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1. INTRODUCTION

This paper is concerned with multi-echelon inventory
management facing stochastic demands with deadlines
where each stock point has an individual outsourcing
option. The general task is to determine safety stocks and
outsourcing quantities for all stock points in the network
so that all demands can be satisfied in time as well as the
expected total cost is minimal.

In the vast literature on multi-echelon inventory manage-
ment (compare the survey by de Kok et al. (2018)) there
are two principal modeling approaches: The stochastic
service models (SSM) seek to exactly determine stock-
out distributions and expected backorder costs. Thus, for
large and complicated network structures it is very dif-
ficult to solve them exactly. In contrast, the guaranteed
service models (GSM) use a bounded-demand assumption
which allows for solving them even for large network
structures (see the survey by Eruguz et al. (2016)). For
general demands the GSM is often justified by assuming
that unspecified operational flexibility (usually expediting
and outsourcing) enables the network to act as if the
demands were bounded, even if they are not. However, the
means of operational flexibility are not accounted for inside
the model. The recent line of research on the Stochastic
Guaranteed Service Model (SGSM) tries to remedy this
short-coming by considering expediting and outsourcing
as penalized recourse actions in stock-out situations.

The first attempt in Rambau and Schade (2014) led to
a basic two-stage stochastic integer linear program with
recourse (SGSM), which can be solved by standard mixed-
integer linear programming (MILP). The model-optimal
solution of the SGSM improved the performance in simu-

? Research supported by the German Research Foundation (DFG)
and the Bayreuth research center for modeling and simulation
(MODUS), project “The Stochastic Guaranteed Service Model with
Demand Propagation” (RA 1033/3-1).

lations substantially compared to an ordinary GSM. How-
ever, the SGSM model-optimal objective was overestimat-
ing the expected cost because it did not account for the
upstream demand reduction by outsourcing. Löhnert and
Rambau (2018) showed that in order to keep track of the
consequences of outsourcing correctly one must compute
the demand propagation inside the model. The first logi-
cally sound proposition into this direction was the SGSM
with Demand Propagation (SGSM-DP) by Löhnert and
Rambau (2018). With the new model it could be shown
that an endogenous modeling of demand propagation has a
serious impact on optimality. We performed an additional
test on random instances, where the SGSM optimum was
converted to a feasible solution of the SGSM-DP. This
experiment confirmed that ignoring this effect can lead to
solutions that are more than 50% more expensive on aver-
age than the optimum. The problem with the SGSM-DP
was its poor scalability. Instances with 20 nodes or more
could not reliably be solved by standard MILP-solvers like
cplex, gurobi, or scip in, say, 1000 seconds.

In this paper we present two alternative models: the
T-SGSM-DP, which is an evolutionary tightening of the
SGSM-DP, and the F-SGSM-DP, which uses an all-new
modeling approach via variants of dynamic flows. Espe-
cially the F-SGSM-DP can solve hard instances with up
to 50 nodes in 1000 seconds with the open-source standard
MILP-solver scip (Gamrath et al., 2020).

2. PROBLEM STATEMENT

According to the short typology by de Kok et al. (2018)
this paper studies an inventory problem of the type

nech,Dnet|Icap,Cdel|Udem,Gcus|Pres|Cobj .

That is: Consider a single-rooted multi-echelon distribu-
tion network for a single product type with stochastic
demand represented by a finite number of scenarios (which
may be the outcome of sampling). The network is operated



by periodic-review base-stock policies (i.e. an inventory is
periodically replenished to a base-stock level) together with
immediate, unbounded outsourcing options in each node.
Informally, we search for scenario-independent base-stock
levels and scenario-dependent outsourcing quantities such
that the expected total cost consisting of holding costs and
outsourcing costs is minimal.

