. We used Bayes-
ian optimization49,50 to search the parameter space of α and β and 
find the best-fit model. The objective function used in the Bayesian 
optimization algorithm is the LOSO cross-validation regression error 
while regressing the biomarker using the ethomic fingerprints with 
the GP regression algorithm with feature selection. The acquisition 
function was set to expected improvement and a Gaussian process was 
used as the surrogate function. Additional constraint on the objective 
function was placed so that the biomarker was clinically meaningful. 
The ranges for the constraints of the ethomic biomarker disease 
scale were chosen based on our clinical experience. The disease scale 
should start at 0 at age 0 and reach 1 at age 25. The constraint for the 
range of the ethomic biomarker at age 5 was chosen to be between 
0.01 and 0.15 because some patients are not even overtly sympto-
matic (corresponding to 0.01 of the scale) at 5 years and others show 
the first signs of the disease (0.15). The constraint for the range of 
the biomarker at age 15 was chosen to be between 0.5 and 0.8 beca 
use patients lose lower-body ambulation (corresponding to 0.5 of the 
scale) and start losing upper-body ambulation and developing heart 
and respiratory problems (0.8) by age 15. Thus, the constraints were 
chosen to be clinically meaningful and large enough to allow a wide 
range of functions.
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Extended Data Fig. 1 | Probability distribution of angular displacements. a. and b. Probability distribution of angular displacements of the joints of the upper body 
and the lower body for natural movement behaviour data of DMD subjects (21 subjects and 46 visits) and healthy controls (17 subjects and 21 visits).
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Extended Data Fig. 2 | Ethomic fingerprints – Average joint velocity and 
autocorrelation full width at half-maximum. a. The DMD subjects exhibit 
significantly slower average velocities in all joints when compared to healthy 
controls. b. The autocorrelation full width at half-maximum (FWHM) of the 
body joints shows a significantly slower drop for the healthy controls than DMD 

subjects indicating that the movements of the DMD subjects are changing more 
slowly compared to the healthy controls. Kruskal-Wallis one-way ANOVA, where 
∗ represents p ≤ 0.05, ∗∗ is p ≤ 0.01 and ∗∗∗ is p ≤ 0.001. In a-b, data are presented 
as mean ± standard error (n = 46 DMD visits and n = 21 HC visits). For the exact 
p-values of the Kruskal-Wallis one-way ANOVA tests, see Supplementary Table 5.
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Extended Data Fig. 3 | Ethomic fingerprints – Scale parameter of the logistic 
fit and duty cycle of joint velocities. a. A comparison between the scale 
parameter (σ) of the logistic fit of the joint velocities between the DMD subjects 
and healthy controls show a significantly larger σ in the joints of the healthy 
controls meaning that they used a much wider range of velocities than the 
DMD subjects b. A comparison between the duty cycle of the joints of the DMD 
subjects and healthy controls shows that the duty cycle of the healthy controls 

is significantly greater than that of the DMD subjects for many joints indicating 
that healthy controls move their joints more often than the DMD subjects. 
Kruskal-Wallis one-way ANOVA, where ∗ represents p ≤ 0.05, ∗∗ is p ≤ 0.01 and ∗∗∗ 
is p ≤ 0.001. In a-b, data are presented as mean ± standard error (n = 46 DMD visits 
and n = 21 HC visits). For the exact p-values of the Kruskal-Wallis one-way ANOVA 
tests, see Supplementary Table 5.
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Extended Data Fig. 4 | Ethomic fingerprints – Correlation of joint velocities 
and body segment velocities and acceleration. a. A comparison between 
the Pearson’s correlation coefficient of the angular velocities of the joints 
between the DMD subjects and healthy controls show significant differences. 
b. A comparison between the variance of velocity of the extremities of the DMD 
subjects and healthy controls shows that the variance of the velocity of the 
healthy controls is significantly greater than that of the DMD subjects for all four 
extremities c. and d. A comparison between the mean (c) and variance (d) of the 

