
Irreducible Subcube Partitions

Yuval Filmus, Edward Hirsch, Sascha Kurz, Ferdinand Ihringer,
Artur Riazanov, Alexander Smal, Marc Vinyals

December 30, 2022

Abstract

A subcube partition is a partition of the Boolean cube {0, 1}n into subcubes. A subcube partition is
irreducible if the only sub-partitions whose union is a subcube are singletons and the entire partition. A
subcube partition is tight if it “mentions” all coordinates.

We study extremal properties of tight irreducible subcube partitions: minimal size, minimal weight,
maximal number of points, maximal size, and maximal minimum dimension. We also consider the
existence of homogeneous tight irreducible subcube partitions, in which all subcubes have the same
dimensions. We additionally study subcube partitions of {0, . . . , q− 1}n, and partitions of Fn

2 into affine
subspaces, in both cases focusing on the minimal size.

Our constructions and computer experiments lead to several conjectures on the extremal values of
the aforementioned properties.

1 Introduction

A subcube partition is a partition of the cube {0, 1}n into subcubes, that is, into sets of the form

{x ∈ {0, 1}n : xi1 = b1, . . . , xid = bd}.

Here is an example of a subcube partition of length n = 3:

S3 = {000}, {111}, {001, 101}, {100, 110}, {010, 011}
= 000, 111, ∗01, 1∗0, 01∗.

We will usually express our subcubes as strings in {0, 1, ∗}n, in which stars stand for unconstrained coordi-
nates.

A subcube partition is reducible if it has a proper subset, consisting of more than one subcube, whose
union is a subcube. For example,

0∗, 10, 11

is reducible since 10 ∪ 11 = 1∗. In contrast, S3 is irreducible.
A subcube partition is tight if it mentions all coordinates, that is, if for every i ∈ [n], some subcube

constrains xi. Both subcube partitions above are tight, but the subcube partition 0∗, 1∗ is not, since the
second coordinate is not mentioned.

Peitl and Szeider [PS22] enumerated all tight irreducible subcube partitions for n = 3, 4, and counted the
number of nonisomorphic subcube partitions with small size (number of subcubes) for n = 5, 6, 7. They ask
whether there are infinitely many tight irreducible subcube partitions. In this work, we answer this question
in the affirmative, giving many constructions of tight irreducible subcube partitions.

The work of Peitl and Szeider raises many natural questions, such as:

• How to determine whether a subcube partition is irreducible?
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• What is the minimal size of a tight irreducible subcube partition of length n?
(This question only makes sense if we impose tightness.)

• What is the maximal size of an irreducible subcube partition of length n?

• Do there exist irreducible subcube partitions in which all subcubes have the same dimension?
(We call such subcube partitions homogeneous.)

We address these questions in Section 2. We describe an efficient algorithm for testing whether a subcube
partition is irreducible in Section 2.1, and give an infinite sequence of irreducible formulas in Section 2.2.

We conjecture that the minimal size of a tight irreducible subcube partition of length n is 2n − 1. We
give a matching construction in Section 2.3, and optimize its Hamming weight in Section 2.4 (this will be
useful later on).

We conjecture that the maximal size of an irreducible subcube partition of length n ≥ 5 is 5
82

n. We
present constructions of such subcube partitions for small n in Section 2.6, where we also give a nontrivial
upper bound. Our constructions involve 2n−2 points (0-dimensional subcubes) and 3·2n−3 edges (1-dimension
subcubes). We conjecture that 2n−2 is the maximal number of points in an irreducible subcube partition of
size n. A matching construction appears in Section 2.5.

We present subcube partitions in which all subcubes have linear dimension in Section 2.7. We close off
the section with a discussion of homogeneous subcube partitions in Section 2.8, where we describe several
constructions, and determine all lengths n and codimensions k ≤ 4 for which there exists a tight irreducible
subcube partitions of length n whose subcubes have dimension n− k.

Section 3 studies subcube partitions of [q]n for q ≥ 3. We show how to construct irreducible subcube
partitions of [q]n from irreducible subcube partitions of {0, 1}n in Section 3.1, and use this to construct tight
irreducible subcube partitions of length n and size (n− 1)q(q− 1)+ 1 in Section 3.2.1; this uses the subcube
partitions of Section 2.4. We conjecture that (n − 1)q(q − 1) + 1 is the minimum size of a tight irreducible
subcube partition, and prove this for n = 3 in Section 3.2.2. We close by showing, in Section 3.2.3, that the
minimal size of a tight minimal cover in this setting is (q − 1)n+ 1.

Finally, Section 4 briefly studies the linear analog of subcube partitions, in which subcubes are replaced
by affine subspaces. We show how to construct irreducible affine vector space partitions from irreducible
subcube partitions in Section 4.1, and use this to construct tight irreducible affine subspace partitions of
length n and size roughly 3

2n in Section 4.2. We discuss irreducible affine vector space partitions in more
detail in the companion work [BFIK22].

Background

Subcube partitions appear, under various names, in theoretical computer science, as an abstraction of the
salient properties of decision trees, and elsewhere. Some examples include Iwama [Iwa87, Iwa89] (as cer-
tain independent sets of clauses), Brandman, Orlitsky and Hennessy [BOH90] (as nonoverlapping covers),
Berger, Felzanbaum and Fraenkel [BFF90] (as disjoint tautologies), Davydov and Davydova [DD98] (as di-
viding formulas), Friedgut, Kahn and Wigderson [FKW02] (as subcube partitions), Kullmann [Kul04] (as
unsatisfiable hitting clause-sets), Kisielewicz [Kis20] (as realizations of cube tiling codes). There are also or-
thogonal DNFs [CH11], also known as disjoint DNFs [GK13], which are systems of disjoint subcubes which
do not necessarily cover the entire cube. (For the relation between decision trees and subcube partitions,
see Göös, Pitassi and Watson [GPW18].)