Formally: Let G := (N,A) be a non-empty connected
acyclic divergent graph consisting of a node set N of
inventory locations including the unique root node 1 ∈ N
and an arc set A of supply relations. That is, for every
node i ∈ N \ {1} there is exactly one predecessor j ∈ N
supplying i along (j, i) ∈ A. The root node 1 has no
predecessor and is supplied externally. For each node i ∈ N
the lead time denoted by Li ∈ Z>0 is the time required
to transport products to this node from its supplier. Let
the demand set D consist of the nodes without successors.
These are the nodes receiving external demand. Let Ω be
the finite scenario set with probabilities pω ∈ Q>0 for each
scenario ω ∈ Ω. Any scenario is associated with an external
demand rate αωi ∈ Z≥0 for every demand node i ∈ D.
Products demanded at i ∈ D have to be delivered within
the guaranteed end-customer service time sOUT

i ∈ Z≥0
after the order was placed. At every node i ∈ N , products
can be taken either from the internal inventory, which is
kept at a marginal holding cost hi ∈ Q≥0 per item or
via outsourcing from an alternative supplier at a marginal
outsourcing cost ci ∈ Q≥0 per item.

The task is to find:

(1) Guaranteed service times sOUT
i and sINi for all i ∈ N .

That is, node i delivers with a delay of sOUT
i to its

customers; its orders are delivered with a delay of at
most sINi from its regular supplier. This is the usual
(S)GSM-setting.

(2) Outsourcing quantities qωi for all i ∈ N in all scenarios
ω ∈ Ω with the meaning that node i receives qωi
products from its alternative supplier during the time
span it waits for replenishment. This is the setting of
the (S)GSM with outsourcing options.

The idea of the GSM is that from these values one can
derive base-stock levels necessary to guarantee the service
times. The SGSM-DP by Löhnert and Rambau (2018)
models this problem as two-stage stochastic mixed-integer
linear program with recourse (2SMILP). The extensive
form of the deterministic equivalent of this 2SMILP with
finitely many scenarios is a MILP. However, the scalability
of that model does not allow the computation of optimal
solutions for networks with more than 15 nodes in reason-
able time. This is due to the fact that the SGSM-DP is a
“big-M” linearization of a non-linear intermediate model,
which is usually cursed with a large integrality gap.

3. TIGHTENED FORMULATION OF THE SGSM-DP

In this section, we enhance the SGSM-DP while keeping
its basic structure intact. It turns out that for this it is
more instructive to use (a variant of) the non-linear model
GSM-o-NL (Löhnert and Rambau, 2018) as our point of
departure, since its logic is dominated by the original
problem, whereas the SGSM-DP contains purely technical
elements only for linearization.

Generalizing the structure of the GSM-o-NL by Löhnert
and Rambau (2018) for stochastic demand rates we obtain
the non-linear model SGSM-NL:

min
∑
i∈N

(
hi · yi + ci ·

∑
ω∈Ω

pω · qωi
)

(1)

subject to

xi − sINi + sOUT
i ≥ Li ∀i ∈ N (2)

− sINj + sOUT
i ≤ 0 ∀(i, j) ∈ A (3)

sOUT
i ≤ sOUT

i ∀i ∈ D (4)

yi + qωi − xi · (nωi +mω
i ) ≥ 0 ∀ω ∈ Ω,

∀i ∈ N (5)

qωi − xi ·mω
i = 0 ∀ω ∈ Ω,

∀i ∈ N (6)

qωi −mω
i ≥ 0 ∀ω ∈ Ω,

∀i ∈ N (7)

−
∑

j∈δ+
G
(i)

nωj + nωi +mω
i = 0 ∀ω ∈ Ω,

∀i ∈ N \D (8)

nωi +mω
i = αωi ∀ω ∈ Ω,

∀i ∈ D (9)

sINi , s
OUT
i , xi, yi ∈ Z≥0 ∀i ∈ N (10)

qωi ∈ Z≥0 ∀ω ∈ Ω,
∀i ∈ N (11)

nωi ,m
ω
i ∈ Q≥0 ∀ω ∈ Ω,

∀i ∈ N (12)

