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Abstract

Microplastics are a global pollutant. The microscopic particles can reach every place on the
globe through wind and weather. Humans introduce ever more plastic via the rivers into
the oceans, where it breaks down into microplastic. A part of it sinks to the ocean floor, a
part remains in bulk, and a part floats on the ocean surface. I investigate how microplastic
can get from the ocean surface into the atmosphere, to be transported by wind over vast
distances, possibly even on land.

For the transition of particles from water to air, all mechanisms where small droplets are
ejected are conceivable. Besides wave action during windy conditions and the bursting of
bubbles on the surface, impacting raindrops could also contribute to the transfer. I study
the latter mechanism in detail using computer simulations.

The simulation of an impacting raindrop allows precise measurement of each ejected spray
droplet and counting contained particles. For statistical analysis of droplets and particles, I
simulate many hundreds of these impacts. The concentration of particles in spray droplets
resembles that at the water surface, meaning that the water from the raindrop, which is
initially devoid of particles, for the most part does not get into droplets, but mainly sea
water instead. Larger raindrops eject much more droplets and particles into the air, but
occur much less frequent in nature than smaller raindrops. Using the Marshall-Palmer
distribution of raindrop size and Rice-Holmberg distribution of rain intensity, I estimate the
environmental relevance based on the simulation results: The transport of microplastic from
the sea surface into the atmosphere by impacting raindrops is possible, especially during
strong winds; but the estimated global flux of less than 1014 particles annually is small
compared to other transport mechanisms like bursting of bubbles on the sea surface, and
small compared to transport processes across other environmental compartments.

The particle concentration of microplastic at the sea surface, and why it is larger than
in bulk, is of key importance for understanding water-air transport. One possibility how
concentration at the surface can be enriched is when particles in bulk attach to rising air
bubbles. I investigate this process in simulation specifically for microplastic, and find that
aged particles are less affected by bubble scavenging compared to pristine particles which
due to their hydrophobic surface better adhere to bubbles.

I also investigate the lateral transport of microplastics at the water-air interface in terres-
trial environments, by simulating the flow profile of a thin water film on a rough plate, and
I am able to explain the transporting behavior of particles on the plate with the microrelief.
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The simulations in this thesis pose a computational workload so large that existing com-
putational fluid dynamics (CFD) software could not handle it in a realistic time frame. Only
with my self-written simulation software FluidX3D – based on the lattice Boltzmann method
(LBM) with Volume-of-Fluid extension, and implemented in OpenCL for graphics process-
ing units (GPUs) – this is feasible, due to the excellent computational efficiency and the
very fast video memory of GPUs. Still the big issue with the LBM remains: the enormous
memory demand that severely limits maximum grid resolution on GPUs. To reduce memory
demand to 1/6 compared to two-grid FP64 implementations, I develop two new methods:

1) A new set of in-place streaming schemes to make the LBM require only a single copy
of the computational grid in memory instead of two. There have already been solutions for
this, like AA-Pattern and Esoteric-Twist, but these have never found widespread adoption
due to several disadvantages. Based on the idea of Esoteric-Twist, I introduce two new
streaming schemes termed Esoteric-Pull and Esoteric-Push that offer the same advantages,
but are much simpler in implementation and are even slightly faster due to a more efficient
memory access pattern.

2) Memory compression of the LBM density distribution functions to 16-bit number
formats by separation of arithmetic precision and memory precision. After finding that FP32
produces the same accuracy as FP64 in all but corner cases with a detailed comparison study
on six systems, I reduce memory precision to 16-bit with several arithmetic optimizations,
and investigate how different floating-point and posit formats perform. With a re-scaled
IEEE-754 FP16S, and a self-designed, more accurate FP16C format, the simulations succeed
with only insignificant reduction in overall accuracy.

I also eliminate the very slow file export of gigantic volumetric datasets to the hard drive,
by allowing to render simulation results directly in the fast video memory of the GPU and
only needing to store image files and processed final simulation results.

The FluidX3D software resulting from my work, published on GitHub, reduces compu-
tation time significantly compared to existing CFD software. Possible applications extend
far beyond my research on microplastics and cover aerospace, traffic, medical applications,
industrial processes and countless areas of research.
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Zusammenfassung

Mikroplastik ist ein Umweltschadstoff mit globaler Ausbreitung. Die mikroskopischen Par-
tikel können durch Wind und Wetter an jeden Ort der Welt gelangen. Der Mensch bringt
immer neues Plastik über die Flüsse in die Ozeane, wo es sich zu Mikroplastik zersetzt. Ein
Teil davon sinkt auf den Meeresgrund, ein Teil verweilt in unterschiedlichen Tiefen, und ein
Teil schwimmt auf der Meeresoberfläche. Ich untersuche wie Mikroplastik von der Wasser-
oberfläche in die Atmosphäre gelangen kann, sodass es als Aerosol vom Wind über große
Distanzen, sogar zurück an Land, transportiert werden kann.

Für den Übergang der Partikel aus dem Wasser in die Luft sind alle Mechanismen
denkbar, bei denen kleine Tröpfchen in die Luft geschleudert werden. NebenWellenbewegung
bei Wind und dem Platzen von Luftblasen an der Oberfläche könnte auch das Einschlagen
von Regentropfen zum Transport beitragen. Letzteren Mechanismus erforsche ich im Detail
mit Computersimulationen.

Die Simulation eines einschlagenden Regentropfens erlaubt die genaue Vermessung von
jedem der hochgeschleuderten Tröpfchen und das Zählen der Partikel darin. Für eine
statistische Erfassung der Tröpfchen und Partikel simuliere ich viele hunderte solcher Ein-
schläge. Die Konzentration der Partikel in den Tröpfchen entspricht nahezu der an der
Wasseroberfläche, was bedeutet, dass das von Partikeln freie Regenwasser zum Großteil
nicht in die Tröpfchen geangt, sondern hauptsächlich Meerwasser. Größere Regentropfen
schleudern deutlich mehr Tröpfchen und Partikel in die Luft, kommen jedoch in der Natur
sehr viel seltener vor als kleine Regentropfen. Mit der Marshall-Palmer Verteilung der
Regentropfengröße und der Rice-Holmberg Verteilung der Regenintensität schätze ich aus
den Simulationsdaten die Umweltrelevanz ab: Der Transport von Mikroplastik von der
Meeresoberfläche in die Atmosphäre durch einschlagende Regentropfen ist möglich, insbeson-
dere bei starkem Wind; jedoch ist die geschätzte globale Menge von jährlich maximal 1014

Partikeln gering verglichen mit anderen Transportprozessen wie dem Platzen von Luftblasen
an der Meeresoberfläche, sowie verglichen mit Transportprozessen in anderen Bereichen der
Umwelt.

Von entscheidender Bedeutung für den Wasser-Luft Transport von Mikroplastik ist die
Partikelkonzentration an der Meeresoberfläche, und warum diese höher ist als die Konzen-
tration in tieferen Schichten. Eine Möglichkeit, wie Partikel an der Oberfläche angereichert
werden können, ist wenn sich diese an aufsteigende Luftblasen anheften. Ich untersuche
diesen Prozess mit Simulationen speziell für Mikroplastik, und stelle fest, dass gealterte Par-
tikel davon weniger betroffen sind als neue Partikel, die durch ihre hydrophobe Oberfläche
eher an Blasen haften bleiben.

Ich untersuche außerdem den lateralen Transport von Mikroplastik an der Wasser-Luft
Grenzfläche in terrestrischen Umgebungen, indem ich das Strömungsprofil eines dünnen
Wasserfilms auf einer rauen Platte simuliere, und kann damit das Transportverhalten von
Partikeln auf der Platte mit dem Mikrorelief erklären.
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Die Simulationen in meiner Arbeit stellen einen enormen Rechenaufwand dar, der
mit bisheriger computational fluid dynamics (CFD) Software nicht in realistischer Zeit
zu bewältigen ist. Erst mit meiner selbst entwickelten Simulationssoftware FluidX3D –
basierend auf der Lattice Boltzmann Methode (LBM) mit Volume-of-Fluid Erweiterung
und implementiert in OpenCL auf Grafikkarten (GPUs) – gelingt die Durchführung dank
herausragender Recheneffizienz und dem sehr schnellen Videospeicher moderner GPUs.
Dennoch bleibt das große Problem der LBM bestehen: der enorme Speicherbedarf, durch
den auf GPUs nicht allzu hohe Gitterauflösung möglich ist. Um den Speicherbedarf
verglichen mit zwei-Gitter FP64 Implementierungen auf etwa 1/6 zu reduzieren, entwickle
ich zwei neue Methoden:

1) Ein neues Schema für in-place streaming, damit die LBM nur eine Kopie des Gitters
im Speicher benötigt anstatt zwei. Hierfür gab es bereits Lösungen wie AA-Pattern
und Esoteric-Twist, die jedoch aufgrund unterschiedlicher Nachteile bisher keine große
Verbreitung gefunden haben. Aufbauend auf der Idee von Esoteric-Twist führe ich
zwei neue Streaming-Schemata names Esoteric-Pull und Esoteric-Push ein, die dieselben
Vorteile bieten, jedoch erheblich einfacher zu implementieren sind und dank effizienterem
Speicher-Zugriffsmuster sogar etwas schneller sind.

2) Speicherkompression für die LBM density distribution functions in 16-bit Zahlenfor-
mate durch Trennung von arithmetischer Genauigkeit und Speichergenauigkeit. Nachdem
ich in einer ausführlichen Vergleichsstudie anhand von sechs Systemen feststelle, dass FP32
bis auf in Ausnahmefällen die selbe Genauigkeit liefert wie FP64, reduziere ich mithilfe
einiger arithmetischer Optimierungen die Speichergenauigkeit bis auf 16-bit, wobei ich unter-
schiedliche Fließkomma- sowie Posit-Formate untersuche. Mit skaliertem IEEE-754 FP16S
und einem selbst entwickelten, genaueren FP16C Zahlenformat gelingen die Simulationen
mit insgesamt keiner signigikanten Reduktion der Genauigkeit.

Zudem eliminiere ich den sehr langsamen Dateiexport riesiger volumetrischer Datensätze
auf die Festplatte, indem ich die Simulationsergebnisse direkt im schnellen Videospeicher der
GPU rendern kann, und nur noch die Bilddateien und Endergebnisse der Datenauswertung
zu speichern brauche.

Die aus meiner Arbeit entstandene FluidX3D Software, veröffentlicht auf GitHub,
verkürzt die Rechenzeit verglichen mit bestehender CFD Software erheblich. Die möglichen
Anwendungen gehen weit über meine Forschung an Mikroplastik hinaus und beinhalten
Luft- und Raumfahrt, Verkehr, Medizin, industrielle Prozesse und zahllose Bereiche der
Grundlagenforschung.
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Chapter 1

Introduction

Microplastics are an environmental pollutant that have spread to even the most remote
places on the globe [1–5]. Being microscopic in size, they have efficient mobility in water
and in the atmosphere as aerosol [1, 2, 5, 6]. Field experiments can detect the local
concentrations in water and air, but how exactly microplastics transition between the
aquatic and the atmospheric compartments is still not well understood. So far water bodies
were considered a sink for microplastics [7–11], but recent observations indicate they can
also act as a source [2, 6]. Once out of the water and in the air, mobility of microplastics is
vastly increased [5] and the particles can even get back on land [6], possibly also reaching
agricultural farmland. Moreover, frequent transition between water and air may have
large effects on particle condition and further decomposition into smaller particles, until
eventually entering the marine food chain as well [12].

In a similar process to the generation of sea salt aerosol – which is known to cause
corrosion to infrastructure near the coastline [13, 14] – various tiny particles can make the
transition from the ocean surface into the atmosphere [15–21], and recent experimental stud-
ies suggest that small microplastic particles are no exception [2, 6, 22–24]. I investigate this
transition process at the water-air interface in microscopic detail using computer simulations,
with the key question: How exactly can microplastics transition from water to air, and what
mechanisms contribute how much?

The transfer can only possibly occur when sea spray is generated and spray droplets
evaporate, leaving contained particles behind as an aerosol. Possible mechanisms are wave
action, bubble bursting, and raindrop impacts. Spray production during wave action is
a process happening across five orders of magnitude spatially, from meter-large waves to
microscopic droplets, and unfortunately is still unfeasible to model in sufficient detail. The
bubble bursting process is more accessible in experiments, studied in [22–24] and by us
in [Pub7]; I only briefly estimate environmental relevance here based on our experimental
findings. My main focus is on the third process, raindrop impacts, in [Pub1].

Particle transport during raindrop impacts represents a complex setup, for which it would
be very difficult to provide sufficient data experimentally. Numerical simulations on the
other hand allow for precise measurement of every single spray droplet, its velocity, and
how many particles it might contain. Although numerical modeling of raindrop impacts
still represents a major challenge, it has become feasible with the state-of-the-art Volume-
of-Fluid lattice Boltzmann method (LBM) [25–37], running on current graphics processing
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Chapter 1. Introduction

unit (GPU) technology, in quantities required for statistical analysis of ejected droplets. The
memory capacity of GPU hardware allows for almost three orders of magnitude resolved
in length scale, meaning is is possible to model an entire raindrop and at the same time
accurately resolve the breakup of the crown rim into microscopic droplets. Subsequent
modeling of their trajectory [38] and evaporation in air [39], depending on wind conditions
[40], will reveal the fate of contained microplastic particles.

A key uncertainty of the water-air transport is the concentration of microplastics in the
sea surface microlayer (SML). Microplastic concentration in the SML seems significantly
enriched compared to bulk concentration [24, 41–43]. Besides buoyancy of polymers with
lower density than water, even higher density particles can float to the surface if an air bubble
sticks to them [44]. Interaction of rising air bubbles with particles – bubble scavenging –
potentially increases water-air transfer rates during subsequent bubble bursting [45] and
other transport mechanisms. In [Pub2], after thoroughly validating the bubble model [46]
in [Pub6], I aim to find out how bubble scavenging works for microplastics, depending on
their surface condition.

In a collaboration within the SFB 1357 in [Pub5], I also investigate lateral transport
of microplastics at the water-air interface in terrestrial environments, when a film of water
transports particles across a rough plate.

With an eye on future research, the second part of this thesis will focus on optimizations
to enhance the capabilities of the employed LBM model significantly. The LBM on GPUs
[28, 29, 31, 46–100] already is a very capable simulation tool, but the limited memory
capacity of GPUs and the large memory demand of the LBM pose a major constraint on
maximum grid resolution. To vastly reduce memory demand, two novel approaches are
developed: First, in [Pub4] the optimal in-place streaming schemes are identified, building
upon and improving existing solutions. In-place streaming allows to have only one copy of
the density distribution functions (DDFs) in memory rather than two, which almost cuts
memory demand in half. Next, in [Pub3] I take a very close look at what range of numbers is
actually used by the DDFs, and then design custom 16-bit floating-point and posit formats
with conversion algorithms, to compress the DDFs to half their size in memory, while only
removing bits that carry no information or numerical noise.

Finally, in [Pub8] I eliminate the need for exporting large volumetric files to the hard
drive by exploring combined simulation and rendering in OpenCL.
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Chapter 2

Synopsis Part A: Application Studies

How can microplastics transition from the ocean surface into the atmosphere, and how
environmentally relevant is this process? Experimental studies so far have pioneered in the
pursuit to answer this question, measuring the concentration of microplastics at the ocean
surface at various locations [9, 101–104], and even finding microplastics in the air at sea [2]
and at the coastline when the wind originates from the marine side [6]. Especially the latter
findings suggest that the oceans are not entirely a sink for microplastics and that at least
one, possibly several water-air transfer mechanisms must be present. However there is no
detailed understanding yet about what these processes are and how the water-air transfer of
microplastics works exactly.

To figure out what is going on in the big picture, investigations of the different possible
transport mechanisms on a microscopic scale are needed. Here, numerical modeling can
greatly substitute experiments by providing much more detailed insights in these processes,
allowing to see inside the flow field at all locations at once, and to slow down, freeze and
even reverse time to see where exactly the ejected particles originate.

The current state-of-the-art simulation tools [28, 29, 31] allow me to investigate the
ejection of marine microplastics during impacting raindrops, a mechanism that is particularly
difficult to study in experiments. In the numerical model, raindrop impacts require at least
between two and three orders of magnitude in spatial resolution (≈ 4 cm to ≈ 86µm), which
is just about feasible with a sharp interface model.

Microplastic transfer during bursting bubbles is better accessible in laboratory exper-
iments [22–24]. Bursting bubbles can create spray droplets in two different ways: Film
droplets for larger bubbles (≈ 1 cm diameter), where a thin water film (≈ 10µm) [18] tears
apart, and jet droplets emerging when smaller bubbles burst. Simulation of the film tearing
is still unfeasible, as the aspect ratio of film size divided by film thickness is too large to be
sufficiently resolved. Simulation of the jet formation is possible, but particle count in the jet
droplet cannot be predicted without an additional model for lateral particle movement on
the water surface [45]. I focus more on what happens when bubbles rise in the water column:
rising bubbles can pick up suspended particles on their way up – so-called bubble-scavenging
– and enrich particle concentration in the sea surface microlayer (SML) compared to bulk
[24, 41–43], to possibly vastly enhance the water-air transport.

Lastly, I use numerical modeling to close a gap in understanding terrestrial microplastic
transport at the water-air interface in the lateral direction: when a film of water washes
particles off a rough plate, peculiarly some of the particles don’t move at all while others are
very efficiently transported by the water flow.
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Chapter 2. Synopsis Part A: Application Studies

2.1 Ejection of Marine Microplastics by Raindrops

2.1.1 Motivation

Raindrops impacting a water surface generate myriads of spray droplets. If the water surface
is contaminated with microplastics, can they enter these spray droplets and transition into
the atmosphere as an aerosol? What is the environmental relevance of this mechanism?
In [Pub1] I answer these questions using computer simulations, supported by experiments.
While experiments can only give limited insights into the underlying mechanisms during the
raindrop impact, as it is very difficult to obtain high-speed volumetric tracing of both spray
droplets and particles, my simulations provide much more detailed information, like volume,
velocity and particle content of every single spray droplet. This allows secondary analysis of
the trajectories of spray droplets in the air, and even estimation of the global relevance of
the mechanism for spreading microplastic particles in the environment.

However, numerical simulations of impacting raindrops still present a major technical
challenge, requiring immense amounts of computation to resolve close to three orders of
magnitude spatially. Further, for statistical analysis of the spray droplets, a single sim-
ulation is not sufficient, and hundreds of simulated impacts are required. With existing
computational fluid dynamics (CFD) software, this task is not feasible, as estimated com-
pute time exceeds several years even with low resolution models, and with the most detailed
models even exceeds a human lifetime [105]. Fortunately, the lattice Boltzmann method,
extended by a state-of the-art Volume-of-Fluid model, is efficient enough when parallelized
on graphics processing units (GPUs), such as in the FluidX3D software [28, 29, 31], to make
the computational workload manageable at sufficiently large grid resolution.

2.1.2 Methods

To simulate single raindrop impact events, I use the lattice Boltzmann method (LBM) [25–
27] as Navier-Stokes solver for the fluid phase. The Volume-of-Fluid (VoF) model [28, 32–
37] extension handles a sharp interface to the gas phase as well as surface tension with
piecewise linear interface construction [29, 106]. The immersed-boundary method (IBM)
[28, 107, 108] is used to model microplastic particles, whereby one microplastic particle
corresponds to one IBM particle with a hydrodynamic diameter of the simulation lattice
constant (43-151µm). These methods are implemented as part of the FluidX3D software
[28, 29, 31]. Upon touching the ceiling of the simulation domain, individual spray droplets
are identified using a Hoshen-Kopelman algorithm [46, 109], and their velocity, volume and
particle content is measured, before being removed from simulation.

Since it is a new software, the simulation model is rigorously validated in the Supporting
Information (SI) of [Pub1], on various free surface systems: Plateau-Rayleigh instability
[110], oblique droplet impact [111, 112], drop impact on a shallow pool [113, 114], and
finally direct comparison to experimental high-speed images for a 4.1mm diameter raindrop
impact [115] (figure 2.1). Laboratory experiments are also used to validate numerical results.

As a main model system, I choose the 4mm diameter raindrop impact at 8.8 m
s
terminal

velocity [116–118]. I also examine different raindrop diameters between 1-7mm and oblique
impacts up to 40◦. The first 10 milliseconds after the impact are simulated, where simulations
show good agreement with experimental high-speed images [115], to capture especially the
initial small and fast spray droplets relevant to atmospheric pickup.
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Chapter 2. Synopsis Part A: Application Studies

Figure 2.1: The VoF-LBM simulation model compared to the experiment from Murphy et
al. [115], figure 3 (a)-(d), at times t ∈ {−2, 1, 3, 8}ms.

To get sufficient statistics, for each parameter set, the impact simulation is repeated 100
times. The simulations generate a list of all generated spray droplets with their properties
(volume, velocity, number of contained particles, and time of detection). This data is used
for secondary analysis to numerically simulate droplet trajectories in air – considering drag
[38] and evaporation [39] – under different wind conditions [40], to determine maximum
altitude for comparison with experiments and airborne time for determining the fate of the
particles.

2.1.3 Key Results

I observe that microplastic particles move inside of the spray droplets upon raindrop impact
(figure 2.2). The particle concentration in spray droplets is approximately 90% of the con-
centration in the reservoir, which means that the water of the raindrop itself, which initially
is devoid of particles, ends up in the reservoir, and predominantly the contaminated reservoir
water is ejected as spray. Because it is a simulation, I can trace back time after detecting the
particles in the spray droplets, to see where exactly they originate in the reservoir: ejected
particles initially are located in a flat, ring-shaped volume in the sea surface microlayer
around the impact site. No particles from a depth larger than the radius of the raindrop are
ejected (figure 2.2).

Repeating the simulation for the 4mm diameter raindrop 100 times and measuring the
spray droplets each time, I obtain a clear picture of their properties (figure 2.3). The first
droplets to separate from the crown rim are small and fast, but contain only few microplastic
particles. The concentration of microplastic particles in spray droplets does not significantly
differ depending on droplet diameter, so the number of contained particles scales with droplet
volume, meaning larger droplets carry the vast majority of particles. These larger droplets
separate later and at lower velocity.

Simulating different raindrop diameters, from 1-7mm in diameter, each simulated 100
times, I take a look at the spray droplet distribution and where the particles are (figure 2.4).
Small 1mm diameter raindrops do not produce any crown spray droplets upon impact. The
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Figure 2.2: The 4mm diameter raindrop impact simulation with microplastic particles.
Time stamps (left to right) are t ∈ {0.0, 1.0, 2.5, 5.0, 7.5, 10.0}ms. In the figures for t ∈
{0.0, 5.0}ms, the surface is cut open to visualize particles. Particles that are later captured
in the spray droplets are drawn in red.
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Figure 2.3: Diameter and maximum altitude of droplets detected within 10ms after impact
of 100 4mm diameter raindrops. The size of the circles indicates the number of microplastic
particles contained in each droplet. The lines indicate constant initial vertical velocity.
Tiniest droplets below 0.23mm diameter (gray area) cannot be resolved in the simulation.
The color represents the approximate time the droplet separated from the crown rim. The
maximum altitude of ejected droplets decreases over time.

size distribution of spray droplets for the smaller 2-5mm raindrops has a double peak for
2nd (smaller) and 3rd (larger) generation droplets [119] that transitions into a continuous
distribution for larger 6-7mm raindrops. The microplastic particles predominantly enter the
larger spray droplets as they carry disproportionately more fluid volume. Larger raindrops
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generate a larger number of spray droplets and also eject more particles. Tiniest droplets
cannot be resolved in the simulations, but since these do not carry significant amounts of
particles, they are not relevant for this study.

I also simulate oblique impacts, as the ocean surface is expected to be wavy in windy
conditions. For larger impact inclination, the particle concentration in spray droplets slightly
decreases, as a larger fraction of the clean raindrop water is redirected into the then asym-
metric crown.
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Figure 2.4: Size distribution of ejected droplets (left) and distribution of particles in ejected
droplets (right) depending on droplet size for various raindrop diameters.

Knowing the properties of spray droplets, I investigate their fate in the atmosphere. For
each of the measured spray droplets in the long list with their volume, velocity and particle
count, the 3D trajectory through air is computed for several upwind velocities numerically,
with Runge-Kutta-4 integration of the sophisticated drag model by Feng [38] together with
the evaporation model by Holterman [39]. As a result, I get the maximum altitude of the
trajectory as well as the airborne time.

The values for the maximum altitude are used to compute how many spray droplets
will reach a glass plate mounted at a certain altitude over the reservoir surface to capture
droplets. This is compared with experiments. While the number of droplets agrees very
well with experiments (1.3x larger in experiments), the number of particles is found to be
2.5x larger in the experiment. This might be due to the pristine polystyrol particles in the
experiment tending to stick to the water surface, so that a larger concentration is present in
spray droplets.

Figure 2.5: With 1 m
s
vertical updraft velocity, all droplets smaller than 0.26mm diameter

have diverging airborne time (capped at finite values so that the data points are visible in the
diagram). The black curve represents the lifetime (time until full evaporation) of droplets
depending on diameter. If the airborne time is larger than the lifetime, the droplets are
considered picked up by the atmosphere.
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The airborne time for all droplets is less than 1 second without wind. Only when updraft
is present, the smallest droplets have diverging airborne time and can fully evaporate (figure
2.5). From radar measurements it is known that the size distribution of raindrops follows an
exponential distribution, with small raindrops being much more frequent than large ones, the
Marshall-Palmer law [120, 121]. This raindrop size distribution depends on the rain rate:
for more intense rain, the fraction of larger raindrops increases. Based on these models,
and assuming an average microplastic concentration in the SML of 2.9 particles per liter [9,
101], I first estimate the maximum transition rate of microplastic particles during local rain
events as a function of rain rate (figure 2.6). The smallest 1mm diameter raindrops do not
contribute as they don’t produce spray droplets. The 2mm diameter raindrops generate only
few spray droplets, but they outnumber all other sizes by far, so have the largest contribution
to water-air transfer overall. Larger raindrops make up only an insignificant fraction, even
at large rain rate.
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Figure 2.6: Contribution of different raindrop diameters to estimated number of microplastic
particles transitioning from the oceans into the atmosphere per km2 per hour depending on
rain rate for 1 m

s
vertical updraft velocity.

The rain rate itself over time follows the Rice-Holmberg model for the rain rate distri-
bution [122], stating that light rain events are exponentially more frequent than heavy rain
events. Based on the known annual global amount of precipitation [123], our simulations for
various different raindrop diameters, an estimated average concentration of 2.9 particles per
liter in the SML, and an upper limit estimate for typical updraft velocity of 0.75 m

s
[40], I

am able to give at least a very coarse estimate of 1014 for the upper bound of the number
of microplastic particles transitioning from global oceans into the atmosphere annually dur-
ing impacting raindrops. This estimate contains a number of vast simplifications and big
uncertainties, such as the particle concentration in the SML. For the latter, satellite radar
measurements [124] and simulations of particle advection in ocean currents [11, 125, 126]
could provide better locally resolved estimates in the future.

I conclude that raindrop impacts as transport mechanism for microplastics from water to
air is possible, especially in storm events. This underlines the large mobility of microplastic
particles in the environment. However our upper limit estimate for the global annual number
indicates that the environmental relevance of this particular mechanism is low compared to
other mobility pathways [5, 24].
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2.2 Vertical Transport of Microplastics by

Rising Bubbles

2.2.1 Motivation

With wave motion on the ocean surface, air bubbles are constantly created, rising back to
the surface and bursting. Depending on bubble diameter, the bursting process can release
a spray of droplets either from the tearing of a thin film, or from a fast jet upon collapse of
the cavity [127–135]. Microplastic transport during the bubble bursting process is already
well covered by experiments [22–24], as well as by our own work in [Pub7]. Based on our
experimental results, and the findings of [Pub1] that only the smallest droplets can fully
evaporate, I estimate the microplastic transfer rate by bursting bubbles to be 10-1000 times
larger than by impacting raindrops, which is still in line with other estimates [24]. While
modeling the bursting of small bubbles with VoF-LBM produces correct results for the jet
droplet diameter and velocity (figure 2.7), the model cannot handle the additional physics
of particles moving laterally on the water surface when the capillary wave travels down the
cavity, so numerical results on the particle count do not match experimental findings of [23,
24, 136] and [Pub7], where the particle concentration in jet droplets is observed significantly
enriched.

Figure 2.7: FluidX3D VoF-LBM simulation of a bursting 4mm diameter bubble in water,
shown at times t ∈ {0, 1, 2, ... 7}ms. Starting from the rim, a capillary wave accelerates
down the bubble cavity and coalesces into an upward jet. A single droplet with a diameter
of 535µm and velocity of 1.24 m

s
separates from the top of the jet, which is in line with

experimental measurements [127, 130, 137].

In [Pub2] I thus focus on the second effect that bubbles have: they can possibly enrich
the microplastic concentration in the sea surface microlayer through bubble scavenging,
enhancing water-air transport not only for subsequent bubble bursts [45, 136] but also other
water-air transport mechanisms, even if the density of the particles is larger than the density
of water [44].

2.2.2 Methods

Rising bubbles are simulated with the Volume-of-Fluid free surface lattice Boltzmann method
(VoF-LBM/FSLBM), extended to track individual bubbles, and merger and splitting events
for multiple bubbles [46]. The FSLBM model is validated and compared with the alternative
Allen-Cahn phase-field LBM approach in [Pub6]; both models show good agreement in
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simulating rising bubbles in various parameter regimes, yet the FSLBM simulations require
significantly less memory and are thus preferred.

As a model system, I simulate the rising of a 4mm diameter air bubble in water, for a
distance of 12 cm. The simulation box has periodic boundary conditions in lateral directions.
Microplastic particles are modeled with the immersed-boundary method (IBM) [28, 107,
108] extension, where each microplastic particle is modeled as one IBM particle with a
hydrodynamic diameter of the simulation lattice constant (54µm). To eliminate another
possible complication, particles are modeled as neutrally buoyant. Particles in the model
also do not interact with each other, so a very large concentration of 100000 particles per cm3

is simulated and only two simulations are performed for particles sticking and not sticking to
the water interface, modeled with short-ranged attracting/repelling hard potentials on the
bubble surface. Particle positions are compared at the beginning and end of the simulation,
to obtain the vertical travel distance of each particle.

2.2.3 Key Results

In accordance with experimental observations [138], the simulated bubble shows roughly
spherical shape and wobbling motion. The simulated rising velocity at 136 mm

s
is lower than

experimental measurements at 200 mm
s

[139]. Figure 2.8 shows the bubble at various points
in time, dragging an upward plume of particles behind it, a clear sign of deviations from
Stokes flow as expected at Re = 545. Only a plane of particles, colored by initial vertical
position, is shown, and the bubble rises in a spiraling motion, going behind and then back
in front of the visualized plane.

0ms 116ms 229ms 334ms 443ms 548ms 670ms 774ms 880ms

Figure 2.8: Simulation of the rising bubble. Microplastic particles are colored by their initial
vertical position.

For all particles, I track the vertical travel distance relative to the vertical travel distance
of the bubble. The data is visualized in histograms in figure 2.9. Depending on if particles
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do or do not stick to the bubble surface, the histograms look vastly different, yet both are
asymmetrical due to non-laminar flow. With particles not sticking to the bubble, some
particles move considerable vertical distance as part of the upward plume. Particles sticking
to the bubble show the same behavior, but additionally there is a plateau in the histogram,
indicating a column of fluid over the bubble in which the bubble picks up any particle and
transports it all the way to the top. Based on the plateau level, I calculate the cross-section
of this vertical column of fluid as 23% of the cross-section area of the bubble at the finest
simulated grid resolution (lattice constant of 54µm). For coarser grid resolution, the modeled
hard potential where the bubble captures particles (1 lattice constant wide) increases relative
to the bubble diameter, slightly enlarging the resulting cross-section.
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Figure 2.9: If particles do not stick to the water interface (left), the distribution of vertical
travel distance of particles is already asymmetric due to deviations from laminar flow in the
proximity of the bubble. While most particles do not move (notice the logarithmic scaling),
some particles are entrained and travel upwards considerable distances. If particles stick to
the water interface (right), the bubble picks up all particles in a vertical column above and
transports them to the top, visible as plateau in the distribution.

The weighted sum over all histogram bins provides the net movement of particles once
the ascending volume of the bubble, which itself is devoid of particles, is subtracted. When
the particles do not stick to the bubble, the average particle travels upward 0.02% of the
distance the bubble traverses. When particles stick to the bubble, this significantly increases
to 0.39%. Pristine particles are more hydrophobic than weathered particles [44, 140–142]
and are expected to stick more to bubbles, significantly enhancing vertical transport during
bubble scavenging.

2.3 Horizontal Transport of Microplastics on

Rough Surfaces

2.3.1 Motivation

Microplastics do not only contaminate marine systems but also terrestrial systems, where
they can be transported laterally at the water-air interface by a thin water film on a solid
surface. Contamination of agricultural land seems particularly troublesome. Still it’s not
clear how exactly microplastic particles can move on land surfaces. In [Pub5] we study
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the transport of microplastics by a thin water film on a rough plate, a model resembling
microplastics being washed across surfaces like asphalt by storm water runoff.

Tracking PMMA particles (around 1-2mm in diameter) with an sCMOS camera in the
experiment provides a good picture of transport behavior on the larger scale, but lacks
understanding of why some particles are washed down the rough plate while others stay
in place. My computer simulations of the flow pattern on a small scale close this gap in
understanding the transport mechanism.

2.3.2 Methods

The water flow over the inclined rough surface is modeled with the Volume-of-Fluid [28, 34,
37] lattice Boltzmann [25, 26] implementation FluidX3D [28, 29, 31]. A 1 cm2 section of the
plate is simulated and the rough surface is modeled with 2D periodic Perlin noise [143], with
an average grain size of 0.4mm and average water film thickness of 0.3mm, to match the
experimental flow rate of 7.2 L

h
.

Figure 2.10: Velocity profile on a 1 cm × 1 cm section of the microrelief illustrated with
colored passive tracer particles (left). The flow direction is top to bottom. The stationary
flow pattern forms channels of increased velocity around teardrop shaped regions of decreased
velocity behind bumps in the microrelief. On the bottom left, a side view of the microrelief
and water layer above is shown, and on the right the microrelief elevation is illustrated.

2.3.3 Key Results

Experimental observations show that some of the particles are quickly washed down the
inclined rough plate, some move only small distances, and some stay in place. The simulated
flow profile over the microrelief (figure 2.10) reveals that a stationary pattern of preferential
flow channels is formed and in some spots flow is inhibited. This explains particle movement:
particles located in the flow channels are easily washed down the plate, while particles outside
of these channels lock into the microrelief and the low hydrodynamic forces in these spots
cannot overcome friction forces.
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Chapter 3

Synopsis Part B: Enhancing the
Lattice Boltzmann Method for
Future Studies

The application studies in the first part of this thesis have proven the lattice Boltzmann
method (LBM) on graphics processing units (GPUs) [28, 29, 31, 46–100] to be a very capable
tool for simulating fluid flow, yet also emphasized the limitations on grid resolution imposed
by its large memory demand. Although their much higher memory bandwidth [28, 48–
55, 58–66, 74–87, 100, 144–149] and efficiency compared to CPUs offers significantly faster
performance, the limited memory capacity of GPUs still poses a major constraint [99] for
grid resolution in the LBM, despite the exponential trend in hardware development over the
past decades (Moore’s law). Larger grid resolution means that smaller details in the flow
field can be resolved while at the same time a much larger system is captured in its entirety.
The memory demand has always been one of the biggest disadvantages of the LBM compared
to other fluid solvers such as the finite volume method, although compute performance is
far superior. To fix the problem of memory demand, I develop two novel approaches:

1. A new set of in-place streaming schemes in [Pub4] that are much simpler than previous
solutions and offer ideal performance characteristics.

2. A framework for 16-bit memory compression in [Pub3] by decoupling arithmetic pre-
cision and memory precision.

Together, these two methods vastly reduce memory demand of the LBM, to 55 Bytes/node
(D3Q19) – 1/6 compared to two-grid FP64 implementations at 344 Bytes/node – while not
significantly impacting accuracy. Today’s datacenter GPUs offer up to 64GB (AMD MI200),
80GB (Nvidia A100/H100) and 128GB (Intel Ponte Vecchio) memory capacity – FluidX3D
runs on all of them via OpenCL [150]. At only 55 Bytes/node, their memory capacity now
allows for maximum single-GPU resolutions of 10683, 11483, and 13443 respectively.

However with a very efficient LBM GPU implementation, overall simulation performance
can still be poor, for a maybe unexpected reason: file export. Writing large volumetric data
files to the hard disk for later analysis or rendering can quickly become the major part of
overall compute time. In [Pub8] I explore an alternative: rendering the data directly while
it already is in fast GPU memory, and avoiding file export altogether.

These upgrades are implemented as part of the re-written FluidX3D software, and the
source code is published on GitHub [150].
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3.1 Esoteric Pull and Esoteric Push

In-Place Streaming

3.1.1 Motivation

The parallel implementation of the LBM on GPUs means that the density distribution
functions (DDFs) on the computational grid are accessed and modified for each grid point
simultaneously. Access conflicts must not occur. Commonly this is solved simply by having
two copies of the computational grid in memory, and alternatingly only reading from one
and writing to the other [28, 29, 31, 46, 57–85].

Two copies of the grid mean double the memory demand. There has been intricate
solutions to avoid duplicate grids and still enable parallel conflict-free data access, namely
AA-Pattern [48], Shift-and-Swap-Streaming [49] and Esoteric-Twist [47], but these have not
found too much adoption in codes [51–53, 56] due to their complexity.

The Esoteric-Twist scheme ingeniously introduces implicit bounce-back, meaning bounce-
back boundaries emerge from the streaming directly without needing explicit implementa-
tion, leading to a reduction in bandwidth as neighbor flags do not have to be checked during
streaming. This side-effect almost entirely compensates the bandwidth penalty resulting
from more misaligned writes of the DDFs.

In [Pub4] I introduce two new streaming schemes termed Esoteric-Pull and Esoteric-
Push, building upon the idea of Esoteric-Twist, but changing the access pattern such that
index calculation is trivial with the common sorting of streaming directions in the velocity set,
where opposing directions are accessible with ”+1”/”-1” in the direction index, as introduced
in [28]. This way, streaming directions always correspond to the directions of neighboring grid
points, which is not the case for Esoteric-Twist, and the implementation is vastly simplified.

Underlining the demand for simpler in-place streaming algorithms, independently and in
parallel to [Pub4], another different in-place scheme termed one-step index (OSI) has been
found in [151] that utilizes mainly misaligned memory access.

3.1.2 Methods

Following the idea of Esoteric-Twist, my new Esoteric-Pull and Esoteric-Push in-place
streaming schemes do the first part of streaming at the end of one stream-collide kernel
and the second part at the beginning of the next to avoid data access conflicts on parallel
hardware. The access pattern however is chosen differently such that direct addressing is now
possible, with the directional index always corresponding to the direction of the streaming
neighbor (see figure 3.1). This makes the implementation very straight-forward (see listings
3.1 and 3.2).

Of great relevance is also how well in-place streaming is compatible with LBM extensions,
particularly free surface LBM (FSLBM). Therefore the existing FSLBM implementation [28]
is modified, and on top the flag bits are optimized such that now only 3 bits are required
per grid point for FSLBM instead of the previous 5.
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Figure 3.1: Esoteric-Pull (left) and Esoteric-Push (right) in-place streaming schemes.

1 void load_f ( const uint n, float ∗ fhn , const global fpxx∗ fi , const uint∗ j, const ulong t) {
2 fhn [0] = load(fi , index_f (n, 0u)); // Esoteric -Pull
3 for(uint i=1u; i< def_velocity_set ; i+=2u) {
4 fhn[i ] = load(fi , index_f (n , t%2 ul ? i : i+1u));
5 fhn[i+1u] = load(fi , index_f (j[i], t%2 ul ? i+1u : i ));
6 }
7 }
8 void store_f ( const uint n, const float ∗ fhn , global fpxx∗ fi , const uint∗ j, const ulong t) {
9 store (fi , index_f (n, 0u), fhn [0]); // Esoteric -Pull

10 for(uint i=1u; i< def_velocity_set ; i+=2u) {
11 store (fi , index_f (j[i], t%2 ul ? i+1u : i ), fhn[i ]);
12 store (fi , index_f (n , t%2 ul ? i : i+1u), fhn[i+1u]);
13 }
14 }

Listing 3.1: Esoteric-Pull implementation in OpenCL C.

1 void load_f ( const uint n, float ∗ fhn , const global fpxx∗ fi , const uint∗ j, const ulong t) {
2 fhn [0] = load(fi , index_f (n, 0u)); // Esoteric -Push
3 for(uint i=1u; i< def_velocity_set ; i+=2u) {
4 fhn[i ] = load(fi , index_f (j[i+1u], t%2 ul ? i+1u : i ));
5 fhn[i+1u] = load(fi , index_f (n , t%2 ul ? i : i+1u));
6 }
7 }
8 void store_f ( const uint n, const float ∗ fhn , global fpxx∗ fi , const uint∗ j, const ulong t) {
9 store (fi , index_f (n, 0u), fhn [0]); // Esoteric -Push

10 for(uint i=1u; i< def_velocity_set ; i+=2u) {
11 store (fi , index_f (n , t%2 ul ? i : i+1u), fhn[i ]);
12 store (fi , index_f (j[i+1u], t%2 ul ? i+1u : i ), fhn[i+1u]);
13 }
14 }

Listing 3.2: Esoteric-Push implementation in OpenCL C.

3.1.3 Key Results

Like other in-place streaming schemes, Esoteric-Pull/Push cut memory demand of the LBM
almost in half. In the same way as with the Esoteric-Twist scheme, bandwidth is reduced
with implicit bounce-back. However misaligned writes are minimized, slightly increasing
efficiency over Esoteric-Twist. Overall, performance is mostly unchanged compared to the
One-Step-Pull two-grid implementation, and on CPUs performance even is significantly in-
creased (see figure 3.2).

For the FSLBM, in-place streaming requires a 4th kernel to compute the mass transfer
across the grid, that now cannot be integrated into the stream-collide kernel anymore. This
requires more memory access, reducing FSLBM performance by about 20%. The savings in
memory demand, and thus larger possible grid resolution, however are much more important
here than the moderate performance reduction.
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Overall, the Esoteric-Pull/Push are the simplest possible solution to in-place streaming
and at the same time outperform previous solutions. Implementation is even simpler than
two-grid schemes as neighboring flags do not have to be checked during streaming anymore.
These advantages should finally enable widespread adoption of in-place streaming in LBM
implementations.
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Figure 3.2: Performance of Esoteric-Pull with D3Q19 SRT on different hardware in the
FluidX3D OpenCL implementation, in million lattice updates per second (MLUPs/s). Per-
formance comparison with the One-Step-Pull streaming scheme [58] shows only insignificant
differences on most dedicated GPUs, but a large speedup on integrated GPUs and CPUs.
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3.2 Accuracy and Performance of the Lattice Boltz-

mann Method with 64-bit, 32-bit, and Customized

16-bit Number Formats

3.2.1 Motivation

Due to their excellent performance with vectorizable algorithms, GPUs are becoming the
platform of choice for LBM simulations [28–31, 46–57, 59–100]. Their limited memory capac-
ity however is in conflict with the large memory demand of the LBM. A more memory-efficient
in-place streaming implementation alone is not enough to fit the largest computational grids
in the limited memory of a GPU, and additional ways to reduce memory demand are desired.
The density distribution functions (DDFs) of the LBM make up most of its memory demand,
but are not direct observables, in contrast to velocity and density. If the DDFs alone were
compressed from FP32 to a 16-bit format in memory, the overall memory demand of the
LBM could be almost cut in half.

However so far it was entirely unclear what effect the choice of floating-point format has
on the accuracy of LBM simulations, with only few studies shedding some light on comparing
FP64 and FP32 [53, 63, 78, 84, 100, 152]. Since GPUs are vastly more efficient with lower
precision FP32, a persistent discussion about the choice of precision has been present [48,
50, 52, 53, 59, 61, 63, 65, 66, 74–78, 84, 85, 96–98, 100, 145, 146, 153]. A full comparison
study about the impact of floating-point precision on LBM accuracy is needed. I provide
this comparison in [Pub3]. With feasibility of lower precision assessed, I then propose to
reduce memory precision even further to 16-bit.

3.2.2 Methods

I first decouple arithmetic precision and memory precision [154, 155] and introduce the
notation FPxx/FPyy, where FPxx is the arithmetic precision format and FPyy is the memory
precision format. Regarding arithmetic precision formats, the vast majority of GPUs support
only FP32 at full performance and FP64 with much reduced performance, but FP16 is not
widely supported. For memory precision on the other hand, any customized or even exotic
number format can be used on any hardware, as long as it is 64-bit, 32-bit or 16-bit in size,
and as long as conversion algorithms from/to the arithmetic precision format are provided.

To make best use of the available bits for the memory precision format, I first identify the
range of numbers that the LBM is working with: the DDFs are clustered around the lattice
weights of the velocity set in use. By subtracting the lattice weights in the equilibrium DDF
equation

f eq-shifted
i (ρ, u⃗) := f eq

i (ρ, u⃗)− wi = (3.1)

= wi ρ ·
(
(u⃗ ◦ c⃗i)

2

2 c4
− u⃗ ◦ u⃗

2 c2
+

u⃗ ◦ c⃗i
c2

)
+ wi (ρ− 1) (3.2)

and adding them again in the density summation

ρ =
∑

i

(
f shifted
i + wi

)
=

(∑

i

f shifted
i

)
+ 1 (3.3)
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I can work with these shifted DDFs throughout LBM [65, 100, 149, 152, 156], such that
the numeric values are now all centered around 0, where floating-point accuracy is best.
Moreover, I identify a number range of ±2 to be sufficient.

Knowing the number range, I tailor customized 16-bit number formats to this specific
application (see figure 3.3). IEEE-754 [157–160] FP16 has large unused range, but by pre-
multiplication of 215 its range is shifted so that smaller numbers can be represented instead
(FP16S). For halved truncation error at the cost of decreased range towards small numbers,
I designed a customized FP16C format, moving 1 bit from the exponent into the mantissa;
however now manual conversion in software is required, for which I provide ultrafast, branch-
less algorithms. A promising alternative to floating-point is the posit format [161], of which
I investigate three variants (P160S, P161S, P162C), all of which require custom conversion
algorithms that I also provide. 16-bit fixed-point is insufficient for the LBM.
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Figure 3.3: Accuracy characteristics of proposed number formats for memory precision.
Floating-point reselbles a roofline, posit a pyramid and fixed-point a slope.

Six setups are studied to examine LBM accuracy:

� Poiseuille flow through a cylinder [162]

� Taylor-Green vortex energy dissipation [152, 163]

� Karman vortices [164] from flow around a cylinder

� lid-driven cavity [60, 61, 64, 72, 79, 84, 165–170]

� deformation of a microcapsule in shear flow [171–173]

� microplastic particle transport during a raindrop impact [68]

3.2.3 Key Results

With the Posieuille flow setup I probe a large range of LBM parameters in kinematic viscosity,
center velocity and channel radius (figure 3.4). In all but corner cases, FP32 for both
arithmetic and memory precision is as accurate as FP64. 16-bit formats for memory precision
are equally accurate for large velocities in LBM units, but can fall short at very low velocity
and very low volume force. The customized FP16C format shows overall best results, only
outperformed by P161S posit in some cases. DDF-shifting increases accuracy and is essential
for all 16-bit formats.
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Figure 3.4: Error of Poiseuille flow through a cylinder (D3Q19 SRT LBM) for varying center
velocity umax at constant Reynolds number Re ∈ {0.1, 1, 10, 100} and constant channel radius
(a) R = 31 and (b) R = 63. The dashed curves represent corresponding simulations without
DDF-shifting. The vertical lines indicate the LBM relaxation time τ = 1.

The Taylor-Green vortex setup [152, 163] shows exactly where each precision level breaks
down during when energy dissipates in the system and flow velocity decreases (figure 3.5).
Initially the simulated kinetic energy for all precision levels follows the analytic exponen-
tial decay. Once velocity becomes too small however, the energy cannot decrease further
and plateaus. The plateau is located approximately at the floating-point round-off error ϵ
squared. Again, DDF-shifting is essential for accurate results.
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Figure 3.5: Relative kinetic energy E(t)/E0 of a D2Q9 SRT simulation of Taylor-Green
vortices compared to the analytic exponential decay. Dashed lines represent corresponding
simulations without DDF-shifting.

The Karman vortex street setup [164] for flow around a cylinder in 2D provides insights
in the behavior at large and small vorticity magnitude for the different precision levels.
With DDF-shifting implemented, all precision levels produce physically accurate results with
unnoticeable phase-shift even after 50 vortex cycles (figure 3.6). In domains of very low
vorticity magnitude, the 16-bit formats show numerical noise. This is expected, as vorticity
is computed as a finite difference of velocity, and such fine granularity in velocity cannot be
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resolved anymore. The customized FP16C format with more accurate mantissa than FP16S
mitigates the noise. Without DDF-shifting, there is significant phase-lag and much more
noise for the 16-bit formats.

FP64/FP64 FP64/FP32 FP32/FP32 FP32/FP16 FP32/FP16S FP32/FP16C FP32/P160S FP32/P161S FP32/P162C

Figure 3.6: Vorticity in the Karman vortex setup with DDF-shifting.

The lid-driven cavity [60, 61, 64, 72, 79, 84, 165–170] shows no significant discrepancies
between all precision levels and is in very good agreement with results from Delbosc et al.
[61].

The microcapsule in shear flow setup [171–173] appears sensitive to memory precision
(figure 3.7). Without DDF-shifting, the 16-bit simulations all show nonphysical behavior.
With DDF-shifting, only FP32/FP16C stays close to ground truth. FP64 and FP32 appear
identical.
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The raindrop setup [68] shows no significant differences between FP32 and 16-bit memory
precision, neither qualitatively (figure 3.8) nor quantitatively with the data on microplastic
particles in spray droplets.

Although the main purpose of reduced memory precision is to reduce memory demand
and enable larger grid resolution, as an additional benefit, bandwidth during the LBM
streaming step is also almost cut in half when going from FP32 to 16-bit, so performance
is almost doubled. Looking at hardware benchmarks (figure 3.9), I find that FP64 arith-
metic only performs efficiently on the very few GPUs with high FP64:FP32 compute ratio.
FP32/FP32 performs very efficiently on all GPUs. FP32/FP16S is close to the expected
80% theoretical speedup. The more accurate FP32/FP16C as well as posit formats are gen-
erally a bit less efficient, because the conversion is not supported in hardware and takes 51
arithmetic operations per number.
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FP32/FP32 FP32/FP16S FP32/FP16C FP32/P161S

Figure 3.8: A 4mm diameter raindrop impacting a deep pool at 8.8 m
s
terminal velocity,

illustrated at times t ∈ {0, 1, 2, 3, 4, 5}ms after impact as used in [68].
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Figure 3.9: Performance of FluidX3D with D3Q19 SRT on different hardware, with the com-
mon One-Step-Pull streaming implementation. MLUPs/s stands for million lattice (point)
updates per second.
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3.3 Combined Scientific CFD Simulation and

Interactive Raytracing with OpenCL

3.3.1 Motivation

With an efficient LBM GPU implementation, compute time can still be very long, for a
reason outside of LBM: file export is slow. A single volumetric frame of the velocity field can
be tens of GigaByte in size. With volumetric data exported regularly for time-dependent
analysis or rendering, the total dataset becomes hundreds of TeraByte – unfeasible on most
hardware. If possible at all, writing all this data to the hard drive is a major bottleneck that
can extend compute time by orders of magnitude.

In [Pub8] I explore an approach to combine simulation and rendering, to allow avoiding
time-consuming file export altogether. The idea is to briefly pause the LBM simulation, and
then render the data from multiple camera positions/angles on the GPU while it already
resides in ultra-fast GPU memory. Then only rendered images (a few MegaByte in size)
have to be copied to CPU memory and can be viewed interactively or stored as compressed
PNG/QOI images.

3.3.2 Methods

The LBM computation is done in OpenCL. To render the raw simulation data, I implemented
an entire graphics engine in OpenCL [150]:

Rasterization: The traditional approach to render computer graphics is to convert vector
geometry to pixels on the screen (rasterization). I use the standard Bresenham algorithm
[174] to rasterize basic shapes such as lines and triangles.

Raytracing: Raytracing computes physically accurate light transport with ray optics. In
computer graphics, the light rays are computed in reverse – shot out of the camera through
the grid of screen pixels, here one ray per pixel. These camera rays can intersect geometry in
the scene, in this case the water surface. For complicated geometry, the intersection checks
are computationally too intensive, and an acceleration structure is required. The most com-
mon such acceleration structure is the bounding volume hierarchy (BVH), a tree-like data
structure that groups triangles and bounding boxes into larger bounding boxes. For the
water surface in LBM however, I use the LBM grid itself as the acceleration structure, in
an alternative approach that is much faster than BVH: fast ray-grid traversal. Similar to
Bresenham algorithm, the light ray traverses the 3D LBM grid and only traversed grid cells
are checked for intersections. In each traversed grid cell, triangles are generated on-the-fly
from a marching-cubes [175] isosurface, and ray-triangle intersections [176] are computed.
The normal vector for refraction/reflection is trilinearly interpolated from 8 central-difference
stencils, to make the surface appear smooth. A reflection ray and an internal ray are com-
puted via Snell’s law, and the internal ray is intersected with the surface again to produce
a refraction ray. The reflectivity of the water surface is modeled depending on the angle
of incident, and colors of the reflection and refraction ray – determined by where the rays
hit the skybox – are mixed accordingly. Optionally, the ray-surface intersection is repeated
recursively multiple times for both reflection and refraction ray.
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Multi-GPU domain decomposition rendering: If the LBM is parallelized across mul-
tiple GPUs [31], the simulation box is split into multiple cuboid domains, with one domain
per GPU (domain decomposition). Each GPU holds only the volumetric data of its own do-
main in memory, and data is exchanged only at the boundaries between adjacent domains.
I extend the domain decomposition for rendering: Each GPU renders only its own domain
to its own frame buffer, but with the camera position moved by the 3D domain offset. The
rendered frames and z-buffers from all GPUs are then transferred to the CPU, and overlayed
pixel-by-pixel, based on the corresponding z-buffer values. This allows rasterizing volumetric
data from multiple GPUs in parallel, without having to copy any volumetric data.

3.3.3 Key Results

The combined simulation and rendering is so fast that simulations can be viewed (rasterized
and/or raytraced) interactively in real time, while they are running, with as large grid
resolution as fits in GPU memory. Real-time raytracing even works on GPUs that lack
RTX/DXR raytracing hardware, since no BVH is required. The raytraced free surface shows
physically accurate reflection and refraction (figure 3.10). The graphics engine developed
here is used to create the illustrations in [Pub1], [Pub3], [Pub4], [Pub5], [Pub2] and [Pub8].

Figure 3.10: 7mm diameter, 20◦ inclination, terminal velocity raindrop impact at 1060 ×
1060× 900 grid resolution, 1.55ms after impact, raytraced on a single 64GB AMD Instinct
MI200 GPU. Computing the 8970 LBM time steps takes approximately 28 minutes, and
raytracing the image takes only ≈ 2 seconds at 4K resolution with one recursive repetition
for both reflection and refraction ray, so up to 10 ray-grid traversal calls per pixel. This
simulation is available as a video at https://youtu.be/VadLwt9OqMo.
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Chapter 4

Conclusions

My work has significantly advanced understanding of microplastic transport at the water-air
interface in marine and terrestrial systems. Simulations with the lattice Boltzmann method
allowed for a microscopically detailed look in the mechanisms of particle transport during
impacting raindrops and rising bubbles, as well as particle transport on rough surfaces by a
thin water film.

By simulating more than 1600 impacting raindrops and measuring each and every ejected
spray droplet, I collected enough statistical data on the droplets to see where the microplastic
particles go. The microplastic particles – originating from a ring-shaped volume around the
impact site at up to a few millimeters below the water surface in the sea surface microlayer
(SML) – do indeed enter the spray, with almost the same concentration as in the SML. Most
particles are found in larger spray droplets since they carry disproportionately more fluid
volume. However these are too heavy to be picked up by wind, and only smallest droplets can
fully evaporate, leaving contained particles behind as an aerosol. Larger raindrops produce
more and larger spray droplets, but occur much more infrequent during rain. Small 2mm
diameter raindrops contribute the biggest amount of particles to atmospheric uptake by far.
So although I found impacting raindrops to be able to transport micrioplastics from the
ocean surface into the atmosphere during typical wind conditions, the estimated amount is
small compared to other environmental transport processes. At the same time, my findings
underline just how large the mobility of microplastics is in the environment.

As a precursor process to the transport from water to air, I also modeled bubble scaveng-
ing of micrioplastics in simulation, and found that rising bubbles indeed are able to induce a
net vertical transport of particles, possibly enriching microplastic particle concentration in
the sea surface microlayer. Pristine particles with more hydrophobic surface properties are
especially affected by this mechanism as they tend to stick to bubbles directly.

In terrestrial systems, my simulations could close a gap in understanding how microplas-
tics are washed down an inclined rough surface by a thin water film. The simulated flow
pattern through the microrelief forms preferable channels of high flow velocity, along which
particles can be transported efficiently. In regions of no such flow channels, the lower hydro-
dynamic forces cannot overcome the friction force of particles locking into the microrelief,
so these particles stay in place.
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In the process of conducting the application studies on microplastics, I discovered two
key improvements for the lattice Boltzmann method on graphics processing units (GPUs),
finally fixing its greatest disadvantage: memory demand. The first is a new set of in-place
streaming schemes termed Esoteric-Pull/Push, building upon the idea and benefits of the
Esoteric-Twist scheme, but significantly simplifying implementation and even slightly in-
creasing performance. The second is 16-bit memory compression for the density distribution
functions, cutting memory demand almost in half again, while not significantly impacting
accuracy in all but corner cases compared to FP64 precision. These two improvements re-
duce the memory demand of the LBM to 1/6 compared to two-grid FP64 codes, making
implementation on GPUs with much faster memory bandwidth, but limited memory capac-
ity, a lot more appealing, at a very large speedup compared to CPU implementations with
similar power consumption.