Irreducible subcube partitions appear in work of Kullmann and Zhao [KZ16] (as clause-reducibility),
inspired by similar notions in the context of disjoint covering systems of residue classes [Kor84, BFF90] and
motivated by applications to the study of CNFs.

Peitl and Szeider [PS22] enumerate all tight irreducible subcube partitions for n = 3, 4, and determine
the minimal size of a regular irreducible subcube partition for n = 5, 6, 7. Instead of tightness, they use a
different notion, regularity, which is equivalent to tightness for irreducible subcube partitions when n ≥ 3.
Regularity was introduced by Kullmann and Zhao [KZ13] under the name nonsingularity, and is defined in
Section 2.3.1.
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2 Subcube partitions

We start with a quick recap of the relevant definitions.

Definition 2.1 (Subcube partition). A subcube partition of length n is a partition of {0, 1}n into subcubes,
which are sets of the form

{x ∈ {0, 1}n : xi1 = b1, . . . , xid = bd}.

The parameter d is the codimension of the subcube, and n− d is its dimension. A subcube of dimension 0
is called a point, and a subcube of dimension 1 is called an edge.

The size of a subcube partition is the number of subcubes.

We identify subcubes with words over {0, 1, ∗}. For example, 01∗ stands for the subcube {(0, 1, 0), (0, 1, 1)}.
We index the symbols in a word w of length n by [n] = {1, . . . , n}. If b ∈ {0, 1}, we use b̄ to denote 1− b.

Definition 2.2 (Reducibility). A subcube partition F is reducible if there exists a subset G ⊂ F , with
1 < |G| < |F |, such that the union of the subcubes in G is itself a subcube.

A subcube partition is irreducible if it is not reducible.

Definition 2.3 (Tightness). A subcube s mentions a coordinate i ∈ [n] if si ̸= ∗.
A subcube partition F of length n is tight if for every i ∈ [n], some subcube in F mentions i.

It is coNP-complete to determine whether a given collection of subcubes covers {0, 1}n (this problem is
just SAT in disguise). In contrast, it is easy to test whether a given collection of subcubes is a partition, as
first observed by Iwama [Iwa89].

Definition 2.4 (Conflicting subcubes). Two subcubes s, t of the same length are said to conflict if there is
a coordinate i ∈ [n] such that si, ti ̸= ∗ and si ̸= ti.

Lemma 2.5. Two subcubes are disjoint if and only if they conflict.

Lemma 2.6. A collection F of disjoint subcubes of length n is a subcube partition if and only if∑
s∈F

2− codim(s) = 1.

Similarly, it is easy to check whether a given subcube partition is tight. In contrast, checking whether a
subcube partition is irreducible using the definition takes exponential time. We present an efficient algorithm
for testing irreducibility in Section 2.1.

Following that, we give many examples of irreducible subcube partitions, starting with Section 2.2,
which describes a one-off construction. In Sections 2.3 to 2.7 we describe irreducible subcube partitions
which conjecturally optimize various parameters. Section 2.8 closes with a discussion of irreducible subcube
partitions in which all subcubes have the same dimension.
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2.1 Testing irreducibility

In this section we give a polynomial time algorithm that checks whether a given subcube partition F is
reducible, and if so, identifies a subset G ⊂ F , with 1 < |G| < |F |, whose union is a subcube.

The idea behind the algorithm is quite simple. Suppose that F were reducible, say via the subset G. If
s, t ∈ G then

⋃
G must contain the join s ∨ t of s, t, which is the smallest subcube containing both s and t,

given explicitly by

(s ∨ t)i =

{
b if si = ti = b ∈ {0, 1},
∗ otherwise.

If u ∈ F intersects s ∨ t (a condition we can check using Lemma 2.5) then G must contain u, and so
⋃

G
must contain s ∨ t ∨ u. Continuing in this way, we are able to recover G (or a subset of G whose union is
also a subcube). The corresponding algorithm appears as Algorithm 1.

Algorithm 1 Algorithm for checking whether a subcube partition is irreducible

Input: Subcube partition F = {s1, . . . , sm}
for 1 ≤ i < j ≤ m do
G← {si, sj}
while some sk /∈ G intersects

∨
G do

G← G ∪ {sk}
end while
if G ̸= F then
return Reducible:

⋃
G is a subcube

end if
end for
return Irreducible

Theorem 2.7. Algorithm 1 runs in polynomial time, and its output is correct.

Proof. We start by showing that the algorithm runs in polynomial time. The outer for loop runs O(m2)
times, and the inner while loop runs at most m times. Each basic operation can be implemented in
polynomial time, and so the entire algorithm runs in polynomial time.

Suppose first that the algorithm outputs “reducible”. By construction, all subcubes in F \G are disjoint
from

∨
G. Since F is a subcube partition, this means that

⋃
G =

∨
G, which is a subcube. By construction,

1 < |G| < |F |, and so F is indeed reducible.
To complete the proof, we show that if F is reducible, then the algorithm outputs “reducible”. If F is

reducible then there is a subset H ⊂ F , with 1 < |H| < |F |, such that
⋃
H is a subcube. Let si, sj ∈ H,

and consider the (i, j) iteration of the outer for loop.
We prove inductively that at each iteration of the inner while loop, G is contained in H. This holds by

construction at the very first step. Now suppose that G ⊆ H and that sk /∈ G intersects
∨

G. Since G ⊆ H,
also

∨
G ⊆

∨
H, and so sk intersects

∨
H. Since

∨
H =

⋃
H and the subcubes in F are disjoint, necessarily

sk ∈ H. Hence G ∪ {sk} ⊆ H.
When the while loop ends, all sk /∈ G are disjoint from

∨
G. Since the subcubes in F are disjoint, this

means that
∨
G =

⋃
G. Since G ⊆ H, necessarily G ̸= F , and so the algorithm correctly declares that F is

reducible.