We briefly recall the meanings of the various components:
The independent decisions are the inbound and outbound
guaranteed service times sINi and sOUT

i as well as the
scenario-dependent outsourcing quantities qωi for all nodes
i ∈ N . The dependent decisions are the replenishment
delays xi during which all orders have to be satisfied by in-
ventory and outsourcing, the propagated demand rates nωi
for the regular supplier, the outsourced demand rates mω

i
for the alternative supplier, and the base-stock levels yi
necessary to bridge the time spans xi. The outsourced
demand rates have not appeared in the GSM-o-NL and
are defined as

mω
i :=


qωi
xi

if xi > 0

0 otherwise
(13)

for all ω ∈ Ω as well as i ∈ N , modeled by (6) and (7).

The objective function (1) consists of the strategic holding
cost and the expected outsourcing cost. Restriction (2)
bounds xi to a sufficient replenishment delay, restric-
tion (3) ensures that the transportation of products to the
customer starts no earlier than the supplier sends them
off, (4) guarantees the exogenous service times of the end
customers. These are the restrictions of ordinary GSMs.
Moreover, (5) enforces that the base-stock levels are suffi-
cient for the propagated demands, (6) and (7) couple the
outsourced demand rates to the outsourcing quantities, (8)
and (9) is the demand propagation balance. Here, δ+G(i)
is the set of arcs emanating from i. Finally, (10), (11),
and (12) specify the domains of the variables.

The outsourcing variables can be eliminated from restric-
tion (5) by subtracting equation (6) in order to handle



inventory and outsourcing decisions separately. Experi-
ments with the SGSM-DP on constructed and randomized
instances with integral external demand rates led without
exception to fully integral optimal solutions. Therefore,
we assume that also the demand rates (12) are integral
variables (though this is not guaranteed in general). Then,
by the following procedure a feasible integral solution
can be converted to a feasible integral solution satisfying
inequations (2) and (3) as equations.

1: procedure Canonicalize
2: sIN1 ← 0 ∈ Z≥0
3: for i ∈ N in topological order do
4: xi ← min(xi, s

IN
i + Li) ∈ Z≥0

5: sOUT
i ← sINi + Li − xi ∈ Z≥0 . (2) activated

6: for j ∈ δ+G(i) do
7: sINj ← sOUT

i ∈ Z≥0 . (3) activated
8: end for
9: for ω ∈ Ω do

10: qωi ← xi ·mω
i ∈ Z≥0 . (6) restored

11: end for
12: end for
13: end procedure

Since G is divergent, all time variables and outsourcing
quantities are reassigned exactly once. At line 4 the
replenishment delay is chosen in order to set at line 5 the
corresponding outbound service time to a non-negative
value. By induction can be observed that no variable is
increased, and therefore this also holds for the objective.
For the same reason, inequations (4) as well as (5) remain
valid, and since the demand rates (12) are untouched,
so are the conservation conditions (8) and (9). Moreover,
this operation can not violate (7) because all lead times
are assumed to be at least 1, and therefore in line 4 no
replenishment delay is strictly decreased to 0, which finally
implies (7) by (6). This shows that (2) and (3) can be
restricted to equations as well as sIN1 to 0.

This leads to a tightened version, called the T-SGSM-NL:

min
∑
i∈N

(
hi · yi + ci ·

∑
ω∈Ω

pω · qωi
)

(14)

subject to

xi − sINi + sOUT
i = Li ∀i ∈ N (15)

− sINj + sOUT
i = 0 ∀(i, j) ∈ A (16)

sOUT
i ≤ sOUT

i ∀i ∈ D (17)

yi − xi · nωi ≥ 0 ∀ω ∈ Ω,
∀i ∈ N (18)

qωi − xi ·mω
i = 0 ∀ω ∈ Ω,

∀i ∈ N (19)

qωi −mω
i ≥ 0 ∀ω ∈ Ω,

∀i ∈ N (20)

