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Environmentally suitable habitats of Aedes albopictus (Ae. albopictus) in Europe are identified
by several modeling studies. However, it is noticeable that even after decades of invasion
process in Europe, the vector mosquito has not yet been established in all its environmentally
suitable areas. Natural barriers and human-mediated transport play a role, but the potential of
wind speed to explainAe. albopictus’ absences and its inability to establish in its suitable areas
are largely unknown. This study therefore evaluates the potential of wind speed as an
explanatory parameter of the non-occurrence of Ae. albopictus. We developed a global
ecological niche model with relevant environmental parameters including wind speed and
projected it to current climatic conditions in Europe. Differences in average wind speed
between areas of occurrence and non-occurrence of Ae. albopictus within its modeled
suitable areaswere tested for significance. A secondglobal ecological nichemodelwas trained
with the same species records and environmental parameters, excluding windspeed
parameters. Using multiple linear regression analyses and a test of average marginal
effect, the effect of increasing wind speed on the average marginal effect of temperature
and precipitation on the projected habitat suitability was estimated. We found that climatically
suitable and monitored areas where Ae. albopictus is not established (3.12ms-1 ± 0.04 SD)
have significantly higher wind speed than areas where the species is already established
(2.54ms-1 ± 0.04 SD). Among temperature-related bioclimatic variables, the annual mean
temperature was the most important variable contributing to the performance of both global
models. Wind speed has a negative effect on the predicted habitat suitability of Ae. albopictus
and reduces false-positive rates inmodel predictions.With increasingwind speed, the average
marginal effect of annual mean temperatures decreases but that of the annual precipitation
increases. Wind speed should be considered in future modeling efforts aimed at limiting the
spread and dispersal of Ae. albopictus and in the implementation of surveillance and early
warning systems. Local-scale data collected from fieldwork or laboratory experiments will help
improve the state of the art on howwind speed influences the distribution, flight, and dispersal
activity of the mosquito.
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INTRODUCTION

A growing number of modeling studies have identified European
regions to be climatically suitable for the establishment of the
Asian tiger mosquito (Aedes albopictus, Diptera, Culicidae).
Southern and south-eastern Europe show favorable habitat
conditions for the mosquito, taking into account climatic
factors of temperature and precipitation (Caminade et al.,
2012; Fischer et al., 2014; Roiz et al., 2010), as well as human
mobility data (Kraemer et al., 2019) or cargo movement data
(Thomas et al., 2014). Aedes albopictus (Ae. albopictus) is a
competent vector for arboviruses such as dengue,
chikungunya, West Nile virus, Zika virus, and filarial
infections such as Dirofilaria immitis (Pereira-dos-Santos
et al., 2020). The invasive species can rapidly adapt to new
environmental conditions (Benedict et al., 2007) and is
continually spreading (ISSG, 2020)1 toward central Europe.
But even after decades of spreading, Ae. albopictus has not yet
been established in all its climatically suitable areas in Europe
(Kraemer et al., 2015; European Centre for Disease Prevention
and Control (ECDC) and European Food Safety Authority (ESA,
2021b)). Also, recent species distribution model approaches use
sets of environmental parameters related to temperature,
precipitation, and day length to project the habitat suitability
of Ae. albopictus in space and time (Cunze et al., 2016; Thomas
et al., 2018; Ibáñez-Justicia et al., 2020). Although there exists a
broad range of literature that uses laboratory and field
experiments to study the impact of wind on control actions
such as spraying or sterile insect techniques at a local scale
(Bibbs et al., 2020), the role of wind speed in explaining the
non-occurrence of Ae. albopictus within areas predicted as
climatically suitable for the mosquito’s establishment remains
unclear.

Under climate change, a global increase in annual mean
surface wind speed by 2050 is expected (IPCC, 2013). Recent
global climate model projections reveal stronger magnitude of
wind speed across northern and central Europe and weaker
magnitude across southern Europe, owing to polar shifts in jet
streams and storms caused by climate change (Eichelberger et al.,
2018).

High wind speed reduces the flight activities of mosquitoes,
especially in seeking hosts for blood feeding and nectar feeding
(Cardé, 2015). The wind speed above which flight is found to be
impaired is species-specific and appears to depend on local
adaptation. However, species in the Arctic tundra hardly show
impaired flight activity at 2.22 ms−1; the flight activity seems to be
limited at 3.05 ms−1 and above. Maximum values of 8.05 ms−1

have been reported from subarctic Canada, above which
mosquito flight activity declines. Mosquitoes in central Alaska
and Wisconsin stopped flying at 2.22 ms−1 (Service, 1980). The
wind speed above 0.9 ms−1 has currently been identified as the
major deterring factor to the abundance and flight activities of
arboviral mosquitoes on urban green roofs in China; elevated
buildings acted as a deterrent to mosquito flight due to high wind

exposure (Wong and Jim, 2017). Khan et al. (2018) suggested that
only wind speeds below 5.14 ms−1 provide favorable climatic
conditions for Ochlerotatus caspius and other mosquitoes in
Saudi Arabia. In projecting the suitable areas for the
establishment of Ae. j. japonicus in Germany, Kerkow et al.
(2019) used wind speed data in a fuzzy modeling approach in
addition to climatic suitability and landscape data. They found
that the mosquito does not occur in regions of Germany
characterized by wind speeds higher than 4.7 ms−1. Other
studies have found a significant relationship between high
wind speed and low arboviral disease incidences, for example,
in Australia, the Caribbean, Latin America, and South Asia (Rosa-
Freitas et al., 2006; Sedda et al., 2018). Mala and Jat (2019) found
out that wind speeds above 1.67 ms−1 reduce dengue fever
incidences in New Delhi, India. They estimated that the
decrease in average wind speed from 1.81 ms−1 to 0.42 ms−1

over a 2-month period is associated with an expansion of the
spatial pattern of dengue fever incidences and the spread of
dengue vectors in the area. For urban areas of Malaysia, it was
demonstrated that in addition to water volume and distance from
habitation, wind velocity was statistically significant towardAedes
dengue vectors (Che Dom et al., 2016). Adult Ae. albopictus
captures at a local scale in Medellín, Colombia, were inversely
correlated with wind speed and temperature (Camargo et al.,
2021).