On top, for creating almost all visualizations in this thesis, I implemented an entire
graphics engine in OpenCL, enabling rasterization and raytracing directly on the GPU with
the raw simulation data already residing in fast video memory. This allows to eliminate
slow export of large volumetric datasets to the hard drive, which significantly speeds up the
overall compute time to the point where simulations can be viewed interactively while they
are running, even at the largest grid resolutions that fit in GPU memory.

The resulting FluidX3D software, which I have published on GitHub, will be a powerful
tool for many applications far beyond microplastics research, such as aerospace, traffic,
industrial, medical and other research applications.
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[Pub2] Moritz Lehmann, Fabian Häusl, and Stephan Gekle. ”Modeling of vertical
microplastic transport by rising bubbles”. In: Microplastics and Nanoplastics 3.4 (2023),
pp. 1–6.

Breakdown of the individual contributions:

� ML contributed to implementing and validating the simulation software for the bub-
ble simulations (50%), designed the study (80%), conducted the simulations (100%),
evaluated the data (100%), created all figures, did literature research (80%), and wrote
the manuscript (90%).

47



Chapter 7. Publications

� FH contributed to implementing and validating the simulation software for the bubble
simulations, and reviewed the manuscript.

� SG contributed to study design and to literature research and reviewed the manuscript.

[Pub3] Moritz Lehmann, Mathias J Krause, Giorgio Amati, Marcello Sega, Jens Harting,
and Stephan Gekle. ”Accuracy and performance of the lattice Boltzmann method with
64-bit, 32-bit, and customized 16-bit number formats”. In: Physical Review E 106, 015308
(2022).

Breakdown of the individual contributions:

� ML contributed the original concept (85%), designed the study (70%), wrote the sim-
ulation software for this study (100%), conducted the simulations (95%), evaluated
the data (100%), created all figures, did the literature research (85%), and wrote the
manuscript (90%).

� MK contributed the original concept, contributed essential ideas, contributed to review
the manuscript, and contributed to literature research.

� GA contributed essential ideas, contributed to review the manuscript, and contributed
to literature research, and contributed test setups and benchmarks.

� MS contributed test setups and benchmarks and contributed to review the manuscript.

� JH contributed test setups and benchmarks and contributed to review the manuscript.

� SG contributed essential ideas, contributed to review the manuscript, and contributed
to literature research.

[Pub4] Moritz Lehmann. ”Esoteric Pull and Esoteric Push: Two Simple In-Place Stream-
ing Schemes for the Lattice Boltzmann Method on GPUs”. In: Computation 10.6 (2022), p.
92.

[Pub5] Hannes Laermanns, Moritz Lehmann, Marcel Klee, Martin GJ Löder, Stephan
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Abstract

Raindrops impacting water surfaces such as lakes or
oceans produce myriads of tiny droplets which are
ejected into the atmosphere at very high speeds. Here
we combine computer simulations and experimental
measurements to investigate whether these droplets
can serve as transport vehicles for the transition of
microplastic particles with diameters of a few tens
of µm from ocean water to the atmosphere. Using
the Volume-of-Fluid lattice Boltzmann method, ex-
tended by the immersed-boundary method, we per-
formed more than 1600 raindrop impact simulations
and provide a detailed statistical analysis on the
ejected droplets. Using typical sizes and velocities
of real-world raindrops – parameter ranges that are
very challenging for 3D simulations – we simulate
straight impacts with various raindrop diameters as
well as oblique impacts. We find that a 4mm diame-
ter raindrop impact on average ejects more than 167
droplets. We show that these droplets indeed contain
microplastic concentrations similar to the ocean wa-
ter within a few millimeters below the surface. To fur-
ther assess the plausibility of our simulation results,
we conduct a series of laboratory experiments, where
we find that microplastic particles are indeed con-
tained in the spray. Based on our results and known
data – assuming an average microplastic particle con-
centration of 2.9 particles per liter at the ocean sur-
face – we estimate that, during rainfall, about 4800
microplastic particles transition into the atmosphere
per square kilometer per hour for a typical rain rate
of 10 mm

h and vertical updraft velocity of 0.5 m
s .

Keywords microplastic; ocean; atmosphere; trans-
port; raindrop; sea spray; lattice Boltzmann method;
Volume-of-Fluid; GPU

1 Introduction

Large water basins such as oceans or lakes are com-
monly considered as sinks where microplastic pro-
duced on land surfaces will accumulate over time
[1–4], especially in coastal waters [5]. Atmospheric
winds, on the other hand, can act as efficient trans-
porters of microplastic leading to long-range, in fact
even global, redistribution of atmospherically sus-
pended microplastic [6–9]. Taken together, these two
observations suggest that a mechanism transporting
microplastic from the hydro- to the atmosphere might
contribute significantly to the global spreading of mi-
croplastic. Indeed, hydrodynamic processes such as
bursting bubbles [10–13] or breaking waves eject myr-
iads of small water droplets into the air thus consti-
tuting an important mechanism for the transport of
sea salt [14], organic material [15, 16] or particles [17,
18] which can have sizes up to 100µm [19]. It is to
be expected that these processes are most relevant for
particles near the ocean surface [20–23] and especially
those that accumulate directly at the surface due to
hydrophobicity, low density and/or bubble scaveng-
ing [24] as is very often the case for microplastic [25–
27]. Indeed, evidence has recently been provided that
these transport mechanisms could be relevant for mi-
croplastic as well [7, 28].
Another droplet-producing mechanism that has re-
ceived much less attention is the impact of raindrops
onto ocean or lake surfaces. Upon contact of the
raindrop with the water surface, a thin wall of fluid
around the impact site shoots upward at high speed.
Due to hydrodyncamic instabilities, any distortion
in this ring of fluid amplifies, leading to an uneven
breakup into small droplets that resembles a crown
in appearance. Depending on the raindrop diame-
ter which is between 1 and 7mm [29–33], each im-
pact can eject more than hundred droplets during
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the initial splash. Quantifying this process is there-
fore crucial to understand if and how raindrop im-
pacts can act as a possible pathway for microplas-
tic transition from the hydro- into the atmosphere.
While there are many experimental observations on
various types of drop impacts into water [34–44] –
some even investigating particle transport [45] – sig-
nificantly fewer works study raindrop impacts at ter-
minal velocity [46–48]. This may be due to the fact
that the drop height required to reach terminal ve-
locity is several meters [30, 49]. Similarly, numerical
simulations treating impact scenarios in the parame-
ter range relevant for raindrops are also limited [50].

Here, we use a novel state-of-the-art GPU im-
plementation of the Volume-of-Fluid lattice Boltz-
mann method (LBM), combined with the immersed-
boundary method [51–53]. The LBM is a powerful
tool for simulating fluid flow in countless fields such as
microfluidics for medical applications and engineer-
ing; we use it due to its exceptional computational
efficiency on graphics processing units (GPUs). We
simulate more than 1600 impacts of raindrops with
different diameters and impact angle, an amount un-
feasible with other computational methods. We in-
clude microplastic of varying densities into the simu-
lations to examine the potential for ejection. For each
setting, we determine the size, altitude and airborne
time distribution of droplets and ejected microplas-
tic particles. In addition, we conduct laboratory ex-
periments demonstrating the presence of microplastic
particles in splash droplets after the impact of an ar-
tificial ”raindrop” in good qualitative agreement with
our simulations.
Based on our observations for single raindrops of dif-
ferent diameters, the raindrop size distribution [31,
33], typical microplastics concentrations in sea sur-
face water [3, 54], precipitation data [55, 56] and typ-
ical vertical wind speeds close to the ground [57], we
estimate the amount of microplastics that transition
from the global oceans into the atmosphere annually
due to raindrop impacts.

2 Methods

2.1 Fluid Solver

2.1.1 The Lattice Boltzmann Method

For solving the Navier-Stokes equations, we use the
simulation software FluidX3D [51–53], a full (multi)
GPU implementation [53, 58–65] of the lattice Boltz-
mann method [66–68] which we thoroughly validated
in-house (see SI section S2 and [51]). We use the
single-relaxation-time collision operator [66], as both
two-relaxation-time [66, 69] and multiple-relaxation-
time [70–72] turned out to be unstable at such high

Reynolds numbers in combination with Volume-of-
Fluid. Gravity is incorporated using the Guo forcing
scheme [66, 73]. The simulations are done in single-
precision (FP32) floating-point.

2.1.2 The Volume-of-Fluid Model

FluidX3D contains a full GPU implementation of the
Volume-of-Fluid (VoF) model [51, 52, 74–79]. VoF
introduces three flag types for LBM lattice points:
fluid, interface and gas. The fluid phase is computed
with regular LBM, the interface is kept sharp (width
of a single lattice point) at any time and the gas phase
is not calculated at all. On the interface layer, sur-
face tension is handled based on the Young-Laplace
equation and surface curvature, which is calculated
using the paraboloid fit method [51, 74, 80], built
upon the full analytic solution to the piecewise linear
interface construction (PLIC) problem [52, 80–83].

2.1.3 Hardware and Illustrations

Simulations are performed in parallel on up to four
AMD Radeon VII GPUs (16GB video memory each)
as well as on a Nvidia Titan Xp GPU (12GB video
memory). With our efficient GPU implementation,
the compute time for one impact simulation at Lx =
464 on a single Radeon VII is between 5 and 15 min-
utes depending on data acquisition.
For grahpical illustrations, we use an OpenCL imple-
mentation of the marching-cubes algorithm [51, 84]
that has direct read-only access to the raw simulation
data in video memory. This way, rendering is fully
parallelized on the GPU. On multiple GPUs, each
one renders its own simulation domain and the in-
dividual images are stitched together based on their
accompanying z-buffer. Lines in the images indicate
the multi-GPU domain boundaries.

2.2 Microplastic Particles

2.2.1 The Immersed-Boundary Method

The immersed-boundary method (IBM) [51, 85, 86]
couples particles to the fluid and is implemented fully
parallelized on the GPU using trilinear velocity in-
terpolation [87] (no-slip condition) and floating-point
atomic addition [88]. IBM ensures proper two-way
coupling between particles and fluid, whilst allowing
particles to move freely between LBM lattice points.
Each IBM particle corresponds to one microplastic
particle.

2.2.2 Particle Properties

The individual IBM particles have no coupling forces
among each other, but they are buoyant and also
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2 Methods Ejection of marine microplastics by raindrops

prohibited from leaving the water and getting into
the air. This is realized with a hard potential per-
pendicular to the local surface normal for particles
between interface and gas VoF lattice points.
The particles are mathematical points without an
intrinsic size. However there is a length scale of
hydrodynamic interaction – the distance between
two neighboring LBM lattice points converted back
into SI-units – providing an upper bound for the
particle diameter. Since the physical grid distance is
adjusted to the diameter of the impacting raindrop,
this upper limit for the microplastic particles dp is
directly proportional to the raindrop diameter d and
varies between dp ⪅ 22µm and dp ⪅ 151µm for
the 1mm and 7mm raindrops, respectively. This
represents a realistic scenario as particles between
50 − 80µm are especially abundant in nature [3].
More details are given in S1.1.

2.3 Analysis

2.3.1 Droplet Detection

Whenever a droplet touches the ceiling of the sim-
ulation box (i.e. in the uppermost lattice layer at
least one lattice point becomes either interface or
fluid), a Hoshen-Kopelman tracking algorithm [89]
is triggered and all droplets in the simulation box are
indexed. The droplets touching the ceiling are iden-
tified, measured and removed. Then the simulation
continues until the next trigger event is detected.
Velocity u⃗0 and radius R0 are provided by the track-
ing algorithm for each droplet individually at the
moment when the droplet touches the ceiling. For
all fluid and interface lattice points belonging to a
droplet, we average the velocity and calculate R0 =
3

√
3V0

4π from the volume V0.

2.3.2 Estimating Time of Droplet Separation
from Crown and Cut-off Altitude hcut

Our droplet detection algorithm delivers the time at
which a droplet touches the ceiling of the simulation
box. The physically relevant quantity, however, is
the actual time of separation from the crown splash
which we compute from the velocity and time at the
moment of detection as described in the SI in section
S1.2.

Because our simulations only cover the initial 10ms
of the splashing, only the droplets within this time
frame are detected. It is an important observa-
tion that the first droplets that separate from the
crown are the fastest, and later separating droplets
are slower (figure S3 (b)). We thus from our data
define a cut-off altitude hcut in figure S3 (b). After

the simulated time frame, we expect only insignifi-
cant numbers of droplets to be ejected above hcut.
This gives us a threshold of confidence: below hcut,
almost all droplets are counted whereas above hcut

some droplets could turn up after the simulation has
finished. In the cumulative distributions of maximum
altitude in this work, we mark hcut with a colored as-
terisk ∗, and we mark the regime of incomplete data,
for that the cumulative distribution is considered the
lower bound and the upper bound is undefined, as
shaded areas.

2.3.3 Trajectory of Spray Droplets: Max-
imum Altitude, Airborne Time and
Pickup by Wind

An impacting raindrop can eject a multitude of small
droplets into the air, each of which may contain mi-
croplastic particles dispersed in the ocean water. If
the microplastic particles are to be transported fur-
ther into the atmosphere, pickup of these droplets
by wind as well as their subsequent evaporation are
essential. While we cannot simulate the maximum
altitude of ejected droplets directly in our LBM sim-
ulation, since this would require very large simulation
boxes, we can nevertheless calculate their 3D trajec-
tories based on the initial position and velocity, initial
drop radius R0 at the moment of droplet detection as
well as air properties. Although the droplets are tiny
in size (with the minimum size resolvable in our sim-
ulations being (≈ 233µm)), their velocity is several
meters per second, so Reynolds numbers are in the
range 20 − 400 (see figure S4) and simple Stokesian
friction does not apply in the first part of the trajec-
tory [90] (see figure S5). We therefore use the more
general drag force model [91, p.116][92]

F⃗drag = −1

2
ρa ACD |u⃗| u⃗ = −β CD |u⃗| u⃗ (1)

with ρa being the air density and A = π R2 being
the cross-section of a (spherical) droplet with radius
R. u⃗ = u⃗(t) is the 3D velocity of the droplet. The
parameter β and the droplet mass m can be written
as functions of R:

β (R) =
1

2
ρa A = ρa

π

2
R2 (2)

m(R) = ρ
4π

3
R3 (3)

CD = CD(Re(|u⃗|, R)) is the drag coefficient for a vis-
cous droplet with dynamic viscosity contrast as pro-
vided by Feng [92] (see section S1.3 in the SI). Re is
the Reynolds number

Re(|u⃗|, R) =
2Rρa |u⃗|

µa
(4)
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2 Methods Ejection of marine microplastics by raindrops

and µa is the dynamic viscosity of air. Combining
drag and gravity forces, the total force F⃗ on an air-
borne droplet is

m ˙⃗u = F⃗ (t) = F⃗g + F⃗drag

= −(m−ma) g e⃗z − β CD(Re(|u⃗|)) |u⃗| u⃗ (5)

with ma being the mass of air the droplet displaces
(buoyancy) and g being the gravitational accelera-
tion. The equations of motion for an airborne droplet
are

dx(t)

dt
= ux(t),

dux(t)

dt
= −k CD |u⃗|ux,

dy(t)

dt
= uy(t),

duy(t)

dt
= −k CD |u⃗|uy, (6)

dz(t)

dt
= uz(t),

duz(t)

dt
= −k CD |u⃗|uz − gr

with

gr =
(
1− ma

m

)
g =

(
1− ρa

ρ

)
g (7)

k(R) =
β(R)

m(R)
=

3

8

ρa
ρ

1

R
. (8)

On top of this basic trajectory model, we consider
two additional effects: (i) evaporation and (ii) up-
draft. While the droplet is airborne, its radius de-
creases due to evaporation. To include this effect in
our model, we assume [90, eq. (36)]

R(t) ≈
√
R2

0 −
K t

16
(9)

with R0 being the initial radius and

K = q0 ∆T (1 + 2 q1 R0) = 2.628 · 10−10 m2

s
(10)

being the evaporation constant [90, eq. (46)]. The

parameters q0 = 90.63 · 10−12 m2

sK , q1 = 0.004225 ·
106 1

m and ∆T = 2.9K are interpolated from [90,
table 5] at 20◦C and 75% relative humidity, the ap-
proximate conditions at the ocean surface [93]. This
model is a simplification of the model presented in
[90] in that it does not account for the evaporation
rate depending on droplet velocity. It directly yields
the lifetime [90, eq. (52)]

tlife =
2

q0q21∆T
(2q1R0 − log (1 + 2q1R0)) . (11)

Note that we also ignore solute effects on the evapo-
ration rate in this simplified equation.
In order to include the effect of updraft into our
model, an additional vertical wind velocity offset
uupdraft is introduced in equation (1)

F⃗drag = −β CD |u⃗−uupdraft e⃗z| (u⃗−uupdraft e⃗z) (12)

with CD = CD(Re(|u⃗− uupdraft e⃗z|)). Assuming con-
stant updraft velocity instead of considering turbu-
lent air movement of course is a simplification and in
nature the process is more complicated.
We integrate (6) together with the effects of evapo-
ration and updraft numerically using Runge-Kutta-
4 with a stepsize of ∆t = 0.1ms (without updraft)
∆t = 10ms (with updraft) for each one of the approx-
imately 17000 spray droplets per 100-impact-data-
set. As initial conditions, we use the position and
velocity from the droplet detection algorithm in sec-
tion 2.3.1. From the integration we obtain the maxi-
mum altitude and airborne time. From the airborne
time we derive a clear criterion of microplastic uptake
into the atmosphere. Two uptake scenarios are pos-
sible: either the airborne time diverges due to high
updraft in combination with small droplet size or the
airborne time remains finite (i.e. the droplet would
eventually fall back onto the surface) but larger than
the droplet life time. In this latter case, we also con-
sider the microplastic particles to be taken up by the
atmosphere.
For our setup (sea water and air, temperature T =
20◦C) we have g = 9.81 m

s2 , ρ = 1024.8103 kg
m3 , ρa =

1.204 kg
m3 [94] and µa = 1.813 · 10−5 kg

m s [95].

2.4 Simulation Setup and Parameters

Raindrops in nature are limited in diameter d to ap-
proximately 1−7mm. If they are too small, they are
mainly advected by winds, and if they are too large,
they split into smaller droplets [33]. Depending on
diameter and local air pressure, the terminal velocity
(table 1) is fixed [29, 30, 32].
For simulating sea water, we use the kinematic

shear viscosity ν = 1.0508 · 10−6 m2

s , density ρ =

1024.8103 kg
m3 and surface tension σ = 7.381 · 10−2 kg

s2

at standard temperature T = 20◦C and standard ab-
solute salinity S = 35 g

kg [96, 97]. The standard grav-
itational acceleration is g = 9.81 m

s2 . The raindrop
fluid possesses the same parameters as sea water.
The depth of the liquid pool must be sufficient to ap-
proximate a ’deep’ pool in that, during impact, the
cavity expansion is not limited by the bottom wall of
the simulation box. For a box deeper than a few times
the drop diameter, there is no significant change in
impact dynamics. In the simulation, the overall box
size is limited by (video) memory, so a larger box size
compared to the drop size will lower the resolution.
We use a box of the size 10 d by 10 d by 8.5 d with
a pool depth of 4 d as a compromise. The lateral
boundaries are periodic and the very bottom lattice
layer is a no-slip bounce-back boundary.
The microplastic particles are initialized at (repro-
ducible) pseudo-random positions in the liquid pool
with a concentration of 5000 particles per cubic cen-
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d/mm u/m
s Re We Fr Ca Bo

1 4.50 4282 281 45.4 0.0657 0.136
2 6.80 12943 1284 48.6 0.0992 0.545
3 8.10 23125 2733 47.2 0.1182 1.226
4 8.80 33498 4301 44.4 0.1284 2.179
5 9.20 43776 5876 41.5 0.1342 3.405
6 9.40 53673 7361 38.8 0.1371 4.903
7 9.55 63618 8864 36.4 0.1393 6.674

Table 1: Terminal velocity curve for raindrops at
mean sea level pressure [29]. The terminal velocity u
is a function of the drop diameter d. The dimension-

less numbers Reynolds Re = d u
ν , Weber We = d u2 ρ

σ ,
Froude Fr = u√

d g
, Capillary Ca = u ρ ν

σ and Bond

Bo = d2 ρ g
σ are also given.

timeter – several orders of magnitude higher than
typically found in nature (≈ 1−7 particles per liter) 1.
If we chose typical particle concentration as found in
contaminated sea water, there would be a single or no
particle at all in the volume of the simulated domain.
A particle concentration much higher would severely
decrease computational efficiency as the buoyancy
force of multiple nearby IBM particles would have
to be atomic-added to each lattice point. Since our
particles do not directly interact with each other and
buoyancy effects are negligible at short time scales,
the number of ejected particles per raindrop impact
can be scaled down linearly with the initial particle
concentration. The raindrop initially is devoid of par-
ticles.
During unit conversion from SI-units to lattice units,
the density ρ = 1 in lattice units is fixed and the
length scale Lx is limited by memory capacity. The
impact velocity u in lattice units however is a free pa-
rameter that does not change physics, but has large
impact on both compute time (proportional to 1

u )
and accuracy. Tests with Poiseuille flow in a cylin-
drical channel showed that for FP32 floating-point
accuracy, u should be in the range 0.0003 ≤ u ≤ 0.5
and especially u ≤ 0.5 anywhere in the simulation
box [51]. In figure S12 in S3.1 we show that simu-
lations with u ∈ [0.005, 0.15] run stable. Outside of
this interval, instabilities propagate from the first un-
stable lattice point through the simulation box. We
thus use u = 0.05 for all of our simulations. We
also show simulations for varying lattice resolution
Lx ∈ {64, 128, 256, 464, 636, 748} in S3.2 and ob-
serve that Lx < 400 is insufficient to resolve details.

1Measurements of microplastic concentration on sea sur-
face water greatly vary with time, location and measurement
method, ranging from 0.0018 [20] over 0.04 [21] to 0.406 [22]
microplastic particles per m2 in trawl measurements. [54] pro-
vide an average volumetric value of 2.9 particles per liter at
5m depth and [3] provide measurements of between 0.99–7.00
particles per liter across the Atlantic Ocean at 10m depth.

Simulations are run for a time span of 10ms. In
nature, around 10ms after impact low air pressure
behind the falling droplet contracts the crown to a
canopy or surface seal [46]. Since in our simulation
we do not model the gas phase, we do not observe
surface seal formation and thus for longer simulation
periods our results would significantly divert from
experimental findings. However only in the initial
splash phase of the impact do ejected droplets have
sufficiently small size and high velocity to be rele-
vant for atmospheric pickup. Droplets ejected later
are slower and more likely to fall back to the sur-
face instead of contributing to transport across the
interface. The later occurring jet in the experiment
also does not significantly contribute to ejected high-
velocity droplets [41, 46].

3 Simulation Results

3.1 Validating our Simulations by
Comparison with Experiment

To begin our investigations, we validate the employed
simulation model by comparing it to high-speed im-
ages of a raindrop impact in sea water. Further val-
idation is provided in S2. Murphy et al. [46] stud-
ied oily marine aerosol production when raindrops
impact oil slicks on the ocean. As a control, they
conducted and documented a 4.1mm diameter rain-
drop impact on pure seawater at an impact velocity
of 7.2 m

s – a bit less than terminal velocity. The fluid
properties used in [46] (see table S2 of the SI) coincide
almost exactly with the ones used in our microplastic
simulations as detailed below. This allows for a di-
rect experimental validation of our simulation setup
in the relevant parameter range. In figure 1, we com-
pare the simulation results to the experiment find-
ing excellent agreement for the cavity size and crown
breakup. A deviation between experiment and simu-
lation is only seen at t = 8ms where the crown in the
experiment contracts and begins to form a canopy.
This is due to the lower air pressure behind the falling
raindrop (Bernoulli effect) that pulls the crown in-
wards in what is commonly called a surface seal [98,
99]. Since air flow is not explicitly included in our
simulations, we do not see the crown contracting. In
this work, however, we focus on the generation and
ejection of small droplets which primarily happens in
the beginning of splash formation and thus will not
be significantly affected by the entraining air flow.
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3 Simulation Results Ejection of marine microplastics by raindrops

SI-units LBM units
drop diameter d 1− 7mm 46.4
impact velocity u 4.50− 9.55 m

s 0.05 (fixed)
impact angle α 0◦ − 40◦ 0◦ − 40◦

simulation box dimensions Lx, Ly, Lz 10 d, 10 d, 8.5 d 464, 464, 394 (fixed)
pool height h 4 d 185.6

kinematic shear viscosity ν 1.0508 · 10−6 m2

s 5.417 · 10−4 (1mm)− 3.647 · 10−5 (7mm)

water density ρ 1024.8103 kg
m3 1 (fixed)

surface tension σ 7.381 · 10−2 kg
s2 4.126 · 10−4 (1mm)− 1.309 · 10−5 (7mm)

gravitational acceleration g 9.81 m
s2 2.610 · 10−8 (1mm)− 4.057 · 10−8 (7mm)

(hydrodynamic) particle diameter dp ⪅ 22− 151µm ≈ 0.6− 1.0 (fixed)
number of particles Np 2000− 686000 2000− 686000

Table 2: Overview on the simulation parameters before and after unit conversion.

Figure 1: Our simulation compared to the experiment
from Murphy et al. [46], figure 3 (a)-(d), at times t ∈
{−2, 1, 3, 8}ms. In both experiment and simulation,
t = 0ms is defined as the time the droplet touches the
water surface. The raindrop diameter is 4.1mm. The
asterisk marks the tracked crown rim position in the
experiment.

3.2 Simulation of Raindrop Impacts
on Pure Sea Water

We next illustrate our 4mm diameter raindrop im-
pact reference system in figure 2 for pure sea wa-
ter without microplastic particles. The correspond-
ing parameters are given in table 2. Shortly after
impact, the perimeter of the impact site shoots up-
ward. It forms a thin wall of fluid – called crown –
that quickly breaks up into lots of tiny droplets due
to surface tension. Crown droplets initially are small
and fast with a velocity inclined by approximately
53◦ from the vertical axis radially outward. As time
progresses, they gradually become larger and slower
(with less velocity inclination). Shortly after the rain-
drop and pool surfaces touch (time of impact), the
upper half of the raindrop initially retains its con-
vex shape which now forms the bottom surface of the
impact cavity while displaced fluid exits upward at
the perimeter. Once the raindrop fluid plunges fur-
ther in – about 1ms after impact – the cavity center
flattens and becomes concave thereafter, steadily ex-
panding while more and more fluid is pushed into
the crown. The fluid of the raindrop spreads into
a thin sheet around the cavity. During the simu-
lated 10ms, the cavity and crown continuously ex-
pand while the gravitation-driven cavity collapse fol-
lowed by the well-known vertical fluid jet [41, 46, 100]
happen only at a later stage. The fastest droplets
that reach the highest altitude in the air are ejected
within the first few milliseconds after impact. Pre-
vious research has suggested that the secondary jet
after cavity collapse does not contribute greatly to
ejection of droplets [41, 46] so for this study we have
not included it.
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3 Simulation Results Ejection of marine microplastics by raindrops

(a) Perspective view.

(b) Orthogonal side view.

Figure 2: Visual representation of the 4mm diameter raindrop impact simulation without microplastic
particles. Time stamps (left to right) are t ∈ {0.0, 0.5, 1.0, 2.0, 3.0, ..., 10.0}ms and lattice resolution is
Lx = 464.

3.3 Impacts of Raindrops on Sea Wa-
ter with Microplastic Particles

We now include microplastic particles in the simula-
tion. To obtain sufficient statistics of ejected droplets
and particles, we run the simulation 100 times for
each set of parameters, with the microplastic par-
ticles each time being initialized at different random
positions, resulting in slightly different random crown
breakup. We choose the highest possible lattice res-
olution for our IBM-LBM simulations (Lx = 464)
and run each simulation for 10ms. Droplets that
touch the top of the simulation box are measured and
then deleted from the simulation box as described in
section 2.3.1 above. The upper bound for the mi-
croplastic diameter is 86µm as determined in S1.1
and their density is 1.05 g

cm3 (polystyrene). In figure
S23 we provide data on the velocity inclination from
the vertical axis of the ejected droplets for the 4mm
diameter raindrop reference data set. In S4.7 we pro-
vide simulations over the entire range of common
plastics densities from 0.92 g

cm3 (polypropylene) to
2.17 g

cm3 (polytetrafluoroethylene) and demonstrate
that buoyancy effects are negligible during the simu-
lated time frame. Figure S27 demonstrates how small
the run-to-run variation is in the simulation results,
giving us confidence about the accuracy of our data.
In section S3.2 we provide data on the influence of
lattice resolution on the droplet distribution.

3.3.1 Microplastic Transport during 4mm
Diameter Raindrop Impacts

Figure 3 shows how the ejected droplets of 100 rain-
drop impact simulations are distributed in diameter
(x-axis), ejection altitude (y-axis) and time of de-
tection (color). We observe that droplets at later
points in time have more volume, but less velocity,
so maximum altitude is lower. After t = 5ms al-
most no droplets are ejected beyond half a meter in
amplitude. This gives us confidence that our simu-
lations capture all droplets with a high ejection ve-
locity which are relevant to microplastic transport.
The vertical velocity of the small droplets ejected at
an early stage reaches up to about 10 m

s , while the
velocities of larger droplets ejected at later times are
below 3 m

s . In figures 4 and 5, we present histograms
to reveal the size distribution of droplets and the cu-
mulative ejected fluid volume as well as the distri-
bution of how many particles are present in droplets
and the particle concentration depending on droplet
diameter. The bin width in all histograms is 0.02mm.

We observe that, by number, the majority of ejected
droplets has a diameter below 0.6mm with the peak
centered at 0.4mm. In reality, there are likely to
be more smaller droplets because we cannot resolve
droplets below 0.23mm diameter in our simulation.
Between 0.6 and 1.0mm, we observe a relatively
flat plateau. These larger droplets are less numer-
ous, but contribute more than double to cumulative
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Figure 3: Diameter and maximum altitude of droplets detected within 10ms after impact of 100 4mm
diameter raindrops. The size of the circles indicates the number of microplastic particles enclosed in each
droplet. The lines indicate constant initial vertical velocity. Tiniest droplets below 0.23mm diameter (gray
area) cannot be resolved in the simulation. The color represents the approximate time the droplet separated
from the crown rim. The maximum altitude of ejected droplets decreases over time.
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Figure 4: Properties of ejected droplets: (a) The size
distribution and (b) the distribution of ejected fluid
volume by droplet diameter.

ejected fluid volume than the small droplets as can
be seen in figure 4 (b). Comparing figures 4 (b) and
5 (a), we find good proportionality between cumula-
tive ejected fluid volume and the number of particles
in the ejected droplets. Larger droplets with more
fluid carry more particles. The particle concentra-
tion in ejected droplets is on average 87% compared
to the initial concentration in the pool, meaning that
the raindrop fluid makes up approximately 13% of the
ejected fluid. Only for the smallest droplets, the par-
ticle concentration appears to be a bit lower, closer to
70% which most likely is an effect of numerical reso-
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Figure 5: Properties of microplastic particles in
ejected droplets: (a) The distribution of particles in
droplets and (b) particle concentration depending on
droplet diameter.

lution and a larger uncertainty, as in this region there
is very little total fluid volume to divide the particle
number by.
To conclude this section, we find that a single
4mm diameter raindrop ejects about 167 droplets
(> 0.23mm diameter2) during the first 10ms after
impact. These droplets contain a total of 136 mi-
croplastic particles for an initial concentration of 5000
microplastic particles per cm3 in the sea water.

2smaller droplets cannot be resolved in the simulation
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3.3.2 How Raindrop Diameter affects Mi-
croplastics Transport

The diameter of raindrops, which determines their
terminal velocity according to table 1, strongly af-
fects the number of ejected droplets and microplastic
particles. Figure 6 shows the distribution of size, alti-
tude and microplastic load of ejected droplets similar
to our 4mm reference system in figure 3, when the
raindrop diameter varies between 2 and 7 mm. Snap-
shots of the corresponding simulations are shown in
figure S28. From these visualizations we conclude
that raindrops with diameters below 2mm, although
frequently occuring in nature, do not eject a signifi-
cant number of droplets into the air. Raindrops with
diameters above 7mm are very rare in natural rain
events and are therefore not considered further. Note
that the minimum resolvable droplet size is larger
for simulations of larger raindrops and thus the gray
area in figure 6 where no droplets can be resolved,
increases.

For a more quantitative description, figure 7 (a)
provides histograms of the droplet size distribution
for different raindrop diameters. We observe that
with increasing raindrop diameter, the average size
of produced droplets increases simultaneously. Fig-
ure 7 (b) shows a similar trend for the number of
microplastic particles ejected by droplets of various
sizes: for larger raindrops the contribution of the
larger droplets increases. We furthermore note that
similar to the 4mm reference case of the previous
section, within the droplets we find a constant par-
ticle concentration of on average 85% the bulk value
regardless of raindrop diameter (data not shown).

In the SI in figure S3 we provide the maximum
altitude of ejected droplets as function of the time
the droplets separate from the crown rim. We see
that – despite the impact velocity being larger for
bigger raindrops – the overall time scale of the im-
pact increases with droplet size. Figure S3 further-
more shows that the maximum altitude of the ejected
droplets decreases monotonically over time. This il-
lustrates an important limitation of our simulations:
since we only consider the first 10ms after impact,
droplets after this time are missing in our statistics.
For small raindrops with sizes up to 4mm, figure S3
shows that the amount of missed droplets can be ex-
pected to be small and, more importantly, the max-
imum altitude of the missing droplets will not be
larger than a cut-off of around hcut = 0.19m. This
picture changes for raindrops with diameters above
4mm, where a substantial amount of droplets are
missed. Nevertheless, figure S3 allows us to deter-
mine hcut depending on raindrop size. For the largest
raindrops of 7mm, hcut = 0.48m, meaning that the
vast majority of droplets ejected to altitudes above
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Figure 6: Diameter and maximum altitude of ejected
droplets after impact of terminal velocity raindrops of
various diameters. The lines indicate constant initial
vertical velocity. The circle size indicates the num-
ber of microplastic particles in each droplet. Tiniest
droplets in the gray marked areas on the left cannot
be resolved in simulation.

0.48m are counted, and some droplets with ejection
altitudes below 0.48m are missed.
In figure 8 we show the number of ejected droplets
and number of particles in ejected droplets as a func-
tion of maximum altitude. The droplets from the ini-
tial phase of the impact are very small and therefore
carry less particles than droplets with larger volume
from the later phase of the impact, so the cumula-
tive distribution of maximum altitude of the particles
drops steeper than that of the droplets.
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Figure 7: (a) Size distribution of ejected droplets and
(b) distribution of particles in ejected droplets de-
pending on droplet size for various raindrop diame-
ters. In the SI, we show these histograms as separate
plots for each raindrop diameter in figures S21 and
S22.

3.3.3 How Oblique Impacts affect Microplas-
tics Transport

Due to influence of wind, it may be expected that
most raindrops will not fall perfectly straight and will
impact the water surface at an angle. Such oblique
impacts have an inclined and asymmetric crown ge-
ometry as illustrated in figure 9 and in figures S29
and S30 in the SI. This affects how the fluid of the
raindrop, which is initially devoid of microplastics, is
distributed in the bulk fluid during impact. For the
straight impact, the raindrop water is spread around
the bottom of the cavity as a thin film and not ejected
into the air as demonstrated by the high microparticle
concentration in the droplets in figure 5 (b). This be-
havior changes for oblique impacts. As shown in fig-
ure 10 (a), here the raindrop fluid is partly redirected
into the crown, thus slightly reducing the overall par-
ticle concentration in the ejected droplets from 87%
of the pool concentration (α = 0◦) to 77% (α = 40◦).

Besides this, there is a second, equally interest-
ing effect emerging: For the straight impact, the
fast droplets directly after impact are ejected radi-
ally outward with their velocity inclined from the
vertical axis as can be seen in the first frames of fig-
ure 2. Thus, on one side the trajectory of the small
droplets becomes more vertical, resulting in more
droplets being ejected to higher altitude as shown in
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Figure 8: Cumulative distribution of maximum alti-
tude of resolvable droplets (a) and microplastic parti-
cles in droplets (b). The graphs indicate the number
of droplets / particles ejected above a specified alti-
tude depending on raindrop diameter. Above the cut-
off altitude hcut marked by the asterisk, all droplets
are detected by our simulations (solid line). Below
hcut, our simulations only provide a lower bound for
the number ejected droplets (dashed line) due to lim-
ited simulation time as explained in section 2.3.2.

Figure 9: Illustration of a α = 20◦ inclined raindrop
impact at times t ∈ {1, 5}ms.

figure 10 (b). In addition, the total amount of ejected
droplets during our simulated 10ms time frame also
increases. For this reason, the initial fast droplets
carry microplastic particles to higher altitudes for
oblique impacts. Nevertheless, since the water from
the raindrop itself is partly deflected into the crown
later on, the total amount of ejected particles is ac-
tually smaller for oblique impacts as shown in fig-
ure 10 (c).
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Figure 10: Simulation results for oblique impacts:
(a) Distribution of particle concentration in ejected
droplets depending on droplet size and impact angle
α as well as (b) number of resolvable droplets and
(c) particles in droplets ejected above a specified al-
titude depending on impact angle α. In (b) and (c),
for altitudes lower than hcut (asterisks), the distribu-
tions are considered the lower bound (dashed lines)
and the upper bound is undefined as indicated by the
shaded areas (see section 2.3.2).

3.3.4 Origin of ejected Microplastic Particles

Using our simulations, we can also detect from which
region of the bulk fluid (relative to the impact lo-
cation) the microplastic particles originate that are
ejected into the air. For this, we assign a unique
ID number to each microplastic particle in the bulk
fluid and then store the IDs of those particles that
are ejected into the air during the impact simulation
of 10ms. The initial position of those particles is
marked in red in figure 11. We find that only parti-
cles from the very top layer of the pool are ejected in
the crown. The initial positions furthermore form a
ring around the impact site.
Figures S28 and S30 illustrate particle origin for

various raindrop diameters and impact angles. In all
cases only particles directly on the water surface or
a few millimeters below the surface are relevant for
consideration.

Figure 11: Illustration of the origin of ejected parti-
cles. All particles in ejected droplets by t = 10ms
are colored in red. At t = 0ms (left column) these
particles are located on a ring around the impact site
directly under the surface. They are the first to enter
the crown and to get into separated droplets during
crown breakup (right column at t = 5ms).
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4 Experimental Demonstration of Microplastic Transport Ejection of marine microplastics by raindrops

4 Experimental Demonstration
of Microplastic Transport

In addition to the detailed simulations, we conduct
a series of laboratory experiments demonstrating mi-
croplastic transport by impacting drops. An image
of our experimental setup is shown in figure 12 (a).
The setup consists of a timer-controlled magnetic
valve (eltima electronic) which allows us to adjust
the size of the falling drop by changing the open-
ing time of the valve. A Mariotte’s bottle containing
desalinated water is connected to the valve with a
nozzle below. The surface tension of desalinated wa-
ter (72.75 mN

m ) only insignificantly differs from that

of sea water (73.39 − 76.67 mN
m depending on salin-

ity) at 20◦C. We note that natural surfactants in
the ocean surface microlayer, enriched by for exam-
ple bubble scavenging [24], may slightly decrease sur-
face tension compared to pure salt water. In our
experiments, microplastic particles could, in princi-
ple, reduce surface tension in a similar fashion. How-
ever, the volumetric ratio of microplastics to water
is ≈ 10−6 and thus small enough that this effect can
safely be neglected regarding both viscosity3 and sur-
face tension. The drop falls into a water reservoir
which is filled with desalinated water and spherical
polystyrene particles with a diameter of 6µm (Poly-
sciences). The particle concentration in the reservoir
is 25000 1

cm3 . When opening the magnetic valve for
20ms, we obtain falling drops with a diameter of ap-
proximately 5.0− 5.5mm. Similar to the simulation,
the water height in the reservoir is about 4 times the
drop diameter. The distance between the water body
and the nozzle exit is approximately 2.5m, based on
which we estimate the impact velocity to be 6.8 m

s
[49], i.e. about 74% of terminal velocity [29]. The
splash droplets released after impact are caught on
a 76mm × 26mm glass slide mounted 20 cm above
the reservoir. The glass slide is placed such that the
inner 26mm edge is 65mm (position A) and 141mm
(position B) radially outward from the impact center
(figure 12 (c)).
After the impact, the glass slide is transferred to a mi-
croscope immediately. Although the glass slides are
carried openly to the microscope located in the same
room and thus a small contamination by particles
from room air is possible, it would be highly unlikely
that contaminant particles coincidentally possess the
same uniform diameter (6µm) as our microplastic
particles. The size and spherical shape of the counted
particles thus clearly shows that the observed parti-
cles on the glass side are indeed microplastic ejected
from the liquid reservoir. Independent of the rain

3Einstein suspension viscosity [101, 102] is 0.0007% larger
than without particles.

drop experiments we control the shape and size of
our polystyrene particles by attenuating the suspen-
sion containing the particles and assessing them un-
der the microscope to confirm the spherical shape and
the diameter of 6µm.

(a) (b)

A B

h = 20 cm

65 mm
217 mm

(c)

Figure 12: (a) The experimental setup with timer-
controlled magnetic valve for the creation of individ-
ual drops, connected to a Mariotte’s bottle above and
a nozzle below. Released drops impact on a reser-
voir filled with desalinated water and 6µm spherical
polystyrene particles. Ejected droplets are captured
on a glass slide. Note that for illustration purposes,
valve and reservoir are shown together, while in our
experiments the falling distance is 2.5m. (b) Splash
droplets carry particles to a glass slide placed above
the reservoir. The droplets evaporate, leaving the
microplastic particles behind. (c) Sketch of the glass
slide placement (positions A and B) above the reser-
voir. The radial symmetry of the impact splash al-
lows to only cover a circle segment with the glass
slides and extrapolate to the annular cross-section
areas around the A and B placements (gray rings)
through which ejected droplets may pass.

Using the microscope we clearly observe the presence
of microplastic particles in the splash droplets (figure
12 (b)). For positions A and B we conduct 10 drop
impacts each. We then count the number of droplets
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on the glass slide that have not yet evaporated, mea-
sure their approximate diameter, their position on
the slide and the number of particles inside. The
number of tested splash drops depends on the num-
ber of drops found on the glass slide and how many
of the drop positions could be clearly identified un-
der the microscope. Some of them evaporated before
their location on the slide was noted down. Some of
the ejected droplets do not contain any plastic par-
ticles. In some cases, we could test all droplets for
microplastic particles if there were only between 1
and 3 droplets on the slide.

We find that for a single drop impact, the average
number of droplets on the glass slide at position A
is 4.2 and on position B is 2.4. The average num-
ber of particles per detected droplet is 16 and 3 for
positions A and B, respectively. The difference in
particles per droplet for positions A and B is due to
the smaller average size of the droplets at B. This
is in full agreement with the numerical simulations:
as can be seen in figure S23, the initially released
small droplets have a higher velocity inclination from
the vertical axis and thus are more likely to land on
the glass slide at position B, whereas larger droplets
released at later times have a smaller velocity incli-
nation and are more likely to land at position A.

In order to obtain the total number of ejected
droplets by a single drop impact, we first extrapo-
late the area of the glass slides at A and B to the two
cross-sectional rings around positions A and B (figure
12 (c)). In addition we re-scale the particle concen-
tration to 5000 1

cm3 to be able to directly compare
with the simulation. Adding the two cross-sectional
rings A and B, we find that 208 droplets containing
398 particles are ejected to an altitude of 20 cm or
higher. The number of droplets is in very good agree-
ment with the simulations (approximately 1.3 times
larger) as can be seen in figure 8 (a) when looking
at the lower bound of the shaded area for the 5mm
curve at 0.2m altitude. The number of particles, on
the other hand, is approximately 2.5 times larger in
the experiment than in our simulations (figure 8 (b),
lower bound of the shaded area for the 5mm curve
at 0.2m altitude). This points to a certain surface-
activity of the employed microplastic particles: par-
ticles sticking to the reservoir surface would enrich
the local concentration at the surface, thus resulting
in a higher particle concentration within the splash
droplets as well.

5 Discussion: Estimating the
Annual Amount of Mi-
croplastics Transitioning
from Global Oceans into the
Atmosphere due to Impact-
ing Raindrops

Based on our simulation results, we can provide
an order-of-magnitude estimate for the global an-
nual amount of microplastics transitioning from the
oceans into the atmosphere due to raindrops. To
guarantee reproducibility, our model assumes single,
isolated raindrop impacts on a perfectly flat ocean
surface. For this approximation, we use straight im-
pacts only. We are aware that this represents an ide-
alized scenario compared to what would be observed
in field experiments. Given the robustness of our re-
sults even for oblique impacts as shown in figure 10,
we are confident that this does not represent a major
limitation.

We will proceed in three steps: in the first step, we
obtain the number of raindrops as function of their
size depending on the rain rate based on known ex-
perimental data. In the second step, using our sim-
ulations, we can predict the number of microplastic
particles ejected into the air per square kilometer per
hour, again depending on the rain fall rate and wind
speed. In the final step, we provide an estimate of
the global annual amount of microplastic transported
into the atmosphere due to impacting raindrops.

5.1 How many raindrops of which size
are present in nature?

As shown in section 3.3.2, the amount of transported
microplastic strongly depends on the diameter of the
impacting raindrop. As a first step, it is therefore nec-
essary to understand how the total amount of precip-
itation water is distributed across different raindrop
sizes for different rain rates. We approximate the
distribution by the Marshall-Palmer model [31, 33]:
By number, small raindrops are exponentially more
frequent than large raindrops, following

N(d) = Λ e−Λ d (13)

whereby Λ = 4.1 ( R
mm
h
)−0.21 1

mm is a parameter de-

pending on the rainfall rate R in mm
h and d is the

raindrop diameter in mm. Eq. (13) is normalized. In
order to reasonably estimate how the total precipita-
tion volume splits up upon differently sized raindrops,
we discretize the raindrop size distribution (13) to
discrete raindrop diameter ranges. The probability to
find a raindrop in the interval [d−0.5mm, d+0.5mm]
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then is:

p(d) =

∫ d+0.5mm

d−0.5mm

N(d′) dd′ (14)

=
[
−e−Λ d′]d+0.5mm

d−0.5mm
(15)

= 2 e−Λ d sinh

(
Λ

2
mm

)
(16)

Using p(d), we estimate how a given precipitation vol-
ume Vpre splits up upon differently sized raindrops
with d ∈ {1, 2, 3, ..., 7}mm. The volume of a single
raindrop is denoted as V (d) = π

6 d3. Computing the
products p(d) · V (d) and normalizing results yields
the volume fractions associated with the raindrop di-
ameters4:

pV (d) ≈
p(d) · V (d)∑

d=1,2,...,7mm p(d)V (d)
(17)

pV (d) is plotted in figure 13 and used to calculate
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Figure 13: The (normalized) raindrop size distribu-
tion by volume, depending on the rain rate R. For
moderate rain, 1mm diameter raindrops make up the
largest part while 2mm diameter raindrops dominate
for heavier rain. 3−5mm raindrops only become im-
portant for very heavy rain, while 6−7mm raindrops
only carry a tiny fraction of precipitation water even
for violent rain rate.

the precipitation volume for every raindrop diameter
interval. We then divide by the volume V (d) of a
single raindrop and this way obtain the number of
raindrops N(d) for each raindrop diameter interval
separately. The size distribution of raindrops is key
for the estimate because raindrops of different size
have different impact dynamics and generate vastly
different amounts of spray droplets.

4This assumes that the entire precipitation volume Vpre is
within the diameter range d∈[0.5mm, 7.5mm].

5.2 Local estimate for the number
of transitioning microplastic par-
ticles

In the second step, we determine the airborne time
of spray droplets based on atmospheric updraft by
integrating their 3D trajectories with an additional
vertical wind velocity offset uupdraft as detailed in sec-
tion 2.3.3 above. Figure 14 (a) shows that without
updrafts, airborne time is less than 1 s and atmo-
spheric uptake is considered negligible. Although the
typical mean surface wind speed over the ocean is in
the order of 8 ± 4 m

s [103, figure 2], the vertical up-
draft velocity close to the ground is ⪅ 1 m

s [57]. At
this vertical wind velocity, all droplets smaller than
0.26mm diameter have diverging airborne time (fig-
ure 14 (b)), i.e. they are taken up by the atmosphere.
Alternatively, if the airborne time remains finite, but
droplets evaporate before falling back to the surface,
we also consider the contained microplastic particles
as being taken up by the atmosphere. Together, these
two criteria provide a very clear threshold for which
droplets are picked up or fall back down, because
all droplets above the lifetime curve have diverging
airborne time as a function of updraft velocity (fig-
ure 14 (c)). Again, we emphasize that assuming con-
stant updraft velocity is a simplified model and in na-
ture the turbulent air movement is much more com-
plicated.
The number of ejected particles per raindrop im-

pact is rescaled with the concentration of microplas-
tics at the surface, from the 5000 particles per cm3

in our simulations to a realistic value for the global
average microplastic concentration in ocean surface
waters, for which we choose 0.0029 particles per cm3

(2.9 particles per liter) as measured at a depth of 5m
[54]. This value is in line with other measurements
across the Atlantic Ocean which gave concentrations
between 0.99 − 7.00 particles per liter at a depth of
10m [3]. Coincidentally, the size of the microplastics
detected by [54] is in the range of 10 − 600µm and
the size detected by [3] is between 32−651µm with a
mean of 81µm, very close to the particle sizes used in
our simulations. However these measurements likely
undercount particles smaller than 10µm as these are
increasingly difficult to detect.
Direct trawl measurements of the microplastic con-
centeration at the sea surface [20–22] are not suitable
here for two reasons: Firstly, these are measurements
per area and to convert to a volumetric concentration,
one would have to make an assumption about the
mean submersion depth. Secondly and more impor-
tantly, the trawls have a mesh size of≈ 330µm, which
is insufficient to detect the much more numerous tiny
particles. However these trawl measurements give a
good indication about the large local and temporal
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(a) Droplet airborne time without updraft.

(b) Droplet airborne time with 1 m
s
vertical updraft.
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(c) Number of particles with diverging airborne time
which are consequently picked up by wind and transfered
to the atmosphere.

Figure 14: (a) Airborne time of spray droplets with-
out updraft is in the order of half a second. No
droplets are picked up by the atmosphere. (b) With
1 m

s vertical updraft velocity, all droplets smaller
than 0.26mm diameter have diverging airborne time
(capped at finite values so that the data points are
visible in the diagram). The black curve represents
the lifetime (time until full evaporation, eq. (11)) of
droplets depending on diameter. If the airborne time
is larger than the lifetime, the droplets are consid-
ered picked up by the atmosphere. (c) The number of
picked up microplastic particles per raindrop impact
increases with vertical updraft velocity. Numbers are
given for an initial concentration of 5000 microplastic
particles per cm3 in the sea water as used in our sim-
ulations. Additional figures and data in figure S24
and table S3.

variation in concentration, spanning across more than
two orders of magnitude [3, 20–22].
Next, we multiply the number of raindrops N(d) by
the number of ejected particles per raindrop impact
Np(d) to obtain the number of ejected particles for ev-
ery raindrop diameter. Summing over all diameters
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Figure 15: (a) The number of microplastic particles
transitioning from the oceans into the atmosphere per
km2 per hour depending on rain rate for 1 m

s verti-
cal updraft velocity. The contribution of different
raindrop sizes to particle transport is illustrated by
the colored areas. With rising rain rate, the number
of transitioning particles increases as both the num-
ber of raindrops and the fraction of larger raindrops
become larger. (b) Different vertical updraft velocity
strongly affects the number of transitioning particles.
For less than 0.5 m

s , no particles get picked up by the
atmosphere.

between 1 and 7mm, we obtain the amount of tran-
sitioning particles per square kilometer per hour as
function of the rain rate which is shown in figure 15.
We find that both local rain rate and wind speed
strongly affect particle uptake (figure 15). It is inter-
esting that 2 − 3mm diameter raindrops contribute
the vast majority to the transitioning particles with
larger raindrops only having very minor contribution
at violent rain rate (figure 15 (a)). During heavy
storms, anything detached from the sea surface may
be carried across vast distances by wind, including
droplets, particles [17, 18] and even various sea crea-
tures [104, 105]. During mild weather conditions on
the other hand, most spray droplets may fall back to
the surface before significant atmospheric transport
has happened.
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5.3 Global estimate for the number
of transitioning microplastic par-
ticles

In the final step, we use the above considerations
to provide a rough estimate for the global annual
amount of microplastic transferred to the atmosphere
by impacting raindrops.
We first observe that the rain rate itself follows
an exponential distribution, where low rain rate is
much more frequent and high rain rate is much less
frequent. We use the (normalized) Rice-Holmberg
model [56]

PRH(R) =
1

1.80273

(
0.03 e−0.03R (18)

+
1− β

5

(
e−0.258R + 1.86 e−1.63R)

)

with β = 0.2. According to [55], the average pre-
cipitation on the ocean is 2.89 ± 0.29 mm

day . Global

oceans cover a surface of 3.619 · 1014 m2, so the
total annual precipitation volume on the oceans is
Vpre,total = 3.82 · 1014 m3. For estimating the annual
global amount, we set this value as Vpre in our calcu-
lations detailed above (figure S25). We then weight
the curves in figure S25 with the Rice-Holmberg rain
rate distribution (eq. (18), numeric integration with
trapezoidal rule). Finally, we assume that vertical
wind direction is upward and downward half of the
time and no particles transition for downward wind
velocity, giving us another factor 1/2. We then find
that, depending on which vertical updraft velocity we
assume, 7.0·1013 (0.50 m

s ), 1.0·1014 (0.75 m
s ), 2.0·1015

(1.00 m
s ), 7.3 · 1015 (1.25 m

s ) or 1.2 · 1016 (1.50 m
s ) mi-

croplastic particles may transition from global oceans
into the atmosphere every year. Because 0.50−0.75 m

s
is already rather large for vertical updraft velocity
close to the ground [57], our estimation gives us a
clear value for the upper bound, a hundred trillion
(1014) microplastic particles per year. For vertical
updraft velocities below 0.50 m

s , based on our defini-
tion of atmospheric suspension, no particles transi-
tion, so we cannot confidently provide a lower bound
for the estimate.

The uncertainties of this estimate are located in
the local sea surface microplastic concentration, but
also in other simplifications of our model such as as-
suming mean updraft velocity instead of turbulence.
In future research, we envision to use more precise
spatially resolved wind and microplastic distribution
data using for example satellite measurements [106],
such as currently investigated in the TOPIOS project
[5, 107, 108], to further narrow down this estimate.
This refinement should also include the effect that
microplastic particles right after transition to the at-
mosphere may collide with subsequent raindrops and

therefore may be washed out of the atmosphere again
leading to a reduction of total transport.

6 Conclusions

We investigated and quantified microplastic particle
transport across the water-air interface during rain-
drop impacts on sea water in great detail using nu-
merical simulations and laboratory experiments.
Depending on raindrop size, each impact ejects in

the order of 100 splash droplets into the air with typ-
ical vertical velocities of up to 10 m

s , allowing them
to reach altitudes of up to about 80 cm above the sea
surface.
Our key result is that the particle concentration

in these ejected droplets is about 85% of that in the
sea water. This means that there is no ’filter effect’
holding particles back and that the fluid from the
raindrop, even if it is devoid of particles, is mainly
engulfed into the sea while the ejected fluid mainly
consists of sea water. We further found that the parti-
cle density has negligible influence on the impact dy-
namics, since gravity-related effects only play a minor
role during the short time scale of the impact. The
origin of the ejected particles has been identified as
a circular region around the impact site very close
to the sea surface. No particles are ejected from re-
gions deeper than approximately half the radius of
the raindrop. For raindrops impacting the surface at
an angle, e.g. due to wind, part of the raindrop fluid
is redirected into the spray and droplets can reach
slightly higher altitudes. The overall mechanism of
microplastic transport is nevertheless operative also
for oblique drop impacts.
Our laboratory experiments of artificially produced

raindrops with a well-defined size and velocity on a
reservoir filled with high concentrations of microplas-
tic particles are in good agreement with the sim-
ulation predictions. The experiments clearly con-
firm that microplastic particles are contained in the
ejected spray droplets.
Based on our simulations of a single raindrop event,

assuming an average microplastic particle concentra-
tion of 2.9 particles per liter at the ocean surface, we
estimate that a realistic upper bound for the annual
number of microplastic particles transitioning dur-
ing rainfall from global oceans into the atmosphere
is a hundred trillion (1014). This estimate contains
a number of uncertainties such as microplastic con-
centration at the ocean surface, calling for additional
research to narrow this range further down.
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Andreas Held2 and Stephan Gekle1

November 12, 2021

*Correspondence:
moritz.lehmann@uni-bayreuth.de
1Biofluid Simulation and Modeling – Theoretische
Physik VI, University of Bayreuth
2Technischer Umweltschutz, Fachgebiet
Umweltchemie und Luftreinhaltung, Technische
Universität Berlin

S1 Model Details

S1.1 Estimating Hydrodynamic Di-
ameter of IBM Particles by Sed-
imentation

Although the IBM particles have no intrinsic size,
they interact with the LBM lattice at the length
scale of the distance between two neighboring lat-
tice points, which in LBM units is 1. Here we check
the hydrodynamic particle diameter with the Stokes
drag. The entire test is in LBM units. We let a single
IBM particle float vertically upwards or downwards
and measure its velocity uz to determine its diameter
dp = 2Rp via the force balance of buoyant force Fg

and drag force FStokes. mp and ρp are the mass and
density of the particle, m is the mass of the displaced
fluid, g is the gravitational constant and ν and ρ = 1
are the kinematic shear viscosity and density of the
fluid.