−
∑

j∈δ+
G
(i)

nωj + nωi +mω
i = 0 ∀ω ∈ Ω,

∀i ∈ N \D (21)

nωi +mω
i = αωi ∀ω ∈ Ω,

∀i ∈ D (22)

sINi , s
OUT
i , xi, yi ∈ Z≥0 ∀i ∈ N (23)

qωi , n
ω
i ,m

ω
i ∈ Z≥0 ∀ω ∈ Ω,

∀i ∈ N (24)

With equations (15), (16), and sIN1 = 0, the time domains
can be upper-bounded. To quantify this, let the root lead
time ki ∈ Z>0 of node i ∈ N be defined as the sum
of lead times on the unique path from 1 to i. Since all
replenishment delays are non-negative, it is xi+s

OUT
i ≤ ki.

For this reason we call Ki := {0, . . . , ki} the relevant time
set of i because considering times xi, s

OUT
i ∈ Ki is enough

to encounter an optimal solution.

Also the demand rates have natural upper-bounds. For
nωi +mω

i in each scenario ω ∈ Ω at every node i ∈ N the
maximum demand rate can be computed by

Mω
i :=


αωi if i ∈ D∑

j∈δ+
G
(i)

Mω
j otherwise (25)

in reverse topological order for each scenario separately.

Using this within a strengthened linearization approach, a
tightened version of the original SGSM-DP by Löhnert and
Rambau (2018) can be formulated, called T-SGSM-DP:

min
∑
i∈N

(
hi · yi + ci ·

∑
ω∈Ω

pω · qωi
)

(26)

subject to ∑
k∈Ki

zDEL
i,k = 1 ∀i ∈ N (27)∑

l∈Ki
l<k

(l − k) · zDEL
i,l + x−i,k = 0 ∀i ∈ N,

∀k ∈ Ki (28)∑
l∈Ki
l>k

(k − l) · zDEL
i,l + x+i,k = 0 ∀i ∈ N,

∀k ∈ Ki (29)

x+i,0 − s
IN
i + sOUT

i = Li ∀i ∈ N (30)

− sINj + sOUT
i = 0 ∀(i, j) ∈ A (31)

sOUT
i ≤ sOUT

i ∀i ∈ D (32)

yi − k · nωi +Mω
i · x−i,k ≥ 0 ∀ω ∈ Ω,

∀i ∈ N,
∀k ∈ Ki (33)

qωi − k ·mω
i +Mω

i · x−i,k ≥ 0 ∀ω ∈ Ω,
∀i ∈ N,
∀k ∈ Ki (34)

qωi − k ·mω
i −Mω

i · x+i,k ≤ 0 ∀ω ∈ Ω,
∀i ∈ N,
∀k ∈ Ki (35)

qωi −mω
i ≥ 0 ∀ω ∈ Ω,

∀i ∈ N (36)

−
∑

j∈δ+
G
(i)

nωj + nωi +mω
i = 0 ∀ω ∈ Ω,

∀i ∈ N \D (37)

nωi +mω
i = αωi ∀ω ∈ Ω,

∀i ∈ D (38)

zDEL
i,k ∈ B ∀i ∈ N,

∀k ∈ Ki (39)



x−i,k, x
+
i,k ∈ Z≥0 ∀i ∈ N,

∀k ∈ Ki (40)

sINi , s
OUT
i , yi ∈ Z≥0 ∀i ∈ N (41)

qωi , n
ω
i ,m

ω
i ∈ Z≥0 ∀ω ∈ Ω,

∀i ∈ N (42)

Here, variables zDEL
i,k ∈ B := {0, 1} indicate whether

xi = k. The new variables x−i,k := max(k − xi, 0) and

x+i,k := max(xi − k, 0) measure, by (28) and (29), one-
sided differences between prescribed values k and actual
values xi. In particular, x+i,0 is used as the original re-

plenishment delay xi in condition (30). This allows for a
time- and demand-sensitive dimensioning of the “big-M”s
as Mω

i · x
−
i,k and Mω

i · x
+
i,k. And tighter “big-M”s can lead

to a stronger formulation of the SGSM-DP.