The wind direction influences the flight range of mosquitoes.
The estimated flight range of Ae. albopictus differs a lot between
studies, and the results of laboratory-based studies cannot be
compared with those of field studies. When some studies (Sallam
et al., 2017; Vavassori et al., 2019) have found that it is limited to
250m, others indicate that it may reach up to 1 km or even 8.6 km
(Kaufmann et al., 2013; Medeiros et al., 2017). Wind speed and
wind direction determine the dispersal range of Ae. albopictus.
The long-distance migration of Aedes mosquitoes into new areas
is aided by winds blowing in the same direction as mosquito
flights (Provost, 1952). However, high wind speed also reduces
mosquito host-seeking activity due to its influence on mosquito
flight range and patterns (Cardé, 2015). The long-range dispersal
and short-range dispersal of mosquitoes and mosquito-borne
diseases by wind have been comprehensively reviewed (e.g. Elbers
et al., 2015). The northward and eastward components of wind
speed at a height above the earth’s surface describe the direction
of wind speed and might be relevant parameters in predicting the
spread and distribution of Ae. albopictus. The northward
component (v-component) of wind speed at 10 m above the
earth’s surface captures the horizontal speed of winds moving
toward the north, while the eastward component (u-component)
captures the movement toward the east. A negative u-component
and a negative v-component of wind speed indicate a southward
and a westward movement of wind speed, respectively. In South
America, high dengue fever incidences are associated with a low
northward component of wind and a low magnitude of wind
speed (Sedda et al., 2018).

Temperature and precipitation are major predictors of the
habitat suitability of Ae. albopictus in Europe. The annual mean
temperature and annual precipitation are bioclimatic variables
that have been previously identified as major limiting factors to1http://www.iucngisd.org/gisd/.
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Ae. albopictus distribution and abundance (Fischer et al., 2011,
Guzzetta et al., 2016). Several physiological traits of Ae. albopictus
such as vector-biting rates, vector population dynamics, and larva
and egg development largely depend on atmospheric thermal and
moisture conditions (Delatte et al., 2009; Reinhold et al., 2018).
Ecological niche models (ENMs) have used bioclimatic variables,
which are derived from monthly temperature and rainfall values
to generate biologically meaningful variables (Roiz et al., 2010) to
model the habitat suitability of Ae. albopictus. Bioclimatic
variables are commonly used in ENMs as they enhance or
limit species distribution (Fick and Hijmans, 2017). Many
recent MaxEnt models of Ae. albopictus have trained their
models using a selected set of these parameters (Ibáñez-
Justicia et al., 2020). Temperature-related parameters
commonly have higher contributions to the predictions of the
geographical distribution of Ae. albopictus than moisture-related
parameters (Ding et al., 2018). An explanation for this finding is
that Ae. albopictus can establish in areas where water is being
stored in open containers and small natural or artificial habitats
even in the absence of rainfall (Vezzani, 2007). In dry urban areas
in Europe, human water storage in containers compensates for
the non-availability of natural breeding sites for egg deposition
(Medlock et al., 2015), while heavy rainfall can result in a
population loss of Ae. albopictus through flushing out eggs,
larvae, and pupae (Dieng et al., 2012). Yet, sufficient
precipitation is needed in the summer months for the
sustenance of water stored in natural aquatic habitats (Cunze
et al., 2016). Additional moisture-related parameters taken into
consideration in recent modeling studies of Ae. albopictus include
absolute humidity, relative humidity, and the enhanced
vegetation index (EVI) (Kraemer et al., 2015; Ding et al.,
2018). Absolute humidity measures the density of water vapor
in the atmosphere, while relative humidity relates this measure to
the maximum humidity of the atmosphere. Due to the
dependence of relative humidity on temperature and
saturation vapor pressure, which leads to strong linear
correlations among these parameters, absolute humidity has
been proposed as a better proxy of the atmospheric moisture
content in global distribution models of Ae. albopictus (Dickens
et al., 2018). Absolute humidity is a useful predictor of the
suitability of Ae. albopictus in areas of high atmospheric
moisture availability such as in coastal areas. The survival and
establishment success of Ae. albopictus are highly dependent on
sufficient moisture properties of the atmosphere. The enhanced
vegetation index (EVI) is a proxy for vegetation canopy greenness
and soil surface moisture levels. EVI is a useful predictor of
mosquito development sites having sufficient soil moisture levels
and vegetation canopy cover that are essential for the survival of
the eggs and larvae of Ae. albopictus (Kraemer et al., 2015).

Specific areas showing suitable climatic conditions for the
establishment of Ae. albopictus but where no occurrence records
of the vector were found, although monitoring is taking place
(European Centre for Disease Prevention and Control (ECDC)
and European Food Safety Authority (ESA, 2021b)), are referred

to as suitable non-occurrence areas of Ae. albopictus. In modeling
terminology, these areas are referred to as the false-positive
rates of model predictions. In Europe, suitable non-
occurrence areas of Ae. albopictus have been identified
mainly in Spain and Portugal (Kraemer et al., 2015;
European Centre for Disease Prevention and Control
(ECDC) and European Food Safety Authority (ESA,
2021a)). They are also observed in other regions of the
world, for example, in the western coast of North America,
in the northern part of South America, and in parts of Asia
and Africa (Fischer et al., 2011; Kraemer et al., 2015). These
areas have also been identified as high-risk areas for
autochthonous transmission of chikungunya (Tjaden et al.,
2021). The introduction of Ae. albopictus into new areas is
engendered largely by human-mediated transport and
importation of used tires from countries where the species
is established (Thomas et al., 2014). Human-mediated
transport overcomes major barriers (Lounibos et al., 2003),
such as large rivers and mountains (e.g., River Rhine in
Germany, River Rhone in France, and the Alps in Italy)
that limit the spread and establishment of Ae. albopictus in
Europe. However, it remains unclear whether high wind
speed plays a role in limiting the establishment of Ae.
albopictus in its climatic niche.