(mp −m) g = Fg = FStokes = 6π ν ρRp uz (S1)
(
ρp
ρ

− 1

)
V f = 6π ν ρRp uz (S2)

(
ρp
ρ

− 1

)
4

3
π R3

p f = 6π ν ρRp uz (S3)

dp = 2Rp =

√
18 ν ρ2 uz

(ρp − ρ) f
(S4)

Here f is the force F per volume Ṽ :

f =
F

Ṽ
=

mg

Ṽ
=

ρ Ṽ g

Ṽ
= ρ g (S5)

We expect dp ≈ 1 no matter what. To test this,
we place a single IBM particle in the middle of a
1283 simulation box with the outmost layer of lat-
tice points being (non-moving bounce-back) bound-
ary points. We vary ρp and ν. To have consistent
tests, we adjust f such that the target sedimenta-
tion velocity of a particle with hydrodynamic diame-
ter dp,target = 1 is constant at uz,target:

f = f(ρp, ν) =
18 ν ρ2 uz,target

(ρp − ρ) d2p,target
(S6)

To also make sure the measurement is generally in-
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Figure S1: The hydrodynamic diameter of IBM parti-
cles for varying particle material density ρp and kine-
matic shear viscosity ν at varying volume force f such
that the target sedimentation velocity is uz,target =
10−4 (top) and uz,target = 10−5 (bottom).

dependent of f , we choose two different velocities
uz,target ∈ {10−4, 10−5}. With these settings, we first
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simulate 100000 LBM time steps so that the particle
velocity reaches equilibrium. In this time, the par-
ticle moves approximately 10 (uz,target = 10−4) or 1
(uz,target = 10−5) lattice points up or down from the
box center depending on ρp ≶ ρ. We then measure
the z-velocity 100 times at 100 LBM time steps apart,
calculate the corresponding hydrodynamic diameter
and take the average as one data point and the stan-
dard deviation as its uncertainty. The results are pre-
sented in figure S1. We observe almost no variation
of dp when varying ρp except for the region around
ρp ≈ ρ, where due to the nature of the test errors
increase when approaching neutral buoyancy. How-
ever there is some variation in dp when varying ν:
when decreasing ν by several orders of magnitude, dp
becomes slightly smaller.

S1.2 Estimating Time of Droplet Sep-
aration from Crown

The droplet tracking algorithm only delivers the
droplet radius R0, velocity u⃗0 (with vertical compo-
nent uz) and detection time td when a droplet touches
the ceiling of the simulation box at altitude hair over
the undisturbed pool surface. From this, we recon-
struct the approximate time of separation from the
crown rim based on the measured time of detection,
droplet radius (position of the droplet center at time
of detection), time-dependent altitude of the crown
rim and the vertical velocity at the time of detection:

ts ≈ td − hair −R0 − hcrown(ts)

uz
(S7)

We obtain hcrown(t) from the generated images (fig-
ure 2 (b) and equivalent for other raindrop diame-
ters). For each of the images, we determine an inter-
val of confidence for the vertical position of the crown
rim. In figure S2 we then fit an expression of the form

hcrown(t) = b− a

t+ a
b

(S8)

to the data points so that, with k = hair−R0− b, we
have an implicit equation that we can solve for ts:

0 = t2s +

(
k b+ uz a

uz b
− td

)
ts + a

k + b− uz td
uz b

(S9)

ts =
td
2

− k b+ uz a

2uz b
(S10)

+
(−)

√
1

4

(
k b+ uz a

uz b
− td

)2

− a
k + b− uz td

uz b

The only assumption in this approach is that uz is
constant during the 1 to 2 cm flight distance between
the moment of separation from the crown and the

moment of detection.
We show the maximum altitude of ejected droplets
by time of detection in figure S3 (a) and by approxi-
mate time of separation from crown in figure S3 (b).
The fitted parameters are given in table S1. While
in S3 (a) the maximum altitude clearly drops with
time – in part caused by fast droplets moving faster
through the simulation box and being detected ear-
lier, the decrease of maximum altitude by time is
still present in S3 (b), although with more noise. We
observe that the droplets separating from the crown
have highest velocity in the beginning and lower ve-
locity in the later phase of the splash. The time at
which the last droplets (detected at 10ms) separate
from the crown rim is between 2ms and 5ms de-
pending on raindrop diameter; however the border
is somewhat diffuse.
Based on this, we introduce the cut-off altitude hcut:
Above hcut, almost all droplets are counted within
the simulated 10ms time frame whereas below hcut,
after the simulated time frame there may be more
droplets in this regime. This means that hcut is a
threshold showing us where our data is complete or
incomplete.
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Figure S2: Confidence intervals for the time-
dependent altitude of the crown rim hcrown(t) for dif-
ferent raindrop diameters with equation (S8) fitted.

d/mm a/(m ·ms) b/m
2 0.00139± 0.00055 0.00313± 0.00016
3 0.01177± 0.00114 0.00776± 0.00016
4 0.03451± 0.00211 0.01282± 0.00021
5 0.06412± 0.00353 0.01708± 0.00028
6 0.10694± 0.00719 0.02183± 0.00046
7 0.14563± 0.00918 0.02559± 0.00053

Table S1: Fitted parameters for eq. (S8).
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(a)

(b)

Figure S3: Maximum altitude of ejected droplets by
time of detection (a) and by approximate time of sep-
aration from crown (b) via calibration through eq.
(S10). (b) defines the cut-off altitude hcut, indicated
by horizontal lines: Above hcut, almost all droplets
are counted within the simulated 10ms time frame
whereas below hcut, after the simulated time frame
there may be more droplets in this regime.

S1.3 Drag Force Model for Ejected
Droplets

The initial total and z-velocity of the ejected droplets
from a 4mm diameter raindrop are provided in figure
S4. From the initial total velocity, we estimate that
the Reynolds number initially is in the range 20 −
400 (see figure S4), decreasing as droplets are slowed
down by gravity and drag force.
The drag force on a sphere with radius R and velocity
u⃗ moving through a fluid (in our case air) follows

F⃗drag = −1

2
ρa ACD |u⃗| u⃗ = −β CD |u⃗| u⃗ (S11)

with ρa being the air density and A = π R2 being
the cross-section of the sphere. CD = CD(Re(uz)) is
the drag coefficient for a sphere that depends on the
Reynolds number Re = 2Rρa u

µa
.

Considering not a solid sphere, but a viscous droplet
with (dynamic) viscosity contrast λ, Feng [1] provides

CD(Re, λ) =
68Re−

2
3

λ+ 2
+

λ− 2

λ+ 2

24

Re

(
1 +

Re
2
3

6

)

(S12)
for the range 5 < Re ≤ 1000 and

γ =
3λ+ 2

λ+ 1
(S13)
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Figure S4: Initial velocity of ejected droplets for the
4mm diameter raindrop: (a) Total velocity |u⃗0| and
(b) z-component of velocity uz. Total velocity al-
lows estimating the Reynolds number range while
the z-component plot with horizontal lines eases un-
derstanding of how the point cloud is warped and
stretched in the maximum altitude plot in figure 3 in
the main text.

CD(Re, λ) =
8 γ

Re

(
1 +

γ Re

20

)
− γ Re log(Re)

100
(S14)

for the range 0 ≤ Re ≤ 5. In our case (λ = ρ ν
µa

≈
59.40), Feng’s model is very close to the solid sphere
model by Morrison [2, 3]. We illustrate these models
in figure S5.
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Figure S5: Viscous droplet (Feng) versus solid sphere
(Morrison) models for the drag coefficient of a sphere
CD(Re) illustrated. We are only interested in the
range Re < 1000 (white area), because the ejected
droplets do not go any faster. Stokes law (CD = 24

Re ,
blue line) would greatly underestimate the drag force
for fast-moving droplets [4].
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S2 Model Validation

S2.1 Validation of VoF and Surface
Tension Model

A surface tension phenomenon to which the analytic
solution is known is the Plateau-Rayleigh instability.
It is visible whenever a laminar, thin stream of liq-
uid breaks up into droplets, for example at a faucet.
Here we study the isolated phenomenon on a per-
turbed cylinder of fluid without gravity as a way to
validate our VoF and curvature calculation models [5,
6]. We do the simulations with D3Q19 SRT, density
ρ = 1, initial velocity u⃗ = 0 everywhere, relaxation
time τ = 1 and surface tension σ = 0.1.
According to the analytic solution, we expect that
that perturbations with λ < 2π R are unstable and
decay and that λmax ≈ 9R is the perturbation wave-
length of maximum growth rate [7]. Our simulations
(illustrated exemplary in figure S6), that only take a
few seconds of compute time each, show good agree-
ment with the analytic solution.
To examine the growth rate quantitatively, we mea-

Figure S6: A periodic cylinder of fluid (length L =
512, radius R = 512

7·9 ) is initially perturbed with a sine
wave (amplitude A = 0.1R, wavelength λ = 9R).
The perturbation grows until the cylinder separates
into droplets. The images (top to bottom) are each
separated by 100 LBM time steps.

sure the cylinder (or later sphere) radius at the max-
imum of the initial undulation as the average of the
diameters in x- and z-directions. The cylinder of fluid
is aligned along the y-axis. We do this measurement
after every LBM time step for 3000 time steps for

λ ∈ {1, 2, 3, ..., 25} [5]. The initial radius of the cylin-
der is R = 8 and the initial perturbation amplitude
is A = 0.1R. The relaxation time is τ = 1 and the
surface tension coefficient is σ = 0.1. The results are
plotted in figure S7.
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Figure S7: The center radius R of the fluid cylin-
der (and later sphere) measured over time. For dif-
ferent wavelengths λ of the initial undulation, R
will either decay from its initial perturbed state at
R(t = 0 s) = 8.8 down to R = 8.0 or increase ex-
ponentially until the cylinder separates into droplets.
The separation radius of approximately Rsep = 12.5
is indicated by the horizontal gray line. After separa-
tion, the slope of the curve increases even more until
the curve reaches a maximum, after which the drop
relaxes to a constant radius. For some curves there is
a ripple later in the curve caused by satellite droplets
fusing with the main drop after separation.
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Figure S8: An example of the fitting for λ = 9R with
equation (S15).

For obtaining the growth rate, we fit an exponential
of the form

R(t) = R0 e
k t (S15)

to each curve in the range before separation of the
cylinder where R < 12.5m, as indicated by the hor-
izontal gray line in the plot. An example of one of
the fits is shown in figure S8. Plotting the growth
rates k for all λ values (figure S9) shows that an ini-
tial undulation with λ < 2π is unstable. The maxi-
mum growth rate deviates a bit from the theoretical
λtheo
max ≈ 9R at λsim

max = 10R.
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Figure S9: The growth rate k from equation (S15)
plotted for different initial undulation wavelengths λ.

S2.2 Oblique Drop Impact

To validate our VoF-LBM solver, we recreate an
oblique droplet impact setup [5] and compare our
simulation with high-speed images of the experiment
[8, 9].
The setup consists of a cubic simulation box filled
with fluid in the bottom half with a small droplet ini-
tialized just above the surface with a velocity down-
ward at an angle α. The droplet upon impact forms
an asymmetric cavity and crown which breaks up into
small droplets.
In order to stay as close to the experimental setup as
possible, we choose these parameters:

� droplet diameter dSI = 0.1mm

� fluid density ρSI = 1000 kg
m3

� dynamic viscosity µSI = 8.36 · 10−4 kg
m s

� surface tension coefficient σSI = 0.072 kg
s2

� gravitational acceleration gSI = 9.81 m
s2

� height of the pool hSI = 0.5mm

� cubic simulation box with side length LSI =
1mm

� Weber number We = 416.5

� impact angle α = 28.5◦

These values result in an impact velocity of uSI =
17.32 m

s and a Reynolds number of Re = 2071. In
simulation units, three independent parameters are
chosen for conversion to simulation units,

� fluid density ρsim = 1

� impact velocity usim = 0.05

� simulation box side length Lsim = 384

resulting in the remaining quantities in simulation
units to be:

� kinematic shear viscosity νsim = 9.27 · 10−4

� surface tension σsim = 2.30 · 10−4

� force per volume f sim = 2.13 · 10−10

The simulations are done with D3Q19 and the SRT
operator.
The in figure S10 illustrated time frames are t =
{0.46, 2.33, 8.22, 12.15, 18.9} · ti, whereby ti =

d
u , or

in lattice units equivalent to

tsim = {353, 1789, 6313, 9331, 14515} ·∆t.

In the last few frames, artifacts in the cavity become
visible, caused by several simulation parameters be-
ing close to the limit of their stable range.

Figure S10: The setup from [9], figure 3 recreated in
simulation. The images from the experiment had to
be individually rescaled, because the length scale is
not kept the same across images and no scale bars are
present in the original image series. Here, the length
scale is kept constant for all images and the diameter
of the drop (top left) is 0.1mm.
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S2.3 Crown Formation by Drop
Impact on a Shallow Pool

Here we validate our fluid solver on a crown formation
setup [10, 11] that consists of a small drop impact-
ing a shallow pool of fluid at high speed [5]. The
simulations are done with D3Q19 and the SRT col-
lision operator. For the drop radius only the range
DSI ∈ {2.0, 4.2}mm is given in [11], so in the sim-
ulation the arithmetic mean is chosen. The fluid in
the experiment is not pure water but 70% glycerol in
water by weight. The full list of parameters is:

� drop diameter dSI = 3.1mm

� height of the pool hSI = 0.5 dSI

� fluid density ρSI = 1177.9 kg
m3 , assuming T SI ≈

25◦C [12]

� surface tension coefficient σSI = 0.0661 kg
s2 , as-

suming T SI ≈ 25◦C [13]

� gravitational acceleration gSI = 9.81 m
s2

� box dimensions LSI
x,y = 30mm, LSI

z = 15mm

� Reynolds number Re = 1168

� Weber number We = 2010

These values result in an impact velocity of uSI =
6.03 m

s and a kinematic shear viscosity of νSI =

1.60 · 10−5 m2

s . In simulation units, three indepen-
dent parameters are chosen for the dimensionaliza-
tion procedure,

� fluid density ρsim = 1

� impact velocity usim = 0.05

� simulation box size in x-direction Lsim
x = 496

resulting in the remaining quantities in simulation
units to be:

� kinematic shear viscosity νsim = 2.19 · 10−3

� surface tension σsim = 6.37 · 10−5

� force per volume f sim = 4.08 · 10−8

The in figure S11 simulated time frames are tSI =
{0.3, 1.0, 3.0, 7.5, 10.0}ms, whereby the starting
point of the simulation is offset by tSI0 = 0.13ms to
synchronize the first frame with the experiment. In
lattice units these times are:

tsim = {339, 1735, 5724, 14700, 19687} ·∆t

The simulation shows good agreement with the ex-
periment. In the simulation, the crown is more sym-
metric, appears a bit wider than in the experiment
and later shows slight octagonal artifacts in its shape.
The height of the crown is in good agreement with
the experiment.
Possible discrepancies may be caused by deviations
in the density and surface tension of the fluid as well
as the sphere radius.

Figure S11: The simulation results are compared to
the experiment from [10].
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S3 Model Robustness

S3.1 Self-Test: Varying Impact Velocity u in Lattice Units

(a) u = 0.001

(b) u = 0.005

(c) u = 0.050

(d) u = 0.200

(e) u = 0.300

Figure S12: Visual comparison of the 4mm diameter raindrop impact simulation without IBM particles for
lattice resolution Lx = 464 for various impact velocities u in lattice units. Time stamps (left to right) are
t ∈ {0.0, 2.5, 5.0, 7.5, 10.0}ms.
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S3.2 Influence of LBM Lattice Reso-
lution on Droplet Distribution

The lattice resolution Lx can be varied within the
limits of video memory capacity. Generally, physical
effects should not depend on the Lx, given it is
large enough to resolve the tiny droplets. Figures
S19 and S20 give an overview on how different
resolutions affect the simulation visually. Our

Figure S13: Diameter and maximum altitude of
droplets after impact of a 4mm diameter terminal
velocity raindrop for various lattice resolutions. The
diameter of the circles indicates the number of mi-
croplastic particles enclosed in the droplet.

IBM implementation restricts us to single-GPU
simulations and our biggest GPUs (Radeon VII)
have 16GB video memory, limiting the resolution
to 464 × 464 × 394. However without particles, we
can simulate on multiple GPUs (4x Radeon VII) by
domain decomposition [14], enabling resolutions of
up to 748× 748× 636. The four simulation domains
are indicated by thin lines in the illustrations.

We now examine the influence of lattice resolu-
tion on the droplet and particle distributions. We
run the simulation for d = 4mm and ρp = 1.05 g

cm3

100 times for every lattice resolution, with the
microplastic particles each time being initialized at
different random positions. The maximum altitude
depending on droplet diameter is illustrated in figure
S13.
We see that Lx = 256 is insufficient for meaningful
results. Lattice resolution limits the minimum size
of resolved droplets; higher resolutions are able to

resolve smaller droplets. The region of large droplets
is covered by higher resolutions as well.
We create histograms, revealing the size distribu-
tion of droplets (figure S14), fluid volume (figure
S15), how many particles are present in droplets
depending on size (figure S16) as well as the particle
concentration depending on droplet size (figure S17).
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Figure S14: The size distribution of droplets depend-
ing on lattice resolution Lx.
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Figure S15: The distribution of ejected fluid volume
by droplet diameter and lattice resolution Lx. The
(too) coarse lattice resolution Lx = 256 cannot re-
solve small droplets, but the fluid volume must go
somewhere, so it accumulates at the smallest possi-
ble resolvable droplets, leading to an artificial peak
around d ≈ 0.75mm.

For lattice resolution as low as Lx = 256, small
droplets cannot be resolved, creating an artificial
peak at d = 0.75mm in figure S15 as a numerical
artifact.
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Figure S16: The distribution of microplastic particles
in droplets depending on droplet diameter looks sus-
piciously similar to the distribution of ejected fluid
volume depending on droplet diameter in figure S15.
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Figure S17: The particle concentration in ejected
droplets depending on droplet size.

We then determine the amount of droplets (figure
S18 (a)), fluid (S18 (b)) and particles in droplets
(S18 (c)) ejected above a certain altitude. For higher
resolution, the number of droplets is generally larger
as more small droplets are resolved. The ejected
fluid volume and number of particles in ejected
droplets however approach a plateau for increasing
resolution. This indicates that the resolution of
Lx = 464 is sufficient to model particle transport.
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Figure S18: (a) Number of droplets, (b) fluid volume
and (c) number of particles in droplets ejected above
a specified altitude depending on lattice resolution.
All other parameters (that determine the physics of
the system) are kept the same across simulations. For
altitudes lower than hcut (asterisks), the distributions
are considered the lower bound (dashed lines) and the
upper bound is undefined as indicated by the shaded
areas (see section 2.3.2).
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(a) Lx = 64

(b) Lx = 128

(c) Lx = 256

(d) Lx = 464

(e) Lx = 636

(f) Lx = 748

Figure S19: Visual comparison of the 4mm diameter raindrop impact simulation without IBM par-
ticles for various lattice resolutions Lx in perspective view. Time stamps (left to right) are t ∈
{0.0, 2.5, 5.0, 7.5, 10.0}ms. We provide subfigure (f) animated as an additional video file (figure-S19f.mp4)
in the supplementary files.
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(a) Lx = 64

(b) Lx = 128

(c) Lx = 256

(d) Lx = 464

(e) Lx = 636

(f) Lx = 748

Figure S20: Visual comparison of the 4mm diameter raindrop impact simulation without IBM par-
ticles for various lattice resolutions Lx in orthogonal view. Time stamps (left to right) are t ∈
{0.0, 2.5, 5.0, 7.5, 10.0}ms.
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S4 Additional Data

S4.1 Simulation Unit Parameters for
Section 3.1

SI-units LBM units
drop diameter d 4.1mm 74.8
impact velocity u 7.2 m

s 0.05
box dimensions Lx,y,z 10 d, 10 d, 8.5 d 748, 748, 636
pool height h 4 d 299.2

kin. shear viscosity ν 1.0 · 10−6 m2

s 1.267 · 10−4

water density ρ 1018.3 kg
m3 1

surface tension σ 0.073 kg
s2 6.307 · 10−5

grav. acceleration g 9.81 m
s2 2.593 · 10−8

Table S2: The simulation parameters for the simula-
tion in section 3.1 before and after unit conversion.

S4.2 Figure 7 in Separate Figures
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Figure S21: Figure 7 (a) extended as separate figures
for each raindrop diameter with the non-resolvable
diameter interval marked in gray.
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Figure S22: Figure 7 (b) extended as separate figures
for each raindrop diameter with the non-resolvable
diameter interval marked in gray.

S4.3 Velocity Inclination of Ejected
Droplets for 4mm Diameter
Raindrop Impacts
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Figure S23: The velocity inclination from the verti-
cal axis of ejected droplets (a) by the approximate
time the droplets separate from the crown rim and
(b) by droplet diameter for 100 4mm diameter rain-
drop impacts. The initially ejected, smaller droplets
are inclined more compared to later ejected, larger
droplets.
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S4.4 Figure 14 (b) for Different Verti-
cal Updraft Velocity

Figure S24: Figure 14 (b) for different vertical up-
draft velocity. The black curve represents the lifetime
of airborne droplets due to evaporation (eq. (11)).
Droplets with diverging airborne time have the val-
ues capped to be visible in the diagrams.

S4.5 Data table for figure 14 (c)

uupdraft/
m
s 2mm 3mm 4mm 5mm 6mm 7mm

0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.10 0.00 0.00 0.00 0.00 0.00 0.00
0.25 0.00 0.00 0.00 0.00 0.00 0.00
0.50 0.01 0.00 0.00 0.00 0.00 0.00
0.75 0.01 0.04 0.00 0.00 0.00 0.00
1.00 0.27 0.17 0.08 0.00 0.00 0.00
1.25 0.98 0.50 0.55 0.04 0.00 0.00
1.50 1.43 1.78 1.75 0.68 0.04 0.00
2.00 2.30 5.56 6.37 5.56 2.97 0.67

Table S3: Data for figure 14 (c): The number of mi-
croplastic particles per raindrop of 2mm to 7mm di-
ameter in spray droplets with airborne time longer
than the evaporation lifetime. These particles are
considered picked up by the atmosphere. Values are
given for a concentration of 5000 microplastic parti-
cles per cm3 in sea water.

S4.6 Figure 15 (b) with Vpre,total
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Figure S25: Figure 15 (b) with Vpre,total = 3.82 ·
1014 m3 set as a fixed parameter. The curves in differ-
ent shades of gray represent different vertical updraft
velocity. If the rain rate was one fixed value every-
where on the globe at all time, then the curves in this
figure would be the global estimate for transitioning
particles. In nature however, rain rate follows an ex-
ponential distribution as modeled by Rice-Holmberg.
We take this rain rate distribution into account in the
global estimate in the manuscript.
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S4.7 Influence of Microplastic Density

Here we examine the influence of particles with dif-
ferent material density on impact dynamics. The
density variation for plastics ranges from 920 kg

m3

(polypropylene) to 2170 kg
m3 (polytetrafluoroethy-

lene). To estimate the effect of gravity and particle
material density, we calculate how far a microplastic
particle would sediment during our 10ms simulated
time frame using eq. (S3). With the plastic type of
highest density (2170 kg

m3 ), we get a maximum sedi-
mentation velocity of

uz =

(
ρp
ρ

− 1

)
d2 g

18 ν
≈ 0.0067

m

s
(S16)

so during 10ms the particle travels a distance of
0.067mm or 0.62 lattice points. Whilst this effect
is small, it could have some impact on the results, so
we simulate four different material densities just to
make sure.
In the histograms revealing the size distribution
of droplets and how many particles are present in
droplets depending on their diameter (figure S26),
we see no significant differences in the data sets.
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Figure S26: (a) The size distribution of droplets
and (b) the distribution of microplastic particles in
droplets depending on particle material density ρp.

The height distribution of ejected droplets and par-
ticles are plotted in figure S27.
During the short duration of the initial phase of the
impact, we do not observe any significant differences
in both impact dynamics and particle advection for
different particle material densities. The particles are
entirely passively advected with the fluid. This means
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Figure S27: (a) Number of droplets and (b) parti-
cles in droplets ejected above a specified altitude for
various microplastic particle densities. For altitudes
lower than hcut (asterisks), the distributions are con-
sidered the lower bound (dashed lines) and the upper
bound is undefined as indicated by the shaded areas
(see section 2.3.2).

that as long as the particles are small enough, their
properties have no influence on the transport behav-
ior during raindrop impacts.
However in the long term, particles less dense than
water tend to accumulate at the water surface, mak-
ing them more likely to cross the interface than par-
ticles more dense than water that sediment to greater
depths. Only particles directly under the water sur-
face can be ejected during rainfall (see the region
where ejected particles originate in section 3.3.4).
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S4.8 Visualization of Simulations

S4.8.1 Simulations of Raindrops with Various Diameters

(a) d = 1mm

(b) d = 2mm

(c) d = 3mm

(d) d = 4mm

(e) d = 5mm

(f) d = 6mm

(g) d = 7mm

Figure S28: Visual comparison of the impacts of differently sized raindrops. The simulation box size is Lx =
464 and illustrated time stamps (left to right) are t ∈ {0.0, 2.5, 5.0, 7.5, 10.0}ms. For smaller raindrops, the
simulation box is scaled down such that the box width is always 10 times the raindrop diameter. Ejected
particles are marked in red.
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S4.8.2 Oblique Impacts

(a) α = 0◦

(b) α = 10◦

(c) α = 20◦

(d) α = 30◦

(e) α = 40◦

Figure S29: Visual comparison of the 4mm diameter raindrop impact simulation without microplastic
particles for various impact angles α. Time stamps (left to right) are t ∈ {0.0, 0.5, 1.0, 2.5, 5.0}ms and
lattice resolution is Lx = 748.
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(a) α = 0◦

(b) α = 10◦

(c) α = 20◦

(d) α = 30◦

(e) α = 40◦

Figure S30: Visual comparison of the 4mm diameter raindrop impact simulation with microplastic particles
for various impact angles α. Time stamps (left to right) are t ∈ {0.0, 0.5, 1.0, 2.5, 5.0}ms and lattice
resolution is Lx = 464. Ejected particles are marked in red.
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Abstract

Microplastic particle concentration at the sea surface
is critical for quantifying microplastic transport across
the water-air interface. Previous studies suggest that
the concentration at the sea surface is enhanced com-
pared to bulk concentration, yet little is known about
the detailed mechanisms behind this enhancement. In
this work, we model one particular process in simula-
tion that may contribute to this enhanced surface con-
centration: bubble scavenging. Using lattice-Boltzmann
Volume-of-Fluid simulations, we find that rising bubbles
indeed generate a net flow of particles toward the surface.
The efficiency of the process, however, highly depends on
the microplastic particle surface properties. Clean, hy-
drophobic particles adhere much better to the bubble
surface and are therefore transported significantly bet-
ter than weathered, hydrophilic particles that are only
entrained in the flow around a bubble.

Keywords: microplastics; bubbles; sea surface; lattice
Boltzmann method; Volume-of-Fluid; GPU; OpenCL

1 Introduction

Waves on the ocean surface create myriads of air bub-
bles [1] that rise to the surface and burst. During rise,
bubbles can interact with particles suspended in the wa-
ter [2–7] and enrich particle concentration prior to bub-
ble burst by bubble scavenging [8–12]. At burst, bubbles
eject fine water droplets into the air, either in the form of
film droplets or jet droplets of various size depending on
bubble diameter [13–21]. This process is associated with
aerosol production [10, 22–25], including bacteria [26, 27]
and organic compounds [28]. Besides these, bursting can
also lead to the ejection of microplastic particles into the
air [29–33] similar to microplastic ejection by impacting
raindrops [34].

Knowing the concentration of microplastic particles
in the sea surface microlayer (SML) is key for estimat-
ing environmental relevance of this water-air transport.
Experimental studies show large local variations in ma-
rine microplastic particle concentration [35–38], and find
that concentration at the SML is largely enhanced com-
pared to bulk concentration [39–41], yet don’t identify
the mechanisms leading to this difference in concentra-
tion between SML and bulk.

In this work we investigate vertical microplastic trans-
port in the water column with the bubble scavenging
mechanism by using computer simulations. Specifically
we aim to understand the impact of particle wetting
properties on transport efficiency.

2 Methods

2.1 Volume-of-Fluid Lattice Boltzmann
Method

In this work we use the Volume-of-Fluid (VoF) lattice
Boltzmann method (LBM) implementation FluidX3D
[34, 42–47] that has been extended to simulate rising
bubbles with Hoshen-Kopelman [48] volume tracking and
the ideal gas law

p V = nRT = const. (1)

The method is thoroughly validated in [34, 44–47, 49].
VoF provides three classes of Cartesian grid points –
fluid, interface and gas. The fluid phase is simulated with
regular LBM, the interphase is kept sharp at a thickness
of one lattice cell and handles surface tension, and the gas
phase is not simulated and treated as vacuum. To accom-
modate for bubbles, all separate gas domains are tracked
with a Hoshen-Kopelman approach, computing their vol-
ume and pressure. Since our simulations are isothermal,
the product p V must remain constant, which is ensured
by modifying density in reconstructed gas equilibrium
populations in the VoF-LBM model. Special considera-
tion is given to events when a bubble splits in two or more
smaller bubbles or when two or more bubbles merge, for
which trigger events are detected [47].
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2.2 Immersed-boundary method

Microplastic particles are modeled by the immersed-
boundary method (IBM) as in [34, 42]. A single IBM
point-particle (with an effective hydrodynamic diameter
of the lattice constant) corresponds to one microplastic
particle. These IBM particles are neutrally buoyant and
do not interact with each other, reflecting the natural sit-
uation where the microplastic concentration is expected
to be rather low (between 1 to 7 particles per liter [35,
50]). Neutral buoyancy simplifies the IBM to one-way-
coupling, meaning particles are only passively advected
by the velocity field and interface forces and do not exert
forces back on the fluid. In addition, the non-interaction
allows us to simulate high particle concentrations for sta-
tistically meaningful results and then linearly scale down
concentrations to environmental estimates. Unlike in an
experiment, where such a large concentration would sig-
nificantly increase Einstein viscosity, there is no change
in viscosity in the simulation as the particles are modeled
as point-particles rather than spheres.

For this study, the interaction of the particles with the
water surface is critical. We consider two scenarios:

1. Non-sticky particles: Particles are only prevented
from leaving the water phase with a repelling hard
potential as in [34].

2. Sticky particles: Particles are prevented from leav-
ing the water phase with a repelling hard potential
as in [34], but additionally, once entering the direct
vicinity of the water surface (distance of one lattice
cell or less), a second attracting hard potential locks
them onto the surface.

A technical difficulty in both situations is that the exact
surface position in VoF-LBM is unknown. Hence the
approach is to apply a repelling force if during trilinear
velocity interpolation for a particle on the grid, at least
one of the eight grid points is gas. The force is applied
by replacing the unknown velocity of the gas point with
the lattice speed of sound ( 1√

3
grid cells per time step,

the fastest velocity possible in LBM units) in direction
opposed to the local surface normal approximation. In
case of a sticky surface, an attractive force is applied if at
least one of the eight points is interface. This is done by
adding the lattice speed of sound in the direction of the
local surface normal approximation to the fluid velocity
at the interface point.

In nature, other electrostatic interactions between par-
ticles bubble vortex also play a role [51], which are ne-
glected by our simplified model. Further, the shear forces
in the bubble vortex may separate particle aggregates
and enhance particle fragmentation, but these effects

are also not taken into account, as we only study non-
interacting, single particles.

2.3 Simulation parameters

All simulations are carried out with these parameters

for water: kinematic shear viscosity ν = 1.0 · 10−6 m2

s ,

density ρ = 1000 kg
m3 , surface tension σ = 0.072 kg

s2 , gravi-
tational acceleration g = 9.81 m

s2 . To eliminate one possi-
ble complication in the model, the microplastic particles
have neutral buoyancy with a density of ρp = 1000 kg

m3 .
With a resulting Bond number of Bo = 2.18 and Mor-

ton number Mo = 2.63 · 10−11, the expected bubble be-
havior is between ”spherical” and ”wobbling” [52]. This
behavior is matched by our simulations (figures 1 and 3).

3 Results and discussion

Rising bubbles in a water column can pick up particles
in a process known as bubble scavenging [8–12]. Other
works have already found that the microplastic concen-
tration at the water surface is enriched [39–41], yet the
mechanism for this enrichment is not identified. This
suggests that bubble scavenging may apply to microplas-
tic particles as well. We quantify this on a model system
with computer simulations.

It is expected that weathered particles in nature stick
less to the water surface due to their increased hydropilic-
ity [7, 53–55]. Thus we separately investigate the trans-
port of weathered, non-sticky particles, and clean, sticky
particles.

The simulation box geometry is 1.6 cm × 1.6 cm ×
12.8 cm (figures 1 and 3) and the boundaries in hori-
zontal directions are periodic. One bubble with diameter
db = 4mm is initially placed at zinitial = db and the simu-
lation is terminated once the bubble reaches the position
zfinal = 32 db − db, so the bubble travels a total distance
of hb = 12 cm. The microplastic particle concentration
is set to C = 105 particles per cm3. The total particle
count is about 3269298 with slight variation depending
on lattice resolution in the simulation. A concentration
this high allows to obtain accurate particle counts with
just a single simulation. In simulation units, the bubble
diameter is set to dsimb = 74. This corresponds to the
maximum box size allowed by the 40GB GPU memory
on the Nvidia A100 which is used in the present simula-
tions.

The simulated bubble travels the distance of hb =
0.12m in t = 0.88 s, resulting in an average velocity of
136 mm

s (equivalent to Reynolds number Re = 545), less
than the experimental value of approximately 200 mm

s
[56]. This is expected, because in the simulation, the
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bubble starts with zero velocity and the flow needs to
accelerate first. The behavior of a mostly spherical, wob-
bling bubble matches experimental findings [52].

3.1 Transport of non-sticky particles

0ms 116ms 229ms 334ms 443ms 548ms 670ms 774ms 880ms

Figure 1: Illustration of the simulation for the rising bub-
ble (particles do not stick to the bubble). The bubble
ascends in a spiral as a result of non-laminar flow. Par-
ticles are colored by initial z-position. Images are not in
uniform time intervals, but in uniform intervals of trav-
eled distance. This figure is provided as a video in the
supplementary files.

Figure 1 shows the simulation of the rising bubble
where particles do not stick to the water surface. At first
the bubble rises straight, but after the initial accelera-
tion phase it pursues a spiraling trajectory, visible when
it goes behind the slice of visualized particles and then
comes back to front. This rotational behavior is consis-
tent with experimental observations [51, 57]. At the end
of the image series, the bubble passes half-way through
the lateral periodic boundaries. Particles are colored by
their initial z-position to be able to see where particles
move in the vertical direction. A plume of particles is
clearly visible in the lower half of the column, where the
bubble still has been traveling in the plane of visualized
particles.

In perfectly laminar flow and in the absence of addi-
tional effects beyond hydrodynamics, net particle trans-
port through entrainment – particles dragged up by the
flow around the bubble – would be impossible due to
symmetry of the flow. Only when leaving the laminar

regime, this transport mode is possible. Observations
indicate that hydrophobic particles then may drop into
the sub-bubble vortex [57]. The 4mm diameter bubble
is well outside the laminar flow regime at Re = 545, re-
flected in the clearly asymmetric distribution of traveled
vertical particle distance in figure 2.

When taking the average of the traveled vertical dis-
tance for all particles and dividing by the traveled ver-
tical distance of the bubble, havg,rel =

1
hb

1
N

∑N
i=1 hi =

−8.56 · 10−4, with N = 3269298, the value is negative.
This is expected, because the bubble volume, devoid of
particles, starts at the bottom and moves to the top,
so the fluid containing the particles has a net down-
ward movement. To compute the net particle movement,
the number of particles expected in the bubble volume
Nb = C · π

6 d3b = 3351, times the distance traveled by the
bubble hb = 0.12m is added:

havg,rel,net =
1

hb

1

N +Nb

(
Nb hb +

N∑

i=1

hi

)
= (2)

=
1

hb

1

N +Nb
(Nb hb + havg,rel N hb) = (3)

=
1

N +Nb
(Nb + havg,rel N) = (4)

= +1.69 · 10−4 (5)

So overall the net movement almost cancels out.
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Figure 2: The distribution of the vertical travel distance
of microplastic particles relative to the travel distance of
the bubble. In this simulation, particles do not stick to
the bubble. The vast majority of values are around 0
(logarithmic scale), but the distribution clearly is asym-
metric towards positive distances, indicating particle en-
trainment as a consequence of non-laminar flow.

3.2 Transport of sticky particles

A possibly very efficient mechanism for particle trans-
port is sticking of particles to the water-air interface of
the bubble thus dragging the particles along with the ris-
ing bubble as shown in figure 3. Indeed, in simulations
with sticking particles, the distribution of traveled verti-
cal distance in figure 4 shows that the bubble picks up
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0ms 116ms 229ms 334ms 443ms 548ms 670ms 774ms 880ms

Figure 3: Illustration of the simulation for the rising bub-
ble (particles stick to the bubble). Particles are colored
by initial z-position. Images are not in uniform time
intervals, but in uniform intervals of traveled distance.
The rising bubble initially plunges a void in particle con-
centration that quickly disappears again due to mixing.
This figure is provided as a video in the supplementary
files.

more and more particles along its ascent and transports
them the remaining way up.

The average relative particle distance havg,rel =
1
hb

1
N

∑N
i=1 hi = +2.84 · 10−3 now is clearly positive. The

net average relative particle distance

havg,rel,net = +3.86 · 10−3 (6)

then also is positive, meaning direct capture does enrich
the particle concentration at the water surface.

Figure 4 shows the effects of both particle entrain-
ment and direct capture. A plateau is visible from about
0.4hb to 1.0hb (red line). From this plateau we calcu-
late an effective cross-section area in which any particle
gets stuck to the ascending bubble: While the bubble
travels between 0.4hb to 1.0hb, traversing a distance of
h = 0.072m, it picks up N = 20369 particles. With the
known initial concentration of C = 105 particles per cm3,
this number of particles corresponds to a fluid volume of
V = N

C = 2.0 · 10−7 m3 and cylindrical cross-section area

A = V
h = 2.83 · 10−6 m2. This is A

(db/2)2 π = 23% of the

cross-section area of the bubble, along which the bubble
picks up any particle that it encounters and transports
it to the surface. In other words, particles in the inner
part of the cylindrical column of water above the bubble,
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Figure 4: The distribution of the vertical travel distance
of microplastic particles relative to the travel distance
of the bubble. Here particles stick to the bubble. The
bubble picks up new particles along the entire distance
of travel and transports them to the top, visible as a
plateauing distribution highlighted by the red line.

when following the streamlines in the flow field created
by the bubble, get close enough to the water surface on
the upper half of the bubble to stick to it.

Finally, we verify the influence of numerical grid reso-
lution on our results. For lower simulation resolution,
we find cross-section areas of 29% (dsimb = 48), 31%
(dsimb = 32) and 38% (dsimb = 24), all of which are similar
to 23% in figure 4. The larger values for lower resolu-
tion are a result of the hard-potential around the bubble
surface extending by one lattice point, so for a smaller
bubble in simulation units, the relative thickness of the
hard potential is larger, increasing the bubble radius of
influence where particles adhere to the interface.

4 Conclusions

On the simulation model of a 4 mm diameter air bub-
ble, we investigated the interactions between microplas-
tic particles and air bubbles in water during bubble scav-
enging, when particle diameters are significantly smaller
than the bubble diameter. We considered two possible
mechanisms: entrainment – particles being dragged up in
the non-laminar flow caused by the bubble – and direct
capture – particles sticking to the bubble. The stick-
ing mechanism is expected to be particularly relevant
for hydrophobic microplastic particles. Pristine particles
are indeed rather hydrophobic and thus tend to stick
to bubbles, but become increasingly hydrophilic when
left weathering in the environment, sticking less to bub-
bles. Our simulations indicate that the direct capture
mechanism significantly increases vertical upward trans-
port in the water column when bubbles are present. We
therefore conclude that particle weathering may decrease
upward transport in the water column during bubble
scavenging. However, future laboratory experiments are
needed to confirm our results.
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Fluid dynamics simulations with the lattice Boltzmann method (LBM) are very memory intensive. Alongside
reduction in memory footprint, significant performance benefits can be achieved by using FP32 (single) precision
compared to FP64 (double) precision, especially on GPUs. Here we evaluate the possibility to use even FP16
and posit16 (half) precision for storing fluid populations, while still carrying arithmetic operations in FP32. For
this, we first show that the commonly occurring number range in the LBM is a lot smaller than the FP16 number
range. Based on this observation, we develop customized 16-bit formats—based on a modified IEEE-754 and
on a modified posit standard—that are specifically tailored to the needs of the LBM. We then carry out an
in-depth characterization of LBM accuracy for six different test systems with increasing complexity: Poiseuille
flow, Taylor-Green vortices, Karman vortex streets, lid-driven cavity, a microcapsule in shear flow (utilizing the
immersed-boundary method), and, finally, the impact of a raindrop (based on a volume-of-fluid approach). We
find that the difference in accuracy between FP64 and FP32 is negligible in almost all cases, and that for a large
number of cases even 16-bit is sufficient. Finally, we provide a detailed performance analysis of all precision
levels on a large number of hardware microarchitectures and show that significant speedup is achieved with
mixed FP32/16-bit.

DOI: 10.1103/PhysRevE.106.015308

I. INTRODUCTION

The lattice Boltzmann method (LBM) [1–4] is a powerful
tool to simulate fluid flow. The parallel nature of the un-
derlying algorithm has led to (multi-)GPU implementations
[5–62], becoming a popular choice as speedup can be up
to two orders of magnitude compared to CPUs at similar
power consumption. However, most GPUs have only poor
FP64 (double precision) arithmetic capabilities1 and thus the
vast majority of GPU codes have been implemented in FP32
(single precision), while most CPU codes are written in FP64.
This difference, and, in particular, whether FP32 is suffi-
cient for LBM simulations compared to FP64, has been a
point of persistent discussion within the LBM community
[15–20,31–36,52–58,60,63–65]. Nevertheless, only a few pa-
pers [19,35,36,52,60,66] provide some comparison on how
floating-point formats affect the accuracy of the LBM and
mostly find only insignificant differences between FP64 and
FP32 except at very low velocity and where floating-point

*Corresponding author: moritz.lehmann@uni-bayreuth.de
1As of June 2022, the only GPUs with >2 TFLOPs/s in FP64

are H100, MI250(X), MI210, A100, CMP 170HX, MI100, A30,
V100(S), Titan V, GV100, MI60, MI50, Radeon Pro VII, GP100,
P100, Radeon VII, W9100, and W8100. All other data-center, gam-
ing, and pro GPUs have limited FP64 capabilities.

round-off leads to spontaneous symmetry breaking. Besides
the question of accuracy, a quantitative performance compar-
ison across different hardware microarchitectures is missing,
as the vast majority of LBM software is either written only for
CPUs [67–79] or only for Nvidia GPUs [30–56] or CPUs and
Nvidia GPUs [18–29].

A second point of concern has been the amount of video
memory on GPUs, which is in general smaller than standard
memory on CPU systems and can thus lead to restrictions in
domain size. LBM solely works on density distribution func-
tions (DDFs) fi (also called fluid populations)—floating-point
numbers [80–83]—that need to be loaded from and written
to video memory in every time step. These DDFs take up
the majority of the consumed memory. If wanting to reduce
the memory footprint of LBM with reduced floating-point
precision, it comes to mind to store the DDFs in a lower
precision number format (streaming step) while doing arith-
metic in higher (floating-point) precision (collision step). This
is equivalent to decoupling arithmetic precision and memory
precision [84,85]. As a desirable side effect, since the lim-
iting factor regarding compute time is memory bandwidth
[12–21,30–45,52–55,59,60,63,64,67,86–88], lower precision
DDFs also vastly increase performance. Such a mixed pre-
cision variant, where arithmetic is done in FP64 and DDF
storage in FP32, has already been used by Refs. [35,57]. Using
FP32 arithmetic and FP16 DDF storage would be even better,
but has not yet been attempted due to concerns about possibly

2470-0045/2022/106(1)/015308(28) 015308-1 ©2022 American Physical Society102
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insufficient accuracy. Lower 16-bit precision has already been
successfully applied to other fluid solvers [89–91] and to a lot
of other high-performance computing software [92,93].

The purpose of this paper is thus twofold: First, to render
mixed FP32/16-bit precisions feasible for LBM, we intro-
duce customized 16-bit number formats that turn out to be
superior to standard IEEE-754 FP16 in LBM applications and
in many cases perform as accurately as FP32. Therein, we
leverage that some of the FP32 bits do not contain physical
information or are entirely unused, similar to Ref. [89]. This
approach requires minimal code interventions and can be eas-
ily combined with any velocity set, collision operator, swap
algorithm, or LBM extension. In addition to using custom-
built floating-point formats, we show that shifting the DDFs
by subtracting the lattice weights and computing the equi-
librium DDFs in a specific order of operations as originally
proposed by Skordos [66] and further investigated by He and
Luo [94] and Gray and Boek [60]—an optimization benefi-
cial across all floating-point formats and already widely used
[6–12,24–26,31,35,53,60,66,68–76,88,94]—turns out abso-
lutely crucial for the 16-bit compression.

Second, we present an extensive comparison of FP64,
FP32, FP16, shifted posit16 as well as our customized for-
mats. Regarding LBM accuracy, we study Poiseuille flow
through a cylinder [95], Taylor-Green vortex energy dissi-
pation [66,96], Karman vortices [97] from flow around a
cylinder, lid-driven cavity [30,33,37,39,49,52,98–103], defor-
mation of a microcapsule in shear flow [104–106] with the
immersed-boundary method (IBM) extension, and microplas-
tic particle transport during a raindrop impact [10] with the
volume-of-fluid and IBM extensions. Regarding performance,
we exploit the capability of our FluidX3D LBM implementa-
tion written in OpenCL [6–12] to provide benchmarks for all
floating-point variants on a large variety of hardware, from the
world’s fastest datacenter GPU over various consumer GPUs
and CPUs from different vendors to even a mobile phone
ARM system-on-a-chip (SoC), and show roofline analysis
[64,87,107] for one hardware example.

II. LATTICE BOLTZMANN ALGORITHM

A. LBM—overview

The LBM is a Navier-Stokes flow solver that discretizes
space into a Cartesian lattice and time into discrete time steps
[1–4]. For each point on the lattice, density ρ and velocity
�u of the flow are computed from so-called density distribu-
tion functions (DDFs) fi (also called fluid populations). The
DDFs are floating-point numbers and represent how many
fluid molecules move between neighboring lattice points in
each time step. Because of the lattice, only certain directions
are possible for this exchange and there are various levels of
this directional discretization, in 3D typically 19 (including
the center point), where space-diagonal directions are left
out. After exchange of DDFs from and to neighboring lattice
points (streaming), the DDFs are redistributed locally on each
lattice point (collision). For the collision, there are various ap-
proaches, the most common being the single-relaxation-time
(SRT), two-relaxation-time (TRT), and multirelaxation-time
(MRT) collision operators [1,12].

The computation of the streaming part is done by copying
the DDFs in memory to their new location. The algorithm is
provided in Appendix A 2 a with notation as in Appendix A 3.

B. DDF-shifting

To achieve maximum accuracy, it is essential not to work
with the DDFs fi directly, but with shifted f shifted

i := fi − wi

instead [53,60,66,88,94]. wi = f eq
i (ρ = 1, �u = 0) are the lat-

tice weights and ρ and �u are the local fluid density and
velocity. This requires a small change in the equilibrium DDF
computation,

f eq-shifted
i (ρ, �u) := f eq

i (ρ, �u) − wi (1)

= wi ρ ·
(

(�u ◦ �ci )2

2 c4
+ �u ◦ �ci

c2
+ 1 − �u ◦ �u

2 c2

)
− wi (2)

= wi ρ ·
(

(�u ◦ �ci )2

2 c4
− �u ◦ �u

2 c2
+ �u ◦ �ci

c2

)
+ wi (ρ − 1), (3)

and density summation:

ρ =
∑

i

(
f shifted
i + wi

) =
(∑

i

f shifted
i

)
+ 1. (4)

We emphasize that it is key to choose Eq. (3) exactly as pre-
sented without changing the order of operations,2 otherwise
the accuracy may not be enhanced at all [60,66,94]. With
this exact order, the round-off error due to different sums is
minimized. This offers a large benefit, most prominently on
FP16 accuracy, by substantially reducing numerical loss of
significance at no additional computational cost. Since it is
also beneficial for regular FP32 accuracy, it is already widely
used in LBM codes such as our FluidX3D [6–12], OpenLB
[68–71], ESPResSo [24–26], Palabos [72–76], and some ver-
sions of waLBerla [53]. In Appendix A 2, we provide the
entire algorithm without and with DDF-shifting for compar-
ison and in Appendix A 3 we clarify our notation.

We also recommend doing the summation of the DDFs in
alternating + and − order during computation of the velocity
�u to further reduce numerical loss of significance, for exam-
ple, ux = ( f1 − f2 + f7 − f8 + f9 − f10 + f13 − f14 + f15 −
f16)/ρ for the x component in D3Q19.

Gray and Boek [60] also proposed computing (ρ − 1) =∑
i f shifted

i as a separate variable and directly inserting it into
Eq. (3); while we do not advise against this, we found its
benefit to be insignificant at any floating-point precision while
increasing complexity of the code and thus omit it in our
implementation.

Although without DDF-shifting, the equation for the
equilibria dictates the number distribution of the DDFs,
with DDF-shifting applied, the DDFs are always centered
around zero. Higher-order equilibria definitions such as
Refs. [108–110], an alternative to Eq. (3), are likely to work as
well with 16-bit compression if DDF-shifting is applied, but
further validation is required.

2To minimize the overall number of floating-point operations, terms
should be precomputed such that f eq-shifted

i = A · ( 1
2 (B2 + C) ± B) +

D requires only three fused-multiply-add (FMA) operations.
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FIG. 1. Histogram of the DDFs for the lid-driven cavity simula-
tion from Sec. IV D (Re = 1000, Ma = 0.17, grid resolution 1283)
after 100 000 LBM time steps. The simulation is performed without
the DDF-shifting (top) and with DDF-shifting (bottom), both times
in FP32/FP32.

C. Which range of numbers does the LBM use?

In Fig. 1, we present the distribution of fi and f shifted
i for

the example system of the lid-driven cavity from Sec. IV D. A
more detailed look at the DDF distributions of this system are
provided in Figs. 19 and 20 in the Appendix. Similar data for
the remaining setups are given in Appendix Fig. 21. It is quite
remarkable how the number range in all cases is very lim-
ited. The fi accumulate around the LBM lattice weights (for
D3Q19 wi ∈ { 1

36 , 1
18 , 1

3 }) and the f shifted
i accumulate around

0, where floating-point accuracy is best. So for FP32 not only
are the trailing bits of the mantissa expected to be nonphysical
numerical noise [89], but also some bits of the exponent are
entirely unused, meaning one can waive these bits without
losing accuracy.

To find the theoretical maximum number range of fi and
f shifted
i , we insert �u j = c �c j

|�c j | in Eqs. (A4) and (3) and find

that 1
ρ

| f eq
i | � δ or 1

ρ
| f eq-shifted

i | � δshifted, respectively, with

the values of δ and δshifted depending on the velocity set in
use (Table I).

With τ > 0.5, through Eq. (A5), we get in the worst case

| fi| � |2 f eq
i | � 2 ρ δ, (5)

| f shifted
i | � |2 f eq-shifted

i | � 2 ρ δshifted, (6)

respectively, because the DDFs in stable simulations are
expected to follow the equilibrium DDFs. The density ρ

typically deviates only little from ρ ≈ 1. Assuming ρ < 2
leads to | fi| � 2 being the worst-case maximum number range
(D3Q13, no DDF-shifting). With the more typical D3Q19 and

TABLE I. The numerical value of δ and δshifted depending on the
used velocity set.

D2Q9 D3Q7 D3Q13 D3Q15 D3Q19 D3Q27

δ 0.45 0.47 0.50 0.42 0.34 0.30
δshifted 0.31 0.35 0.25 0.31 0.17 0.21

DDF-shifting, the same number range | f shifted
i | � 2 restricts

the density to a less strict ρ < 6. Keeping the sign is required
because f shifted

i (and also fi) can be negative.
| f shifted

i | � 2 and the resulting ρ < 6 is even sufficient for
covering a fairly large class of compressible flows. The shock
simulations in Ref. [108], for example, range in density from
0.6 to 2.2, so these simulations could possibly work as well.
However, careful considerations need to be made for the in-
dividual setup to not exceed this limit. If a higher value for
density is required, the floating-point formats with limited
range could be shifted toward higher numbers; however, care-
ful validation is required as this comes at the cost of worse
accuracy at small numbers. The later proposed posit formats
P160S and P161S do not put a limit on density, so they would
be a better fit for simulations with large density variation.

III. NUMBER REPRESENTATION MODELS

A 16-bit number can represent only 65 536 different val-
ues. The task is to spread these along the number axis in a
way that the most commonly used numbers are represented
with the best possible accuracy. There is a variety of number
representations that come to mind as a 16-bit storage format:
fixed-point, floating-point as well as the recently developed
posit format [111], and each of them can be adjusted specif-
ically for the LBM. Figure 2 illustrates the number formats
investigated in this paper and Fig. 3 shows their accuracy
characteristics.

A. Floating-point

1. Overview

In the normalized number range, a floating-point number
[80–83] is represented as

x = (−1)s︸ ︷︷ ︸
sign

· 2e−b︸ ︷︷ ︸
exponent

· (1 + 2−nm m)︸ ︷︷ ︸
mantissa

, (7)

with s being the sign bit, e being an integer representing the
exponent, and m being an integer representing the mantissa.
b is a constant called exponent bias and nm is the number
of bits in the mantissa (values in Table II). The precision
is log10(2nm+1) decimal digits3 and the truncation error is
ε = 2−nm .

When the exponent e is zero, the mantissa is shifted to the
right as a way to represent even smaller numbers close to zero,
although at less precision. This is called the denormalized
number range and making use of it during the conversions that
will be described below is not straightforward, but essential
alongside correct rounding to keep decent accuracy with the
16-bit formats.

2. Customized FP16 formats for the LBM

In our lattice Boltzmann simulations, we implement and
test three different 16-bit floating-point formats:

(1) FP16: Standard IEEE-754 FP16, with FP32 ↔ FP16
conversion supported on all CPUs and GPUs from within the
last 12 years.

3The +1 refers to the implicit leading bit of the mantissa.
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TABLE II. Comparing the properties of the number formats used here to store the LBM DDFs fi.

Bits nm b Digits ε Range Smallest normalized number Smallest denormalized number

IEEE FP64 64 52 1023 16.0 2.2×10−16 ±1.797693×10308 2.225074×10−308 4.940656×10−324

IEEE FP32 32 23 127 7.2 1.2×10−7 ±3.402823×1038 1.175494×10−38 1.401298×10−45

IEEE FP16 16 10 15 3.3 9.8×10−4 ±6.550400×104 6.103516×10−5 5.960464×10−8

FP16S 16 10 30 3.3 9.8×10−4 ±1.999023×100 1.864464×10−9 1.818989×10−12

FP16C 16 11 15 3.6 4.9×10−4 ±1.999512×100 6.103516×10−5 2.980232×10−8

Posit P160S 16 0–13 – �4.2 �1.2×10−4 ±1.280000×102 – 4.768372×10−7

Posit P161S 16 0–12 0 �3.9 �2.4×10−4 ±2.097152×106 – 2.910383×10−11

Posit P162C 16 0–12 0 �3.9 �2.4×10−4 ±1.999756×100 – 1.734724×10−18

(2) FP16S: We downscale the number range of IEEE-754
FP16 by ×2−15 to ±2 and use the convenience that all modern
CPUs and GPUs can do IEEE-754 floating-point conversion
in hardware.

(3) FP16C: We allocate one bit less for the exponent (to
decrease number range towards small numbers) and one bit
more for the mantissa (to gain accuracy). The number range
is also limited to ±2. This custom format requires manual
conversion from and to FP32.

FIG. 2. The number 1.0 represented by the different formats we
investigate here. The leftmost single bit is the sign s and the right-
most segment is the mantissa m. For floating-point (FP), the center
segment is the exponent e. FP16S and FP16C are new formats specif-
ically designed to store the DDFs. Fixed-point (INT16S) does not
have an exponent. Posits have dynamic partitioning of the segments,
with an extra regime segment and an optional exponent segment next
to the mantissa.

When looking at Table II and Fig. 3, FP16S and FP16C
differ in extended range toward small numbers versus halved
truncation error ε. The question arises which of these two
traits is more important for LBM. FP16 is inferior to both
FP16S and FP16C as it combines lower mantissa accuracy
and less range toward small numbers. Since FP16S comes at
no additional computational cost and complexity compared to
FP16, FP16S should always be preferred over FP16 for storing
the DDFs.

3. Floating-point conversion: FP32 ↔ FP16S

The IEEE-754 FP32 ↔ FP16/FP16S conversion is sup-
ported in hardware and therefore only briefly described below.

FP32 → FP16S: For the FP32 → FP16 conversion,
OpenCL provides the function vstore_half_rte that is exe-
cuted in hardware. To convert to the FP16S format instead, we
shift the number range up by 215 via regular FP32 multiplica-
tion right before conversion. This is equivalent to increasing
the exponent bias b by 15.

FP16S → FP32: For the FP16 → FP32 conversion,
OpenCL provides the function vload_half that is executed
in hardware. To convert from the FP16S format instead, we

FIG. 3. Accuracy characteristics of the number formats investi-
gated in this paper. This plot shows only the local minima (measured
graphs see Fig. 18). FP16C reduces number range but increases ac-
curacy in the normalized regime (horizontal part). For floating-point
formats, the downward slope indicates the denormalized part, where
accuracy behaves like fixed point. We also show 16-bit fixed-point
scaled by ×2−14 (INT16S). Posits (P16) have slopes left and right,
with highest accuracy in the middle, which here is shifted from 1 to

1
128 , hence the “S”. P160S/P161S have 0/1-bit exponents, making the
slopes more (less) steep and decreasing (increasing) number range.
P162C is a custom format with 2-bit exponent but asymmetric slope.
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shift the number range down by 2−15 via regular FP32 multi-
plication right after conversion.

