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Abstract
We consider nonlinear model predictive control (MPC) with multiple competing 
cost functions. In each step of the scheme, a multiobjective optimal control prob-
lem with a nonlinear system and terminal conditions is solved. We propose an algo-
rithm and give performance guarantees for the resulting MPC closed loop system. 
Thereby, we significantly simplify the assumptions made in the literature so far by 
assuming strict dissipativity and the existence of a compatible terminal cost for one 
of the competing objective functions only. We give conditions which ensure asymp-
totic stability of the closed loop and, what is more, obtain performance estimates for 
all cost criteria. Numerical simulations on various instances illustrate our findings. 
The proposed algorithm requires the selection of an efficient solution in each itera-
tion, thus we examine several selection rules and their impact on the results. and we 
also examine numerically how different selection rules impact the results
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1 Introduction

Model predictive control (MPC) is a control method in which in each sampling 
instant an optimal control problem is solved in order to determine the control 
input for the next sampling interval. Besides important system theoretic proper-
ties such as stability and constraint satisfaction, the optimization-based nature of 
the method also allows to conclude performance estimates of the closed loop, 
measured in terms of the optimization objective used for computing the con-
trol. In this paper we consider general (often also called economic) MPC formu-
lations, for which such performance estimates have been obtained in [2–4, 14, 
15, 17] (see also Chapter 7 in [16] for a concise presentation). These references 
cover MPC schemes both with and without terminal constraints and costs. In both 
cases, strict dissipativity of the underlying optimal control problem is a crucial 
assumption.

In many practical applications, as in [19, 20, 25], it is desirable to consider not 
only a single but several cost criteria. For instance, in chemical process control, 
it may be desirable to stabilize a chemical process at a certain set point but at 
the same time approach the set point in such a way that the yield of the reaction 
is maximized (this is also the situation that we will illustrate in the numerical 
example in this paper). As these criteria might be conflicting, the resulting opti-
mization problem is a multicriteria or multiobjective optimization problem [9]. In 
an MPC context, multiobjective optimization has been investigated, e.g., in [13, 
18, 26–28] in different contexts. Particularly, [18, 26] present a multiobjective 
MPC algorithm for which some of the performance estimates known from clas-
sical MPC can be carried over, again using strict dissipativity as a main theoreti-
cal ingredient in the proofs. See also [5] for an application of this algorithm to a 
PDE-governed control problem.

Whenever multiple objective functions, i.e., cost criteria, are considered, one 
has to agree on an optimality notion used for such problems. A widely used con-
cept is that of efficiency [9]: a feasible solution is called efficient in case none 
of the objective functions can be improved by choosing another feasible solution 
without a worsening of the values of at least one of the remaining functions. The 
vector of the corresponding values of all the objective functions under considera-
tion is called a nondominated point. These nondominated points form the non-
dominated set, which corresponds to the optimal value in case of just one objec-
tive function. In general, as the objective functions are competing, there is not a 
single efficient point which optimizes all objectives at the same time. Thus, the 
set of optimal solutions, called efficient set, is in general not unique. In single-
objective MPC in each sampling instant typically an optimal solution is chosen to 
determine the control for the next step, and at least the optimal value of this opti-
mal control problem is unique. In case of several competing criteria, a typically 
infinite number of efficient solutions as potential choices exist with non-unique 
values. Still, a certain efficient solution has to be chosen for the next step. This 
additional degree of freedom makes the extension of MPC to the multiobjective 
setting more challenging and requires new iterative approaches which guide this 
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choice for guaranteeing convergence results and for allowing performance esti-
mates. Within this work we will reach this aim by introducing upper bounds on 
the possible choices steered by the selected efficient solution in the first step. Note 
that we do not rely on scalarization approaches like a weighted sum of the objec-
tive functions as done in [23], as this would require pre-knowledge for instance 
about the preferred weights, which is in general not available. For a discussion on 
the advantage of direct methods compared to scalarization based approaches we 
refer to [12].

The present paper builds on [18] and is also closely related to [28]. More pre-
cisely, we significantly simplify the assumptions made in [18], by requiring strict 
dissipativity and the existence of a terminal cost satisfying the usual conditions 
from the MPC literature only for one of the optimization objectives (by default, 
always for the first), rather than for all of them. Despite the relaxed conditions, we 
obtain essentially the same results as in [18] concerning the qualitative behavior 
and the averaged and non-averaged performance of the closed loop. For some of 
the results we can even simplify the proposed algorithm. Moreover, we develop 
conditions under which asymptotic stability of the closed loop (as opposed to 
mere convergence to a steady state) can be ensured. The close relation to [28] 
stems from the fact that, as in this reference, the first optimization objective plays 
a particular role and in particular determines the steady state to which the closed-
loop solutions converge. However, the main difference of this paper to [28] is that 
we obtain performance estimates for all objectives.

As in [18], our theoretical performance estimates depend on the choice of the 
efficient solution in the first step of the MPC iteration, i.e., at initial time. This 
implies that these estimates do not consider the choices of the efficient solutions in 
the subsequent iterations. So far, the effects of these choices on the performance of 
the MPC closed-loop solution were not investigated. In this paper, in addition to the 
theoretical results, we use numerical examples to shed some light on these effects.

The paper is organized as follows: In Sect.  2 we introduce the problems we 
are considering along with basic definitions and properties from multiobjective 
optimization as well as stability results for the single-objective case. In Sect.  3 
we introduce a new version of a multiobjective MPC algorithm for multiobjec-
tive optimal control problems with terminal constraints. We move on, in Sect. 4 
and 5, showing performance results for all cost criteria and a stability theorem. In 
Sect. 6 we illustrate our theoretical findings by numerical examples. Further, in 
Sect. 7 we investigate the influence of the subsequent iterations of the algorithm 
by means of numerical examples. Sect. 8 concludes this paper.

2  Problem formulation and preliminaries

In the following we introduce the multiobjective optimal control problem we are 
considering. We give the basic definitions and properties from multiobjective 
optimization and we recall stability results for the single-objective case.
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2.1  Multiobjective optimal control problems

We consider discrete time nonlinear systems of the form

with f ∶ ℝ
n ×ℝ

m
→ ℝ

n continuous. We denote the solution of system (2.1) for 
a control sequence u = (u(0),… , u(N − 1)) ∈ (ℝm)N and initial value x0 ∈ ℝ

n 
by x

u
(⋅, x0) , or short by x(⋅) if there is no ambiguity about the respective control 

sequence and the initial value.
We impose nonempty state and input constraint sets 𝕏 ⊆ ℝ

n and 
𝕌 ⊆ ℝ

m , respectively, �
N as the set for control sequences of length 

N, as well as a nonempty terminal constraint set 𝕏0 ⊆ ℝ
n , and the 

set of admissible control sequences for x0 ∈ � up to time N ∈ ℕ by 
�
N(x0) ∶= {u ∈ �

N | x
u
(k, x0) ∈ � ∀ k = 1,… ,N − 1 and x

u
(N, x0) ∈ �0} . The 

terminal constraint x
u
(N, x0) ∈ �0 can generally not be satisfied for all initial val-

ues x0 ∈ � , such that we define the feasible set

noting that �N(x0) ≠ � if and only if x0 ∈ �N . Assumption 3.1 (iv), below, will guar-
antee that �N ≠ ∅ for all N ≥ 1 . Further, a pair (xe, ue) ∈ � × � is called equilibrium 
if xe = f (xe, ue) holds.

For given continuous stage cost �1 ∶ 𝕏 × 𝕌 → ℝ and continuous terminal cost 
F1 ∶ 𝕏0 → ℝ≥0 , we define the cost functional JN

1
∶ 𝕏 × 𝕌

N
→ ℝ by

and for i ∈ {2,… , s}, s ≥ 2 we define continuous stage costs �i ∶ 𝕏 × 𝕌 → ℝ and 
the corresponding cost functionals JN

i
∶ 𝕏 × 𝕌

N
→ ℝ by

for horizon N ∈ ℕ with N ≥ 2 . Here, F1 is defined on the terminal constraint set 
�0 ⊆ � and we need to ensure that x

u
(N, x0) ∈ �0 , i.e., JN

1
(x0, u) is well defined for 

x0 ∈ �N and u ∈ �
N(x0) and we will only use it for such arguments in the remainder 

of this paper.
We remark that we do not need any terminal costs for i ∈ {2,… , s} , which sig-

nificantly simplifies the design compared to [18, 26]. We aim on minimizing all 
cost functionals JN

1
,… , JN

s
 at the same time for given x0 w.r.t. u and along a solu-

tion of (2.1). Hence, we obtain a multiobjective optimal control problem with 
terminal constraints and costs

(2.1)x(k + 1) = f (x(k), u(k)), x(0) = x0

(2.2)
�N∶={x0 ∈ � ∣ ∃ u ∈ �

N ∶ x
u
(k, x0) ∈ �,

∀ k = 1,… ,N − 1, and x
u
(N, x0) ∈ �0},

(2.3)JN
1
(x0, u) ∶=

N−1∑
k=0

�1(xu(k, x0), u(k)) + F1(xu(N, x0)),

(2.4)JN
i
(x0, u) ∶=

N−1∑
k=0

�i(xu(k, x0), u(k))
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Throughout this paper, we will only consider multiobjective optimal control prob-
lems with terminal constraints of the form (MO OCP) with s ≥ 2 and N ≥ 2.

2.2  Basics of multiobjective optimization

In the presence of multiple competing objectives we need an appropriate notion of opti-
mality. In general, there will not be one optimal u such that all cost functionals are 
minimized simultaneously. The formalization we will use in this paper is based on the 
componentwise ordering in the image space ℝs and is summarized in the next defini-
tion. For this definition and an introduction to multiobjective optimization we refer, for 
instance, to [9] or the recent survey [12].