acceleration of the different body segments of the DMD subjects and healthy 
controls shows that the both mean and variance of the acceleration of the healthy 
controls is significantly greater than that of the DMD subjects Kruskal-Wallis 
one-way ANOVA, where ∗ represents p ≤ 0.05, ∗∗ is p ≤ 0.01 and ∗∗∗ is p ≤ 0.001. 
In a-d, data are presented as mean ± standard error (n = 46 DMD visits and n = 21 
HC visits). For the exact p-values of the Kruskal-Wallis one-way ANOVA tests, see 
Supplementary Table 5.
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Extended Data Fig. 5 | Correlation between the ethomic fingerprints and the standard clinical scales. Bar chart of the Pearson correlation between each feature in 
the full set of ethomic fingerprints listed in Supplementary Table 5 and the clinical scales of 6 MWD (a), NSAA (b) and PUL (c).
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Extended Data Fig. 6 | Cross sectional predictions of the clinical scales. a. 
Cross sectional prediction of Myogrip. Actual vs predicted plot of the Myogrip. 
Each point represents the actual vs predicted score for a patient’s visit. A 
leave-one-subject-out cross-validation (n = 21 subjects, 44 visits) and Gaussian 
process regression was used to find a mapping between the ethomic fingerprints 
from the natural movement behaviour of the DMD patients and the Myogrip. 
b-d. Cross-sectional predictions of the clinical scales. Comparison of the 
aggregate RMSE of the leave-one-subject-out cross-validated predictions (n = 17 
ambulatory subjects, 37 visits) of the 6 MWD (b)using ethomic fingerprints 

vs other clinical scales. c and d are the corresponding plots for NSAA (n = 18 
ambulatory subjects, 41 visits) and PUL (n = 21 subjects, 45 visits) respectively. 
e-g. Cross-sectional predictions using 6 MW data. Actual vs predicted plot 
from the cross-sectional prediction of the clinical scales using 6MW data. Each 
point represents the actual vs predicted score for a patient’s visit. A leave-one-
subject-out cross-validation and Gaussian Process regression was used to find a 
mapping between the ethomic fingerprints from the 6MW motor behaviour of 
the DMD patients and the different clinical scales of 6MWD, NSAA and PUL (n = 17 
ambulatory subjects, 37 visits).
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Extended Data Fig. 7 | Longitudinal predictions of the clinical scales. a. 
Comparison of the aggregate R2 of the leave-one-subject-out cross-validated 
predictions of the 6MWD at T + 6 months by the ethomic fingerprints from visit T 
vs the predictions by 6MWD at visit T. The leave-one-subject-out cross-validated 
prediction of the 6MWD at T + 6 months using the 6MWD at T months (red bar) 
was done on the combined cohort of KineDMD study (n = 13 subjects with 24 
longitudinal visits) and Gemelli study (n = 44 subjects with 122 longitudinal 
visits). The leave-one-subject-out cross-validated prediction of the 6MWD at 
T + 6 months using the ethomic fingerprints at T months (blue bar) was done on 
the KineDMD cohort (n = 13 subjects, 24 visits). b and c are the corresponding 

plots for NSAA and PUL respectively. d. Scatter plot of the Myogrip from the visit 
at time T against the Myogrip from a visit at time (T + 6 months) from KineDMD 
study (n = 13 subjects, 23 visits). Myogrip was not collected from Gemelli study. e. 
Comparison of the aggregate RMSE of the leave-one-subject-out cross-validated 
predictions of the Myogrip at T + 6 months by the ethomic fingerprints from 
visit T and Myogrip at visit T. f-h. Actual vs prediction plot from the longitudinal 
prediction models of the clinical scales 6MWD (f), NSAA (g) and PUL (h) using 
ethomic fingerprints. Each point represents the actual vs predicted score for a 
patient’s visit.
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