4. Floating-point conversion: FP32 ↔ FP16C

For FP32 ↔ FP16C conversion, we developed a set of
fast conversion algorithms that work in any programming
language and on any hardware which we describe in some
more detail further below. An OpenCL C version is presented
in Listing 1.

We ditch NaN and Inf definitions for an extended number
range by a factor of 2 and less complicated and faster conver-
sion. In PTX assembly [112], the FP32 → FP16C conversion
takes 25 instructions and FP16C → FP32 takes 26 instruc-
tions.

FP32 → FP16C: The first step is to interpret the bits
of the FP32 input number as uint, for which there is the
as_uint(float x) function provided by OpenCL. The sign
bit remains identical as the leftmost bit via bit-masking and
bit-shifting. To assure correct rounding, we add a 1 to the 12th
bit from left (0x00000800), because mantissa bits at positions
12 to 0 later are truncated. Next, we extract the exponent e by
bit-masking and bit-shift by 23 places to the left.

For normalized numbers, the exponent is decreased by the
difference in bias 127 − 15 = 112 and bit-shifted to the right
by 11 places. A final bit-mask ensures that there is no overflow
into the sign bit. The mantissa is bit-shifted in place and or-ed
to sign and exponent.

For denormalized numbers, we first add a 1 to place
24 (0x00800000) of the mantissa (to later figure out how
many places the mantissa was shifted) and then bit-shift it
to the right by as many places as the new exponent is be-
low zero. Correct rounding, however, makes this a bit more
difficult: We need to add 1 for rounding to the leftmost
place of the mantissa that is cut off. To undo the initial
rounding we did earlier, instead of 0x00800000, we add
0x00800000-0x00000800=0x007FF800, then shift by one
place less than the new exponent is below zero, add 1 to the
rightmost bit and finally shift right the one remaining place.

The exponent itself is the switch deciding whether the nor-
malized or denormalized conversion is used. As an optional
safety measure, we add saturation: If the number is larger than
the maximum value, we override all exponent and mantissa
bits to 1 (bitwise or with 0x7FFF).

FP16C → FP32: To convert back to FP32, we first
extract the exponent e and the mantissa m by bit-masking and
bit-shifting. Additionally, since we intend to avoid branching,
we already count the number of leading zeros4 v in the
mantissa for decoding the denormalized format: We cast m to
float,5 reinterpret the result as uint, bit-shift the exponent
right by 23 bits and subtract the exponent bias, giving us the
base-2 logarithm of m, equivalent to 31 minus the number of
leading zeros.

4The OpenCL function clz(m) also counts the number of leading
zeros. While translated into a single clz.b32 PTX instruction (in-
stead of cvt.rn.f32.u32 mov.b32 shr.u32), clz.b32 executes
much slower, leading to noticeably worse performance.

5Casting an int to float implicitly does a log2 operation to
determine the exponent.

The sign bit is bit-masked and bit-shifted in place. The
exponent e again decides for normalized or denormalized
numbers: For normalized numbers (e �= 0), the exponent is
increased by the difference in bias 127 − 15 = 112 and or-
ed together with the bit-shifted mantissa. For denormalized
numbers (e = 0 and m �= 0), the mantissa is bit-shifted to the
right by the number of leading zeros and the shift-indicator
1 is removed by bit-masking. The mantissa is or-ed with the
exponent which is set by the number of leading zeros and
bit-shifted in place.

Finally, the uint result is reinterpret as float via the
OpenCL function as_float(uint x).

B. Posit

1. Overview

The novel posit format (type-III Unum) [90,111,113,114]
is different from floating-point in that the bit segment for the
mantissa (and also exponent) is variable in size and there is
another bit segment, the regime, with variable size as well.
The posit number representation is

x = (−1)s︸ ︷︷ ︸
sign

· (2ne+1)r︸ ︷︷ ︸
regime

· 2e︸︷︷︸
exponent

· (1 + 2−nm m)︸ ︷︷ ︸
mantissa

, (8)

with sign s, regime r, exponent e, and mantissa m. n = 1 +
(nr + 1) + ne + nm is the total number of bits, whereby nr , ne,
and nm are the variable numbers of bits in regime, exponent
and mantissa, respectively.

For very small numbers, the regime bit pattern looks like
000..01 (negative r), then gets shorter toward 01 (r = −1),
flips to 10 (r = 0) and then gets longer again, looking like
111..10 (positive r). The last bit is the regime terminator bit
that unambiguously tells the length of the regime. This bit is
not included in the regime size nr , so the size of the regime
bit pattern is nr + 1. nr determines the value of the regime:
r = −nr if the regime terminator bit is 1 or r = nr − 1 if the
regime terminator bit is 0.

For increasing regime size, the remaining bits for exponent
and mantissa are shifted to the right, so the mantissa (and if
no mantissa bits are left also the exponent) become shorter
and precision is reduced.

Posits can be designed with different (fixed) exponent sizes
or no exponent at all. Just like for floating-point, larger expo-
nent increases the range but decreases accuracy. This way, the
posit format is designed to deliver variable accuracy based on
where the number is in the regime: best accuracy is around
±1.0 where the regime is shortest (superior to floating-point)
but for both tiny and large numbers, much precision is lost
[114].

2. Customized posit formats for the LBM

As a storage format for LBM DDFs, where numbers close
to 0 need to be resolved best and numbers outside the ±2
range are not required at all, the standard 16-bit posit formats
seems an unfavorable choice. However, by multiplying a con-
stant before and after conversion, similar to FP16S, we shift
the most accurate part down to smaller numbers. We take a
closer look at three different posit formats:

(1) P160S: 16-bit posit without exponent, shifted down by
×27. In the interval [2−11, 2−3], accuracy is equal to or better
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than FP16S and in the interval [2−10, 2−4], accuracy is equal
to or better than FP16C. The range toward small numbers is
very poor and for numbers >2−3, accuracy is vastly degraded.

(2) P161S: 16-bit posit with one-bit exponent, shifted
down by ×27. In the interval [2−13, 2−1], accuracy is equal to
or better than FP16S and in the interval [2−11, 2−3], accuracy
is equal to or better than FP16C. For numbers <2−13 or >2−1,
accuracy is reduced. The range toward small numbers is
between FP16S and FP16C. This format poses no limitations
on the density ρ because its number range is ±221.

(3) P162C: Custom asymmetric 16-bit posit with two-bit
exponent, not shifted. By only covering the lower flank, we
can get rid of the bit reserved for the regime sign, thus making
the regime shorter by one bit and increasing the mantissa
size by one bit in turn. The conversion algorithms are vastly
simplified with the asymmetric regime. Accuracy is better or
equal to FP16C in the interval [2−7, 2] and equal or better than
FP16S in the interval [2−11, 2]. For smaller numbers, accuracy
is slowly reduced, but the range toward small numbers is
excellent.

Both P160S and P161S provide numbers >2 that are un-
used in the LBM. Shifting the number range further down
would degrade accuracy for larger numbers too much. Since
the LBM with DDF-shifting uses numbers around 0 and it is
not entirely clear in which order of magnitude accuracy is
most important, it is also unclear if the increased accuracy
in the center interval will benefit more than the decreased
accuracy further away from the center will adversely affect.

3. FP32 ↔ posit conversion

Conversion between FP32 and posit is not supported in
hardware (yet). Since the reference conversion algorithm in
the SoftPosit library [115] is not written for speed primarily,
we provide self-written, ultrafast conversion algorithms in
Listing 1 in OpenCL C. These work on any hardware. A
detailed description of how the algorithms work is omitted
here but can be inferred by studying the provided listings.
Note that the posit specification [111] does two’s complement
for negative numbers to have no duplicate zero and an infinity
definition instead. To simplify the conversion algorithms and
since infinity is not required in our applications, we just use
the sign bit to reduce operations, so there is positive and
negative zero.

C. Fixed-point

16-bit fixed-point format with a range scaling of ±2 has
discrete additive steps of 2−14 ≈ 6.110−5, so this is also the
smallest possible value. Compared to floating-point, precision
is worse for small numbers and better for large numbers. For
the LBM, this is insufficient and does not work.

D. Required code interventions

At all places where the DDFs are used as kernel parame-
ters, their data type is made switchable with a macro (fpXX).
At any location where the DDFs are loaded or stored in mem-
ory, the load (store) operation is replaced with another macro
as provided in Listing 1 for FP32, FP16S, FP16C, P160S,
P161S, and P162C. In the Appendix in Listing 2, we provide

the core of our LBM implementation, exemplary for D3Q19
SRT.

IV. ACCURACY COMPARISON

A. 3D Poiseuille flow

A standard setup for LBM validation is a Poiseuille flow
through a cylindrical channel [95]. For the channel walls,
we use standard nonmoving midgrid bounce-back boundaries
[1,12] and we drive the flow with a body force as proposed
by Guo et al. [116]. Simulations are done with the D3Q19
velocity set and a single-relaxation-time (SRT) collision
operator. We compare the simulated flow profile usim(r) with
the analytic solution [117]

utheo(r) = f

4 ρ ν
(R2 − r2) (9)

to compute the error. Here, ρ = 1 is the average fluid density,

r =
√(

y − Ly

2

)2

+
(

z − Lz

2

)2

(10)

is the radial distance from the channel center, R is the channel
radius,

ν = 2 R umax

Re
= τ

3
− 1

6
(11)

is the kinematic shear viscosity, and τ is the relaxation time.
The dimensions of the simulation box are

Lx = 1, Ly = Lz := 2 (R + 1). (12)

The flow is driven by a force per volume f that is calculated
by rearranging Eq. (9) with r = 0:

f = 4 ρ ν umax

R2
. (13)

In accordance with Ref. [12], we define the error as the L2

norm [1, p. 138]:

E =
√∑R

r=0 |usim(r) − utheo(r)|2∑R
r=0 |utheo(r)|2 . (14)

In Fig. 4, we keep the Reynolds number and center velocity
constant at Re = 10 and umax = 0.1, and vary channel radius

FIG. 4. Error of D3Q19 SRT Poiseuille flow for varying channel
radius R (lattice resolution) at constant Reynolds number Re = 10
and constant center flow velocity umax = 0.1. The dashed lines rep-
resent corresponding simulations without DDF-shifting.
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FIG. 5. Error of D3Q19 SRT Poiseuille flow for varying center velocity umax at constant Reynolds number Re ∈ {0.1, 1, 10, 100} and
constant channel radius (a) R = 31 and (b) R = 63. The dashed curves represent corresponding simulations without DDF-shifting. The vertical
lines represent the LBM relaxation time τ = 1.

R and kinematic shear viscosity ν accordingly. For R � 15,
we see almost no difference between any of the floating-
point variants. Here the staircase effect of the channel walls
dominates the error. Moving toward larger radii, the error
increases at first for FP32/FP16 and FP32/FP16S and later for
FP32/FP16C as well, while FP64/xx and FP32/FP32 show
no difference in this regime either. 16-bit posit formats hold up
even better here with their increased peak accuracy. P162C for
small R behaves like FP16C and then migrates over to FP16S
as R becomes larger and the DDFs become smaller. We also
simulate the same system without DDF-shifting (dashed lines)
to quantify the difference. Already here we see that the 16-bit
formats become unfeasible without DDF-shifting.

To confirm that the observed agreement between
FP32/FP32 and FP64/FP64 is not a coincidence of our
implementation, in Fig. 4 we include data from a simulation
of the very same system with the LB3D code [79] that is
further described in the Appendix.

We now investigate the error in more detail for a con-
stant channel radius R ∈ {31, 63} in Fig. 5. We simulate the
flow in the channel for different Reynolds numbers Re ∈
{0.1, 1, 10, 100} and vary the center velocity umax and kine-
matic shear viscosity ν accordingly.

We find that the higher the Reynolds number, the further
the minimal error is shifted toward larger umax, always staying
close to where τ = 1 (vertical lines). The better small num-
bers can be resolved, the lower umax can be chosen before
the error suddenly becomes large. The better the accuracy of
the mantissa, the lower the overall error, up to a certain point
where discretization errors dominate at large umax.

It is important to consider that compute time is proportional
to umax and that umax < umax,τ=1 = Re

12 R smaller than at the
error minimum is thus less practically relevant. In the domain
umax � umax,τ=1 (in Fig. 5, right of the vertical lines), FP16C

is almost always superior to FP16S, especially at higher Re.
Posits show their superior precision most of the time, if the
DDFs are just in the right interval.

We find that without DDF-shifting, the 16-bit formats be-
come very inaccurate. For FP32/FP32, there is some benefit
at higher Re and especially low velocities umax. For FP64, the
DDF-shifting does not make any noticeable difference in this
setup as discretization errors dominate.

To better understand where the error comes from in the
Poiseuille channel radially, we exemplary plot the error con-
tribution as a function of the radial coordinate r for the
parameters R = 63, umax = 0.1, Re = 10 in Fig. 6. We find
that for FP64 to FP32, the largest error contribution is near the
channel wall (staircase effect along the no-slip bounce-back
boundaries). For FP32/16-bit, there is equal error contri-
bution near the wall, but the majority of the error comes
from close to the channel center. The wall poses a boundary
condition not only for velocity [u(R) = 0] but also for the

FIG. 6. Radial error profile of D3Q19 SRT Poiseuille flow for
a channel radius R = 63 and center flow velocity umax = 0.1 at
constant Reynolds number Re = 10. The small dots on the right
represent corresponding simulations without DDF-shifting. Note that
the error contribution is on a linear scale here.
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FIG. 7. Illustration of the velocity field at t = 0 with colored
streamlines.

velocity error. Going radially inward from the channel wall,
at first the staircase effect smooths out, lowering the error,
but then each concentric ring of lattice points accumulates
systematic floating-point errors, so at the channel center the
error is largest. For FP32/FP32, this error behavior is barely
noticeable but visible upon close inspection. For FP64, the
floating-point errors are so tiny that the staircase smoothing
continues all the way through the radial profile, making the
error smallest in the center. Without DDF-shifting, there is
no noticeable difference for FP64 and FP32 compared to
when DDF-shifting is done, but the 16-bit formats become
unfeasible.

B. Taylor-Green vortices

An especially well suited setup for testing the behavior at
low velocities is Taylor-Green vortices. A periodic grid of
vortices is initialized with velocity magnitude u0 (illustrated
in Fig. 7) and then over time viscous friction slows down the
vortices while they remain in place on the grid. In 2D, the
analytic solution [66,96] reads

ux(t ) = +u0 cos(k x) sin(k y) e−2 ν k2 t , (15)

uy(t ) = −u0 sin(k x) cos(k y) e−2 ν k2 t , (16)

ρ(t ) = 1 − 3 u2
0

4
(cos(2 k x) + cos(2 k y)) e−4 ν k2 t , (17)

and at t = 0 is used to initialize the simulation with u0 = 0.25.
Here ν = τ

3 − 1
6 = 1

6 is the kinematic shear viscosity at τ = 1
and k = 2 π N

L . L = 256 is the side length of the square lattice
and N = 1 is the number of periodic tiles in one direction. The
kinetic energy

E (t ) =
∫ L

0

∫ L

0

ρ

2

(
u2

x + u2
y

)
dx dy

= u2
0 π2 e−4 ν k2 t (18)

drops exponentially with time t . E0 = E (t = 0) denotes the
initial kinetic energy. We compute the kinetic energy from
the simulation as the discrete sum across all lattice points and
compare it to the analytic solution in Fig. 8. The simulated
kinetic energy drops exponentially as well, but at some point
it does not drop further and remains constant as a result of

FIG. 8. Relative kinetic energy E (t )/E0 of a D2Q9 SRT simu-
lation of Taylor-Green vortices compared to the analytic solution in
Eq. (18). Dashed lines represent corresponding simulations without
DDF-shifting.

floating-point errors. The relative energies of the plateaus are
no coincidence: The plateaus are located at approximately the
truncation error ε squared (Table II) for the respective number
format in use. Particularly interesting is that for FP64/FP32
the plateau is much lower than for FP32 ε2, being closer
to FP64 ε2. With P160S, the DDFs are outside of the most
accurate interval, so accuracy is poor overall.

Finally, we note that the plateaus only reach down to ε2 if
DDF-shifting is properly implemented as presented in Eq. (3).
Without DDF-shifting, there is significant loss in accuracy
across all number formats.

C. Karman vortex street

Our next setup is a Karman vortex street in two dimensions
[97]: a cylinder with radius R = 32 is placed into a simula-
tion box with dimensions 512×1024. At the box perimeter,
a velocity of �u = (0, 0.15) is enforced using nonreflecting
equilibrium boundaries [12,118]. The Reynolds number is set
to Re = 2 R |u|

ν
= 250, defining the kinematic shear viscosity

ν = τ
3 − 1

6 and relaxation time τ .
If starting the simulation with perfectly symmetric initial

conditions, only floating-point errors can eventually trigger
the Karman vortex instability. We notice that in some cases,
the instability would not start at all even after several hundred
thousand time steps. To avoid this nonphysical behavior, we
initialize the velocity �u = (0, 0.15) not only at the simulation
box perimeter but also on the left half x < 256. This imme-
diately triggers the Karman vortex instability regardless of
floating-point setting.

We probe the velocity at the simulation box center
(256, 512) over time in Fig. 9. This demonstrates that,
when DDF-shifting is done, the 16-bit formats are almost
indistinguishable from FP64 ground truth both qualitatively
and quantitatively, with only minimal phase-shift for FP16,
FP16S, and P160S.

To assess in detail where eventual differences may be
present beyond a single velocity point probe, we look at the
vorticity throughout the simulation box. In Fig. 10, we show
the vorticity in the very much zoomed-in range of ±0.001. For
the 16-bit formats, in low vorticity areas there is noise present.
Comparing FP16 and FP16S, the extended number range
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FIG. 9. Velocity x component of the Karman vortex street at
the simulation box center (256, 512) over time for various floating-
point precision. Dashed lines represent corresponding simulations
without DDF-shifting. Even after 100 000 LBM time steps (50 vor-
tex periods), the 16-bit graphs still cover the FP64 ground truth
as amplitude, frequency, and even phase appear indistinguishable.
Only zooming in at the last oscillation period reveals minuscule
differences in phase for FP16, FP16S, and P160S. The phase shift
in the 16-bit graphs is large without the DDF-shifting optimization.
FP32/FP16C, FP32/FP32, and FP64/FP32 are indistinguishable
from FP64 ground truth even when zooming in.

toward small numbers has no benefit here. FP16C with DDF-
shifting mostly mitigates this noise, showing that the noise
purely originates in smaller mantissa accuracy and numeric
loss off significance. Our custom posit P162C has similarly
low noise. P160S shows artifacts.

D. Lid-driven cavity

The lid-driven cavity is a common test setup for the LBM
[30,33,37,39,49,52,98–100] and other Navier-Stokes solvers
[101–103]. We here implement it in a cubic box at Reynolds
number Re = 1000. On the lid, velocity parallel to the y-axis
is enforced through moving bounce-back boundaries [1,12].
The box edge length is L = 128, the velocity at the top lid is
u0 = 0.1 in lattice units, and the kinematic shear viscosity is
set by the Reynolds number Re = L u0

ν
= 1000. We simulate

100 000 LBM time steps with the D3Q19 SRT scheme.
Figure 11 shows the y (z) velocity along horizontal (verti-

cal) probe lines through the simulation box center. All number
formats except P160S look indistinguishable, even without
DDF-shifting. Only when zooming in (not shown), for the
simulations without DDF-shifting, deviations in relative ve-
locity in the second digit become visible. With DDF-shifting,
deviations are present only in the fourth digit, being smallest
for FP16C, P161S, and P162C.

E. Capsule in shear flow

Here we test the number formats on a microcapsule in shear
flow, one of the standard tests for microfluidics simulations in
medical applications [105,106]. The D3Q19 multi-relaxation-
time (MRT) [1,12] LBM is extended with the IBM [119] to
simulate the deformable microcapsule in flow. For the IBM,
we use the same level of precision as for the LBM arithmetic,

FIG. 10. Vorticity in the vastly overexposed range ±0.001 for simulations (a) with and (b) without DDF-shifting, after 100 000 LBM
time steps. All simulations very accurately predict the vortex street, with frequency and amplitude of the vortices being identical and only
insignificant differences in phase-shift even after 50 vortex periods. FP32 is indistinguishable from FP64 ground truth. For 16-bit, in the low
vorticity range there is noise present, equally for FP16 and FP16S, but vastly reduced for FP16C and P162C. Omitting DDF-shifting vastly
increases this noise and also adds significant phase shift as can be seen by comparing the position of the last red vortex at the bottom.
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FIG. 11. The y-velocity along a vertical probe line through the
simulation box center as well as the z-velocity along a horizontal
line through the simulation box center. At the top lid, the velocity
is fixed. As the flow goes one rotation clockwise, the width of
the high-velocity peak increases and the height decreases. Dashed
lines represent corresponding simulations without DDF-shifting. As
a reference, we show the data from Delbosc et al. [33].

so either FP64 or FP32. As illustrated in Fig. 12, we place an
initially spherical capsule of radius R = 13.5 in the center of
a simulation box with the dimensions 128×64×192, and we
compute 385 000 time steps. At the top and bottom of the sim-
ulation box, a shear flow is enforced via moving bounce-back
boundaries [120]. The membrane of the capsule is discretized
into 5120 triangles and membrane forces, consisting of shear
forces (neo-Hookean) [104,105,121] as well as volume forces
(volume has to be conserved), are computed as in Ref. [105].

The Reynolds number is Re = 0.05, the kinematic shear
viscosity is ν = 1

3 , and we simulate various capillary numbers
Ca = γ̇ μ R

k1
∈ {0.010, 0.025, 0.05, 0.1, 0.2} by varying the

membrane shear modulus k1. The shear rate is γ̇ = 1.310−5

in simulation units. To cross validate our results, we perform
the same simulations with ESPResSo (FP32 for LBM, FP64
for IBM) [24], which has been cross validated with boundary-

FIG. 12. Illustration of the capsule in shear flow (FP32/FP32,
Ca = 0.1) simulation at dimensionless times γ̇ t ∈ {1, 2, 3, 4, 5}.
Each image shows the simulation box from the side, with the top
and bottom moving bounce-back boundaries marked in green. The
capsule initially deforms to an elongated shape and then performs
tank-treading, i.e., rotating the membrane while keeping its deformed
shape.

FIG. 13. Taylor deformation of the capsule first increases and
then plateaus as the capsule starts tank-treading. This plateau de-
pends on the Capillary number. Dashed lines represent corresponding
simulations without DDF-shifting.

integral simulations and many others in Ref. [105]. In Fig. 13,
we plot the Taylor deformation D = a−c

a+c over time, with the
largest and smallest semiaxes a and c of the deformed capsule
[105]. We see that even in this complex scenario, the FP16C
simulations produce physically accurate results with only in-
significant deviations from FP64. The other 16-bit formats,
especially posits, perform noticeably worse here. Without
DDF-shifting, while FP32 still appears identical to ground
truth, all 16-bit simulations do not produce the correct out-
come (deformation remains close to zero). This emphasizes
that DDF-shifting is essential for the lower precision formats.

F. Raindrop impact

Finally, we examine how number formats affect a volume-
of-fluid LBM simulation of a 4 mm diameter raindrop
impacting a deep pool at 8.8 m

s terminal velocity. This sys-
tem is described and extensively validated in Ref. [10] to
study microplastic particle transport from the ocean into the
atmosphere. The particles are simulated with the IBM. There,
simulations are performed in FP32/FP32 with the maximum
lattice size that fits into memory, so FP64 is not used here as it
does not fit into the memory of a single GPU. The dimension-
less numbers for this setup are Reynolds number Re = d u

ν
=

33498, Weber number We = d u2 ρ

σ
= 4301, Froude number

Fr = u√
d g

= 44.4, Capillary number Ca = u ρ ν

σ
= 0.1284 and

Bond number Bo = d2 ρ g
σ

= 2.179. The simulated domain
is 464×464×394 lattice points and runs on a single AMD
Radeon VII GPU. The impact is simulated for 10 ms time,
equivalent to 20 416 time steps in LBM units.

The raindrop impact is illustrated in Fig. 14. Note that
the fully parallelized GPU implementation of the IBM with
floating-point atomic_add_f makes the simulation nondeter-
ministic [10,12] and that the exact breakup of the crown into
droplets is expected to be randomly different every time. We
see minor artifacts at the bottom of the cavity for FP32/P161S,
but otherwise no qualitative differences in random crown
breakup.

To be able to obtain statistics of ejected droplets and
particles, we run the simulation 100 times each with
FP32/FP32, FP32/FP16S, FP32/FP16C, and FP32/P161S.
The microplastic particles each time are initialized at different
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FIG. 14. A 4 mm diameter raindrop impacting a deep pool at
8.8 m

s terminal velocity, illustrated at times t ∈ {0, 1, 2, 3, 4, 5} ms
after impact as used in Ref. [10].

random positions, resulting in slightly different random crown
breakup. Ejected droplets that touch the top of the simulation
box are measured and then deleted as detailed in Ref. [10]. In
histograms of the size, volume, and particle count depending
on droplet diameter (Fig. 15), we see no significant differences
across the data sets.

To conclude this section, we find that all FP32/FP16S,
FP32/FP16C, and FP32/P161S are able to recreate the results
of FP32/FP32 in raindrop impact simulations without nega-
tive impact on the accuracy of the results, while significantly
reducing the memory footprint of these simulations. This in
turn enables simulations higher lattice resolution, potentially
increasing accuracy by resolving smaller droplets.

V. MEMORY AND PERFORMANCE COMPARISON

For GPUs, the most efficient streaming step implementa-
tion [63] is the One-Step-Pull scheme (AB-Pattern) with two
copies of the DDFs in memory, because the noncoalesced
memory read penalty is lower than the noncoalesced write
penalty on GPUs [12,15,30,33,35,37,38,51,53,54], see Fig. 22
in the Appendix. One-Step-Pull further greatly facilitates im-
plementing LBM extensions like Volume-of-Fluid, so it is a
popular choice. Our FluidX3D base implementation (no-slip
bounce-back boundaries, no extensions, as in Listing 2) with
DdQq velocity set has memory requirements per lattice point
as shown in Table III. For D3Q19, going from FP32/FP32 to
FP32-16x reduces the memory footprint by ≈45%, to 93 bytes
per node. If 16-bit compression was combined with in-place

FIG. 15. (a) The size distribution of droplets, (b) the distribution
of ejected fluid volume by droplet diameter, and (c) the distribution of
microplastic particles in droplets for 100 simulations each conducted
with FP32/FP32, FP32/FP16S, FP32/FP16C and FP32/P161S.

streaming schemes like AA-Pattern [34], Esoteric-Twist [62],
Shift-and-Swap-Streaming [59], or the simple Esoteric-Pull
[9], the memory footprint can even be reduced by ≈67%, to
only 55 bytes per node.

Although our main goal with FP16 is to reduce mem-
ory footprint and allow for larger simulation domains, as a
side effect, performance is vastly increased as a result of
less memory transfer in every LBM time step. For our base
implementation with the DdQq velocity set, the amount of
memory transfers per lattice point per time step is shown in
Table IV. Writing velocity and density to memory in each
time step is not required for LBM without extensions. The-
oretical speedup from FP32/FP32 to FP32/16-bit is 80% for
all velocity sets and swap algorithms.

While most LBM implementations are limited to one
particular hardware platform—either CPUs [67–79], Nvidia

TABLE III. Memory requirements in byte per lattice point of
LBM floating-point variants for the One-Step-Pull swap algorithm
with two copies of the DDFs for the DdQq velocity set.

�u ρ flags fi
∑

FP64/FP64 8 d 8 1 16 q 8 d + 9 + 16 q
FP64/FP32 8 d 8 1 8 q 8 d + 9 + 8 q
FP32/FP32 4 d 4 1 8 q 4 d + 5 + 8 q
FP32/16-bit 4 d 4 1 4 q 4 d + 5 + 4 q
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TABLE IV. Memory transfer in byte per lattice point per time
step of LBM floating-point variants for the DdQq velocity set.

flags fi
∑

FP64/FP64 q 16 q 17 q
FP64/FP32 q 8 q 9 q
FP32/FP32 q 8 q 9 q
FP32/16-bit q 4 q 5 q

GPUs [30–56], CPUs and Nvidia GPUs [18–29] or mobile
SoCs [122,123]—only few use OpenCL [5–17]. With
FluidX3D also being implemented in OpenCL, we are able to
benchmark our code across a large variety of hardware, from
the world’s fastest data-center GPUs over gaming GPUs and
CPUs to even the GPUs of mobile phone ARM SoCs. This
enables us to determine LBM performance characteristics
on various hardware microarchitectures. In Fig. 16, we
show performance and efficiency on various hardware for
D3Q19 SRT without extensions (only no-slip bounce-back
boundaries are enabled in the code). The benchmark setup
consists of a cubic box without any boundary nodes and with
periodic boundary conditions in all directions. The standard
domain size for the benchmark is 2563, except where device
memory is not enough; there we use the largest cubic box that
fits into memory.

We group the tested devices into four classes with different
performance characteristics:

(1) FP64-capable dedicated GPUs (high FP64:FP32
compute ratio) provide excellent efficiency for FP64/xx,
FP32/FP32, and FP32/FP16S. They have such fast mem-

ory bandwidth that the FP32 ↔ FP16C software conversion
brings FP32/FP16C from the bandwidth limit into the com-
pute limit, reducing its efficiency.

(2) Non-FP64-capable dedicated GPUs (low FP64:FP32
compute ratio) have a particularly high FP32 arithmetic
hardware limit, so even with the FP32 ↔ FP16C software
conversion the algorithm remains in the memory bandwidth
limit. FP32/xx efficiency is excellent except for older Nvidia
Kepler. However, due to the poor FP64 arithmetic capabilities,
FP64/xx efficiency is low as LBM here runs entirely in the
compute limit rather than memory bandwidth limit. Surpris-
ingly, FP64/FP32 runs even slower than FP64/FP64. This is
because there is additional overhead for the FP64 ↔ FP32
cast conversion in the compute limit, despite less memory
bandwidth being used.

(3) Integrated GPUs (iGPUs) overall show low perfor-
mance and low efficiency. This is expected due to the slow
system memory and cache hierarchy. Some older models do
not support FP64 arithmetic at all.

(4) CPUs also show low performance and low efficiency.
The low efficiency on CPUs is less of a property of the im-
plementation or a result of OpenCL, and more related to CPU
microarchitectures in general [67]. Other native CPU imple-
mentations of the LBM have equally low hardware efficiency
[67,68,71,73] as a result of multilevel caching, inter-CPU
communication, and other hardware properties unfavorable
for LBM. To illustrate this further, our implementation runs
about as fast on the Mali-G72 MP18 mobile phone GPU as
CPU codes on between 2 and 16 cores, depending on the CPU
model [19,23,27,67,68,71,73,86].

FIG. 16. Performance of FluidX3D with D3Q19 SRT on different hardware (code as in listing 2). The unit MLUPs/s is an acronym for
mega lattice updates per second, meaning how many times 106 LBM lattice points are computed every second. To obtain the efficiency, we
divide the measured MLUPs/s by the data sheet memory bandwidth times the number of bytes transferred per lattice point and time step
(Table IV). Performance characteristics differ depending on the FP64 arithmetic capabilities as indicated by the FP64:FP32 compute ratios of
the microarchitectures. The two GCDs of the MI250 are separate GPUs with 64 GB unified memory each, similar to dual-GPU cards such as
the Tesla K80; driver 3423.0 (HSA1.1,LC) and ROCm 5.1.3 was used. CPU benchmarks are on all cores. Values in Table V.
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FIG. 17. Roofline model analysis of FluidX3D with the D3Q19
velocity set, running on an Nvidia Titan Xp GPU. For each floating-
point type, the three data points (left to right) correspond to the SRT,
TRT, and MRT collision operators. The arithmetic hardware limit is
different for FP64/xx and FP32/xx, so we use two plots.

It is of note that performance on CPUs with large cache
greatly depends on the domain size: If a large fraction of the
domain fits into the L3 cache, efficiency (relative to memory
bandwidth) is significantly better. Our CPU tests use a domain
size of 2563, so only an insignificant ≈1% is covered by L3
cache—a scenario representative of typical applications.

On the vast majority of hardware, we actually reach the the-
oretical 80% speedup as indicated by the hardware efficiency
remaining equal for FP32/FP32 and FP32/FP16S. Some
hardware, namely, the Nvidia Turing and Volta microarchi-
tectures, do actually reach 100% efficiency with FP32/FP32
and FP32/FP16S. The Nvidia RTX 2080 Ti is at 100% ef-
ficiency even with FP32/FP16C, since the Nvidia Turing
microarchitecture can do concurrent floating-point and inte-
ger computation and the 2080 Ti has high enough compute
power per memory bandwidth to entirely remain in the mem-
ory bandwidth limit. Some efficiency values are even above
100% as Nvidia Turing and Ampere A100 are capable of
memory compression to increase effective bandwidth beyond
the memory specifications [124,125]. Nvidia Pascal GeForce
and Titan GPUs (that lack ECC memory) lock into P2 power
state with reduced memory clock for compute applications to
prevent memory errors [126], lowering maximum bandwidth
and making perfect (data sheet) efficiency impossible.

FP32/P160S and FP32/P162C performance is very similar
to FP32/FP16C (data not shown), since the conversion needs
to be emulated in software as well. FP32/P161S performance
is a bit lower because the conversion algorithm is slightly
more complex.

To better understand why performance is excellent with
FP32/xx but not with FP64/xx on non-FP64-capable GPUs,
we perform a roofline analysis [64,107] for the Nvidia Ti-
tan Xp in Fig. 17. The number of arithmetic operations and
memory transfers is determined by automated counting of the
corresponding PTX assembly instructions [112] of the stream-
collide kernel. We note that we count the arithmetic intensity
as the sum of floating-point and integer operations because the
Pascal microarchitecture computes floating-point and integer
on the same CUDA cores. For D3Q19 SRT FP32/FP32, for

example, we count 255 floating-point operations and 248 in-
teger operations. LBM performance scales proportionally to
memory bandwidth, which is indicated by diagonal lines. The
factor of proportionality is different for FPxx/64 (323 byte
memory transfer per LBM time step), FPxx/32 (171 byte),
and FPxx/16 (95 byte) as the amount of memory transfer is
different (Table IV). FP16 reduces the number of memory
transfers, so the arithmetic intensity (number of arithmetic
operations divided by memory transfers) is increased. The
manual conversion from and to FP16C significantly increases
the number of arithmetic operations, further raising arithmetic
intensity. Nevertheless, even with the arithmetic-heavy matrix
multiplication of the MRT collision operator, all data points
are still within the memory bandwidth limit and thus almost
equally efficient compared to FP32. Actual memory clocks
during the benchmark are 3.5% lower than the data sheet
value (hardware limit) due to the Titan Xp locking into P2
power state [126], inhibiting perfect efficiency for FP32/xx.
In contrast, FP64/xx is in the compute limit, greatly reducing
performance. The data points in the compute limit can be a
bit above the hardware limit if core clocks are boosted beyond
official data sheet values.

VI. CONCLUSIONS

In this paper, we studied the consequences of the employed
floating-point number format on accuracy and performance
of lattice Boltzmann simulations. We used six different test
systems ranging from simple, pure fluid cases (Poiseuille flow,
Taylor-Green vortices, Karman vortex streets, lid-driven cav-
ity) to more complex situations such as immersed-boundary
simulations for a microcapsule in shear flow or a Volume-of-
Fluid simulation of an impacting raindrop. For all of these,
we thoroughly compared how FP64, FP32, FP16, and posit16
(mixed) precision affect the accuracy of the LBM. In the
mixed variants, a higher precision floating-point format is
used for arithmetics and a lower precision format is used for
storing the DDFs. Based on the observation that a number
range of ±2 is sufficient for storing DDFs, we designed two
customized 16-bit number formats specifically tailored to the
needs of LBM simulations: a custom 16-bit floating-point
format (FP16C) with halved truncation error compared to
the standard IEEE-754 FP16 format by taking one bit from
the exponent to increase the mantissa size and a specifically
designed asymmetric posit variant (P162C). Conversion to
these formats can be implemented highly efficiently and code
interventions are only a few lines.

In all setups that we have tested and for the majority of pa-
rameters, FP32 turned out to be as accurate as FP64, provided
that proper DDF-shifting [66] is used. Our custom FP16C
format considerably diminished errors and noise and turned
out to be a viable option for FP32/16-bit mixed precision in
many cases. 16-bit posits with their variable precision have
shown to be very compelling options too. Especially, P161S
in some cases could beat our FP16C. In other cases, how-
ever, where the DDFs are outside the most favorable number
range, the simulation error is increased significantly for the
FP32/posit16 simulations.

Regarding performance, we find that pure FP64 runs very
poorly on the vast majority of GPUs, with the exception of
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very few data-center GPUs with extended FP64 arithmetic
capabilities such as MI250/MI100/A100/V100(S)/P100.
FP64/FP32 mixed precision can be almost as fast as pure
FP32 on these special data-center GPUs. However, somewhat
counterintuitively, on all GPUs with poor FP64 capabil-
ities, FP64/FP32 is even slower than pure FP64 due to
the conversion overhead. In general, pure FP32 then is a
better choice since it enables excellent computational ef-
ficiency across all GPUs, especially considering that it is
equally accurate to FP64 in all but edge cases. Computational
efficiency is also excellent for FP32/FP16S mixed preci-
sion across all GPUs, reaching a maximum performance of
15455 MLUPs (D3Q19) on a single 40 GB Nvidia A100. On
almost all GPUs that we have tested, we see the theoreti-
cal speedup of 80% that FP32/16-bit mixed precision offers
for D3Q19, alongside 45% reduced memory footprint. Our
custom format FP32/FP16C requires manual floating-point
conversion which is heavy on integer computation. Never-
theless, FP32/FP16C runs efficiently on most GPUs with
good FP32 arithmetic capabilities compared to their respec-
tive memory bandwidth and the theoretically expected 80%
speedup can be achieved.

In conclusion, we show that pure FP32 precision is suf-
ficient for most application scenarios of the LBM and that

with our specifically tailored FP16C number format, in many
cases even mixed FP32/FP16C precision can be used without
significant loss of accuracy.
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APPENDIX

1. The LB3D code

While in the most of this paper, we used the FluidX3D code [6–12], we also confirmed selected results with the LB3D
lattice Boltzmann simulation package [79]. For this, we ported the FP64/FP64 routines to FP32/FP32 also in LB3D. LB3D
is an MPI-based, general-purpose simulation package that includes various multicomponent and multiphase lattice Boltzmann
methods, coupled to point particle molecular dynamics, discrete element methods [127], and immersed boundary [128,129]
methods, as well as finite element solvers for advection-diffusion problems, including the Nernst-Planck equation [130]. For the
Poiseuille test, we used second-order accurate, midgrid bounce-back boundary conditions.

2. LBM equations in a nutshell

The coloring indicates the level of precision for the equations below:
lower precision storage, conversion, higher precision arithmetic.

a. Without DDF-shifting

(1) Streaming:
f temp
i (�x, t ) = f A

i (�x − �ei, t ). (A1)

(2) Collision (SRT):

ρ(�x, t ) =
∑

i

f temp
i (�x, t ), (A2)

�u(�x, t ) = 1

ρ(�x, t )

∑
i

�ci f temp
i (�x, t ), (A3)

f eq
i (�x, t ) = f eq

i (ρ(�x, t ), �u(�x, t )) = wi ρ ·
(

(�u ◦ �ci )2

2 c4
+ �u ◦ �ci

c2
+ 1 − �u ◦ �u

2 c2

)
, (A4)

f B
i (�x, t + 
t ) =

(
1 − 
t

τ

)
f temp
i (�x, t ) + 
t

τ
f eq
i (�x, t ). (A5)

b. With DDF-shifting

(1) Streaming:
f temp
i (�x, t ) = f A

i (�x − �ei, t ). (A6)
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(2) Collision (SRT):

ρ(�x, t ) =
(∑

i

f temp
i (�x, t )

)
+ 1, (A7)

�u(�x, t ) = 1

ρ(�x, t )

∑
i

�ci f temp
i (�x, t ), (A8)

f eq-shifted
i (�x, t ) = f eq-shifted

i (ρ(�x, t ), �u(�x, t )) = wi ρ ·
(

(�u ◦ �ci )2

2 c4
− �u ◦ �u

2 c2
+ �u ◦ �ci

c2

)
+ wi (ρ − 1), (A9)

f B
i (�x, t + 
t ) =

(
1 − 
t

τ

)
f temp
i (�x, t ) + 
t

τ
f eq
i (�x, t ). (A10)

3. List of physical quantities and nomenclature

Quantity SI-units Defining equation(s) Description

�x m �x = (x, y, z) 3D position in Cartesian coordinates

t s – Time


x m 
x := 1 Lattice constant (in lattice units)


t s 
t := 1 Simulation time step (in lattice units)

c m
s c := 1√

3

x

t Lattice speed of sound (in lattice units)

ρ
kg
m3 ρ = ∑

i fi Mass density

�u m
s �u = ∑

i �ci fi Velocity

fi
kg
m3 (A1) Density distribution functions (DDFs)

f eq
i

kg
m3 (A4) Equilibrium DDFs

i 1 0 � i < q LBM streaming direction index

q 1 q ∈ {7, 9, 13, 15, 19, 27} Number of LBM streaming directions

�ci
m
s [12], Eq. (11) Streaming velocities

�ei m �ei = �ci 
t Streaming directions

wi 1 [12], [Eq. (10)],
∑

i wi = 1 Velocity set weights

τ s τ = ν

c2 + 
t
2 LBM relaxation time

ν m2

s ν = μ

ρ
Kinematic shear viscosity

�f kg
m2 s2

�f = �F
V Force per volume

(Lx, Ly, Lz ) (m, m, m) Lx Ly Lz = V Simulation box dimensions

g m
s2 g := 9.81 m

s2 Gravitational acceleration

σ
kg
s2 – Surface tension coefficient

4. Measured number format characteristics

FIG. 18. Measured accuracy characteristics of the number formats investigated in this paper. The number of decimal digits for a given
number x is computed via − log10(| log10(

xrepresented

x )|) [90,111,113]. Only the local minima are the relevant criterion for the error. Note that this
definition for the number of decimal digits is off from the log10(2nm+1) definition by about 0.4.
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5. Numerical values of fi and f shifted
i for the lid-driven cavity (FP32/FP32)

FIG. 19. Numerical values of fi and f shifted
i for the lid-driven cavity (FP32/FP32, Re = 1000, Ma = 0.17, grid resolution L = 128) at

various points in time.
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6. Numerical values of fi and f shifted
i for all setups (FP32/FP32)

FIG. 20. Numerical values of fi and f shifted
i for the lid-driven cavity (FP32/FP32, Re = 1000, Ma = 0.17, after t = 100 000 time steps) at

various grid resolutions.
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FIG. 21. Numerical values of fi and f shifted
i for all setups (FP32/FP32).

7. Properties of benchmarked hardware
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8. Memory benchmarks

FIG. 22. Synthetic OpenCL memory benchmarks to measure coalesced/misaligned read/write performance. The misaligned write penalty
is much larger than the misaligned read penalty across almost all tested devices. Values in Table V.
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9. Ultrafast conversion algorithms
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Listing 1: OpenCL C macros for regular FP32, for FP16S using hardware-accelerated IEEE-754 FP16 floating-point conversion
and for our FP16C format with calls to our manual floating-point conversion functions. Manual floating-point conversion
functions for FP32 ↔ FP16C (float↔half) in OpenCL C. We also provide macros and conversion algorithms for FP32 ↔
P160S/P161S/P162C posit formats. The saturation term in the algorithms can be omitted if it is made sure that larger than
maximum numbers are never used, which is the case in this LBM application.
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10. LBM core of the FluidX3D OpenCL C implementation (D3Q19 SRT FP32/xx)
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Listing 2: LBM core of the FluidX3D OpenCL C implementation (D3Q19 SRT FP32/xx).
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Abstract

I present two novel thread-safe in-place streaming
schemes for the lattice Boltzmann method (LBM) on
graphics processing units (GPUs), termed Esoteric-
Pull and Esoteric-Push, to make the LBM only
require one copy of density distribution functions
(DDFs) instead of two, greatly reducing memory de-
mand. These build upon the idea of the existing
Esoteric-Twist scheme, to stream half of the DDFs
at the end of one stream-collide kernel and the re-
maining half at the beginning of the next, and offer
the same beneficial properties over the AA-Pattern
scheme – reduced memory bandwidth due to implicit
bounce-back boundaries and the possibility to swap
pointers between even and odd time steps. However
the streaming directions now are chosen in a way that
the algorithm can be implemented in about one tenth
the amount of code, as two simple loops, compati-
ble with all velocity sets and suitable for automatic
code-generation. Performance of the new stream-
ing schemes is even slightly increased over Esoteric-
Twist due to better memory coalescence. Bench-
marks across a large variety of GPUs and CPUs and
show that for most dedicated GPUs, performance
differs only insignificantly from the One-Step-Pull
scheme, but for integrated GPUs and CPUs, perfor-
mance is significantly improved. The two proposed
algorithms greatly facilitate modifying existing codes
to in-place streaming, even with extensions already
in place, such as demonstrated for the Free Surface
LBM implementation FluidX3D. Their simplicity, to-
gether with their ideal performance characteristics,
should enable more widespread adoption of in-place
streaming across LBM GPU codes.

Keywords: lattice Boltzmann method; GPU; in-
place streaming; swap algorithm; Esoteric Twist;
memory; memory bandwidth; Volume-of-Fluid;
FluidX3D; OpenCL

1 Introduction

The lattice Boltzmann method (LBM) [1] is a type
of direct numerical simulation (DNS) to model fluid
flow in a physically accurate manner. Its explicit
algorithmic structure makes it ideal for paralleliza-
tion on graphics processing units (GPUs) [2–59].
The LBM works on a mesoscopic scale, represent-
ing quantities of fluid molecules by density distribu-
tion functions (DDFs) that are exchanged (streamed)
between neighboring points on a Cartesian lattice.
These DDFs are represented as floating-point num-
bers and the streaming consists of copying them to
the memory locations associated with neighboring
lattice points. So the LBM algorithm at its core is
copying floating-point numbers in memory with lit-
tle arithmetic computation in between, meaning its
performance is bound by memory bandwidth [3–10,
13–22, 33–46, 59–65].

Since each lattice point holds the same number
of DDFs and they need to be exchanged between
one another in every time step, a way to avoid the
data dependencies on parallel hardware is needed.
The most straightforward, and also most common
approach [12–44] is to have two copies A and B of
the DDFs residing in memory: in even steps read
from A and write to B and in odd steps vice versa.
With two copies of the DDFs, the memory access can
even be chosen in a way to have only partially mis-
aligned reads and only coalesced writes (One-Step-
Pull scheme), enabling peak memory efficiency on
modern GPUs [13–23]. This solves the data de-
pendencies, but comes at the cost of almost dou-
bling memory demand. Unfortunately, memory ca-
pacity is the largest constraint on GPUs [58], lim-
iting maximum possible lattice resolution. To elim-
inate the higher memory demand and at the same
time resolve data dependencies, a class of thread-

132



3 State-of-the-art methods for in-place streaming on GPUs Esoteric Pull and Esoteric Push

safe in-place streaming algorithms have been devel-
oped. The first of these is termed the AA-Pattern
[3], as it reads from A and at the same time writes
to A again in a special manner that does not vio-
late data dependencies. The algorithm however is
asymmetric for even and odd time steps, so it has
not been widely adopted. A later variant of AA-
Pattern is Shift-and-Swap-Streaming [4]. Geier and
Schönherr have recently found a more intricate solu-
tion termed Esoteric-Twist [2] that is symmetric for
even and odd time steps, and moreover rewards with
slightly reduced memory bandwidth and thus higher
performance compared to AA-Pattern; however its
implementation is very complicated, also hindering
widespread adoption. Not too many works consider
in-place streaming on GPU so far [2–12], and apart
from the works introducing the methods [2–5, 66],
only few have adopted in-place streaming in their
codes [6–8, 11].

This work introduces two new thread-safe in-
place streaming schemes – termed Esoteric-Pull and
Esoteric-Push – well suitable for GPU implementa-
tion. They build upon the same idea as Esoteric-
Twist and offer ideal performance characteristics, but
at the same time significantly simplify the implemen-
tation and even allow for automatic code generation.
The very simple and modular implementation is es-
pecially well suited to modify existing LBM imple-
mentations, even if various extensions such as Free
Surface LBM are already in place.

2 Naive implementation -
One-Step-Pull and One-Step-
Push

The most common LBM implementation uses two
copies of the DDFs in memory to resolve data depen-
dencies in a parallel environment [12–44]. There is
two variants, One-Step-Pull (figure 1, listing 1) and
One-Step-Push (figure 2, listing 2). The pull vari-
ant is generally preferred on GPUs as the penalty for
non-coalesced reads is smaller than for non-coalesced
writes [13–23]. The coloring introduced in figures 1
and 2 illustrates how loading/storing patterns com-
pare to the regular DDF sequence during collision in
registers, in other words where exactly each DDF is
loaded and stored in memory. This makes especially
the later introduced, more sophisticated streaming
patterns more comprehensible. In the One-Step-Pull
scheme, DDFs are pulled in from neighbors (copy A
of the DDFs), collided, and stored at the center node
(copy B of the DDFs). In the One-Step-Push scheme,
DDFs are loaded from the center node (copy A of the
DDFs), collided, and then pushed out to neighbors

(copy B of the DDFs). For both schemes, after every
time step, the pointers to A and B are swapped.

temporary DDFs for collision
in registers

read DDFs from
global memory

write DDFs to
global memory

any
time
step

Figure 1: One-Step-Pull streaming scheme. Two
copies of the DDFs are used to resolve data depen-
dencies.

temporary DDFs for collision
in registers

read DDFs from
global memory

write DDFs to
global memory

any
time
step

Figure 2: One-Step-Push streaming scheme. Two
copies of the DDFs are used to resolve data depen-
dencies.

3 State-of-the-art methods for
in-place streaming on GPUs

The data dependency problem with in-place stream-
ing on parallel hardware has been solved by two
major approaches already, termed AA-Pattern and
Esoteric-Twist. Both provide the great advantage of
significantly reducing memory demand for the LBM;
however both also pose various difficulties in GPU
implementation, hindering widespread adoption.

3.1 AA-Pattern

When performing the LBM streaming step on paral-
lel hardware, the issue arises that neighboring lattice
points may be processed in parallel and the exact or-
der of execution is random. One or more threads may
not write an updated value to a memory address from
which another concurrent thread is reading, because
then either the old or the new value may be used by
the reading thread. This error is known as a race
condition. To perform the LBM streaming step in
parallel with only a single buffer for the DDFs, one
must write updated values only to the same mem-
ory addresses that one thread has previously read the
values from. Then, no two threads access the same
memory addresses. Bailey et al. [3] have found that
this is possible, if for even time steps combining one
streaming step, the collision and a second streaming
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step, and for odd time steps only performing the col-
lision step. This makes the processed DDFs always
end up in the same locations as they were read from,
resolving data dependencies on concurrent hardware
with only one copy of the DDFs in memory. To make
the DDFs actually stream through memory locations,
in even time steps, after the collision the DDFs are
stored at the neighbor nodes in opposite orientation,
and in odd time steps, before the collision the DDFs
are loaded from the center node in opposite orienta-
tion. The resulting algorithm reads the DDFs from
the copy A of the DDFs and writes to the same copy
A in-place, so it was termed AA-Pattern (figure 3,
listing 3). It is a popular disbelief that the differ-
ent even and odd time steps would require duplicate
implementation of the stream collide kernel as the
pointers to the DDFs cannot be swapped in between
time steps. The loading and storing of the DDFs
before and after collision can be placed in functions,
and when the LBM time step is passed as a param-
eter, these functions then switch between loading/s-
toring the DDFs from/to neighbors or at the center
point (see listing 3). The stream collide kernel then
contains calls to these two functions before and after
collision and no duplicate implementation is required.
Note that there is also two more modern variants
of the AA-Pattern termed Shift-and-Swap-Streaming
(SSS) [4] and Periodic-Shift (PS) [5], offering benefits
in programming languages where pointer arithmetic
is available.

temporary DDFs for collision
in registers

read DDFs from
global memory

write DDFs to
global memory

odd
time
step

even
time
step

Figure 3: AA-Pattern in-place streaming scheme [3].
Even time steps: DDFs are pulled in from neighbors,
collided, and then pushed out to the neighbors again,
but stored in opposite orientation. Odd time steps:
DDFs are loaded from the center node in opposite ori-
entation, collided, and stored at the center node again
in the same orientation as during collision. DDFs are
always stored in the same memory locations where
they are loaded from, so only one copy of the DDFs
is required.

3.2 Esoteric-Twist

The idea of the Esoteric-Twist in-place streaming
scheme (figure 4, listing 4) is to pull only DDFs for
negative directions, do the collision, and then push
only DDFs for positive directions (here: x, y, z > 0)
[2]. To resolve data dependencies on concurrent hard-
ware, in even steps, after the collision the DDFs are
stored in opposite orientation, and in odd time steps,
before the collision the DDFs are loaded in opposite
orientation.

Esoteric-Twist resembles a criss-cross access pat-
tern shifted north-east by half a node, accessing the
DDFs at a total of 4 nodes (in the 2D case) or up to
8 nodes (in 3D) respectively. For certain implemen-
tations, this reduces the number of ghost nodes re-
quired, but it makes the implementation of the index
calculation tedious as it requires manually writing the
indices, that are different across velocity sets. On top,
for some velocity sets like D3Q15, additional stream-
ing directions must be computed beyond the stream-
ing directions of the velocity set (see listing 4). This is
an obstacle for implementing different velocity sets in
a modular manner. With some LBM extensions such
as Volume-of-Fluid, duplicate (inverse) implementa-
tion of the streaming is required, so Esoteric-Twist
here becomes rather impractical.

temporary DDFs for collision
in registers

read DDFs from
global memory

write DDFs to
global memory

odd
time
step

even
time
step

Figure 4: Esoteric-Twist in-place streaming scheme
[2]. Even time steps: DDFs are loaded in a criss-
cross pattern shifted north-east by half a node. After
collision, DDFs are stored in the same pattern but
in opposite orientation. Odd time steps: DDFs are
loaded in opposite orientation in a shifted criss-cross
pattern that covers only DDFs not touched in the
even time step. After collision, DDFs are written
back in the same pattern but with regular orientation
again. DDFs are always stored in the same memory
locations where they are loaded from, so only one
copy of the DDFs is required.
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4 New methods - Esoteric Pull
and Esoteric Push

My two novel in-place streaming algorithms are based
on the same idea as the Esoteric-Twist scheme, that
only DDFs in negative directions (here: even i) are
streamed before collision, and after collision only
DDFs in positive directions (here: odd i) are pushed;
the DDFs are aligned in a way such that even and odd
i point in opposite directions. So half of the DDFs
are streamed at the end of one stream collide kernel
and the other half is streamed at the beginning of the
next.

The important observation I made is that the
shifted criss-cross pattern of Esoteric-Twist is not
essential for the swap algorithm to work. I waive
shifting north the north-west to south-east DDFs by
one node in 2D, and waive shifting other diagonal di-
rections in 3D, respectively, abandoning the shifted
criss-cross pattern. Instead, the regular streaming
direction neighbors are used. This enables trivial in-
dex calculation in two four-line loops (unrolled by
the compiler) for loading and storing in a way that
works with all velocity sets out of the box. This also
makes the implementation less redundant, much less
prone to errors and it further enables automatic code-
generation.

The Esoteric-Pull scheme (figure 5, listing 5) in 2D
differs from Esoteric-Twist (figure 4) only in the posi-
tions of DDFs for the north-west to south-east direc-
tions, that are loaded/stored in their regular locations
instead of shifted north by one node. In 3D, other di-
agonal directions are also not shifted and their regu-
lar streaming directions are used instead to determine
the streaming neighbor nodes. This has not only the
advantage of trivial index calculation, but also im-
proves memory coalescence for the DDFs in these
diagonal directions that would be otherwise shifted
by one lattice point with Esoteric-Twist, leading to
slightly higher performance.

The Esoteric-Push scheme (figure 6, listing 6) es-
sentially is figure 5 flipped by 180 degrees (except
for temporary DDFs in registers), highlighting two
distinct symmetry flips that can be done indepen-
dently of each other: a) switching streaming for pos-
itive/negative directions and b) switching even/odd
time steps.

Both schemes yield bitwise identical simulations as
with Esoteric-Twist. If pointer arithmetic is avail-
able, the pointers of DDFs in positive and negative
directions can be swapped in between time steps such
that memory addressing is the same for all time steps,
in the very same manner as for Esoteric-Twist.

temporary DDFs for collision
in registers

read DDFs from
global memory

write DDFs to
global memory

odd
time
step

even
time
step

Figure 5: Esoteric-Pull in-place streaming scheme.
Even time steps: DDFs in positive directions are
loaded from the center node and DDFs from negative
directions are pulled in from their regular streaming
direction neighbors, are collided, and then DDFs in
positive directions are pushed out to neighbors and
stored in opposite orientation and DDFs in negative
directions are stored at the center node in opposite
orientation. Odd time steps: DDFs in positive di-
rections are loaded from the center node in oppo-
site orientation and DDFs from negative directions
are pulled in from their regular streaming direction
neighbors in opposite orientation, are collided, and
then DDFs in positive directions are pushed out to
neighbors and DDFs in negative directions are stored
at the center node. DDFs are always stored in the
same memory locations where they are loaded from,
so only one copy of the DDFs is required.

temporary DDFs for collision
in registers

read DDFs from
global memory

write DDFs to
global memory

odd
time
step

even
time
step

Figure 6: Esoteric-Push in-place streaming scheme.
Figure 5 flipped by 180 degrees (except for temporary
DDFs in registers).