2.2 Cubic construction

In this section, we present a construction of an infinite family of tight irreducible subcube partitions.

Theorem 2.8. Let n = 2m + 1 ≥ 3. The following subcubes comprise a tight irreducible subcube partition
of size Θ(n3):
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• The point 0n.

• All cyclic rotations of 0m1∗m.

• For every 0 ≤ i, j, k ≤ m− 1 satisfying i+ j, j + k ≤ m− 1, the subcube

0i1∗j0k1∗m−1−j−k0j1∗m−1−i−j .

We found this subcube partition by starting with the subcube partition consisting of all rotations of
0m1∗m together with all points not covered by them. This subcube partition is reducible, and we can use
Algorithm 1 to merge together points into subcubes. One can show inductively that the rotations of 0m1∗m
never get merged, and so the resulting subcube partition is not trivial. It is precisely the one described in
Theorem 2.8.

Here is the resulting partition for n = 5:

00000 001∗∗ ∗001∗ ∗∗001 1∗∗00 01∗∗0
11∗1∗ 1011∗ 011∗1 01011 1∗101

Proof of Theorem 2.8. We need to prove three things about the set of subcubes F given in the statement of
the theorem: that it is a subcube partition; that it is tight; and that it is irreducible.

Subcube partition The point 0n covers itself. All other subcubes of F contain at least one 1.
Subcubes of the second type cover royal points. These are points which contain a royal 1, which is a 1

preceded cyclically by m many 0s. Since n < 2(m+1), there can be at most one royal 1, and so royal points
are covered by precisely one subcube of the second type. We will soon see that they are not covered by any
subcube of the third type.

We can guarantee that a subcube does not contain any royal point by adding “blocking 1s”: if each
cyclic interval of length m contains a 1, then the subcube cannot contain any royal point. Each subcube
of the third type is contained in the subcube ∗i1∗j+k1∗m−1−k1∗m−1−i−j , in which the 1s are separated by
j + k,m− 1− k,m− 1− j ≤ m− 1 many stars. Consequently, each royal point is covered by precisely one
subcube of F .

It remains to handle points x ̸= 0n which are not royal. Let I + 1 be the index of the first 1 in x. Since
x is not royal, I ≤ m− 1.

Let I + 1 +m + J + 1 be the first 1 in x beyond position I + 1 +m (so J ≥ 0). Such a 1 exists since
otherwise x starts with 0I1 and ends with 0m−I , and is consequently royal. For the same reason, J ≤ m− 1.
Since I + 1 +m+ J + 1 ≤ n, we see that I + J ≤ m− 1.

Let I + 1 + J +K + 1 be the first 1 in x beyond position I + 1 + J (so K ≥ 0). Such a 1 exists as seen
before. Since x is not royal, J + K ≤ m − 1. Collecting all the information, we see that x belongs to the
subcube of the third type

0I1∗J0K1∗m−1−J−K0J1∗m−1−I−J .

I + 1 + J I + 1 +m

If x ∈ 0i1∗j0k1∗m−1−j−k0j1∗m−1−i−j and we follow the steps above then we find that i = I, j = J , and
k = K. Therefore x belongs to a unique subcube of F .

Tightness This is clear, since the subcube 0n mentions all coordinates.

Irreducibility We need to show that if G ⊂ F satisfies 1 < |G| < |F | then the union of the subcubes in
G cannot be a subcube.

Suppose that the union of G is some subcube s. If s′, s′′ are two distinct subcubes in G, then s ⊇ s′ ∨ s′′.
It is easy to check that s′ ∨ s′′ contains at most two 1s, since the only subcubes in F containing three 1s
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are those of the third type, and no two of these contain the 1s at the same positions. It follows that s also
contains at most two 1s, since it is obtained from s′ ∨ s′′ by “erasing” some of the 0/1 coordinates to ∗.

To complete the proof, for each subcube s ̸= ∗n, not contained in any clause of F , and containing at
most two 1s, we will exhibit a subcube t ∈ F which intersects s but is not contained in s. This results in
a contradiction: since G intersects t, it must contain t, but then s would contain t. In all cases, t will be a
subcube of the second type, that is, a cyclic rotation of 0m1∗m.

The subcube t intersects the subcube s but is not contained in t if the following two conditions hold:

• (si, ti) /∈ {(0, 1), (1, 0)} for all i.

• (si, ti) ∈ {(0, ∗), (1, ∗)} for some i.

The coordinate of the second type, or the part containing it, is highlighted in the diagrams below.
Suppose first that s contains no 1s. Since s ̸= 0n, ∗n, it must contain ∗0 as a cyclic substring. If s ends

with ∗0 then we choose t = ∗m−10m1∗:

s = . . . ∗ 0
t = ∗m−10m 1 ∗

If ∗0 is located at a different position, we choose an appropriate subcube of the second type.
Suppose next that s contains a single 1, and furthermore does not contain 1∗m as a cyclic substring. If

sm = 1 then we choose t = 0m1∗m:
s = . . . 1 ̸= ∗m

t = 0m 1 ∗m

If the 1 is located at a different position, we choose an appropriate subcube of the second type.
Suppose now that s contains a single 1 and does contain 1∗m as a cyclic substring, say it ends with 1∗m.

