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Abstract: The effort of numerical heat transfer calculations increases with the complexity and size
of the domains and surfaces under consideration. When calculating heat transfers on finned arrays,
one way to reduce this effort is to substitute the fins. Therefore, this work defines the fin substitution
factor by considering that a smooth surface behaves thermally sufficiently similar to a specific finned
array. A process for determining the case-specific most accurate analytical computation path for
fin substitution factors is also defined. The performance of the process and the resulting solution
is demonstrated using the example of vertical rectangular finned arrays under natural convective
heat transfer with a constant fin base temperature and air as the surrounding fluid. The heat flows
determined in solid-state simulations of flat plates considering fin substitution factors deviated by an
average of 6.2% from the heat flows resulting from detailed CFD simulations of the corresponding
finned arrays.

Keywords: thermal simulation; natural convection; CFD; FEM; fin substation factor

1. Introduction

The numerical simulation of natural convective heat transfer corresponds to the state
of the art and is used in various cases. Especially when considering cooling fins, the
focus is usually on analyzing the thermal processes or optimizing fin geometries and
arrangements. Senapati et al. [1,2] examined the heat transfer to annular finned cylinders.
His work focused on developing a Nusselt number correlation for the horizontal and
vertical orientation and the investigation of the optimal fin spacing and fin-to-cylinder
diameter ratio for these two cases. Wong et al. [3] carried out similar studies on horizontal
annular finned cylinders, in which they also considered the influence of different fin
materials. Mehrtash and Tari [4,5] investigated numerically flat plates with rectangular fins
with different inclinations, whereby the fins were always oriented in the flow direction.
Moreover, they defined correlations for estimating convective heat transfer rates. In contrast,
Shen et al. [6] considered cross-flow rectangular finned arrays at different inclinations and
presented a Nusselt number correlation for such cases.

In all the works mentioned above, numerical flow simulations were used. Depending
on the fluid, its behavior, the geometry, and the level of detail, the computational effort
can be very intensive. This is also because processes in the thermal and velocity boundary
layer are decisive for the natural convective heat transfer [7]. To map the convective heat
transfer with sufficient accuracy in numerical simulations, a sufficiently fine discretization
of the flow domain and a suitable mapping of the near-wall turbulence are necessary. The
larger and more complex the domain, the greater the calculation effort. Depending on the
problem and the focus of the investigation, the computational effort can be reduced through
various options, such as exploiting symmetry properties or using less computationally
intensive material models and turbulence models [8].

When considering heat transfer processes on finned surfaces, there are more options
to reduce the modeling and calculation effort. The simplest option is to assume a smooth
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surface and neglect the fins, whereby conservative results are achieved [9]. Another option
is to simulate smooth surfaces using experimentally determined, fin-specific factors. The
purpose of such factors is that a smooth surface behaves thermally sufficiently similar to
a specific finned array with its use. With such factors, it is possible to model, discretize
and simulate only the geometrically simpler base body of the finned array [10,11]. How-
ever, the experimental determination of such factors is laborious, especially in the case of
complex structures.

Such factors to simplify simulation models correspond to the state of the art and are
available in various simulation programs. With Ansys Fluent, for example, it is possible to
define a convective augmentation factor (CAF) or a specific roughness for a surface. With
both, the heat transfer can be manipulated [10,12].

Regardless of the designation of the respective factors, the challenge is to calculate
them correctly as long as there is no reliable experimental data. Following the authors’ re-
search, there is neither a clear definition nor a corresponding analytical calculation method
for such factors yet. The present work contributes to closing this research gap by defining
both the fin substitution factor (FSF) and a process for determining the best FSF analytical
calculation method for certain boundary conditions. The approach is demonstrated in the
example of vertical rectangular finned arrays considering natural convective heat transfer
but can be applied to other fin profiles, fin orientations, and boundary conditions. With the
approach presented in this work, thermal simulations of finned surfaces can be accelerated,
both during modeling and during calculation.

2. Materials and Methods

In principle, the approach presented under Section 3 is suitable for different fin
geometries and arrays as well as thermal and fluid dynamic boundary conditions. However,
the approach is only demonstrated in a simplified special case.

Concerning the geometry of the fins and their orientation, only rectangular fins of a
vertical finned array are considered because this is one of the best-studied cases.

For the same reason, air is chosen as the surrounding fluid.
The heat dissipation in finned arrays results from natural convection and thermal

radiation. In the temperature range considered in this work, heat dissipation by natural
convection dominates. However, it should be emphasized that the greater the temperature
difference between the heat-emitting surface and the environment, the greater the propor-
tion of heat that is dissipated by radiation [13]. In the following only natural convection is
considered. There are two reasons for this: firstly, it is easier if the approach is only demon-
strated using one heat transfer mechanism, and secondly, neglecting radiation leads to
conservative results. However, thermal radiation can also be considered with the presented
approach. This is possible, for example, by linearizing the thermal radiation and forming
an effective heat transfer coefficient [13].

The space between two fins can be viewed as a semi-enclosed channel. Concerning
the thermal boundary condition, when determining the Nusselt numbers in such channels,
a distinction is made between a constant temperature and a constant heat flow at the fin
base. Only isothermal cases were considered.

In summary, the heat transfer of vertical rectangular finned arrays via natural convec-
tion with air as surrounding fluid and a constant fin base temperature was chosen as the
demonstration case.