This study examines the potential of wind speed in predicting
the non-occurrence of Ae. albopictus observed in otherwise
climatically suitable areas for its establishment in Europe. It is
hypothesized that wind speed is higher in the non-occurrence
locations than in the occurrence locations of Ae. albopictuswithin
its projected climatically suitable areas. The study also
hypothesized that suitable non-occurrence areas of Ae.
albopictus are decreased in a MaxEnt model calibrated with
wind speed parameters compared to a calibration without
wind speed parameters. Last, it is hypothesized that wind
speed limits the contribution of the most important
temperature-related and precipitation-related bioclimatic
variables to habitat suitability predictions of Ae. albopictus in
Europe.

MATERIALS AND METHODS

Aedes albopictus Occurrence Records
The database of global geo-referenced locations of Ae. albopictus
was obtained from the review of the literature (see Supplemental
Reference list for a list of selected publications, Supplementary
S6). The database consists of about 8,478 documented
occurrences of Ae. albopictus over the period 1994–2020. To
reduce spatial autocorrelation, the thin function from the spThin
R package is used to separate these occurrences by 5 km. Finally,
7,207 occurrence locations remained at the end of the preparation
and pre-processing step for modeling.

Environmental Variables
Bioclimatic variables (n = 19) representing temperature and
rainfall values for the period 1970–2000 at a spatial resolution
of 2.5 arcmin (Supplementary Table S1) were downloaded as
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raster layers from the WorldClim database (WorldClim version
2.1, 2020; Fick and Hijmans, 2017). WorldClim is a repository of
high-resolution global data sets on historical and future climate
conditions. Monthly averaged reanalysis data sets of wind speed
and related wind data sets on the northward and eastward
components of wind speed at 10-m height above the earth’s
surface, as well as dew point temperature at 2 m above the earth’s
surface, were downloaded from the ERA-Interim database
(Hersbach et al., 2020). ERA5 is a database of global climate
and weather reanalysis data sets for the period of 1 January 1979
to August 2019 obtained at a spatial resolution of 0.25°. The mean
of the monthly wind data sets was calculated to obtain an annual
average of wind speed, the annual average of the northward
component of wind speed, and the annual average of the eastward
component of wind speed, all at 10-m height over the whole time
period. Absolute humidity was calculated from the ERA5 dew
point temperature data using the Tetens formula (Tetens, 1930).
A global raster layer of the enhanced vegetation index (EVI) was
obtained from the LP DAAC database at a spatial resolution of
1 km (Didan, 2015). To ensure uniformity in spatial resolution
and accuracy of model predictions, all data sets were rescaled to
the 2.5 arcmin resolution of the bioclimatic variables.

Ecological Niche Modeling
Expert Knowledge Approach for Variable Selection
An expert knowledge approach—which is based on insights from
recent studies—is used to drop a set of bioclimatic variables,
which have been identified as not useful for ecological niche
models of Ae. albopictus. We removed bioclimatic variables,
which are derived from other variables—for example, mean
diurnal range, isothermality, and temperature
seasonality—which can add potential complexity to the
MaxEnt model (Tjaden et al., 2021). Other bioclimatic
variables, which refer to the wettest or driest month or
quarter, have been identified as having potential limitations for
modeling species distribution in Europe because these months
can refer either to winter or to summer in Europe (Tjaden et al.,
2021). For instance, there are rainy winters and dry summers in
southern Europe, while this condition is reversed for other
parts of Europe where there are mostly dry winters and wet
summers. We drop bioclimatic variables—such as the mean
temperature of the wettest quarter, precipitation of the
wettest month, and precipitation of the driest quarter. As a
result, the following variables remained: annual mean
temperature, maximum temperature of the warmest
month, minimum temperature of the coldest month,
temperature annual range, mean temperature of the
warmest quarter, mean temperature of the coldest quarter,
annual precipitation, precipitation of the warmest quarter,
precipitation of the coldest quarter, wind speed, the enhanced
vegetation index (EVI), northward (v-) component of wind
speed, eastward (u-) component of wind speed, and absolute
humidity (Supplementary Figure S3).

Statistical Analysis Approach for Variable Selection
A statistical variable selection approach is used to select a set of
relevant environmental parameters. First, the values of each of the

raster layers of the environmental variables were extracted at the
occurrence locations of Ae. albopictus for statistical analysis. To
account for collinearity among the remaining parameters, we
applied a Pearson correlation analysis using the stats package in
R. The Pearson correlation analysis is a test of linear correlation
between each pair of variables, with coefficients ranging from 0 to
1. The closer the linear correlation coefficient to 1, the higher was
the correlation. Here, we set a threshold of 0.7 and dropped one of
a pair of variables having correlation coefficients greater than this
threshold (Dormann et al., 2013). As a result, the following
variables were selected: annual mean temperature, maximum
temperature of the warmest month, annual precipitation,
precipitation of the warmest quarter, precipitation of the
coldest quarter, wind speed, EVI, northward (v-) component
of wind speed, and eastward (u-) component of wind speed
(Supplementary Figure S3).