Definition 2.1 Let N be the horizon length. A sequence u⋆ ∈ �
N(x0) is called effi-

cient for (MO OCP) with x0 ∈ � if there is no u ∈ �
N(x0) such that

The objective value JN(x0, u⋆) = (JN
1
(x0, u

⋆),… , JN
s
(x0, u

⋆)) is called nondominated.

Usually, there is not only one (unique) efficient solution of (MO OCP) but there 
exists a set of such solutions and such nondominated values. Therefore, the set of all 
efficient solutions of length N for initial value x0 ∈ �N will be denoted by �N

P
(x0) . We 

define the set of attainable values by

and the nondominated set by

This set is often referred as the Pareto front. In this paper, the min-operator is 
defined as

and, accordingly

(MO OCP)

min
u∈�N (x0)

JN(x0, u) ∶=
(
JN
1
(x0, u),… , JN

s
(x0, u)

)

x(k + 1) = f (x(k), u(k)), k = 0,… ,N − 1

x(0) = x0, x(k) ∈ �

x
u
(N, x0) ∈ �0.

∀ i ∈ {1,… , s} ∶ JN
i
(x0, u) ≤ JN

i
(x0, u

⋆) and

∃ i ∈ {1,… , s} ∶ JN
i
(x0, u) < JN

i
(x0, u

⋆).

J
N(x0)∶={J

N(x0, u) = (JN
1
(x0, u),… , JN

s
(x0, u)) ∣ u ∈ �

N(x0)},

J
N
P
(x0)∶={J

N(x0, u) ∣ u ∈ �
N
P
(x0)}.

min
u∈�N (x0)

JN(x0, u) = J
N
P
(x0)

argmin
u∈�N (x0)

JN(x0, u) = �
N
P
(x0).
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We now provide basic definitions and results from the theory of multiobjective opti-
mization, adapted from [9, 24] to our setting.

Definition 2.2 (External stability) The set J
N
P
(x0) is called externally sta-

ble for JN(x0) if for all y ∈ J
N(x0) there is yP ∈ J

N
P
(x0) such that y ≥ yP holds 

componentwise.

Definition 2.3 (Cone-Compactness) The set JN(x0) is called ℝs
≥0

-compact if for all 
y ∈ J

N(x0) the set (y −ℝ
s
≥0
) ∩ J

N(x0) is compact.

Here, we write z −ℝ
s
≥0

 for the difference of the sets {z} and 
ℝ

s
≥0

∶= {y ∈ ℝ
s ∣ yi ≥ 0 ∀i = 1,… , s} in the Minkowski sense. The next theorem 

states a condition for external stability of the set JN
P
(x0) and a proof can be found in [9, 

24].

Theorem  2.4 Given a horizon N ∈ ℕ and an initial value x0 ∈ �N . If JN(x0) ≠ � 
and JN(x0) is ℝs

≥0
-compact, then the set JN

P
(x0) is externally stable for JN(x0).

Since Theorem 2.4 is in practice difficult to verify, the next lemma provides easily 
checkable conditions for external stability which we will need for feasibility below.

Lemma 2.5 Let � be compact, � and �0 be closed and let x ∈ �N and N ∈ ℕ . Then 
the set JN

P
(x) is externally stable for JN(x).

Proof Analogous to the proof of Lemma 4.8 in [26] or Lemma 2.5 in [18].   ◻

In the single-objective case an immediate consequence of the dynamic program-
ming principle (DPP) is that tails of optimal control sequences are again optimal con-
trol sequences. The same result holds for efficient solutions and can be found in [26, 
Lemma 4.1].

Lemma 2.6 (Tails of efficient solutions are efficient solutions) Let K < N . If 
u
⋆,N ∈ �

N
P
(x0) , then u⋆,K ∈ �

N−K
P

(x
u
⋆,N (K, x0)) with u⋆,K ∶= u

⋆,N(⋅ + K) for all 
K < N , where u⋆,N(⋅ + K) ∶= (u⋆,N(K), u⋆,N(K + 1),… , u⋆,N(N − 1)).

2.3  Auxiliary results on stability and dissipativity

We will make use of comparison-functions defined by
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Moreover, with B𝜀(x0) ⊆ ℝ
n we denote the open ball with radius 𝜀 > 0 around x0.

The MPC Algorithms 1 and 2, below, generate a solution trajectory that is 
referred to as the MPC closed loop. For analyzing its stability, we recall the defi-
nition of a uniform time-varying Lyapunov function, which can be found in [16, 
Definition 2.21]. To this end, we consider a general time-varying discrete-time 
dynamical system given by

with g ∶ ℕ0 ×𝕏 → 𝕏 , initial condition x(0) = x0 , and state space 𝕏 ⊆ ℝ
n.

Definition 2.7 (Uniform time-varying Lyapunov function) Consider system (2.5), an 
equilibrium xe ∈ � , i.e., xe = g(k,xe) , k ∈ ℕ , subsets of the state space S(k) ⊆ � , 
k ∈ ℕ0 , and define S = {(k, x) ∣ k ∈ ℕ0, x ∈ S(k)} . A function V ∶ S → ℝ≥0 is 
called uniform time-varying Lyapunov function on S if the following conditions are 
satisfied: 

 (i) There exist functions �1, �2 ∈ K∞ such that 

 holds for all (k, x) ∈ S.
 (ii) There exists a function �V ∈ K such that 

 holds for all k ∈ ℕ0 and x ∈ S(k) with g(k, x) ∈ S(k + 1).

The following theorem shows that the existence of such a Lyapunov function 
ensures asymptotic stability. For a proof we refer to [16, Theorem 2.22] and for 
the definition of the stability conditions used in its formulation to [16, Definitions 
2.14 and 2.16].

Theorem  2.8 Let xe be an equilibrium of system (2.5), i.e., xe = g(k,xe),k ∈ ℕ , 
and assume there exists a uniform time-varying Lyapunov function V on a set 
S ⊂ ℕ0 ×ℝ

n as defined in Definition 2.7. If each S(k) contains a ball B�(x
e) with 

radius 𝜈 > 0 with g(k, x) ∈ S(k + 1) for all x ∈ B�(x
e) , then xe is locally asymptoti-

cally stable with � = �−1
2
◦�1(�) . If the family of sets S(k) is forward invariant (i.e., 

if g(k, x) ∈ S(k + 1) for all (k, x) ∈ S ) then xe is asymptotically stable on S(k). If 
S(k) = ℝ

n holds for all k ∈ ℕ0 then xe is globally asymptotically stable.

K ∶= {� ∶ ℝ≥0 → ℝ≥0 ∣ � is continuous and

strictly increasing with �(0) = 0}

K∞ ∶= {� ∶ ℝ≥0 → ℝ≥0 ∣ � ∈ K, � is unbounded}

L ∶= {� ∶ ℝ≥0 → ℝ≥0 ∣ � is continuous and

strictly decreasing with lim
t→∞

�(t) = 0}

(2.5)x(k + 1) = g(k, x(k))

�1(‖x − xe‖) ≤ V(k, x) ≤ �2(‖x − xe‖)

V(k + 1, g(k, x)) ≤ V(k, x) − �V (‖x − xe‖)
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Recent research has established close connections between strict dissipativity 
and both the stability and near-optimality of closed-loop solutions of model pre-
dictive control schemes. We will also use this notion here. To this end, we intro-
duce strict dissipativity for a single-objective optimal control problem, meaning 
we consider only one cost functional, see, for instance, [16, Sect.8.2].

Definition 2.9 (Strict dissipativity) A single-objective optimal control problem with 
stage cost �i is strictly dissipative at an equilibrium (xe, ue) if there exists a storage 
function �i ∶ 𝕏 → ℝ bounded from below and satisfying �i(xe) = 0 , and a function 
� ∈ K∞ such that for all (x, u) ∈ � × � the inequality

holds.

3  A new multiobjective MPC algorithm

In this section, we introduce a multiobjective model predictive control (MO 
MPC) scheme that relies on solving multiobjective optimal control problems of 
the type (MO OCP). Since in the multiobjective case there are several “optimal” 
(efficient) solutions we have to adapt the “standard” MPC, e.g. see [16]. We build 
on the results in [18, 26] which we recall at the appropriate places for complete-
ness. We introduce a simplified version of the algorithm presented in [18], in 
which we allow for more general problems of the type (MO OCP) than in [18], 
and we get rid of the restrictive assumption of the existence of stabilizing stage 
and terminal costs in all objective functions. Rather, we require strict dissipa-
tivity of the optimal control problem and the existence of a compatible terminal 
cost for only one stage cost. In particular, the existence of terminal costs that are 
jointly compatible with all the stage costs is no longer required. For two objec-
tives, the resulting algorithm bears similarities with the one in [27], where one 
stabilizing and one economic objective were considered. In this sense, we merge 
the ideas presented in [18, 27], but at the same time we also extend them and, 
in addition to stability results, we will also provide performance estimates for 
all cost criteria JN

i
 , i ∈ {1,… , s} , which are not present in [27]. Throughout, we 

make the convention that the optimal control problem is strictly dissipative for 
the first stage cost �1.