Since s ̸= 0m1∗m, necessarily si = ∗ for some i ∈ [m]. We choose t = 0i−11∗m0m−i+1:

s = . . . ∗ . . . 1 ∗m
t = 0i−1 1 ∗m−i ∗ ∗i−10m−i+1

If 1∗m is located at a different position, we choose an appropriate subcube of the second type.
Finally, suppose that s contains two 1s, say at positions i < j. If i = m+ 1 then we choose t = 0m1∗m:

s = · · · 1 · · · 1 · · ·
t = 0m 1 ∗j−m−2 ∗ ∗2m+1−j

If the first 1 is located at a different position, we choose an appropriate subcube of the second type (rotate
s so that sm+1 = 1; if si = 1 for i ∈ [m], rotate s to the right by m+ 1− i positions).

2.3 Minimal size

What is the minimal size of a tight irreducible subcube partition of length n? (The question doesn’t make
sense without assuming tightness, since ∗n is always irreducible.)

When n = 1, there is a single tight irreducible subcube partition: 0, 1. When n = 2, there are no tight
irreducible subcube partitions. When n = 3, there is a unique tight irreducible subcube partition, up to
flipping and rearranging coordinates:

000, ∗01, 1∗0, 01∗, 11.
For n = 4, 5, 6, 7, Peitl and Szeider [PS22] used a computer search to show that the minimal number of
subcubes is 7, 9, 11, 13, respectively. This is consistent with the following conjecture.

Conjecture 1. If n ≥ 3 then the minimal size of a tight irreducible subcube partition of length n is 2n− 1.

Section 2.3.1 explains the best lower bound on the size, due to Kullmann and Zhao [KZ13]. Sections 2.3.2
and 2.3.3 present two constructions of an infinite family of tight irreducible subcube partitions of length n
and size 2n− 1. In Section 2.4 we present several more such constructions which will be useful in Section 3.
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2.3.1 Lower bound

Before presenting the constructions of tight irreducible subcube partitions of size 2n − 1, here is the best
lower bound on the size, due to Kullmann and Zhao [KZ16]. We give an alternative proof using known
results from the literature.

Theorem 2.9. If n ≥ 4 then every tight irreducible subcube partition of length n has size at least n+ 3.

Before proving the theorem, we need a simple lemma.

Definition 2.10 (Regularity). A subcube partition of length n is regular if for every i ∈ [n] and every
b ∈ {0, 1} there are at least two subcubes s ∈ F such that si = b.

This definition is due to Kullmann and Zhao [KZ13], who used the term nonsingular. The term regular
appears in Peitl and Szeider [PS22].

Lemma 2.11. If F is a tight irreducible subcube partition of length n ≥ 2 then F is regular.

Proof. We prove the definition of regularity for i = 1.
For σ ∈ {0, 1, ∗}, let Fσ = {x : σx ∈ F}. Both F0 ∪ F∗ and F1 ∪ F∗ are subcube partitions of length

n− 1, and so
⋃
F0 =

⋃
F1. Since F is tight, F0, F1 are non-empty.

If F0 = {x} and |F1| > 1 then the union of the subcubes corresponding to F1 is the subcube 1x,
contradicting irreducibility.

If F0 = {x} and |F1| = 1 then F0 = F1 = {x} and so the union of the corresponding subcubes is ∗x.
Since F is irreducible, necessarily x = ∗n−1, and so F = {0∗n−1, 1∗n−1}. Since F is tight, necessarily n = 1,
contradicting the assumption n ≥ 2.

It follows that |F0| ≥ 2. Similarly |F1| ≥ 2.

We can now prove the size lower bound.

Proof of Theorem 2.9. Let F = {s1, . . . , sm} be a tight subcube partition of length n. We can identify F
with a formula Φ in conjunctive normal form (CNF) over variables x1, . . . , xn whose clauses are “x /∈ si” for
all i ∈ [m]. For example, the subcube partition 0∗, 10, 11 corresponds to the CNF x1 ∧ (x̄2 ∨ x3)∧ (x̄2 ∨ x̄3).

Since every x belongs to some si, the formula Φ is unsatisfiable. It is moreover minimally unsatisfiable,
meaning that if we remove any clause, then it becomes satisfiable. Indeed, if we remove the clause “x /∈ si”,
then any point in si would satisfy the formula. Since F is tight, Φ mentions all n variables.

A well-known result attributed to Tarsi [AL86] states that a minimally unsatisfiable CNF mentioning n
variables must contain at least n+ 1 clauses, hence m ≥ n+ 1.

Suppose that m = n+ 1. Davydov, Davydova, and Kleine Büning [DDKB98, Theorem 12] showed that
if a minimally unsatisfiable CNF mentioning n variables contains exactly n+ 1 clauses, then some variable
appears once positively and once negatively. In particular, F is not regular, contradicting Lemma 2.11.
Hence m ≥ n+ 2.

Suppose that m = n + 2. Kleine Büning [KB00, Theorem 6] showed that there is a unique regular
minimally unsatisfiable CNF mentioning n variables which contains exactly n + 2 clauses, up to renaming
and reordering variables. The collection of subcubes corresponding to this CNF consists of 0n, 1n together
with all cyclic rotations of 10∗n−2. When n ≥ 4, these subcubes are not disjoint: for example, 10∗n−2 and
∗210∗n−4 both contain the subcube 1010∗n−4. Hence m ≥ n+ 3.

In the following two subsections, we present two constructions of the same sequence of tight irreducible
subcube partitions of length n ≥ 3 and size 2n− 1.
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2.3.2 Merging

Our first construction is based on the following lemma, which is used to merge together two subcube parti-
tions.

