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Abstract

A vector space partition P of the projective space PG(v−1, q) is a set of subspaces in PG(v−1, q) which
partitions the set of points. We say that a vector space partition P has type (v − 1)mv−1 . . . 2m21m1 if
precisely mi of its elements have dimension i, where 1 ≤ i ≤ v − 1. Here we determine all possible types
of vector space partitions in PG(7, 2).
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1 Introduction

We call the i-dimensional subspaces of the projective space PG(v− 1, q) i-spaces using the geometric names
points, lines, planes, solids, and hyperplanes for 1-, 2-, 3-, 4-, and (v−1)-spaces, respectively. A vector space
partition P of PG(v−1, q) is a set of subspaces in PG(v−1, q) which partitions the set of points. For a survey
on known results we refer to [Hed12]. We say that a vector space partition P has type (v−1)mv−1 . . . 2m21m1

if precisely mi of its elements have dimension i, where 1 ≤ i ≤ v − 1. The classification of the possible
types of a vector space partition, given the parameters v and q, is an important and difficult problem. Based
on [Hed86], the classification for the binary case q = 2 was completed for v ≤ 7 in [EZSS+09]. Under
the assumption m1 = 0 the case (q, v) = (2, 8) has been treated in [EZHS+10]. Here we complete the
classification of the possible types of vector space partitions in PG(7, 2). We will also briefly discuss the
feasible types of vector space partitions in PG(v − 1, q) for all field sizes q and all dimensions v ≤ 5.

Setting [k]q := qk−1
q−1 we can state that every k-space in PG(v − 1, q) consists of [k]q points. So, counting

points gives the packing condition
v−1∑
i=1

mi · [i]q = [v]q. (1)

Another well-known condition uses the fact that an a-space and a disjoint b-space span an (a+ b)-space. So,
we have

mi ·mj = 0 (2)

for all 1 ≤ i < j ≤ v − 1 with i + j > j and mi ≤ 1 for all i > v/2. These two conditions are sufficient to
characterize all feasible types of vector space partitions in PG(v − 1, q) for v ≤ 4.

Another condition stems from the fact that for an index 2 ≤ j ≤ v − 1 with mj > 0 the set of points
contained in the subspaces of dimension strictly less than j corresponds to a qj−1-divisible linear code over
Fq of length

n =

j−1∑
i=1

mi · [i]q, (3)
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see e.g. [KK20], where a linear code is called ∆-divisible if all of its codewords have a weight that is divisible
by ∆. Non-existence results for qr-divisible projective codes are e.g. discussed in [HKK18]. A recent survey
can be found in [Kur21]. Some of these conditions are already contained in [Hed09] and used under the name
tail condition in the literature on vector space partitions.

A few more necessary conditions for the existence of vector space partitions are stated in [LH12].

The notion of a vector space partition can be generalized in several directions. A λ-fold vector space
partition of PG(v − 1, q) is a (multi-) set of subspaces such that every point P is covered exactly λ times,
see e.g. [EZSS+11]. Another variant considers sets of subspaces such that every t-space is covered exactly
once, see [HHKK19]. Vector space partitions of affine spaces have been considered in [BFIK22].

The remaining part of the paper is structured as follows. In Section 2 we introduce the necessary
preliminaries. We deduce our main result – the classification of all possible types of vector space partitions
of PG(7, 2) – in Section 3. While several of the presented non-existence results for vector space partitions
have purely theoretical proofs, others rely on extensive computer computations. It would be nice to see some
of these calculations be replaced by pen-and-paper proofs. To top the paper off, we discuss the possible
types of vector space partitions in PG(v−1, q) for arbitrary field sizes q and dimensions v ≤ 5 of the ambient
space in Section 4.

2 Preliminaries

A vector space partition P of PG(v−1, q) is called reducible if there exists a proper subset Q of the elements
of P whose points partition a proper subspace of PG(v − 1, q). If P is not reducible we also speak of an
irreducible vector space partition. We can easily construct reducible vector space partitions by starting from
an arbitrary vector space partition and replacing an element with dimension at least 2 by its contained
points.

A multiset of points in PG(v − 1, q) is a mapping χ from the set of points in PG(v − 1, q) to N, so that
χ(P ) is the multiplicity of the point P . If χ(P ) ≤ 1 for all points P , then we also speak of a set (of points) χ
in PG(v−1, q). The support of a multiset of points is the set of all points with non-zero multiplicity. We say
that χ is ∆-divisible if

∑
P ̸≤H χ(P ) ≡ 0 (mod ∆) for each hyperplane H of PG(v − 1, q) and points P . In

other words, the Hamming weights of the codewords of the Fq-linear code Cχ associated with χ are divisible
by ∆. By #M we denote the cardinality of M, i.e., the sum

∑
P M(P ) of the multiplicities of all points

P . If S is an arbitrary subspace, then by M(S) we denote the sum
∑

P≤S M(P ) of the point multiplicities
of the points contained in S. For each U ∈ PG(v − 1, q) we denote by χU its characteristic function, i.e.,
χU (P ) = 1 iff P ≤ U and χU (P ) = 0 otherwise. It is an easy exercise to show that χU is qdim(U)−1-divisible,
which extends to multisets of subspaces:

Lemma 1. ([KK20, Lemma 11]) Let U be a multiset of subspaces in PG(v − 1, q) with dimension at least
k. Then χU :=

∑
U∈U χU is qk−1-divisible.

If χ is ∆-divisible and χ(P ) ≤ λ for some constant λ ∈ N and all points P , then the λ-complement χ,
defined by χ(P ) = λ− χ(P ) for all points P , is also ∆-divisible.

Corollary 2. Let P be a vector space partition of PG(v − 1, q) of type (v − 1)mv−1 . . . 2m21m1 , then the set
of points Hk such that the corresponding element A ∈ P, that contains the point, has dimension at most k
is qk-divisible if P contains an element with dimension strictly larger than k.

An exemplary implication is that no vector space partition of type 382211 in PG(5, 2) exists since there is
no 2-divisible multiset of points of cardinality 1, i.e., no 2-divisible binary code of effective length 1. In our
setting of vector space partitions the maximum possible point multiplicity is 1, so that the corresponding
codes are projective, i.e., generator matrices do not contain repeated columns. The possible effective lengths
of projective binary ∆-divisible linear codes have been completely characterized for all ∆ ∈ {2, 4, 8}, see e.g.
[HKK18, HKKW19] for proofs and further references:
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Proposition 3. Let n ∈ N>0 be the effective length of a ∆-divisible binary projective linear code.

(a) If ∆ = 2, then n ≥ 3.

(b) If ∆ = 4, then n ∈ {7, 8} or n ≥ 14.

(c) If ∆ = 8, then n ∈ {15, 16, 30, 31, 32, 45, 46, 47, 48, 49, 50, 51} or n ≥ 60.

All those effective lengths can indeed be attained.

Definition 4. We say that a vector space partition P has an s-supertail of type am1
1 am2

2 . . . ams
s , where

a1 > a2 > . . . as ≥ 1, if P contains exactly mj elements of dimension aj for all 1 ≤ j ≤ s, there exists at
least one element A ∈ P with dim(A) > a1, and for all elements B ∈ P with dim(B) ≤ a1 there exists an
index 1 ≤ j ≤ s with dim(B) = aj.

For the ease of notation we also allow the choice of mj = 0 and just speak of a supertail of a certain
type. From Proposition 3 we can directly conclude that certain types of supertails are impossible:

Corollary 5. Let P be a vector space partition of PG(v − 1, 2), then P cannot have a supertail of one of
the following types:

• 11, 12;

• 201i for i ∈ {1, . . . , 6, 9, . . . , 13}, 211i for i ∈ {0, . . . , 3, 6, . . . , 10}, 221i for i ∈ {0, 3, . . . , 7}, 231i for
i ∈ {0, . . . , 4}, 241i for i ∈ {0, 1}; and

• 3a2b1c where 7a+ 3b+ c < 60 and 7a+ 3b+ c /∈ {0, 15, 16, 30, 31, 32, 45, 46, 47, 48, 49, 50, 51}.

For literature on the supertail we refer e.g. to [HLNS13, NS18].

For small n the projective ∆-divisible Fq-linear codes of effective length n can be exhaustively generated
with software packages like e.g. Q-Extension [Bou07] or LinCode [BBK21]. Having the point sets at hand,
we can check whether they can be partitioned into a certain number of planes, lines, and points, which
excludes a few further supertail types. E.g. one can easily show that each q2-divisible multiset of cardinality
q2 + q + 1 over Fq has to be the characteristic function of a plane, so that there is no supertail of type

221q
2−q−1 over Fq. For enumeration results of projective binary ∆-divisible codes for ∆ ∈ {2, 4, 8} we refer

to [HHK+17]. Since the corresponding codes are computationally shown to be unique we have:

Lemma 6. Let S be a ∆-divisible set of cardinality n over F2.

(a) If (∆, n) = (2, 3), then S is the characteristic function of a line.

(b) If (∆, n) = (4, 7), then S is the characteristic function of a plane.