4.1 Implicit bounce-back

In the very same manner as for the Esoteric-Twist
scheme [2], both Esoteric-Pull and Esoteric-Push of-
fer the benefits of the ingeniously emerging implicit
bounce-back boundaries. Due to the way the DDFs
are flipped in orientation for regular fluid nodes, and
because boundary nodes are not processed at all
(with a guard clause at the very beginning of the
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stream collide kernel), the DDFs of boundary nodes
are not flipped in memory, so for neighboring fluid
nodes it appears as if their DDFs are already cor-
rectly flipped such that bounce-back boundaries au-
tomatically apply.

There is three distinct benefits to this side-effect to
the Esoteric streaming schemes: a) fluid nodes do not
have to check the flags of their neighbors at all to ap-
ply bounce-back boundaries, reducing overall mem-
ory bandwidth and increasing performance slightly,
b) memory access is more coalesced and c) the im-
plementation is simplified.

4.2 Comparison with existing stream-
ing schemes

When comparing the different streaming algorithms
in table 1 for DdQq LBM, the advantages of in-place
streaming become evident as both reduced storage
and for the Esoteric algorithms also reduced band-
width. In-place streaming reduces memory demand
by 4 q Bytes/node. The Esoteric algorithms fur-
ther reduce memory bandwidth by q − 1 Byte/n-
ode per time step, as neighbor flags do not have
to be checked for implicit bounce-back boundaries.
Based on their storage and performance proper-
ties, Esoteric-Pull/Push appear identical to Esoteric-
Twist, apart from slightly improved memory coales-
cence for the DDFs in some of the diagonal direc-
tions. The main improvements of Esoteric-Pull/Push
are located in the much more straightforward imple-
mentation that is compatible with all velocity sets.
Instead of having to manually unroll the loops over
the streaming directions and making sure all indices
are typed correctly for each velocity set, the stream-
ing can now be written in a generic way as two short
loops that are unrolled by the compiler (compare list-
ings 4 and 5). This also allows for automatic code-
generation that many LBM implementations heavily
rely on, and significantly improves code maintainabil-
ity.

A recently proposed method to reduce storage and
bandwidth by resorting to FP32/16-bit mixed pre-
cision [13] makes in-place streaming with the Eso-
teric schemes even more compelling, reducing mem-
ory storage from 169 to 55 Bytes/node – less than
one third – and reducing bandwidth from 171 to 77
Bytes/node per time step for D3Q19. Less memory
demand per node in turn enables much larger lattice
resolution.

When comparing D3Q19 SRT performance of
the different streaming algorithms on the Nvidia
A100 40GB GPU with FP32 single-precision floating-
point, One-Step-Pull serves as the baseline at
8816MLUPs/s (100%). One-Step-Push is slightly
slower at 8675MLUPs/s (98%). The AA-Pattern

algorithm storage bandwidth
One-Step-Pull 8 q + 4 d+ 5 9 q
One-Step-Push 8 q + 4 d+ 5 9 q
AA-Pattern 4 q + 4 d+ 5 9 q

Esoteric-Twist 4 q + 4 d+ 5 8 q + 1
Esoteric-Pull 4 q + 4 d+ 5 8 q + 1
Esoteric-Push 4 q + 4 d+ 5 8 q + 1

OSP + FP32/16-bit 4 q + 4 d+ 5 5 q
AA + FP32/16-bit 2 q + 4 d+ 5 5 q

ET/EP + FP32/16-bit 2 q + 4 d+ 5 4 q + 1

Table 1: Comparing memory storage (Bytes/node)
and bandwidth (Bytes/node per time step) require-
ments of the different GPU-compatible streaming al-
gorithms for DdQq LBM with FP32 arithmetic preci-
sion and 8 available flag bits per node. With in-place
streaming and implicit bounce-back of the Esoteric
schemes, and with FP32/16-bit mixed precision as
proposed in [13], memory demand and bandwidth are
significantly reduced.

runs with 8269MLUPs/s (94%), Esoteric-Twist mit-
igates the efficiency losses with reduced bandwidth
due to implicit bounce-back at 8483MLUPs/s (96%),
and Esoteric-Pull/Push offers even slightly higher
performance at 8522MLUPs/s (97%), due to better
memory coalescence for the diagonals that are shifted
by one lattice point for Esoteric-Twist. Looking at
more performance benchmarks across different hard-
ware (figure 7), the benefit of less memory bandwidth
usage due to implicit bounce-back approximately
cancels out with the drawback of more inefficient,
partially misaligned writes due to the inherent sym-
metry of the memory access. In comparison with the
One-Step-Pull streaming scheme [13], although mem-
ory efficiency is lower, performance changes only in-
significantly on most dedicated GPUs, with some per-
formance increase for FP32/FP16 mixed precision.
On integrated GPUs and on CPUs however, there
is a significant increase in performance due to more
efficient use of on-chip cache with in-place memory-
access. The benchmark case used is an empty box
with default size of 2563, with no extensions enabled
except bounce-back boundaries, following [13]. For
devices where not enough memory was available, the
box size was reduced, and for the AMD Radeon VII
the box size was increased to 4643.
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5 Esoteric Pull for Free Surface
LBM on GPUs

To further underline the substantial perks of the
added simplicity of Esoteric-Pull over Esoteric-Twist,
here the modification of an existing Free Surface LBM
(FSLBM) code from One-Step-Pull to Esoteric-Pull
in-place streaming is briefly discussed on the example
of FluidX3D [14].

Although the One-Step-Pull scheme makes an
FSLBM implementation the simplest and most ef-
ficient, it can easily be modified to the Esoteric-Pull
in-place streaming scheme. FSLBM on GPU requires
three more kernels additionally to the stream collide
kernel. To distinguish between node types, 3 flag bits
are required: fluid (001, F), interface (010, I), gas
(100, G), interface→fluid (011, IF), interface→gas
(110) and gas→interface (111, GI). The kernels are
first introduced for the implementation with One-
Step-Pull:

� stream collide: Immediately return for G nodes.
Stream in DDFs from neighbors, but for F and I
nodes also load outgoing DDFs from the center
node to compute the mass transfer for Volume-
of-Fluid [67]. Apply excess mass for F or I
nodes by summing it up from all neighboring F
and I nodes. Compute the local surface curva-
ture with PLIC [26] and reconstruct DDFs from
neighboring G nodes. After collision, compare
mass m and post-collision density ρ and along
with neighboring flags, mark if the center node
should remain I or change to IF or IG. Store
post-collision DDFs at the local node.

� surface 1: Prevent neighbors of IF nodes to be-
come/be G nodes; update flags of such neighbors
to either I (from IF) or GI (from G).

� surface 2: For GI nodes, reconstruct and store
DDFs based on the average density and velocity
of all neighboring F, I or IF nodes. For IG nodes,
turn all neighboring F or IF nodes to I.

� surface 3: Change IF nodes to F, IG nodes to G
and GI nodes to I. Compute excess mass for each
case separately as well as for F, I and G nodes,
then divide the local excess mass by the number
of neighboring F, I, IF and GI nodes, and store
the excess mass on the local node.

After modifying the streaming scheme from One-
Step-Pull to Esoteric-Pull, a fifth kernel must be
added preceding the stream collide kernel, because in
the stream collide kernel the outgoing DDFs cannot
be loaded as neighboring nodes may overwrite them
in memory within the same time step (race condi-
tion):

� surface 0: Immediately return for G nodes.
Stream in DDFs like in figure 5 (incoming
DDFs), but also load outgoing DDFs in oppo-
site directions to compute the mass transfer for
Volume-of-Fluid. For I nodes, compute the lo-
cal surface curvature with PLIC and reconstruct
DDFs for neighboring G nodes; store these re-
constructed DDFs in the locations at the neigh-
bors from which they will be streamed in in the
following stream collide kernel. Apply excess
mass for F or I nodes by summing it up from
all neighboring F and I nodes.

� stream collide: Immediately return for G nodes.
Stream in DDFs like in figure 5 and do collision.
For I nodes, compare mass m and post-collision
density ρ and along with neighboring flags, mark
if the center node should remain I or change to
IF or IG. Stream out the DDFs as in figure 5.

� surface 1, surface 2, surface 3: unchanged

In the surface 0 kernel, additional streaming in in-
verted directions is necessary to load outgoing DDFs
and to store reconstructed DDFs for neighboring G
nodes. Having to do manual index calculation here
like with Esoteric-Twist would vastly elongate and
over-complicate the code and reduce maintainability.
With the Esoteric-Pull/Push variants, it is two sim-
ple loops of four lines of code each. The full FSLBM
OpenCL C implementation with Esoteric-Pull is pro-
vided in the appendix in listing 7.

Figure 8: Esoteric-Pull in-place streaming together
with FP16C memory compression [13] enables colos-
sal 940×940×800 lattice resolution on a single 48GB
GPU, such as demonstrated here with a raindrop im-
pact simulation. This figure is included in the sup-
plementary files as a video.

The change to the Esoteric-Pull in-place streaming
algorithm reduces the memory demand for FSLBM
from 181 to 105 Bytes/node, while only decreasing
performance by approximately 20% due to the dupli-
cate loading of incoming DDFs and having to store
reconstructed DDFs for G nodes. When combined
with FP32/16-bit mixed precision [13], the memory
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demand is further reduced to 67 Bytes/node or about
1
3 of vanilla FSLBM, comparable to or even less than
the memory requirements of other (Navier-)Stokes
solvers [68–71].

This in turn enables colossal lattice resolutions as
illustrated with an example in figure 8: A 7mm (188
lattice point) diameter raindrop, 1.5ms (7700 time
steps) after impacting a deep pool at 9.55 m

s [24] and
20◦ inclination, simulated with the FluidX3D imple-
mentation with FP32/FP16C mixed precision [13].
Lattice resolution is 940 × 940 × 800 or 707 million
lattice points. The simulation was conducted on a
Nvidia Quadro RTX 8000 GPU with 48GB video
memory and took 27 minutes, including rendering of
the image. The code for this setup is provided in the
appendix in listing 8.

6 Conclusions

In-place streaming is essential for any LBM GPU
implementation as it significantly reduces memory
demand and increases maximum lattice resolution.
However, existing thread-safe solutions for GPUs
such as AA-Pattern and Esoteric-Twist never gained
widespread adoption due to difficult implementation.
The new Esoteric-Pull and Esoteric-Push schemes
presented in this work should change that. They
build upon the same idea as the Esoteric-Twist
scheme – streaming half of the DDFs at the end of
one stream collide kernel and the other half at the
beginning of the next – but greatly simplify the im-
plementation through trivial index calculation, even
allowing for automatic code generation. For exist-
ing GPU implementations of the common One-Step-
Pull scheme, the switch to Esoteric-Pull requires only
moderate modifications to the code, even if several
extensions are already implemented, as demonstrated
with Free Surface LBM. In contrast, the implementa-
tion of Esoteric-Twist would be much more difficult
and error-prone here, as the index calculation has to
be implemented twice in different variations for reg-
ular LBM streaming and for FSLBM mass exchange.

The Esoteric-Pull and Esoteric-Push schemes share
the same performance advantage as Esoteric-Twist
over AA-Pattern – slightly reduced bandwidth due to
implicit bounce-back. Compared to Esoteric-Twist,
memory coalescence is even slightly improved on the
otherwise shifted diagonal directions. This makes
the Esoteric-Pull/Push schemes with only one DDF
buffer provide GPU performance on par with the
One-Step-Pull scheme with double DDF buffers, de-
spite requiring less efficient misaligned writes. On
integrated GPUs and CPUs, performance is even sig-
nificantly increased.
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GPU-Based Implementation of Lattice Boltz-
mann Method Solver Using ArrayFire Li-
brary”. In: Mathematics 9.15 (2021), p. 1793.

[16] Mark J Mawson and Alistair J Revell. “Mem-
ory transfer optimization for a lattice Boltz-
mann solver on Kepler architecture nVidia
GPUs”. In: Computer Physics Communications
185.10 (2014), pp. 2566–2574.

[17] Nicolas Delbosc et al. “Optimized implemen-
tation of the Lattice Boltzmann Method on
a graphics processing unit towards real-time
fluid simulation”. In: Computers & Mathemat-
ics with Applications 67.2 (2014), pp. 462–475.

[18] Nhat-Phuong Tran, Myungho Lee, and Sugwon
Hong. “Performance optimization of 3D lattice
Boltzmann flow solver on a GPU”. In: Scientific
Programming 2017 (2017).

[19] Christian Obrecht et al. “Multi-GPU imple-
mentation of the lattice Boltzmann method”.
In: Computers & Mathematics with Applica-
tions 65.2 (2013), pp. 252–261.

[20] Christian Obrecht et al. “A new approach to
the lattice Boltzmann method for graphics pro-
cessing units”. In: Computers & Mathematics
with Applications 61.12 (2011), pp. 3628–3638.

[21] Christian Feichtinger et al. “A flexible Patch-
based lattice Boltzmann parallelization ap-
proach for heterogeneous GPU–CPU clusters”.
In: Parallel Computing 37.9 (2011), pp. 536–
549.

[22] Enrico Calore et al. “Massively parallel lattice–
Boltzmann codes on large GPU clusters”. In:
Parallel Computing 58 (2016), pp. 1–24.

[23] Christian Obrecht et al. “Global memory ac-
cess modelling for efficient implementation of
the lattice Boltzmann method on graphics pro-
cessing units”. In: International Conference on
High Performance Computing for Computa-
tional Science. Springer. 2010, pp. 151–161.

[24] Moritz Lehmann et al. “Ejection of marine
microplastics by raindrops: a computational
and experimental study”. In: Microplastics and
Nanoplastics 1.18 (2021), pp. 1–19.

[25] Hannes Laermanns et al. “Tracing the hori-
zontal transport of microplastics on rough sur-
faces”. In: Microplastics and Nanoplastics 1.11
(2021), pp. 1–12.

[26] Moritz Lehmann and Stephan Gekle. “Analytic
Solution to the Piecewise Linear Interface Con-
struction Problem and Its Application in Cur-
vature Calculation for Volume-of-Fluid Simu-
lation Codes”. In: Computation 10.2 (2022),
p. 21.
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8 Appendix

8.1 OpenCL C implementation of the different streaming schemes

8.1.1 One-Step-Pull

1 )+R(void load_f ( const uint n, float ∗ fhn , const global fpxx∗ fA , const uint∗ j, const uchar ∗ flagsj ) {
2 fhn [0] = load(fA , index_f (n, 0u)); // One-Step-Pull
3 for(uint i=1u; i< def_velocity_set ; i+=2u) {
4 fhn[i ] = load(fA , flagsj [i+1u]& TYPE_W ? index_f (n, i+1u) : index_f (j[i+1u], i )); // boundary : regular
5 fhn[i+1] = load(fA , flagsj [i ]& TYPE_W ? index_f (n, i ) : index_f (j[i ], i+1u));
6 }
7 }
8 )+R(void store_f ( const uint n, const float ∗ fhn , global fpxx∗ fB , const uint∗ j, const ulong t, const uchar ∗ flagsj ) {
9 for(uint i=0u; i< def_velocity_set ; i++) store (fB , index_f (n, i), fhn[i]); // One-Step-Pull

10 }

Listing 1: One-Step-Pull implementation in OpenCL C.

8.1.2 One-Step-Push

1 )+R(void load_f ( const uint n, float ∗ fhn , const global fpxx∗ fA , const uint∗ j, const uchar ∗ flagsj ) {
2 for(uint i=0u; i< def_velocity_set ; i++) fhn[i] = load(fA , index_f (n, i)); // One-Step-Push
3 }
4 )+R(void store_f ( const uint n, const float ∗ fhn , global fpxx∗ fB , const uint∗ j, const uchar ∗ flagsj ) {
5 store (fB , index_f (n, 0u), fhn [0]); // One-Step-Push
6 for(uint i=1u; i< def_velocity_set ; i+=2u) {
7 store (fB , flagsj [i ]& TYPE_W ? index_f (n, i+1u) : index_f (j[i ], i ), fhn[i ]); // boundary : regular
8 store (fB , flagsj [i+1u]& TYPE_W ? index_f (n, i ) : index_f (j[i+1u], i+1u), fhn[i+1u]);
9 }

10 }

Listing 2: One-Step-Push implementation in OpenCL C.

8.1.3 AA-Pattern

1 )+R(void load_f ( const uint n, float ∗ fhn , const global fpxx∗ fi , const uint∗ j, const ulong t, const uchar ∗ flagsj ) {
2 fhn [0] = load(fi , index_f (n, 0u)); // AA- Pattern
3 if(t%2 ul) {
4 for(uint i=1u; i< def_velocity_set ; i+=2u) { // pull
5 fhn[i ] = load(fi , flagsj [i+1u]& TYPE_W ? index_f (n, i+1u) : index_f (j[i+1u], i )); // boundary : regular
6 fhn[i+1] = load(fi , flagsj [i ]& TYPE_W ? index_f (n, i ) : index_f (j[i ], i+1u));
7 }
8 } else {
9 for(uint i=1u; i< def_velocity_set ; i+=2u) { // load local ( inverse )

10 fhn[i ] = load(fi , index_f (n, i+1u));
11 fhn[i+1] = load(fi , index_f (n, i ));
12 }
13 }
14 }
15 )+R(void store_f ( const uint n, const float ∗ fhn , global fpxx∗ fi , const uint∗ j, const ulong t, const uchar ∗ flagsj ) {
16 store (fi , index_f (n, 0u), fhn [0]); // AA- Pattern
17 if(t%2 ul) {
18 for(uint i=1u; i< def_velocity_set ; i+=2u) { // push
19 store (fi , flagsj [i ]& TYPE_W ? index_f (n, i ) : index_f (j[i ], i+1u), fhn[i ]); // boundary : regular
20 store (fi , flagsj [i+1u]& TYPE_W ? index_f (n, i+1u) : index_f (j[i+1u], i ), fhn[i+1u]);
21 }
22 } else {
23 for(uint i=1u; i< def_velocity_set ; i++) { // store local
24 store (fi , index_f (n, i), fhn[i]);
25 }
26 }
27 }

Listing 3: AA-Pattern implementation in OpenCL C.

8.1.4 Esoteric-Twist

1 )+R(void load_f ( const uint n, float ∗ fhn , const global fpxx∗ fi , const uint∗ j, const ulong t) {
2 fhn [0] = load(fi , index_f (n, 0u)); // Esoteric - Twist
3 )+"#if defined (D2Q9)"+R(
4 fhn [1] = load(fi , index_f (n , t%2 ul ? 1 : 2));
5 fhn [2] = load(fi , index_f (j[1] , t%2 ul ? 2 : 1));
6 fhn [3] = load(fi , index_f (n , t%2 ul ? 3 : 4));
7 fhn [4] = load(fi , index_f (j[3] , t%2 ul ? 4 : 3));
8 fhn [5] = load(fi , index_f (n , t%2 ul ? 5 : 6));
9 fhn [6] = load(fi , index_f (j[5] , t%2 ul ? 6 : 5));

10 fhn [7] = load(fi , index_f (j[3] , t%2 ul ? 7 : 8)); // attention
11 fhn [8] = load(fi , index_f (j[1] , t%2 ul ? 8 : 7)); // attention
12 )+"#elif defined ( D3Q15 )"+R(
13 uint x0 , xp , xm , y0 , yp , ym , z0 , zp , zm;
14 calculate_indices (n, &x0 , &xp , &xm , &y0 , &yp , &ym , &z0 , &zp , &zm);
15 fhn[ 1] = load(fi , index_f (n , t%2 ul ? 1 : 2));
16 fhn[ 2] = load(fi , index_f (j[ 1] , t%2 ul ? 2 : 1));
17 fhn[ 3] = load(fi , index_f (n , t%2 ul ? 3 : 4));
18 fhn[ 4] = load(fi , index_f (j[ 3] , t%2 ul ? 4 : 3));
19 fhn[ 5] = load(fi , index_f (n , t%2 ul ? 5 : 6));
20 fhn[ 6] = load(fi , index_f (j[ 5] , t%2 ul ? 6 : 5));
21 fhn[ 7] = load(fi , index_f (n , t%2 ul ? 7 : 8));
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22 fhn[ 8] = load(fi , index_f (j[ 7] , t%2 ul ? 8 : 7));
23 fhn[ 9] = load(fi , index_f (j[ 5] , t%2 ul ? 9 : 10)); // attention
24 fhn [10] = load(fi , index_f (xp+yp+z0 , t%2 ul ? 10 : 9)); // attention , additional streaming direction required beyond velocity set
25 fhn [11] = load(fi , index_f (j[ 3] , t%2 ul ? 11 : 12)); // attention
26 fhn [12] = load(fi , index_f (xp+y0+zp , t%2 ul ? 12 : 11)); // attention , additional streaming direction required beyond velocity set
27 fhn [13] = load(fi , index_f (j[ 1] , t%2 ul ? 13 : 14)); // attention
28 fhn [14] = load(fi , index_f (x0+yp+zp , t%2 ul ? 14 : 13)); // attention , additional streaming direction required beyond velocity set
29 )+"#elif defined ( D3Q19 )"+R(
30 fhn[ 1] = load(fi , index_f (n , t%2 ul ? 1 : 2));
31 fhn[ 2] = load(fi , index_f (j[ 1], t%2 ul ? 2 : 1));
32 fhn[ 3] = load(fi , index_f (n , t%2 ul ? 3 : 4));
33 fhn[ 4] = load(fi , index_f (j[ 3], t%2 ul ? 4 : 3));
34 fhn[ 5] = load(fi , index_f (n , t%2 ul ? 5 : 6));
35 fhn[ 6] = load(fi , index_f (j[ 5], t%2 ul ? 6 : 5));
36 fhn[ 7] = load(fi , index_f (n , t%2 ul ? 7 : 8));
37 fhn[ 8] = load(fi , index_f (j[ 7], t%2 ul ? 8 : 7));
38 fhn[ 9] = load(fi , index_f (n , t%2 ul ? 9 : 10));
39 fhn [10] = load(fi , index_f (j[ 9], t%2 ul ? 10 : 9));
40 fhn [11] = load(fi , index_f (n , t%2 ul ? 11 : 12));
41 fhn [12] = load(fi , index_f (j[11] , t%2 ul ? 12 : 11));
42 fhn [13] = load(fi , index_f (j[ 3], t%2 ul ? 13 : 14)); // attention
43 fhn [14] = load(fi , index_f (j[ 1], t%2 ul ? 14 : 13)); // attention
44 fhn [15] = load(fi , index_f (j[ 5], t%2 ul ? 15 : 16)); // attention
45 fhn [16] = load(fi , index_f (j[ 1], t%2 ul ? 16 : 15)); // attention
46 fhn [17] = load(fi , index_f (j[ 5], t%2 ul ? 17 : 18)); // attention
47 fhn [18] = load(fi , index_f (j[ 3], t%2 ul ? 18 : 17)); // attention
48 )+"#elif defined ( D3Q27 )"+R(
49 fhn[ 1] = load(fi , index_f (n , t%2 ul ? 1 : 2));
50 fhn[ 2] = load(fi , index_f (j[ 1], t%2 ul ? 2 : 1));
51 fhn[ 3] = load(fi , index_f (n , t%2 ul ? 3 : 4));
52 fhn[ 4] = load(fi , index_f (j[ 3], t%2 ul ? 4 : 3));
53 fhn[ 5] = load(fi , index_f (n , t%2 ul ? 5 : 6));
54 fhn[ 6] = load(fi , index_f (j[ 5], t%2 ul ? 6 : 5));
55 fhn[ 7] = load(fi , index_f (n , t%2 ul ? 7 : 8));
56 fhn[ 8] = load(fi , index_f (j[ 7], t%2 ul ? 8 : 7));
57 fhn[ 9] = load(fi , index_f (n , t%2 ul ? 9 : 10));
58 fhn [10] = load(fi , index_f (j[ 9], t%2 ul ? 10 : 9));
59 fhn [11] = load(fi , index_f (n , t%2 ul ? 11 : 12));
60 fhn [12] = load(fi , index_f (j[11] , t%2 ul ? 12 : 11));
61 fhn [13] = load(fi , index_f (j[ 3], t%2 ul ? 13 : 14)); // attention
62 fhn [14] = load(fi , index_f (j[ 1], t%2 ul ? 14 : 13)); // attention
63 fhn [15] = load(fi , index_f (j[ 5], t%2 ul ? 15 : 16)); // attention
64 fhn [16] = load(fi , index_f (j[ 1], t%2 ul ? 16 : 15)); // attention
65 fhn [17] = load(fi , index_f (j[ 5], t%2 ul ? 17 : 18)); // attention
66 fhn [18] = load(fi , index_f (j[ 3], t%2 ul ? 18 : 17)); // attention
67 fhn [19] = load(fi , index_f (n , t%2 ul ? 19 : 20));
68 fhn [20] = load(fi , index_f (j[19] , t%2 ul ? 20 : 19));
69 fhn [21] = load(fi , index_f (j[ 5], t%2 ul ? 21 : 22)); // attention
70 fhn [22] = load(fi , index_f (j[ 7], t%2 ul ? 22 : 21)); // attention
71 fhn [23] = load(fi , index_f (j[ 3], t%2 ul ? 23 : 24)); // attention
72 fhn [24] = load(fi , index_f (j[ 9], t%2 ul ? 24 : 23)); // attention
73 fhn [25] = load(fi , index_f (j[ 1], t%2 ul ? 25 : 26)); // attention
74 fhn [26] = load(fi , index_f (j[11] , t%2 ul ? 26 : 25)); // attention
75 )+"# endif "+R( // D3Q27
76 }
77 )+R(void store_f ( const uint n, const float ∗ fhn , global fpxx∗ fi , const uint∗ j, const ulong t) {
78 store (fi , index_f (n, 0u), fhn [0]); // Esoteric - Twist
79 )+"#if defined (D2Q9)"+R(
80 store (fi , index_f (j[1] , t%2 ul ? 2 : 1) , fhn [1]);
81 store (fi , index_f (n , t%2 ul ? 1 : 2) , fhn [2]);
82 store (fi , index_f (j[3] , t%2 ul ? 4 : 3) , fhn [3]);
83 store (fi , index_f (n , t%2 ul ? 3 : 4) , fhn [4]);
84 store (fi , index_f (j[5] , t%2 ul ? 6 : 5) , fhn [5]);
85 store (fi , index_f (n , t%2 ul ? 5 : 6) , fhn [6]);
86 store (fi , index_f (j[1] , t%2 ul ? 8 : 7) , fhn [7]); // attention
87 store (fi , index_f (j[3] , t%2 ul ? 7 : 8) , fhn [8]); // attention
88 )+"#elif defined ( D3Q15 )"+R(
89 uint x0 , xp , xm , y0 , yp , ym , z0 , zp , zm;
90 calculate_indices (n, &x0 , &xp , &xm , &y0 , &yp , &ym , &z0 , &zp , &zm);
91 store (fi , index_f (j[ 1] , t%2 ul ? 2 : 1) , fhn[ 1]);
92 store (fi , index_f (n , t%2 ul ? 1 : 2) , fhn[ 2]);
93 store (fi , index_f (j[ 3] , t%2 ul ? 4 : 3) , fhn[ 3]);
94 store (fi , index_f (n , t%2 ul ? 3 : 4) , fhn[ 4]);
95 store (fi , index_f (j[ 5] , t%2 ul ? 6 : 5) , fhn[ 5]);
96 store (fi , index_f (n , t%2 ul ? 5 : 6) , fhn[ 6]);
97 store (fi , index_f (j[ 7] , t%2 ul ? 8 : 7) , fhn[ 7]);
98 store (fi , index_f (n , t%2 ul ? 7 : 8) , fhn[ 8]);
99 store (fi , index_f (xp+yp+z0 , t%2 ul ? 10 : 9) , fhn[ 9]); // attention , additional streaming direction required beyond velocity set

100 store (fi , index_f (j[ 5] , t%2 ul ? 9 : 10) , fhn [10]) ; // attention
101 store (fi , index_f (xp+y0+zp , t%2 ul ? 12 : 11) , fhn [11]) ; // attention , additional streaming direction required beyond velocity set
102 store (fi , index_f (j[ 3] , t%2 ul ? 11 : 12) , fhn [12]) ; // attention
103 store (fi , index_f (x0+yp+zp , t%2 ul ? 14 : 13) , fhn [13]) ; // attention , additional streaming direction required beyond velocity set
104 store (fi , index_f (j[ 1] , t%2 ul ? 13 : 14) , fhn [14]) ; // attention
105 )+"#elif defined ( D3Q19 )"+R(
106 store (fi , index_f (j[ 1], t%2 ul ? 2 : 1) , fhn[ 1]);
107 store (fi , index_f (n , t%2 ul ? 1 : 2) , fhn[ 2]);
108 store (fi , index_f (j[ 3], t%2 ul ? 4 : 3) , fhn[ 3]);
109 store (fi , index_f (n , t%2 ul ? 3 : 4) , fhn[ 4]);
110 store (fi , index_f (j[ 5], t%2 ul ? 6 : 5) , fhn[ 5]);
111 store (fi , index_f (n , t%2 ul ? 5 : 6) , fhn[ 6]);
112 store (fi , index_f (j[ 7], t%2 ul ? 8 : 7) , fhn[ 7]);
113 store (fi , index_f (n , t%2 ul ? 7 : 8) , fhn[ 8]);
114 store (fi , index_f (j[ 9], t%2 ul ? 10 : 9) , fhn[ 9]);
115 store (fi , index_f (n , t%2 ul ? 9 : 10) , fhn [10]) ;
116 store (fi , index_f (j[11] , t%2 ul ? 12 : 11) , fhn [11]) ;
117 store (fi , index_f (n , t%2 ul ? 11 : 12) , fhn [12]) ;
118 store (fi , index_f (j[ 1], t%2 ul ? 14 : 13) , fhn [13]) ; // attention
119 store (fi , index_f (j[ 3], t%2 ul ? 13 : 14) , fhn [14]) ; // attention
120 store (fi , index_f (j[ 1], t%2 ul ? 16 : 15) , fhn [15]) ; // attention
121 store (fi , index_f (j[ 5], t%2 ul ? 15 : 16) , fhn [16]) ; // attention
122 store (fi , index_f (j[ 3], t%2 ul ? 18 : 17) , fhn [17]) ; // attention
123 store (fi , index_f (j[ 5], t%2 ul ? 17 : 18) , fhn [18]) ; // attention
124 )+"#elif defined ( D3Q27 )"+R(
125 store (fi , index_f (j[ 1], t%2 ul ? 2 : 1) , fhn[ 1]);
126 store (fi , index_f (n , t%2 ul ? 1 : 2) , fhn[ 2]);
127 store (fi , index_f (j[ 3], t%2 ul ? 4 : 3) , fhn[ 3]);
128 store (fi , index_f (n , t%2 ul ? 3 : 4) , fhn[ 4]);
129 store (fi , index_f (j[ 5], t%2 ul ? 6 : 5) , fhn[ 5]);
130 store (fi , index_f (n , t%2 ul ? 5 : 6) , fhn[ 6]);
131 store (fi , index_f (j[ 7], t%2 ul ? 8 : 7) , fhn[ 7]);
132 store (fi , index_f (n , t%2 ul ? 7 : 8) , fhn[ 8]);
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133 store (fi , index_f (j[ 9], t%2 ul ? 10 : 9) , fhn[ 9]);
134 store (fi , index_f (n , t%2 ul ? 9 : 10) , fhn [10]) ;
135 store (fi , index_f (j[11] , t%2 ul ? 12 : 11) , fhn [11]) ;
136 store (fi , index_f (n , t%2 ul ? 11 : 12) , fhn [12]) ;
137 store (fi , index_f (j[ 1], t%2 ul ? 14 : 13) , fhn [13]) ; // attention
138 store (fi , index_f (j[ 3], t%2 ul ? 13 : 14) , fhn [14]) ; // attention
139 store (fi , index_f (j[ 1], t%2 ul ? 16 : 15) , fhn [15]) ; // attention
140 store (fi , index_f (j[ 5], t%2 ul ? 15 : 16) , fhn [16]) ; // attention
141 store (fi , index_f (j[ 3], t%2 ul ? 18 : 17) , fhn [17]) ; // attention
142 store (fi , index_f (j[ 5], t%2 ul ? 17 : 18) , fhn [18]) ; // attention
143 store (fi , index_f (j[19] , t%2 ul ? 20 : 19) , fhn [19]) ;
144 store (fi , index_f (n , t%2 ul ? 19 : 20) , fhn [20]) ;
145 store (fi , index_f (j[ 7], t%2 ul ? 22 : 21) , fhn [21]) ; // attention
146 store (fi , index_f (j[ 5], t%2 ul ? 21 : 22) , fhn [22]) ; // attention
147 store (fi , index_f (j[ 9], t%2 ul ? 24 : 23) , fhn [23]) ; // attention
148 store (fi , index_f (j[ 3], t%2 ul ? 23 : 24) , fhn [24]) ; // attention
149 store (fi , index_f (j[11] , t%2 ul ? 26 : 25) , fhn [25]) ; // attention
150 store (fi , index_f (j[ 1], t%2 ul ? 25 : 26) , fhn [26]) ; // attention
151 )+"# endif "+R( // D3Q27
152 }

Listing 4: Esoteric-Twist implementation in OpenCL C.

8.1.5 Esoteric-Pull

1 )+R(void load_f ( const uint n, float ∗ fhn , const global fpxx∗ fi , const uint∗ j, const ulong t) {
2 fhn [0] = load(fi , index_f (n, 0u)); // Esoteric -Pull
3 for(uint i=1u; i< def_velocity_set ; i+=2u) {
4 fhn[i ] = load(fi , index_f (n , t%2 ul ? i : i+1u));
5 fhn[i+1u] = load(fi , index_f (j[i], t%2 ul ? i+1u : i ));
6 }
7 }
8 )+R(void store_f ( const uint n, const float ∗ fhn , global fpxx∗ fi , const uint∗ j, const ulong t) {
9 store (fi , index_f (n, 0u), fhn [0]); // Esoteric -Pull

10 for(uint i=1u; i< def_velocity_set ; i+=2u) {
11 store (fi , index_f (j[i], t%2 ul ? i+1u : i ), fhn[i ]);
12 store (fi , index_f (n , t%2 ul ? i : i+1u), fhn[i+1u]);
13 }
14 }

Listing 5: Esoteric-Pull implementation in OpenCL C.

8.1.6 Esoteric-Push

1 )+R(void load_f ( const uint n, float ∗ fhn , const global fpxx∗ fi , const uint∗ j, const ulong t) {
2 fhn [0] = load(fi , index_f (n, 0u)); // Esoteric -Push
3 for(uint i=1u; i< def_velocity_set ; i+=2u) {
4 fhn[i ] = load(fi , index_f (j[i+1u], t%2 ul ? i+1u : i ));
5 fhn[i+1u] = load(fi , index_f (n , t%2 ul ? i : i+1u));
6 }
7 }
8 )+R(void store_f ( const uint n, const float ∗ fhn , global fpxx∗ fi , const uint∗ j, const ulong t) {
9 store (fi , index_f (n, 0u), fhn [0]); // Esoteric -Push

10 for(uint i=1u; i< def_velocity_set ; i+=2u) {
11 store (fi , index_f (n , t%2 ul ? i : i+1u), fhn[i ]);
12 store (fi , index_f (j[i+1u], t%2 ul ? i+1u : i ), fhn[i+1u]);
13 }
14 }

Listing 6: Esoteric-Push implementation in OpenCL C.

8.2 OpenCL C implementation of the FSLBM with Esoteric-Pull

1 # define TYPE_W 0 b00000001 // static boundary (wall)
2 # define TYPE_E 0 b00000010 // equilibrium boundary or moving bounce -back boundary ( inflow / outflow )
3 # define TYPE_F 0 b00001000 // fluid
4 # define TYPE_I 0 b00010000 // interface
5 # define TYPE_G 0 b00100000 // gas
6
7 # define TYPE_IF 0 b00011000 // change from interface to fluid
8 # define TYPE_IG 0 b00110000 // change from interface to gas
9 # define TYPE_GI 0 b00111000 // change from gas to interface

10 # define TYPE_SU 0 b00111000 // any flag bit used for SURFACE
11
12 # define fpxx float // switchable data type ( regular 32-bit float )
13 # define load(p,o) p[o] // regular float read
14 # define store (p,o,x) p[o]=x // regular float write
15
16 )+R( ulong index_f ( const uint n, const uint i) { // 64-bit indexing ( maximum 2^32 lattice points (1624^3 lattice resolution , 225 GB)
17 return ( ulong )i∗( ulong ) def_N +( ulong )n; // SoA (229% faster on GPU)
18 }
19
20 )+R(void load_f ( const uint n, float ∗ fhn , const global fpxx∗ fi , const uint∗ j, const ulong t) {
21 fhn [0] = load(fi , index_f (n, 0u)); // Esoteric -Pull
22 for(uint i=1u; i< def_velocity_set ; i+=2u) {
23 fhn[i ] = load(fi , index_f (n , t%2 ul ? i : i+1u));
24 fhn[i+1u] = load(fi , index_f (j[i], t%2 ul ? i+1u : i ));
25 }
26 }
27 )+R(void store_f ( const uint n, const float ∗ fhn , global fpxx∗ fi , const uint∗ j, const ulong t) {
28 store (fi , index_f (n, 0u), fhn [0]); // Esoteric -Pull
29 for(uint i=1u; i< def_velocity_set ; i+=2u) {
30 store (fi , index_f (j[i], t%2 ul ? i+1u : i ), fhn[i ]);
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31 store (fi , index_f (n , t%2 ul ? i : i+1u), fhn[i+1u]);
32 }
33 }
34
35 )+"# ifdef SURFACE "+R(
36 )+R(void load_f_outgoing ( const uint n, float ∗ fon , const global fpxx∗ fi , const uint∗ j, const ulong t) { // load outgoing DDFs , even: 1:1 like

↪→ stream -out odd , odd: 1:1 like stream -out even
37 for(uint i=1u; i< def_velocity_set ; i+=2u) { // Esoteric -Pull
38 fon[i ] = load(fi , index_f (j[i], t%2 ul ? i : i+1u));
39 fon[i+1u] = load(fi , index_f (n , t%2 ul ? i+1u : i ));
40 }
41 }
42 )+R(void store_f_reconstructed ( const uint n, const float ∗ fhn , global fpxx∗ fi , const uint∗ j, const ulong t, const uchar ∗ flagsj ) { // store

↪→ reconstructed gas DDFs , even: 1:1 like stream -in even , odd: 1:1 like stream -in odd
43 for(uint i=1u; i< def_velocity_set ; i+=2u) { // Esoteric -Pull
44 if( flagsj [i+1u]& TYPE_G ) store (fi , index_f (n , t%2 ul ? i : i+1u), fhn[i ]); // only store reconstructed gas DDFs to locations from which
45 if( flagsj [i ]& TYPE_G ) store (fi , index_f (j[i], t%2 ul ? i+1u : i ), fhn[i+1u]); // they are going to be streamed in during next

↪→ stream_collide ()
46 }
47 }
48 )+"# endif "+R( // SURFACE
49
50
51
52 )+" kernel void initialize ( global fpxx∗ fi , global float ∗ rho , global float ∗ u, global uchar ∗ flags "+R( // ) {
53 )+"# ifdef SURFACE "+R(
54 , global float ∗ mass , global float ∗ massex , global float ∗ phi // argument order is important
55 )+"# endif "+R( // SURFACE
56 )+") {"+R( // initialize ()
57 const uint n = get_global_id (0); // n = x+(y+z∗Ny)∗Nx
58 uchar flagsn = flags [n];
59 uint j[ def_velocity_set ]; // neighbor indices
60 neighbors (n, j); // calculate neighbor indices
61 uchar flagsj [ def_velocity_set ]; // cache neighbor flags for multiple readings
62 for(uint i=1u; i< def_velocity_set ; i++) flagsj [i] = flags [j[i]];
63 if( flagsn & TYPE_W ) { // node is wall
64 bool TYPE_ONLY_W = true; // has only wall neighbors
65 for(uint i=1u; i< def_velocity_set ; i++) if (!( flagsj [i]& TYPE_W )) TYPE_ONLY_W = TYPE_ONLY_W &&( flagsj [i]& TYPE_W );
66 if( TYPE_ONLY_W ) {
67 u[ n] = 0.0f; // reset velocity for wall lattice points with only boundary neighbors
68 u[ ( ulong ) def_N +( ulong )n] = 0.0f;
69 u[2 ul ∗( ulong ) def_N +( ulong )n] = 0.0f;
70 }
71 )+"# ifndef MOVING_BOUNDARIES "+R(
72 if( flagsn & TYPE_W ) {
73 u[ n] = 0.0f; // reset velocity for all wall lattice points
74 u[ ( ulong ) def_N +( ulong )n] = 0.0f;
75 u[2 ul ∗( ulong ) def_N +( ulong )n] = 0.0f;
76 }
77 )+"#else"+R( // MOVING_BOUNDARIES
78 } else if (!( flagsn & TYPE_T )) { // local lattice point is not wall
79 bool next_to_moving_boundary = false ;
80 for(uint i=1u; i< def_velocity_set ; i++) {
81 next_to_moving_boundary |= (u[j[i ]]!=0.0 f||u[( ulong ) def_N +( ulong )j[i ]]!=0.0 f||u[2 ul ∗( ulong ) def_N +( ulong )j[i ]]!=0.0 f)&&( flagsj [i]& TYPE_W );
82 }
83 if( next_to_moving_boundary ) flags [n] = flagsn = flagsn | TYPE_E ; // only flag lattice points next to a wall with non-zero velocity with TYPE_E
84 )+"# endif "+R( // MOVING_BOUNDARIES
85 }
86 float feq[ def_velocity_set ]; // f_equilibrium
87 calculate_f_eq (rho[n], u[n], u[( ulong ) def_N +( ulong )n], u[2 ul ∗( ulong ) def_N +( ulong )n], feq);
88 )+"# ifdef SURFACE "+R( // automatically generate the interface layer between fluid and gas
89 { // separate block to avoid variable name conflicts
90 float phin = phi[n];
91 if (!( flagsn &( TYPE_W | TYPE_E | TYPE_T | TYPE_F | TYPE_I ))) flagsn = ( flagsn &~ TYPE_SU )| TYPE_G ; // change all non- fluid and non- interface flags to gas
92 if( flagsn & TYPE_G ) { // node is gas
93 bool change = false ; // check if node has to be changed to interface
94 for(uint i=1u; i< def_velocity_set ; i++) change = change ||( flagsj [i]& TYPE_F ); // if neighbor flag fluid is set , the node must be interface
95 if( change ) { // create interface automatically if phi has not explicitely defined for the interface layer
96 flagsn = ( flagsn &~ TYPE_SU )| TYPE_I ; // node must be interface
97 phin = 0.5f;
98 float rhon , uxn , uyn , uzn; // initialize interface nodes with average density / velocity of fluid neighbors
99 average_neighbors_fluid (n, rho , u, flags , &rhon , &uxn , &uyn , &uzn); // get average rho/u from all fluid neighbors

100 calculate_f_eq (rhon , uxn , uyn , uzn , feq); // calculate equilibrium DDFs
101 }
102 }
103 if( flagsn & TYPE_G ) { // node is still gas
104 u[ n] = 0.0f; // reset velocity for gas nodes
105 u[ ( ulong ) def_N +( ulong )n] = 0.0f;
106 u[2 ul ∗( ulong ) def_N +( ulong )n] = 0.0f;
107 phin = 0.0f;
108 } else if (( flagsn & TYPE_I ) && (phin <0.0f|| phin >1.0f)) {
109 phin = 0.5f; // node should be interface , but phi was invalid
110 } else if( flagsn & TYPE_F ) {
111 phin = 1.0f;
112 }
113 phi[n] = phin;
114 mass[n] = phin∗rho[n];
115 massex [n] = 0.0f; // reset excess mass
116 flags [n] = flagsn ;
117 }
118 )+"# endif "+R( // SURFACE
119 store_f (n, feq , fi , j, 1ul); // write to fi
120 } // initialize ()
121
122
123
124 )+" kernel void stream_collide ( global fpxx∗ fi , global float ∗ rho , global float ∗ u, global uchar ∗ flags , const ulong t"+R( // ) { // for all but

↪→ SURFACE , flags is const
125 )+"# ifdef SURFACE "+R(
126 , global float ∗ mass // argument order is important
127 )+"# endif "+R( // SURFACE
128 )+") {"+R( // stream_collide ()
129 const uint n = get_global_id (0); // n = x+(y+z∗Ny)∗Nx
130 const uchar flagsn = flags [n]; // cache flags [n] for multiple readings
131 if( flagsn &( TYPE_W | TYPE_G )) return ; // if node is boundary or gas , just return
132
133 uint j[ def_velocity_set ]; // neighbor indices
134 neighbors (n, j); // calculate neighbor indices
135
136 )+"#if defined ( MOVING_BOUNDARIES )|| defined ( SURFACE )"+R( // don ’t leave any spaces in #if arguments
137 uchar flagsj [ def_velocity_set ]; // only required for MOVING_BOUNDARIES , SURFACE or TEMPERATURE
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138 flagsj [0] = flagsn ;
139 for(uint i=1u; i< def_velocity_set ; i++) flagsj [i] = flags [j[i]];
140 )+"# endif "+R( // MOVING_BOUNDARIES or SURFACE
141
142 float fhn[ def_velocity_set ]; // local DDFs
143 load_f (n, fhn , fi , j, t); // perform streaming (part 1)
144
145 )+"# ifdef MOVING_BOUNDARIES "+R(
146 if( flagsn & TYPE_E ) { // apply Dirichlet velocity boundaries if necessary ( reads velocities of only neighboring boundary nodes , which do not change

↪→ during simulation )
147 uint ji;
148 for(uint i=1u; i< def_velocity_set ; i+=2u) { // Krueger p.180 , rho_wall =1, loop is totally unrolled by compiler
149 const float w6 = -6.0f∗w(i); // w(i) = w(i+1) if i is odd
150 ji = j[i+1u]; fhn[i ] = flagsj [i+1u]& TYPE_W ? fma(w6 , c(i+1u)∗u[ji ]+c( def_velocity_set +i+1u)∗u[( ulong ) def_N +( ulong )ji ]+c(2u∗

↪→ def_velocity_set +i+1u)∗u[2 ul ∗( ulong ) def_N +( ulong )ji], fhn[i ]) : fhn[i ]; // boundary : regular
151 ji = j[i ]; fhn[i+1u] = flagsj [i ]& TYPE_W ? fma(w6 , c(i )∗u[ji ]+c( def_velocity_set +i )∗u[( ulong ) def_N +( ulong )ji ]+c(2u∗

↪→ def_velocity_set +i )∗u[2 ul ∗( ulong ) def_N +( ulong )ji], fhn[i+1u]) : fhn[i+1u];
152 }
153 }
154 )+"# endif "+R( // MOVING_BOUNDARIES
155
156 float rhon , uxn , uyn , uzn; // calculate local density and velocity for collision
157 )+"# ifndef EQUILIBRIUM_BOUNDARIES "+R(
158 calculate_rho_u (fhn , &rhon , &uxn , &uyn , &uzn); // calculate density and velocity fields from fi
159 )+"#else"+R( // EQUILIBRIUM_BOUNDARIES
160 if( flagsn & TYPE_E ) {
161 rhon = rho[ n]; // apply preset velocity / density
162 uxn = u[ n];
163 uyn = u[ ( ulong ) def_N +( ulong )n];
164 uzn = u[2 ul ∗( ulong ) def_N +( ulong )n];
165 } else {
166 calculate_rho_u (fhn , &rhon , &uxn , &uyn , &uzn); // calculate density and velocity fields from fi
167 }
168 )+"# endif "+R( // EQUILIBRIUM_BOUNDARIES
169 float fxn=def_fx , fyn=def_fy , fzn= def_fz ; // force starts as constant volume force , can be modified before call of calculate_forcing_terms (...)
170 float Fin[ def_velocity_set ]; // forcing terms
171
172 { // separate block to avoid variable name conflicts
173 )+"# ifdef VOLUME_FORCE "+R( // apply force and collision operator , write to fi in video memory
174 const float rho2 = 0.5f/rhon; // apply external volume force (Guo forcing , Krueger p.233f)
175 uxn = clamp (fma(fxn , rho2 , uxn), -def_c , def_c ); // limit velocity (for stability purposes )
176 uyn = clamp (fma(fyn , rho2 , uyn), -def_c , def_c ); // force term: F∗dt /(2∗ rho)
177 uzn = clamp (fma(fzn , rho2 , uzn), -def_c , def_c );
178 calculate_forcing_terms (uxn , uyn , uzn , fxn , fyn , fzn , Fin); // calculate volume force terms Fin from velocity field (Guo forcing , Krueger p.233

↪→ f)
179 )+"#else"+R( // VOLUME_FORCE
180 uxn = clamp (uxn , -def_c , def_c ); // limit velocity (for stability purposes )
181 uyn = clamp (uyn , -def_c , def_c ); // force term: F∗dt /(2∗ rho)
182 uzn = clamp (uzn , -def_c , def_c );
183 for(uint i=0u; i< def_velocity_set ; i++) Fin[i] = 0.0f;
184 )+"# endif "+R( // VOLUME_FORCE
185 }
186
187 )+"# ifdef SURFACE "+R(
188 if( flagsn & TYPE_I ) { // node was interface , eventually initiate flag change
189 bool TYPE_NO_F =true , TYPE_NO_G =true; // temporary flags for no fluid or gas neighbors
190 for(uint i=1u; i< def_velocity_set ; i++) {
191 const uchar flagsji_su = flags [j[i]]& TYPE_SU ; // extract SURFACE flags
192 TYPE_NO_F = TYPE_NO_F && flagsji_su != TYPE_F ;
193 TYPE_NO_G = TYPE_NO_G && flagsji_su != TYPE_G ;
194 }
195 const float massn = mass[n]; // load mass
196 if(massn >rhon || TYPE_NO_G ) flags [n] = ( flagsn &~ TYPE_SU )| TYPE_IF ; // set flag interface ->fluid
197 else if(massn <0.0f || TYPE_NO_F ) flags [n] = ( flagsn &~ TYPE_SU )| TYPE_IG ; // set flag interface ->gas
198 }
199 )+"# endif "+R( // SURFACE
200
201 )+"# ifndef EQUILIBRIUM_BOUNDARIES "+R(
202 )+"# ifdef UPDATE_FIELDS "+R(
203 rho[ n] = rhon; // update density field
204 u[ n] = uxn; // update velocity field
205 u[ ( ulong ) def_N +( ulong )n] = uyn;
206 u[2 ul ∗( ulong ) def_N +( ulong )n] = uzn;
207 )+"# endif "+R( // UPDATE_FIELDS
208 )+"#else"+R( // EQUILIBRIUM_BOUNDARIES
209 )+"# ifdef UPDATE_FIELDS "+R(
210 if (!( flagsn & TYPE_E )) {
211 rho[ n] = rhon; // update density field
212 u[ n] = uxn; // update velocity field
213 u[ ( ulong ) def_N +( ulong )n] = uyn;
214 u[2 ul ∗( ulong ) def_N +( ulong )n] = uzn;
215 }
216 )+"# endif "+R( // UPDATE_FIELDS
217 )+"# endif "+R( // EQUILIBRIUM_BOUNDARIES
218
219 float feq[ def_velocity_set ]; // equilibrium DDFs
220 calculate_f_eq (rhon , uxn , uyn , uzn , feq); // calculate equilibrium DDFs
221
222 )+"# ifdef VOLUME_FORCE "+R(
223 const float c_tau = fma(def_w , -0.5f, 1.0f);
224 for(uint i=0u; i< def_velocity_set ; i++) Fin[i] ∗= c_tau ;
225 )+"# endif "+R( // VOLUME_FORCE
226 )+"# ifndef EQUILIBRIUM_BOUNDARIES "+R(
227 for(uint i=0u; i< def_velocity_set ; i++) fhn[i] = fma (1.0f-def_w , fhn[i], fma(def_w , feq[i], Fin[i])); // perform collision (SRT)
228 )+"#else"+R( // EQUILIBRIUM_BOUNDARIES
229 for(uint i=0u; i< def_velocity_set ; i++) fhn[i] = flagsn & TYPE_E ? feq[i] : fma (1.0f-def_w , fhn[i], fma(def_w , feq[i], Fin[i])); // perform

↪→ collision (SRT)
230 )+"# endif "+R( // EQUILIBRIUM_BOUNDARIES
231
232 store_f (n, fhn , fi , j, t); // perform streaming (part 2)
233 } // stream_collide ()
234
235
236
237 )+"# ifdef SURFACE "+R(
238 )+R( kernel void surface_0 ( global fpxx∗ fi , const global float ∗ rho , const global float ∗ u, const global uchar ∗ flags , global float ∗ mass , const

↪→ global float ∗ massex , const global float ∗ phi , const ulong t) { // capture outgoing DDFs before streaming
239 const uint n = get_global_id (0); // n = x+(y+z∗Ny)∗Nx
240 const uchar flagsn = flags [n]; // cache flags [n] for multiple readings
241 if( flagsn &( TYPE_W | TYPE_G )) return ; // node processed here is fluid or interface
242
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243 uint j[ def_velocity_set ]; // neighbor indices
244 neighbors (n, j); // calculate neighbor indices
245 float fhn[ def_velocity_set ]; // incoming DDFs
246 load_f (n, fhn , fi , j, t); // load incoming DDFs
247 float fon[ def_velocity_set ]; // outgoing DDFs
248 fon [0] = fhn [0]; // fon [0] is already loaded in fhn [0]
249 load_f_outgoing (n, fon , fi , j, t); // load outgoing DDFs
250
251 float massn = mass[n];
252 for(uint i=1u; i< def_velocity_set ; i++) {
253 massn += massex [j[i]]; // distribute excess mass from last step which is stored in neighbors
254 }
255 if( flagsn & TYPE_F ) { // node is fluid
256 for(uint i=1u; i< def_velocity_set ; i++) massn += fhn[i]-fon[i]; // neighbor is fluid or interface node
257 } else if( flagsn & TYPE_I ) { // node is interface
258 float phij[ def_velocity_set ]; // cache fill level of neighbor lattice points
259 for(uint i=1u; i< def_velocity_set ; i++) phij[i] = phi[j[i]]; // cache fill level of neighbor lattice points
260 float rhon , uxn , uyn , uzn , rho_laplace =0.0f; // no surface tension if rho_laplace is not overwritten later
261 )+"# ifndef EQUILIBRIUM_BOUNDARIES "+R(
262 calculate_rho_u (fon , &rhon , &uxn , &uyn , &uzn); // calculate density and velocity fields from fon (not fhn)
263 )+"#else"+R( // EQUILIBRIUM_BOUNDARIES
264 if( flagsn & TYPE_E ) {
265 rhon = rho[ n]; // apply preset velocity / density
266 uxn = u[ n];
267 uyn = u[ ( ulong ) def_N +( ulong )n];
268 uzn = u[2 ul ∗( ulong ) def_N +( ulong )n];
269 } else {
270 calculate_rho_u (fon , &rhon , &uxn , &uyn , &uzn); // calculate density and velocity fields from fon (not fhn)
271 }
272 )+"# endif "+R( // EQUILIBRIUM_BOUNDARIES
273 uxn = clamp (uxn , -def_c , def_c ); // limit velocity (for stability purposes )
274 uyn = clamp (uyn , -def_c , def_c );
275 uzn = clamp (uzn , -def_c , def_c );
276 phij [0] = calculate_phi (rhon , massn , flagsn ); // don ’t load phi[n] from memory , instead recalculate it with mass corrected by excess mass
277 rho_laplace = def_6_sigma ==0.0 f ? 0.0f : def_6_sigma ∗ curvature_calculation (n, phij , phi); // surface tension least squares fit (PLIC , most

↪→ accurate )
278 float feg[ def_velocity_set ]; // reconstruct f from neighbor gas lattice points
279 const float rho2tmp = 0.5f/rhon; // apply external volume force (Guo forcing , Krueger p.233f)
280 const float uxntmp = clamp (fma(def_fx , rho2tmp , uxn), -def_c , def_c ); // limit velocity (for stability purposes )
281 const float uyntmp = clamp (fma(def_fy , rho2tmp , uyn), -def_c , def_c ); // force term: F∗dt /(2∗ rho)
282 const float uzntmp = clamp (fma(def_fz , rho2tmp , uzn), -def_c , def_c );
283 calculate_f_eq (1.0f- rho_laplace , uxntmp , uyntmp , uzntmp , feg); // calculate gas equilibrium DDFs with constant ambient pressure
284 uchar flagsj [ def_velocity_set ]; // cache neighbor flags for multiple readings
285 for(uint i=1u; i< def_velocity_set ; i++) flagsj [i] = flags [j[i]];
286 for(uint i=1u; i< def_velocity_set ; i+=2u) { // calculate mass exchange between current node and fluid / interface nodes
287 massn += flagsj [i ]&( TYPE_F | TYPE_I ) ? flagsj [i ]& TYPE_F ? fhn[i+1]-fon[i ] : 0.5f∗( phij[i ]+ phij [0]) ∗( fhn[i+1 ]-fon[i ]) : 0.0f; //

↪→ neighbor is fluid or interface node
288 massn += flagsj [i+1u]&( TYPE_F | TYPE_I ) ? flagsj [i+1u]& TYPE_F ? fhn[i ]-fon[i+1u] : 0.5f∗( phij[i+1u]+ phij [0]) ∗( fhn[i ]-fon[i+1u]) : 0.0f; //

↪→ fluid : interface : gas
289 }
290 for(uint i=1u; i< def_velocity_set ; i+=2u) { // calculate reconstructed gas DDFs
291 fhn[i ] = feg[i+1u]-fon[i+1u]+ feg[i ];
292 fhn[i+1u] = feg[i ]-fon[i ]+ feg[i+1u];
293 }
294 store_f_reconstructed (n, fhn , fi , j, t, flagsj ); // store reconstructed gas DDFs that are streamed in during the following stream_collide ()
295 }
296 mass[n] = massn ;
297 }
298 )+R( kernel void surface_1 ( global uchar ∗ flags ) { // prevent neighbors from interface ->fluid nodes to become /be gas nodes
299 const uint n = get_global_id (0); // n = x+(y+z∗Ny)∗Nx
300 const uchar flagsn_su = flags [n]&( TYPE_SU | TYPE_W ); // extract SURFACE flags
301 if( flagsn_su == TYPE_IF ) { // flag interface ->fluid is set
302 uint j[ def_velocity_set ]; // neighbor indices
303 neighbors (n, j); // calculate neighbor indices
304 for(uint i=1u; i< def_velocity_set ; i++) {
305 const uchar flagsji = flags [j[i]];
306 const uchar flagsji_su = flagsji &( TYPE_SU | TYPE_W ); // extract SURFACE flags
307 const uchar flagsji_r = flagsji &~ TYPE_SU ; // extract all non- SURFACE flags
308 if( flagsji_su == TYPE_IG ) flags [j[i]] = flagsji_r | TYPE_I ; // prevent interface neighbor nodes from becoming gas
309 else if( flagsji_su == TYPE_G ) flags [j[i]] = flagsji_r | TYPE_GI ; // neighbor node was gas and must change to interface
310 }
311 }
312 } // possible types at the end of surface_1 (): TYPE_F / TYPE_I / TYPE_G / TYPE_IF / TYPE_IG / TYPE_GI
313 )+R( kernel void surface_2 ( global fpxx∗ fi , const global float ∗ rho , const global float ∗ u, global uchar ∗ flags , const ulong t) { // apply flag

↪→ changes and calculate excess mass
314 const uint n = get_global_id (0); // n = x+(y+z∗Ny)∗Nx
315 const uchar flagsn_su = flags [n]&( TYPE_SU | TYPE_W ); // extract SURFACE flags
316 if( flagsn_su == TYPE_GI ) { // initialize the fi of gas nodes that should become interface
317 float rhon , uxn , uyn , uzn; // average over all fluid / interface neighbors
318 average_neighbors_non_gas (n, rho , u, flags , &rhon , &uxn , &uyn , &uzn); // get average rho/u from all fluid / interface neighbors
319 float feq[ def_velocity_set ];
320 calculate_f_eq (rhon , uxn , uyn , uzn , feq); // calculate equilibrium DDFs
321 uint j[ def_velocity_set ];
322 neighbors (n, j);
323 store_f (n, feq , fi , j, t); // write feq to fi in video memory
324 } else if( flagsn_su == TYPE_IG ) { // flag interface ->gas is set
325 uint j[ def_velocity_set ]; // neighbor indices
326 neighbors (n, j); // calculate neighbor indices
327 for(uint i=1u; i< def_velocity_set ; i++) {
328 const uchar flagsji = flags [j[i]];
329 const uchar flagsji_su = flagsji &( TYPE_SU | TYPE_W ); // extract SURFACE flags
330 const uchar flagsji_r = flagsji &~ TYPE_SU ; // extract all non- SURFACE flags
331 if( flagsji_su == TYPE_F || flagsji_su == TYPE_IF ) {
332 flags [j[i]] = flagsji_r | TYPE_I ; // prevent fluid or interface neighbors that turn to fluid from being / becoming fluid
333 }
334 }
335 }
336 } // possible types at the end of surface_2 (): TYPE_F / TYPE_I / TYPE_G / TYPE_IF / TYPE_IG / TYPE_GI
337 )+R( kernel void surface_3 ( const global float ∗ rho , global uchar ∗ flags , global float ∗ mass , global float ∗ massex , global float ∗ phi) { // apply

↪→ flag changes and calculate excess mass
338 const uint n = get_global_id (0); // n = x+(y+z∗Ny)∗Nx
339 const uchar flagsn_su = flags [n]&( TYPE_SU | TYPE_W ); // extract SURFACE flags
340 if( flagsn_su & TYPE_W ) return ;
341 const float rhon = rho[n]; // density of node n
342 float massn = mass[n]; // mass of node n
343 float massexn = 0.0f; // excess mass of node n
344 float phin = 0.0f;
345 if( flagsn_su == TYPE_F ) { // regular fluid node
346 massexn = massn -rhon; // dump mass-rho difference into excess mass
347 massn = rhon; // fluid node mass has to equal rho
348 phin = 1.0f;
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349 } else if( flagsn_su == TYPE_I ) { // regular interface node
350 massexn = massn >rhon ? massn -rhon : massn <0.0f ? massn : 0.0f; // allow interface nodes with mass >rho or mass <0
351 massn = clamp (massn , 0.0f, rhon);
352 phin = calculate_phi (rhon , massn , TYPE_I ); // calculate fill level for next step (only necessary for interface nodes )
353 } else if( flagsn_su == TYPE_G ) { // regular gas node
354 massexn = massn ; // dump remaining mass into excess mass
355 massn = 0.0f;
356 phin = 0.0f;
357 } else if( flagsn_su == TYPE_IF ) { // flag interface ->fluid is set
358 flags [n] = ( flags [n]&~ TYPE_SU )| TYPE_F ; // node becomes fluid
359 massexn = massn -rhon; // dump mass-rho difference into excess mass
360 massn = rhon; // fluid node mass has to equal rho
361 phin = 1.0f; // set phi[n] to 1.0f for fluid nodes
362 } else if( flagsn_su == TYPE_IG ) { // flag interface ->gas is set
363 flags [n] = ( flags [n]&~ TYPE_SU )| TYPE_G ; // node becomes gas
364 massexn = massn ; // dump remaining mass into excess mass
365 massn = 0.0f; // gas mass has to be zero
366 phin = 0.0f; // set phi[n] to 0.0f for gas nodes
367 } else if( flagsn_su == TYPE_GI ) { // flag gas->interface is set
368 flags [n] = ( flags [n]&~ TYPE_SU )| TYPE_I ; // node becomes interface
369 massexn = massn >rhon ? massn -rhon : massn <0.0f ? massn : 0.0f; // allow interface nodes with mass >rho or mass <0
370 massn = clamp (massn , 0.0f, rhon);
371 phin = calculate_phi (rhon , massn , TYPE_I ); // calculate fill level for next step (only necessary for interface nodes )
372 }
373 uint j[ def_velocity_set ]; // neighbor indices
374 neighbors (n, j); // calculate neighbor indices
375 uint counter = 0u; // count ( fluid | interface ) neighbors
376 for(uint i=1u; i< def_velocity_set ; i++) { // simple model : distribute excess mass equally to all interface and fluid neighbors
377 const uchar flagsji_su = flags [j[i]]&( TYPE_SU | TYPE_W ); // extract SURFACE flags
378 counter += (uint)( flagsji_su == TYPE_F || flagsji_su == TYPE_I || flagsji_su == TYPE_IF || flagsji_su == TYPE_GI ); // avoid branching
379 }
380 massn += counter >0u ? 0.0f : massexn ; // if excess mass can ’t be distributed to neighboring interface or fluid nodes , add it to local mass (

↪→ ensure mass conservation )
381 massexn = counter >0u ? massexn /( float ) counter : 0.0f; // divide excess mass up for all interface or fluid neighbors
382 mass[n] = massn ; // update mass
383 massex [n] = massexn ; // update excess mass
384 phi[n] = phin; // update phi
385 } // possible types at the end of surface_3 (): TYPE_F / TYPE_I / TYPE_G
386 )+"# endif "+R( // SURFACE

Listing 7: OpenCL C FSLBM implementation as in FluidX3D [13, 14, 24].