Definition 2.12 (Reducibility for partial subcube partitions). A subset F ′ of a subcube partition F of
length n is reducible if there exists a subset G ⊆ F ′, with |G| > 1, such that the union of the subcubes in G
is a subcube different from ∗n.

Lemma 2.13. Let F0, F1 be two subcube partitions of length n. Let

G = {0x : x ∈ F0 \ F1} ∪ {1x : x ∈ F1 \ F0} ∪ {∗x : x ∈ F0 ∩ F1}.

Then

(a) G is a subcube partition of length n+ 1.

(b) If F0 ̸= F1 and at least one of them is tight, then G is tight.

(c) If F0 ∩ F1 ̸= ∅ and both F0 \ F1 and F1 are irreducible (or both F1 \ F0 and F0 are irreducible) then G
is irreducible.

Proof. The first two items follow easily from the construction (the condition F0 ̸= F1 in the second item
guarantees that the first coordinate is mentioned).

Now suppose that F0 ∩ F1 ̸= ∅ and both F0 \ F1 and F1 are irreducible. We need to show that G is
irreducible. If not, then there is a subset H ⊂ G, with 1 < |H| < |G|, whose union is a subcube x ̸= ∗n.

If x = 0y then y is a union of |H| subcubes in F0 \F1. Since F0 \F1 is irreducible and |H| > 1, necessarily
y = ∗n. However, this contradicts the assumption F0 ∩ F1 ̸= ∅.

We get a similar contradiction if x = 1y, using the irreducibility of F1.
Finally, if x = ∗y then y is a union of |H| subcubes of F0 as well as a union of |H| subcubes of F1. Since

F1 is irreducible and y ̸= ∗n, necessarily y ∈ F1. If y ∈ F0 then x ∈ G, contradicting the assumption |H| > 1.
If y /∈ F0 then 1y ∈ G and so y is a union of subcubes in F0 \ F1. Since F0 \ F1 is irreducible and y ̸= ∗n,
necessarily y ∈ F0 \ F1, contradicting both y /∈ F0 and y ∈ F1.

We now construct the promised sequence of tight irreducible subcube partitions.

Theorem 2.14. For each n ≥ 3 there is a tight irreducible subcube partition Sn of length n and size 2n− 1.

Proof. We construct the subcube partitions inductively. The starting point is

S3 = {000, ∗01, 1∗0, 01∗, 111},

whose irreducibility can be checked using Algorithm 1. The construction will maintain the invariants that
01∗n−2 ∈ Sn and 1∗n−1, 00∗n−2 /∈ Sn, and moreover |Sn| = 2n− 1

Given Sn, we construct Sn+1 by applying Lemma 2.13 to F0 = {1∗n−1, 00∗n−2, 01∗n−2} and F1 = Sn.
Since F0 is reducible and F1 is irreducible, clearly F0 ̸= F1, and so Sn+1 is tight by Lemma 2.13.
The invariant implies that F0 \ F1 = {1∗n−1, 00∗n−2} is irreducible. It follows that Sn+1 is irreducible

by Lemma 2.13.
Since 1∗n−2 /∈ F1, it follows that 01∗n−2 ∈ Sn+1. Since 0∗n−2 /∈ F0, it follows that 00∗n−2 /∈ Sn+1. Since

|F1| > 1, in particular ∗n /∈ F1, and so 1∗n /∈ Sn.
Finally, the invariants imply that F0 ∩ F1 = {01∗n−2}, and so

|Sn+1| = |F0 \ F1|+ |F1 \ F0|+ |F0 ∩ F1| = 2 + (|F1| − 1) + 1 = 2n+ 1,

using |F1| = 2n− 1.
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Here are the resulting subcube partitions for n = 3, 4, 5:

000 000∗ 000∗∗
01∗ 1000 1000∗
∗01 01∗∗ 11000

1∗0 ∗01∗ 01∗∗∗
111 1∗01 ∗01∗∗

11∗0 1∗01∗
1111 11∗01

111∗0
11111

2.3.3 Twisting

Our second construction starts with the observation

x00 ∪ x1∗ = x∗0 ∪ x11.

Up to permutation and flipping of coordinates, this is the only way in which a set of points can be written
as a union of two subcubes in two different ways (we leave the proof to the reader). Following Kullmann
and Zhao [KZ16, Definitions 45–46], we call such a pair of subcubes an nfs-pair. The nfs-flip of the pair on
the left is the pair on the right.

Definition 2.15 (Nfs-pair, nfs-flip). Two subcubes s, t constitute an nfs-pair if they differ on exactly two
positions i, j, where (si, ti) ∈ {(0, 1), (1, 0)} and tj = ∗.

The nfs-flip of s, t is the pair of subcubes s′, t′ obtained by copying the coordinates except for i, j, and
setting s′i = ∗, s′j = sj , t

′
i = ti, t

′
j = s̄′j .

Lemma 2.16. If s, t is an nfs-pair with nfs-flip s′, t′ then s ∪ t = s′ ∪ t′.

The construction is based on the following simple corollary of Lemma 2.13.

Lemma 2.17. Let F be a tight irreducible subcube partition containing an nfs-pair s, t, and let s′, t′ be its
nfs-flip. The following subcube partition is tight and irreducible, for any b ∈ {0, 1}:

G = {∗x : x ∈ F, x ̸= s, t} ∪ {bs, bt, b̄s′, b̄t′}.

Furthermore, |G| = |F |+ 2, and G contains the nfs-pairs bs, bt and b̄s′, b̄t′.

Proof. Let F ′ be the formula obtained from F by replacing s, t with s′, t′. We apply Lemma 2.13 on Fb = F
and Fb̄ = F ′, obtaining the stated subcube partition G.