(c) If (∆, n) = (4, 14), then S is the sum of the characteristic functions of two disjoint planes.

(d) If (∆, n) = (8, 15), then S is the characteristic function of a solid.

(e) If (∆, n) = (8, 30), then S is the sum of the characteristic functions of two disjoint solids.

Theoretical proofs and generalizations can e.g. be found in [Kur21, Section 11] or [HKK18]. For q > 2 a
much stronger result is known. [GS03b, Theorem 13] directly implies:

Theorem 7. Let M be a qr-divisible multiset of cardinality δ · qr+1−1
q−1 over Fq, where r ∈ N>0. If q > 2

and 1 ≤ δ < ε, where q + ε is the size of the smallest non-trivial blocking sets in PG(2, q), then there exist
(r + 1)-spaces S1, . . . , Sδ such that

M =

δ∑
i=1

χSi ,

i.e., M is the sum of (r + 1)-spaces.
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Using dimension arguments, c.f. the proof of Lemma 15, we conclude from Lemma 6.(c)-(e):

Corollary 8. Let P be a vector space partition of PG(v − 1, 2), then P cannot have a supertail of one of
the following types:

• 2315;

• 312115; and

• 3221113, 3222110, 322317, 322414, 312615.

Lemma 6.(a) yields the fact that every vector space partition of PG(v−1, 2) of type (v−1)mv−1 . . . 2m213

is reducible (assuming v > 2), i.e., the three points have to form a line. Similarly, from Lemma 6.(b) we an
conclude that every vector space partition of PG(v−1, 2) of type (v−1)mv−1 . . . 3m317 is reducible (assuming
v > 3), i.e., the seven points have to form a plane.

While Lemma 6 discusses the parameters of (repeated) simplex codes, i.e., duals of Hamming codes,
there are also known uniqueness results for the parameters of first order Reed-Muller codes, see e.g. [KM21].
Translated to geometry we have:

Lemma 9. Let S be a 2r-divisible set of 2r+1 points in PG(v − 1, 2), where r ∈ N>0. Then, S is the
characteristic function of an affine (r + 1)-space.

In our context an important implication is that such a set S does not contain a line, so that we conclude:

Lemma 10. Let P be a vector space partition of PG(v− 1, 2), then P cannot have a supertail of one of the
following types:

• 2115 and

• 3021113, 3022110, 302317, 302414.

For larger field sizes there exist examples different to affine subspaces. They can be obtained by the
so-called cylinder construction, see e.g. [DBDMS19], and share the property that those point sets also do not
contain a line. A few parameters where qr-divisible sets of qr+1 points in PG(n− 1, q) have to be obtained
by the cylinder construction are recently discussed in [KM21].

We say that a multiset of points M in PG(v−1, q) is spanning if the points P with non-zero multiplicity
M(P ) > 0 span the entire ambient space. For a given multiset M of points in PG(v − 1, q) we denote by
ai the number of hyperplanes H such that M(H) = i. The vector (ai)i∈N is called the spectrum of M. If
M is spanning, then we have a#M = 0. By considering M restricted to K ∼= PG(k − 1, q) we can always
assume that M is spanning if we choose a suitable integer for k. For the ease of notation we assume that
M is spanning in PG(k − 1, q) in the following. Counting the number of hyperplanes in PG(k − 1, q) gives∑

i

ai =
qk − 1

q − 1
(4)

and counting the number of pairs of points and hyperplanes gives∑
i

iai = #M · q
k−1 − 1

q − 1
. (5)

For the third equation we assume M(P ) ∈ {0, 1} for every point P , i.e., there is no point with multiplicity
at least 2. Double-counting the incidences between pairs of elements in M and hyperplanes gives

∑
i

(
i

2

)
ai =

(
#M
2

)
· q

k−2 − 1

q − 1
. (6)

We call the equations (4)-(6) the standard equations for sets of points.
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3 Vector space partitions in PG(7, 2)

For each dimension v of the ambient space and each field size q the packing condition in Equation (1)
combined with the dimension condition in Equation (2) leave over a finite list of possibly types of vector
space partitions in PG(v−1, q). The conditions on the supertail mentioned in the previous section eliminate
a few more cases. Here we will treat the case of PG(7, 2), which is quite comprehensive compared to the
case PG(6, 2). In the end it will turn out that there are more than ten thousand different possible types of
vector space partitions in PG(7, 2). E.g. there are vector space partitions of type 4431261−i15+3i for each
integer 0 ≤ i ≤ 61. Of course it is sufficient to give constructions for the “irreducible cases” only. I.e., in
our example it suffice to give an example of type 443126115 and then to replace i lines by its three contained
points each. We have utilized the following general reduction rules:

Lemma 11. Let P be a vector space partition of type (v − 1)mv−1 . . . 2m21m1 in PG(v − 1, 2).

• If m2 > 0, then there also exists a vector space partition of type (v − 1)mv−1 . . . 3m32m2−11m1+3.

• If m3 > 0, then there also exists a vector space partition of type (v − 1)mv−1 . . . 4m43m3−12m21m1+7.

• If m3 > 0, then there also exists a vector space partition of type (v− 1)mv−1 . . . 4m43m3−12m2+11m1+4.

• If m4 > 0, then there also exists a vector space partition of type (v−1)mv−1 . . . 5m54m4−13m32m21m1+15.

• If m4 > 0, then there also exists a vector space partition of type (v−1)mv−1 . . . 5m54m4−13m32m2+51m1 .

• If m4 > 0, then there also exists a vector space partition of type (v−1)mv−1 . . . 5m54m4−13m3+12m21m1+8.

Nevertheless, still a lot of examples of vector space partitions need to be constructed. To this end we
utilize integer linear programming (ILP) formulations. For each i-space S we introduce the binary variable
xi
S ∈ {0, 1} with the meaning xi

S = 1 iff S is contained in the vector space partition P in PG(v − 1, q). The
partitioning condition is modeled by

v−1∑
i=1

∑
S : dim(S)=i,P≤S

xi
S = 1 (7)

for each point P . Introducing the counting variables

mi =
∑

S : dim(S)=i

xi
S (8)

for each dimension 1 ≤ i ≤ v − 1, we can prescribe the type or maximizing/minimizing certain values mi

while prescribing the others. Of course this general ILP has a huge number of variables and constraints. E.g.
there are 200 787 solids in PG(7, 2). Luckily enough we can use the collineation group of PG(7, 2) to reduce
the search space a bit. It is well known that the collineation group acts transitively on i-spaces as well as
pairs of disjoint i- and j-spaces, including the case i = j. For triples of disjoint i-spaces A, B, C the orbits
have dim(⟨A,B,C⟩) as invariant that can vary between 2i and min{v, 3i}, where v = 8 in our situation. So,
we can prescribe up to three elements of the vector space partition and search for the others.

In the special case where m4 is relatively large, we have considered a Desarguesian spread for solids in
PG(7, 2), see e.g. [Lun99]. So, let S be such a set of 17 pairwise disjoint solids in PG(7, 2) (that form a
vector space partition of type 417). We can restrict the search space for the ILP by forcing the used solids
to be contained in S, i.e., we set x4

S = 0 for every solid S that is not contained in S. Another starting point
for vector space partitions are so-called lifted MRD (maximum rank distance) codes, see e.g. [SSW19], that
e.g. give vector space partitions of types 61264, 51332, and also 417.

For ILP formulations of search problems in incidence structures there is a general (heuristic) method to
reduce the search space – the so-called Kramer–Mesner method [KM76]. Here a suitable subgroup G of the
automorphism group of the desired object is assumed. The action of the group G partitions the variables
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into orbits and we assume that variables in the same orbit have the same value. I.e., in our context the vector
space partition consists of entire orbits of solids, planes, and so on. This approach reduces the number of
variables in terms of the order of G. Also the number of constraints is automatically reduced since usually
several constraints become identical if we use orbit variables. For a more detailed and precise description
of the method we refer e.g. to [KK08] where sets of subspaces in PG(v − 1, q) with restricted intersection
dimension were considered. Via this method we can, of course, find examples whose automorphism group
contains G as a subgroup only. So, as mentioned, the method is heuristic, but quite successfully applied in
the literature. In our context we have used groups G with orders up to 16.

As our setting is quite comprehensive we refrain from stating the explicit details for the cases. How-
ever, explicit vector space partitions for specific types in PG(7, 2) can be obtained from the author upon
request. While it took quite some time to compute an example for each feasible case, we now focus on the
complementary non-existence results.

Lemma 12. Let P be a vector space partition of PG(v − 1, 2), then P cannot have a supertail of type 2415.

Proof. There are three different 4-divisible sets of cardinality 17, one for each of the dimensions k ∈ {6, 7, 8},
see [HHK+17]. Only the 6-dimensional point set admits three disjoint lines and there cannot be four disjoint
lines.

As a consequence, there does not exist a vector space partition of type 3342415 of PG(7, 2) but there exist
vector space partitions of type 33423−i18+3i for all integers 0 ≤ i ≤ 3. A set of 34 pairwise disjoint planes in
PG(7, 2) was constructed for the first time in [EZJS+10]. Now several thousand non-isomorphic examples
are known, see [HKK18].