Assumption 3.1 We assume that 

(i) there is an equilibrium (xe, ue) ∈ � × � such that f (xe, ue) = xe

(ii) there is a storage function �1 ∶ 𝕏 → ℝ bounded from below with �1(xe) = 0 and 
a function �

�,1 ∈ K∞ such that 

�i(x, u) − �i(x
e, ue) + �i(x) − �i(f (x, u)) ≥ �(‖x − xe‖)
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(iii) �i is continuous for all i = 1,… , s

(iv) xe ∈ �0 and there exists a local feedback � ∶ �0 → � satisfying 

1. f (x, �(x)) ∈ �0 for all x ∈ �0

2. ∀x ∈ �0 : F1(f (x, �(x))) + �1(x, �(x)) ≤ F1(x) + �1(x
e, ue)

(v) the sets JN
P
(x) are externally stable for JN(x) for each x ∈ �N , with �N from (2.2).

We note that item (iv) of this assumption ensures �0 ⊆ �N for all N ≥ 1 and thus 
�N ≠ ∅ . Item (iv b) is usually referred to as compatibility of the terminal cost F1.

Assumption 3.1 states that we only require strict dissipativity for the optimal control 
problem with the first stage cost, while for the remaining s − 1 stage costs we do not 
impose any conditions nor the existence of terminal costs. We remark that stabilizing, 
i.e., positive definite stage costs are a special case of stage costs for which strict dissi-
pativity holds with � ≡ 0 . In the following, under Assumption 3.1, we provide perfor-
mance estimates for all cost criteria JN

i
 and show asymptotic stability of the closed loop.

Algorithm  1, below, gives a variant of Algorithm  2 in [18], in which the con-
straint (3.2) is only imposed for the first cost criterion JN

1
 , instead of for all cost 

criteria JN
i

 , i = 1,… , s , as in [18]. By using the local feedback � as part of the com-
parison control sequence in Step (2), we enforce the trajectory to converge by means 
of the first objective function.

We have visualized the bound in (3.2) in Fig. 1, where the dashed line represents 
the bound resulting from uN

x(k)
 and the red line the set of nondominated points of 

(3.1)
�1(x, u) − �1(x

e, ue) + �1(x) − �1(f (x, u)) ≥ �
�,1(‖x − xe‖

+ ‖u − ue‖) ∀(x, u) ∈ � × �
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(MO OCP) satisfying this bound. We like to stress that we do not constrain the sec-
ond objective (or, for that matter, any other objectives that may appear in the formu-
lation). We remark that for the subsequent theoretical results it is not important 
which nondominated point on the red part of the nondominated set in Fig.  1 we 
choose in step (1), as we provide performance bounds which hold for any feasible 
choice of u⋆

x(k)
 and only depend on the choice of u⋆

x(0)
 in step (0). However, this does 

not mean that the choices for k ≥ 1 do not affect the MPC closed-loop solutions. In 
Sect. 7, we will thus investigate the development of the nondominated sets and the 
effect of different selection rules for the efficient point via numerical simulations. 
Before we do this, we show in the subsequent sections that this MO MPC algorithm 
has the certain desirable properties: feasibility, convergence and performance 
results. We start with feasibility and convergence of the closed-loop trajectory and 
with performance results for the cost criterion J1 . We note that the convergence of 
the closed-loop and performance results were already shown in [18, 26] for the algo-
rithm with stronger constraints.

4  Performance results

Within this section we examine the properties of the closed loop trajectory which 
results from Algorithm 1. We obtain convergence for the trajectory as well as per-
formance estimates for all cost criteria.

4.1  Performance estimate of JN
1

In this subsection we state a performance theorem for the first cost criterion JN
1

 , 
which guarantees a bounded performance of the feedback �N defined in Algo-
rithm 1. To this end, we first show a performance estimate for the so-called rotated 
cost function J̃N

1
 and conclude then the trajectory convergence as well as the main 

performance theorem of this section.
First, we recall the classical definitions of rotated costs.

Definition 4.1 For x ∈ � and u ∈ � we define the rotated stage cost

Fig. 1  Visualization of step (1)

J1

J2 JN
1 x(k),ux(k)

)
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with equilibrium xe and storage cost �1 from Assumption 3.1, and rotated terminal 
cost

The corresponding cost functional is given by

We remark that, under Assumption 3.1, for all x ∈ � , u ∈ � the rotated stage 
cost �̃1 is bounded from below by �

�,1 with �
�,1 from Assumption 3.1(ii) and, thus, 

�̃(x, u) ≥ 0 . We emphasize that for implementing the MPC algorithms from this 
paper the rotated stage cost �̃1 and the storage function �1 do not need to be known, 
as we always optimize the original stage cost �1 , whereas �̃1 is only needed as an 
auxiliary cost for the subsequent analysis.

Next, we use the definitions above to derive some relations between rotated and 
classical cost. It is easy to check that the relation

and the equalities �̃1(x
e, ue) = 0 and F̃1(x

e) = 0 hold. Moreover, the inequality

holds for all x ∈ �N and � from Assumption 3.1 (iv).
Using the definitions and relations above we can state a performance estimate 

for the rotated stage cost �̃1 . We will use this result to conclude the convergence of 
the closed-loop trajectory. We refer again to [26], especially to Section 5.1.2. where 
similar results and proofs are provided.

Lemma 4.2 (Non-averaged rotated performance for �1 ) Let Assumptions 3.1 hold 
and x0 ∈ �N . Then, it holds

with �N the MPC feedback defined in Algorithm 1.

Proof The existence of the efficient solutions in step (0) and (1) is concluded from 
Assumption 3.1 (v) – the external stability of JN

P
(x) . Feasibility of ux(k+1,x0) in (2) 

follows from Assumption 3.1 (iv). Recursive feasibility of � , see [16, Theorem 3.5] 
for a definition, is an immediate consequence.

Further, for each K ∈ ℕ it holds, with u
⋆
x(k)

 denoting the control from 
Algorithm 1,

(4.1)�̃1(x, u)∶=�1(x, u) − �1(x
e, ue) + �1(x) − �1(f (x, u))

(4.2)F̃1(x) ∶= F1(x) + �1(x).

(4.3)J̃N
1
(x0, u) ∶=

N−1∑
k=0

�̃1(xu(k, x0), u(k)) + F̃1(xu(N, x0)).

(4.4)J̃N
1
(x0, u) = JN

1
(x0, u) − N�1(x

e, ue) + �1(x0), ∀u ∈ �
N(x0),

(4.5)F̃1(f (x, �(x)) ≤ F̃1(x) − �̃1(x, �(x))

�J∞
1
(x0,𝜇

N) ∶= lim
K→∞

K−1∑
k=0

��1(x𝜇(k, x0),𝜇
N(k, x𝜇(k, x0))) ≤ �JN

1
(x0, u

⋆
x0
)
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in which the first equality follows from the definition of �̃1 and the second equality 
holds by means of the terminal condition. Note that we use the notation 
u
⋆
x(k)

(⋅ + 1) ∶= (u⋆(1), u⋆(2),… , u⋆(N − 1)) Further, because of step (1) in Algo-
rithm 1 and dissipativity we can estimate

Finally, letting K tend to infinity and using that �̃1(x, u) ≥ 0 , for all x ∈ � and u ∈ � 
yields the statement.   ◻

Corollary 4.3 (Trajectory convergence) Consider (MO OCP). Let Assumption 3.1 
hold. Then the closed-loop trajectory x(⋅) = x�(⋅, x0) driven by the feedback �N from 
Algorithm 1 converges to the equilibrium xe and �̃1(x(k),�

N(k, x(k))) converges to 0 
as k → ∞.

Proof We follow the proof of Corollary 4.9 in [26]:
From Theorem  4.2 it follows that the sum 

∑∞

k=0
�̃1(x(k),�

N(k, x(k))) converges 
and, thus, the sequence satisfies �̃1(x(k),�

N(k, x(k))) → 0 as k → ∞ . Hence, since 
the optimal control problem with stage cost �̃1 is strictly dissipative and �

�,1 ∈ K , 
we get

which is equivalent to limk→∞ ‖x(k) − xe‖ = 0 .   ◻

K−1∑
k=0

�𝓁1(x𝜇(k, x0),𝜇
N(k, x𝜇(k, x0)))

=

K−1∑
k=0

𝓁1(x𝜇(k, x0),𝜇
N(k, x𝜇(k, x0))) − 𝓁1(x

e, ue) + 𝜆1(x𝜇(k, x0)) − 𝜆1(x𝜇(k + 1, x0))

=

K−1∑
k=0

(
JN
1
(x

u
⋆
x(k)
(k, x0), u

⋆
x(k)

) − JN−1
1

(x
u
⋆
x(k)
(k + 1, x0), u

⋆
x(k)

(⋅ + 1))
)

− K𝓁1(x
e, ue) + 𝜆1(x0) − 𝜆1(x𝜇(K, x0)),

K−1∑
k=0

(
JN
1
(x

u
⋆
x(k)
(k, x0), u

⋆
x(k)

) − JN−1
1

(x
u
⋆
x(k)
(k + 1, x0), u

⋆
x(k)

(⋅ + 1))
)

− K𝓁1(x
e, ue) + 𝜆1(x0) − 𝜆1(x𝜇(K, x0))

≤

K−1∑
k=0

(
JN
1
(x

u
⋆
x(k)
(k, x0), u

⋆
x(k)

) − JN
1
(x

ux(k)
(k + 1, x0), ux(k+1,x0)) + 𝓁1(x

e, ue)
)

− K𝓁1(x
e, ue) + 𝜆1(x0) − 𝜆1(x𝜇(K, x0))

≤ JN
1
(x0, u

⋆
x0
) − JN

1
(x

ux(K)
(K, x0), ux(K,x0)) + 𝜆1(x0) − 𝜆1(x(K, x0))

= �JN
1
(x0, u

⋆
x0
) − �JN

1
(x

ux(K)
(K, x0), ux(K,x0))

≤ �JN
1
(x0, u

⋆
x0
).