Since F ̸= F ′ and F is tight, G is tight.
Clearly F cannot consist only of s, t, and so F ∩ F ′ ̸= ∅. Since F and F ′ \ F ⊂ F ′ are both irreducible,

it follows that G is irreducible.

In order to obtain the sequence Sn constructed in Theorem 2.14 using Lemma 2.17, start with S3. Given
Sn, apply the lemma with s = 1n, t = 1n−2∗0, and b = 1, and rotate the resulting subcube partition once to
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the left. The result is Sn+1. Here is an example:

000 ∗000 000∗
01∗ ∗01∗ 01∗∗
∗01 ∗∗01 ∗01∗
1∗0 11∗0 1∗01
111 0100 1000

1111 1111

011∗ 11∗0

2.4 Minimal weight

In Section 3, we will consider irreducible subcube partitions over larger alphabets. As we show in Section 3.1,
one of the ways to construct an irreducible subcube partition over an alphabet {0, . . . , q− 1} is to start with
an irreducible subcube partition over {0, 1}, and replace each 1 in each subcube with each of {1, . . . , q − 1}.
The resulting number of subcubes is ∑

s∈F

(q − 1)#1(s),

where F is the subcube partition we start with, and #1(s) is the number of 1s in s. This suggests looking
for a tight irreducible subcube partition which minimizes the above objective function.

The concept of majorization allows us to optimize this objective function for all q’s at once.

Definition 2.18 (Weight vector). Let F be a subcube partition of length n. Its weight vector is the vector
w(F ) = w0, . . . , wn, where wh is the number of subcubes of F of weight h, that is, with h many 1s.

The notation w≥h stands for wh + · · ·+ wn, which is the number of subcubes with at least h many 1s.

Definition 2.19 (Majorization). Let a, b be two weight vectors of length n+ 1. We say that a majorizes b
if for every h ≤ n, we have a≥h ≥ b≥h.

Lemma 2.20. Let F,G be subcube partitions of length n. If w(F ) majorizes w(G) then for all q ≥ 2,∑
s∈F

(q − 1)#1(s) ≥
∑
s∈G

(q − 1)#1(s).

Proof. Let r = q − 1 ≥ 1. We will show that

n∑
h=0

wh(F )rh ≥
n∑

h=0

wh(G)rh.

Indeed,

n∑
h=0

wh(F )rh = w≥0(F ) +

n∑
h=1

w≥h(F )(rh − rh−1) ≥ w≥0(G) +

n∑
h=1

w≥h(G)(rh − rh−1) =

n∑
h=0

wh(G)rh.

Lemma 2.20 allows us to reformulate our goal: find the minimal weight vectors (in the sense of majoriza-
tion) of the tight irreducible subcube partitions of length n. (There could be more than one minimal weight
vector since majorization is not a linear order.)

Conjecture 2. For every n ≥ 3, the minimal weight vectors of tight irreducible subcube partitions of length
n are 1, n− 1, n− 1, 0, . . . , 0 and 1, n, n− 3, 1, 0, . . . , 0.

10



In Section 2.4.1, we show that Conjecture 1 implies the lower bound part of Conjecture 2. In Section 2.4.2
we give matching constructions.

Unconditionally, we can show that every tight irreducible subcube partition of length n ≥ 3 must contain
a subcube of weight 2.

Lemma 2.21. If F is a tight irreducible subcube partition of length n ≥ 3 then F contains a subcube of
weight at least 2.

Proof. Suppose that every subcube in F has weight at most 1. Let s ∈ F be the subcube containing 1n. If s
has weight 0 then s = ∗n, contradicting the tightness of F . If s has weight 1 then, without loss of generality,
s = 1∗n−1. The union of all other subcubes of F must be 0∗n−1, and so by irreducibility, F = {0∗n−1, 1∗n−1},
contradicting tightness.

2.4.1 Lower bound

In this section we prove the lower bound part of Conjecture 2, assuming Conjecture 1. As we explain in the
proof, this amounts to ruling out the weight vector 1, n, n− 2, 0, . . . , 0.

Theorem 2.22. Assume Conjecture 1. For every n ≥ 3, the weight vector of any tight irreducible subcube
partition of length n majorizes either 1, n− 1, n− 1, 0, . . . , 0 or 1, n, n− 3, 1, 0, . . . , 0.

Proof. Let F be a tight irreducible subcube partition of length n, and let w be its weight vector. The
theorem states that (i) w≥0 ≥ 2n − 1; (ii) w≥1 ≥ 2n − 2; and either (iii) w≥2 ≥ n − 1 or (iv) w≥2 ≥ n − 2
and w≥3 ≥ 1.

We start with the following observation: wh ≤
(
n
h

)
. Indeed, every subcube s of weight h contains the

point xs obtained by switching all ∗s to 0s, which has weight h. Since the subcubes in F are disjoint, every
s ∈ F of weight h has a different xs. Since there are

(
n
h

)
many possible xs, it follows that wh ≤

(
n
h

)
.

The inequality w≥0 ≥ 2n− 1 is Conjecture 1. Since w0 ≤ 1, the inequality w≥1 ≥ 2n− 2 follows. Since
w1 ≤ n, we deduce the inequality w≥2 ≥ n − 2. To complete the proof, we need to show that either (iii)
w≥2 ≥ n − 1 or (iv) w≥3 ≥ 1. We will show that the assumptions w≥2 = n − 2 and w≥3 = 0 lead to a
contradiction.

Suppose, therefore, that w2 = n− 2 and w≥3 = 0. Since w≥0 ≥ 2n− 1 and w0 ≤ 1, w1 ≤ n, this implies
that w0 = 1 and w1 = n.

Since w1 = n, for every i ∈ [n] there is a subcube s(i) ∈ F which contains 1 in the i’th position: s
(i)
i = 1.