Lemma 13. For k ≥ 3 let K1,K2,K3 be three pairwise disjoint k-spaces in PG(v− 1, 2) and L be the set of
lines that intersect each Ki in exactly a point. Then, the lines in L are pairwise disjoint and {L ∩Ki : L ∈ L}
forms a subspace for each index 1 ≤ i ≤ 3.

Proof. First we show that the lines in L are pairwise disjoint. To the contrary we assume that that L
contains two lines L1 = ⟨A,B⟩ and L2 ⟨A,B′⟩, where we assume w.l.o.g. that A ≤ K1 and B,B′ ≤ K2. Then
A+B,A+B′ ≤ K3, so that B +B′ ∈ K2 ∩K3, which is a contradiction.

For the second part we show the statement for K1 and assume that L1 = ⟨A1, B1⟩ and L2 = ⟨A2, B2⟩
are two different lines in L with A1, A2 ≤ K1 and B1, B2 ≤ K2. Then also ⟨A1 +A2, B1 +B2⟩ is in L since
A1 +A2 ≤ K1, B1 +B2 ≤ K2, and A1 +A2 +B1 +B2 ≤ K3.

Lemma 14. For k ≥ 3 let K1,K2,K3 be three pairwise disjoint k-spaces in PG(2k − 1, 2) and L be the set
of lines that intersect each Ki in exactly a point. Then, #L = 2k − 1 and the pairwise disjoint lines in L
partition the point set K1 ∪K2 ∪K3.

Proof. We have already mentioned that there is a unique isomorphism type under the operation of the
collineation group of PG(2k − 1, 2) since dim(⟨Ki,Kj⟩) = 2k for all 1 ≤ i < j ≤ 3. W.l.o.g. we choose
K1 = ⟨e1, . . . , ek⟩, K2 = ⟨ek+1, . . . , e2k⟩, and K3 = ⟨e1 + ek+1, . . . , ek + e2k⟩, where ei denotes the ith unit

vector. Let P1 = ⟨
∑k

i=1 aiei⟩ be the unique point of such a line in K1 and P2 = ⟨
∑k

i=1 biei+k⟩ be the unique
intersection of the line with K2, where a1, . . . , ak, b1, . . . , bk ∈ {0, 1}. Since the third point of the line is given

by P3 =
∑k

i=1 (aiei + biei+k) ∈ K3, we conclude ai = bi for all 1 ≤ i ≤ k. Moreover, we have to exclude the
case a1 = · · · = ak, so that 2k − 1 possibilities remain.

Lemma 15. Let P be a vector space partition of PG(v− 1, 2), then P cannot have a supertail of one of the
following types: 342415, 342318, 3422111, 3421114, 3420117, and 3121115.

Proof. The stated types for supertails all consist of 45 points. The 8-divisible sets S of cardinality 45 in
PG(v − 1, 2) have been computationally classified in [HHK+17]. Either S is the sum of the characteristic
functions of three pairwise disjoint solids or S is isomorphic to the points P1, . . . , P9 of a projective base in
PG(7, 2) and the

(
9
2

)
= 36 remaining points on the lines PiPj .
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We can easily check that the latter case does not contain a plane in its support. Thus, we can assume
that S = χS1 + χS2 + χS3 , where S1, S2, S3 are pairwise disjoint solids. Each plane E contained in the
support of S has to intersect each of the solids Si in a di-dimensional subspace where di ∈ {0, 1, 2, 3}. Since
two lines contained in a plane have to intersect in a point, the only possibility is that one of the solids Si

completely contains the plane E. However, this is impossible for four pairwise disjoint planes. So, let us
finally assume that S has type 3121115 and that the unique plane E is contained in S1. The five points form
a 2-divisible set, so that they have to be isomorphic to a projective base B of size 5, see e.g. [HHK+17]. So,
at most four of these five points can be contained in S1. Denoting the set of lines that intersect S1, S2, and
S3 in exactly a point by L and setting α := #L, we observe α ≥ 4. So, S2 and S3 can contain at most three
lines each and α ≥ 5. Since B is 2-divisible we have α ̸= 8, so that 5 ≤ α ≤ 7.

Note that no three points in P1 := {L ∩ S1 : L ∈ L} can form a line, so that Lemma 13 yields that
also no three points in Pi := {L ∩ Si : L ∈ L} can form a line for all 1 ≤ i ≤ 3. Thus the α ≥ 5 points
in P3 have to span a solid that is also contained in ⟨S1, S2⟩, so that we conclude n = 8 for the dimension
of the ambient space. Note that for i = 2, 3 the points of Si are partitioned by the lines contained in
Si and the points Pi ∪ (B ∩ Si). Note that the points in Pi ∪ (B ∩ Si) form a 2-divisible set in PG(3, 2)
whose cardinality is a multiple of three. For cardinality three we can apply Lemma 6 to conclude that
those points form a line. If # (Pi ∪ (B ∩ Si)) = 3β, where 2 ≤ β ≤ 5, then there exists a unique 2-divisible
set of 3β points in PG(3, 2), see [HHK+17]. In all cases the span of the points has dimension 3 and an
example is given by β disjoint lines. Thus, for i = 2, 3 the points in Pi ∪ (B ∩ Si) can be partitioned
into lines, so that α = #Pi ≤ 2β = 2

3 · (α+#(B ∩ Si)), which is equivalent to α ≤ 2# (B ∩ Si). Since
# (B ∩ S2) + # (B ∩ S3) = #B = 5 and α ≥ 5 this is impossible.

So, especially there does not exist a vector space partition of type 41434117 or 4143121115 in PG(7, 2). (We
remark that we have also checked the more involved second part of the proof of Lemma 15, i.e., that the set of
points of three disjoint solids cannot be partitioned in a plane, eleven lines, and five points computationally
using an ILP formulation.)

Lemma 16. In PG(7, 2) no vector space partitions of types 4133626−i13i for 0 ≤ i ≤ 6, types 4133527−i14+3i

for 0 ≤ i ≤ 7, and type 413342915 exist.

Proof. Assume that P is a vector space partition of one of those types and observe that the set H of points
that are not covered by the 13 solids of P forms an 8-divisible set of 60 points. Let k be the dimension of
the span of H. For the ease of notation we assume that H is embedded in PG(k− 1, 2) and denote by ai the
number of hyperplanes containing exactly i points from H, so that the standard equations are given by

6∑
i=0

a4+8i = 2k − 1, (9)

6∑
i=0

(4 + 8i) · a4+8i = 60 ·
(
2k−1 − 1

)
, and (10)

6∑
i=0

(4 + 8i)(3 + 8i) · a4+8i = 60 · 59 ·
(
2k−2 − 1

)
. (11)

Using Equation (9) and Equation (10) we conclude

6∑
i=0

i · a4+8i = 13 · 2k−2 − 7 (12)

Equation (11) minus 56 times Equation (10) minus 12 times Equation (9) gives

6∑
i=0

i2 · a4+8i = 691 · 2k−6 − 49 (13)
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after a final division by 64. Now, Equation (13) minus seven times Equation (12) plus twelve times Equa-
tion (9) yields

6∑
i=0

(i− 3)(i− 4)a4+8i = 3 · 2k−6 − 12. (14)

Since (i− 3)(i− 4) ≥ 0 and a4+8i ≥ 0 for all i, we have k ≥ 8. Due to the ambient space PG(7, 2) for P we

are only interested in the case k = 8 where
∑7

i=0(i− 3)(i− 4)a4+8i = 0. Thus, the unique solution is given
by a36 = 60, a28 = 195, and ai = 0 otherwise.

We have used LinCode, see [BBK21], to enumerate all projective [60, 8, {24, 32}]2 codes. There are exactly
12 non-isomorphic such codes, c.f. [BFWW06]. We have computationally checked that the corresponding
sets of points contain at most five disjoint planes. Five disjoint planes can be obtained in just one of the
twelve cases. However, we have computationally checked that in this case no 13 pairwise disjoint solids can
be chosen outside this point set. Four planes and nine lines that are pairwise disjoint can occur in two of the
twelve cases. Again, we have computationally checked that in those two cases no 13 pairwise disjoint solids
can be chosen outside the point set.