Model Approaches
We developed global ecological niche models for Ae. albopictus
using a correlative modeling approach to compare suitable
non-occurrence areas of Ae. albopictus in a model calibrated
with wind speed parameters compared to a calibration without
wind speed parameters. These models are denoted as Model-
with-wind speed and Model-without-wind speed, respectively.
The maximum entropy (MaxEnt) modeling approach is a
widely used approach in ecology, biogeography, and
conservation biology (Elith and Leathwick, 2009) to model
disease vector distribution or vector-borne disease
transmission (Peterson, 2014). MaxEnt models produce a
prediction of species distribution, which has maximum
entropy and is constrained by environmental conditions
(Phillips et al., 2017). In studies estimating the impact of
climate change on vector distribution, the most widely used
modeling approach is MaxEnt (Tjaden et al., 2018). The
MaxEnt is preferred to other machine learning algorithms
because of its robustness to incomplete or biased occurrence
records and correlated environmental variables. The MaxEnt
is a presence-only model that takes as input a list of species
presence locations, environmental variables, and a sample of
background or pseudo-absence locations, which is usually
generated over the entire spatial extent of the
environmental variables (Merow et al., 2013). Here, we used
a buffer-based approach as recommended by previous studies
(VanDerWal et al., 2009); we generated 10,000 background
points within a buffer of 1500 km around the global occurrence
locations of Ae. albopictus. Varying buffer sizes from 1 to
5000 km were generated around these occurrence locations,
and a series of test models were implemented and evaluated
using the area under the receiver operating characteristic
(AUC) curve of each model. The AUC of each model
increases with increasing buffer sizes and stabilizes at
1500 km. Therefore, a buffer radius of 1500 km was
determined as appropriate for the generation of background
points for modeling (Supplementary Figure S4). Outputs of
MaxEnt models are maps of relative “environmental
suitability” ranging from 0 to 1, representing the probability
of the presence of Ae. albopictus.
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Model-with-wind speed is trained with global occurrence
records of Ae. albopictus and a selected set of relevant
environmental variables including wind speed-related
parameters. Model-without-wind speed is trained with the
same records and environmental parameters, however
excluding wind speed-related parameters. Global habitat
suitability maps of Ae. albopictus were generated from both
models and projected to current habitat suitability conditions
in Europe. The global models were developed using the ENMeval
package in R with the latest MaxEnt version (3.4.4). The ENMeval
package offers the benefit of choosing an optimal model from a
range of models defined with several combinations of parameter
settings (Phillips et al., 2017). Several models were created based
on two MaxEnt parameter settings, namely, the regularization
multiplier and feature class combinations. A total of ten
regularization estimates (0.5–5; by 0.5 increments) and five
feature class combinations (L, LQ, LQH, LQP, and LQT,
where L = linear, Q = quadratic, P = product, H = hinge, and
T = threshold) were created. The model combinations were then
compared based on the average test omission rate of each of the
models. Here, the model with the lowest average test omission
rate is selected as an optimal model. The optimal model among
models trained with wind speed-related parameters takes the
linear, quadratic, and hinge (LQH) feature classes and has a
regularization multiplier of 4.5. When the optimal model among
models trained without wind speed-related parameters also takes
the linear, quadratic, and hinge (LQH) feature classes, it has a
regularization multiplier of 1.5. The presence and background
records of Ae. albopictus were hierarchically partitioned using the
checkerboard2 cross-validation method, which splits the
localities into k = 4 spatial groups for model evaluation. Here,
each of the model combinations is iteratively run (k times) with k-
1 localities used as training samples and the remaining localities
used as validation samples. Afterward, model evaluation metrics
are averaged over the total number of model iterations
(Muscarella et al., 2014). The aim of partitioning the localities
is to reduce spatial autocorrelation between training and
validation samples, which may lead to the overestimation of
model evaluation metrics (Veloz, 2009).

Model Performance
The predictive performance of MaxEnt models is estimated using
the partial area under the receiver operating characteristic curve
(pAUC), which is a better metric for model evaluation than the
traditional area under the receiver operating characteristic curve
(AUC) (Peterson et al., 2008). The pAUC is derived from the
traditional AUC and focuses only on specific parts of the receiver
operating characteristic curve, which are relevant in estimating
the discriminatory power of a model. We calculated the pAUC
using the function “kuenm_proc” from the “kuenm” package in R
(Cobos et al., 2019). After partitioning the occurrence data into
25% testing data and 75% training data, the function generates
1,000 bootstrap simulations of the pAUC, which were then
averaged to get a mean value. The standardized pAUC ranges
from 0.5 to 1, where 0.5 indicates random model discrimination,
and 1 indicates excellent model discrimination (McClish, 1989).
The importance of each environmental variable for model

predictions was assessed from the permutation importance
feature of MaxEnt models.

Thresholds of Habitat Suitability
The habitat suitability maps are classified using three established
threshold probability values, namely, the 5-percentile thresholds, the
10-percentile thresholds, and the equal sensitivity–specificity
threshold (Tjaden et al., 2021). The 5-percentile or 10-percentile
thresholds were obtained by dropping the 5 or 10 per cent of the
lowest habitat suitability values (associated with the occurrence
locations of Ae. albopictus) and using the minimum of the
remaining suitability values as the threshold (Bean et al., 2012).
The equal sensitivity–specificity (eqSS) threshold is the threshold at
which sensitivity (true-positive rate) and specificity (true-negative
rate) predictions are equal in MaxEnt models. All thresholds are
derived separately for each of the MaxEnt models and applied
individually for the classification of the suitability maps. For
easier interpretations of the habitat suitability maps, we assigned
the following tags to the classes defined by the thresholds: “very high
habitat suitability” (≥eqSS), “high habitat suitability” (≥10
percentile), and “medium habitat suitability” (≥5 percentile).