The point 0n is covered by the unique subcube s(0) ∈ F of weight 0. Since s(0) and s(i) must conflict,

necessarily s
(0)
i = 0 (this is the only possible conflict), and so s(0) = 0n is a point.

Since 0n ∈ F , the subcubes s(i) cannot be points. Indeed, if s(i) is a point then s(i) = 0i−110n−i, and so
s(0) ∪ s(i) = 0i−1∗0n−i, contradicting irreducibility. Consequently, all points in F have even weight.

Every subcube in F which is not a point contains an equal number of points of even weight and of odd
weight. In contrast, all points in F have even weight. Since {0, 1}n contains an equal number of points of
either parity, we reach a contradiction.

2.4.2 Construction

In this section, we prove (unconditionally) the upper bound part of Conjecture 2, by constructing tight
irreducible subcube partitions of length n ≥ 3 and weight vectors 1, n − 1, n − 1, 0, . . . , 0 and 1, n, n −
3, 1, 0, . . . , 0. The constructions will use the methods of Section 2.3.2. The same subcube partitions can also
be constructed using the methods Section 2.3.3; we leave the details to the reader.

Theorem 2.23. For each n ≥ 3 there is a tight irreducible subcube partition An whose weight vector is
1, n− 1, n− 1, 0, . . . , 0.
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Proof. We construct the subcube partitions inductively, starting with

A3 = {∗00, 001, 01∗, 110, 1∗1},

which is obtained from S3 of Theorem 2.14 by flipping the third coordinate. The construction will maintain
the invariants that 01∗n−2 ∈ An and 1∗n−1, 00∗n−2 /∈ An.

Given An, we construct An+1 by applying Lemma 2.13 to F0 = An and F1 = {1∗n−1, 00∗n−2, 01∗n−2},
and rotating the resultG once to the left, that is, An+1 = {xb : bx ∈ G}, where b ∈ {0, 1, ∗} and x ∈ {0, 1, ∗}n.

Since F0 is irreducible and F1 is reducible, clearly F0 ̸= F1, and so An+1 is tight by Lemma 2.13.
The invariant implies that F1 \ F0 = {1∗n−1, 00∗n−2} is irreducible, and so An+1 is irreducible by

Lemma 2.13.
The invariant states that 01∗n−2 ∈ F0. Since 01∗n−2 ∈ F1 by definition, it follows that ∗01∗n−2 ∈ G, and

so 01∗n−1 ∈ An+1. Since An+1 is irreducible, necessarily 00∗n−1 /∈ An+1 (otherwise 00∗n−1 ∪ 01∗n−1 = 0∗n
would be a subcube) and 1∗n /∈ An+1 (otherwise the union of all other subcubes would be 0∗n).

Finally, the invariants imply that F1 \ F0 = {1∗n−1, 00∗n−2}, and so compared to F0, the subcube
partition G gains one subcube of weight 2 (namely, 11∗n−1) and one subcube of weight 1 (namely, 100∗n−2);
all other subcubes originate from F0 and maintain their weight.

Theorem 2.24. For each n ≥ 3 there is a tight irreducible subcube partition Dn whose weight vector is
1, n, n− 3, 1, 0, . . . , 0.

Proof. The proof is very similar to that of Theorem 2.23. We take

D3 = S3 = {∗01, 000, 01∗, 111, 1∗0}.

The rest of the proof is identical.

The subcube partition D3 is obtained from A3 by flipping the third coordinate, and this holds for every
n, by construction. By flipping coordinates appropriately, we can also obtain other tight irreducible subcube
partitions Bn, Cn whose weight vectors are 1, n− 1, n− 1, 0, . . . , 0. The subcube partition Bn is obtained by
flipping the first coordinate, and Cn is obtained by flipping both the first and the third coordinates. The
subcube partitions Bn, Cn can also be obtained using an iterative construction as above.

Here are the subcube partitions A5, B5, C5, D5 after rotation once to the left:

0000∗ 0000∗ 0100∗ 0100∗
01000 01001 00001 00000
0∗100 0∗101 0∗101 0∗100
0∗∗10 0∗∗11 0∗∗11 0∗∗10
1∗∗∗0 1∗∗∗1 1∗∗∗1 1∗∗∗0
10001 10000 11000 11001
∗1001 ∗1000 ∗0000 ∗0001
∗∗101 ∗∗100 ∗∗100 ∗∗101
∗∗∗11 ∗∗∗10 ∗∗∗10 ∗∗∗11
A5 B5 C5 D5

Among all subcube partitions obtained from An by flipping coordinates, these are the only ones whose weight
vector is either 1, n− 1, n− 1, 0, . . . , 0 or 1, n, n− 3, 1, 0, . . . , 0.

2.5 Maximal number of points

In the following section, we tackle the problem of maximizing the number of subcubes in an irreducible
subcube partition. As a warm-up, we start with the problem of maximizing the number of points (zero-
dimensional subcubes) in an irreducible subcube partition.

For n = 3, 4, 5, 6, a computer search reveals that the maximum number of points in an irreducible subcube
partition of length n is 2, 4, 8, 16. This is consistent with the following conjecture.
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Conjecture 3. If n ≥ 3 then the maximum number of points in an irreducible subcube partition of length n
is 2n−2.

It is easy to see that an irreducible subcube partition of length n contains at most 2n−1 points. Indeed,
if the subcube partition contained more than 2n−1 points then there would be two points differing in a
single coordinate. The union of these two points is an edge (a one-dimensional subcube), contradicting
irreducubility.

In the rest of this section, we construct an irreducible subcube partition of length n containing 2n−2

many points. The construction uses the following lemma.