Lemma 17. If P is a vector space partition of type 41238119 in PG(7, 2), then the point set of the points in
the subspaces of dimension at most 3 is isomorphic to the columns of

111111111111111111111111111111100000000000000000000000000000000000010000000
000000000000000111111111111111111111111111111100000000000000000000001000000
000000011111111000000001111111100000001111111111111110000000000000000100000
000111100001111000011110000111100011110000111100011111110000000000000010000
001001100110001000100110000011101100010001001100100111111111111000000001000
010010100010000001001010111100110111100011010001101000010001111111000000100
110111101010110110011110011100100001100110010110100110110110011011100000010
000100100010010010110010001101111010101000111000100010111010101101100000001

,


111111111111111111111111111111100000000000000000000000000000000000010000000
000000000000000111111111111111111111111111111100000000000000000000001000000
000000011111111000000001111111100000001111111111111110000000000000000100000
000111100001111000011110000111100011110000111100011111110000000000000010000
011000000110011001100110011000001100110000001101100110111111111000000001000
101000001010101010101010101000010101010000010110101011010001111111000000100
011001100111010100110010101001100010100011000001100001100110011011100000010
101010100000101011000000110010101100110101000011001010111010101101100000001

,
or 

111111111111111111111111111111100000000000000000000000000000000000010000000
000000000000000111111111111111111111111111111100000000000000000000001000000
000000011111111000000001111111100000001111111111111110000000000000000100000
000111100001111000011110000111100011110000111100011111110000000000000010000
011000000110011001100110011000001100110000001101100110111111111000000001000
101000001010101010101010101000010101010000010110101011010001111111000000100
011001100111010100110010101001100010100011000001100001100110011011100000010
110010101101100101010101100010100000110101111111011111011010101101100000001

.
Proof. Observe that the set H of points that are not covered by the 12 solids of P forms an 8-divisible set of
75 points. Let k be the dimension of the span of H. For the ease of notation we assume that H is embedded in
PG(k−1, 2) and denote by ai the number of hyperplanes containing exactly i points from H. Similar as n the

roof of Lemma 16 we use the so standard equations
∑8

i=0 a3+8i = 2k−1,
∑8

i=0(3+8i)·a3+8i = 75·
(
2k−1 − 1

)
,

and
∑8

i=0(3 + 8i)(2 + 8i) · a3+8i = 75 · 74 ·
(
2k−2 − 1

)
to conclude

8∑
i=0

i · a3+8i = 69 · 2k−4 − 9,

8∑
i=0

i2 · a3+8i = 1209 · 2k−6 − 81, and

8∑
i=0

(i− 4)(i− 5)a3+8i = 4 · 2k−6 − 20.

Since (i− 4)(i− 5) ≥ 0 and a3+8i ≥ 0 for all i, we have k ≥ 8. Due to the ambient space PG(7, 2) for P we

are only interested in the case k = 8 where
∑8

i=0(i− 4)(i− 5)a3+8i = 0. Thus, the unique solution is given
by a43 = 75, a35 = 180, and ai = 0 otherwise.
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Using the notation [n, k]2-code for a binary k-dimensional code of effective length n, H is given by the
columns of a projective [75, 8]2-two-weight code C with weights 32 and 40. Since H contains a plane C can
be obtained recursively by lengthening [74, 7]2, [72, 6]2, and [68, 5]2 codes with maximum possible column
multiplicities at most 2, 4, and 8, respectively, where all non-zero weights are contained in {32, 40}. Using
LinCode, see [BBK21], we enumerated 38 [68, 5]2, 4286 [72, 6]2, 245736 [74, 7]2, and 9964 [75, 8]2 codes.
The complete enumeration took 85 hours of computation time. Checking which of those 9964 point sets
allow eight disjoint planes leaves just seven possibilities. Using an ILP formulation for a partition of the
complement into 12 solids leaves just the three mentioned cases.

Lemma 18. In PG(7, 2) no vector space partition of type 4123825−i14+3i for 2 ≤ i ≤ 5 exists.

Proof. Assume that P is a vector space partition of one of those types. Replacing the lines by their contained
three points gives a vector space partition P ′ of type 41238119, so that we can apply Lemma 17. Let H be
the corresponding point set of the points in the subspaces of dimension at most 3. Using an integer linear
programming formulation we have checked that we can pack at most one line if we also pack eight disjoint
planes into H.

We remark that from the three 4-divisible projective binary linear codes of length 19, see e.g. [HHK+17],
one contains five disjoint lines and the other two contain no pair of disjoint lines.

Lemma 19. Let S be a 4-divisible multiset of points of cardinality 20 and dimension at most 8 that contains
five disjoint lines, then, up to symmetry, S is given by the columns of

10000011101000010110
01000000011101101100
00100011110110000010
00010010011010001110
00001001100001111100
00000101111001001010
00000000110000000101


.

Moreover, we have dim(S) = 7 and the spectrum is given by (a8, a12, a16) = (67, 59, 1).

Proof. The projective 4-divisible binary linear codes of cardinality 20 have been classified in [HHK+17]. Their
counts per dimension are given by 728491. By a direct enumeration we have checked which corresponding
point sets contain five disjoint lines.

Lemma 20. In PG(7, 2) no vector space partition of type 443252515 exists.

Proof. Assume that P is a vector space partition of this type and observe that the set H of points that are
not covered by the 4 solids and the 25 planes of P forms an 4-divisible set of 20 points that contains five
disjoint lines. The unique possibility up to symmetry is determined in Lemma 19. It turns out that the ILP
formulation for a vector space partition of type 443252515 is infeasible when prescribing these 20 points.

Lemma 21. In PG(7, 2) no vector space partition of type 4113102515 exists.

Proof. Assume that P is a vector space partition of type 4113102515 and observe that the set H of points that
are not covered by the 11 solids of P forms an 8-divisible set of 90 points. Let k be the dimension of the span
of H. For the ease of notation we assume that H is embedded in PG(k− 1, 2) and denote by ai the number
of hyperplanes containing exactly i points from H. Similar as n the roof of Lemma 16 we use the standard
equations

∑11
i=0 a2+8i = 2k − 1,

∑11
i=0(2 + 8i) · a2+8i = 90 ·

(
2k−1 − 1

)
, and

∑11
i=0(2 + 8i)(1 + 8i) · a2+8i =

9



90 · 89 ·
(
2k−2 − 1

)
to conclude

11∑
i=0

i · a2+8i = 43 · 2k−3 − 11,

11∑
i=0

i2 · a2+8i = 3743 · 2k−7 − 121, and

11∑
i=0

(i− 5)(i− 6)a3+8i = 15 · 2k−7 − 30.

Since (i− 5)(i− 6) ≥ 0 and a3+8i ≥ 0 for all i, we have k ≥ 8. Due to the ambient space PG(7, 2) for P we

are only interested in the case k = 8 where
∑11

i=0(i− 5)(i− 6)a3+8i = 0. Thus, the unique solution is given
by a50 = 90, a42 = 165, and ai = 0 otherwise.

If H contains a solid S in its support, then there are 75 points in H that are not contained in S and each
hyperplane contain either 35 or 43 points of these. Via projective [75, 8]2-two-weight codes C with weights
32 and 40 such point sets have already been enumerated in Lemma 18. Via ILP computations we have
filtered out which of the corresponding point sets can be completed by 12 solids to a vector space partition
of PG(7, 2). Only 42 codes remain and we extended them in all possible ways by a four-dimensional simplex
code such that the code remains projective. After filtering out isomorphic codes we have again used an ILP
formulation to check which point sets can be completed by 11 solids to a vector space partition of PG(7, 2).
For the remaining 245 point sets we have checked which allow to pack 10 disjoint planes into them via ILP
computations. This was possible in 10 cases only and we finally have checked using ILP computations that
we can pack at most 4 disjoint lines when we also pack 10 disjoint planes into the point set. In other words,
the 20 points that are not covered by the 11 solids and the 10 planes do not form a 4-divisible point set as
specified in Lemma 19.

These computations show that in the remaining part we can assume that H does not contain a full solid
in its support. Now we have enumerated the possibilities of four pairwise disjoint solids in PG(7, 2) up to
symmetry. By exhaustive enumeration we have extended the four prescribed solids to 11 solids in total that
are pairwise disjoint and discarded all cases that allow the addition of a 12th such solid. For all of these cases
we have exhaustively enumerated all vector space partitions of type 411310120 and determined the maximum
number of disjoint lines that we can pack into the remaining 20 points. In all cases the answer was at most
4.

We remark that we have also tried to enumerate the projective [90, 8]2-two-weight codes C with weights
40 and 48 directly. However, we stopped the computations after having reached more than 1.5 million
different codes.