Geospatial Analyses and Statistical Tests
To compare wind speed between non-occurrence and occurrence
areas ofAe. albopictuswithin its projected climatically suitable areas, a
random sample of non-occurrence points was generated within
monitored areas (active or passive) by the European Centre for
Disease Prevention and Control (ECDC) and European Food Safety
Authority (ESA, 2021b), with at least medium habitat suitability. A
random sample of non-occurrence of the same number as the
occurrence points were generated. A simple raster extraction
method was performed to extract wind speed values from the
raster layer at the cells in which the occurrence and non-
occurrence points fall. A Student two-sample t-test was then
performed to test for significant differences in wind speed
between the occurrence and non-occurrence areas of Ae.
albopictus within its climatic niche in Europe. To get more robust
estimates, we generated 1,000 bootstrap simulations of the result from
the two-sample t-test and calculated the average of these values.

Changes in environmental variable contribution between
Model-with-wind speed and Model-without-wind speed were
analyzed. Using a raster-to-value coercion method, we extracted
the cell values from the raster objects of the predicted habitat
suitability of Ae. albopictus in Europe, wind speed, and the most
important temperature-related and precipitation-related
bioclimatic variables. A multiple linear regression analysis with
interaction terms was then performed to examine the relationship
between the predicted habitat suitability of Ae. albopictus
(dependent variable) and the most important temperature-
related and precipitation-related bioclimatic variables. The
interactions between these variables and wind speed were also
added as interaction terms to the regression model. Finally, using
the margins package in R2, we estimated the average marginal

2https://www.semanticscholar.org/paper/Interpreting-Regression-Results-using-
Average-with-Leeper/9615c76bd5d81f7ebbbdac9714619863dc3a2337.
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FIGURE 1 | Wind speed (ms−1) in areas with established or introduced Aedes albopictus populations. Most areas where the mosquito has become established
show wind speeds ranging from 1.5 ms−1 to 4.5 ms−1. The wind speed values represent air movement at 10-m height and were acquired from the ERA5 monthly
average reanalysis data set for the period of 1999–2018 (Copernicus Climate Change Service, 2021). The establishment status across Europe was adopted from the
ECDC/EFSA5 known distribution of the species (March 2021).

FIGURE 2 | Categorized habitat suitability map of Aedes albopictus in Europe under current climatic conditions based on an ecological niche model (Model-with-
wind speed) of 7,207 global occurrence localities. Explanatory parameters used for model training include bioclimatic variables (derived from the WorldClim database6,
the enhanced vegetation index (derived from the LP DAAC database), and wind speed (derived from the ERA5 database). All databases were accessed on 2 September
2021. The habitat suitability map was classified into binary results, according to three established threshold probability values: the 5-percentile, 10-percentile, and
the equal sensitivity and specificity threshold (EQSS).
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effect of themost important temperature-related and precipitation-
related bioclimatic variables, as well as wind speed, on the predicted
habitat suitability of Ae. albopictus. The average marginal effect
(AME) was estimated to determine the percentage of change in the
predicted habitat suitability ofAe. albopictus, given a unit change in
temperature, precipitation, and wind speed. We also estimated the
impact of increasing values of wind speed (0–8 ms−1; by 0.5
increments) on the AME of temperature and precipitation. This
was estimated by taking the sum of the beta coefficients of each
parameter and the beta coefficients of the interaction term,
multiplied by each increasing value of wind speed, as shown in
Eq. 1. We also estimated the standard errors of the obtained values
using the msm package in R (Mandel, 2013).

y � a + bpx, (1)

where y = average marginal effect of temperature or
precipitation
a = beta coefficient of temperature or precipitation
b = beta coefficient of the interaction term
x = increasing values of wind speed (0 to 8ms−1; by 0.5
increments)

All modelling, geospatial and statistical analyses were
performed using the R statistical software version 4.0.2 (R
Core Team, 2020, Supplementary S6). All figures and maps
were prepared using the ggplot2 package in R (Wickham, 2016)
and the QGIS version 3.4.

RESULTS

Wind Speed in Areas With Established or
Introduced Aedes albopictus Populations
Wind speeds in areas with established or introduced Ae.
albopictus populations (Natural Earth3 2021, continental
Europe excluding Russia) are decreasing from north to south
(Figure 1, wind speed invasive mosquito surveillance regions; see

Supplementary Figure S1). We observed that very low
(<1.5 ms−1) to moderate (1.5–4.5 ms−1) wind speed prevails in
most areas with 109,000 km2 and 5,000,000 km2, respectively.
Areas with very high wind speed (above 4.5 ms−1) only span
about 305,000 km2 and are found in Italy (Sassari, Lecce), France
(Bouches-du-Rhone), Spain (Cadiz), Portugal (Algarve), the
Netherlands (Kop van Nord-Holland), Greece (Attiki,
Lakonia), Bulgaria (Burga), and the United Kingdom (East Kent).

Wind Speed-Informed Habitat Suitability
Model of Aedes albopictus in Europe
Based on theModel-with-wind speed, very high habitat suitability
of Ae. albopictus is observed in the southern part of Europe for
Italy, western France, Portugal, northern Spain, Greece, and along
the coastlines of Croatia, Montenegro, Albania, Macedonia, and
Bosnia and Herzegovina and in Slovenia (Figure 2). We observed
medium habitat suitability conditions in central Europe for
western Germany, Lichtenstein, Austria, Hungary, Switzerland,
and Romania. In western Europe, medium habitat suitability is
observed in Luxembourg, Belgium, the Netherlands, France, the
United Kingdom, and Ireland.

The false-positive rate of model predictions fromModel-with-
wind speed and Model-without-wind speed (Supplementary
Figure S2a) is comparable with 0.335 and 0.349, respectively.
Model performance assessed from the standardized partial AUC
(pAUC) estimate of the ENMs showed that the two models had
almost similar discriminatory power, with Model-with-wind
speed and Model-without-wind speed having mean pAUC
values of 0.937 ± 0.002 SD and 0.930 ± 0.002 SD, respectively.
Both pAUC values are indicators of excellent model
discrimination. This suggested that Model-with-wind speed
performed only slightly better than Model-without-wind speed.
However, we observed that some suitable non-occurrence areas of
Ae. albopictus in Model-without-wind speed are predicted as
unsuitable in Model-with-wind speed. These areas are found in
Portugal, Spain, France, Hungary, Romania, and Bulgaria.