8.3 Setup script for figure 8

1 # include "lbm.hpp"
2 void main_setup () { // raindrop setup (# define D3Q19 , SRT , VOLUME_FORCE , EQUILIBRIUM_BOUNDARIES , SURFACE , FP16C )
3 const int box_diameter = 940;
4 float drop_diameter = box_diameter /5;
5 const int select_drop_size = 12;
6 const float alpha_sim = 20.0f;
7
8 if( drop_diameter ==-1.0f) drop_diameter = 0.1f∗( float ) box_diameter ;
9 const float scale = ( float ) box_diameter /(10.0 f∗ drop_diameter ); // 256.0 f /400.0 f; // 1.0f;

10
11 // rain drop parameters from " Effects of Altitude on Maximum Raindrop Size and Fall Velocity as Limited by Collisional Breakup , Fig. 3" in SI-

↪→ units
12 float const si_nu = 1.0508 E-6f; // kinematic shear viscosity [m^2/s] at 20C and 35g/l salinity
13 const float si_rho = 1024.8103 f; // fluid density [kg/m^3] at 20C and 35g/l salinity
14 const float si_sigma = 73.81 E-3f; // fluid surface tension [kg/s^2] at 20C and 35g/l salinity
15 const float si_g = 9.81f; // gravitational acceleration [m/s^2]
16 const float alpha = alpha_sim ; // impact angle [ degree ], 0 = vertical
17 const float si_Ds [] = { 1.0E-3f, 1.5E-3f, 2.0E-3f, 2.5E-3f, 3.0E-3f, 3.5E-3f, 4.0E-3f, 4.5E-3f, 5.0E-3f, 5.5E-3f, 6.0E-3f, 6.5E-3f, 7.0E-3f, 4.1E

↪→ -3f };
18 const float si_us [] = { 4.50f, 5.80f, 6.80f, 7.55f, 8.10f, 8.45f, 8.80f, 9.05f, 9.20f, 9.30f, 9.40f, 9.45f, 9.55f, 7.21

↪→ f };
19 const float si_D = si_Ds [ select_drop_size ]; // drop diameter [m] (1-7mm)
20 const float si_u = si_us [ select_drop_size ]; // impact velocity [m/s] (4.50 -9.55m/s)
21 const float si_H = 4.0f∗si_D∗ scale ; // liquid pool height [m] (4∗D is sufficient for deep pool)
22 const float si_Lx = 10.0f∗si_D∗ scale ; // simulation box width [m]
23 const float si_Lz = 8.5f∗si_D∗ scale ; // simulation box height [m]
24
25 // determine a length , a velocity and the mean density in simulation units
26 const float Lx = ( float ) box_diameter ; // simulation box width
27 const float u = 0.05f; // impact velocity
28 const float rho = 1.0f; // density
29 units . set_m_kg_s (Lx , u, rho , si_Lx , si_u , si_rho ); // calculate 3 independent conversion factors (m, kg , s)
30 print_info ("D = "+ to_string (si_D , 6u));
31 print_info ("Re = "+ to_string ( units . si_Re (si_D , si_u , si_nu ), 6u));
32 print_info ("We = "+ to_string ( units . si_We (si_D , si_u , si_rho , si_sigma ), 6u));
33 print_info ("Fr = "+ to_string ( units . si_Fr (si_D , si_u , si_g), 6u));
34 print_info ("Ca = "+ to_string ( units . si_Ca (si_u , si_rho , si_nu , si_sigma ), 6u));
35 print_info ("Bo = "+ to_string ( units . si_Bo (si_D , si_rho , si_g , si_sigma ), 6u));
36 print_info ("10 ms = "+ to_string ( units .t (0.01 f))+" LBM steps ");
37 const float nu = units .nu( si_nu ); // calculate values for remaining parameters in simulation units
38 const float sigma = units . sigma ( si_sigma );
39 const float f = units .f(si_rho , si_g); // force per volume
40 const float Lz = 800; // units .x( si_Lz );
41 const float H = units .x(si_H);
42 const float R = 0.5f∗ units .x(si_D); // drop radius
43 // define simulation box size , viscosity and volume force
44 LBM lbm( to_uint (Lx), to_uint (Lx), to_uint (Lz), nu , 0.0f, 0.0f, -f, sigma , 0.5f); // largest box size on Titan Xp with FP32: 384^2 , FP16: 464^3
45
46 const uint N=lbm. get_N () , Nx=lbm. get_Nx () , Ny=lbm. get_Ny () , Nz=lbm. get_Nz (); for(uint n=0u, x=0u, y=0u, z=0u; n<N; n++, lbm. coordinates (n, x, y,

↪→ z)) {
47 // define geometry
48 lbm.rho[n] = rho; // set density everywhere
49 if( sphere (x, y, z, float3 (0.5f∗Nx , 0.5f∗Ny-2.0f∗R∗tan( alpha ∗pif /180.0 f), H+R+2.5f), R+2.0f)) {
50 const float b = sphere_plic (x, y, z, float3 (0.5f∗Nx , 0.5f∗Ny-2.0f∗R∗tan( alpha ∗pif /180.0 f), H+R+2.5f), R);
51 if(b!=-1.0f) {
52 lbm.u.y[n] = sin( alpha ∗pif /180.0 f)∗u;//+ random_symmetric (0.1f); // break symmetry by initializing with noise
53 lbm.u.z[n] = -cos( alpha ∗pif /180.0 f)∗u;//+ random_symmetric (0.1f); // break symmetry by initializing with noise
54 if(b ==1.0 f) {
55 lbm. flags [n] = TYPE_F ;
56 lbm.phi[n] = 1.0f;
57 } else {
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58 lbm. flags [n] = TYPE_I ;
59 lbm.phi[n] = b;
60 }
61 }
62 }
63 if(z==0) lbm. flags [n] = TYPE_W ;
64 else if(z==H) {
65 lbm. flags [n] = TYPE_I ;
66 lbm.phi[n] = 0.5f; // not strictly necessary , but should be clearer (phi is automatically initialized to 0.5f for TYPE_I if not initialized )
67 } else if(z<H) lbm. flags [n] = TYPE_F ;
68 else if(z== Nz-1) { // make drops that hit the simulation box ceiling disappear
69 lbm.rho[n] = 0.5f;
70 lbm. flags [n] = TYPE_E ;
71 }
72 }
73 lbm.run (0u);
74 key_1 = false ; // turn off boundary
75 key_6 = true; // turn on surface raytracing
76 lbm. graphics . set_camera (-30.0f, 20.0f, 100.0f, 1.0f);
77 Clock clock ;
78
79 // image
80 lbm.run (7700 u/∗ units .t (0.0015 f)∗/);
81 print_info (" compute time: "+ print_time ( clock .stop ()));
82 clock . start ();
83 lbm. graphics . write_frame ();
84 print_info (" render time: "+ to_string ( clock .stop () , 3u));
85
86 // video
87 // lbm. graphics . write_frame ();
88 // while ( units .si_t(lbm. get_t ()) <0.0015f) {
89 // lbm.run( units .t (0.0015 f)/300u);
90 // lbm. graphics . write_frame ();
91 //}
92 // print_info (" compute + render time: "+ to_string ( clock .stop () , 3u));
93 } /∗ ∗/

Listing 8: C++ setup script for the raindrop impact simulation of figure 8.
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Abstract

Occurrence and distribution of microplastics in different ecosystems have recently become subjects of numerous
studies. However, to date the research has focusedmainly onmarine and freshwater ecosystems and widely neglected
terrestrial environments. Only recently, first studies investigated the microplastics contamination of soils. Therefore,
we know little about the transport mechanisms of microplastics in soils and sediments and virtually nothing about
their surface transport. In this study we investigate surface transport mechanisms by tracking fluorescent, irregularly
shaped polymethyl methacrylate (PMMA) particles in real time in a laboratory setup. In 108 experimental runs, we vary
the irrigation rates, inclinations and surface roughnesses. Additionally, we simulate the small-scale flow patterns to
resolve the role of the roughness-induced microrelief. Our results suggest that microplastics are transported along
preferential pathways resulting from the micro- and macrorelief, which can be correlated to the flow pattern observed
in the computer simulation. Our model study facilitates a deeper insight into microplastic transport on different soil
surfaces and serves as a pilot for investigating mechanisms of horizontal microplastic transport. However,
microplastics are a diverse group of contaminants with varying shapes, densities and sizes. Therefore, for a full
understanding of transport of microplastics in terrestrial environments, it is important to address these properties as
well as more variable surfaces for horizontal migration and to include vertical transport mechanisms in future research.

Keywords: Microplastics, Surface transport, Surface roughness, PMMA, sCMOS camera, Particle tracking

Introduction
The large-scale production of synthetic polymers started
in the 1950s and over the last seven decades the amount
of produced plastic has exceeded eight billion tons [1].
In 2019, plastic production reached 57.9 million tons in
Europe and 368 million tons globally [2]. Plastic prod-
ucts are durable and resist to degradation [1], however,
the accompanying environmental challenges caused by
the increasing amount of plastic waste entering the envi-
ronment have been neglected for a long time. Due to
its poor biodegradability, plastic waste could remain in
the environment for centuries leading to an accumulation

*Correspondence: christina.bogner@uni-koeln.de
1Ecosystem Research Group, Institute of Geography, Faculty of Mathematics
and Natural Sciences, University of Cologne, Albertus Magnus Platz, 50923
Cologne, Germany
Full list of author information is available at the end of the article

and a potential threat to our ecosystems [1, 3]. While for
a long time only large items of plastic waste have been
studied, microplastics came more into focus during the
last decade [3]. Microplastics are in general defined as
particles smaller than 5 mm [4] and occur as primary
and secondary microplastics. Primary microplastics are
intentionally produced micro particles like pellets and
beads. Secondary microplastics originate from abrasion
of plastic products or fragmentation of macroplastics by
a combination of e.g. elevated temperature, light, expo-
sure to water, friction from wind and water or exposure
to organisms, resulting in thermo-oxidative degradation,
photo-oxidation, hydrolysis, mechanical breakdown and
biodegradation [1, 5, 6]. Due to their manifold origins and
degradation pathways, microplastics are a diverse group
of contaminants with a broad range of shapes, densities,
sizes, polymers and additives [7]. It is best to think about

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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their properties as a continuum rather than in discrete
categories [8]. Today microplastics are found in every
environmental compartment and region of the globe from
megacities to even the remotest arctic areas [9–11].
While the contamination of oceans with microplas-

tics and their transport in the marine environment have
become a widely considered research field, our knowl-
edge on the distribution and transport of microplastics
in terrestrial environments is still limited [10, 12–14].
This is partly due to the analytical challenges because
the extraction of microplastics from mineral and organic-
rich soils and sediments is much more complicated than
from aquatic samples [15–17]. Additionally, we still lack a
standard analytical protocol which is a prerequisite for a
proper comparison of data from different studies [18, 19].
Furthermore, the distribution of microplastics in the ter-
restrial environments depends on diverse sources and
transport pathways. Sources can be manifold and include
e.g. the introduction of microplastics via sewage sludge,
compost application or plastic mulching in agriculture, lit-
tering or waste mismanagement and the fragmentation
and abrasion of plastic particles from plastic products
with outdoor use [17, 20, 21]. Once in the environment,
microplastics may be transported by e.g. wind and water,
and may finally be deposited and potentially accumu-
late in different environmental compartments [20, 22, 23].
Indeed, terrestrial soils are suggested as a large sink for
microplastics [10, 24, 25].
While first experimental evidence on factors affecting

vertical transport processes of microplastics in soils and
sediments like e.g. particle size or presence of preferential
flow paths are published [26–30], studies on horizontal
transport are lacking to date [20, 31]. To fill this gap, track-
ing microplastics during their transport could generate
the necessary data and help to understand the relevant
transport parameters and mechanisms. Particle tracking,
also referred to as particle tracing [32], has a long history
in sedimentology [33]. In this discipline it is understood as
the analysis of the spatial and temporal distribution of sin-
gle natural or artificial components of the sediment that
are marked and observed during transport [32]. In envi-
ronmental sciences, sand particles are tracked for example
along fluvial trajectories [34], along coasts [35] or on tidal
inlets [36]. Furthermore, particles can also be tracked
under laboratory condition on a far smaller scale includ-
ing vertical and horizontal transport pathways with a high
temporal and spatial resolution [37–40].
Nowadays specific marking or tagging the particles of

interest with an identifiable signature largely facilitates the
tracking [32]. Since the use of radioactivity has shown
its limitations and is seen critically due to environmental
and health concerns, fluorescent dyes are commonly used
[32, 41]. Therefore, rhodamine or anthracene serve fre-
quently as fluorescent coatings in combination with addi-

Fig. 1 A subsample of PMMA particles used in the experiments. The
figure was cropped, reduced in size and the scale bar enlarged for
better visibility in ImageJ [45]. The scale is 1 mm large

tive binding agents for particle tracking [32, 42]. Advances
in real-time imaging and image processing allow to trace
temporal and spacial distribution of particles, at least
under laboratory conditions. Hardy and colleagues [40],
for example, developed a real-time approach to trace
the movement of sand particles with fluorescent coating
during rainfall events by using fluorescent videography
techniques. They could visualise and measure transport
parameters like direction and travel distance of sand par-
ticles. However, most of the studies dealing with particle
tracing focus on the spatial distribution as a result of
transport processes. Real-time tracking of (natural) parti-
cles as demonstrated by Hardy and colleagues in a labora-
tory and field setup for terrestrial environments remains
an exception [40, 43]. Nizzetto and colleagues [31] sug-
gested in their theoretical study that microplastics could
be transported similarly to natural particles. However,
data to confirm this statement and to parametrize mod-
els is lacking [44]. Nevertheless, such data are of utmost
importance for a mechanistic understanding of transport
processes of microplastics in the environment.
In this study, we constructed a laboratory setup for real-

time particle tracing and observed fluorescent microplas-
tics in irrigation experiments. We analysed the influ-
ence of different irrigation rates, inclinations and surface
roughnesses on the movement of irregularly shaped poly-
methyl methacrylate microplastics.

Material andmethods
Microplastic particles
We used UV-fluorescence-labelled polymethyl methacry-
late (PMMA) particles. PMMA, also known as acrylic
glass, has a density of 1.18 to 1.19 g cm−3 and is thus heav-
ier than water. The source material was purchased already
fluorescence-labelled from LLV-shop (https://www.llv-
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Fig. 2 Laboratory setup with the irrigation and illumination systems. The PMMA particles are positioned in row vertically below the camera

shop.de) in form of raw pellets (Art. Nr. M 13344). Sub-
sequently, microplastic particles in the desired size range
were produce by cryo-milling and sieving. We chose
PMMA because among the nonfloating polymers, it has
a medium density. Additionally, it can be milled relatively
easily in contrast to other polymers (glass transition tem-
perature above 100 °C). We determined the size range
on a subsample by taking pictures with a stereomicro-
scope (Leica M50, Leica Microsystems & Olympus DP 26
camera, Olympus Corporation) and the imaging software
cellSens (Olympus Corporation). The maximum length
and width of 200 particles were measured in the free soft-
ware ImageJ [45]. The particles were irregularly shaped
with a mean particle length of 1215±227 μm (± standard
deviation), a mean particle width of 919±186 μm and a
mean length-to-width ratio of 1.32 (Fig. 1). The small-
est recorded length and width were 842 μm and 485 μm,
respectively, the largest recorded length and width were
2456 μm and 1648 μm, respectively. The sizes of particles
used during the experiments were estimated via image
analysis in Python (c.f. “Image analysis” section).

Experimental setup
The experimental setup consisted of an inclined rough
surface of 545 × 400 mm that was irrigated at its upper
edge (Fig. 2). To limit all particle movements to surface
transport and avoid particle loss by infiltration, we affixed
a sand surface with tile glue (Probau GmbH, Cologne,
Germany) on two wooden chipboards. For one board we

used medium sand (< 630 μm, mean grain size 408 μm),
for the other coarse sand (630 − 2000 μm, mean grain
size 1,052 μm) to create two different levels of rough-
ness (in the following referred to as ‘fine surface’ and
‘coarse surface’, respectively). For each experimental run
ten PMMA particles (once 9 and twice 11) were placed in
a row spaced by roughly one cm in the center of the sur-
face. To generate runoff on the surface, an irrigation sys-
tem was built using an ISMATEC ISM930C-IPC04 peri-
staltic pump (Cole-Parmer GmbH, Wertheim, Germany)
equipped with four channels. The irrigation was placed at
the upper edge of the surface to avoid any splash effects
at the center where the PMMA particles were located.
Therefore, the artificial rain did not hit the microplastics
directly, but generated a runoff that flowed down the plate
(Supplementary Figures S1 and S2). We irrigated the sur-
face with 4.8, 7.2 or 10.44 L h−1. During the experiments,
the surface was inclined by 2.5, 5, 7.5, 10, 12.5 and 15°.
Altogether 36 different combinations of surface roughness
(2), irrigation rates (3) and inclinations (6) were tested
in three repetitions amounting to 108 runs in total of 50
seconds each.

Camera and illumination setup
During the experiments, we took pictures with an
sCMOS (advanced scientific complementary metal-
oxide-semiconductor) high resolution pco.panda 4.2 cam-
era (PCO AG, Kehlheim, Germany) equipped with a
monochrome sensor with 2048 × 2048 pixels of 6.5 ×
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Fig. 3 Examples of (a) trajectories of particles and (b) corresponding
path lengths. These are results from one of the runs on the coarse
surface with inclination 2.5° and an irrigation rate of 10.44 L h−1 and
from a run with the same parameters but on the fine surface. Particle
ID corresponds to an automatic numbering of PMMA articles sorted
by the y coordinate

6.5 μm2 and a Ricoh FL-BC2518-9M 25 mm objective.
An sCMOS sensor has the advantage to combine a large
field-of-view, low electrical noise and a high frame rate
compared to a CCD (charge-coupled device) sensor [46].
The exposure time of the camera was set to 100 ms,
resulting in a frame rate of 10 frames per second and

500 pictures during the 50 seconds of recording for each
experimental run. The camera was positioned 30 cm ver-
tically above the PMMA particles in the central part
of the surface and recorded an area of 150 × 150 mm
(Supplementary Figure S2). The camera was equipped
with an EFFO-FLR-BN630-M40.5 optical filter (Midwest
Optical Systems Inc., Palatine, Illinois, United States) to
limit the recorded spectrum to a narrow spectral range
around 630 nm, which corresponds to the fluorescence
of the PMMA particles. Two EFFI-FLEX-15-465-SD-P2
LED bars (EFFILUX GmbH, Les Ulis, France) with an
emission wave length of 465 nm (blue light) were fixed lat-
erally above the rough surface to excite the fluorescence
of the PMMA particles. Natural illumination was mini-
mized by darkening the laboratory to reduce noise in the
pictures.

Image analysis
We analysed the images using Python 3.8 (Python Soft-
ware Foundation, https://www.python.org/) and R 4.0.3
[47]. Some of the images contained artefacts due to
residual ambient light which resulted in blurred parti-
cles’ edges. Additionally, some particles moved abruptly
and their trajectories appeared as lines in the images
(Supplementary Figure S4). To remove the artefacts, we
first preprocessed the images by calculating the centre of
mass of every particle and then simplified them to equally
sized circles centered around their centres of mass. This
step increased the accuracy of particle tracking. The lat-
ter was done with TrackPy version 0.4.2 [48], a Python
package that calculates particle trajectories or paths. Sub-

Fig. 4 Variation of path lengths with increasing irrigation and inclination on the coarse and the fine surfaces
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Table 1 Estimated parameters of the linear model with confidence intervals shown in parentheses

Model parameter Estimate (CI)

Intercept (mm) 1.76 (1.2, 2.3)

Equivalent diameter (mm μm−1) -2.96E-03 (-4.49E-03, -1.54E-03)

Inclination (mm degree−1) -0.46 (-0.69, -0.27)

Irrigation (mm L−1 h) 0.89 (0.57, 1.3)

Roughness fine (mm) 3.33 (1.97, 5.11)

The parameters correspond to βi in Eq. 1. They represent slopes for numerical variables and an additive effect for the factor roughness

sequently, we derived the path lengths by calculat-
ing the Euclidean distances between particle posi-
tions in consecutive images. The calculated centre of
mass could vary slightly from image to image by
one or two pixels without any particle movement.
Therefore, we ignored any trajectory of less than 3
pixels.
From every first image of the experiment, we estimated

the sizes of the particles by segmenting the images at the
grey value 200 (i.e. any pixel with a grey value equal to
or larger than 200 was classified as particle). Based on
these sizes in pixels, we calculated particle characteristics
‘equivalent diameter’ (i.e. the diameter that a completely
spherical particle with the same area visible in the image
would have) and ‘eccentricity’ which shows whether a
particle resembles a sphere or an ellipse. Eccentricity is
defined as the ratio between the focal points of an ellipse
to its major axis. To calculate eccentricity, the particle’s
shape is approximated as an ellipse with the same second-
order moments (covariance) as its visible area. Both
characteristics were calculated with the Python module
‘measure’ from the image processing library scikit-image
(https://scikit-image.org/).

Statistical analysis
We estimate the influence, i.e. effect sizes and confi-
dence intervals, of the experimental parameters ‘rough-
ness’, ‘inclination’, ‘irrigation’ rate and ‘equivalent diameter’
on the length of paths that the particles moved in the
experimental runs. We follow the advice of the American
Statistical Association and refrain from hypothesis testing
[49, 50]. Instead, we estimate the effect sizes and their con-
fidence intervals using bootstrap re-sampling [51] in the
following linear model:

y= Int+βED·ED+βInc·Inc+βIrr·Irr+βRough·Rough+ε

(1)

where y is the path length in mm, Int the intercept in
mm, ED the equivalent diameter in μm, Inc the inclina-
tion in degrees, Irr the irrigation rate in L h−1, Rough the
roughness (a factor, coarse being the reference level), βi
are the model parameters or effects (a slope for numerical
variables and an additive effect for factors) and ε are the
residuals of the model. The intercept is the expected value
of the path length if all other factors are zero. This is not

Fig. 5 Velocity profile on a 1 cm × 1 cm section of the fine-grained microrelief illustrated with colored passive tracer particles (left). The 0.3mm
average water film thickness leads to a flow rate of 7.27 L h−1. The flow direction is top to bottom. The flow pattern is stationary and forms streams
of increased velocity around teardrop shaped regions of decreased velocity behind bumps in the microrelief. At the bottom left we show a side
view of the microrelief and water layer above. At the right we show a heatmap of the microrelief elevation
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meaningful for our setting because this would extrapolate
the model beyond the measured ranges of the experi-
mental parameters. To have a meaningful intercept, we
subtracted the mean from the irrigation, inclination and
the equivalent diameter, i.e. we centered all experimental
parameters around their respective mean values. There-
fore, the intercept now equals the travelled path length
in mm for a mean-sized particle (1817 μm) irrigated by
the mean irrigation rate (7.5 L h−1), on a mean-inclined
(8.7°) coarse surface. This data normalization does not
affect the estimation of the effects βi, but of the intercept
only. We note that our model aims at a phenomenological
description of particle transport within a certain range of
parameters around their mean values rather than a fully
detailed physical prediction.
We estimated the confidence intervals by bootstrap-

ping the data (stratified by roughness) 10000 times and
re-calculated the model on theses bootstrap samples
[52]. Different methods to estimate confidence inter-
vals from bootstraping exist and we compared three of
them, namely the percentile, student-t and bca (bias-
corrected and accelerated) methods, all implemented in
the R package rsample [53]. All calculations were done
in R [47] using the package collection tidymodels [54],
V.0.1.0.

Simulation of the water flow
To better understand the water flow on the sediment sur-
faces, we qualitatively examined the flow patterns in a
simulation on a microscopic level of detail. We assumed
a free surface flow totally wetting an inclined plate with
roughness at the scale of the grains of sand used in prepa-
ration of the fine surface. The liquid layer was very thin,
about 0.1 − 0.3mm thickness.
To model the flow, we used the Volume-of-Fluid

[55–57] lattice Boltzmann method [58, 59] implemented
in the software FluidX3D [55, 60, 61]. We simulated an
area of 10mm × 10mm at 2.5◦ inclination. The bound-
aries in the lateral directions were periodic. We used the
parameters of water at 20 °C (kinematic shear viscosity
ν = 1.004 · 10−6 m2 s−1, density ρ = 998.21 kg m−3, sur-
face tension σ = 72.75 · 10−3 kg s−2) [62]. We generated
the microrelief of the surface caused by its roughness with
a 2D periodic Perlin noise [63]. The grain size for the Per-
lin noise was set to approximately 0.4mm diameter and
the thickness of the water film to 0.3mm on average. This
resulted in a simulated flow rate (scaled up to the entire
400mmwidth of the plate in the experiment) of 7.27 L h−1

which is in line with experimental parameter of 7.2 L h−1.
Additionally, to visualize the flow patterns, we irri-

gated the surfaces without any PMMA particles with
a methanol solution stained with Nile Red, a fluores-
cent dye [64, 65]. Using Nile Red allowed us to capture
the flow patterns with the same LED lights and camera

setup and filter as in the experimental runs with parti-
cles. We are aware that methanol has different wetting
properties than water. Therefore, we use the videos for
visualisation purposes only. We recorded the initial wet-
ting process as well as the flow patterns once stationary
flow set in. The coarse surface was irrigated at an incli-
nation of 7.5° with an irrigation rate of 7.2 L h−1 and the
fine surface at an inclination of 2.5° with an irrigation rate
of 7.2 L h−1. The videos are provided in the Additional
files 2 and 3.

Results and discussion
Tracking microplastics under laboratory conditions
Our experiments allowed for a high-resolution track-
ing of microplastic particles under different inclina-
tion, surface roughness and irrigation scenarios. Next
to their respective trajectories, the image analysis pro-
vided information about the characteristics of the parti-
cles in the experimental runs. The equivalent diameter
of PMMA particles ranged between 453 and 3387 μm
(Supplementary Figure S3). They differed from spheres
with eccentricities varying between 0.1 and 0.9. An eccen-
tricity of 0 corresponds to a perfect circle, a value of 1
indicates an “extreme ellipse”, a parabola. Thus, the larger
the value the less circular the PMMA particle. The distri-
bution of both characteristics were comparable between
different roughnesses and irrigation rates and shows
that the particles in the experiments were comparable
(Supplementary Figure S3). Therefore, no differences
between the treatments as a consequence of a systemati-
cally varying particle morphology are to be expected.
576 out of 1081 particles remained motionless and the

other 505 recorded particle trajectories were mostly short
(Fig. 3). Most of the recording time, particles did not
move at all. However, from time to time they travelled a
larger distance, often very quickly. Thus, the overall path
lengths and the particle’s maximum path length per sec-
ond correlated (Spearman correlation coefficient of 0.9).
The Supplementary Figure S5 shows this relationship. The
maximum overall recorded path length equalled 136 mm
(fine surface, inclination 10°, irrigation rate 10.44 L h−1)
and the maximum recorded path length in one second
135 mm (fine surface, inclination 2.5°, irrigation rate 7.2
L h−1).

Influence of experimental parameters on path lengths
The observed path lengths increased with increasing irri-
gation rate and were larger on the fine than on the coarse
surface (Fig. 4). However, the dot plots show that the
most frequent paths were small or zero and that only few
particles traveled far.
The estimated parameters of the linear model sup-

port this observation (Table 1). Confidence intervals esti-
mated with different bootstrap methods were comparable
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(Supplementary Figure S6) and we report the student-t
intervals only. All confidence intervals excluded zero.
With increasing inclination and increasing equivalent
diameter of the microplastic particles, the path length
decreased. Indeed, for a constant flow rate, the water
film thickness is approximately proportional to the
(sin(α))−1/3, with α being the inclination [66][p.183
eq.(4.2.13)] and the larger the film thickness the larger
the flow rate (see also “Water flow” section). The effects
of inclination and equivalent diameter seem smaller com-
pared to the irrigation rate or the roughness. However,
the experimental parameters are measured on different
scales and the absolute values of the effects depend on
it. Thus, it is better to compare the effects relative to the
measurement units of the parameters. If, for example, the
inclination is increased from 5 to 10 degrees, the path
length would decrease by 2.3 mm. For an increase of irri-
gation rate from 4 L h−1 to 8 L h−1, the path length would
increase by 3.6 mm. By increasing the equivalent diameter
of the microplastic particles from 1000 to 2000 μm, the

Fig. 6 Variation of path lengths with starting position of the particles
on the x axis. The x coordinate of the starting point was split in classes
of 12.5 mm length to better show the distribution of path lengths

path length decreases by 3 mm. And finally, on the fine
surface, the particles travelled 3.33 mm farther which is in
accordance with several observations from laboratory and
environmental studies (e.g. in fluvial context and at valley
slopes [67, 68] or on beaches [69, 70]).
The overall goodness of fit of the model was low

(R2
adj = 0.07) indicating that the assumption of the

linear relationship between the experimental parame-
ters and the path length is overly simplistic. However,
because our intention is not to predict path lengths
but to analyse the influence of experimental parameters
(size effect and confidence intervals), the model is still
useful.

Water flow
To better understand why most particles are barely
advected whilst a few particles are moved across a long
distance (Fig. 4), we qualitatively examined the flow pat-
tern in a simulation. For the typical flow rates used
in the experiment, the water film thickness is on the
same scale as the grain size of the roughness-induced
microrelief. The microrelief therefore greatly influences
the flow pattern on a microscopic level. For the setup
simulated here, where we target 7.2 L h−1 to match the
experiment, we find that the film thickness is 0.3mm
on average.
For comparison, for the targeted irrigation rates of

4.8 and 10.4 L h−1, we determine the film thickness to
0.252mm and 0.348mm respectively. The resulting simu-
lation flow rates are 4.87 and 10.97 L h−1. The flow rate
is proportional to film thickness to the third power for a
laminar flow over a plane and smooth surface [66][p.183
eq.(4.2.12)]. With increasing inclination, the film thick-
ness decreases. If the film is thinner than the diameter of
the microplastic particles, the water surface wetting the
particles bulges up on them and pushes them down onto
the microrelief, increasing friction and reducing mobility.
In contrast, at large film thickness, microplastic particles
may be entirely engulfed into the liquid and not touch the
microrelief at all, reducing friction and increasing mobil-
ity. So although the flow velocity at the surface is faster
(proportional to (sin(α))1/3, with α being the inclination)
at larger inclination, the friction between the particles and
the plate is increased and particles are less mobile overall.
The roughness changes the flow conditions and influ-
ences the flow rate. Therefore, this relationship holds only
approximately.
Figure 5 shows the emerging flow pattern after 0.1 s

of simulation, illustrated with colored passive tracer
point-particles. These are passively advected points with-
out influence on the flow itself. They are illustrated
as colored pixels to show the magnitude of local
velocity.
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Although the microrelief has no directionality in itself,
the flow pattern shows distinctive channels with increased
flow velocity on the scale of the microrelief, while in
teardrop-shaped regions behind larger bumps of the
microrelief, flow velocity is significantly reduced. This
pattern is stationary. The asymmetry of the flow pat-
tern indicates deviations from purely laminar flow. There
are regions where particles will move down the plate
with increased probability (fast flow channels) while in
other regions the hydrodynamic force can never overcome
friction.
At the low flow rates in the experiment, there are only

little surface instabilities (non-stationary, bow-shaped,
capillary waves) present. These mainly occur at higher
flow rate and larger film thickness [71–77].
On top of the microrelief, the surfaces also possess a

macrorelief. The latter emerged during construction of
the plates when sand was glued to the chipboards. In
regions where there is more glue, the sand layer may be
thicker, and in other regions the sand layer may be thinner.
This macrorelief also creates preferential flow channels
(on a larger scale) where PMMA particles are transported
particularly far. Figure 6 shows that on the coarse surface,
particles starting on the right moved the farthest, while on
the fine surface, preferential flow existed on both the left
and right sides.
These macroscopic flow channels would be much more

difficult to model in a simulation, since on the one hand
both micro- and macrorelief would have to be simulta-
neously resolved on very different length scales and on
the other hand the exact topography is of key importance
because it directly affects experimental results. So to con-
firm those preferential macroscopic flow channels in the
experimental setup, we used the recordings of methanol
solution stained with Nile Red. Figure 7 confirms the pref-
erential flow paths on the macro scale on the fine surface.
The imaged part in the videos is slightly shifted compared
to the imaged part in the experiments because the exper-
imental setup had to be moved under the fume hood.
The videos are provided in the Supporting Information
Additional files 2 and 3.
In the video of the fine surface, we also observed some

surface ripples, mainly along the preferential flow chan-
nels in the macrorelief. These may be caused by the
locally increased flow rate, but could also be a result of
the irrigation system perturbing the surface. Such sur-
face ripples could temporarily increase the hydrodynamic
force enough to unlock a microplastic particle from the
microrelief and initiate the motion.

Transport processes and environmental implications
In our experiments, we observe that the transport of the
PMMA particles is based on two different phenomena:
transport-inhibiting interaction with the microrelief and

transport-enhancing interaction with preferential flow
channels of the macrorelief. In the first case flow patterns
with areas of larger flow velocities and therefore larger
hydrodynamic forces acting on the particles emerge due
to the microrelief. The size of PMMA particles is at a simi-
lar scale as the microrelief sand grains and generally larger
than the water film. This means that the particles on the
one hand are able to interlock with the microrelief and are
not transported, and on the other hand have constant fric-
tion if rolled down the plate by the flow, increasing the
probability to lock into the microrelief again and get stuck
after a short travel distance. Therefore, most particles did
not move at all or travelled only a very short distance. Sec-
ond, the macrorelief that overlays the microrelief provides
macroscopic preferential flow channels for the particles.
If a particle is located in or reaches a preferential flow
channel, the travelled path lengths are large.
Under natural conditions, the fast flow pathways (both

micro and macro) will potentially lead to increased ero-
sion, carving channels into the soil surface [78, 79]. Gomez
et al. [78], for example, observed a larger erosion on
rougher surfaces and attributed this to “concentration of
flow around roughness elements”. This is comparable to
the flow patterns around rough surface elements that we
obtained in the simulation on the microscale and the
observed preferential flow paths on the macroscale. This
kind of ’flow concentration’ could finally lead to rill ero-
sion [80]. Additionally, under natural conditions, interrill
erosion due to the detachment of particles by raindrop
impact and transport to rills (i.e. preferential pathways),
an interplay between overland flow, water infiltration and
surface sealing could be important processes affecting
particle transport. At least in the beginning, interrill ero-
sion could be size-selective and small particles are eroded
preferentially [81, 82]. However, the exact distribution of
eroded particles for a particular soil depends on different
soil properties like particle size distribution or aggre-
gate stability [83, 84]. The general dependence of soil
erodibility is reflected in the well known Revised Uni-
versal Soil Loss Equation (RUSLE) [85]. It is still unclear
whether erosion processes would affect microplastic par-
ticles in the same way as natural sediments because
of the broad range of shapes, densities and sizes of
microplastics [7, 8].
In the experiments and the simulation investigated here,

erosion and infiltration are explicitly prevented. Further-
more it should be considered that the irregular PMMA
particles of a mean particle length of 1215 μm that we
used to conduct our experiments are only one exemplary
polymer and microplastics shape. Because microplastics
comprise a large range of different particle sizes, densi-
ties, shapes and degradation stages, our results can reflect
a small part of the reality only [7, 8]. Particles of differ-
ent shapes (e.g. spheres, fibres or films) and with different
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Fig. 7 Runoff stained with Nile red. a: coarse surface irrigated at 7.5° inclination with 7.2 L h−1; b: fine surface irrigated at 2.5° inclination with
7.2 L h−1. Preferential flow paths are visible on the fine surface

surface properties (e.g. due to degradation or biofilm)
might interact differently with rough surfaces and be
(re)mobilized and transported in a different way.
Nevertheless, the results of our laboratory setup con-

tribute to understanding the horizontal transport of
microplastics in nature. Sandy sediment and soil sur-
faces with sparse vegetation cover resemble to a cer-
tain extent to our surfaces. Comparable environments
can be found for example in floodplains and on river-
banks [86, 87], on agricultural fields, in clearing areas, in
freshly developed building sites and in ruderal habitats
[88]. Because rivers are important pathways of microplas-
tics [13, 89], the adjacent riparian zones and flood-
plains act as an interface between aquatic and terres-
trial ecosystems. Therefore, they play an important role
in the distribution of microplastics within the “plastic
cycle”, a term coined by Horton et al. [20] to empha-
size the connectivity between environmental compart-
ments. During runoff events caused by floods or precip-
itation excess, microplastics can be (re-)mobilised, trans-
ported and accumulated in these highly dynamic areas
[44, 87, 90].
The transport parameters of microplastics under nat-

ural conditions such as the flow velocities necessary to
move the particles, the influence of land cover (e.g. veg-
etation) and sedimentation rates [90] are still not deci-
phered. While Nizzetto and colleagues [31] suggested
that microplastics moved similarly to natural particles
and organic matter, there is still a significant lack of
data to understand the transport patterns of microplastics
“across the compartments of hydrological catchments”
[44]. Analysing transport patterns under laboratory con-
ditions may facilitate future studies on microplastic dis-
tribution and mobility. For future research additional
important factors, e.g. topography, hydrology, land cover

and the exposure of microplastics to physical, biologi-
cal and chemical processes should be considered [44]
in order to improve the understanding of microplas-
tic transport and the resulting contamination of the
environment.

Conclusions
We developed a laboratory setup to reliably trace fluores-
cent microplastic particles in real-time during irrigation
experiments. By limiting the experimental variables to
irrigation rate, inclination and surface roughness the driv-
ing factors of the particle movement could be deciphered.
Especially the roughness and the irrigation rate turned
out to be important. In our experiments, we could show
that the transport of the microplastics was inhibited by
the interaction of the microplastics with the microre-
lief and enhanced by preferential flow channels of the
macrorelief of the rough surfaces. The computer sim-
ulated flow patterns showed variable flow velocities on
the scale of the microrelief and thus spatially variable
hydrodynamic forces acting on the particles. Our lab-
oratory results are a first step to gain a better under-
standing of the horizontal transport of microplastics on
natural sediment and soil surfaces. However, microplas-
tics are a diverse group of contaminants with varying
shapes, densities and sizes. This continuity of properties,
alteration of the microplastic particles’ surface properties
as a consequence of biological and chemical processes
in the environment and additional factors influencing
soil surface, e.g. topography or land cover, could not be
taken into account here and need to be part of further
research.
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Figure S2: Flow of the water on the fine surface (Image: M. Klee).
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Figure S3: Distribution of (a) the equivalent diameters and (b) eccentricities of PMMA particles on the coarse and
the fine surfaces by irrigation rates shown in facets’ titles.

Figure S4: (a) Artefacts on images: abruptly moving particle appearing as a line and blurred particles’ edges due
to residual ambient light. Original image from the second run on the fine surface at an inclination of 7.5◦ and an
irrigation rate of 10.44 L h−1. (b) Preprocessed image with particles transformed to equally sized circles centered
around particles’ centers. Additionally, background noise is removed, i.e. the image is binary (black for particles,
white for background).
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This study compares the free-surface lattice Boltzmann method (FSLBM) with the conser-
vative Allen–Cahn phase-field lattice Boltzmann method (PFLBM) in their ability to model 
two-phase flows in which the behavior of the system is dominated by the heavy phase. 
Both models are introduced and their individual properties, strengths and weaknesses are 
thoroughly discussed. Six numerical benchmark cases were simulated with both models, 
including (i) a standing gravity and (ii) capillary wave, (iii) an unconfined rising gas bubble 
in liquid, (iv) a Taylor bubble in a cylindrical tube, and (v) the vertical and (vi) oblique 
impact of a drop into a pool of liquid. Comparing the simulation results with either analyt-
ical models or experimental data from the literature, four major observations were made. 
Firstly, the PFLBM selected was able to simulate flows purely governed by surface tension 
with reasonable accuracy. Secondly, the FSLBM, a sharp interface model, generally requires 
a lower resolution than the PFLBM, a diffuse interface model. However, in the limit case 
of a standing wave, this was not observed. Thirdly, in simulations of a bubble moving in a 
liquid, the FSLBM accurately predicted the bubble’s shape and rise velocity with low com-
putational resolution. Finally, the PFLBM’s accuracy is found to be sensitive to the choice 
of the model’s mobility parameter and interface width.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Multiphase flows are important in a wide range of natural and industrial applications. For instance, they can manifest 
as undesired foam in the food industry [1,2], in the transport of hydrocarbons from subsurface environments [3], or in the 
transfer of micro-particles into the environment during rainfall [4]. The laboratory experiments associated with studying 
the fundamental dynamics of multiphase flows can be expensive and time-consuming, while only supplying limited insight 
into the governing fluid mechanics. With advances of computational infrastructure, it has now become common to supple-
ment physical with numerical experiments through the use of computational fluid dynamics (CFD). This tends to provide 
a cheaper, time-efficient solution to flow problems and allows direct insights to the flow field, as every arbitrary location 
inside the fluid can be monitored.

* Corresponding author.
E-mail address: christoph.schwarzmeier@fau.de (C. Schwarzmeier).
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This work aims to present and analyze a numerical method that can be used to supplement experiments by numerical 
simulations of immiscible two-phase flows, in which the flow dynamics of the lighter phase are assumed to have a negligible 
influence on the heavier phase, and overall dynamics of the system. In such cases, the flow in the lighter phase is commonly 
neglected, reducing the two-phase flow to a flow with a free boundary, or more commonly referred to as free-surface 
flow [5]. It has been previously shown that such simplification is valid in simulations for e.g., single gas bubbles rising in a 
liquid [6,7] and has been applied to simulate foaming [8].

While the flow in the lighter phase is assumed to be negligible, the simulation of the flow in the heavier phase often 
requires a highly resolved computational grid to capture all the relevant flow structures. Therefore, the numerical meth-
ods presented here are designed and targeted for massively parallel computing environments. For efficient numerical fluid 
simulations on such hardware, the lattice Boltzmann method (LBM) has established as a modern alternative to classical 
approaches for CFD that are based on the discretization of the Navier–Stokes equations. As all operations require only infor-
mation of a local neighborhood, the LBM is inherently suitable for parallel computing and has been extended with models 
for simulating a variety of different physics including multiphase flows [9–11], particulate flows [12,13], thermal effects [14]
and others.

There are several multiphase LBM models available in the literature that can be distinguished by the representation of 
the interface between the phases. Models having a sharp interface representation include the free-surface lattice Boltzmann 
method (FSLBM) [8], the level-set method [15], the front-tracking approach [16], and the color gradient model [17]. In 
contrast, the interface is represented in a diffuse manner in the pseudopotential model [10], the free-energy model [18], 
and phase-field models. The latter are either based on solving the Cahn–Hilliard [19,20] or Allen–Cahn [21] equation to 
model the interfacial dynamics. In this article, the comparative study is restricted to the FSLBM and the conservative Allen–
Cahn phase-field LBM (PFLBM) [21,22]. Both of these models have well-optimized parallel implementations, and have been 
shown to be capable of simulating systems with high density and viscosity contrasts corresponding to liquid–gas systems.

The FSLBM extends the LBM with a volume-of-fluid approach [23] where the sharp interface between the two phases 
is captured by an indicator field [8]. The fluid dynamics of the lighter phase are entirely neglected, and only the effect 
of pressure forces at the interface is modeled. It is implicitly assumed that the density and viscosity ratio between the 
two fluid phases is infinite. The sharp interface formulation and avoiding computations in the lighter phase lead to high 
computational efficiency with low memory requirements. Although the algorithm’s implementation is challenging, it is also 
well suited for parallel hardware like graphics processing units (GPUs) [4,24].

The conservative Allen–Cahn equation [11,25] is the basis of the conservative Allen–Cahn phase-field LBM [21,22], a 
model designed to simulate two-phase flow problems with high density and viscosity contrasts. The algorithm is simpler 
than that of the FSLBM, where different equations must be solved depending on the type of cell. In contrast, the PFLBM can 
be purely formulated via the standard lattice Boltzmann equation with additional force terms [21]. As in the single-phase 
LBM, all operations are restricted to a local cell-neighborhood making the PFLBM well-suited for parallel computing. While 
prior phase-field models were not capable of simulating multiphase flows with large density and viscosity ratios [26–28], 
the PFLBM has been successfully used in simulations with density ratios of up to 103 and viscosity ratios of up to 102 [14,
29–32]. This is equivalent to an air–water system and makes the model a possible alternative for free-surface flows where 
the dynamics are governed by the heavier phase. The Allen–Cahn phase-field equation tracks the dynamics of the interface. 
The diffusivity of the interface suggests that a PFLBM simulation must have a higher resolution than an FSLBM simulation. 
On the other hand, due to its algorithmic simplicity, it is easier to optimize the implementation for different architectures, 
including accelerator hardware like GPUs [33].

In this work, the models are compared with respect to their algorithmic properties and ability to simulate two-phase 
flows in which the lighter phase has negligible impact on the flow dynamics. First, the numerical foundations of the LBM, 
FSLBM and PFLBM are introduced in more detail. Then, the models are compared with respect to methodology and numeri-
cal implementation. Based on six numerical experiments, the accuracy and the required computational grid resolution of the 
models are compared. For all numerical experiments, each model’s simulation results were cross-validated with independent 
implementations from other code bases, as listed below. The choice of these tests is discussed, as the test cases must be 
reasonably applicable to both models. The initial test case features a standing surface wave governed by gravitational forces 
and is referred to as a gravity wave. Surface tension effects are not modeled in this test case. In the second benchmark, the 
same standing wave setup is used, however, the flow is governed by surface tension rather than gravitational forces. With 
respect to the gravity wave test case, the capillary wave allows one to exclusively evaluate the models’ capability to capture 
the effects of surface tension. For both the gravity and capillary wave, there exist analytical models that can be used to 
validate the simulation accuracy. In the third and fourth test case, an unconfined single rising gas bubble in liquid, and a 
confined Taylor bubble in a cylindrical tube are simulated and compared with experimental data from the literature. Finally, 
the fifth and sixth benchmark case feature dynamic coalescence, i.e., the formation of a splash crown caused by the impact 
of a droplet into liquid. The results are qualitatively compared with experimental data from the literature. Both models are 
regularly applied to simulate capillary waves [7,8,34], rising bubbles [6,7,34–37], and drop impacts [4,34,36–38], however, 
a direct comparison between them is missing from the literature. Finally, it is concluded that the PFLBM is more accurate 
in simulating flows governed purely by surface tension forces compared to the FSLBM used in this article. However, in flow 
problems governed by surface tension and gravitational acceleration, the FSLBM required less computational resolution than 
the PFLBM while having more accuracy in the tests performed here. Additionally, the PFLBM was sensitive to the choice of 
the model’s mobility parameter and interface width, affecting accuracy and numerical stability.
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In this work, general properties related to computational performance such as the grid’s resolution and memory require-
ments are discussed, while quantitative data are not presented. Data such as these would only represent the state of the 
implementations used here and would not allow a general conclusion to be made.

The FSLBM simulations were performed using the open source C++ framework waLBerla [39] and cross-validated with 
FluidX3D [4,40]. The PFLBM simulations were also performed using waLBerla together with the code generation frame-
work lbmpy [41]. These simulations were cross-validated using TCLB [42]. The implementations used in this work and all 
simulation setups are freely available online, as described in Appendix B.

2. Numerical methods

The first part of this section briefly introduces the LBM, before presenting the numerical foundations of the FSLBM and 
the PFLBM. The section is concluded by comparing both models focusing on their computational properties.

2.1. The lattice Boltzmann method

The classical approach to CFD is to simulate the evolution of a flow problem via the discretization of the Navier–Stokes 
equations. Contrary to this, the LBM is based on the lattice Boltzmann equation (LBE) and has gained popularity in the last 
few decades. The LBE is given by,

f i (x + c i�t, t + �t) − f i (x, t) = �i (x, t) + Fi (x, t) , (1)

with f i (x, t) ∈ R being a discrete particle distribution function (PDF) that describes the probability that there exists a 
virtual fluid particle at position x ∈ Rd and time t ∈ R+ traveling with discrete lattice velocity c i ∈ �x/�t {−1, 0, 1}d [43]. 
The domain is discretized using a uniformly spaced Cartesian grid with spacing �x ∈ R+ where the macroscopic fluid 
velocity in each cell is discretized using a DdQq velocity set such that i ∈ {0, 1, . . . , q − 1}. Here, d ∈N refers to the number 
of dimensions in space and q ∈N refers to the number of discrete lattice velocities. In each velocity set, the so-called lattice 
speed of sound, cs = √

1/3�x/�t , defines the relation between density, ρ(x, t) ∈R+ , and pressure, p(x, t) = c2
s ρ(x, t), with 

�t ∈R+ denoting the temporal resolution. External forces are included in the LBM by Fi(x, t) ∈R.
The collision operator, �i (x, t) ∈ R, models particle collisions and redistributes PDFs. In this study, collision operators 

are based on the multiple relaxation time (MRT) scheme [44] that can be written as,

� (x, t) = M−1 · Ŝ · M · ( f eq (ρ, u) − f (x, t)
)
, (2)

where M ∈ Rq×q denotes a q × q Matrix, constructed from a set of q moments, that transforms the PDFs to the moment 
space [44]. In the moment space, the collision is resolved by subtracting the PDFs’ equilibria, f eq(ρ, u) ∈Rq , from the PDFs 
and applying the diagonal relaxation matrix Ŝ ∈ Rq×q . It contains the relaxation rate, ωi < 2/�t , the inverse of which is 
referred to as the relaxation time, τi = 1/ωi . For the MRT employed here, the relaxation time corresponding to second-order 
moments, τ , is directly related to the kinematic viscosity of the fluid through,

ν = c2
s

(
τ − �t

2

)
. (3)

The equilibrium PDF is given as,

f eq
i (ρ, u) = ρwi + ρ0 wi

(
c i · u

c2
s

+ (c i · u)2

2c4
s

− u · u

2c2
s

)
, (4)

and can be derived from the continuous Maxwell–Boltzmann distribution [45] using the macroscopic velocity, u ≡ u (x, t) ∈
Rd , density, ρ ≡ ρ (x, t), and lattice weight, wi ∈ R. When setting the LBM reference density ρ0 = 1 in Equation (4), the 
incompressible LBM formulation is obtained, whereas ρ0 = ρ reveals the LBM in compressible form [46].

If the collision operator’s moment set is constructed with the so-called raw moments and all moments are relaxed with 
the same relaxation rate, ω = 1/τ , the commonly used Bhatnagar–Gross–Krook (BGK), also referred to as single relaxation 
time (SRT) collision operator is obtained [43],

� (x, t) = ω
(

f eq (ρ, u) − f (x, t)
)
. (5)

A major contributor to the LBM’s popularity is its formulation as an explicit time-stepping scheme and the fact that all 
non-linear operations (collision) are local to a computational cell, while the advection (streaming) is linear [47]. This means 
that Equation (1) can be separated into the subsequent steps of collision and streaming denoted by,

f �
i (x, t) = f i (x, t) + �i (x, t) , (6)

f i (x + c i�t, t + �t) = f �
i (x, t) , (7)
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where f �
i (x, t) indicates the post-collision status of the PDFs. This illustrates that the resulting scheme can be parallelized 

well and is therefore excellently-suited for massively parallel, large-scale simulations [33]. In practice usually both steps are 
combined, as shown in Equation (1), to achieve the best parallel performance [48].