For every type satisfying the numerical conditions of Equation (1) and Equation (2) that is not excluded
by one of the previous lemmas there indeed exists a corresponding vector space partition of PG(7, 2). We
summarize the set of feasible parameters as follows:

Theorem 22. Let P be a vector space partition of PG(7, 2), then P has one of the following types:

• 721128;

• 62264−i13i, where 0 ≤ i ≤ 64;

• 51332;

• 51331−3j21−i+7j14+3i, where 0 ≤ i ≤ 1 + 7j and 0 ≤ j ≤ 10;

• 51329−3j27−i+7j13i, where 0 ≤ i ≤ 7 + 7j and 0 ≤ j ≤ 9;

• 51327−3j210−i+7j15+3i, where 0 ≤ i ≤ 10 + 7j and 0 ≤ j ≤ 9;
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• 417;

• 4163118;

• 41625−i13i, where 0 ≤ i ≤ 5;

• 41532116;

• 4153125−i18+3i, where 0 ≤ i ≤ 5;

• 415210−i13i, where 0 ≤ i ≤ 10;

• 41433−3j28−i+7j13i, where 0 ≤ i ≤ 8 + 7j and 0 ≤ j ≤ 1;

• 4143229−i14+3i, where 0 ≤ i ≤ 9;

• 41431210−i18+3i, where 0 ≤ i ≤ 10;

• 4133428−i18+3i, where 0 ≤ i ≤ 8;

• 41333−3j213−i+7j13i, where 0 ≤ i ≤ 13 + 7j and 0 ≤ j ≤ 1;

• 41332214−i14+3i, where 0 ≤ i ≤ 14;

• 41331216−i15+3iwhere 0 ≤ i ≤ 16;

• 4123821−i116+3i, where 0 ≤ i ≤ 1;

• 41237−3j27−i+7j15+3i, where 0 ≤ i ≤ 7 + 7j and 0 ≤ j ≤ 2;

• 41236−3j211−i+7j13i, where 0 ≤ i ≤ 11 + 7j and 0 ≤ j ≤ 2;

• 41235−3j212−i+7j14+3i, where 0 ≤ i ≤ 11 + 7j and 0 ≤ j ≤ 1;

• 41131024−i18+3i, where 0 ≤ i ≤ 4;

• 41139−3j29−i+7j13i, where 0 ≤ i ≤ 9 + 7j and 0 ≤ j ≤ 3;

• 41138−3j210−i+7j14+3i, where 0 ≤ i ≤ 10 + 7j and 0 ≤ j ≤ 2;

• 41137−3j212−i+7j15+3i, where 0 ≤ i ≤ 12 + 7j and 0 ≤ j ≤ 2;

• 410315;

• 410314−3j21−i+7j14+3i, where 0 ≤ i ≤ 1 + 7j and 0 ≤ j ≤ 4;

• 41031322−i18+3i, where 0 ≤ i ≤ 2;

• 410312−3j27−i+7j13i, where 0 ≤ i ≤ 7 + 7j and 0 ≤ j ≤ 4;

• 410310−3j210−i+7j15+3i, where 0 ≤ i ≤ 10 + 7j and 0 ≤ j ≤ 3;

• 4931618;

• 49315−3j25−i+7j13i, where 0 ≤ i ≤ 5 + 7j and 0 ≤ j ≤ 5;

• 49314−3j26−i+7j14+3i, where 0 ≤ i ≤ 6 + 7j and 0 ≤ j ≤ 4;

• 49313−3j28−i+7j15+3i, where 0 ≤ i ≤ 8 + 7j and 0 ≤ j ≤ 4;

• 48317−3j24−i+7j14+3i, where 0 ≤ i ≤ 4 + 7j and 0 ≤ j ≤ 5;

• 48316−3j26−i+7j15+3i, where 0 ≤ i ≤ 6 + 7j and 0 ≤ j ≤ 5;
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• 48315−3j210−i+7j13i, where 0 ≤ i ≤ 10 + 7j and 0 ≤ j ≤ 5;

• 4731923−i18+3i, where 0 ≤ i ≤ 3;

• 47318−3j28−i+7j13i, where 0 ≤ i ≤ 8 + 7j and 0 ≤ j ≤ 6;

• 47317−3j29−i+7j14+3i, where 0 ≤ i ≤ 9 + 7j and 0 ≤ j ≤ 5;

• 47316−3j211−i+7j15+3i, where 0 ≤ i ≤ 11 + 7j and 0 ≤ j ≤ 5;

• 46321−3j26−i+7j13i, where 0 ≤ i ≤ 6 + 7j and 0 ≤ j ≤ 7;

• 46320−3j27−i+7j14+3i, where 0 ≤ i ≤ 7 + 7j and 0 ≤ j ≤ 6;

• 46319−3j29−i+7j15+3i, where 0 ≤ i ≤ 9 + 7j and 0 ≤ j ≤ 6;

• 45323−3j25−i+7j14+3i, where 0 ≤ i ≤ 5 + 7j and 0 ≤ j ≤ 7;

• 45322−3j27−i+7j15+3i, where 0 ≤ i ≤ 7 + 7j and 0 ≤ j ≤ 7;

• 45321−3j211−i+7j13i, where 0 ≤ i ≤ 11 + 7j and 0 ≤ j ≤ 7;

• 4432524−i18+3i, where 0 ≤ i ≤ 4;

• 44324−3j29−i+7j13i, where 0 ≤ i ≤ 9 + 7j and 0 ≤ j ≤ 8;

• 44323−3j210−i+7j14+3i, where 0 ≤ i ≤ 10 + 7j and 0 ≤ j ≤ 7;

• 44322−3j212−i+7j15+3i, where 0 ≤ i ≤ 12 + 7j and 0 ≤ j ≤ 7;

• 4332921−i14 + 3i, where 0 ≤ i ≤ 1;

• 4332822−i18+3i, where 0 ≤ i ≤ 2;

• 43330−3j27j−i13i, where 0 ≤ i ≤ 7j and 0 ≤ j ≤ 10;

• 43326−3j28−i+7j14+3i, where 0 ≤ i ≤ 8 + 7j and 0 ≤ j ≤ 8;

• 43325−3j210−i+7j15+3i, where 0 ≤ i ≤ 10 + 7j and 0 ≤ j ≤ 8;

• 4233118;

• 42330−3j25−i+7j13i, where 0 ≤ i ≤ 5 + 7j and 0 ≤ j ≤ 10;

• 42329−3j26−i+7j14+3i, where 0 ≤ i ≤ 6 + 7j and 0 ≤ j ≤ 9;

• 42328−3j28−i+7j15+3i, where 0 ≤ i ≤ 8 + 7j and 0 ≤ j ≤ 9;

• 41332−3j24−i+7j14+3i, where 0 ≤ i ≤ 4 + 7j and 0 ≤ j ≤ 10;

• 41331−3j26−i+7j15+3i, where 0 ≤ i ≤ 6 + 7j and 0 ≤ j ≤ 10;

• 41330−3j210−i+7j13i, where 0 ≤ i ≤ 10 + 7j and 0 ≤ j ≤ 10;

• 4033423−i18+3i, where 0 ≤ i ≤ 3;

• 40333−3j28−i+7j13i, where 0 ≤ i ≤ 8 + 7j and 0 ≤ j ≤ 11;

• 40332−3j29−i+7j14+3i, where 0 ≤ i ≤ 9 + 7j and 0 ≤ j ≤ 10;

• 40331−3j211−i+7j15+3i, where 0 ≤ i ≤ 11 + 7j and 0 ≤ j ≤ 10;

In Proposition 27 in the appendix we also give a more explicit and extensive variant of the list of feasible
types of vector space partitions of PG(7, 2). A more compact variant is stated in Theorem 26.
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4 Vector space partitions in PG(v − 1, q) for v ≤ 5

The aim of this short section is to discuss the possible types of vector space partitions of PG(v − 1, q) for
all dimensions v ≤ 5 and arbitrary field size q. For v = 1 the ambient space consists of a single point itself,
so that no vector space partition exists since we assume a maximum dimension of v − 1 for the elements
of a vector space partition. For the same reason all elements of a vector space partition of PG(1, q) have
dimension 1. I.e., the only possible type is 1m1 where m1 = [2]q = q + 1. For v = 3 the dimension condition
yields that all elements of a vector space partition P of PG(2, q) have either dimension 1 or 2 and that
dimension 2 can occur at most once. If P does not contain an element of dimension 2, then its type is given
by 1m1 where m1 = [3]q = q2 + q+1. In that case P is reducible since we may choose any line and choose it
as an element of the vector space partition instead of its q + 1 contained points. If P is of type 211m1 , then
we have m1 = [3]q − [2]q = q2.

Proposition 23. The possible types of vector space partitions of PG(3, q) are given by 2q
2+1−j1(q+1)j, where

0 ≤ j ≤ q2 + 1, and 311q
3

.

Proof. Directly implied by the packing and the dimension condition in equations (1) and (2).

All of the mentioned types can indeed be attained. A Desarguesian line spread in PG(3, q) yields a vector

space partition of type 2q
2+1 where we may replace arbitrary j lines by their contained points. Choosing

an arbitrary plane in the ambient space leaves q3 uncovered points. The latter vector space partition is
irreducible. For vector space partitions of type 2q

2+1−j1(q+1)j it is an interesting question which values of j
do allow an irreducible vector space partition of that type. This problem is equivalent to the classification
of the possible sizes of (inclusion) maximal partial line spreads in PG(3, q), see e.g. [GS03a].

For vector space partitions of type 2m21m1 of PG(4, q) the packing condition in Equation (1) only implies
m2 = q3 + q − j and m1 = 1 + j(q + 1) for 0 ≤ j ≤ q3 + q. However, the 1 + j(q + 1) points that are not
covered by the lines have to correspond to a (projective) q-divisible linear codes over Fq of effective length
1 + j(q + 1). Using the characterization result for the possible length of qr-divisible codes over Fq from
[KK20] we can conclude j ≥ q− 1. Using this and the packing and the dimension condition in equations (1)
and (2), we conclude:

Proposition 24. The possible types of vector space partitions of PG(4, q) are given by 411q
4

, 312q
3−j1j(q+1)

for 0 ≤ j ≤ q3, and 2q
3+1−j1q

2+j(q+1) for 0 ≤ j ≤ q3 + 1.