The approach requires analytical equations and empiric correlations as well as flow
simulations (CFD) and solid-state simulations (FEM). Already existing equations and
correlations for the selected demonstration case were used. The simulation models were
also designed for the demonstration case. These and the material properties of the used air
are described below.
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2.1. Temperature-Dependent Properties of Air

Table 1 shows the used material properties of air, which are used in the formulas,
correlations, and simulation models. An average temperature is calculated between the
ambient and the fin base temperature if necessary. The properties of air are determined for
this average temperature via linear interpolation.

Table 1. Temperature-dependent material properties of air [13].

T
(K)

ρ
(kg/m3)

ν
(kg/m s)

k
(W/m K)

cp
(J/kg K)

β
(1/K)

273 1.276 × 100 1.722 × 10−5 2.436 × 10−2 1.006 × 103 3.674 × 10−3

293 1.189 × 100 1.821 × 10−5 2.587 × 10−2 1.006 × 103 3.421 × 10−3

373 9.333 × 10−1 2.190 × 10−5 3.162 × 10−2 1.011 × 103 2.684 × 10−3

473 7.359 × 10−1 2.605 × 10−5 3.823 × 10−2 1.025 × 103 2.115 × 10−3

573 6.075 × 10−1 2.981 × 10−5 4.442 × 10−2 1.045 × 103 1.745 × 10−3

2.2. Analytical Formulas

The authors would like to point out that there is no claim to completeness concerning
these formulas.

2.2.1. Surfaces of the Smooth and Finned Surface

Figure 1 shows the designations of a flat plate and a vertical rectangular finned array.
The area of smooth surface A0, which corresponds to the area of the finned array, is
calculated as

A0 = W·L (1)
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Figure 1. Schematic representation of a flat plate (a) and a vertical rectangular finned array (b).

Concerning the finned array, the perimeter Pf, the cross-sectional area Af,cs, the surface
area Af,s, total fin area Af, and the fin base area Afb are calculated using the formulas below.
The end surfaces of the fin or the finned array are neglected.

Pf = 2H + B (2)

A f ,cs = B L (3)

A f ,s = (2H + B) L (4)

A f = A f ,s n (5)

A f b = b L n (6)
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2.2.2. Parameters for Plates

In general, heat transfer coefficients h can be calculated with the Nusselt number Nu,
the thermal conductivity of the fluid kfluid, and the characteristic length Lspe according to
the following formula [14].

h =
Nu k f luid

Lspe
(7)

The case study shown in Section 3.3 requires the Nusselt numbers for vertical plates as
well as for horizontal plates with both top and bottom heat dissipation. For the correlation
of each Nusselt number, a specific Rayleigh number Ra has to be determined. This is
calculated using the fluid-specific variables, density ρ, specific heat capacity cp, thermal
expansion coefficient β, kinematic viscosity ν, as well as the acceleration of gravity g and the
temperature difference between the surface TS,i and the environment using the following
formula [13].

Rai =
cp,i g βi ρi (TS,i − T∞) L3

spe,i

υt k f luid,i
(8)

Every part of the Formula (8) is case-specific. One of these is the characteristic length,
which describes the dimension that is decisive for convective heat transfer. With a vertical
plate, the characteristic length corresponds to the height of the plate [13].

Lspe,vp = L (9)

In the case of a horizontal plate with an upward or downward heat flow, it is calculated
according to the following formula [13].

Lspe,hp =
L W

2 (L + W)
(10)

According to Churchill and Chu [15], Nusselt numbers for a vertical plate are deter-
mined using

Nuvp =

0.825 + 0.387

Ravp

(
1 +

(
0.492

Pr

) 9
16
)− 16

9

 1
6


2

for 10−1 < Ravp < 1012 and 0.001 < Pr < ∞

(11)

A distinction must be made between laminar and turbulent flow for the Nusselt
number of a horizontal plate with upward heat flow [16].

Nuhp,u lam = 0.766

(
Rahp

(
1 −

( 0.322
Pr
) 11

20

)− 20
11
) 1

5

for 7 × 104 < Rahp

(12)

Nuhp,u tur = 0.15

(
Rahp

(
1 −

( 0.322
Pr
) 11

20

)− 20
11
) 1

3

for 7 × 104 < Rahp

(13)

Only a laminar boundary layer flow is expected for a horizontal plate with a downward
directed heat flow, even with large Rayleigh numbers. So the Nusselt number is calculated
using the following formula [16].
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Nuhp,u lam = 0.766

(
Rahp

(
1 −

( 0.322
Pr
) 11

20

)− 20
11
) 1

5

for 7 × 104 < Rahp

(14)

2.2.3. Parameters for Vertical Rectangular Finned Arrays

In contrast to flat plates, many Nusselt number correlations exist for vertical rectangu-
lar finned arrays. Regardless of the correlation, the characteristic length applies to vertical
finned arrays [14]:

Lspe,v f a = L (15)

Vertical channel flows can approximate flow and heat dissipation within vertical
rectangular finned arrays. With such channels, the Rayleigh number has to be determined
using the special formulation below, where thermal diffusivity α is used [17].

Rav f a,T =
g β (Ts − T∞) b3

υ α

b
L

(16)

There are different Nusselt number correlations for vertical rectangular finned arrays
based on experiments. In the course of this work, it will be worked out which of these
correlations can be used to determine the FSF so that there is the highest possible thermal
similarity between a smooth and a specific finned surface. Below, the correlations for
isothermal boundary conditions are listed. The respective index refers to the author.