0 = lim
k→∞

�
�,1(‖x(k) − xe‖) = �

�,1

�
lim
k→∞

‖x(k) − xe‖
�
,
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We now carry over the estimates for J̃∞
1

 to J∞
1

 . To this end and for the subse-
quent stability analysis in Sect. 5, we need an additional assumption.

Assumption 4.4 There exist �F1
∈ K∞ and ��1 ∈ K∞ such that the following holds. 

 (i) For all x ∈ �0 it holds that 

 and it yields that F1(x
e) = 0.

 (ii) For all x ∈ � it holds that 

 with �1 from Assumption 3.1.

Using Part (ii) of this assumption, we can show an infinite horizon perfor-
mance result on J1 similar to the one in [18, 26].

Theorem  4.5 (Performance estimate for J1 ) Consider the multiobjective optimal 
control problem with terminal conditions (MO OCP). Let Assumptions 3.1 and 4.4 
(ii) hold and assume �1(x

e, ue) = 0 . Then, the MPC feedback �N ∶ ℕ0 ×𝕏 → 𝕌 
defined in Algorithm 1 renders the set � forward invariant and has the infinite-hori-
zon closed-loop performance

in which u⋆
x0

 denotes the efficient solution of step (0) in Algorithm 1.

Proof As in the proof of Lemma 4.2 the existence of the efficient solutions in step 
(0) and (1) in Algorithm 1 is, again, concluded from the external stability of JN

P
(x) . 

Feasibility of ux(k+1,x0) in (2) follows from Assumption 3.1 (iv). Forward invariance 
of � is an immediate consequence.

Using the definition of �̃1 , the estimate from the proof of Lemma 4.2, the relation 
(4.4), and �(xe, ue) = 0 , it holds that

�F1(x) − F1(x
e)� ≤ �F1

(‖x − xe‖)

��1(x) − �1(x
e)� ≤ ��1 (‖x − xe‖)

(4.6)J∞
1
(x0,𝜇

N) ∶=

∞∑
k=0

�1(x𝜇(k, x0),𝜇
N(k, x𝜇(k, x0))) ≤ JN

1
(x0, u

⋆
x0
)

K−1∑
k=0

�1(x𝜇(k, x0),𝜇
N(k, x𝜇(k, x0))) = − 𝜆1(x0) +

K−1∑
k=0

��1(x𝜇(k, x0),𝜇
N(k, x𝜇(k, x0)))

+ 𝜆1(x𝜇(K, x0))

≤ − 𝜆1(x0) + �JN
1
(x0, u

⋆
x0
) + 𝜆1(x𝜇(K, x0))

=JN
1
(x0, u

⋆
x0
) + 𝜆1(x𝜇(K, x0)).
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Now Assumption 4.4 (ii) together with the storage function �1 from Definition 2.9 
with �1(xe) = 0 and the fact that by Corollary 4.3 we have x�(K, x0) → xe implies 
that �1(x�(K, x0)) → 0 as K → ∞ . This shows the assertion.   ◻

Remark 4.6 The proof of Theorem  4.5 also implies the averaged performance 
estimate

In case �1(x
e, ue) ≠ 0 , this inequality holds for the shifted cost 

�̂1(x, u) = �1(x, u) − �1(x
e, ue) . This implies

Thus, we obtain an averaged performance estimate also in the case �1(x
e, ue) ≠ 0.

In the proof above we argue that we get feasibility because of the external sta-
bility. We remark that Lemma 2.5 provides conditions such that external stability 
can be guaranteed.

4.2  Averaged performance estimates for J
i

Besides the performance of J1 we are also interested in performance estimates 
for Ji , i ∈ {2,… , s} . Thus, we first consider the averaged performance of Ji , 
i ∈ {2,… , s} , by using the results of the previous section. Hence, the continu-
ity of the stage costs �i , i ∈ {2,… , s} , and the trajectory convergence deliver the 
averaged performance estimate.

Lemma 4.7 For each i = 2,… , s there is �i ∈ K∞ such that 
|�i(x, u) − �i(x

e, ue)| ≤ �i(�̃1(x, u)).

Proof Since �i is continuous, there is �̃�i ∈ K∞ such that |�
i
(x, u) − �

i
(xe, ue)| ≤

�̃�
i
(‖x − x

e‖ + ‖u − u
e‖) . Since �̃1(x, u) ≥ �

�,1(‖x − xe‖ + ‖u − ue‖) , the assertion 
follows with 𝜔i = �̃�i◦𝛼

−1
𝓁,1

 .   ◻

Theorem  4.8 Consider the multiobjective optimal control problem with terminal 
conditions (MO OCP). Let Assumptions 3.1 and 4.4 hold.

lim sup
K→∞

1

K

K−1∑
k=0

�1(x�(k, x0),�
N(k,x�(k, x0))) = 0.

lim sup
K→∞

1

K

K−1∑
k=0

�1(x𝜇(k, x0),𝜇
N(k, x𝜇(k, x0)))

= lim sup
K→∞

1

K

K−1∑
k=0

�̂1(x𝜇(k, x0),𝜇
N(k, x𝜇(k, x0))) + �1(x

e, ue)

≤ �1(x
e, ue).
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Then, the MPC-feedback �N ∶ ℕ0 ×𝕏 → 𝕌 defined in Algorithm 1 has the infi-
nite-horizon averaged closed-loop performance

for all objectives i ∈ {2,… , s}.

Proof The existence of the efficient solutions and feasibility is ensured by Lemma 
4.2 and Theorem  4.5. Further, from Corollary 4.3 and Lemma 4.7 it follows that 
there exists M ∈ ℕ0 such that for all k ≥ M the relation 
�i(xu⋆

x(k)
(k, x0), u

⋆
x(k)

(0)) = �i(x
e, ue) + 𝜀(k) , i ∈ {2,… , s} , with �(k) → 0 as k → ∞ , 

holds. Thus, given any arbitrary �̃� > 0 , there exists k̃ ∈ ℕ0 , K̃ ≥ M , such that for 
k ≥ k̃ the error term satisfies 𝜀(k) < �̃� . Thus, the sequence (�(k))k∈ℕ tends to 0 for 
k → ∞.

Then, for each fixed, but arbitrary K ∈ ℕ with K > k̃

where C ∶=
∑�k−1

k=0
�i(xu⋆

x(k)
(k, x0), u

⋆
x(k)

(0)) is independent of K and u⋆
x(k)

 denotes the 
control from Algorithm 1. Letting K → ∞ , this implies

and since �̃� > 0 was arbitrary, this shows the assertion.   ◻

5  Stability

In this section, we show that Algorithm  1 has a stability property. Therefore, we 
use the assumptions, results and calculations from the previous sections to formulate 
the following theorem. To this end, we adapt the classical stability result from the 
single-objective case.

J̄∞
i
(x0,𝜇

N)∶= lim sup
K→∞

1

K

K−1∑
k=0

�i(x𝜇(k, x0),𝜇
N(k, x𝜇(k, x0))) ≤ �i(x

e, ue)

1

K

K−1�
k=0

�i(x𝜇(k, x0),𝜇
N(k, x𝜇(k, x0)))

=
1

K

⎛⎜⎜⎝

k̃−1�
k=0

�i(xu⋆
x(k)
(k, x0), u

⋆
x(k)

(0)) +

K−1�
k=k̃

�i(xu⋆
x(k)
(k, x0), u

⋆
x(k)

(0))

⎞⎟⎟⎠

≤
C

K
+

1

K

K−1�
k=k̃

�i(x
e, ue) + 𝜀(k)

���
≤�̃�

≤
C

K
+

�
1 −

k̃

K

�
�i(x

e, ue) +

�
1 −

k̃

K

�
�̃�,

J̄∞
i
(x0,𝜇

N) ≤ �i(x
e, ue) + �̃�
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Theorem  5.1 (Asymptotic Stability) Consider the multiobjective optimal control 
problem with terminal conditions (MO OCP), which we assume to be strictly dissi-
pative for stage cost �1 at the equilibrium (xe, ue) . Let Assumption 3.1 (iv) and (v) 
and Assumption 4.4 (i) and (ii) be satisfied. Let �J ∈ K∞ and choose the efficient 
solutions u⋆

x0
 in step (0) of Algorithm 1 such that they satisfy the inequality

Then the (optimal) equilibrium xe is asymptotically stable on �N for the MPC closed 
loop defined in Algorithm 1.

Proof We follow the proof of the single-objective case and show that the modified 
cost functional J̃N

1
 is a uniform time-varying Lyapunov function (see Definition 

2.7) for the closed-loop system for xe . Then, we can conclude, using Theorem 2.8, 
that the equilibrium xe is asymptotically stable. Without loss of generality we may 
assume �1(x

e, ue) = 0 , because replacing �1 by �1 − �1(x
e, ue) does not change the 

closed-loop solutions and thus not the stability.
To this end we first show an auxiliary inequality.
In order to simplify the notation, we write x instead of x(k, x0) and x+ instead 

of x(k + 1, x0) for the states on the MPC closed-loop solution. Then for the control 
sequences defined in Algorithm 1 it holds that

and

Moreover, we observe the relation

Using these identities and inequality (3.2) it thus follows that

(5.1)JN
1
(x0, u

⋆
x0
) ≤ 𝛾J(‖x0 − xe‖) + N�1(x

e, ue).

x+ = f (x, u⋆,N
x

(0)), x
ux+

(N, x+) = f (x
ux+

(N − 1, x+), 𝜅(x
ux+

(N − 1, x+)))

x
ux+ (⋅+1)

(j, x+) = x
u
⋆
x
(j + 1, x) for j = 0,… ,N − 1.