Themost important parameters contributing to the performance of
the ENMs are annual mean temperature and annual precipitation.
Among temperature-related bioclimatic variables, annual mean
temperature had the highest variable importance in terms of the

TABLE 1 | Permutation importance (%) of temperature- and precipitation-related bioclimatic variables used in the training of MaxEnt models. The annual mean temperature
and annual precipitation are the most important temperature-related and precipitation-related bioclimatic variables in both models, followed by the enhanced vegetation
index. The most important wind speed-related variable is wind speed. The most important variables in each category are highlighted in bold text.

Permutation importance (%)

Categories Variables Model-with-wind speed Model-without-wind speed

Temperature-related bioclimatic variables Annual mean temperature 27.96 33.19
Maximum temperature of the warmest month 9.83 17.45

Precipitation-related bioclimatic variables Annual precipitation 17.55 18.87
Precipitation of the warmest quarter 2.13 6.49
Precipitation of the coldest quarter 14.64 12.07

Vegetation index Enhanced vegetation index 12.48 11.94
Wind speed-related parameters Wind speed at 10-m height 8.23 -

u-component of wind speed (eastward) 7.17 -
v-component of wind speed (northward) 0.00 -

3https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-
admin-0-countries/.
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permutation importance criteria in both models (Model-with-wind
speed, 27.96%;Model-without-wind speed, 33.19%) (Table 1). Among
precipitation-related bioclimatic variables, annual precipitation had the
highest variable importance in terms of the permutation importance
criteria in both models. (Model-with-wind speed, 17.55%; Model-
without-wind speed, 18.87%). The permutation importance of wind
speed is 8.23%, which was the highest contribution to model
performance among the wind speed-related parameters.

The most important temperature- and precipitation-related
bioclimatic variables contributing to the performance of the
ENMs are annual mean temperature and annual precipitation.
Our results showed that the AME values of both environmental
parameters and wind speed on the habitat suitability predictions
of Ae. albopictus are 0.0044, 0.0001, and −0.0316, respectively.
This suggests that a unit change in the annual mean temperature
and annual precipitation is associated with a 0.44 and 0.01%
increase in the predicted habitat suitability of Ae. albopictus.
However, a unit change in wind speed is associated with a 3.16%
decrease in the predicted habitat suitability of Ae. albopictus. The
AME of the annual mean temperature decreases with increasing
values of wind speed, but the AME of annual precipitation
increases (Figure 3).

Differences in Wind Speed Between Areas
of Occurrence and Non-Occurrence of
Aedes albopictus in Modeled Suitable Areas
The difference in wind speed between real occurrence and non-
occurrence of Ae. albopictus within areas modeled as suitable

(i.e., ≥5-percentile threshold in Model-with-wind speed) for
mosquito establishment is significant (p < 0.05). Average
wind speed in the suitable non-occurrence localities (3.12 ms-
1 ± 0.04 SD) is higher than in occurrence localities (2.54 ms-1 ±
0.04 SD) (Figure 4). It is also observed that maximum values of
wind speed are higher in areas where Ae. albopictus is not found
(7.01 ms-1) than in the areas where it is found (5.45 ms-1).
Wind speed values in the suitable non-occurrence group are
highly clustered above the mean wind speed in the suitable
occurrence group.

DISCUSSION

The impact of high wind speed on mosquito distribution, flight
range, and disease incidences has occasionally been observed in
studies of vector mosquitoes (Kerkow et al., 2019; Mala and Jat,
2019), but it remains unclear whether high wind speed explains
the non-occurrence of Ae. albopictus within its climatic niche in
Europe. In this study, wind speed at real occurrence localities of
Ae. albopictus was compared with wind speed at non-occurrence
localities within areas having suitable climatic conditions for the
establishment of the vector mosquito. In addition, two global
ENMs were developed to predict the current habitat suitability
conditions of Ae. albopictus in Europe (Model-with-wind speed
and Model-without-wind speed).

Within the modeled suitable area, the mean and maximum
values of wind speed are higher in areas where Ae. albopictus is
not established than in areas in Europe where it is already

FIGURE 3 | Effects of increasing wind speed on the average marginal effect of (A) the annual mean temperature and (B) the annual precipitation on the predicted
habitat suitability of Aedes albopictus. The average marginal effect of the annual mean temperature decreases with increasing wind speed, and the average marginal
effect of the annual precipitation increases.
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established. This result provides initial evidence that wind
speed has a negative impact on the ability of Ae. albopictus
to establish. The occurrence and abundance of Ae. albopictus
were negatively associated with wind speed based on a mixed-
effect zero-inflated negative binomial regression of mosquito
data comprising 200,000 trap days from 2004 to 2018 in Florida
(Yang et al., 2021). Non-occurrence of the species in a
climatically suitable area depends on diverse factors.
Mosquitoes are actively or passively monitored (European
Centre for Disease Prevention and Control (ECDC) and
European Food Safety Authority (ESA, 2021b)); otherwise,
non-occurrence cannot be understood as a confirmed
absence. Increasing the mean wind speed results in fewer
submissions when mosquitoes are passively monitored, that
is by citizen science projects as high wind speed prevents
volunteers from collecting mosquitoes outside (Pernat et al.,
2021). Climatically suitable locations need to be accessible for
the species, and barriers such as dense vegetation or open water
do not hinder the dispersal process (Verdonschot and Besse-
Lototskaya, 2013). The accessibility of a climatically suitable
area is also dependent on the dispersal and flight capacity of the
mosquito and passive transport. Ae. albopictus is known to have