Elenbaas [18]:

NuEl =
Rav f a,T

24

(
1 − e

− 35
Rav f a,T

)0.75

(17)

Aihara [19]:

NuAi =
Rav f a,T

24

(
1 − e

− 32.7
Rav f a,T

)0.75

(18)

Bar-Cohen et al. [20]:

NuBa =

 576
Rav f a,T

2 +
2.873√
Rav f a,T

−0.5

(19)

Rohsenow et al. [21]:

NuRo =

((Rav f a,T

24

)−1.9

+
(

cRoCRoRav f a,T
0.25
)−1.9

)− 1
1.9

(20)

Olsson [22]:

NuOl =

((Rav f a,T

24

)−1.3

+
(

cRoCRoRav f a,T
0.25
)−1.3

)− 1
1.3

(21)

Concerning Formulas (20) and (21) cRo can take values between 1 and 1.32, and CRo
has to be calculated according to the following equation [21].

CRo =
0.671[

1 +
(

0.492
Pr

) 9
16
] 4

9
(22)
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An ideal fin would have an infinitely high thermal conductivity, and therefore, the
temperature at every point of the fin would be the same as at the fin base. As a result, a
maximum heat flow could be given off to the environment. The fin efficiency η sets the
transferable heat of a real fin Qreal in ratio to that one of an ideal fin Qideal. It is defined
as [13]:

η f =
Qreal
Qideal

=
Qreal

h f A f ,s

(
Tf b − T∞

) ≤ 1 (23)

In addition to the heat transfer from solid to fluid, the heat transport in the fins must
also be considered. This is possible via fin efficiency. It depends on the temperature
distribution in the fin and the fin geometry. For rectangular fins with heat transfer via all
fin surfaces, fin efficiency can be determined using the Biot Number Bi and in parameter
µ [16].

η f =
1

µ
(

L +
A f ,cs

Pf

) sinh(µL) + Bi
µL cosh(µL)

cosh(µL) + + Bi
µL sinh(µL)

(24)

µ =

√
h f Pf

k f A f ,cs
(25)

Bi =
h Lspe

k f luid
(26)

2.3. Hardware and Software

In the course of this work, CFD and solid-state simulations were used. All simulations
were performed with the academic version of ANSYS Workbench 2020 R2. ANSYS Fluent
was used for the CFD simulations and the ANSYS Mechanical module steady-state thermal
for the solid-state simulations. All simulations were performed on a Windows 10 64-bit PC
with 18 Intel(R) Core(TM) i9-10980XE CPU @ 3.00 GHz (36 threads), 128 GB random access
memory and 2 × 4 TB HDD data storage.

2.4. CFD Simulation Modeling

Only steady-state cases were considered. The dimensions of the fluid domain depend
on the dimensions of the finned array, as shown in Figure 2a. Concerning the simplifications
and the types of boundary conditions, the authors followed the modeling strategies of
Senapati et al. [1] and Wong et al. [3]. Surfaces 1, 2, 3, 5, and 6 of the fluid domain had the
boundary condition pressure outlet, with a backflow total temperature corresponding to
the ambient temperature. Surface 4 was defined as an adiabatic wall. The constant fin base
temperature was specified on the back of the fin base plate.

To model the heat transfer close to the wall with sufficient accuracy, the turbulence
model and meshing had to be coordinated. Based on the results of Wu et al. [23] and
Jeong et al. [24] the k-ω SST turbulence model was used. The computational domains
were partitioned to create structured grids, see Figure 2b. In principle, the grid depends
on the dimensions of the finned array under consideration. The meshing was controlled
edge-specifically via the number of elements. The elements grew towards the flow domain
starting from the fin surface, see Figure 2c. Depending on the case under consideration,
the growth rate was between 5 and 8. For all used discretization, it was checked that the
dimensionless wall distance y+ at the solid-fluid interface was near 1 [12].
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The fluid behavior was approximated by Boussinesq approximation and specified by
the thermal expansion coefficient and the air density in each case at ambient temperature.
Based on all simulations, a maximum fin base temperature of 473 K and a minimum ambient
temperature of 293 K with a corresponding thermal expansion coefficient of 0.003421
1/K occurred. These values satisfy the following condition for using the Boussinesq
approximation [12].

β
(

Tf b − T∞

)
= 0.616 � 1 (27)

The maximum number of iterations was 500 for each simulation. Further simulation
settings are summarized in Table 2.

Table 2. CFD simulation settings.