Some of the constraints dedicated to demand propagation
are reminiscent of network flows (Ahuja et al., 1993).
Indeed, here we are confronted with conservation condi-
tions (37) as well as demand requirements (38). This led
to the idea to construct a flow network in which a feasible
solution can be represented by constrained flows.

4. A FLOW-BASED REFORMULATION

Following the ideas in (Kamp, 2021), we can reformulate
the SGSM-DP as a flow-based ILP using modified versions
of commonly known graph transformations, namely node
splitting and time expansion (Ahuja et al., 1993). In order
to model the local outsourcing options by flow decisions, at
first every node i ∈ N is split into the inventory node i, the
subsequent dispatch node i′ and the outsourcing node i′′ as
additional source for the dispatch node. Regular supplies
arrive at the inventory node i, whereas outsourced supplies
arrive at the outsourcing node i′′. Customers are supplied
by the dispatch node i′, that is, every original arc (i, j) ∈ A
is replaced by the split-arc (i′, j). The latter arc is then
associated with a duration which is the node’s lead time Li.
The other arcs connecting the split-nodes internally obtain
an arc duration of zero.

In order to represent the choice of service times and
replenishment delays by an arc selection, we construct
a time-expanded network from this split-node graph. For
each split-node belonging to a node i ∈ N we create
for every relevant time slot in Ki an indexed copy. As
usual, arcs in the time-expanded split-node graph connect
all copies of split-nodes whose time-indices differ by the
corresponding split-arc duration in the underlying graph.
Additionally, we introduce a common flow source given
by the global supply node 0′0 and define K0 := {0}. This
node is connected to the externally supplied root inventory
node 1L1

as well as to every outsourcing node for which
there is an expanded split-arc terminating in an associated
inventory node one time unit later.

The network so far is only able to model a physical product
flow without any intermediate inventories. However, the
whole point of an inventory network is to accelerate the
supply process by the use of inventories. Our new idea is
to represent these options by acceleration arcs going one
unit backwards in time. We introduce these arcs between
the inventory nodes and between the outsourcing nodes.

This way, satisfying an order from inventory is represented
by connecting the physical replenishment flow entering
the inventory node after the replenishment delay logically
to the physical supply flow leaving the inventory node
at the outbound service time. The number of traversed
acceleration arcs is equal to the replenishment delay.
Moreover, we would like to have a canonical sink node for
the flow satisfying a demand. This node is naturally given
by the dispatch node copy at the guaranteed end-customer
service time slot antedated into the relevant time set.
Since products may arrive at an earlier copy, we introduce
waiting arcs going forwards in time between consecutive
demand dispatch nodes.

Figure 1 shows how a node is split into inventory, dispatch,
and outsourcing node; moreover, it illustrates the time-
expansion of a two-echelon serial inventory system includ-
ing consistent flows for external demand rates α1

2 := 1
and α2

2 := 2. All drawn arcs carry unit flows. In the
second scenario half of the external demand is immediately
outsourced. This makes the depicted flows feasible for base
levels at least y1 = 2 and y2 = 1 because the arcs going
backwards in time represent inventory withdrawals, which
are replenished two time units delayed at the supplier node
and one time unit delayed at the customer node.

i

i′

i′′

L1 := 2

L2 := 1

sOUT
2 := 0

ω = 1 ω = 2

Fig. 1. Node split and two-echelon time-expanded flows

Formally, the resulting network G′ is defined by:

G′ :=
(
N ′, A′

)
(43)