All of the mentioned types can indeed be attained. Choosing an arbitrary solid in the ambient space
leaves q4 uncovered points. A lifted MRD code gives rise to a vector space partition P of type 312q

3

. In P
we can either replace j lines by their contained points or replace the plane by a line and q2 points to obtain
a vector space partition P ′ of type 2q

3+11q
2

. In P ′ we can then replace replace j lines by their contained
points.

Using the same methods one can easily characterize all feasible types of vector space partitions in PG(5, q)
that do not contain a plane:

• 511q
5

;

• 412q
4−j1j(q+1) for 0 ≤ j ≤ q4;

• 2q
4+q2+1−j1j(q+1) for 0 ≤ j ≤ q4 + q2 + 1.

A plane spread in PG(5, q) is a vector space partition of type 3q
3+1. From there we can easily obtain vector

space partitions of type 3q
3+1−j2j−i1i(q+1) for all 0 ≤ j ≤ q3 + 1 and all 0 ≤ i ≤ j. However, also vector

space partitions of other types do exist. With increasing dimension of the ambient space the problem of the
classification of all feasible types of vector space partitions gets harder and harder. We would like to mention
that in PG(7, 3) the maximum number A3(8, 6; 3) of pairwise disjoint planes is unknown. The currently best
known bounds are 244 ≤ A3(8, 6; 3) ≤ 248, see e.g. [HKK18]. If 248 such pairwise disjoint planes exist in
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PG(7, 3), then the 56 uncovered points have to form a so-called Hill cap [Hil78] corresponding to a two-weight
code. Since the support of this object does not contain a line, there is e.g. no vector space partition of type
324821152 in PG(7, 3).
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A A more explicit variant of the main theorem

During the paper we have concluded several forbidden supertails. For the ease of the reader we summarize
those that have been necessary in the classification of the feasible types of vector space partitions of PG(7, 2):

Proposition 25. No vector space partition of PG(v− 1, 2) exists if it has a supertail of one of the following
types:

• 1i for 1 ≤ i ≤ 2;

• 2014;

• 22−i12+3i for 0 ≤ i ≤ 1;
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• 23−i13i for all 0 ≤ i ≤ 3;

• 24−i13i for all 0 ≤ i ≤ 4;

• 24−i11+3i for all 0 ≤ i ≤ 4;

• 2315;

• 2415;

• 3323−i13i for 0 ≤ i ≤ 3;

• 3225−i11+3i for all 0 ≤ i ≤ 4;

• 312615;

• 3121115.

With this we can reformulate Theorem 22 as follows:

Theorem 26. Let P be a vector space partition of PG(7, 2) of type 7m7 1̇m1 satisfying the packing condition
in Equation (1) and the dimension condition in Equation (2) as well as the special tail conditions from
Proposition 25. Then, the type of P is not contained in the following exhaustive list:

• 4133626−i13i for 0 ≤ i ≤ 6;

• 4133527−i14+3i for 0 ≤ i ≤ 7;

• 413342915;

• 4123825−i14+3i for 2 ≤ i ≤ 5;

• 4113102515;

• 443252515.

A more explicit and extensive variant of our main theorem is given as follows:

Proposition 27. Let P be a vector space partition of PG(7, 2), then P has one of the following types:

• 721128;

• 62264−i13i, where 0 ≤ i ≤ 64;

• 51332;

• 5133121−i14+3i, where 0 ≤ i ≤ 1;

• 5132927−i13i, where 0 ≤ i ≤ 7;

• 5132828−i14+3i, where 0 ≤ i ≤ 8;

• 51327210−i15+3i, where 0 ≤ i ≤ 10;

• 51326214−i13i, where 0 ≤ i ≤ 14;

• 51325215−i14+3i, where 0 ≤ i ≤ 15;

• 51324217−i15+3i, where 0 ≤ i ≤ 17;

• 51323221−i13i, where 0 ≤ i ≤ 21;
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• 51322222−i14+3i, where 0 ≤ i ≤ 22;

• 51321224−i15+3i, where 0 ≤ i ≤ 24;

• 51320228−i13i, where 0 ≤ i ≤ 28;

• 51319229−i14+3i, where 0 ≤ i ≤ 29;

• 51318231−i15+3i, where 0 ≤ i ≤ 31;

• 51317235−i13i, where 0 ≤ i ≤ 35;

• 51316236−i14+3i, where 0 ≤ i ≤ 36;

• 51315238−i15+3i, where 0 ≤ i ≤ 38;

• 51314242−i13i, where 0 ≤ i ≤ 42;

• 51313243−i14+3i, where 0 ≤ i ≤ 43;

• 51312245−i15+3i, where 0 ≤ i ≤ 45;

• 51311249−i13i, where 0 ≤ i ≤ 49;

• 51310250−i14+3i, where 0 ≤ i ≤ 50;

• 5139252−i15+3i, where 0 ≤ i ≤ 52;

• 5138256−i13i, where 0 ≤ i ≤ 56;

• 5137257−i14+3i, where 0 ≤ i ≤ 57;

• 5136259−i15+3i, where 0 ≤ i ≤ 59;

• 5135263−i13i, where 0 ≤ i ≤ 63;

• 5134264−i14+3i, where 0 ≤ i ≤ 64;

• 5133266−i15+3i, where 0 ≤ i ≤ 66;

• 5132270−i13i, where 0 ≤ i ≤ 70;

• 5131271−i14+3i, where 0 ≤ i ≤ 71;

• 51273−i15+3i, where 0 ≤ i ≤ 73;

• 417;

• 4163118;

• 41625−i13i, where 0 ≤ i ≤ 5;

• 41532116;

• 4153125−i18+3i, where 0 ≤ i ≤ 5;

• 415210−i13i, where 0 ≤ i ≤ 10;

• 4143328−i13i, where 0 ≤ i ≤ 8;

• 4143229−i14+3i, where 0 ≤ i ≤ 9;

• 41431210−i18+3i, where 0 ≤ i ≤ 10;
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• 41430215−i13i, where 0 ≤ i ≤ 15;

• 4133428−i18+3i, where 0 ≤ i ≤ 8;

• 41333213−i13i, where 0 ≤ i ≤ 13;

• 41332214−i14+3i, where 0 ≤ i ≤ 14;

• 41331216−i15+3iwhere 0 ≤ i ≤ 16;

• 41330220−i13i, where 0 ≤ i ≤ 20;

• 4123821−i116+3i, where 0 ≤ i ≤ 1;

• 4123727−i15+3i, where 0 ≤ i ≤ 7;

• 41236211−i13i, where 0 ≤ i ≤ 11;

• 41235212−i14+3i, where 0 ≤ i ≤ 11;

• 41234214−i15+3i, where 0 ≤ i ≤ 14;

• 41233218−i13i, where 0 ≤ i ≤ 18;

• 41232219−i14+3i, where 0 ≤ i ≤ 19;

• 41231221−i15+3i, where 0 ≤ i ≤ 21;

• 412225−i13i, where 0 ≤ i ≤ 25;

• 41131024−i18+3i, where 0 ≤ i ≤ 4;

• 4113929−i13i, where 0 ≤ i ≤ 9;

• 41138210−i14+3i, where 0 ≤ i ≤ 10;

• 41137212−i15+3i, where 0 ≤ i ≤ 12;

• 41136216−i103i, where 0 ≤ i ≤ 16;

• 41135217−i14+3i, where 0 ≤ i ≤ 17;

• 41134219−i15+3i, where 0 ≤ i ≤ 19;

• 41133223−i13i, where 0 ≤ i ≤ 23;

• 41132224−i14+3i, where 0 ≤ i ≤ 24;

• 41131226−i15+3i, where 0 ≤ i ≤ 26;

• 411230−i13i, where 0 ≤ i ≤ 30;

• 410315;

• 41031421−i14+3i, where 0 ≤ i ≤ 1;

• 41031322−i18+3i, where 0 ≤ i ≤ 2;

• 41031227−i13i, where 0 ≤ i ≤ 7;

• 41031128−i14+3i, where 0 ≤ i ≤ 8;

• 410310210−i15+3i, where 0 ≤ i ≤ 10;
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• 41039214−i13i, where 0 ≤ i ≤ 14;

• 41038215−i14+3i, where 0 ≤ i ≤ 15;

• 41037217−i15+3i, where 0 ≤ i ≤ 17;

• 41036221−i13i, where 0 ≤ i ≤ 21;

• 41035222−i14+3i, where 0 ≤ i ≤ 22;

• 41034224−i15+3i, where 0 ≤ i ≤ 24;

• 41033228−i13i, where 0 ≤ i ≤ 28;

• 41032229−i14+3i, where 0 ≤ i ≤ 29;

• 41031231−i15+3i, where 0 ≤ i ≤ 31;