Parameter Setting Parameter Setting

Solution Method Residuals
Pressure-Velocity-Coupling Coupled continuity 10−6

Spatial Discretization x-velocity 10−6

Gradient Least Square Cell Based y-velocity 10−6

Pressure PRESTO! z-velocity 10−6

Momentum Second Order Upwind energy 10−6

Turbulent Kinetic Energy Second Order Upwind k 10−6

Specific Dissipation Rate Second Order Upwind ω 10−6

Energy Second Order Upwind
Pseudo Transient

2.5. Solid-State Simulation Modeling

The Finite-Element-Method (FEM) was used for solid-state simulations. Only steady-
state cases were considered. Concerning the FEM simulation model, only the base plate of
the respective finned array was considered, see Figure 2d. The corresponding temperature
at the fin base was a boundary condition on a front surface. There was a convection
boundary condition defined on the opposite front surface, with the ambient temperature
and a variable heat transfer coefficient. Depending on the investigation, the case-specific
product of a FSF and a heat transfer coefficient of a smooth surface were defined as the
value for this variable heat transfer coefficient. The lateral surfaces of the plate also had
convection boundary conditions. The corresponding parameters had to be calculated
according to the formulas (Section 2.2.3). The structured mesh consisted of quadratic
hexahedrons with an element size of 5 mm. A convergence study verified the mesh quality.
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3. Results
3.1. Definition of the Fin Substitution Factor

A smooth surface should behave thermally sufficiently similar to a specific finned
surface using the FSF. Thereby the smooth surface should have the same dimensions as the
base plate of the finned array. Both surfaces are thermally similar if:

• Identical temperatures exist for the smooth surface and the fin base
• Identical heat flows of the smooth and the ripped surfaces

The FSF results from the heat flows of the smooth and the finned surfaces, shown in
Figure 1, whereby the focus in this work is just on natural convective heat transfer. The
convective heat flow Q0 of a smooth surface is calculated by

Q0 = h0·A0·(Ts − T∞) (28)

and depends on the difference between the surface TS and the ambient temperature T∞, the
size of the surface itself A0, and the heat transfer coefficient h0 [13,14]. The heat conduction
in the fins must also be taken into account with a finned surface. This can be done via the
thermal fin efficiency η. The heat flow of a finned surface Qf can be determined using the
heat transfer coefficient hf, the areas of the fins Af and the fin base Afb and the temperature
difference between the fin base Tfb and the ambient [13,14].

Q f = h f ·
(

A f b + η·A f

)
·
(

Tf b − T∞

)
(29)

The FSF is defined as the ratio of the heat flow from the finned surface to the heat flow
emitted by the smooth surface.

FSF =
Q f

QO
=

h f ·
(

A f b + η·A f

)
·
(

Tf b − T∞

)
h0·A0·(Ts − T∞)

(30)

Taking into account the objective that the temperature of the smooth surface should
correspond to that one at the fin base, the definition of the FSF can be simplified as follows

FSF =
Q f

QO
=

h f

h0
·

(
A f b + η·A f

)
A0

(31)

On closer examination of this definition, the FSF consists of parameters describing
geometry (Afb, Af, A0), heat conduction (η), and heat transfer (hf, h0).

3.2. Method for Determining Fin Substitution Factor

The challenge in determining the FSF is to define a suitable calculation path for a
specific case. Therefore, a process is presented, which is shown schematically in Figure 3.

The task is to define an analytical FSF calculation path for a specific fin geometry and
for specific thermal boundary conditions. The measure of the quality of the calculated FSF
is its ability to produce the greatest possible thermal similarity between a smooth surface
and the corresponding fin array.

In the first process step, many parameters must be specified. Thereby a distinction
is necessary between high-level parameters and low-level parameters. The analytical
formulas or empirical correlations used later in the process are decisive for this classification.
Because some of these formulas only have a limited scope of application and validity. All
parameters that are decisive for these restrictions are high-level parameters. These are:

• Shape of the fins
• Orientation of the finned array
• Type of surrounding fluid
• Type of the thermal boundary conditions
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All other parameters of the analytical or analytical-empirical equations are low-level
parameters. These parameters have to be varied to find the best FSF calculation path.
These include:

• Geometric dimensions of the finned array
• Fluid and Material parameters
• Values of the thermal boundary conditions

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 17 
 

 
Figure 3. Process for determining the specific analytical FSF calculation method. 

The task is to define an analytical FSF calculation path for a specific fin geometry and 
for specific thermal boundary conditions. The measure of the quality of the calculated FSF 
is its ability to produce the greatest possible thermal similarity between a smooth surface 
and the corresponding fin array. 

In the first process step, many parameters must be specified. Thereby a distinction is 
necessary between high-level parameters and low-level parameters. The analytical formu-
las or empirical correlations used later in the process are decisive for this classification. 
Because some of these formulas only have a limited scope of application and validity. All 
parameters that are decisive for these restrictions are high-level parameters. These are: 
• Shape of the fins 
• Orientation of the finned array 
• Type of surrounding fluid 
• Type of the thermal boundary conditions 

All other parameters of the analytical or analytical-empirical equations are low-level 
parameters. These parameters have to be varied to find the best FSF calculation path. 
These include: 

Figure 3. Process for determining the specific analytical FSF calculation method.

After defining the high-level parameters, any number j of configurations can be
generated by varying the low-level parameters. The further process has to be run through
once for each of these configurations. Basically, the larger the interval and the number of
values of each low-level parameter, the more configurations can be considered, and the
more general is the resulting analytical FSF calculation path of this process. Starting with
the first configuration, i = 1, the following process steps have to be completed:

The second process step calculates the respective configuration in a detailed CFD
simulation. It is important to ensure that the fluid domain around the finned array is large
enough not to affect the heat transfer process. The discretization must be fine enough not
to affect the result. The output of this step is a particular heat flow Qfb,i, which is given off
by the finned array under the given boundary conditions.
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The third process step aims to determine a vector of manipulated heat flows from the
smooth surface to the ambient air. Therefore, a large number of solid-state simulations are
carried out. Only the smooth surface and the corresponding thermal boundary conditions
at the fin base are considered within those simulations. The side where the fins are located
obtains a convection boundary condition. The heat transfer coefficient of this boundary
condition has to be varied in a certain interval. Investigations of the interval limits for
this parameter for different cases have shown that it is sufficient to vary the heat transfer
coefficient between 1 and 500 times that value, which can be determined analytically for
the corresponding smooth surface. The output of this step is a vector of manipulated heat
flows, depending on the heat transfer coefficient.