a weak dispersal capacity with an average maximum flight
distance of 676 m and an average flight distance of 75 m
based on mark–recapture experiments (Verdonschot and
Besse-Lototskaya, 2013). The likelihood of the introduction
of the vector via human-mediated transport of goods is
increased in areas with high amounts of freight imports
from the mosquito’s endemic countries via harbors and
railways (Thomas et al., 2014) in Europe. Bennett et al.
(2019) found a high infestation rate in garages trading used
tires along the highways, allowing for a rapid dispersal across
Panama. Up until now, the mosquito has primarily expanded in
association with humans and only to a limited extent on the
active dispersal of female mosquitoes (Egizi et al., 2016; Trájer
et al., 2017). Wind-assisted long-distance migratory flights as
known for Anopheles vectors, with a simulated mean nightly
displacement of up to 300 km for 9-h flight duration (Huestis
et al., 2019), have not been shown for Ae. albopictus. In this
study, only areas that were monitored according to European
Centre for Disease Prevention and Control (ECDC) and
European Food Safety Authority (ESA, 2021b) were
considered in the analysis comparing the wind speed at non-
occurrence and real occurrence of the species.

The wind speed data used for this comparison relate to the
movement of air at 10-m height whose measurement considers
land cover variables such as the local terrain, vegetation cover,
and buildings. These landscape features make wind
observations vary at small scales. However, the calculation of
average wind speed from 1,000 bootstrap samples provides a
robust estimate of the differences in wind speed that is not likely
to vary if the analysis is repeated or new random points are
generated. The set of wind speed-related parameters considered
in this study includes wind speed at 10-m height and northward
(v-) and eastward (u-) components of wind speed at 10-m
height. Wind speed and the eastward (u-) component of
wind speed contributed mostly to model performance. The
eastward component of wind speed represents wind speed
moving from west to east direction. Westerly winds
(i.e., winds moving from west to east) are prevalent during
the summer months in Europe.

We developed habitat suitability models of Ae. albopictus
using recent global occurrence records of the mosquito and a
set of relevant environmental parameters selected using expert
knowledge and a statistical variable selection approach. In
accordance with previous modeling results, we found very
high habitat suitability of Ae. albopictus in southern Europe,
areas that are also identified as high-risk regions for chikungunya
transmission (Tjaden et al., 2021). Our model predictions also
depict moderate habitat suitability in western and central Europe
in accordance with Caminade et al. (2012) and Cunze et al.
(2016). Low habitat suitability predictions are found for the
majority of the countries in northern and eastern Europe
(Ibáñez-Justicia et al., 2020).

We compared a model trained with wind speed parameters to
a model trained without wind speed. The Model-with-wind
speed shows a slightly higher model performance, and the
average omission rate (false-positive fraction) is slightly
lower. Although both models take the same set of feature

FIGURE 4 | Differences in wind speed (ms−1) between occurrence and
non-occurrence areas of Aedes albopictus within its climatic niche in Europe
based on the 5-percentile thresholded ecological niche model (Model-with-
wind-speed, Supplementary Figure S2b). Mean, minimum, and
maximum wind speeds in the suitable non-occurrence areas are significantly
higher than those in the suitable occurrence areas.
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classes, the Model-with-wind speed has a higher regularization
multiplier (RM). This suggests that it is a simpler model as
higher RM values impose significant constraints on model
complexity. A higher RM value in association with a low
average omission rate is also an indicator of a lower
probability of overfitting in model predictions (Radosavljevic
and Anderson, 2014). Our results indicated that notable suitable
non-occurrence areas of Ae. albopictus found in the Model-
without-wind speed are absent in the Model-with-windspeed.
These areas are found in France, Hungary, Romania, Bulgaria,
Spain, and Portugal with moderate to high wind speed and
active ECDC surveillance systems.

Variable selection was based on a Pearson correlation analysis
to check for collinearity among variables selected by an expert
knowledge approach. The result of the Pearson collinearity test
reveals that wind speed-related parameters have low correlations
with other relevant environmental parameters. Consequently, the
wind speed was added to the list of relevant parameters used in
training the ENM of Ae. albopictus. Previous studies have
dropped wind speed, according to the results of other
statistical variable selection approaches. Using a simple
correlation analysis and a principal component analysis for
variable selection, Medley (2010) dropped wind speed from
the list of relevant environmental parameters as it does not
have significant correlations with the most important
eigenvalues of the PCA. A jackknife test of variable
importance also reveals that wind speed parameters achieved
less significant training gains to the occurrence of Ae. albopictus
in Europe. Kerkow et al. (2019) implemented a climate model for
Ae. j. japonicus trained without wind speed; however, wind speed
data selected based on expert knowledge were considered in a
fuzzy modeling approach.

Temperature-related parameters had higher contributions
than precipitation-related parameters, to predictions of the
presence of Ae. albopictus in MaxEnt models. Recent species
distribution models of Ae. albopictus have found similar results
explaining that the survival and seasonal activity of the mosquito
are more influenced by thermal environmental conditions than
moisture conditions (Fischer et al., 2011; Caminade et al., 2012).
An explanation for this finding is that artificial water storage in
open containers compensates for the non-availability of natural
breeding sites in arid areas or during dry seasons in humid areas
(Cunze et al., 2016). However, precipitation is required for the
long-term sustenance of small natural habitats and artificial
containers that support egg deposition and larval development.
Our findings support previous findings (e.g. Ding et al., 2018) that
temperature is a better predictor of the presence of Ae. albopictus
than precipitation.