2.2. Free-surface lattice Boltzmann method

The free-surface lattice Boltzmann method (FSLBM) used in this work is based on the approach from Körner et al. [8]. It 
allows the simulation of a moving interface between two immiscible fluids and assumes that the heavier phase completely 
governs the flow dynamics of the system. As the flow dynamics of the lighter phase are ignored, the problem reduces to a 
single-phase flow with a free boundary. This assumption applies to two-phase systems with substantial density and viscosity 
ratios between the phases. In the following, the heavier and lighter phases will be called liquid and gas phases, respectively.

The boundary between the two phases is treated in a volume-of-fluid approach [23]. As such, the fill level, ϕ(x, t), in 
a cell is defined as the ratio of its liquid volume to its total volume, and acts as an indicator to describe the affiliation 
to a phase. Using this definition, all cells belonging to the fluid domain are either categorized as liquid (ϕ(x, t) = 1), gas 
(ϕ(x, t) = 0) or interface (ϕ(x, t) ∈ (0, 1)). The latter type assembles a sharp interface, i.e., a closed layer of single interface 
cells that separates liquid from gas cells. In terms of the LBM implementation, liquid and interface cells are treated as 
normal cells that contain PDFs and participate in the collision and streaming described in Section 2.1. As opposed to this, 
gas cells neither contain PDFs nor participate in the LBM update.

The fill level, ϕ (x, t), fluid density, ρ (x, t) = ∑
i f i (x, t), and volume, �x3, of a cell are used to define its liquid mass as,

m (x, t) = ϕ (x, t)ρ (x, t)�x3. (8)

The mass flux, �mi (x, t), is tracked for interface cells and computed from the LBM streaming step as,

�mi (x, t)

�x3
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x + c i�t ∈ gas

f �

i
(x + c i�t, t) − f �

i (x, t) x + c i�t ∈ liquid

1
2 (ϕ (x, t) + ϕ (x + c i�t, t))

(
f �

i
(x + c i�t, t) − f �

i (x, t)
)

x + c i�t ∈ interface

(9)

where c i = −c i is the inversion of the lattice direction i.
An interface cell is converted to gas or liquid when it gets emptied, ϕ(x, t) < 0 − εϕ , or filled, ϕ(x, t) > 1 + εϕ , with 

respect to the heuristically chosen threshold, εϕ = 10−2, that is defined to prevent oscillatory conversions [49]. It is impor-
tant to note that liquid or gas cells can not be converted directly into one another. Instead, when converting an interface 
cell, surrounding liquid and gas cells are converted to interface cells to maintain a closed interface layer. In the case of 
conflicting conversions, the separation of liquid and gas cells is prioritized.

In the course of the simulation, unnecessary interface cells may appear that either have no liquid or no gas neighbor. 
In that case, the mass flux from Equation (9) is modified as suggested in Reference [38] to either force these cells to fill or 
empty.

When converting an interface cell with fill level, ϕconv(x, t), to liquid or gas, the fill level of the converted cell is set to 
ϕ(x, t) = 1 or ϕ(x, t) = 0, respectively. This leads to an excess mass, mex (x, t), of,

mex (x, t)

ρ(x, t)�x3
=

{
ϕconv (x, t) − 1 if x is converted to liquid

ϕconv (x, t) if x is converted to gas
(10)

that must be distributed to neighboring cells. In this work, excessive mass is distributed evenly among surrounding interface 
cells, or evenly among surrounding interface and liquid cells in the implementation in FluidX3D.

A cell conversion from liquid to interface and vice-versa does not modify the PDFs of the cell. In contrast, the PDFs in 
cells converted from gas to interface are not yet available. They are initialized using Equation (4) with ρ , and u averaged 
from all surrounding liquid and non-newly converted interface cells.

The LBM collision as in Equation (6) is applied to all liquid and interface cells with Equation (4) being used in compress-
ible form. Unlike suggested in Reference [8], the gravitational force is not weighted with the fill level of an interface cell in 
the implementation used here.

During the LBM streaming step, according to Equation (7), PDFs streaming from gas cells to interface cells do not exist 
and must be reconstructed. This is accomplished using an anti-bounce-back pressure boundary condition at the interface,

f �
i (x − c i�t, t) = f eq

i

(
ρG, u

)
+ f eq

i

(
ρG, u

)
− f �

i
(x, t) ∀i : x − ci�t ∈ gas (11)

where u ≡ u(x, t) is the velocity of the interface cell and ρG ≡ ρG(x, t) = pG(x, t)/c2
s is the gas density computed from the 

pressure of the gas phase, pG(x, t). In the original model [8], it was suggested to reconstruct PDFs based on their orientation 
with respect to the interface normal. However, this approach overwrites existing information and was observed to lead to 
anisotropic artifacts [50,51]. Here, as suggested in Reference [50], only missing PDFs are reconstructed, and no information 
is dropped.
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The gas pressure,

pG (x, t) = pV (t) − pL (x, t) , (12)

consists of the volume pressure, pV(t) ∈ R+ , and the Laplace pressure, pL(x, t) ∈ R+ . The volume pressure can be either 
atmospheric in which pV(t) = constant or result from the change of the volume, V (t) ∈R+ , of an enclosed gas volume, i.e., 
bubble with,

pV (t) = pV (0)
V (0)

V (t)
. (13)

The Laplace pressure,

pL (x, t) = 2σκ (x, t) , (14)

incorporates the surface tension, σ ∈ R+ , and the interface curvature, κ (x, t) ∈ R. There exist different approaches for 
computing the interface curvature that are based on the finite difference method (FDM) or a local triangulation of the 
interface [40,50]. The simulation results shown here are obtained using the FDM as described in Reference [50]. The interface 
normal, as required by the FDM curvature model, is modified near solid obstacle cells according to Reference [52]. Other 
curvature computation models have been tested and will be discussed in Section 3.1.2.

In applications where bubbles must be properly simulated, an additional bubble model extension is required for the 
FSLBM. Since gas volumes can coalesce and divide, this algorithm must keep track of the volume pressure of individual 
bubbles and handle coalescence and segmentation accordingly. Such algorithms are referred to as bubble models and are 
algorithmically challenging when applied in parallel computing environments. Here, the bubble model from Reference [49]
is used to simulate bubble coalescence correctly and in parallel environments. It is based on the combination of the inter-
face normal and the seed-fill algorithm [53]. In contrast, in FluidX3D, the bubble model is based on the Hoshen–Kopelman
algorithm [54].

2.3. Conservative Allen–Cahn model

The conservative Allen–Cahn model is described in several other publications [22,32,36]. Here, the governing equations 
and their discretization with the LBM are only briefly introduced.

2.3.1. Governing equations
The phase-field model studied in this work is built on the following macroscopic equations,

∂ρ

∂t
+ ∇ · ρu = 0, (15)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + ∇ ·

(
μ

[
∇u + (∇u)T

])
+ F s + F b, (16)

∂φ

∂t
+ ∇ · (φu) = ∇ · M

(
∇φ − 1 − (φ − φ0)

ξ
n

)
, (17)

the first of which represents the continuity equation. Equation (16) is the momentum equation with the hydrodynamic 
pressure, p ≡ p(x, t), and Equation (17) is the Allen–Cahn equation used for the tracking of the interface. Here, the mobility 
is denoted by M ∈ R+ , the interface width by ξ ∈ N+ , n ≡ n(x, t) = ∇φ/|∇φ| is the unit vector normal to the liquid–gas 
interface, and μ ∈R+ is the fluid’s dynamic viscosity.

The principle behind phase-field models is to allocate an additional scalar field for the phase indicator parameter, φ ≡
φ(x, t) ∈ [0, 1]. This phase indicator represents the fluid with higher density by φH = 1 and the lower density fluid by 
φL = 0. The bounds of φH and φL can be seen to vary in the literature, and is generally a point of contention. Nonetheless, 
the authors specify the bounds as (0, 1) to minimize issues that may otherwise arise in the light phase fluid.

The forces acting on the fluid include the body force associated with gravity, and the surface tension forces resulting 
from the liquid-gas interface. These are given as,

F b ≡ F b(x, t) = ρ(x, t)g, (18)

F s ≡ F s(x, t) = μφ∇φ(x, t), (19)

respectively, with gravitational acceleration, g ∈Rd and chemical potential, μφ ∈R.
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2.3.2. Lattice Boltzmann equations
Discretizing the conservative Allen–Cahn equation with the LBM yields,

hi(x + c i�t, t + �t) − hi(x, t) = �h
i

[
heq

i (φ, u) − hi(x, t)
] |(x,t), (20)

where the collision operator of the phase-field LBE is given by �h
i (x, t) ∈ R, the phase-field PDFs by hi(x, t) ∈ R, and the 

phase-field relaxation time by,

τφ = M/c2
s . (21)

Thus, the mobility of the interface defines the behavior of the interface tracking LBM step. The density

ρ(x, t) = ρ(φ) = ρL + (φ(x, t) − φL)(ρH − ρL) (22)

as used in the PDF equilibrium in Equation (4), is computed via interpolation from the phase indicator φ(x, t) as suggested 
in Reference [21]. Using this formulation of the LBM step, the zeroth-order moment,

φ (x, t) =
∑

q

hq (x, t) , (23)

computes φ (x, t). The conservative Allen–Cahn equation is recovered by applying,

F φ(x, t) = 4φ(1 − φ)

ξ
· n, (24)

in the collision space according to Guo’s forcing scheme [29,55].
The LBE for the hydrodynamics is given by,

gi(x + c i�t, t + �t) − gi(x, t) = �
g
i

[
geq

i (p∗, u) − gi(x, t)
] |(x,t), (25)

with collision operator, �g
i (x, t) ∈ R, for the hydrodynamic PDFs, gi(x, t) ∈ R, and normalized pressure, p∗ ≡ p∗(x, t) =

p(x, t)/(ρ(x, t)c2
s ). Note here that the LBE is formulated such that the zeroth-order moment recovers the normalized pres-

sure,

p∗(x, t) =
∑

i

gi(x, t). (26)

Additionally, it is important to notice that for geq
i (p∗, u) ∈ R, the incompressible formulation of the equilibrium PDFs is 

used.
The forcing term to recover the Navier–Stokes equation is,

F (x, t) = F s + F b + F p + F μ, (27)

which consists of terms to recover the correct pressure gradient term, F p ≡ F p(x, t) ∈R, the viscous forces, F μ ≡ F μ(x, t) ∈
R, the surface forces, F s ≡ F s(x, t) ∈ R, and the body forces, F b ≡ F b(x, t) ∈ R. The force vector is directly applied in the 
collision space according to Guo’s forcing scheme [29,55]. The pressure and viscous forces are given as,

F p(x, t) = −p∗c2
s (ρH − ρL)∇φ, (28)

F μ(x, t) = ν(ρH − ρL)
[
∇u + (∇u)T

]
· ∇φ, (29)

where ρH ≡ ρH(x, t), and ρL ≡ ρL(x, t) denote the density in the heavy and light phase, respectively [36]. The kinematic 
viscosity, ν ≡ ν(x, t), is computed with Equation (3) using the linearly interpolated relaxation time

τ (x, t) = τ (φ) = τL + (φ(x, t) − φL)(τH − τL), (30)

where τH ≡ τH(x, t) is the relaxation time of the heavy phase and τL ≡ τL(x, t) is the relaxation time of the light phase. It is 
noted here that the deviatoric stress tensor can be obtained from moments of the non-equilibrium distribution to avoid the 
need for finite difference approximations in the velocity field.

2.4. Comparison of methodology and numerical implementation

In this section, the FSLBM and PFLBM are compared in terms of various aspects ranging from methodology to imple-
mentation. This is done to illustrate the various assumptions made in each model, and provide an understanding for the 
quantitative comparisons made in the later sections.
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2.4.1. Treatment of the low density phase
One of the major differences between the FSLBM and the PFLBM presented is the treatment of the lighter fluid phase. 

Contrary to the PFLBM, the flow dynamics of the lighter phase are ignored in the FSLBM. Although this allows the PFLBM 
to be applicable to a broader range of applications, this work focuses on flows where the lighter phase is believed to have 
negligible influence on the system. In this case, the computations in the second phase are assumed to be unnecessary when 
using the PFLBM. Further to this, the lighter phase has a lower viscosity than the heavier phase. Consequently, the flow is 
more likely to become turbulent, and �x and �t must be chosen to avoid instabilities in the lighter phase. Concerning the 
heavier phase, �x and �t tend to be much smaller than necessary for stability. This impacts the efficiency of the simulation 
and is one of the driving motivations of the FSLBM. While not considered here, these drawbacks could be moderately 
compensated by using adaptive refinement of the computational grid [37].

2.4.2. Representation of the interface
Another significant difference between the two models is the representation of the interface between the phases. In the 

FSLBM, the interface layer has a width of one cell and is therefore referred to as a sharp interface. The fill level in the cell 
captures the interfacial movement. On the other hand, the PFLBM represents the interface layer in a diffuse manner with a 
width of typically around five lattice cells [22]. The Allen–Cahn equation describes the advection of the interface. In general, 
it is preferential that the interface width is more than a magnitude smaller than the smallest characteristic length scale of 
the system [43].

2.4.3. Conservation of mass
Both models in their originally proposed states are mass conserving [8,11]. However, it was observed that single interface 

cells can become trapped in liquid or gas in the FSLBM [38]. It is argued that these artifacts do not perturb the fluid 
simulation but are visible as artifacts. To resolve these artifacts, it is suggested to forcefully convert these cells to the cell 
type in their surrounding, leading to a loss in mass. Following this approach, the current FSLBM implementation does not 
fully conserve mass.

2.4.4. Numerical implementation
This section focuses on implementation-related aspects of the FSLBM and PFLBM, such as their applicability to code 

generation, parallel computing, and memory requirements.

Code generation With metaprogramming techniques, it is possible to describe the complete PFLBM model in an abstract 
symbolic form embedded in a high-level programming language, e.g., Python [33]. Highly optimized code in a performance-
oriented programming language, e.g., C or CUDA, is generated automatically. Furthermore, performance optimizations, 
including spatial blocking, common subexpression elimination, and simultaneous instructions on multiple data (SIMD) 
vectorization, are applied by the code generator. This provides portability to different computing architectures, such as 
accelerator hardware like GPUs, and reduces code complexity while increasing the maintainability of the code base. The 
PFLBM consists of essentially only two continuous LBM steps, making it perfectly applicable for code generation. Here, 
the entire model, including boundary conditions, forces, and inter-process communication, is implemented using the code 
generation framework lbmpy [41].

In contrast, the FSLBM is not expected to be as well suited to code generation directly. While a compute kernel for the 
LBM step can be generated, many other model components are not inherently suitable to code generation. In various parts 
of the model, the type and direction of a neighboring cell define the operation. For instance, in the mass exchange algorithm, 
Equation (9), different lattice directions have to be treated according to the type of the neighboring cell in this direction. 
The abstract form of the code might then be similar to the direct implementation in a performance-oriented programming 
language. Therefore, future work remains to evaluate the applicability of the FSLBM to code generation techniques.

Parallelization The common requirement of a highly resolved computational grid can often not be sufficiently computed on 
a single processor or compute node of a cluster for practically relevant simulations. The PFLBM scales almost perfectly [33]
on parallel computing environments and inherently tracks coalescence and segmentation of gas volumes through the Allen–
Cahn equation.

Without modeling bubble coalescence and segmentation, parallelization of the FSLBM is straightforward on any parallel 
hardware, scaling just as well as the single-phase LBM. It must be remarked that this is sufficient for a wide variety of 
applications such as the standing wave and drop impact test cases presented in Section 3. However, when tracking individ-
ual gas volumes, a bubble model is required that monitors information such as the bubble’s identifiers, the gas pressure, 
and the identifier of the process on which parts of the bubble reside. The parallel implementation of a bubble model is 
challenging and the models presented in Reference [49] rely on either global all-to-all communication or global sequential 
communication in each LBM time step. As an extension to that, Reference [56] presented more complicated bubble models 
where regional all-to-all or sequential communication is sufficient. However, Reference [56] has shown that neither of the 
mentioned bubble models scale ideally on a parallel computing environment relying on inter-process communication. In the 
implementation used in this study, the model from Reference [49] with global all-to-all communication is used.
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Memory requirements The FSLBM requires similar memory allocation to a single-phase LBM implementation, making it well 
suited for systems with limited memory like GPUs. In contrast, the PFLBM requires a second LBM step with separate PDFs 
for the phase field, approximately doubling the amount of memory required to be stored at each lattice cell, making it less 
attractive for hardware with constrained memory. In particular, in setups where high surface detail (e.g., a large number 
of small droplets) needs to be resolved, with the FSLBM, droplets can have a minimum diameter of three cells. With the 
PFLBM on the other hand, the minimum droplet diameter is increased to at least 10 cells. To match resolved surface details, 
the lateral increase in lattice resolution for the PFLBM combined with the higher memory requirements per cell leads to 
approximately a 2 · (10/3)3 ≈ 74-fold increase in required memory, making the FSLBM clearly the better choice in such 
use-cases.

3. Numerical experiments

This section compares the FSLBM and the PFLBM using numerical experiments. Choosing the proper test case for com-
paring two distinct models in terms of accuracy and computational performance is a challenging task. One must select test 
cases to which both models are applicable, and keep in mind that each model may be subjected to different forms of errors. 
Additionally, it is crucial to select a benchmark where the correct solution is known a priori, either from experimental data 
or analytical models to give a point of reference for the modeled results.

While many references provide experimental data for different kinds of multiphase flows, comparing two models based 
on only experimental measurements can be misleading. Every experiment is subject to uncertainties that can not be con-
sidered in numerical simulations, and if both models disagree with experimental observations in contradicting form, no 
meaningful conclusion can be drawn. Therefore, it is always preferable to base the initial comparison on test cases, for 
which the exact solution is known from analytical calculations.

Numerical tools used for fluid simulations generally consist of various, coupled models responsible for certain physical 
aspects. For instance, each of the models discussed here has multiple approaches for including wetting effects [50,52,57,58]. 
In an initial comparison, a suitable test case should only include the minimally required components of the models to avoid 
drawing incorrect conclusions caused by a single component in one of the models.

Here, six numerical experiments were used to compare the FSLBM and PFLBM. Citations have been provided to literature 
in which each of these models has been applied to the chosen test cases, arguably showing that they are both applicable 
modeling procedures for the cases. Two of these tests simulated a standing wave with analytical models available in the 
literature. The two cases differed by only the driving force in the flow. While a gravity wave oscillates due to a body force, a 
capillary wave does so due to the forces resulting from surface tension. In each of the test cases, the respective other force 
was neglected. The third and fourth test cases featured unconfined and confined buoyancy driven flows. That is, simulations 
of a gas bubble rising in a large pool of liquid and a Taylor bubble traveling through a cylindrical pipe, both of which 
were compared with experimental data from the literature. In the final test cases, dynamic coalescence was investigated 
by simulating the impact of a vertical and oblique drop into a pool of liquid. The results were qualitatively compared to 
photographs of the laboratory experiments from the literature.

In all simulations with the FSLBM, the SRT collision model from Equation (5) was used. To improve numerical stability 
in the PFLBM, a weighted orthogonal MRT collision model according to Equation (2) was employed and the individual 
moments in both LBM steps were relaxed according to Reference [34]. It is important to note here that also the second-
order moments for the interface tracking LBM step were relaxed with τφ . Within all test cases, the specified relaxation 
rates were constant across the various resolutions leading to what is also known as diffusive scaling in the LBM. Setting 
the second-order moments directly to the equilibrium led to nonphysical results. Both models used the D2Q9 velocity set 
for the standing wave simulations. For all other simulations, a D3Q19 velocity set was employed by the FSLBM while the 
PFLBM was set up with two D3Q27 lattices for the two LBM steps. It is common to introduce the Cahn number, Cn = ξ/L, 
to describe the PFLBM’s interface width ξ . It is highlighted in this work that for convergence assessments, the value of ξ
remained constant rather than Cn, as solutions are desired to tend towards a sharp interface result. In the FSLBM, body 
forces were modeled according to Guo et al. [55]. The forcing terms applied to the LBM steps in the PFLBM model were 
according to Reference [21]. In the simulations of both models, no-slip boundary walls were realized through the bounce-
back boundary condition [43]. In agreement with the usual choice in the LBM literature, the reference density was chosen 
to be ρ0 = ρH = 1 in all simulations.

In the FSLBM, the fill level was initialized with a Monte Carlo-like sampling method. A two-dimensional grid consisting 
of equally spaced, 101 × 101, sample points was created in each cell. The ratio of samples within the specified initial profile 
to the total number of samples per cell gave the initial fill level. In the PFLBM, the diffuse interface was initialized with,

φx = φ0 ± φH − φL

2
tanh

(
x − x0

ξ/2

)
, (31)

in the direction normal to an interface located at x0.
The surface meshes visualized for the bubbles and drop impacts were obtained using a marching cube algorithm with 

destination value ϕ = 0.5 and φ = 0.5 for the FSLBM and PFLBM, respectively. If not explicitly specified otherwise, all 
quantities but non-dimensional numbers are denoted in the lattice Boltzmann unit system. All simulations shown in this 
article were performed with double-precision floating-point arithmetic.

8
179



C. Schwarzmeier, M. Holzer, T. Mitchell et al. Journal of Computational Physics 473 (2023) 111753

Fig. 1. Simulation setup of the two-dimensional standing gravity and capillary wave with wavelength, L, liquid depth, d, and initial wave amplitude, a0. 
There were periodic boundary conditions at the domain’s side-walls in x-direction and no-slip boundary conditions at the top- and bottom walls in y-
direction. The gravitational acceleration, g , was only present in the gravity wave test.

3.1. Standing waves

In this section, both models’ simulation results for a standing gravity and capillary wave are presented and compared 
with their analytical solutions.

3.1.1. Gravity wave
A gravity wave is a standing wave that oscillates at the phase boundary between two immiscible fluids. Its fluid dynamics 

are entirely governed by gravitational forces, with surface tension forces being negligible in comparison.

Simulation setup A gravity wave with wavelength, L, was simulated in a quadratic domain of size L × L × 1 (x-, y-, z-
direction). As illustrated in Fig. 1, a free boundary was initialized with the profile, y(x) = d + a0 cos (kx), with liquid depth, 
d = 0.5L, initial amplitude, a0 = 0.01L, and wavenumber, k = 2π/L. There were no-slip boundary conditions at both walls 
in the y-direction and periodic boundary conditions at all other domain walls. Due to the gravitational acceleration, g , the 
initial profile evolved into a standing wave oscillating around the liquid depth, d, and dampened by viscous forces. The 
Reynolds number,

Re = a0ω0L

ν
, (32)

is defined by the angular frequency of the wave,

ω0 = √
gk tanh (kd). (33)

In both models, the heavier phase was initialized with hydrostatic pressure according to g such that the LBM pressure at 
y(x) = d equaled the constant atmospheric volume pressure pV(t) = p0 = ρ0c2

s = 1/3.
The surface elevation, a∗(x, t) = a(x, t)/a0, and the time, t∗ = tω0, are non-dimensionalized to ease comparison. The 

simulations were run until t∗ = 80 and the surface elevation, i.e., amplitude a(x, t), was monitored at x = 0 every t∗ = 0.1. 
It was computed by the sum of all cells’ fill levels in the y-direction at x = 0 in the FSLBM. In the PFLBM, the surface 
elevation was evaluated by interpolating the position at which the phase-field value is φ = 0.5.

The simulations were carried out with Re = 10 and L ∈ {50, 100, 200, 400, 800} for the FSLBM and L ∈ {50, 100, 200, 400}
for the PFLBM. The FSLBM’s gas phase was considered to be the atmosphere, having a constant atmospheric volume pressure 
of pV(t) = p0 defined by the LBM reference density ρ0 = 1. In the PFLBM, the density ratio, ρ̃ = ρH/ρL = 1000, and 
kinematic viscosity ratio, ν̃ = νH/νL = 1, mimic a liquid–gas system and were chosen to conform with the analytical 
solution of the capillary wave in Section 3.1.2. The relaxation rate was set to ω = 1.8 and ωH = 1.99, for the FSLBM and for 
the heavy phase in the PFLBM, respectively. The mobility, M = 0.02, and interface width, ξ = 5, were chosen in the PFLBM 
conforming to usual choices in the literature [29].

Analytical model The analytical model for the gravity wave is derived by linearization of the continuity and Euler equations 
with a free-surface boundary condition [59]. The surface elevation, i.e., the amplitude of the standing wave,

a(x, t) = aD(t) cos (kx − ω0t) + d, (34)

is obtained under the assumption of an inviscid fluid resulting in zero damping with aD(t) = a0. Viscous damping is consid-
ered by,

9
180



C. Schwarzmeier, M. Holzer, T. Mitchell et al. Journal of Computational Physics 473 (2023) 111753

Fig. 2. Gravity wave as simulated by the FSLBM with L ∈ {50, 100, 200, 400, 800} in terms of non-dimensional amplitude, a∗(0, t∗), and time, t∗ . Due to the 
small initial amplitude, a0 = 0.01L, the FSLBM’s resolution must be sufficiently high to capture the movement of the interface.

Fig. 3. Gravity wave as simulated by the PFLBM with L ∈ {50, 100, 200, 400} in terms of non-dimensional amplitude, a∗(0, t∗), and time, t∗ . The model was 
able to capture small interface movement even with low resolution.

aD(t) = a0e−2νk2t, (35)

as provided in Reference [60]. The model is valid for k|a0| 	 1 and k|a0| 	 kd [59], which is applicable in this study with 
k|a0| = 0.02π 	 1 < kd = π .

Results and discussion Fig. 2 shows the amplitude, a∗(0, t∗), over time, t∗, for different wavelengths, L, simulated with the 
FSLBM. As immediately evident, the FSLBM could not reasonably simulate the gravity wave setup chosen here with small 
resolutions. This is caused by the requirement of a small initial amplitude, a0 = 0.01L, to be consistent with the analytical 
solution. The surface of the wave moves only in a range of a few LBM cells or even purely within one cell. This could not 
be simulated with sufficient accuracy with the FSLBM due to its sharp interface representation on a fixed Cartesian grid. 
On the other hand, with higher resolution, the amplitudes span more cells and the FSLBM converged well with reasonable 
accuracy to the analytical model. In particular, a resolution of L = 50 did not allow a meaningful simulation, however, 
L ∈ {100, 200, 400, 800} allowed 2, 3, 4, 5 periods to be simulated.

Due to the diffuse interface of the PFLBM, the model was capable of simulating even very small amplitudes as shown in 
Fig. 3. The simulations converged well and from L = 100 on, the phase of the wave was predicted accurately. However, the 
model clearly underestimated the wave’s damping for the parameters used in this study.

In Fig. 4, the FSLBM and PFLBM are compared directly. The resolution of the FSLBM was chosen such that a sufficient 
number of periods have been simulated to allow a meaningful comparison. The computational grid had to be resolved to a 
very high level to have the amplitude to span over multiple cells (note that many fewer periods were resolved by the FSLBM 
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Fig. 4. Amplitude of the gravity wave as simulated by the FSLBM and PFLBM at L = 400 in terms of non-dimensional amplitude, a∗(0, t∗), and time, t∗ . The 
PFLBM was able to capture significantly smaller amplitudes.

for the same resolution). However, in this test case, there was only a single fluid and a single gas domain divided by one 
interface with little curvature. Therefore, the width of PFLBM’s diffuse interface was less significant here and did not enforce 
a highly resolved computational grid. While this is representative for a variety of applications, it is not for many others in 
which the minimal diffuse interface width imposes a higher computational resolution. It must be also noted that the size 
of the amplitude was chosen for consistency of the analytical model. This highlights a limit case for the FSLBM where 
difficulties arise due to only small surface movement. In this particular case where the surface oscillates back and forth 
around the same lattice cells, the amplitude of the oscillation can only be sufficiently resolved when cell conversions are 
triggered, i.e., when the surface movement extends beyond a single layer of cells. In other setups where there is persistent 
directional movement of the surface, this is not a problem and the surface position is resolved well anywhere between 
lattice cells.

3.1.2. Capillary wave
In contrast to the gravity wave, the fluid dynamics of the capillary wave are purely dominated by surface tension forces, 

while gravitational forces are neglected.

Simulation setup The simulation setup was equivalent to the one of the gravity wave in Section 3.1.1. As for the gravity 
wave, a standing capillary wave evolves, oscillating around a liquid depth, d, because of surface tension forces. The decay of 
the wave is again caused by energy dissipation due to viscous friction. While the definition of Re in Equation (32) is also 
used for the capillary wave, the angular frequency of the wave is given by,

ω0 =
√

σk3

ρH + ρL
. (36)

Here, it can be seen that it is now defined with the surface tension, σ , and the densities of the heavy, ρH, and light phase, 
ρL. Except for hydrostatic pressure, which is not present due to the absence of gravity, the simulation parameters and 
evaluation procedure were identical to those presented in Section 3.1.1.

All simulations were performed with Re = 10 and L ∈ {50, 100, 200, 400, 800} for the FSLBM and L ∈ {50, 100, 200, 400}
for the PFLBM. In the latter, the density ratio, ρ̃ = 1000, and kinematic viscosity ratio, ν̃ = 1, mimic a liquid–gas system and 
conform with the capillary wave’s analytical model. The relaxation rate was set to ω = 1.8 and ωH = 1.99, for the FSLBM 
and for the heavy phase in the PFLBM, respectively. As in Section 3.1.1, the mobility, M = 0.02, and interface width, ξ = 5, 
were used in the PFLBM.

Analytical model Prosperetti [61] presented an analytical model for small-amplitude capillary waves in viscous fluids. The 
model assumes that there is either a single fluid with a free-surface (ρL = 0, μL = 0) or two fluids with equal kinematic 
viscosity such that ν̃ = 1. It is derived from the linearized Navier–Stokes equations and therefore only valid in the limit of 
infinitesimally small wave amplitudes.

Assuming no gravitational forces and no initial velocity, the capillary wave amplitude, a(t), with respect to time, t , is 
described by,
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Fig. 5. Capillary wave as simulated by the FSLBM with L ∈ {50, 100, 200, 400, 800} in terms of non-dimensional amplitude, a∗(t∗), and time, t∗ . The FSLBM 
did not converge with higher resolution due to deficiencies in all investigated curvature computation models.

a (t) = 4 (1 − 4β)ν2k4

8 (1 − 4β)ν2k4 + ω2
0

a0erfc
√

νk2t +
4∑

i=1

zi

Zi

(
w2

0a0

z2
i − νk2

)
· exp

((
z2

i − νk2
)

t
)

· erfc
(

zi
√

t
)

, (37)

where zi are the roots of the polynomial,

z4 − 4β
(

k2ν
) 1

2
z3 + 2 (1 − 6β)k2νz2 + 4 (1 − 3β)

(
k2ν

) 3
2

z + (1 − 4β)ν2k4 + ω2
0 = 0, (38)

and Zi are computed by circular permutation of the index i in zi ,

Zi =
∏

1≤ j≤4, j �=i

(
z j − zi

)
. (39)

The expression erfc(x) = 1 − erf(x) is the complementary error function and β is a dimensionless parameter defined by,

β = ρLρH

(ρL + ρH)2
. (40)

The analytical model is only applicable for small amplitudes such that a correction factor was proposed extending the 
validity of the model to amplitudes of up to a0 � 0.1L [62]. For a0 = 0.01L as chosen here, this correction factor is only 
1.0023 and it can be assumed that the original analytical model is valid to be used as a reference in this study.

Results and discussion As illustrated in Fig. 5, the simulations of the FSLBM did not converge with increasing resolution 
of the computational grid. The only difference between the gravity wave test case and the capillary wave test case is the 
driving force, which is a body force in the former and the surface tension in the latter. In the gravity wave test case, the 
FSLBM simulation converged and the results agreed well with the analytical model. This suggests the potential existence of 
errors in the surface tension model used within the FSLBM. There, surface tension forces are incorporated by the Laplace 
pressure, pL, from Equation (14), with the interface curvature κ being the only non-constant parameter in the equation. 
Therefore, it is apparent that the diverging behavior must be caused by a diverging interface curvature computation.

As described in Section 2.2, the simulations and results shown here are based on a curvature computation using the 
finite difference method (FDM) [50]. A similar result was obtained when computing the interface curvature using a local 
triangulation model and the algorithm from Taubin [63] in waLBerla, as suggested by Reference [49]. This is in agreement 
with Reference [50], where both approaches were found to diverge with increasing resolution when computing the curvature 
of a resting spherical gas bubble. On the other hand, a curvature model based on local triangulation and a least squares fit 
optimization (LSQR) was found to be second-order convergent in the same test case [50]. However, using a similar LSQR 
approach [40] in FluidX3D, also no convergent behavior could be obtained in the capillary wave test case at the largest 
resolutions.

It is vital to remark that the absolute value of the curvature decreases when increasing the resolution. With the 
parametrization chosen here, also the absolute numerical value of the surface tension decreases with increasing L. There-
fore, although the LSQR curvature model converges, the model’s constant error in curvature has increasingly more influence 
at higher resolution.
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Fig. 6. Capillary wave as simulated by the PFLBM with L ∈ {50, 100, 200, 400} in terms of non-dimensional amplitude, a∗(t∗), and time, t∗ . The model 
captured the wave’s phase and damping with reasonable accuracy.

The capillary wave has been previously simulated and compared to a different analytical model [64], where gravitational 
forces are also considered [7]. There, simulations were performed with the curvature computation using the algorithm of 
Taubin but the authors did not present a convergence study. Using the same capillary wave setup and resolution as in 
Reference [7], a moderate agreement with the analytical model was observed with the FSLBM implementations used in 
this work. However, in a convergence study, again the FSLBM did not converge to the analytical model regardless of the 
curvature computation model used. In the work of Körner et al. [8], the FSLBM has also been used to simulate a capillary 
wave and found to agree well with the analytical solution. The authors did not present a convergence study but verbally 
argued that the error decreases linearly with increasing resolution. The curvature model used there is based on the two-
dimensional template–sphere method [65] that uses a neighborhood of 25 cells to compute the curvature. However, the 
implementations presented here are explicitly targeted at parallel computing environments, in which such a calculation is 
not feasible. To maintain reasonable parallel efficiency, only information from nearest neighbor cells is desired for curvature 
computation.

In contrast, as illustrated in Fig. 6, the PFLBM converged well towards the analytical solution but slightly underestimated 
the analytical model’s damping with the parameters from this study. A comparable capillary wave test case has been sim-
ulated with the PFLBM in Reference [34]. However, compared to the parameters chosen here, the initial amplitude and 
Reynolds numbers were significantly smaller in Reference [34], leading to a more accurate prediction of the damping.

It can be concluded that special attention must be paid when simulating surface tension dominated flows with very low 
curvature with the FSLBM. While the capillary wave resembles an extreme case with small amplitudes leading to infinites-
imal values of absolute curvature, other test cases with major surface tension influence have been simulated with good 
accuracy with the FSLBM [4,40]. On the other hand, the PFLBM accurately simulates this test case and as in Section 3.1.1, it 
has to be pointed out explicitly that the PFLBM is capable of also simulating very small amplitudes.

3.2. Buoyancy driven flows

This section presents numerical simulations of buoyancy driven flows. The first test case is an unconfined flow, where a 
single gas bubble rises in liquid. In the second test case, a large gas bubble rises in liquid contained in a cylindrical tube. 
This large gas bubble in the confined, buoyancy driven flow is commonly referred to as Taylor bubble.

3.2.1. Rising bubble
The more practically oriented third test case is an unconfined buoyancy driven flow, i.e., the rise of a single gas bubble 

in a liquid column. In order to correctly simulate the bubble shape and rise velocity, the balance between buoyancy, viscous, 
and surface tension forces must be correct. As there are no analytical models available predicting a rising bubble’s shape 
and velocity, the comparison is drawn using experimental data from Bhaga and Weber [66].

Simulation setup As shown in Fig. 7, a gas bubble was initialized as a sphere of diameter, D , centered at (4D, 4D, 1D) in a 
computational domain of size 8D × 8D × 20D (x-, y-, z-direction). Gravity was applied in the negative z-direction causing 
the bubble to rise due to buoyancy. The top and bottom walls (in z-direction) were realized as no-slip boundaries, while 
the side walls of the domain were periodic. The size of the domain was tested, and determined to be sufficiently large so as 
not to influence the results of the simulations. Hydrostatic pressure was initialized such that the reference density, ρ0 = 1, 
was positioned at 10D in the z-direction.

13
184



C. Schwarzmeier, M. Holzer, T. Mitchell et al. Journal of Computational Physics 473 (2023) 111753

Fig. 7. Simluation setup of the three-dimensional rising bubble test case with initial bubble diameter, D , and gravitational acceleration, g . The domain’s side 
walls in x-direction are periodic, whereas at the top and bottom walls in z-direction, no-slip boundary conditions are applied.

Table 1
The rising bubble test cases are defined by the Bond number, Bo, 
and the Morton number, Mo. The FSLBM’s relaxation rate, ω, and 
the PFLBM’s relaxation rate in the heavy phase, ωH, are kept con-
stant for all resolutions to achieve diffusive scaling.

Case 1 2 3 4

Bo 32.2 115 243 339
Mo 8.2 · 10−4 4.63 · 10−3 266 43.1
ω (FSLBM) 1.95 1.95 1.65 1.8
ωH (PFLBM) 1.97 1.98 1.83 1.92

The rise of a single gas bubble in liquid is characterized by the Morton number,

Mo = gμ4

ρσ 3
, (41)

which describes the ratio of viscous to surface tension forces, and the Bond number,

Bo = g D2ρ

σ
, (42)

which describes the ratio of gravitational forces, i.e., buoyancy, to surface tension forces. It is commonly also referred to as 
the Eötvös number (Eo). The definitions of these dimensionless numbers are taken from Reference [66] and the density, ρ , 
and dynamic viscosity, μ, refer to the heavier fluid.

The bubble shape and position in terms of its center of mass, were monitored at every reference time interval,

t∗ = t

√
g

D
. (43)

From the bubble position in the z-direction at time, t∗ = 5, and t∗ = 10, the rise velocity u and Reynolds number,

Re = ρDu

μ
, (44)

were evaluated. The simulations were stopped at t∗ = 10. The bubble shape and the Reynolds number were then compared 
with experimental observations from Reference [66].

The simulations were carried out with D ∈ {8, 16, 32, 64} for both models. Additionally, as in Reference [29], a fixed 
mobility, M = 0.02, and interface width, ξ = 5, were used for the PFLBM. Furthermore, to close the system parameters, 
the density of the liquid phase was specified as ρH = 1, and the density ratio, ρ̃ = 1000, and dynamic viscosity ratio, 
μ̃ = μH/μL = 100, were chosen to mimic an air–water system. For the FSLBM, the initial pressure of the bubble was set 
to the reference pressure, p0 = ρ0c2

s = 1/3, with reference density, ρ0 = 1. The dimensionless numbers that define the four 
cases tested, and the employed LBM relaxation rates are listed in Table 1. Hydrostatic pressure was initialized in the domain 
such that the pressure is equivalent to the LBM reference density, ρ0 = 1, in the center of the domain in z-direction.
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Fig. 8. Simulated bubble shape and Reynolds number, Re, at time, t∗ = 10, for case 2 in Table 1 with Bo = 115 and Mo = 4.63 ·10−3. Different computational 
resolutions according to the initial bubble diameter, D , are shown. The solid black lines illustrate the bubble’s contour in the center cross-section with 
normal in the x-direction. The photograph of the laboratory experiment was reprinted from Reference [66] with the permission of Cambridge University 
Press.

Fig. 9. Shape of the rising bubble as simulated with the PFLBM at time, t∗ = 12, for case 2 in Table 1 with Bo = 115 and Mo = 4.63 ·10−3. The computational 
resolution was set according to D = 32. Larger values for the mobility, M , lead to non-physical bubble shapes, i.e., break-up.

Results and discussion The simulated bubble shapes at t∗ = 10 are presented in Fig. 8 and in the Appendix in Figs. 18 to 20. 
It can be seen that both models converged to the Reynolds numbers reported in the experiments in Reference [66]. The 
FSLBM simulated the rising bubble with reasonable accuracy for computational resolutions of D ≥ 16. Although surface 
tension forces are not fully governing the rising bubble test cases, they still significantly determine the bubble shape and 
rise velocity here. In contrast to the capillary wave test case in Section 3.1.2, the FSLBM showed consistent convergence 
with increasing computational resolution. This emphasizes that the FSLBM can still be applicable in problems where surface 
tension is non-negligible. However, the FSLBM predicted the detachment of several satellite bubbles in cases 2 to 4 that 
can not be observed in the photographs of the experiments. Qualitatively similar bubble shapes were also predicted by the 
FSLBM with the LSQR curvature model, as shown in the Appendix in Figs. 21 to 24.

In contrast, for the PFLBM, it was not possible to obtain results for resolutions of D < 32. Furthermore, for case 2, neither 
the bubble shape nor the Reynolds number was predicted reasonably well, regardless of the resolution, as illustrated in 
Fig. 8. Moreover, when increasing the simulation run time, non-physical bubble shapes and collapse were also observed 
with the PFLBM. Fig. 9a shows this behavior for case 2 with D = 32 in which the skirted bubble film ruptures at t∗ > 10. 
With increased computational resolution, this effect occurred at later t∗ .

It was shown in the literature, that phase-field models are sensitive to the choice of the mobility parameter, M [67]. 
However, in general there appears to be no robust solution for how this parameter should be specified for arbitrary cases. 
In a study performed here, as depicted in Fig. 9, it was observed that larger values of M seem to boost such non-physical 
effects. On the other hand, with M < 0.02, instabilities were observed, as the relaxation time, τφ , in Equation (21) decreases 
and approaches its lower stability limits. These instabilities occurred even when using the weighted MRT scheme, which is 
generally known for good stability properties [32]. A rigorous study of this behavior is outside the scope of this work, but 
is proposed for future investigation.
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Fig. 10. Simulation setup of the three-dimensional Taylor bubble test case, with an initially cylindrical gas bubble in a cylindrical tube of diameter, D , and 
gravitational acceleration, g . No-slip boundary conditions are applied at the tube’s walls and at the domain’s top and bottom walls in z-direction.

The test cases used in this study have also been simulated in two dimensions by Kumar et al. [34], using the PFLBM. 
To check the implementations’ validity, these two-dimensional simulations were also performed here, agreeing with Refer-
ence [34] and without becoming unstable or leading to implausible bubble shapes.

While the reason for these instabilities is not yet clear, it must be pointed out that the expected bubble shapes consist 
of only a thin film of gas. In the literature, similar circular destabilization of films with the PFLBM could be observed in 
other test cases, however, often of a thin liquid rather than gas film [37].

3.2.2. Taylor bubble
The fourth test case is a buoyancy driven confined flow, a large gas bubble rising through stagnant liquid in a cylindrical 

tube. During the bubble’s rise, it takes an elongated shape with a rounded leading edge. Its length is several times the tube’s 
diameter and it is commonly referred to as Taylor bubble [68,69].

Setup The simulation setup chosen here is similar to the one in Reference [22], conforming to the experiments in Refer-
ence [70]. As illustrated in Fig. 10, in a computational domain of size 1D × 1D × 10D (x-, y-, z-direction), the domain walls 
formed a cylindrical tube of diameter, D , pointing in z-direction. A gas bubble was initialized as cylinder with diameter, 
0.75D , and length, 3D , oriented concentrically to the boundary tube. The gas bubble’s bottom was located at D in positive 
z-direction. The rest of the domain was filled with a stagnant liquid. According to the gravitational acceleration, g , the liquid 
was initialized with hydrostatic pressure such that the reference pressure, p0 = ρ0c2

s = 1/3, was set at 5D in z-direction. As 
in Section 3.2.1, the Morton number, Mo, Bond number, Bo, and the reference time, t∗ , characterize the system. Here, the 
tube diameter, D , was used as characteristic length [70] in these non-dimensional numbers.

The experiments in Reference [70] were conducted with Bo= 100, Mo=0.015, and olive oil. Following Reference [22], it is 
assumed that the density and viscosity of the air injected into the oil was ρSI = 1.225 kg/m3 and μSI = 1.983 · 105 kg/(m·s), 
respectively. Therefore, the density ratio, ρ̃ = 744, and the dynamic viscosity ratio, μ̃ = 4236, were used. As in Section 3.2.1, 
for the FSLBM, the initial pressure of the bubble was set to the reference pressure, p0 = ρ0c2

s = 1/3. The simulations were 
performed with computational resolutions according to the tube diameter, D ∈ {16, 32, 64, 128}. However, in the PFLBM, 
simulating a tube diameter of D ≤ 32 was not possible, as the diffuse interface led to non-physical wall interactions with 
the interfacial region. Based on the investigations from Section 3.2.1, the mobility parameter was set to the lowest value at 
which the simulations at any tested resolution were stable, namely M = 0.08. The interface width was chosen as ξ = 3. For 
all simulations, the relaxation rate was set to ω = 1.8 in the FSLBM, and ωH = 1.76 in the heavier phase of the PFLBM’s 
hydrodynamic LBM step.

Results and discussion Fig. 11 compares the simulated Taylor bubble’s shape at different computational resolutions at time 
t∗ = 15 with the experimental measurement [70]. To ease comparison, the axial location, z∗ = z/D and radial location, 
r∗ = r/(0.5D) are non-dimensionalized. Additionally, an axial shift is employed as to set z∗ = 0 at r∗ = 0 for the bubble’s 
front and tail individually. Both models converged well, but showed minor deviations to the experimental data from Ref-
erence [70]. The shape of the front of the bubble was predicted with reasonable accuracy at all computational resolutions 
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Fig. 11. Shape of the front and tail of the simulated Taylor bubble at different computational resolutions, specified by the tube diameter, D . The comparison 
with experimental data [70] is drawn in terms of the non-dimensionalized axial location, z∗ = z/D , and radial location, r∗ = r/(0.5D) at time, t∗ = 15.

Table 2
Reynolds number, Re, of the simulated Taylor bubble for different compu-
tational resolutions as specified by the tube diameter, D . The bubble’s rise 
velocity, as used in Re, was computed from the Taylor bubble’s locations in 
axial direction at time t∗ = 10 and t∗ = 15.

D 16 32 64 128

ReFSLBM 22.15 24.12 25.35 25.89
RePFLBM unstable unstable 26.83 27.12

ReExperiment [70] 27

Fig. 12. Definition of the locations at the Taylor bubble’s front, where the velocity profiles are evaluated in the subsequent figures. The monitored lines are 
expressed in terms of the non-dimensionalized axial location, z∗ = z/D , and radial location, r∗ = r/(0.5D). The test case is radially symmetric such that the 
evaluation can be performed at an arbitrary cross-section.

tested. However, at the tail of the bubble, a resolution of D ≥ 64 was required for the FSLBM to capture the interface con-
tour moderately well. As also observed in Section 3.2.1, satellite bubbles separated from the main bubble in the case of the 
FSLBM, as shown in the Appendix in Fig. 25. In contrast to the observations for the rising bubble test, this effect vanished 
with increasing computational resolution.

In Table 2, the simulated Reynolds number, Re, as defined in Equation (44), is shown. The tube diameter, D , and the 
Taylor bubble’s rise velocity, U , are used as characteristic quantities to determine Re. The rise velocity, U , was computed by 
the bubble’s center of mass location in z-direction at time, t∗ = 10, and t∗ = 15. In comparison to the PFLBM, which agreed 
well with the experimental measurement [70], the FSLBM showed larger deviations. This was even more pronounced at 
lower computational resolutions, where it could capture the bubble’s axial movement only moderately well.

17
188



C. Schwarzmeier, M. Holzer, T. Mitchell et al. Journal of Computational Physics 473 (2023) 111753

Fig. 13. Simulated non-dimensionalized radial velocity, U∗
r , along a radial line positioned at 0.111D in front of the Taylor bubble (see Fig. 12), with tube 

diameter, D . The comparison with experimental data [70] is drawn in terms of the non-dimensionalized radial location, r∗ = r/(0.5D), at time, t∗ = 15.

Fig. 14. Simulated non-dimensionalized axial velocity, U∗
a , and radial velocity, U∗

r , along a radial line positioned at 0.504D behind the Taylor bubble’s 
front (see Fig. 12), with tube diameter D . The comparison with experimental data [70] is drawn in terms of the non-dimensionalized radial location, 
r∗ = r/(0.5D), at time, t∗ = 15.

At the locations specified in Fig. 12, the flow field around the bubble was evaluated. The non-dimensionalized axial fluid 
velocity, U∗

a = Ua/U , along a central axial line of length 0.5D in front of the bubble is presented in the Appendix in Fig. 26. 
Both models converged and agreed well with the experimental data [70]. On the other hand, at a radial line situated at 
0.111D in front of the bubble, the non-dimensionalized radial fluid velocity U ∗

r = Ur/U (see Fig. 13), and axial velocity (see 
Appendix, Fig. 27) showed larger deviations when using the PFLBM, favoring the FSLBM at higher computational resolution. 
A similar observation could be made at a radial line at 0.504D behind the bubble’s front, as visualized in Fig. 14. Fig. 28
illustrates that at a radial line located 2D behind the front of the bubble, the predicted axial velocity by both models agreed 
reasonably well with the experimental data.

3.3. Dynamic coalescence – crown splash

Understanding the dynamics of splashing during liquid drop impacts has many implications, including aerosol produc-
tion [71], erosion processes [72] and microplastic transfer in the environment [4]. In this study, two drop impact test cases 
are simulated for which photographs of the laboratory experiments are available in the literature [73]. Both test cases have 
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Fig. 15. Simulation setup of the drop impact test cases. In a domain of size Lx × L y × Lz , a spherical drop of liquid with diameter, D , is initialized right 
above the surface of a liquid pool of height, H . While the gravitational acceleration, g , points in negative z-direction, the droplet is initialized with impact 
velocity, U , acting at an angle, α. The domain’s side walls in x- and y-direction are periodic, whereas the domain’s top and bottom walls in z-direction are 
set to no-slip.

already been simulated using the FSLBM with LSQR curvature computation model [4]. Due to the absence of quantitative 
experimental data, the comparisons with reference data can only be made qualitatively.

3.3.1. Vertical drop impact
In the fifth test case, a vertical drop impacting on a thin film of liquid was simulated and compared with experimental 

data [73].

Setup As shown in Fig. 15, a thin liquid film of height, H = 0.5D , was initialized in a computational domain of size, 
Lx × L y × Lz (x-, y-, z-direction) with Lx = L y = 10D and Lz = 5D . At the pool’s surface, a spherical droplet with diameter, D , 
was initialized with an impact velocity, U , in the negative z-direction with α = 0◦ , leading to a vertical impact. The domain’s 
side walls in the x- and y-direction were periodic, whereas there were no-slip boundary conditions at the domain’s top- and 
bottom walls. Conforming with the gravitational acceleration, g , hydrostatic pressure was initialized such that the reference 
density was ρ0 = 1 at the surface of the pool.

The drop impact is described by the Weber number

We = ρU 2 D

σ
, (45)

which relates inertial and surface tension forces, and by the Ohnesorge number,

Oh = μ√
σρD

, (46)

which is defined by the relation of viscous to inertial and surface tension forces. The drop diameter, D , the Bond number, 
Bo (see Equation (42)), and reference time, t∗ = t U/D , close the definition of the system. As found in Reference [4], the 
simulation results must be offset by t∗ = 0.16 to synchronize the first photograph of the laboratory experiment with the 
simulation setup chosen in this study.

In the experiments of Reference [73], a 70 % glycerol–water mixture at 23 °C was used with ρSI = 1200 kg/m3 and μSI =
0.022 kg/(m·s). The experiment obeyed the non-dimensional numbers, We=2010, and, Oh=0.0384. Assuming gSI = 9.81 m/s2, 
the system is closed by Bo= 3.18. As in Section 3.3.2, the density ratio is set to ρ̃ = 1000 and the dynamic viscosity ratio is 
set to μ̃ = 100.

The simulations were performed with computational resolutions according to D ∈ {20, 40, 80}. The FSLBM’s relaxation 
rate was chosen at ω = 1.989 and the PFLBM’s hydrodynamic relaxation rate in the heavy phase was set to ωH = 1.988. In 
agreement with the findings from Section 3.2, lower values for the PFLBM’s interface width, ξ , and mobility, M , tended to 
give more physically realistic results, as shown in the Appendix in Fig. 29. Therefore, ξ = 4 and M = 0.03 were chosen as 
they are the lowest values that allowed stable simulations for all tested computational resolutions.

Results and discussion In Fig. 16, the crown formation at time, t∗ = 12, is shown for both models at various computational 
resolutions. In the Appendix, Figs. 30 and 31 compare the simulated and experimental drop impact dynamically, i.e., with 
respect to time. While no scale bars for the photograph of the laboratory experiments are available, it can be noted that all 
simulations converged well with increasing resolution, and the dimensions of the simulated splash crowns agreed with each 
other. The measured simulated cavity depths and splash crowns’ inner diameters are presented in the Appendix in Tables 3
and 4. The FSLBM captured the droplets ejected from the crown qualitatively well, even at low computational resolution. 
Similar results have also been obtained with the FSLBM and LSQR curvature computation [4]. In contrast, the PFLBM with 
the parameters chosen here, could not sufficiently predict these droplets.
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Fig. 16. Simulated vertical drop impact at time, t∗ = 12, at different computational resolutions defined by the initial drop diameter, D . While the simulation 
results are true to scale, no scale bar is available for the photograph of the experiment [73]. Therefore, the splash crown’s dimension can only be compared 
between simulations rather than with the experiment. The solid black line illustrates the crown’s contour in the center cross-section with normal in the 
x-direction. The photograph of the laboratory experiment was reprinted from Reference [73] with the permission of AIP Publishing.

Fig. 17. Simulated oblique drop impact at time, t∗ = 18, at different computational resolutions defined by the initial drop diameter, D . While the simulation 
results are true to scale, no scale bar is available for the photograph of the experiment [75]. Therefore, the splash crown’s dimension can only be compared 
between simulations rather than with the experiment. The solid black line illustrates the crown’s contour in the center cross-section with normal in the 
x-direction. The photograph of the laboratory experiment was reprinted from Reference [75] with the permission of the original authors.

It must be emphasized, that the PFLBM is sensitive to the choice of the interface width and mobility parameter (see 
Appendix, Fig. 29). That is, for consistency reasons, these values were chosen as to be stable with the lowest computa-
tional resolution, D = 20, and kept constant for higher resolutions. A rigorous study of the individual lower limits of these 
parameters at each resolution might improve the quality of the results.

3.3.2. Oblique drop impact
In the final test case, an oblique drop impact is simulated as in the experiments of References [74,75].

Setup The setup is similar to Section 3.3.1 and presented in Fig. 15. However, the computational domain is cubical with 
Lx = L y = Lz = 10D , and the liquid pool is of height, H = 5D . The droplet’s impact velocity, U , is oriented in an angle, 
α = 28.5◦ , from negative z-direction.

The experimental investigations were performed with We= 416.5, DSI = 1.15 · 10−4 m, and liquid water with ρSI =
1000 kg/m3 and σ SI = 0.072 kg/(s2). Assuming μSI = 10−3 kg/(m·s) for water at 20 °C and gSI = 9.81 m/s2, the setup is 
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Fig. 18. Simulated bubble shape and Reynolds number, Re, at time, t∗ = 10, for case 1 in Table 1 with Bo = 32.2 and Mo = 8.2 ·10−4. Different computational 
resolutions according to the initial bubble diameter, D , are shown. The solid black lines illustrate the bubble’s contour in the center cross-section with 
normal in the x-direction. The photograph of the laboratory experiment was reprinted from Reference [66] with the permission of Cambridge University 
Press.

defined by, Oh= 0.011, and, Bo= 0.0018. The density ratio, ρ̃ = 1000, and dynamic viscosity ratio, μ̃ = 100, are chosen as 
to mimic an air–water system [75]. The computational resolution, relaxation rates, and hydrostatic pressure were set as for 
the vertical drop impact in Section 3.3.1. Here, the lowest interface width and mobility that allowed stable simulations in 
the PFLBM for all tested resolutions were, ξ = 4, and, M = 0.09, respectively.

Results and discussion In Fig. 17, the crown formation at time, t = 18t∗ , is shown for both models at various computational 
resolutions and are compared with photographs of the laboratory experiments [75]. Additionally, Figs. 32 and 33 in the 
Appendix show the drop impact as simulated by the FSLBM and PFLBM over time. The FSLBM and PFLBM converged well 
and the dimensions of the simulated splash crowns agreed well with each other. As for the vertical impact, scale bars 
for the photograph of the laboratory experiments are missing and no quantitative comparison with reference data could 
be drawn. Nevertheless, the measured simulated cavity depths and splash crowns’ inner diameters are presented in the 
Appendix in Tables 5 and 6. In contrast to the vertical impact, less droplets were ejected from the crown and the PFLBM 
agreed qualitatively well at high computational resolution. The FSLBM captured the shape of the drop cavity and splash 
crown qualitatively well, even with low computational resolution. Similar results have been obtained with the FSLBM and 
LSQR curvature computation [4].

4. Conclusion

This study has compared two different LBM approaches for simulating flows in which the dynamics of the lighter phase 
are assumed negligible. After an introduction of the numerical foundation of the FSLBM and PFLBM, both models were 
applied to a series of benchmark cases and their performance was discussed in terms of their numerical properties and 
implementation aspects.

The FSLBM ignores fluid flow in the secondary phase and requires much less memory, making it efficient and more 
applicable to limited-memory hardware. On the other hand, the PFLBM simulates flow in both phases but is well suited for 
massively parallel computing and can be implemented more easily in a flexible way using code generation technology. A 
very distinct difference between the two models is their sharp and diffuse interface representation in the FSLBM and PFLBM, 
respectively. Therefore, six numerical experiments were shown in which the models’ accuracy is compared at different 
resolutions of the computational grid.