In the fourth process step, the heat flow of the second step is compared with each
entry in the vector of the third step. This step aims to find out at which heat transfer
coefficient the heat flow of the smooth surface (step 3) corresponds to that of one of the
finned arrays (step 2). Interpolation is possible within certain limits. If a corresponding
transfer coefficient is found, this ratio to the analytically determined one of the smooth
surfaces has to be formed. This ratio is denoted as FSFref,i and corresponds to the reference
value to which the analytically determined FSF of the finned arrays (step 5) should deviate
as little as possible.

The fifth process step aims to serve a vector of FSFs, where each entry results from a
different analytical calculation path. In general, there are many equations and correlations
to determine the various parameters of the chosen finned array. The difficulty is to find the
combination of all these equations that will most accurately determine the FSF. For this
purpose, all possible combinations of equations and correlations must be investigated, and
the corresponding calculation path-dependent FSF must be formed. The output of this step
is the vector of calculation path-dependent FSFi. This vector is determined according to the
subprocess also shown in Figure 3 with the following steps:

• Determination of the case-specific, temperature-dependent air properties
• Calculation of the surfaces of the smooth base body and the finned array
• Calculation of the parameters of the smooth surface
• Calculation of the finned array parameters
• Determination of the FSFi vector

In the sixth process step, the FSFref (step 4) is compared with each entry in the vector
of the fifth step. The evaluation can be done in different ways. In this work, the absolute
deviation and the relative deviation according to the amount for each value FSFi are calcu-
lated. The deviation can be calculated overall as well as low-level parameter-specifically.
The end of this process step is a listing of calculation path-specific deviations.

The seventh process step has to be checked if the process has already been carried out
for all configurations j. If this is not the case, the process must be repeated with the next
configuration. Once all configurations have been considered, the deviations of all j step 6
have to be evaluated.

The evaluation is the eighth and final step of the process. The aim is to find out the
calculation path whose FSFi has the smallest deviations from the different FSFref. It may be
necessary to make low-level parameter-specific definitions of the calculation path.

3.3. Case Study: Natural Convection on Vertical Rectangular Finned Arrays
3.3.1. Specifications

First of all, the high-level parameters had to be defined. For the demonstration case,
these are:

• Shape of the fins: rectangular
• Orientation of the finned array: vertical
• Type of surrounding fluid: air
• Type of the thermal boundary conditions: constant temperature
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Next, many low-level parameter combinations had to be investigated so that the
analytical calculation path was also valid for a large area of application. Table 3 summarizes
all low-level parameters that were varied in this work.

Table 3. Low-level parameters for calculation path determination.

Low-Level Parameters Unit Value

W mm 180
s mm 5
B mm 3

kfin W/m K 130
Tamb K 293

H mm 12.5/25/50/100
L mm 125/250/500
b mm 8.8/14.7/32.4/56
n - 4/6/11/16

Tfb K 303/323/373/423/473

3.3.2. Objectives

Taking a closer look at Formula (31), the FSF consists of three components: geometry
ratios (indicated by index A), heat conduction within the fin (indicated by index η), and
the ratio of the heat transfer (indicated by index h). Especially the computational effort
for the heat transfer coefficients is high. Therefore, the question is answered whether it
is necessary to consider all components or whether a simplified calculation is sufficient.
The following definitions of the FSF are used, whereby the indices indicate the considered
components.

FSF depending on geometric quantities:

FSFA =

(
A f b + A f

)
A0

(32)

FSF depending on geometric quantities and heat conduction in the fins:

FSFA,η =

(
A f b + η f ·A f

)
A0

(33)

FSF depending on geometric quantities and heat transfer:

FSFA,h =
h f

h0
·

(
A f b + A f

)
A0

(34)

FSF depending on geometric quantities, heat conduction, and heat transfer:

FSFA,η,h =
h f

h0
·

(
A f b + η f ·A f

)
A0

(35)

In addition to the components, it is examined which Nusselt number correlation
presented under Section 2.2.3 provides the best results for the considered parameter combi-
nations, listed in Table 3.

3.3.3. Determination of the Calculation Path for Vertical Rectangular Finned Arrays

Due to this choice of parameters, the process shown in Figure 3 was carried out
240 times. A total of 240 flow simulations and 295 solid-state simulations were carried out.

For each low-level parameter combination, there was one FSFref,i (output step 4), and
a vector of analytically determined FSFi (output step 5). In the course of each process step
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6, the absolute and relative deviation according to the amount concerning the respective
FSFref,i was determined for each FSFi. The deviations are determined using the heat flows.
The heat flow, which resulted from the solid-state simulation in connection with the FSF of
the respective calculation path, is always related to that heat flow, which was determined
by the corresponding CFD simulation.