N ′ :=
{
ik, i

′
k, i
′′
k | i ∈ N, k ∈ Ki

}
∪̇
{

0′0
}

(44)

A′ :=F ∪̇E (45)

F :=
{

(ik, i
′
k), (i′′k , i

′
k) | i ∈ N, k ∈ Ki

}
(46)

∪̇
{

(i′k, jk+Lj
) | (i, j) ∈ A∪̇{(0, 1)}, k ∈ Ki

}
(47)

∪̇
{

(0′0, j
′′
k+Lj−1) | (i, j) ∈ A∪̇{(0, 1)}, k ∈ Ki

}
(48)

E :=
{

(ik, ik−1), (i′′k , i
′′
k−1) | i ∈ N, k ∈ Ki \ {0}

}
(49)

∪̇
{

(i′k−1, i
′
k) | i ∈ D, k ∈ Ki \ {0}

}
(50)

D′ :=
{
i′min(sOUT

i ,ki)
| i ∈ D

}
(51)

Additionally, for a compact demand notation we define

αωi :=


−Mω

1 if i = 0′0
αωj if i = j′k ∈ D′

0 else

(52)

in every scenario ω ∈ Ω for all expanded nodes i ∈ N ′.



Then, a flow-based formulation of the SGSM-DP with flow
variables xωik,jl , called F-SGSM-DP, is given by:

min
∑
i∈N

(
hi · yi + ci ·

∑
ω∈Ω

pω · qωi
)

(53)

∑
k∈Ki

zOUT
i,k = 1 ∀i ∈ N (54)

xωik,i′k
+ xωi′′

k
,i′

k

−Mω
i · zOUT

i,k ≤ 0 ∀ω ∈ Ω,
∀i ∈ N,
∀k ∈ Ki (55)

xωi′
k
,jk+Lj

+ xω0′0,j′′k+Lj−1

−Mω
j · zOUT

i,k ≤ 0 ∀ω ∈ Ω,
∀(i, j) ∈ A,
∀k ∈ Ki (56)∑

k∈Ki\{0}

xωik,ik−1
≤ yi ∀ω ∈ Ω,

∀i ∈ N (57)∑
k∈Ki\{0}

(xωi′′
k
,i′′

k−1
+ xωi′′

k−1
,i′

k−1
) = qωi ∀ω ∈ Ω,

∀i ∈ N (58)∑
j∈δ−

G′
(i)

xωj,i −
∑

j∈δ+
G′

(i)

xωi,j = αωi ∀ω ∈ Ω,

∀i ∈ N ′ (59)

zOUT
i,k ∈ B ∀i ∈ N,

∀k ∈ Ki (60)

yi ∈ Z≥0 ∀i ∈ N (61)

qωi ∈ Z≥0 ∀ω ∈ Ω,
∀i ∈ N (62)

xωi,j ∈ Z≥0 ∀ω ∈ Ω,
∀(i, j) ∈ A′ (63)

Here, (53) is as before; (54), (55), and (56) allow physical
flow only at the time slots corresponding to the outbound
service times selected by zOUT

i,k ; (57) ensures sufficient

inventory for withdrawals along the acceleration arcs; (58)
sums up outsourcing rates to outsourcing quantities; (59)
is the flow balance with in- and outgoing arc sets δ−G′(i)

and δ+G′(i) respectively; finally, (60), (61), (62), and (63)
specify the domains of the variables.

Theorem 1. T-SGSM-DP and F-SGSM-DP are equivalent.

Proof. We restrict ourselves to a rough sketch. Given an
optimal solution of one of the models, it is possible to

(1) construct a (not necessarily feasible) solution of the
other model with identical objective.

(2) apply a variant of Canonicalize to find a feasible
solution without increasing the cost.