• 410235−i13i, where 0 ≤ i ≤ 35;

• 4931618;

• 4931525−i13i, where 0 ≤ i ≤ 5;

• 4931426−i14+3i, where 0 ≤ i ≤ 6;

• 4931328−i15+3i, where 0 ≤ i ≤ 8;

• 49312212−i13i, where 0 ≤ i ≤ 12;

• 49311213−i14+3i, where 0 ≤ i ≤ 13;

• 49310215−i15+3i, where 0 ≤ i ≤ 15;

• 4939219−i13i, where 0 ≤ i ≤ 19;

• 4938220−i14+3i, where 0 ≤ i ≤ 20;

• 4937222−i15+3i, where 0 ≤ i ≤ 22;

• 4936226−i13i, where 0 ≤ i ≤ 26;

• 4935227−i14+3i, where 0 ≤ i ≤ 27;

• 4934229−i15+3i, where 0 ≤ i ≤ 29;

• 4933233−i13i, where 0 ≤ i ≤ 33;

• 4932234−i14+3i, where 0 ≤ i ≤ 34;

• 4931236−i15+3i, where 0 ≤ i ≤ 36;

• 49240−i13i, where 0 ≤ i ≤ 40;

• 4831724−i14+3i, where 0 ≤ i ≤ 4;

• 4831626−i15+3i, where 0 ≤ i ≤ 6;

• 48315210−i13i, where 0 ≤ i ≤ 10;

• 48314211−i14+3i, where 0 ≤ i ≤ 11;

• 48313213−i15+3i, where 0 ≤ i ≤ 13;
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• 48312217−i13i, where 0 ≤ i ≤ 17;

• 48311218−i14+3i, where 0 ≤ i ≤ 18;

• 48310220−i15+3i, where 0 ≤ i ≤ 20;

• 4839224−i13i, where 0 ≤ i ≤ 24;

• 4838225−i14+3i, where 0 ≤ i ≤ 25;

• 4837227−i15+3i, where 0 ≤ i ≤ 27;

• 4836231−i13i, where 0 ≤ i ≤ 31;

• 4835232−i14+3i, where 0 ≤ i ≤ 32;

• 4834234−i15+3i, where 0 ≤ i ≤ 34;

• 4833238−i13i, where 0 ≤ i ≤ 38;

• 4832239−i14+3i, where 0 ≤ i ≤ 39;

• 4831241−i15+3i, where 0 ≤ i ≤ 41;

• 4830245−i13i, where 0 ≤ i ≤ 45;

• 4731923−i18+3i, where 0 ≤ i ≤ 3;

• 4731828−i13i, where 0 ≤ i ≤ 8;

• 4731729−i14+3i, where 0 ≤ i ≤ 9;

• 47316211−i15+3i, where 0 ≤ i ≤ 11;

• 47315215−i103i, where 0 ≤ i ≤ 15;

• 47314216−i14+3i, where 0 ≤ i ≤ 16;

• 47313218−i15+3i, where 0 ≤ i ≤ 18;

• 47312222−i13i, where 0 ≤ i ≤ 22;

• 47311223−i14+3i, where 0 ≤ i ≤ 23;

• 47310225−i15+3i, where 0 ≤ i ≤ 25;

• 4739229−i13i, where 0 ≤ i ≤ 29;

• 4738230−i14+3i, where 0 ≤ i ≤ 30;

• 4737232−i15+3i, where 0 ≤ i ≤ 32;

• 4736236−i13i, where 0 ≤ i ≤ 36;

• 4735237−i14+3i, where 0 ≤ i ≤ 37;

• 4734239−i15+3i, where 0 ≤ i ≤ 39;

• 4733243−i13i, where 0 ≤ i ≤ 43;

• 4732244−i14+3i, where 0 ≤ i ≤ 44;

• 4731246−i15+3i, where 0 ≤ i ≤ 46;

20



• 47250−i13i, where 0 ≤ i ≤ 50;

• 4632126−i13i, where 0 ≤ i ≤ 6;

• 4632027−i14+3i, where 0 ≤ i ≤ 7;

• 4631929−i15+3i, where 0 ≤ i ≤ 9;

• 46318213−i13i, where 0 ≤ i ≤ 13;

• 46317214−i14+3i, where 0 ≤ i ≤ 14;

• 46316216−i15+3i, where 0 ≤ i ≤ 16;

• 46315220−i13i, where 0 ≤ i ≤ 20;

• 46314221−i14+3i, where 0 ≤ i ≤ 21;

• 46313223−i15+3i, where 0 ≤ i ≤ 23;

• 46312227−i13i, where 0 ≤ i ≤ 27;

• 46311228−i14+3i, where 0 ≤ i ≤ 28;

• 46310230−i15+3i, where 0 ≤ i ≤ 30;

• 4639234−i13i, where 0 ≤ i ≤ 34;

• 4638235−i14+3i, where 0 ≤ i ≤ 35;

• 4637237−i15+3i, where 0 ≤ i ≤ 37;

• 4636241−i13i, where 0 ≤ i ≤ 41;

• 4635242−i14+3i, where 0 ≤ i ≤ 42;

• 4634244−i15+3i, where 0 ≤ i ≤ 44;

• 4633248−i13i, where 0 ≤ i ≤ 48;

• 4632249−i14+3i, where 0 ≤ i ≤ 49;

• 4631251−i15+3i, where 0 ≤ i ≤ 51;

• 4630255−i13i, where 0 ≤ i ≤ 55;

• 4532325−i14+3i, where 0 ≤ i ≤ 5;

• 4532227−i15+3i, where 0 ≤ i ≤ 7;

• 45321211−i13i, where 0 ≤ i ≤ 11;

• 45320212−i14+3i, where 0 ≤ i ≤ 12;

• 45319214−i15+3i, where 0 ≤ i ≤ 14;

• 45318218−i13i, where 0 ≤ i ≤ 18;

• 45317219−i14+3i, where 0 ≤ i ≤ 19;

• 45316221−i15+3i, where 0 ≤ i ≤ 21;

• 45315225−i13i, where 0 ≤ i ≤ 25;

21



• 45314226−i14+3i, where 0 ≤ i ≤ 26;

• 45313228−i15+3i, where 0 ≤ i ≤ 28;

• 45312232−i13i, where 0 ≤ i ≤ 32;

• 45311233−i14+3i, where 0 ≤ i ≤ 33;

• 45310235−i15+3i, where 0 ≤ i ≤ 35;

• 4539239−i13i, where 0 ≤ i ≤ 39;

• 4538240−i14+3i, where 0 ≤ i ≤ 40;

• 4537242−i15+3i, where 0 ≤ i ≤ 42;

• 4536246−i13i, where 0 ≤ i ≤ 46;

• 4535247−i14+3i, where 0 ≤ i ≤ 47;

• 4534249−i15+3i, where 0 ≤ i ≤ 49;

• 4533253−i13i, where 0 ≤ i ≤ 53;

• 4532254−i14+3i, where 0 ≤ i ≤ 54;

• 4531256−i15+3i, where 0 ≤ i ≤ 56;

• 45260−i13i, where 0 ≤ i ≤ 60;

• 4432524−i18+3i, where 0 ≤ i ≤ 4;

• 4432429−i13i, where 0 ≤ i ≤ 9;

• 44323210−i14+3i, where 0 ≤ i ≤ 10;

• 44322212−i15+3i, where 0 ≤ i ≤ 12;

• 44321216−i13i, where 0 ≤ i ≤ 16;

• 44320217−i14+3i, where 0 ≤ i ≤ 17;

• 44319219−i15+3i, where 0 ≤ i ≤ 19;

• 44318223−i13i, where 0 ≤ i ≤ 23;

• 44317224−i14+3i, where 0 ≤ i ≤ 24;

• 44316226−i15+3i, where 0 ≤ i ≤ 26;

• 44315230−i13i, where 0 ≤ i ≤ 30;

• 44314231−i14+3i, where 0 ≤ i ≤ 31;

• 44313233−i15+3i, where 0 ≤ i ≤ 33;

• 44312237−i13i, where 0 ≤ i ≤ 37;

• 44311238−i14+3i, where 0 ≤ i ≤ 38;

• 44310240−i15+3i, where 0 ≤ i ≤ 40;

• 4439244−i13i, where 0 ≤ i ≤ 44;
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• 4438245−i14+3i, where 0 ≤ i ≤ 45;

• 4437247−i15+3i, where 0 ≤ i ≤ 47;

• 4436251−i13i, where 0 ≤ i ≤ 51;

• 4435252−i14+3i, where 0 ≤ i ≤ 52;

• 4434254−i15+3i, where 0 ≤ i ≤ 54;

• 4433258−i13i, where 0 ≤ i ≤ 58;

• 4432259−i14+3i, where 0 ≤ i ≤ 59;

• 4431261−i15+3i, where 0 ≤ i ≤ 61;

• 4430265−i13i, where 0 ≤ i ≤ 65;

• 43330;

• 4332921−i14 + 3i, where 0 ≤ i ≤ 1;