Process step 8 is for evaluation. For these two parameters the relative deviations
according to the amount, Table 4, and the standard deviations formed from the absolute
deviations, Table 5 are used. The indices of the FSF indicate the considered components
(Formulas (32)–(35)) and the respective Nusselt number correlation (Formulas (17)–(21)). If
a number is contained in the index, this refers to the used value of cRo. The deviations are
specified in both overall and low-level parameters. The five FSF calculation paths with the
most accurate results are highlighted for each low-level parameter.

Table 4. The relative deviation according to the amount of the heat flows results from the different
FSFs concerning the respective reference heat flows FSFref,i. The smallest deviations are highlighted.

FSF Overall
Tfb (K) H (mm) L (mm) b (mm)

303 323 373 423 473 12.5 25 50 100 125 250 500 8.8 14.7 32.4 56.0

FSFA 14.12 21.62 17.74 12.97 9.83 8.45 17.28 13.89 11.97 13.35 8.17 12.52 21.68 23.43 14.06 9.63 9.37
FSFA,η,EL 12.86 17.93 12.57 9.41 10.55 13.84 15.78 11.97 11.77 11.91 10.65 11.47 16.45 19.80 11.98 9.53 10.12
FSFA,η,Ai 12.67 17.95 12.59 9.25 10.20 13.37 15.84 12.01 11.61 11.24 10.44 11.27 16.30 19.75 11.83 9.24 9.88
FSFA,η,Ba 12.82 17.92 12.55 9.36 10.49 13.78 15.78 11.96 11.73 11.81 10.61 11.43 16.42 19.85 11.94 9.44 10.04
FSFA,η,Ro1 12.35 18.00 12.64 9.00 9.59 12.55 15.94 12.08 11.32 10.07 10.06 10.96 16.04 19.75 11.55 8.68 9.42

FSFA,η,Ro1.32 13.42 17.89 12.63 9.94 11.51 15.12 15.61 11.87 12.30 13.90 11.24 12.02 17.00 20.02 12.54 10.32 10.79
FSFA,η,Ol1 13.42 17.99 12.72 9.98 11.44 14.96 15.64 11.91 12.32 13.82 11.22 12.00 17.05 20.12 12.69 10.26 10.61

FSFA,η,Ol1.32 14.94 18.13 13.14 11.51 13.83 18.08 15.29 11.87 14.02 18.56 12.70 13.58 18.53 20.48 14.37 12.42 12.48
FSFA,h,EL 9.64 15.62 13.99 8.41 4.62 5.57 12.85 9.20 7.49 9.01 9.92 9.66 9.33 8.75 11.51 10.16 8.14
FSFA,h,Ai 8.04 12.15 9.88 4.64 4.94 8.59 10.40 8.29 7.50 5.97 8.00 7.74 8.39 7.82 8.74 8.75 6.84
FSFA,h,Ba 9.51 15.51 13.44 7.98 4.57 6.06 12.80 9.19 7.47 8.59 9.74 9.34 9.46 9.16 11.62 9.70 7.56
FSFA,h,Ro1 9.65 6.53 4.09 6.95 12.18 18.50 9.80 10.49 12.12 6.19 9.34 8.58 11.02 9.25 8.42 10.41 10.52

FSFA,h,Ro1.32 17.92 23.84 23.33 18.99 14.01 9.44 21.87 17.02 13.97 18.83 18.87 18.53 16.37 14.68 21.94 18.22 16.86
FSFA,h,Ol1 16.73 22.89 21.52 17.45 12.76 9.00 20.39 15.71 13.20 17.60 17.68 16.91 15.59 11.92 22.67 17.75 14.56

FSFA,h,Ol1.32 33.61 35.83 37.27 35.34 31.71 27.87 36.95 32.92 30.29 34.27 35.91 34.13 30.77 22.28 39.48 37.53 35.14
FSFA,η,h,EL 11.58 11.91 9.42 8.49 11.46 16.62 11.52 9.20 11.62 13.97 8.70 10.26 15.79 12.79 12.08 11.50 9.95
FSFA,η,h,Ai 12.71 9.42 7.98 9.69 15.12 21.37 9.89 9.73 14.03 17.21 9.01 11.24 17.89 13.81 12.62 12.75 11.68
FSFA,η,h,Ba 11.83 12.06 9.29 8.57 11.97 17.25 11.54 9.31 12.04 14.43 8.84 10.33 16.32 12.89 12.30 11.77 10.36

FSFA, η,h,Ro1 18.25 9.21 9.44 16.56 24.17 31.87 10.41 14.04 22.63 25.92 13.95 16.47 24.32 18.02 16.76 19.12 19.11
FSFA,η,h,Ro1.32 13.53 19.45 16.72 11.95 9.78 9.75 19.73 13.18 10.08 11.13 13.75 12.39 14.45 13.23 15.56 13.44 11.90
FSFA,η,h,Ol1 13.47 19.14 15.88 11.60 10.00 10.74 18.34 12.81 10.72 12.01 12.88 12.05 15.48 13.78 15.85 13.27 10.98
FSFA,η,h,Ol1.32 25.78 31.66 30.62 26.30 21.80 18.51 34.80 28.26 21.44 18.62 30.41 25.55 21.38 18.26 29.64 28.37 26.83

3.3.4. Validation

In this item, the performance of the specified calculation path is demonstrated by
using examples from the literature. Three rectangular finned arrays from different sources
were considered with three constant fin base temperatures. For each of these nine cases, a
CFD simulation was carried out. Because of the results of Section 3.3.3 for each case, the
respective FSFA,h,Ai was determined. Each FSFA,h,Ai was multiplied by the heat transfer
coefficient of the corresponding smooth surface. The products were specified as the heat
transfer coefficients for the convection boundary condition of the corresponding adapted
solid-state simulation model.