�JN
1
(x, u⋆

x
) =

N−2∑
j=0

�𝓁1(xu⋆
x
(⋅+1)(j, x

+), u⋆
x
(j + 1))

+ �𝓁1(x, u
⋆
x
(0)) + F1(xux+ (⋅+1)(N − 1, x+)).
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In the last step, we used inequality (4.5) with x = x
u
⋆
x+
(⋅+1)(N − 1, x+) and 

�(xe, ue) = 0.
We will now check that V(k, x) ∶= �JN

1
(x, u⋆

x
) , with u⋆

x
 denoting the control from 

the k-th step of the MPC iteration, is a uniform time-varying Lyapunov function 
according to Definition 2.7 for g(k, x) = f (x,�N(k, x)) . In order to do this, we show 
the existence of �1, �2, �3 ∈ K∞ , such that the inequalities 

 (i) 𝛼1(‖‖x0 − xe‖‖) ≤ �JN
1
(x0, u

⋆
x0
) ≤ 𝛼2(‖‖x0 − xe‖‖)

 (ii) �̃1(x, u) ≥ �3(‖x − xe‖)
hold for all x, x0 ∈ � . Condition (ii) is satisfied by our strict dissipativity assump-
tion with �3 = �

�,1 . For the inequalities in condition (i) we first need to establish a 
lower bound for F̃1 . We recall Assumption 3.1 (iv) with local feedback � for each 
x ∈ �0 . Then, Assumption 3.1 and strict dissipativity imply

By induction along the closed-loop solution for the local feedback � we then obtain

�JN
1

(x+, u⋆
x+
) ≤ �JN

1

(x+, u
x+
)

=

N−1∑
j=0

�𝓁
1

(x
u
x+
(j, x+), u

x+
(j)) + �F

1

(x
u
x+
(N, x+))

=

N−2∑
j=0

�𝓁
1

(x
u
⋆
x
(⋅+1)(j, x

+), u⋆
x
(j + 1))

+ �𝓁
1

(x
u
⋆
x
(⋅+1)(N − 1, x

+)), 𝜅(x
u
⋆
x+
(⋅+1)(N − 1, x

+))

+ �F
1

(x
u
x+
(N, x+))

= �JN
1

(x, u⋆
x
) − �𝓁

1

(x, u⋆
x
(0))

+ �𝓁
1

(x
u
⋆
x
(⋅+1)(N − 1, x

+), 𝜅(x
u
⋆
x+
(⋅+1)(N − 1, x

+))

+ �F
1

(x
u
x+
(N, x+)) − �F

1

(x
u
⋆
x+
(⋅+1)(N − 1, x

+))

≤ �JN
1

(x, u⋆
x
) − �𝓁

1

(x, u⋆
x
(0)).

F̃1(f (x, �(x))) ≤ F̃1(x) − �̃1(x, �(x)) ≤ F̃1(x) − �
�,1(‖x − xe‖).

F̃1(x�(K, x)) ≤ F̃1(x) −

K−1∑
k=0

�
�,1(

‖‖x�(k, x) − xe‖‖).
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By Assumption 4.4 (i) and (ii) and Corollary 4.3 this implies 
F̃1(x�(K, x)) → F̃(xe) = 0 as K → ∞ from which we can conclude

From this, the definition of J̃N
1

 immediately implies �JN
1

(x
0

, u
⋆
x
0

) ≥ ��
1

(x
0

,𝜇N) ≥

�
�,1

(‖‖x0 − x
e‖‖) and thus the inequality for �1 with �1 = �

�,1.
Finally, since J̃N

1
(xe, ue) = 0 and due to Assumption 4.4 (ii), the (in)equalities 

(5.1), (4.4), and �(xe, ue) = 0 it follows that �2 = ��1 + �JN
1
 .   ◻

Observe that in the case of stabilizing stage costs, we obtain �1 ≡ 0 and 
�1(x

e, ue) = 0 , and thus J̃N
1
= JN

1
 . This implies that the objective function itself is a 

Lyapunov function.

Remark 5.2 

 (i) It is not a priori clear that inequality (5.1) can be satisfied. In order to guar-
antee this, techniques similar to those used, e.g., in [16, Proposition 5.14] or 
[22, Propositions 2.15 or 2.16] for single-objective MPC could be used.

 (ii) If inequality (5.1) can be satisfied, then it will restrict the choice of the efficient 
point in step (0) of Algorithm 1. In particular, enforcing (5.1) will typically 
require to put more emphasis on the cost JN

1
 at the expense that the perfor-

mance of JN
i

 for i ≥ 2 may deteriorate.

5.1  Non‑averaged performance estimates on J
i

In the next section we aim to show a non-averaged performance result on Ji for 
i = 2,… , s . For this purpose we will use the results of the previous sections and 
combine them with the idea of the performance of single-objective economic MPC 
without terminal conditions, see [16]. To this end, we consider the trajectories x 
which are driven by the efficient solution u⋆

x0
 . We denote these trajectories by 

x(⋅) = x
u
⋆
x0

(⋅, x0) and name them efficient trajectories.
First, we show that the end points of the efficient trajectories are close to the equi-

librium because of stability and strict dissipativity for the stage cost �1.

Lemma 5.3 Let Assumptions 3.1 and 4.4 hold and consider efficient trajectories 
x(j) = x

u
⋆
x0

(j, x0) , j = 0,… ,N , for which there is �J ∈ K∞ such that

F̃1(x) ≥ lim
K→∞

K−1�
k=0

�
�,1(

��x�(k, x) − xe��) ≥ �
�,1(‖x − xe‖) ≥ 0.
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Then there are �1, �2 ∈ K∞ such that for all N ∈ ℕ the final points on the trajecto-
ries satisfy

Proof From (5.2) and (4.4) we obtain that

Using this inequality for j = 0 implies that there exists a time index j0 ∈ {0,… ,N} 
such that ��1(x(j0), u

⋆
x0
(j0)) ≤ 𝜌2(‖x(j0) − xe‖)∕N if j0 < N or 

F̃1(x(N)) ≤ �2(‖x(j0) − xe‖)∕N . If j0 < N , then using the lower bound from the dis-
sipativity �

�,1 on �̃1 and, again, the inequality above it follows that

Since, as shown in the proof of Theorem 5.1, �
�,1 is also a lower bound on F̃1 , we 

obtain

This implies the assertion with �1(r) = max{�−1
𝓁,1

(r), �−1
𝓁,1

◦�2◦�
−1
𝓁,1

(r)} .   ◻

Next, in order to establish a performance estimate on Ji , i = 2,… , s we extend the 
constraint (3.2) to all i = 1,… , s . In this way we end up with an algorithm originally 
proposed in [18]. However, different from [18], for the subsequent results we still 
do not require additional properties of the stage cost �i for i ≥ 2 . We can avoid these 
conditions by exploiting that the feedback from Assumption 3.1(iv) steers a state x 
to the equilibrium xe.

Assumption 5.4 For each i = 2,… , s there is �i ∈ K∞ such that

holds for all x ∈ �0 and � from Assumption 3.1(iv).

(5.2)
J
N−j

1
(x(j), u⋆

x0
(j + ⋅)) − N𝓁1(x

e, ue) ≤ 𝛾
J
(‖x(j) − x

e‖)
for all j = 0,… ,N.

‖x(N) − xe‖ ≤ �1(�2(‖x0 − xe‖)∕N).

�JN
1
(x(j), u⋆

x0
(j + ⋅)) ≤ 𝛾J(‖x(j) − xe‖) + 𝛾𝜆1(‖x(j) − xe‖)=∶𝜌2(‖x(j) − xe‖).

�F1(x(N)) ≤ �J
N−j0
1

(x(j0), u
⋆
x0
(j0 + ⋅)) ≤ 𝜌2

�
𝛼−1
𝓁,1

(𝜌2(‖x(j0) − xe‖)∕N)
�
.

‖x(N) − xe‖ ≤ max{�−1
𝓁,1

(�2(‖x(j0) − xe‖)∕N), �−1
𝓁,1

◦�2◦�
−1
𝓁,1

(�2(‖x(j0) − xe‖)∕N)}.

�i(x, �(x)) ≤ �i(x
e, ue) + �i(‖x − xe‖)
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In Fig. 2 we have visualized the bounds of step (1) in Algorithm 2. The dashed 
lines represent the bounds (5.3) and the red line the set of nondominated points sat-
isfying these inequalities. We remark that now all cost criteria JN

i
 are bounded. For 

Algorithm 2 we can state the following performance result.

Theorem 5.5 [Performance Estimate for Ji ] Let Assumptions 3.1, 4.4, and 5.4 hold 
and assume that the efficient solutions generated by Algorithm 2 satisfy the inequali-
ties (5.2) for some �J ∈ K∞ . Then for all i = 2,… , s and for any C > 0 there is a 
function �i ∈ L such that

for all N,K ∈ ℕ with K ≥ N and all x0 ∈ �N with ‖x0 − xe‖ ≤ C.

Proof Consider the controls u⋆
x(k)

 and ux(k+1) from Algorithm 2, where x(k) denotes 
the closed loop solution generated by the algorithm. Then Lemma 5.3 and Assump-
tion 5.4 imply

JK
i
(x0,𝜇

N) ≤ JN
i
(x0, u

⋆
x0
) + (K − N)�i(x

e, ue) + K𝛿i(N)

Fig. 2  Visualization of step (1)

J1

J2 JN
1 x(k),ux(k)

)

JN
2 x(k),ux(k)

)
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Here we used that the asymptotic stability property of the closed loop from Theo-
rem 5.1 implies that whenever the initial value satisfies ‖x0 − xe‖ ≤ C , then there is 
�C > 0 such that ‖x(k) − xe‖ ≤ C̃ for all k ∈ ℕ . This inequality together with inequal-
ity (5.3) for i = 2,… , s implies

Now again the asymptotic stability and the boundedness of ‖x0 − xe‖ imply the exist-
ence of � ∈ L such that ‖x(k) − xe‖ ≤ �(k).