• 4332822−i18+3i, where 0 ≤ i ≤ 2;

• 4332727−i13i, where 0 ≤ i ≤ 7;

• 4332628−i14+3i, where 0 ≤ i ≤ 8;

• 43325210−i15+3i, where 0 ≤ i ≤ 10;

• 43324214−i13i, where 0 ≤ i ≤ 14;

• 43323215−i14+3i, where 0 ≤ i ≤ 15;

• 43322217−i15+3i, where 0 ≤ i ≤ 17;

• 43321221−i13i, where 0 ≤ i ≤ 21;

• 43320222−i14+3i, where 0 ≤ i ≤ 22;

• 43319224−i15+3i, where 0 ≤ i ≤ 24;

• 43318228−i13i, where 0 ≤ i ≤ 2;

• 43317229−i14+3i, where 0 ≤ i ≤ 29;

• 43316231−i15+3i, where 0 ≤ i ≤ 31;

• 43315235−i13i, where 0 ≤ i ≤ 35;

• 43314236−i14+3i, where 0 ≤ i ≤ 36;

• 43313238−i15+3i, where 0 ≤ i ≤ 38;

• 43312242−i13i, where 0 ≤ i ≤ 42;

• 43311243−i14+3i, where 0 ≤ i ≤ 43;

• 43310245−i15+3i, where 0 ≤ i ≤ 45;

• 4339249−i13i, where 0 ≤ i ≤ 49;

• 4338250−i14+3i, where 0 ≤ i ≤ 50;
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• 4337252−i15+3i, where 0 ≤ i ≤ 52;

• 4336256−i13i, where 0 ≤ i ≤ 56;

• 4335257−i14+3i, where 0 ≤ i ≤ 57;

• 4334259−i15+3i, where 0 ≤ i ≤ 59;

• 4333263−i13i, where 0 ≤ i ≤ 63;

• 4332264−i14+3i, where 0 ≤ i ≤ 64;

• 4331266−i15+3i, where 0 ≤ i ≤ 66;

• 4330270−i13i, where 0 ≤ i ≤ 70;

• 4233118;

• 4233025−i13i, where 0 ≤ i ≤ 5;

• 4232926−i14+3i, where 0 ≤ i ≤ 6;

• 4232828−i15+3i, where 0 ≤ i ≤ 8;

• 42327212−i13i, where 0 ≤ i ≤ 12;

• 42326213−i14+3i, where 0 ≤ i ≤ 13;

• 42325215−i15+3i, where 0 ≤ i ≤ 15;

• 42324219−i13i, where 0 ≤ i ≤ 19;

• 42323220−i14+3i, where 0 ≤ i ≤ 20;

• 42322222−i15+3i, where 0 ≤ i ≤ 22;

• 42321226−i13i, where 0 ≤ i ≤ 26;

• 42320227−i14+3i, where 0 ≤ i ≤ 27;

• 42319229−i15+3i, where 0 ≤ i ≤ 29;

• 42318233−i13i, where 0 ≤ i ≤ 33;

• 42317234−i14+3i, where 0 ≤ i ≤ 34;

• 42316236−i15+3i, where 0 ≤ i ≤ 36;

• 42315240−i13i, where 0 ≤ i ≤ 40;

• 42314241−i14+3i, where 0 ≤ i ≤ 41;

• 42313243−i15+3i, where 0 ≤ i ≤ 43;

• 42312247−i13i, where 0 ≤ i ≤ 47;

• 42311248−i14+3i, where 0 ≤ i ≤ 48;

• 42310250−i15+3i, where 0 ≤ i ≤ 50;

• 4239254−i13i, where 0 ≤ i ≤ 54;

• 4238255−i14+3i, where 0 ≤ i ≤ 55;
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• 4237257−i15+3i, where 0 ≤ i ≤ 57;

• 4236261−i13i, where 0 ≤ i ≤ 61;

• 4235262−i14+3i, where 0 ≤ i ≤ 62;

• 4234264−i15+3i, where 0 ≤ i ≤ 64;

• 4233268−i13i, where 0 ≤ i ≤ 68;

• 4232269−i14+3i, where 0 ≤ i ≤ 69;

• 4231271−i15+3i, where 0 ≤ i ≤ 71;

• 4230275−i13i, where 0 ≤ i ≤ 75;

• 4133224−i14+3i, where 0 ≤ i ≤ 4;

• 4133126−i15+3i, where 0 ≤ i ≤ 6;

• 41330210−i13i, where 0 ≤ i ≤ 10;

• 41329211−i14+3i, where 0 ≤ i ≤ 11;

• 41328213−i15+3i, where 0 ≤ i ≤ 13;

• 41327217−i13i, where 0 ≤ i ≤ 17;

• 41326218−i14+3i, where 0 ≤ i ≤ 18;

• 41325220−i15+3i, where 0 ≤ i ≤ 20;

• 41324224−i13i, where 0 ≤ i ≤ 24;

• 41323225−i14+3i, where 0 ≤ i ≤ 25;

• 41322227−i15+3i, where 0 ≤ i ≤ 27;

• 41321231−i13i, where 0 ≤ i ≤ 31;

• 41320232−i14+3i, where 0 ≤ i ≤ 32;

• 41319234−i15+3i, where 0 ≤ i ≤ 34;

• 41318238−i13i, where 0 ≤ i ≤ 38;

• 41317239−i14+3i, where 0 ≤ i ≤ 39;

• 41316241−i15+3i, where 0 ≤ i ≤ 41;

• 41315245−i13i, where 0 ≤ i ≤ 45;

• 41314246−i14+3i, where 0 ≤ i ≤ 46;

• 41313248−i15+3i, where 0 ≤ i ≤ 48;

• 41312252−i13i, where 0 ≤ i ≤ 52;

• 41311253−i14+3i, where 0 ≤ i ≤ 53;

• 41310255−i15+3i, where 0 ≤ i ≤ 55;

• 4139259−i13i, where 0 ≤ i ≤ 59;
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• 4138260−i14+3i, where 0 ≤ i ≤ 60;

• 4137262−i15+3i, where 0 ≤ i ≤ 62;

• 4136266−i13i, where 0 ≤ i ≤ 66;

• 4135267−i14+3i, where 0 ≤ i ≤ 67;

• 4134269−i15+3i, where 0 ≤ i ≤ 69;

• 4133273−i13i, where 0 ≤ i ≤ 73;

• 4132274−i14+3i, where 0 ≤ i ≤ 74;

• 4131276−i15+3i, where 0 ≤ i ≤ 76;

• 4130280−i13i, where 0 ≤ i ≤ 80;

• 4033423−i18+3i, where 0 ≤ i ≤ 3;

• 4033328−i13i, where 0 ≤ i ≤ 8;

• 4033229−i14+3i, where 0 ≤ i ≤ 9;

• 40331211−i15+3i, where 0 ≤ i ≤ 11;

• 40330215−i13i, where 0 ≤ i ≤ 15;

• 40329216−i14+3i, where 0 ≤ i ≤ 16;

• 40328218−i15+3i, where 0 ≤ i ≤ 18;

• 40327222−i13i, where 0 ≤ i ≤ 22;

• 40326223−i14+3i, where 0 ≤ i ≤ 23;

• 40325225−i15+3i, where 0 ≤ i ≤ 25;

• 40324229−i13i, where 0 ≤ i ≤ 29;

• 40323230−i14+3i, where 0 ≤ i ≤ 30;

• 40322232−i15+3i, where 0 ≤ i ≤ 32;

• 40321236−i13i, where 0 ≤ i ≤ 36;

• 40320237−i14+3i, where 0 ≤ i ≤ 37;

• 40319239−i15+3i, where 0 ≤ i ≤ 39;

• 40318243−i13i, where 0 ≤ i ≤ 43;

• 40317244−i14+3i, where 0 ≤ i ≤ 44;

• 40316246−i15+3i, where 0 ≤ i ≤ 46;

• 40315250−i13i, where 0 ≤ i ≤ 50;

• 40314251−i14+3i, where 0 ≤ i ≤ 51;

• 40313253−i15+3i, where 0 ≤ i ≤ 53;

• 40312257−i13i, where 0 ≤ i ≤ 57;
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• 40311258−i14+3i, where 0 ≤ i ≤ 58;

• 40310260−i15+3i, where 0 ≤ i ≤ 60;

• 4039264−i13i, where 0 ≤ i ≤ 64;

• 4038265−i14+3i, where 0 ≤ i ≤ 65;

• 4037267−i15+3i, where 0 ≤ i ≤ 67;

• 4036271−i13i, where 0 ≤ i ≤ 71;

• 4035272−i14+3i, where 0 ≤ i ≤ 72;

• 4034274−i15+3i, where 0 ≤ i ≤ 74;

• 4033278−i13i, where 0 ≤ i ≤ 78;

• 4032279−i14+3i, where 0 ≤ i ≤ 79;

• 4031281−i15+3i, where 0 ≤ i ≤ 81;

• 4030285−i13i, where 0 ≤ i ≤ 85;
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