According to Section 3.1, a smooth and a finned surface are thermally the same if the
heat flows are the same at the same ambient and surface temperatures. The heat flows
resulting from the CFD analyses are compared with those of the solid-state simulations
to show the thermal similarity. Furthermore, the relative deviation of these heat flows is
calculated in each case, with the value from the CFD simulation forming the reference value.
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Table 5. The standard deviation of the heat flows results from the different FSFs concerning the
respective reference heat flows FSFref,i. The smallest deviations are highlighted.

FSF Overall
Tfb (K) H (mm) L (mm) b (mm)

303 323 373 423 473 13 25 50 100 125 250 500 8.8 14.7 32.4 56.0

FSFA 1.40 2.06 1.43 1.07 0.91 0.80 0.44 0.70 1.22 2.13 0.77 1.20 1.78 2.19 0.82 0.44 0.33
FSFA,η,EL 1.18 1.75 0.91 0.56 0.63 0.77 0.42 0.66 1.13 1.86 0.81 1.07 1.46 1.95 0.81 0.42 0.35
FSFA,η,Ai 1.17 1.75 0.91 0.55 0.60 0.74 0.42 0.66 1.13 1.85 0.80 1.06 1.45 1.93 0.78 0.40 0.35
FSFA,η,Ba 1.19 1.77 0.91 0.56 0.63 0.77 0.42 0.66 1.13 1.87 0.81 1.08 1.47 1.97 0.80 0.41 0.35
FSFA,η,Ro1 1.16 1.77 0.93 0.53 0.56 0.69 0.42 0.66 1.13 1.84 0.78 1.05 1.45 1.93 0.74 0.38 0.33

FSFA,η,Ro1.32 1.22 1.78 0.92 0.60 0.70 0.85 0.42 0.66 1.15 1.92 0.85 1.12 1.51 2.02 0.87 0.45 0.38
FSFA,η,Ol1 1.24 1.80 0.96 0.62 0.70 0.85 0.42 0.67 1.16 1.95 0.86 1.13 1.53 2.03 0.89 0.45 0.37

FSFA,η,Ol1.32 1.32 1.82 0.99 0.73 0.85 1.02 0.42 0.67 1.19 2.05 0.96 1.22 1.61 2.12 1.06 0.54 0.43
FSFA,h,EL 0.55 0.51 0.50 0.44 0.39 0.40 0.23 0.31 0.49 0.69 0.63 0.50 0.45 0.68 0.59 0.46 0.26
FSFA,h,Ai 0.47 0.38 0.34 0.30 0.31 0.41 0.22 0.30 0.49 0.62 0.51 0.44 0.44 0.63 0.49 0.39 0.23
FSFA,h,Ba 0.56 0.58 0.55 0.46 0.38 0.37 0.25 0.33 0.50 0.74 0.65 0.51 0.47 0.72 0.61 0.44 0.25
FSFA,h,Ro1 0.49 0.29 0.19 0.24 0.39 0.55 0.21 0.31 0.52 0.61 0.49 0.47 0.51 0.70 0.50 0.34 0.24

FSFA,h,Ro1.32 0.96 0.98 1.02 0.98 0.87 0.77 0.30 0.40 0.61 1.17 1.14 0.89 0.71 1.18 1.06 0.71 0.40
FSFA,h,Ol1 0.99 1.00 1.02 1.00 0.93 0.86 0.32 0.44 0.70 1.34 1.15 0.89 0.79 1.14 1.11 0.71 0.37

FSFA,h,Ol1.32 2.07 1.91 2.08 2.17 2.11 2.01 0.47 0.72 1.22 2.51 2.44 1.90 1.53 2.39 2.43 1.47 0.85
FSFA,η,h,EL 0.86 0.40 0.44 0.67 0.87 1.06 0.23 0.34 0.66 1.23 0.58 0.78 1.04 1.24 0.91 0.54 0.37
FSFA,η,h,Ai 0.91 0.38 0.47 0.73 0.95 1.15 0.22 0.34 0.67 1.23 0.65 0.86 1.09 1.32 0.96 0.55 0.39
FSFA,η,h,Ba 0.85 0.46 0.46 0.65 0.84 1.03 0.25 0.35 0.64 1.20 0.57 0.76 1.03 1.22 0.92 0.55 0.38
FSFA, η,h,Ro1 1.01 0.46 0.59 0.87 1.09 1.28 0.22 0.34 0.69 1.24 0.81 0.99 1.18 1.45 1.08 0.60 0.44
FSFA,η,h,Ro1.32 0.83 0.67 0.60 0.63 0.75 0.90 0.29 0.41 0.70 1.35 0.60 0.61 0.93 1.17 0.89 0.57 0.35
FSFA,η,h,Ol1 0.89 0.76 0.69 0.73 0.84 0.98 0.31 0.44 0.75 1.43 0.60 0.69 1.03 1.24 0.88 0.58 0.36
FSFA,η,h,Ol1.32 1.28 1.35 1.27 1.19 1.15 1.17 0.46 0.68 1.12 2.08 1.31 0.83 1.00 1.64 1.36 0.87 0.49

Table 6 lists all dimensions, isothermal boundary conditions, and the simulations’
results.