Increasing wind speed decreases the AME of temperature
on the predicted habitat suitability of Ae. albopictus but
increases the AME of precipitation. This finding suggests
that with increasing wind speed and constant annual mean
temperatures in Europe, the predicted habitat suitability of Ae.
albopictus decreases. The AME of temperature is positive;
however, it becomes negative as it interacts with increasing
wind speed values. Consequently, due to the interaction
between these parameters, “suitable” predictions of Ae.

albopictus become “unsuitable” predictions. This finding
suggests that due to the interaction between temperature
and wind speed, false-positive predictions of Ae. albopictus
are adequately resolved in a statistical model trained with both
parameters. As previously discussed, our results suggested that
high wind speed values are found in suitable non-occurrence
areas of Ae. albopictus and that these areas are absent in a
model trained with wind speed. Therefore, a relevant
deduction from these findings is that a model trained with
wind speed parameters would better resolve false-positive
predictions or suitable non-occurrence areas of Ae. albopictus.

This finding contributes to progress in understanding the
interactions between amplifying environmental factors (such
as temperature) and delimiting factors (such as wind speed) to
predictions of Ae. albopictus distribution. This study focuses
on the interactions between parameters in relation to the
predicted habitat suitability of Ae. albopictus, while
previous studies have mostly compared the individual
correlations of wind speed, temperature, and precipitation
with the densities of dengue vectors or dengue fever
incidences. Depradine and Lovell (2004) found a significant
negative correlation between wind speed and the incidence of
dengue cases in the Caribbean Island of Barbados but
significant positive correlations with temperature and
precipitation. Khan et al. (2018) also found a significant
negative correlation between wind speed and the
abundance of dengue fever mosquitoes Aedes and
Anopheles in Saudi Arabia but positive correlations with
temperature and precipitation. As an example of studies
that examined the densities of dengue vectors, Yin et al.
(2019) identified a negative correlation between wind speed
and densities of Ae. albopictus vectors in Guangzhou, China,
but positive correlations with temperature and humidity.

In addition to the precipitation-related bioclimatic
variables considered in this study, other moisture-related
parameters that were considered as explanatory parameters
of the global distribution of Ae. albopictus include absolute
humidity and the enhanced vegetation index (EVI).
According to the results of the statistical variable selection
using the Pearson correlation analysis, absolute humidity
showed high collinearity with other temperature-related
bioclimatic variables. This variable was dropped from the
list of relevant environmental parameters for modeling,
although previous studies (e.g. Ding et al., 2018) have
emphasized the usefulness of absolute humidity in global
distribution models of Ae. albopictus. The EVI showed a
very low correlation with other parameters; therefore, we
trained the global models with this parameter. Our results
suggested that the EVI had significant contributions in terms
of permutation importance to predictions of Ae. albopictus in
both models (Kraemer et al., 2015). Therefore, we
recommended the use of the EVI in future global or
regional models of Ae. albopictus as this variable
characterizes the suitability of Ae. albopictus in habitats
where evaporation and wind speed are minimal.

The ENM of Ae. albopictuswas trained with only
environmental parameters. Land cover and demographic
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parameters such as accessibility, land use, urbanization, distance
to human settlement, and population density, which have been
suggested as relevant predictors of the distribution of Ae.
albopictus, were not considered. Generally, the importance of
these anthropogenic parameters for species distribution is
perceived better on local scales than on regional scales
(Pearson and Dawson, 2003). Moreover, studies of Ae.
albopictus (e.g. Kraemer et al., 2015; Dickens et al., 2018; Ding
et al., 2018) that consider these parameters have found higher
contributions of climatic or environmental parameters to
occurrence predictions of the mosquito.

This study faces the challenge of the non-availability of
real absence records of Ae. albopictus in Europe. Therefore,
we generated random background points (excluding the
observed occurrence points) from areas where the
mosquito is actively or passively monitored and regarded
these as non-occurrence or absence records of Ae. albopictus.
To compare wind speed at the occurrence and non-
occurrence localities of Ae. albopictus, sample points were
randomly selected. Inconsistent time coverage between the
occurrence records of Ae. albopictus, bioclimatic variables,
and the other environmental variables is a common problem.
The bioclimatic variables cover a historical time period from
1970 to 2000, while the occurrence records and other
environmental variables cover the time period from 1994
to 2020. However, since the bioclimatic variables were
obtained from the most recent version of the WorldClim
(i.e. version 2.1), we assumed that this historical time
coverage provides a satisfactory representation of current
conditions of global temperature and precipitation (Fick
and Hijmans, 2017).

Future efforts may be geared toward obtaining absence
records of Ae. albopictus, comparing wind speed in real
occurrence with real absences, and applying
presence–absence models to test the similar hypothesis.
The observed non-occurrence of Ae. albopictus may also
be due to the strict monitoring systems and control
programs already in place in some European countries.
For example, the implementation of a surveillance strategy
in the Netherlands has greatly reduced the successful
establishment of Ae. albopictus in Dutch tire companies
and their surroundings (Ibáñez-Justicia et al., 2020).
Hence, there is a need to investigate the role of
monitoring systems and control programs in explaining
non-occurrence of Ae. albopictus in Europe. A raster layer
of meteorological wind direction can be obtained from the
northward and eastward components of wind speed4,5,6. With
such a raster data set of meteorological wind direction, future
studies may investigate more closely the direction of high
wind speed found in suitable non-occurrence regions of Ae.
albopictus. In future, local agent-based models that aim at

projecting the pathways of spreading of the species can
include wind direction toward suitable vegetation or land
cover to test past spreading tendencies and estimate future
areas at risk for establishment.

In summary, our findings indicated that wind speed is a
limiting environmental factor to the occurrence or successful
establishment of Ae. albopictus in Europe. Our findings are
relevant for future efforts to limit the spread and dispersal of
Ae. albopictus by considering wind speed when planning the
implementation of mosquito surveillance and developing
early warning systems for mosquito-borne diseases in
Europe.
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