This implies �JN
1
(x(k), u⋆

x(k)
) ≤ 𝛾J(𝜒(k)) and the individual (nonnegative) terms of 

this sum also satisfy ��1(xu⋆
x(k)
(j, x(k)),u⋆

x(k)
(j)) ≤ 𝛾J(𝜒(k)) for all j = 0,… ,N − 1 . By 

Lemma 4.7 this yields �i(xu⋆
x(k)
(j, x(k)),u⋆

x(k)
(j)) ≥ �i(x

e, ue) − 𝜔i(𝛾J(𝜒(k))) and we 
can conclude that

where we used K ≥ N and the monotonicity of � ∈ L in the last step. This yields the 
assertion with

  ◻

Remark 5.6 The fact that the error term K�(N) grows linearly with K might at the 
first glance make the estimate useless. However, unless we are in the very special 
case that �i(x

e, ue) = 0 , the term JN
i
(x0, u

⋆
x0
) + (K − N)�i(x

e, ue) also grows affine lin-
early with K. Hence, for all sufficiently large K the relative error is proportional to 
�(N) and thus decreases to 0 as N tends to infinity. Hence, in terms of the relative 
error the estimate gives a perfectly useful estimate. We note that this estimate is 

JN
i
(x(k + 1), ux(k+1)) ≤ JN

i
(x(k), u⋆

x(k)
) − �i(x(k),𝜇

N(k, x(k)))

+ �i(x
e, ue) + 𝛾i(𝜌1(𝜌2(�C)∕N)).

JK
i
(x0,𝜇

N) =

K−1∑
k=0

�i(x(k),𝜇
N(k, x(k)))

≤

K−1∑
k=0

(
JN
i
(x(k), u⋆

x(k)
) − JN

i
(x(k + 1), ux(k+1))

+�i(x
e, ue) + 𝛾i(𝜌1(𝜌2(�C)∕N))

)

≤

K−1∑
k=0

(
JN
i
(x(k), u⋆

x(k)
) − JN

i
(x(k + 1), u⋆

x(k+1)
)

+�i(x
e, ue) + 𝛾i(𝜌1(𝜌2(�C)∕N))

)

=JN
i
(x0, u

⋆
x0
) − JN

i
(x(K), u⋆

x(K)
) + K�i(x

e, ue)

+ K𝛾i(𝜌1(𝜌2(�C)∕N)).

JN
i
(x(K), u⋆

x(K)
) ≥ N�i(x

e, ue) − N𝜔i(𝛾J(𝜒(K))) ≥ N�i(x
e, ue) − K𝜔i(𝛾J(𝜒(N))),

�i(N) = �1(�2(C̃)∕N) + �i(�J(�(N))).



 G. Eichfelder et al.

1 3

structurally similar to estimates for the closed-loop performance of single-objective 
economic MPC without terminal conditions, see, e.g., [16, Theorem 8.39].

Remark 5.7 The inequalities in (5.2) restrict the efficient solutions, for which the 
performance statement in Theorem  5.5 holds. If �J ∈ K∞ can be computed or is 
known, the inequalities could be added as additional constraints in the optimization 
routine.

6  Numerical simulations

The aim of this section is to illustrate the theoretical results of the previous sections. 
In the following we distinguish between the efficient solutions chosen in the differ-
ent steps of Algorithm 1 and 2. To this end, we introduce the following denomina-
tions for the efficient solutions in the algorithms:

• the efficient solution u⋆
x0

 chosen in step (0), i.e., in the first iteration, we call the 
first efficient solution.

• the efficient solutions u⋆
x(k)

 chosen in step (1), i.e., from iteration step k = 2 
onwards, we name the subsequent efficient solutions.

For verifying the theoretical results we use the example of a chemical reactor, see [8, 
27].

Example 6.1 (Reactor Part 1) We consider a single first-order, irreversible chemical 
reaction in an isothermal continuous stirred-tank reactor (CSTR)

in which kr = 1.2 is the rate constant. The material balances and the system data 
are provided in [8] whereas the stage costs – a tracking type cost forcing the solu-
tions to a desired equilibrium and an economic stage cost maximizing the yield (by 
minimizing the negative yield) of the reaction – are introduced in [27]. The overall 
bi-objective optimal control problem is given by

A → B r = krcA
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We consider the molar concentrations cA(k) ≥ 0 and cB(k) ≥ 0 , k ∈ ℕ , of A and B 
respectively, and 0 ≤ u(k) ≤ 20(L/min) is the flow through the reactor at time k. The 
feed concentrations of A and B are given by cAf

= 1 mol/L, and cBf
= 0 mol/L 

respectively. The volume of the reactor is given by V = 10 L. Further, we abbreviate 
the states by c = (cA, cB) and we consider two stage costs given by

where the second stage cost consists of the price of B and a separation cost. These 
second costs therefore represent the (negative) economic yield of the reaction. Fur-
ther, we set the terminal cost to zero, i.e. Fi ≡ 0 for i = 1, 2 . The equilibrium under 
consideration of the system in (6.1) is given by (ce

A
, ce

B
, ue) = (ce, ue) = (

1

2
,
1

2
, 12) , 

which we also set as the terminal constraint, i.e. �0 = {(ce, ue)} . This way, Assump-
tion 3.1 is fulfilled since stabilizing stage costs always render the optimal control 
problem strictly dissipative and by setting � = ue there exists a local feedback with 
the desired properties. Hence, Assumption 4.4 is also satisfied. By imposing box 
constraints � and � we can conclude external stability of JN

P
(c0) and, thus, the tra-

jectory convergence as well as the averaged and non-averaged performance of the 
first cost criterion J1 by Corollary 4.3 and Theorem 4.5.

In this example we use

• Algorithm 1 to substantiate our theoretical results with numerical simulations. 
Thus, we restrict only the first objective by the constraint in step (1) of the algo-
rithm. The resulting bound on the nondominated set in the second iteration is 
visualized in Fig. 3;

• the ASMO Solver [1], a solver for nonlinear multiobjective optimization, to gen-
erate an approximation of the nondominated set in the first iteration for choos-
ing the first efficient solution. ASMO is an implementation of the algorithm pre-
sented in [10, 11] which combines the Pascoletti-Serafini scalarization with an 
adaptive parameter control to achieve an approximation of the nondominated set 
with well distributed approximation points;

(6.1)

min
u∈�N (c0)

JN(c0, u) =

(
N−1∑
k=0

�1(c(k, c0), u(k)),

N−1∑
k=0

�2(c(k, c0), u(k))

)
,

s.t. cA(k + 1) = cA(k) +
1

2

(
u(k)

V
(cAf

− cA(k)) − krcA(k)

)
,

cB(k + 1) = cB(k) +
1

2

(
u(k)

V
(cBf

− cB(k)) + krcB(k)

)
,

c(0) = c0 = (0.4, 0.2)

c(N, c0) ∈ �0 = {(ce, ue)}

� = [0, 20] × [0, 20], � = [0, 20].

�1(c, u) =
1

2
(cA −

1

2
)2 +

1

2
(cB −

1

2
)2 +

1

2
(u − 12)2,

�2(c, u) = −2ucB +
1

2
u,
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• as the first efficient solution the efficient solution with J5(x0, u⋆c0 ) = (54.034, 9.500) 
for N = 5 , and with J15(c0, u⋆c0 ) = (408.459,−478.459) for N = 15;

• the global criterion method, also known as compromise programming approach, 
see, for instance, [21], to find efficient solutions of the multiobjective optimiza-
tion problems in the subsequent iterations as proposed in a multiobjective MPC 
context in [27, 28]. This means that the subsequent efficient solution u⋆

x(k)
 is cho-

sen in each iteration such that 

 where 

 for all i = 1,… , s , is set as the so called ideal point of the restricted problem, cf. 
[28]; i.e., u⋆

x(k)
 is defined as pre-image of the nondominated point which has the 

smallest Euclidean distance to the ideal point. Whenever applying Algorithm 2 
instead of Algorithm  1, then JN

1
(x(k), u⋆

x(k)
) ≤ JN

1
(x(k), ux(k)) is replaced by 

JN
i
(x(k), u⋆

x(k)
) ≤ JN

i
(x(k), ux(k)) , i = 1,… , s in the above optimization problems.

We note that for this example the optimization problems contained as subprob-
lems in these algorithms are non-convex, hence we have no theoretical guarantees 
that the numerical optimization reached a globally optimal solution. However, the 
numerical results strongly suggest that globally optimal solutions were found in 
all our numerical simulations.

The behavior of the closed-loop trajectory is visualized in Fig. 4 for MPC-hori-
zons N = 5 and N = 15 . We observe that the trajectories converge to the equilibrium 
ce independently of the choice of MPC-horizon and the initial value. However, the 
MPC-horizon N influences the convergence rate. On the left side, for N = 5 , the cB
-trajectory converges faster to the equilibrium point ce = 1

2
 than for N = 15 . We note 

that this is a typical behavior of MPC with equilibrium terminal constraints, see [16, 
Discussion after Ex. 7.23]. In addition, the components of the trajectory show differ-
ent transient behavior.