Table 6. Dimensions, boundary conditions, output and relative deviation of the finned arrays.

Parameter Unit Examples from Literature

Source - [25] [26] [27]

s mm 5.00 25.00 4.00
W mm 180.00 150.00 250.00
B mm 3.00 2.00 3.00
H mm 25.00 50.00 15.00
L mm 340.00 200.00 100.00
b mm 14.70 16.50 16.00
n - 11.00 9.00 14.00
kf W/m K 130.00 200.00 200.00

T∞ K 293.00 301.30 293.00
Tfb K 314.5 339.0 360.0 314.3 333.8 351.8 323.0 338.0 353.0
hvp W/m2 K 4.37 5.34 5.86 4.01 5.12 5.73 5.68 6.27 6.70

FSFA,h,Ai - 3.66 3.64 3.62 7.01 6.94 6.89 2.85 2.83 2.82
QCFD W 18.48 50.20 82.26 10.99 35.89 63.54 11.06 18.76 27.50

QFEA+FSF W 21.03 54.74 87.01 10.93 34.50 59.43 12.11 19.96 27.38
Dev. % 13.77 9.04 5.77 −0.57 −3.88 −6.47 9.48 6.39 −0.45

4. Discussion and Conclusions

The overarching goal of the authors’ research is to accelerate heat transfer simulations
of finned arrays. For this purpose, the authors have defined the FSF and developed a
process whose output is the most accurate analytical FSF calculation path for a given case.
The performance of the approach was demonstrated using the example of a vertical finned
array under natural convection with an isothermal temperature at the fin base. Based on
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this case study and the results presented in Tables 4 and 5, the following conclusions can
be drawn:

1. FSFs were determined based solely on geometric ratios, and the heat conduction
showed the largest deviations both overall and concerning low-level parameters.
Thus, these calculation paths were unsuitable.

2. The same applies to the calculation paths, which consider all three components.
Looking at all, the results FSFA,η,h,EL were the exception, as this calculation path was
among the five most accurate ones.

3. The paths considering the geometric and heat transfer components gave the best
results. Four of the five most accurate calculation paths were among these concerning
the overall mean deviation and the overall standard deviation. The FSFA,h,Ro1 path
had the best results for low fin base temperatures. There was no single calculation path
for higher temperatures and different fin heights that turned out to be particularly
accurate. The performance of the FSFA,h,El, FSFA,h,Ai, FSFA,h,Ba and FSFA,h,Ro1 paths
were very similar for these parameters. For longer fin lengths and almost all examined
fin spacing, the FSFA,h,Ai path was the best one.

4. The FSFA,h,Ai path gave the best results with an 8% overall mean deviation and an
overall standard deviation of 0.5. For this reason, this calculation path is recommended
for the analytical determination of the FSF for vertical rectangular finned arrays
considering natural convection with air as surrounding fluid and an isothermal
boundary condition.

In Section 3.3.4. the FSFA,h,Ai path was verified using three different fin arrays at three
different temperatures. The deviation between the results of the CFD simulations and the
solid-state simulations (FEA) using the FSFA,h,Ai were between −6.47% and 13.77%. The
average relative deviation according to the amount of overall simulations was 6.2%. In light
of these results, the approach presented in this work is suitable for accelerating thermal
simulations and achieves sufficiently accurate results simultaneously.

As an alternative to the methods presented or used in [9–11] to substitute cooling fins,
our approach offers an analytical solution. Provided that the corresponding formulas and
correlations are available or that existing ones can be transferred, thermal simulations of
any fin geometries and orientations can be simplified under various boundary conditions.
The technical benefit of the approach becomes evident when correspondingly large and
complex components are considered, such as large transformers or dry storage casks for
spent fuel assemblies.

The authors’ future research focuses on defining different analytical calculation paths,
e.g., for constant heat flow boundary conditions instead of an isothermal one or other fin
shapes and orientations. In addition to natural convection, radiation-related heat transfer
should also be considered to depict real problems with FSF more precisely.
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Nomenclature

A0 area smooth surface
Afa area finned array
Afb area fin base
Af area of all fins
Af,cs cross-sectional area of one fine
Af,s area of one fin
B fin width
b fin spacing
Bi Biot number
cRo Rohsenow parameter
CRo Rohsenow parameter
CFD Computational fluid dynamics
cp specific heat capacity
FEM Finite-Element-Method
FSF fin substitution factor
g acceleration of gravity
H fin hight
h heat transfer coefficient
h0 heat transfer coefficient smooth surface
hf heat transfer coefficient finned array
kfluid conductivity fluid
kf conductivity fins
L fin length
Lspe specific length
n number of fins
Nu Nusselt number
Pf perimeter of one fin
Pr Prandtl number
Q0 Heat flux smooth surface
QCFD Heat flux flow simulation
Qf Heat flux finned array
QFEM+FSF Heat flux solid-state simulation
Ra Rayleigh number
s base plate thickness
T∞ ambient temperature
TS surface temperature
Tfb fin base temperature
W base plate width
y+ dimensionless wall distance
α thermal diffusivity
β thermal expansion coefficient
ηf fin efficiency
µ fin parameter
ν kinematic viscosity
ρ density
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