Technical details are straight-forward and are omitted. 2

5. PERFORMANCE AND SCALABILITY

We generated two sets of benchmark instances for multi-
echelon networks with an increasing number of nodes,

random topology, and random data. The random topology
given a number of nodes is generated by adding the nodes
one-by-one, starting at the root node 1 and connecting
each new node to one already present node chosen uni-
formly at random. The result is a divergent network, where
the demand nodes are chosen to be the nodes without
successors. The random data concerns lead times, end-
customer service times, probabilities, demands, holding
costs, and outsourcing costs. The latter are chosen to be
strictly larger than the former to avoid trivial instances.
We restrict ourselves to three scenarios because Rambau
and Schade (2014) have shown that few scenarios (ob-
tained by heavy sampling and subsequent heavy, asym-
metric scenario reduction) can accurately represent the
stochasticity of the system.

The solutions were computed on a standard MacBook Air
(11 Inch, Mid 2012, macOS Catalina 10.15.7, 2.6 GHz
Core i5-3317U, 4 GB DDR3-RAM) using the open-source
MILP-solver SCIP 7.0.3 including the sub-LP-solver So-
Plex 5.0.2 (Gamrath et al., 2020) with a time limit of 1000
seconds for each problem instance.

The first set of instances was generated for 2 through 30
nodes and three scenarios. The remaining data was drawn
from the following sets:

Li ∈
{

1, . . . , 4
}

(64)

hi ∈
{

1, 2
}

(65)

ci ∈
{
hi + 1, . . . , hi + 8

}
(66)

sOUT
i ∈

{
0, 1
}

(67)

pω ∈
{

1, . . . , 100
}

normalized (68)

αωi ∈
{

1, . . . , d4 · ω
|Ω|e

}
(69)

Figures 2 and 3 show the total computation times and
relative integrality gaps (1− LP-Opt

ILP-Opt ) of the models.
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Fig. 2. Comparison of computation times I

The result is that, in contrast to the original SGSM-DP,
the new models of this paper, the T-SGSM-DP and the
F-SGSM-DP, can reliably solve the instances with more
than 15 nodes far below the time limit. A plausible reason
is the consistent difference among the integrality gaps.

The second set of instances was generated for 2 through 50
nodes and again three scenarios. For a “stress-test” the
data was drawn from the substantially larger sets:
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Fig. 3. Comparison of integrality gaps I

Li ∈
{

1, . . . , 31
}

(70)

hi ∈
{

1, . . . , 31
}

(71)

ci ∈
{
hi + 1, . . . , hi + 279

}
(72)

sOUT
i ∈

{
0, . . . , 30

}
(73)

pω ∈
{

1, . . . , 100
}

normalized (74)

αωi ∈
{

1, . . . , d62 · ω
|Ω|e

}
(75)

Figures 4 and 5 show the resulting times and gaps.
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Here, not only the SGSM-DP but also the T-SGSM-DP
takes a serious dip in performance, while the F-SGSM-DP
maintains a smaller integrality gap which leads to substan-
tially lower computation times throughout reaching the
time limit only for one of the largest instances. And this
even though the number of variables in the F-SGSM-DP
grows as large as 100,000 as opposed to at most 6,000 in
the SGSM-DP. This shows again that the tightness of a
model is sometimes more important than a compact size.

6. CONCLUSION

We presented two new mixed-integer linear models for the
SGSM-DP with outsourcing option, one as a technically
tightened version (T-SGSM-DP) and one based on time-
expanded flows (F-SGSM-DP). The main idea is that
inventory withdrawals can be modeled as logical flows
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backwards in time because they accelerate the net delivery
from the unique supplier to the end customers. The flow-
based model outperforms both the original and the tight-
ened model by a large margin. Using the F-SGSM-DP, for
the first time optimal solutions for multi-echelon inventory
networks with 50 nodes and lead times up to 31 time units
can be computed. Future research goes into two directions:
First, investigate dynamic column generation in order to
mitigate the influence of the number of variables in the
F-SGSM-DP. Second, generalize the F-SGSM-DP for in-
ventory networks containing convergent substructures.
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