(6.2)

u
⋆
x(k)

∈ argmin

��
s∑

i=1

�JN
i
(x(k), u) − z⋆

i
�2
� 1

2 ���� u ∈ �
N(x0),

JN
1
(x(k), u⋆

x(k)
) ≤ JN

1
(x(k), ux(k))

�
,

z⋆
i
= min

{
JN
i
(x(k), u)

||| u ∈ �
N(x0), J

N
1
(x(k), u⋆

x(k)
) ≤ JN

1
(x(k), ux(k))

}
,

Fig. 3  Visualization of step (1)
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In contrast, the bound of the averaged performance of J1 is independent of N, the 
initial value and the choice of the efficient solutions in each iteration. According to 
Remark 4.6 the bound is given by �1(c

e, ue) = 0 . This bound and the averaged costs 
J̄k
1
 in dependence of the iteration step k are visualized in Fig. 5 for MPC-horizons 

N = 5 and N = 15 . Additionally, the averaged cost of the cost criterion J2 is visual-
ized in Fig. 6 with bound �2(c

e, ue) = −6 for MPC-horizon N = 5 and N = 15 . For 
both cost criteria the averaged cost J̄k

i
 , i = 1, 2 , converges for k → ∞ whereas for 

N = 5 the convergence is significantly faster. Moreover, we remark that the second 
averaged cost J̄k

2
 requires considerably more iterations to converge.

Since the upper bound on J∞
1
(c(0),�N) from Theorem 4.5 depends on the first 

efficient solution u⋆
c0

 in Algorithm 1, we have visualized the performance result for 
different choices of this efficient solution. In Fig. 7 on the left side the first nondomi-
nated set JN

P
(c0) is shown with the different choices of the first efficient solution. 

The red point corresponds to the efficient solution such that 
J5(c0, u

⋆
c0
) = (76.064,−13.435) and the blue point corresponds to 

J5(c0, u
⋆
c0
) = (182.852,−26.267) . Further, the performance of the first cost criterion 

J1 for N = 5 is visualized in dependence of the iteration step k and the choice of the 
first efficient solution (the red line correspond to the red efficient solution and the 
blue line respectively to the blue one). The dashed lines mark the upper bounds 
derived by the values of the first objective function for the chosen first efficient solu-
tion JN

1
(c(0),u⋆

c0
) . Hence, we remark that the choice of the first efficient solution has 

a big impact on the upper bound and on the performance of J1.
By choosing the efficient solution u⋆

1
 (red point), which has a relatively small 

value in the first cost functional, we get an upper bound of about 76. In contrast, 
the efficient solution u⋆

2
 (blue point) with small value in the second cost delivers 

an upper bound of approximately 182. Moreover, we observe that for both efficient 
solutions the values of the cost functional J1 reach a small neighborhood of their sta-
tionary values 53 (red) and 86 (blue), respectively, after less than 10 iteration steps. 
Additionally, the theoretical upper bound, which depends on the choice of the first 
efficient solution and is visualized as a dashed line, is adhered as expected. Thus, 
we can confirm the dependence of the performance of J1 on the choice of the first 
efficient solution.

Fig. 4  Closed-loop trajectory for N = 5 (left) and N = 15 (right)
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The last result shown for Algorithm 1 is the asymptotic stability property of the 
equilibrium (ce, ue) . In contrast to the convergence, the condition for stability 
depends on the initial value. For this reason, we have to ensure that inequality (5.1) 
is verified for the initial value c(0) = c0 = (cA(0), cB(0)) and the corresponding first 
efficient solution u⋆

c0
 . With a suitable choice of the first efficient solution we can 

ensure the existence of �J ∈ K∞ such that inequality (5.1) holds, since �1(c, u) is a 
quadratic function and the system is exponentially controllable to ce.

In Fig. 8 the Euclidean norm ‖c(k) − ce‖2 of the closed-loop trajectory is visual-
ized for fixed MPC-horizon N = 15 in dependence of the iteration step k and for 
different initial values c(0). There, we observe that the closer the initial value is to 
the equilibrium the smaller is the peak of the norm of the trajectory. The numerical 
results indicate that the stability result from Theorem 5.1 holds for this example.

Fig. 5  J̄k
1

 for N = 5 and N = 15

Fig. 6  J̄k
2

 for N = 5 and N = 15

Fig. 7  Choice of the efficient solution and the corresponding costs J
1
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In the next example we continue with the reactor example, but now we con-
sider Algorithm 2 and check the stronger assumptions that we will need to apply 
Theorem 5.5.

Example 6.2 (Reactor Part 2) We consider again the isothermal reactor described 
in Example 6.1 with the same constants and constraints. Now, we like to illustrate 
the results of the performance on the second cost criterion J2 . Therefore, we need 
to consider Algorithm 2 where inequality (5.3) holds for all cost criteria. Since we 
have imposed the special case of an endpoint constraint �0 = {(ce, ue)} the endpoint 
is fixed by c(N) = (cA(N), cB(N)) = (ce

A
, ce

B
) and Assumption 5.4 is trivially satisfied 

for � = ue . Thus, we can conclude the existence of � ∈ L for which the performance 
estimate on J2 according to Theorem 5.5 holds.

For N = 5 , numerical test show that for �(5) = 1∕5 the inequality

holds for k ≥ 5 large enough. The second cost J2 and the corresponding bound 
M(u⋆

c0
, 5, k) are visualized in Fig. 9. For other MPC-horizons N and other choices of 

the first efficient solution it is not that easy to find appropriate values for the L−
function � . For this reason, we only visualize the bound M for this special case in 
Fig. 9.

In Fig. 10 the performance of the cost criterion J2 is visualized for MPC-horizon 
N = 5 and for different choices of the first efficient solution u⋆,N

c(0)
 . The first efficient 

solutions are chosen as in Example 6.1 in Fig. 7 on the left side. Note that the first 
nondominated set JN

P
(c(0)) is identical for both algorithms. Thus, the efficient solu-

tion (and the colors) are the same as in the previous simulations. Again, we remark 
that the choice of the first efficient solution has an impact on the performance of the 
second cost criterion J2.

After verifying the theoretical results from Sect.4 and 5 by means of numerical 
simulations for the isothermal reactor with two cost functions, we now like to illus-
trate that—as the theoretical results suggest—our approach also works for more than 
two cost criteria. To this end, we add another cost criterion to the multiobjective 
optimal control problem (6.1) and present the numerical results in the same manner 
as in Example 6.1 and 6.2.

Jk
2
(c(0),𝜇5) ≤ JN

2
(c(0),u⋆

c(0)
) + (k − 5)�2(c

e, ue) +
k

5
=∶ M(u⋆

c0
, 5, k)

Fig. 8  ‖c(k) − c
e‖

2

 for different 
initial values c(0)
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Example 6.3 (Reactor with three objectives) We consider the isothermal reactor 
from Example 6.1 and the corresponding multiobjective optimal control problem 
(6.1). In order to extend the example we add a third cost function given by

i.e., we now aim to minimize JN(c0, u) = (JN
1
(c0, u), J

N
2
(c0, u), J

N
3
(c0, u)) . Stage cost 

�3 is a continuous function and, thus, Assumption 3.1 is satisfied. Assumptions 4.4 
and 5.4 can be shown exactly as in Example 6.1 and 6.2. For our numerical simula-
tions we consider the MPC-horizon N = 15 . As in Example 6.2, we apply Algo-
rithm 2 to illustrate the trajectory convergence, the averaged performance of all cost 
criteria Ji , i = 1, 2, 3 , and, especially, the non-averaged performance of Ji for all 
i ∈ {1, 2, 3} . Further, we chose the first efficient solution such that 
J15(c0, u

⋆
c0
) = (317.827,−380.092, 1969.311).

In Fig.  11 we observe that the closed-loop trajectory behaves qualitatively as 
in Fig.4 but quantitatively there are differences. Especially, the peak of the second 
component cB is higher than in Example 6.1. Further, the averaged cost J̄1 has a 
smaller start value and the amplitude of the second averaged cost J̄2 is larger than 
in the previous example. These phenomenons are visualized in Fig.12. Especially, 
on the right side in Fig. 12 we remark that the third averaged cost J̄3 also converges 
from below to the theoretical bound �3(x

e, ue) = 144 as stated in Theorem 4.8.
Further, in Fig. 13 the performances of Ji , i = 1, 2, 3 , are shown. Again, the first 

cost function J1 complies with the theoretical bound JN
1
(c0, u

⋆
c0
) . For the second and 

third cost criterion we can observe that the performance behaves as expected. The 

JN
3
(c0, u)∶=

N−1∑
k=0

�3(c(k, c0), u(k)), with �3(c, u) = u2,

Fig. 9  Jk
2

(c(0),�N ) with corre-
sponding bound M(u⋆

c
0

, 5, k)

Fig. 10  Jk
2

(c(0),�N ) for different 
efficient solutions
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third cost J3 is strictly increasing since in each iteration the squared value of the cost 
in the equilibrium ue = 12 is added.

In the examples in this section we have illustrated our theoretical results numeri-
cally, particularly regarding the impact of the choice of the first efficient solution 
u
⋆
x(0)

 , chosen in step (0) of our algorithms. In the next section, we will analyse 
numerically whether the choice of the subsequent efficient solutions u⋆

x(k)
 in step (1) 

of the algorithms, has an impact on the solution behavior and on the performance.

7  Selection rules for subsequent efficient solutions

In this section we will investigate numerically the impact of different selection rules 
for the subsequent efficient solutions, i.e., those in step (1) of the algorithms. We 
will do this for Algorithm 2, since we want to guarantee the theoretical performance 
estimates for all cost criteria. Closely related is the development of the nondomi-
nated sets during the iterations. In all simulations, we consider the same first effi-
cient solution and, thus, determine the performance of the MO MPC algorithm only 
depending on the choice of the subsequent efficient solutions. In order to describe 
the expected effects, we first recall the resulting bounds on the nondominated set of 
Algorithm 2. For this reason, we visualized the nondominated set of the isothermal 
reactor with two objectives, see Example 6.2, in the second iteration in Fig. 14. The 
approximation of this nondominated set was calculated with ASMO [1]. We observe 

Fig. 11  Closed-loop trajectory

(a) (b) (c)

Fig. 12  Averaged Performance of all cost criteria J
i
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that the resulting nondominated set from which we choose the efficient solution is 
relatively small and excludes the extremal ends of the nondominated set.