While the standing gravity wave was simulated more accurately by the FSLBM, a much higher resolution was required 
than in the PFLBM to capture the motion of the interface at low amplitude. However, it has to be remarked that this test 
setup represents a limit case of the FSLBM. In consistency with the analytical solution, the interface motion is limited to 
only a few LBM cells, even for highly resolved grids.

In the capillary wave test case, the FSLBM diverged with increasing resolution due to deficiencies in all tested approaches 
for the computation of infinitesimal interface curvature. In contrast, the PFLBM could simulate the capillary wave with 
reasonable accuracy.

The third and fourth test case featured buoyancy driven flows. That is, an unconfined single rising gas bubble in liquid 
in four different characteristic parameter sets, and a confined Taylor bubble traversing a cylindrical tube, were simulated. 
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Fig. 19. Simulated bubble shape and Reynolds number, Re, at time, t∗ = 10, for case 3 in Table 1 with Bo = 243 and Mo = 266. Different computational 
resolutions according to the initial bubble diameter, D , are shown. The solid black lines illustrate the bubble’s contour in the center cross-section with 
normal in the x-direction. The photograph of the laboratory experiment was reprinted from Reference [66] with the permission of Cambridge University 
Press.

Fig. 20. Simulated bubble shape and Reynolds number, Re, at time, t∗ = 10, for case 4 in Table 1 with Bo = 339 and Mo = 43.1. Different computational 
resolutions according to the initial bubble diameter, D , are shown. The solid black lines illustrate the bubble’s contour in the center cross-section with 
normal in the x-direction. The photograph of the laboratory experiment was reprinted from Reference [66] with the permission of Cambridge University 
Press.

The FSLBM was able to capture the bubble shape and Reynolds number with reasonable accuracy, even with moderate 
resolution. On the other hand, with the parameters used in this study, the PFLBM required higher resolutions for simulations 
to be stable. While it predicted bubble shape and accuracy well in the initial phase of the single gas bubble rise, the bubbles 
tended to evolve into non-physical shapes leading to eventually collapse of the simulation. This observation was made even 
with the highest computational resolution used in this study. A sensitivity of the chosen mobility on the phase-field was 
observed. However, the mobility can only be chosen in a certain range to obtain stable simulations. In this range no generally 
suitable values could be found.

In the fifth and sixth test case, the models’ ability to capture dynamic coalescence was validated. To do this, a vertical and 
oblique drop impact into a pool of liquid were simulated. The FSLBM predicted the shape of the splash crown reasonably 
well, even with low computational resolution. With sufficiently high computational resolution, the PFLBM was also able to 
simulate the oblique drop impact with satisfying accuracy. However, for the vertical drop impact, only the FSLBM was able 
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Fig. 21. Simulated bubble shape for case 1 in Table 1 with Bo = 32.2 and Mo = 8.2 ·10−4. Different computational resolutions according to the initial bubble 
diameter, D , are shown. The simulations were performed with the FSLBM with LSQR curvature computation model implemented in FluidX3D [4,40]. The 
photograph of the laboratory experiment was reprinted from Reference [66] with the permission of Cambridge University Press.

Fig. 22. Simulated bubble shape for case 2 in Table 1 with Bo = 115 and Mo = 4.63 · 10−3. Different computational resolutions according to the initial 
bubble diameter, D , are shown. The simulations were performed with the FSLBM with LSQR curvature computation model implemented in FluidX3D [4,40]. 
In contrast to the experiment, the bubble broke apart into several smaller bubbles in the simulation at a resolution of D = 64. The photograph of the 
laboratory experiment was reprinted from Reference [66] with the permission of Cambridge University Press.

Fig. 23. Simulated bubble shape for case 3 in Table 1 with Bo = 243 and Mo = 266. Different computational resolutions according to the initial bubble 
diameter, D , are shown. The simulations were performed with the FSLBM with LSQR curvature computation model implemented in FluidX3D [4,40]. The 
photograph of the laboratory experiment was reprinted from Reference [66] with the permission of Cambridge University Press.
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Fig. 24. Simulated bubble shape for case 4 in Table 1 with Bo = 339 and Mo = 43.1. The simulations were performed with the FSLBM with LSQR curvature 
computation model implemented in FluidX3D [4,40]. Different computational resolutions according to the initial bubble diameter, D , are shown. The 
photograph of the laboratory experiment was reprinted from Reference [66] with the permission of Cambridge University Press.

Fig. 25. Shape of the Taylor bubble at time, t∗ = 15, as simulated with the FSLBM and PFLBM at different computational resolutions, defined by tube 
diameter, D . The solid black line illustrates the bubble’s contour in the center cross-section with normal in the x-direction.

to capture the droplets ejected from the crown formation sufficiently well. As for the rising bubble, the PFLBM was observed 
to be sensitive to the choice of the mobility and interface width, but no generally applicable choice could be identified.

The investigation of the optimal choice of mobility and interface width in the PFLBM remains future work. Extending the 
implementations of both models with adaptive refinement of the computational grid is expected to significantly enhance the 
issues observed, and the efficiency of the implementations. Additionally, the applicability of the FSLBM to code generation 
should be explored leading to a flexible and portable code basis.
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Fig. 26. Simulated non-dimensionalized axial velocity, U∗
a , along an axial line of length 0.5D in front of the Taylor bubble (see Fig. 12). The line is located 

in the center of the boundary tube with diameter, D . The comparison with experimental data [70] is drawn in terms of the non-dimensionalized axial 
location, z∗ = z/D , at time, t∗ = 15.

Fig. 27. Simulated non-dimensionalized axial velocity, U∗
a , along a radial line positioned at 0.111D in front of the Taylor bubble (see Fig. 12), with tube 

diameter, D . The comparison with experimental data [70] is drawn in terms of the non-dimensionalized radial location, r∗ = r/(0.5D), at time, t∗ = 15.
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Fig. 28. Simulated non-dimensionalized axial velocity, U∗
a , along a radial line positioned at 2D behind the Taylor bubble’s front (see Fig. 12), with tube 

diameter, D . The comparison with experimental data [70] is drawn in terms of the non-dimensionalized radial location, r∗ = r/(0.5D), at time, t∗ = 15.

Fig. 29. Vertical drop impact at reference time t∗ = 12, as simulated with the PFLBM with initial drop diameter, D = 40. The influence of the mobility, 
M , and interface width, ξ , are shown. While the simulation results are true to scale, no scale bar is available for the photograph of the experiment [73]. 
Therefore, the splash crown’s dimension can only be compared between simulations rather than with the experiment. The solid black line illustrates the 
crown’s contour in the center cross-section with normal in the x-direction. The photograph of the laboratory experiment was reprinted from Reference [73]
with the permission of AIP Publishing.
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Fig. 30. Vertical drop impact over non-dimensionalized time, t∗ , as simulated with the FSLBM. The computational resolution is defined by the initial drop 
diameter, D . While the simulation results are true to scale, no scale bar is available for the photographs of the experiment [73]. Therefore, the splash 
crown’s dimension can only be compared between simulations rather than with the experiment. The solid black line illustrates the crown’s contour in the 
center cross-section with normal in the x-direction. The photographs of the laboratory experiment were reprinted from Reference [73] with the permission 
of AIP Publishing.

formance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). The hardware is 
funded by the German Research Foundation (DFG).

Appendix A

The appendix presents additional simulation results that were not shown in the main part of the manuscript for reasons 
of brevity.

A.1. Rising bubble

Figs. 18 to 20 extend Section 3.2.1 with simulation results for the rising bubble test cases 1, 3, and 4 from Table 1.
Additionally, simulation results for the FSLBM with the LSQR curvature computation model as described in Section 3.1.2, 

are presented in Figs. 21 to 24. The simulations were conducted with parameters as in Table 1 using the software 
FluidX3D [4,40]. The results agree reasonably well with those of the FSLBM with FDM curvature computation model as 
presented in Figs. 8 and 18 to 20, and therefore also with the experimental results. However, as shown in Fig. 22, with the 
LSQR curvature model, the bubble broke apart into several smaller bubbles at resolution D = 64 in case 2 with Bo = 115
and Mo = 4.63 · 10−3.
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Fig. 31. Vertical drop impact over non-dimensionalized time, t∗ , as simulated with the PFLBM. The computational resolution is defined by the initial drop 
diameter, D . While the simulation results are true to scale, no scale bar is available for the photographs of the experiment [73]. Therefore, the splash 
crown’s dimension can only be compared between simulations rather than with the experiment. The solid black line illustrates the crown’s contour in the 
center cross-section with normal in the x-direction. The photographs of the laboratory experiment were reprinted from Reference [73] with the permission 
of AIP Publishing.

Table 3
Simulated non-dimensionalized cavity depth, h∗

ca(t
∗) = hca(t∗)/D , of the vertical drop impact. The 

cavity depth, hca(t∗), is the maximum distance of the cavity bottom to the initial position of the 
liquid surface at time, t∗ = 0, measured in the center cross-section with normal in the x-direction. 
The results are presented for different dimensionless times, t∗ , and computational resolutions as 
defined by the initial drop diameter, D .

t∗ 1.1 3.5 9 12

FSLBM, D = 20

h∗
cav

−0.18 −0.42 −0.42 −0.42
FSLBM, D = 40 −0.17 −0.43 −0.46 −0.46
FSLBM, D = 80 −0.15 −0.43 −0.45 −0.45
PFLBM, D = 20 −0.18 −0.45 −0.45 −0.45
PFLBM, D = 40 −0.14 −0.44 −0.48 −0.48
PFLBM, D = 80 −0.38 −0.43 −0.47 −0.47

A.2. Taylor bubble

Figs. 25 to 28 extend Section 3.2.2 with the shape of the Taylor bubble and additional evaluations of the flow field in 
the surrounding fluid according to Fig. 12.
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Fig. 32. Oblique drop impact over non-dimensionalized time, t∗ , as simulated with the FSLBM. The computational resolution is defined by the initial drop 
diameter, D . While the simulation results are true to scale, no scale bar is available for the photographs of the experiment [75]. Therefore, the splash 
crown’s dimension can only be compared between simulations rather than with the experiment. The solid black line illustrates the crown’s contour in the 
center cross-section with normal in the x-direction. The photographs of the laboratory experiment were reprinted from Reference [75] with the permission 
of the original authors.

Table 4
Simulated non-dimensionalized splash crown diameter, d∗

cr(t
∗) = dcr(t∗)/D , of the vertical drop im-

pact. The splash crown diameter, dcr(t∗), is the crown’s inner diameter at the position of the initial 
liquid surface at time, t∗ = 0, measured in a center cross-section with normal in the x-direction. 
The results are presented for different dimensionless times, t∗ , and computational resolutions as 
defined by the initial drop diameter, D .

t∗ 1.1 3.5 9 12

FSLBM, D = 20

d∗
cr

1.66 2.99 4.50 4.93
FSLBM, D = 40 1.76 3.03 4.57 4.93
FSLBM, D = 80 1.73 3.05 4.55 4.92
PFLBM, D = 20 1.66 2.99 4.71 5.17
PFLBM, D = 40 1.62 2.94 4.58 5.02
PFLBM, D = 80 1.72 2.98 4.60 5.04

A.3. Vertical drop impact

Extending Section 3.3.1, Fig. 29 illustrates the PFLBM’s sensitivity to the mobility parameter, M , and interface width, 
ξ , in the vertical drop impact test case. Figs. 30 and 31 qualitatively compare the simulated vertical drop impact with 
experimental data at different points in time. Tables 3 and 4 present the temporal evolution of the quantified simulated 
cavity depth and inner crown diameter.
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Fig. 33. Oblique drop impact over non-dimensionalized time, t∗ , as simulated with the PFLBM. The computational resolution is defined by the initial drop 
diameter, D . While the simulation results are true to scale, no scale bar is available for the photographs of the experiment [75]. Therefore, the splash 
crown’s dimension can only be compared between simulations rather than with the experiment. The solid black line illustrates the crown’s contour in the 
center cross-section with normal in the x-direction. The photographs of the laboratory experiment were reprinted from Reference [75] with the permission 
of the original authors.

Table 5
Simulated non-dimensionalized cavity depth, h∗

ca(t
∗) = hca(t∗)/D , of the oblique drop impact. The 

cavity depth, hca(t∗), is the maximum distance of the cavity bottom to the initial position of the 
liquid surface at time, t∗ = 0, measured in the center cross-section with normal in the x-direction. 
The results are presented for different dimensionless times, t∗ , and computational resolutions as 
defined by the initial drop diameter, D .

t∗ 2.33 8.22 12.15 18

FSLBM, D = 20

h∗
ca

−0.80 −1.85 −2.19 −2.5
FSLBM, D = 40 −0.81 −1.86 −2.2 −2.49
FSLBM, D = 80 −0.84 −1.87 −2.13 −2.48
PFLBM, D = 20 −0.96 −2.18 −2.5 −2.84
PFLBM, D = 40 −0.92 −2.03 −2.37 −2.68
PFLBM, D = 80 −0.88 −1.95 −2.27 −2.58

A.4. Oblique drop impact

Figs. 32 and 33 extend Section 3.3.2 and qualitatively compare the simulated oblique drop impact with experimental 
data at different points in time. Tables 5 and 6 present the temporal evolution of the quantified simulated cavity depth and 
inner crown diameter.
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Table 6
Simulated non-dimensionalized splash crown diameter, d∗

cr(t
∗) = dcr(t∗)/D , of the oblique drop im-

pact. The splash crown diameter, dcr(t∗), is the crown’s inner diameter at the position of the initial 
liquid surface at time, t∗ = 0, measured in a center cross-section with normal in the x-direction. 
The results are presented for different dimensionless times, t∗ , and computational resolutions as 
defined by the initial drop diameter, D .

t∗ 2.33 8.22 12.15 18

FSLBM, D = 20

d∗
cr

2.23 3.39 3.87 4.43
FSLBM, D = 40 2.23 3.44 3.9 4.40
FSLBM, D = 80 2.25 3.44 3.88 4.46
PFLBM, D = 20 2.20 3.4 3.88 4.6
PFLBM, D = 40 2.14 3.38 3.92 4.45
PFLBM, D = 80 2.19 3.45 3.95 4.49

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2022 .111753.
The following supplementary material is available as part of the online article:

• An archive of the C++ source code of the FSLBM and PFLBM as part of the software framework waLBerla [39], version 
https://i10git .cs .fau .de /walberla /walberla /-/tree /01a28162ae1aacf7b96152c9f886ce54cc7f53ff.
The simulation setups are located in the directories apps/showcasesFreeSurface and
apps/showcases/PhaseFieldAllenCahn/CPU.

• An archive of the Python source code used for the PFLBM gravity and capillary wave test cases. These test cases are pro-
vided as Jupyter Notebooks as part of the code generation framework lbmpy [41], version https://pypi .org /project /lbmpy /
1.0 .1/. The notebooks are located in the directory lbmpy_tests/full_scenarios/phasefield_allen_cahn.
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Abstract 

Microplastic (MP) particles can be ejected into the air by jet drops when gas bubbles burst at water 
surfaces. For a qualitative and quantitative understanding of this transport mechanism from the 
hydrosphere to the atmosphere, we studied the transfer of MP due to bubble bursting at the air-water 
interface in laboratory experiments. Gas bubbles were produced with filtered air that was pushed 
through a stainless-steel frit at two different volume flow rates in a glass flask filled with polystyrene 
(PS) particles of six different diameters (0.35 µm, 0.5 µm, 0.75 µm, 1 µm, 1.5 µm, 2 µm) suspended in 
deionized water. Airborne PS particle concentrations were measured by an optical particle counter. 
Additionally, size and volume of the bursting bubbles and the resulting jet droplets were analyzed with 
a camera. Depending on the volume flow rates, bubble bursting rates from 688 s-1 to 1176 s-1 and mean 
diameters of the bursting bubbles from 0.76 mm to 0.81 mm were observed. The mean diameters of 
the top jet drops were estimated to be between 0.10 mm and 0.11 mm. The measured number of jet 
droplets ranged from 2092 s-1 to 2391 s-1. For particle diameters from 0.35 µm – 2.0 µm, the airborne 
MP particle concentrations ranged from 4.2 l-1 to 348 l-1. We determined size-dependent transfer 
factors for the water-air transfer and found a maximum for 1 µm particles at the lowest volume flow 
rate. For MP particles up to 1 µm diameter, the particle concentration in the jet droplets was enhanced 
compared to the bulk water concentration, indicating an enrichment of MP particles at the water-air-
interface of bubbles. 
  

Keywords: Airborne microplastic; Atmospheric microplastic; Jet drops; Particle ejection; Laboratory 
experiments   
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1. Introduction 

Approximately 1018 – 1020 bubbles burst every second over the oceans (Ghabache and Séon 2016). 
Whitecaps and breaking waves are the main sources of gas bubbles in the oceans, with bubble sizes 
ranging from smaller than 0.1 mm to approximately 10 mm (Blanchard 1989). Bubble bursting 
generates sea spray aerosols (e.g. de Leeuw et al. 2011), and inorganic salts, organic matter as well as 
bacteria and viruses are efficiently transferred from the water into the air by this mechanism (e.g. Bigg 
and Leck 2008; Aller et al. 2005; Quinn et al. 1975). Since microplastic (MP) particles are abundant in 
ocean water (e.g. Chae et al. 2015), on shorelines (Browne et al. 2011) and in ocean sediment (Zhang 
et al. 2016), it can be expected that bubble bursting is an efficient process for MP transfer from oceans 
to the atmosphere (e.g. Allen et al. 2020; Liu et al. 2019; Trainic et al. 2020). Currently, this process is 
poorly quantified and recent studies such as Masry et al. (2021) point out that MP transfer rates must 
be quantified in order to evaluate the relevance of bubble bursting as a source for atmospheric MP. 
Atmospheric MP particles are considered a potential risk to human health (Prata 2018; Chen et al. 
2020), and may also be a vector for toxic substances added or attached to MPs (Gallo et al. 2018, 
Cormier et al. 2021). 

At the water surface, bubbles burst and film droplets develop from the surface water film when the 
bubble exceeds a diameter of approximately 2.4 mm (Spiel 1998). For bubbles with diameters less than 
3 mm, the film simply rolls up (Spiel 1997). In addition, one or multiple jet drops are formed due to the 
collapse of the bubble cavity (Spiel 1998). The top jet drop is the largest and fastest drop (Ghabache 
und Séon 2016), and may be ejected up to a height of 20 cm for a ~2 mm bubble in salt water 
(Blanchard 1989). 

It has been postulated that the composition of film drops is influenced by the sea surface microlayer, 
while jet drops represent the bulk water composition (e. g. Wang et al., 2017). The sea surface 
microlayer is known to be enriched in hydrophobic compounds such as organic matter (e. g. Wurl et 
al. 2011; Engel et al. 2017), and also MP particles (e. g. Song et al. 2014; Chae et al. 2015; Anderson et 
al. 2018). Anderson et al. (2018) report an enrichment of approximately an order of magnitude of MP 
particles in the sea surface microlayer of two estuaries compared to bulk water. Chae et al. (2015) 
observed higher MP particle concentrations in the sea surface microlayer compared to bulk surface 
water off the Western Korean coast, and Song et al. (2014) found a strongly enhanced MP 
concentration in the sea surface microlayer compared to conventional Manta trawl sampling off the 
Southern Korean coast. 

Particles transported into the air via bubble bursting can be picked up by wind and transported to more 
distant areas (Allen et al. 2020). Various studies have detected atmospheric MP particles in remote 
areas (e.g. Allen et al. 2019; Brahney et al. 2020), and in recent years, further studies have identified 
MP in the marine boundary layer (Allen et al. 2020; Enyoh et al. 2019; Huang et al.  2020; Liu et al. 
2019; Trainic et al. 2020; Zhang et al. 2020). Liu et al. (2019) sampled suspended atmospheric MP 
during a cruise in the west Pacific Ocean and detected 0 to 1.37 particles per cubic meter of air. Allen 
et al. (2020) sampled air in the marine boundary layer on the Atlantic coast in France. The average 
concentration of MP particles found in onshore winds was 2.9 m-3, and in offshore winds 9.6 m-3. Trainic 
et al. (2020) sampled aerosols in the North Atlantic Ocean and found atmospheric MP particles with 
estimated atmospheric residence times from 5 minutes to 2 days in 20 % of their samples. 

In laboratory experiments, Quinn et al. (1975) studied the water-air transfer of 0.48 µm and 0.79 µm 
polystyrene particles in jet drops produced by bubble bursting. In their experiments, they found that 
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the particle concentration in the jet drop was basically independent of the particle concentrations in 
the bulk water but increased with the bubble age. Similarly, Sakai et al. (1988) found an enrichment of 
0.5 µm latex particles in the surface layer of rising bubbles, and in jet drops. Recently, Masry et al. 
(2021) showed that 0.35 µm polystyrene particles are transferred from water to air by bubble bursting. 
They also used 0.6 µm and 1 µm particles but could not clearly confirm water-air transfer of these 
larger particles, and they conclude that MP particle transfer rates could bring answers to the 
significance of bubble bursting as a source of atmospheric MP particles. 

We hypothesize that bubble bursting is an efficient water-air transfer process of MP particles. The goal 
of this study is to quantify the water-air transfer of MP particles as a function of particle size by the 
bubble bursting process. To this end, we present results of laboratory experiments with well-defined 
bubble populations and pre-defined concentrations of polystyrene (PS) particles with diameters 
between 0.35 µm and 2 µm suspended in water. Specifically, we quantify size-dependent transfer rates 
of MP particles, and analyze bubble and jet drop size distributions in order to contribute to estimating 
an order of magnitude of the global emission of atmospheric MP particles from oceans by bubble 
bursting. 

 

 

2. Methods 

2.1 General setup of bubble bursting experiments 

We set up experiments to generate small gas bubbles in water with varying concentrations of MP 
particles, and to measure the number concentration of particles transferred from the water into the 
air due to the bubble bursting process (Figure 1). 

A glass flask with a total volume of 2.45 l was filled with 1 l of deionized water (Seradest S750, 
conductivity κ < 0.1 µS cm-1) at room temperature, resulting in a total water column of 8 cm. Deionized 
water was used to reduce the production of polydisperse airborne salt particles from drying droplets. 
The water volume was mixed with 0.1 to 5 ml of aqueous suspensions of monodisperse spherical 
polystyrene (PS) particles (Polybead Microspheres, Polysciences, Hirschberg an der Bergstraße, 
Germany) containing 2.5 % solids and a small amount of proprietary surfactant. The MP particle 
suspensions were filled into small glass vials, and defined volumes were taken with a microliter pipette. 
The pipette volume was discharged into the glass flask, and the water was stirred for uniform particle 
distribution. For each experiment, the total number of MP particles in 1 l of water Nw is the product of 
the particle concentration in suspension csusp and the volume Vsusp of the MP suspension (Table 1). The 
MP particle density of 1.05 g cm-³ is slightly larger than the density of water. Six different particle 
diameters in the diameter range from 0.35 µm to 2 µm (0.35 µm, 0.5 µm, 0.75 µm, 1 µm, 1.5 µm, 2 
µm) were used. The particles contain a slight anionic surface charge from sulfate ester groups 
(Polysciences, 2022). 

Before and after each experimental run, the glass flasks and all materials that came in contact with the 
water and the suspended MP particles were cleaned by thoroughly rinsing with deionized water and 
detergent, and again with deionized water. At the beginning of the experiment, the headspace with a 
volume of 1.45 l was free of particles. In order to produce gas bubbles, filtered (NY Simplepure syringe 
filter; 0.45 µm, Membrane Solutions LLC., USA) room air was pushed through a stainless-steel frit (IDEX 



209 
 

Health & Science, Oak Harbor, WA, USA) with a pore size of 20 µm with a peristaltic pump (IPS-8, 
Ismatec SA, Glattbrugg-Zürich, Switzerland) at two different pumping rates. The volume flow rates 
(VFR) corresponding to the two pumping rates measured with a bubble flowmeter (mini-Buck-
Calibrator M-5, A.P. Buck Inc., Orlando, Florida, USA) were 182 mm³ s-1 [50 RPM] and 353 mm³ s-1 [90 
RPM]. Depending on the pumping rate, this produced a population of small air bubbles. The mean 
bubble diameter ranged from 0.76 mm to 0.81 mm with maximum diameters up to 2.72 mm, thus 
producing mostly jet drops after bubble bursting. With a volume flow rate of 1.2 l min-1, air was 
sampled from the headspace of the glass flask through a dryer to an optical particle counter. Droplets 
were dried with a Nafion diffusion dryer (Perma Pure MD-110-24S-4, Lakewood, NJ, USA) and 
introduced into an optical particle counter (OPC, Mini Laser Aerosol Spectrometer 11-R, Grimm 
Aerosoltechnik, Ainring, Germany) to measure the particle number size distribution in 31 size channels 
between 0.25 and 32 µm particle diameter with a sampling interval of 6 s. A HEPA filter was added to 
the glass flask to compensate for the difference of the OPC sample flow rate and the volume flow rate 
for generating gas bubbles. 

In each experimental run, two experiments with different MP particle diameters were run in parallel. 
Two glass flasks were filled with deionized water taken out of a glass tank that was bottled before all 
experiments to guarantee the same water quality for all experiments. Suspensions of MP particles with 
different diameters were added to each flask according to Table 1. Both glass flasks were connected 
to the diffusion dryer and the OPC through a pinch valve that switched the sample flow between the 
two flasks every 15 minutes. In order to remove all particles from the headspace in the flasks, the OPC 
sampled air alternating every 15 min between the two glass flasks until the average total particle 
concentration was less than 1 l-1. Then, the peristaltic pump was turned on for one hour with a VFR of 
353 mm³ s-1 before data was collected for evaluation. After the one-hour lead time, the experiments 
were carried out for 300 minutes with VFR 182 mm³ s-1 and 353 mm³ s-1, respectively. In total, this 
resulted in 10 x 15 min sample intervals per glass flask and VFR. For each particle diameter, two 
experiments with different particle concentrations in water were carried out. 

 

2.2 Characterization of air bubbles and jet droplets 

To analyze the size of bursting bubbles and of the resulting jet droplets, a standard camera (Panasonic 
DC-FZ82) with a resolution of 1280 pixel x 720 pixel and a frame rate of 100 frames per second was 
used in two different arrangements with illumination by high-power LEDs as shown schematically in 
the supplementary material (S1). 

Perpendicular recording of the water surface allowed capturing the bursting bubbles (Fig. S1a). To 
block interference with lower ascending bubbles in the tank, the illumination was restricted to a thin 
layer on the surface by using LEDs in combination with slit blinds. Size was calibrated by using a 
benchmark at the surface level. The resulting video material was then analyzed using computer vision 
to detect and track individual bubbles. Thresholding the image based on brightness values resulted in 
isolated bubble contours. However, those contours can either belong to single bubbles or clustered 
bubbles and require segmentation. The segmentation was done following an algorithm proposed by 
Bettaieb et. al (2020). In contrast to the proposed algorithm, start and end points of individual 
segments were identified by convexity defects of the bubble shapes. As individual segments can belong 
to the same bubble, they were matched and recombined. This involved fitting circles to each segment. 
The fitted circles were then compared to every other segment in the corresponding cluster. Identical 
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geometry and center coordinates (within a tolerance of ±25 % of bubble radius) indicated contour 
segments belonging to a single bubble. Estimated center coordinates and radii were matched between 
previous and current frames to track bubble movement. Matching was done by using a simple linear 
movement estimation from the last two frames of a bubble. The estimated position was then matched 
with the currently detected bubbles by shortest distance but limited by the maximum distance a 
bubble could reasonably travel within a frame to avoid wrong matching. Using this method allowed 
following individual bubbles until no more match was detected, indicating that the bubble of interest 
burst or merged. To check whether the lost bubble did in fact burst and not merge into a bubble 
nearby, all surrounding bubbles were checked for an increase in size. If so, the lost bubble was marked 
as merged and did not contribute to further analysis. According to Kočárková et. al (2013), the shape 
of small bubbles can be approximated by a sphere for Bond numbers up to 0.25, which corresponds to 
bubble diameters up to approximately 2.7 mm for air bubbles in water at room temperature. 

For the characterization of jet droplets, the camera was directed at the setup from the front, and 
illumination with high-power LEDs from the side (Fig. S1b). Overlapping and merging of droplets was 
neglected. However, the droplet movement did produce motion blur in the image material. To 
estimate the droplet size, a rotated rectangle was fitted around the blurred droplets. Estimating that 
the deformation only occurred in the direction of movement, the shorter side of the rotated rectangle 
indicated the actual size of the droplet. Matching between previous and current frames was carried 
out as described above for bursting bubbles. 

The image recognition of bursting bubbles and jet droplets in this study was technically limited. First, 
the detection of larger bubbles was limited under poor lighting conditions, which may have led to 
bubbles with diameters over 1 mm being detected as several smaller bubbles. This was caused by 
irregular illumination from point light sources on the edges of the rectangular basin. Second, the 
resolution of the video material was not sufficient to accurately detect and quantify the sizes of 
bubbles and droplets with diameters below 0.4 mm. The minimum resolved bubble diameter was 0.32 
mm, and the minimum resolved droplet diameter was 0.15 mm. In general, the number of bubbles 
and droplets in the smallest size classes may be underestimated.  

 

2.3 Data analysis and calculations 

Airborne MP particle concentrations were calculated from the observed OPC particle size distributions. 
For each of the six particle diameters used in this study, the corresponding size channels of the OPC 
were evaluated individually. In each 15 min sampling interval, the first 5 min after switching the valve 
were discarded. The remaining data were averaged separately for each experiment and each VFR. 

The expected airborne MP concentration were calculated assuming that particle input into the flask 
headspace is only from drying droplets generated by bubble bursting, and particles are removed from 
the flask headspace only with the sampling flow of the OPC. In this evaluation, there is no 
differentiation between film drops, the top jet drop and following secondary jet drops.  

The input of airborne particles into the flask headspace, dNin/dt [s-1], is estimated by Eq. 1,  

ௗே೔೙

ௗ௧
=

ேೢ

௏ೢ
∙ 𝑄ௗ ∙ 𝑓௪ି௔         [1], 
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with Nw, number of MP particles in the water volume Vw [mm3], Qd, rate of droplet volume generated 
per second [mm3 s-1], and fw-a a dimensionless transfer factor that takes into account the effective 
water – air transfer of MP particles. 

The number of particles removed from the flask headspace per unit time, dNout/dt, is estimated              
by Eq. 2, 

ௗே೚ೠ೟

ௗ௧
=

ேೌ

௏ೌ
∙ 𝑄௔          [2], 

with Na, number of MP particles in the headspace volume Va [mm3], Qa, air sampling flow rate           
[mm3 s-1]. 

For steady state conditions, the expected temporal evolution of the airborne MP concentration can be 
calculated by equating the particle input and output fluxes of Eqs. 1 and 2, and solving for Na/Va: 

 ேೌ

௏ೌ
=

ேೢ

௏ೢ
∙
ொ೏

ொೌ
∙ 𝑓௪ି௔         [3]. 

In this study, the water volume is Vw = 106 mm3 (= 1 l), the headspace volume is Va = 1.45 x 106 mm3   
(= 1.45 l), the sampling flow rate of the OPC is Qa = 2 x 104 mm3 s-1 (= 1.2 l min-1), the number of MP 
particles in the water volume Nw is taken from Table 1, and the droplet volume generated per second, 
Qd, is estimated from the observed bubble and droplet size distributions (section 3.1). Note that the 
transfer factor fw-a is unknown; it is determined by equating observed and expected airborne MP 
concentration acc. Eq. 3, Na/Va, and solving for fw-a, 

 𝑓௪ି௔ =
ேೌ

௏ೌ
∙
௏ೢ

ேೢ
∙
ொೌ

ொ೏
         [4]. 

When switching the sampling flow between two glass flasks in 15 min intervals, the change in airborne 
MP particle number in one particular glass flask will be Nin – Nout for the 15 min intervals when the 
sampling flow is taken from this glass flask, and Nin for the 15 min intervals when the sampling flow is 
taken from the other glass flask. 

In order to estimate droplet size distributions from observed size distributions of bursting bubbles, the 
universal scaling law for the top jet drop diameter, Djet, as a function of the bursting bubble diameter, 
Dbub, as given by Gañán-Calvo (2017) has been applied. The ambient droplet volume flux of ocean sea 
spray has been calculated using the parameterization by Andreas (1989) following environmental 
observations by Monahan et al. (1986). Details of the calculation method can be found in the 
supplementary material. 

 

3. Results and discussion 

3.1 Bursting bubbles and jet droplets - number concentrations and size distributions 

Under two different conditions to generate bubbles, the number of bursting bubbles increased with 
increasing volume flow rates from 688 bursts per second at the low VFR (182 mm³ s-1) to 1176 s-1 at 
the high VFR (353 mm³ s-1) (Table 2). Thus, the rate of bursting bubbles at the low VFR was about 59 % 
of the high VFR. 

While the number of bursting bubbles changed, the bubble size distributions were similar for the 
different VFRs. The mean diameter of the bursting bubbles ranged from 0.76 mm to 0.81 mm, with 
minimum diameters from 0.32 mm to 0.48 mm and maximum diameters from 2.40 mm to 2.72 mm 
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(Table 2). The fraction of bubbles with diameters larger than 2.4 mm was negligible, and therefore 
mostly jet drop production is expected in these experimental conditions. Overall, the modal diameter 
of the bursting bubbles was 0.6 mm. Figure S2 shows average bubble size distributions derived 
experimentally at two different VFRs. 

In stationary behavior, the total volume of the observed bursting bubbles should correspond to the 
VFRs. As shown in Table 2, estimated burst volumes per second exceeded corresponding VFRs, 
indicating an overestimation of bubble number or size, especially with the lower VFR. Uncertainties 
might be introduced by the limited image resolution, which did not allow for precise segmentation of 
coalesced bubbles. Additionally, non-optimal lighting could lead to large bubbles being detected as 
several small bubbles. At higher VFR, the burst volume is only slightly overestimated, possibly due to 
the smaller relative influence of larger bubbles and coalescence with higher bubble counts.  

With varying burst rates of bubbles and similar bubble size distributions, an increasing droplet number 
and similar droplet diameters generated by bubble bursting for the two different VFRs is expected. 
Table 2 shows the experimentally determined number of droplets generated per second, the mean 
and maximum droplet diameter, the average number of droplets generated per bubble and the droplet 
volume rate for low and high VFRs. 

The droplet rate, i. e. the number of droplets generated per second, increases from 2092 s-1 to            
2391 s-1. Comparing with the burst rate, this yields on average 3.0 droplets per bursting bubble at VFR 
182 mm3 s-1 and 2.0 droplets per bubble at VFR 353 mm3 s-1 (Table 2). Figure S3 shows average droplet 
size distributions for the two different VFRs. There is a slight increase in mean droplet diameter for the 
higher VFR from 0.42 mm to 0.48 mm, and the maximum droplet diameter increases from 2.46 mm to 
4.15 mm. Consistent with the shift of the droplet size distribution to larger diameters, the mean 
volume of droplets generated per second increases from 159 mm3 s-1 at low VFR to 340 mm3 s-1 at high 
VFR. 

The minimum droplet diameter that could be resolved with the experimental setup was 0.15 mm, and 
it was observed in both VFR setups. Taking into account Eqs. S4 and S5, the top jet droplet diameter 
can be expected to be smaller than 0.15 mm for bubble diameters smaller than 0.55 mm. Fig. S2 
indicates that a considerable fraction of the bubble size distributions was smaller than 0.55 mm. The 
bubble size distributions can be used together with Eqs. S4 and S5 to calculate an independent 
estimate for the diameters of the top jet droplets resulting from the bursting bubbles. This calculation 
yields a mean diameter of the top jet droplet of 0.11 mm for VFR 182 mm3 s-1, and 0.10 mm for 353 
mm3 s-1, respectively.  

 

3.2 Airborne MP concentrations 

In order to identify water-air transfer of MP particles due to bubble bursting, size distributions of 
airborne particles in the head space of the glass flask were measured and analyzed for concentration 
increases in the size range of interest. For example, Figure 2 shows average particle size distributions 
of two experiments with 0.35 µm and 1.0 µm MP particles. Significantly enhanced number 
concentrations can be seen in the diameter ranges around 0.35 µm and 1 µm, respectively.  

The temporal evolution of the particle concentrations in the size channels corresponding to 0.35 µm 
and 1.0 µm diameter MP particles as well as the expected airborne MP concentration acc. Eqs. 1 – 3 
are shown in Figure 3. The first 15 min interval shown both in Fig. 3a and b is when the OPC samples 
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air from the glass flask with 0.35 µm MP particles. When the valve switches to the other glass flask, 
indicated by a vertical red line, the observed particle concentration drops to much lower background 
concentrations in Fig. 3a, while the concentration of 1.0 µm MP particles shown in Fig. 3b increases. In 
this example, the average concentration of the 0.35 µm particles was 165 l-1 with a background 
concentration of 65 l-1, and the average concentration of the 1.0 µm particles was 348 l-1 with a 
background concentration of less than 3 l-1. While sampling from the other flask, particles produced by 
bubble bursting accumulate in the flask of interest, and when the valve switches back to this flask, a 
higher concentration is expected shown in Fig. 3 as green lines calculated acc. to Eq. 3. Within the 
uncertainties due to the limited counting statistics of the OPC, the expected decrease of the particle 
concentration while sampling from the flask is also visible in the observed concentrations. 

Enhanced particle concentrations in the corresponding size ranges were detected in all experiments. 
Figure 4 shows average size distributions for five experiments with MP particle diameters from 0.35 
µm to 1.5 µm, and one experiment with pure water without addition of MP suspensions. Local maxima 
of the particle size distributions can be clearly seen for the 0.35 µm, 0.5 µm, 0.75 µm and 1.0 µm MP 
particles. For larger MP particles, the concentration is still enhanced in the corresponding diameter 
range, but cannot be clearly distinguished from background measurements without MP particles. The 
size distributions in Figure 4 indicate that the bubble bursting process also produces particles in size 
ranges not corresponding with the added MP particle diameters. While larger particle diameters are 
expected due to MP particle agglomerates, particles in the smaller diameter ranges can be attributed 
to minuscule impurities of the water and the MP suspensions. Depending on the experiment, an 
increased background particle concentration was measured in the diameter range from 0.25 µm to 0.5 
µm. In order to take into account this particle background, all experiments were run with two glass 
flasks in parallel with MP particles of two different diameters, and the particle concentration measured 
in the diameter range of interest in the flask without MP particles of this diameter was considered as 
a background concentration from the particle concentration.  

The left part of Table 3 shows observed airborne particle concentrations of experiments with six 
different particle diameters and two different VFRs. As expected, the observed particle concentrations 
are higher in the experiments with higher VFR, and thus, higher burst rates and droplet production 
rates. The observed particle concentrations of 1.5 µm and 2 µm particles are in the range of 
background concentrations and should be treated with caution. Low concentrations of airborne MP 
particles of 1.5 µm and 2 µm diameter are expected due to the low concentration of these MP particles 
in the water volume (cf. Table 1). For experiments with MP particle diameters of 1 µm and less, the 
number concentration in water is close to 1011 l-1, and changes in airborne MP particle number 
concentration indicate size-dependent effects in the water-air transfer.  

 

3.3 Size-dependent MP particle transfer rates 

Size-dependent water-air transfer factors of MP particles, fw-a, are shown in Figure 5a and in Table 3. 
Transfer factors fw-a were calculated using Eq. 4, with the observed airborne MP concentrations given 
in Table 3, the water volume Vw = 1 l, the number of MP particles in the water volume Nw given in Table 
1, and the sampling flow rate of the OPC, Qa = 20 ml s-1. The droplet volume generated per second, Qd, 
can be estimated from the observed droplet size distributions (Fig. S3), or from the droplet size 
distribution calculated based on the observed bubble size distributions using Eqs. S4 and S5. The total 
droplet volume generated per second is given in Table 2. However, most large droplets are expected 



214 
 

to return to the water volume by gravitational settling before fully evaporating. Vertical air motion in 
the headspace of the glass flask is expected to be negligible, and the droplet settling time can be 
estimated by dividing the headspace height of 10 cm by the size-dependent gravitational settling 
velocity calculated acc. Eq. S6. For droplets larger than approximately 7 µm, the droplet settling time 
becomes smaller than the average residence time in the headspace, i.e. the headspace volume                
Va = 1.45 l divided by the volume flow rate of the OPC, Qa = 20 ml s-1. Therefore, the total volume of 
droplets smaller than 7 µm was estimated by extrapolating the calculated droplet size distributions 
using a Weibull fit (Figure 5b), yielding Qd,low = 1.0 x 10-5 mm3 s-1 and Qd,high = 2.3 x 10-4 mm3 s-1 for the 
two different VFRs (indicated by the vertical broken line at 7 µm in Fig. 5b). 

For each individual particle diameter, the experiments with the low VFR = 182 mm³ s-1 (red squares in 
Fig. 5a) yield larger transfer factor than with the high VFR = 353 mm³ s-1 (blue diamonds in Fig. 5a). This 
may be explained by a larger number of droplets at higher VFR that may collide with each other, leading 
to a shift of the droplet size distribution to larger sizes, and thus, to a larger fraction of large droplets 
that cannot efficiently transfer particles from water to air. Interestingly, for particle diameters up to 
1.0 µm, transfer factors larger than 1 were observed. This means that the MP particle concentration 
in the droplet was enhanced compared to the bulk water concentration. These findings are consistent 
with earlier studies by Blanchard and Syzdek (1970) and Bezdek and Carlucci (1972), who found 
enhanced bacterial concentrations in jet drops due to enrichment of suspended bacteria at the water-
gas interface of rising bubbles. Similarly, enrichment of suspended MP particles at the interface of 
rising bubbles was expected in the present experiment. It must be noted that the observed enrichment 
is likely an underestimation due to additional loss processes of airborne droplets and MP particles. For 
example, a fraction of 4.3 % to 5.1 % of the jet drops ejected by bubble bursting reached a height of 
10 cm or more in the experiments at VFR = 182 mm³ s-1 to VFR = 353 mm³ s-1, and thus, were lost to 
the glass flask wall. Clearly, the transfer factors shown in Figure 5a increase with increasing particle 
diameter from 0.35 µm to 1 µm but then decrease for larger particle diameters. This observation was 
made for both VFRs, and it suggests a size-dependent transfer efficiency of MP particles by bubble 
bursting. Under the experimental conditions of this study, MP particles with a diameter of 1.0 µm were 
transferred most efficiently from water to air by bubble bursting. The presented findings indicate that 
particle enrichment at the interface of the rising bubble, bubble size distributions and the resulting 
droplet size distributions, as well as droplet and particle loss processes in the glass flask contribute to 
changes of the observed airborne MP particle concentrations. All these factors are expected to be 
dependent on particle size to varying degrees, and it is not possible to fully disentangle these size-
dependencies within this study. It must be noted that the transfer efficiency in natural waters, as 
mentioned before, is certainly affected by additional factors such as water salinity or surface tension, 
and the presented results should not be applied directly to natural systems. Nevertheless, we conclude 
that particle size must be taken into account in future parameterizations of the water-air transfer of 
MP particles. 

Recently, Masry et al. (2021) demonstrated in their lab experiments that bubble bursting can transfer 
MP particles from water to air. Their experimental setup was similar to ours in principle, however, with 
larger water and air volumes, uncharacterized bubble and droplet size spectra but probably a much 
larger droplet volume compared to this study. In their study, they clearly demonstrate the water-air 
transfer of 0.35 µm polystyrene particles but do not distinguish 0.6 and 1.0 µm particles from 
background concentrations. Given the fact that the water-air transfer factor was highest for 1.0 µm 
polystyrene particles in the present study, it can be speculated that the water concentration of the 
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larger particles was too low, similar to the experiments using 1.5 and 2.0 µm particles in this study. 
Also, it must be noted that the observed decrease in transfer factors with increasing volume flow rates 
for droplet generation suggests less effective water-air transfer of particles in their experiments in 
general. 

 

4. Environmental implications 

Even though the presented size-dependent water-air transfer factors of MP particles are associated 
with large uncertainties, this study corroborates the hypothesis that oceans (and other water bodies) 
can act as sources of airborne MP particles. Recently, Lehmann et al. (2021) investigated the ejection 
of marine MP particles by impacting rain droplets, and estimated an upper boundary on the order of 
1014 MP particles ejected per year globally. Due to the large uncertainties associated with MP particle 
concentrations in marine waters, we do not attempt to extrapolate our findings to the global scale but 
rather compare the relative efficiency of the water-air-transfer processes due to impacting rain 
droplets and due to bubble bursting. To do this, we follow the assumptions made in Lehmann et al. 
(2021) and only consider jet droplets with diameters less than 200 µm which are likely to be picked up 
by wind under the typical conditions at the ocean surface. The ocean surface water concentration of 
MP particles assumed in this calculation is 2.9 MP particles per liter according to Choy et al. (2019). It 
must be noted that MP concentrations in the oceans are expected to greatly vary in time and space, 
and MP particles with diameters < 2 µm used in this study are certainly underrepresented in 
measurements of sea surface MP concentrations due to limitations in sampling and analytical 
techniques. Since most film droplets are smaller than 1 µm in radius (e.g. de Leeuw et al. 2011), it can 
be expected that supermicron MP particles are transferred from water to air mostly by jet droplets. In 
order to estimate ambient droplet volume fluxes of ocean sea spray, we use Eqs. S7 – S10 to calculate 
a jet droplet size distribution at formation according to Andreas (1989) and Monahan et al. (1986). 
With an average wind speed of 8 m s-1, we calculate a total volume flux of droplets smaller than 200 
µm diameter of 1.5 x 10-8 l m-2 s-1. With the total surface area of the global oceans of approximately 
3.61 x 1014 m2, the total annual droplet volume flux is 1.7 x 1014 l. 

Assuming the particle concentration in jet droplets is the same as in the bulk water at the ocean 
surface, this results in an estimated 5 x 1014 particles per year globally that are ejected in droplets small 
enough to potentially enter atmospheric uptake by wind. Taking into account the enrichment of MP 
particles in jet droplets, with an MP concentration in jet droplets enhanced by a factor ranging from 3 
(as observed in this study) to 200 (as observed e.g. by Sakai et al., 1988), the global emission estimate 
of MP particles from oceans by bubble bursting ranges from 1015 to 1017 particles per year. This is 10 
to 1000 times larger than the estimated 1014 MP particles per year by impacting raindrops. There are 
various uncertainties affecting these estimates including (1) uncertainties of the size distribution of the 
jet droplets, (2) the rate of bursting bubbles on global oceans, and (3) MP concentrations in the ocean 
surface water. Nevertheless, this estimate indicates that bubble bursting is an effective water-air 
transfer process for MP particles in the environment. 
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5. Conclusions 

The results of this study demonstrate that submicron MP particles are readily transferred from water 
to air by bubble bursting. This supports the hypothesis that oceans (and other water bodies) can act 
as sources of atmospheric MP particles. Compared with the ejection of MP particles by impacting rain 
droplets, bubble bursting is estimated to be more efficient by a factor of 10 to 1000. The 
experimentally determined water-air transfer factors are dependent on particle size and the droplet 
volume flow rate, with a maximum for 1 µm particles at low volume flow rate. For particle diameters 
up to 1.0 µm, MP particle concentrations are found to be larger in the droplet than in the bulk water. 
The enhanced concentration of MP particles in droplets compared to the bulk water concentration can 
be explained by enrichment of MP particles at the water-gas interface of rising bubbles, as previously 
discussed by Quinn et al. (1975) and Sakai et al. (1988). Hence, bubble bursting may not only be a 
highly efficient transfer mechanism for MP particles from water to air but also, rising gas bubbles may 
be an important vertical transport process of MP particles in the water column, potentially contributing 
to the enrichment of MP particles in the sea surface microlayer. While the water-air transfer of MP 
particles with diameters larger than 1.0 µm could not be quantified, it should be noted that this is very 
likely due to experimental limitations such as low particle concentrations, relatively high background 
concentrations, a low sampling flow rate, and particle losses in the experimental setup. Therefore, the 
presented experiments do not allow conclusions regarding the water-air transfer of MP particles larger 
than 1.0 µm. In future work, it is also important to investigate the effects of surfactants and water 
salinity on the bubble bursting process and the water-air transfer of MP particles, which is expected to 
play a role in natural waters (Masry et al. 2021). 
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Figure 1: Schematic representation of the experimental setup including two glass flasks with filtered 
gas supply and a stainless-steel frit to produce bubbles (white) in water with MP particles (black), and 
droplets (blue) in the headspace. Sample air is transferred through a diffusion dryer to an optical 
particle counter (OPC). The valve is switching between the two flasks every 15 minutes. 

 

 

 

 

Figure 2: Particle size distribution for experiments with (a) 0.35 µm diameter MP particles and (b) 1.0 
µm diameter MP particles, VFR = 353 mm3 s-1. 
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Figure 3: Temporal evolution of the observed airborne concentration (black line) corresponding to (a) 
0.35 µm and (b) 1.0 µm diameter MP particles, and the expected airborne MP concentration acc. Eqs. 
1 and 2 (green line). Vertical dashed red lines indicate valve switching between two glass flasks. The 
two experiments were carried out in parallel.  



223 
 

 

Figure 4: Particle size distributions with MP particle diameters from 0.35 µm to 1.0 µm (black and 
grey) and pure water particle concentration (blue), VFR = 353 mm3 s-1. 

 

 

 

 

 

Figure 5: a) Water-air transfer factors fw-a as a function of particle diameter in the range from 0.35 
µm to 2.0 µm, and b) droplet volume Qd generated per second by all droplets with the given 
maximum droplet diameter. Results for low volume flow rates are shown in red, for high volume flow 
rates in blue.  
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Table 1: Particle size, concentration of particles in suspension csusp, supplied volume of suspension 
Vsusp and number of particles in water Nw. 

Particle diameter 
Dp [µm] 

Particle concentration 
in suspension csusp [ml-1] 

Suspension 
volume Vsusp [ml] 

Number of particles in 
water Nw  

0.35 ± 0.035 1.06 x 1012 0.1 1.06 x 1011 

0.5 ± 0.05 3.64 x 1011 0.3 1.09 x 1011 

  0.9 3.28 x 1011 

0.75 ± 0.075 1.08 x 1011 1 1.08 x 1011 

1.0 ± 0.1 4.55 x 1010 2 9.10 x 1010 

1.5 ± 0.15 1.35 x 1010 2 2.70 x 1010 

2.0 ± 0.2 5.68 x 109 5 2.84 x 1010 

 

 

Table 2: Overview of experimentally determined bubble burst rates, minimum, mean and maximum 
bubble diameters, volume of bursting bubbles and droplet production rates, mean and maximum 
droplet diameters, average number of droplets per bursting bubble, and volume of droplets 
generated per second for low and high VFR. 

 low high 

VFR [mm³ s-1] 182 353 

Burst rate [s-1] 688 1176 

Dbub, min [mm] 0.48 0.32 

Dbub, mean [mm] 0.81 0.76 

Dbub, max [mm] 2.40 2.56 

Burst volume rate 
[mm³ s-1] 

265 362 

Droplet rate [s-1] 2092 2391 

Ddrop, mean [mm] 0.42 0.48 

Ddrop, max [mm] 2.46 4.15 

Droplet volume 
rate Qd [mm³ s-1] 

159 340 

Droplets per 
bubble [-] 

3.0 2.0 
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Table 3: Observed MP particle concentrations in air for six different particle diameters Dp at VFR = 
182 mm³ s-1 and VFR = 353 mm³ s-1. Results for 0.5 µm particle diameter are for experiment with 
total number of 1.09 x 1011 particles in water volume.  

 

Particle 
diameter [µm] 

MP concentration [l-1] Transfer factor fw-a 
VFR 182 mm3 s-1 VFR 353 mm3 s-1 VFR 182 mm3 s-1 VFR 353 mm3 s-1 

0.35 88.6 165.2 1.67 0.14 
0.5 143.3 248.8 2.63 0.20 
0.75 126.0 252.4 2.33 0.20 
1 147.2 348.3 3.24 0.33 
1.5 9.2 24.6 0.68 0.08 
2 4.2 14.3 0.29 0.04 
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ABSTRACT
One of themain uses for OpenCL is (scientific) compute applications
where graphical rendering is done externally, after the simulation
has finished. However separating simulation and rendering has
many disadvantages, especially the extreme slowdown caused by
copying simulation data from device to host, and needing to store
raw data on the hard drive, taking up hundreds of gigabyte, just
to visualize preliminary results. A much faster approach is to im-
plement both simulation and rendering in OpenCL. The rendering
kernels have direct read-only access to the raw simulation data that
resides in ultra-fast GPU memory. This eliminates all PCIe data
transfer but camera parameters and finished frames, allowing for
interactive visualization of simulation results in real time while the
simulation is running. This is an invaluable tool for rapid proto-
typing. Although OpenCL does not have existing functionality for
graphical rendering, being a general compute language, it allows
for implementing an entire graphics engine, such that no data has
to be moved to the CPU during rendering. On top, specific low-
level optimizations make this OpenCL graphics engine outperform
any existing rendering solution for this scenario, enabling drawing
billions of lines per second and fluid raytracing in real time on even
non-RTX GPUs. This combination of simulation and rendering in
OpenCL is demonstrated with the software FluidX3D [3] - a lattice
Boltzmann method (LBM) fluid dynamics solver.

The first part will briefly introduce the numerical method for
simulating fluid flow in a physically accurate manner. After intro-
ducing the LBM, the optimizations to make it run at peak efficiency
are discussed: Being a memory-bound algorithm, coalesced mem-
ory access is key. This is achieved through array-of-structures data
layout as well as the one-step-pull scheme, a certain variant of
the LBM streaming step. One-step-pull leverages the fact that the
misaligned read penalty is much smaller than the misaligned write
penalty on almost all GPUs. Roofline analysis shows that with
these optimizations, the LBM runs at 100% efficiency on the fastest
data-center and gaming GPUs [5]. To simulate free surface flows,
the LBM is extended with the Volume-of-Fluid (VoF) model. An
efficient algorithm has been designed to vastly accelerate the chal-
lenging surface tension computation [4]. This extremely efficient
VoF-LBM GPU implementation allows covering new grounds in sci-
ence: FluidX3D has been used to simulate more than 1600 raindrop
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impacts to statistically evaluate how microplastics transition from
the ocean surface into the atmosphere when the spray droplets are
generated during drop impact [6]. At the same power consumption,
with existing CPU-parallelized codes, compute time would have
been several years, whilst with FluidX3D it was about a week.

The second part will focus on real time rendering with OpenCL,
especially raytracing. Rasterization on the GPU is parallelized not
over pixels but lines/triangles instead, making runtime mostly inde-
pendent of screen resolution and lightning fast. Each line/triangle
is transformed with the camera parameters from 3D to 2D screen
coordinates and then rasterized onto the frame (integer array) with
Bresenham algorithm [2] and z-buffer. The raytracing graphics are
based on a combination of fast ray-grid traversal and marching-
cubes, leveraging that the computational grid from the LBM already
is an ideal acceleration structure for raytracing. The idea of ray-
tracing is simple: Through each pixel on the screen, shoot a reverse
light ray out of the camera and see where it intersects with a sur-
face in the scene. Then (recursively) calculate reflected/refracted
rays and mix the colors. If a ray doesn’t intersect with anything,
its color is determined by the skybox image via UV mapping and
bilinear pixel interpolation. With mesh surfaces consisting of many
triangles, computation time quickly becomes a problem, as for each
ray all triangles have to be tested for intersection. To overcome
this, an acceleration structure is required. While computer games
often use a bounding volume hierarchy, the LBM already provides
an ideal alternative acceleration structure: the simulation grid. The
corresponding algorithm is called ray-grid traversal: When a ray
shoots through the 3D grid, intersections with the surface only
have to be checked for at each traversed grid cell rather than the
entire grid. In each traversed grid cell, the 0-5 surface triangles
are generated on-the-fly with the marching-cubes algorithm and
ray-triangle intersections are checked with the Möller-Trumbore
algorithm. If an intersection has been found, only afterwards the
normals are calculated on the 8 grid points spanning the cell, and
are trilinearly interpolated to the intersection coordinates. The so
interpolated surface normal makes the raytraced surface appear
perfectly smooth. On the GPU, the ray(s) for each pixel on screen
are computed in parallel, vastly speeding up rendering. It is of key
importance how to align the OpenCL workgroups on the 2D array
of screen pixels: best performance is achieved for 8x8 pixel tiles; this
is about 50% faster than 64x1 tiles, because with small, square-ish
tiles, all rays of the workgroup are more likely to traverse the same
grid cells, greatly improving memory broadcasting. In ray-grid tra-
versal, 8 isovalues spanning a cell have to be loaded from GPU
memory for each traversed cell. Once the triangle intersection has
been found, the gradient on each of the 8 cell isovalues is calculated
with central differences. Instead of loading an additional 6 isovalues
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for each of the 8 grid points, their isovalues are reused such that
only 24 additional isovalues are loaded. For marching-cubes, the
algorithm by Paul Bourke [1] is implemented in OpenCL. With
16-/8-bit integers, bit-packing and symmetry, the tables are reduced
to 1/8 of their original size and stored in constant memory space.
For computing the cube index, branching is eliminated by bit oper-
ations. The Möller-Trumbore algorithm [7] is implemented in an
entirely branchless manner.

This raytracing implementation is fast enough to run in real time
for even the largest lattice dimensions that fit into the memory of
a GPU. Finally, the combined VoF-LBM simulation and raytracing
implementation is demonstrated on the most realistic simulation
of an impacting raindrop ever done [8].

CCS CONCEPTS
• Computing methodologies → Parallel programming lan-
guages.

KEYWORDS
lattice Boltzmann method, Volume-of-Fluid, raytracing, rasteriza-
tion, graphics, OpenCL, GPU, CFD, fluid, marching-cubes, ray-grid
traversal, raindrop
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