Nevertheless, there is still a degree of freedom in choosing the subsequent effi-
cient solution. Generally, an efficient solution with values at the top left of the con-
sidered nondominated set will cause the first cost criterion to become smaller, and 
vice versa. Particularly, in our setting, where the first cost is always the stabilizing 
one, putting a large emphasis on the first cost criterion forces the trajectory to con-
verge faster, since this causes a lower cost. In order to check whether this effect can 
be seen in practice, we will investigate different selection rules for choosing the sub-
sequent efficient solutions. We examine the influence of the choice of the subse-
quent efficient solutions in the algorithms on the solution and performance behavior. 
To this end, we introduce the following selection rules for the subsequent efficient 
solutions:

• “ideal”: the efficient solutions are computed as in (6.2) as pre-image of nondomi-
nated points with minimal Euclidean distance to the ideal point z⋆ . This selec-
tion rule is illustrated in Fig. 15.

• “min 1”: the efficient solutions are chosen such that JN
1

 (with the additional 
bounds from (5.3)) is minimal.

• “min 2”: the efficient solutions are chosen such that JN
2

 (with the additional 
bounds from (5.3)) is minimal.

We note that the last two selection criteria only guarantee to find weakly efficient 
solutions of the underlying multiobjective optimization problem which are located 
at the extremal ends of the nondominated set. The set of weakly efficient solutions 
forms a superset of the set of efficient solutions and contains also those feasible 

(a) (b) (c)

Fig. 13  Performance of all cost criteria J
i

Fig. 14  Visualization of the 
resulting nondominated set
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solutions for which just no other feasible solution exists which strictly improves all 
objective functions at the same time. However, in our case the solutions are addi-
tionally constrained by the bounds (5.3) in Algorithm 2, which “cut off” these extre-
mal points, cf. Fig. 14. Since according to our numerical experience this is the situ-
ation in all our numerical tests, we can rule out that our algorithm yields weakly 
efficient solutions which are not also efficient.

Example 7.1 (Reactor Part 3) We consider again the isothermal reactor from Exam-
ple 6.1 with the same constants and constraints. For the simulation we used Algo-
rithm 2 with the different selection rules described above for choosing the subse-
quent efficient solution u⋆

c(k)
 . In all simulations we consider the MPC-horizon N = 5 

and use the same first efficient solution u⋆
c(0)

 which is chosen as in Example 6.1. In 
Fig. 16 the first and the second nondominated set are shown.

The colored points are the efficient solutions chosen according to the respective 
selection rules. While in all simulations the same first efficient solution is chosen, 
we compare different selection rules for the subsequent efficient solutions, which 
are, however, fixed during the iterations. The different selection rules are visualized 
in Fig.  16 on the right-hand side. Further, in Fig.  17 we visualized the nondomi-
nated set and the corresponding chosen subsequent efficient solutions in iteration 
step k = 6.

We remark that the magnitudes of the cost functionals and, thus, the size and the 
location of the nondominated sets are significantly different for the three selection 
rules. While the nondominated set for “min 2” (right) has a range from 7 to 13 and 
from -58 to -52, the nondominated set for “min 1” (mid) is substantially smaller 
with a range from 0.5 to 0.8 and from -36 to -34.6. The nondominated set for “ideal” 
(left) lies between those for “min 1” and “min 2”. Hence, for each selection rule the 
subsequent efficient solutions are chosen not only according to different rules, but 
also from completely different nondominated sets. This indicates that the choice of 
the efficient solutions should have an impact on convergence rate and performance. 
Fig. 18 illustrates the resulting closed-loop trajectories.

On the left-hand side in Fig.  18 we observe that for the first component of 
the trajectory cA all selection rules deliver a similar behavior. In contrast, on the 
right-hand side, the behavior of the second component cB depends strongly on the 

Fig. 15  Visualization of the 
selection rule “ideal”
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selection rule. The rule “min 2” aims to maximize the economic yield. Therefore, 
the second component of the closed-loop has large values and converges only 
slowly to the equilibrium. While the trajectory of “min 1” reaches a small neigh-
borhood of the equilibrium within 15 iteration steps, “min 2” needs about 2000 
iterations to get similarly close to the equilibrium. In Fig. 19, we visualize the cost 
criteria JN

1
 and JN

2
.

Here, we observe that “min 1” results in a significantly smaller J1 than the other 
strategies, while J2 is the largest, whereas “min 2” enforces exactly the opposite. In 
terms of the cost, the main feature of “ideal” becomes particularly clear. The selec-
tion rule “ideal” yields a compromise between both costs, which in this example 
turns out to be closer to “min 1” than to “min 2”.

While the results in Example 7.1 show precisely the behavior that one would 
expect from the different selection rules, a priori it was not clear that the quantitative 
differences are so pronounced. Indeed, as the following example shows, the effect of 
the different rules can also be almost negligible.

Example 7.2 We consider an economic growth model, introduced in [6]. The system 
dynamic is given by

and the stage cost by

x(k + 1) = u(k), k ∈ ℕ,

�1(x, u) = − ln(Ax� − u),

Fig. 16  First and second nondominated set with the chosen efficient solutions

(a) (b) (c)

Fig. 17  Nondominated set in iteration step k = 6 for the different selection rules
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with parameters A = 5 and � = 0.34 . We impose state and control constraints 
� = [0, 10] and � = [0.1, 5] . As calculated in [7], the equilibrium for which the 
problem is strictly dissipative is given by (xe, ue) = (xe, xe) ≈ (2.23, 2.23) . We use 
the equilibrium to set the endpoint terminal constraint �0 = {xe} . Next, we intro-
duce the second stage cost

which additionally stabilizes the equilibrium. Thus, the multiobjective optimal con-
trol problem reads

Due to the strict dissipativity, the stage cost �1 fulfills the required Assumption 3.1 
and 4.4. Since we have introduced endpoint terminal constraints Assumption 5.4 
holds with the same argument as in Example 6.2. Hence, this example fits in our 

�2(x, u) = (x − xe)2 + 0.1(u − ue)2,

(7.1)

min
u∈�N (x0)

JN(x0, u) =

(
N−1∑
k=0

�1(x(k, x0), u(k)),

N−1∑
k=0

�2(x(k, x0), u(k))

)

s.t. x(k + 1) = u(k)

x(0) = 5

x(N, x0) ∈ �0 = {(2.23, 2.23)}

� = [0, 10], � = [0.1, 5]

Fig. 18  Components of the closed-loop trajectory for the different heuristics

Fig. 19  Cost criteria J
1

 and J
2

 for the different heuristics
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theoretical setting. Now we check whether the choice of the subsequent efficient 
solution in Algorithm 2 has an impact on the solution behavior. To this end, we con-
sider the MPC-horizon N = 10 and the different selection rules as in Example 7.1. 
We chose the first efficient solution such that J10(x0, u⋆x0 ) = (−15.085, 7.892).

In Fig. 20 we observe that in the second iteration only one single point is cut out 
of the nondominated set and, thus, there is no more degree of freedom in choos-
ing the efficient solution. This suggests that the selection rules have no impact on 
the solution behavior. This is confirmed by Fig.  21, as there are no differences—
except for numerical inaccuracies—in the trajectories resulting from the selection 
rules. The same phenomenon is reflected in the costs. Thus, we can conclude that for 
this example the choice of the subsequent efficient solutions has no influence on the 
behavior of the trajectory and the cost criteria.

In summary, we can say that the implementation of different selection rules for 
the subsequent efficient solutions can make a significant difference for the resulting 
closed loop trajectories and costs, as seen in Example 7.1. In contrast, Example 7.2 
shows that this difference may also be negligible.

8  Conclusion and outlook

In this paper we have introduced a new multiobjective MPC algorithm for which 
we require strong assumptions, i.e., strict dissipativity and the existence of a com-
patible terminal cost, only for the first cost criterion. For this algorithm we have 

Fig. 20  Resulting nondominated 
set

Fig. 21  Closed-loop trajectories
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shown a performance estimate for the first cost function JN
1

 as well as averaged per-
formance estimates for all cost function JN

i
 , i = 1,… , s . Under suitable technical 

assumption we have shown asymptotic stability of the closed-loop trajectory using 
time-varying Lyapunov functions. Further, for the algorithm introduced in [18] and 
using our assumption we state a performance theorem for the other cost functions 
JN
i

 , i = 2,… , s , again without requiring strict dissipativity for these costs. In addi-
tion, we have numerically illustrated our theoretical results and, in the course of this, 
investigated the influence on the solution behavior of selection rules for the choice 
of the subsequent efficient solutions. For this influence we have shown that, depend-
ing on the concrete example, it may be significant or negligible.

For future research it would be interesting to investigate theoretical performance 
estimates for different selection rules. In Sect.7 we have observed that for some 
selection rules the upper bound of the performance of the cost function is sharp, 
while for other selection rules it is not. Thus, the question arises whether we can 
refine our estimates by taking into account the selection rules from the second itera-
tion on is still open. Another point is the efficiency of the resulting closed-loop tra-
jectory on the infinite time horizon and the corresponding MPC feedback. The ques-
tion whether we can state an optimality result comparable to those for the standard 
MPC case, see for instance [16, 17], still remains open.
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