Lemma 2.25. If F ̸= {0∗n−1, 1∗n−1} is an irreducible subcube partition of length n then the following is an
irreducible subcube partition of length n+ 1:

G = {00t, 11t : 0t ∈ F} ∪ {01t, 10t : 1t ∈ F} ∪ {∗∗t : ∗t ∈ F}.

Proof. Let F ′ be the irreducible subcube partition obtained from F by flipping the first coordinate. The
subcube partition G results from applying Lemma 2.13 to F and F ′. According to the lemma, in order to
show that G is irreducible, it suffices to show that F ∩ F ′ ̸= ∅.

If F ∩ F ′ = ∅ then all subcubes in F start with 0 or 1. Hence the union of all subcubes in F starting
with 0 is 0∗n−1, and the union of all subcubes in F starting with 1 is 1∗n−1. Since F is irreducible, it follows
that F = {0∗n−1, 1∗n−1}, contrary to the assumption. Therefore F ∩ F ′ ̸= ∅, completing the proof.

Corollary 2.26. If F ̸= {0∗n−1, 1∗n−1} is an irreducible subcube partition of length n then for every k ≥ 1,
the following is an irreducible subcube partition of length n+ k:

G = {a1 . . . akt : bt ∈ F, a1, . . . , ak, b ∈ {0, 1}, a1 ⊕ · · · ⊕ ak = b} ∪ {∗kt : ∗t ∈ F}.

Proof. Apply the lemma iteratively k− 1 times to F , noticing that the subcube partition constructed in the
lemma is never of the form {0∗m, 1∗m}.

In order to construct an irreducible subcube partition of length n with 2n−2 many points, we apply the
corollary to the irreducible subcube partition S3 from Theorem 2.14.

Theorem 2.27. For every n ≥ 3 there is an irreducible subcube partition of length n containing 2n−2 many
points.

Proof. The subcube partition S3 = {000, ∗01, 1∗0, 01∗, 111} is irreducible (according to Theorem 2.14) and
contains two points. Applying Corollary 2.26 with k = n − 3, we get an irreducible subcube partition of
length n in which each of the two original points gives rise to 2n−3 points, for a total of 2n−2 points.

Using similar ideas, we can construct an irreducible subcube partition of length n containing any even
number of points between 2 and 2n−2. We leave the details to the reader.

2.6 Maximal size

What is the maximal size of an irreducible subcube partition of length n? Here are some experimental
results:

n 3 4 5 6 7 8 9
Lower bound 5 9 20 40 80 160 320
Upper bound 5 9 20 40 83 166 334

The lower bounds correspond to explicit constructions. We describe such constructions for n = 3, 4, 5, 6, 7
in Section 2.6.2. The upper bounds are a combination of experimental results and an argument appearing
in Section 2.6.1, which gives an upper bound of 2n−1

3n−12
n ≈ 16

3 2n−3.
We make the following conjecture, which is consistent with the table.
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Conjecture 4. For every n ≥ 5, the maximal size of an irreducible subcube partition of length n is 5 · 2n−3.

The value 5 · 2n−3 is best possible, assuming Conjecture 3.

Lemma 2.28. Assume Conjecture 3. For every n ≥ 3, every irreducible subcube partition of length n has
size at most 5 · 2n−3.

Proof. Let F be an irreducible subcube partition of length n. According to Conjecture 3, F contains
m ≤ 2n−2 points. All other subcubes of F cover at least two points, and so the size of F is at most

m+
2n −m

2
= 2n−1 +

m

2
≤ 2n−1 + 2n−3.

2.6.1 Upper bound

In this section, we use a result of Forcade [For73] to give an upper bound on the size of irreducible subcube
partitions.

Theorem 2.29. For every n ≥ 3, the size of any irreducible subcube partition of length n is at most

2n− 1

3n− 1
2n =

(
16

3
−Θ

(
1

n

))
2n−3.

Proof. Let F be an irreducible subcube partition of length n. Let G be a subcube partition obtained from F
by subdividing each subcube of dimension larger than 1 into edges (subcubes of dimension 1) in an arbitrary
way.

Since F is irreducible, no two points in G span an edge. Therefore the set of edges in G constitutes a
maximal matching in the n-dimensional hypercube. Forcade [For73] proved that any maximal matching in
the n-dimensional hypercube contains m ≥ n

3n−12
n edges. Therefore

|F | ≤ |G| = m+ (2n − 2m) = 2n −m ≤ 2n − n

3n− 1
2n.

Forcade showed that the bound n
3n−12

n is asymptotically tight by giving a matching construction. There-

fore this method cannot prove the conjectured upper bound 5 · 2n−3.

2.6.2 Constructions

In this section we give irreducible subcube partitions of maximal size for lengths 3, 4, 5, 6, 7. In each case,
irreducibility can be proved using Algorithm 1. We chose to present these constructions since we can describe
them compactly.

When n = 3, we can take S3 of Theorem 2.14.
For n = 4, we have the following construction:

aabc : a = b⊕ c

∗1aa
0∗aā
10∗∗

Here a, b, c ∈ {0, 1}; we use similar notation below. Written out in full, this is

0000, 0011, 1101, 1110, ∗100, ∗111, 0∗01, 0∗10, 10∗∗.
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For n = 5, we have the following construction:

abcde : a⊕ b = c = d⊕ e

∗a0āa
ā∗1aa
ab∗ab̄
aa1∗a
āa0a∗

For n = 6, we have the following construction:

abcdef : a⊕ b = c⊕ d = e⊕ f

∗bab̄ab
a∗ābab
ab∗bāb
aba∗ab̄
abāb∗b̄
abab̄ā∗

Here are two constructions for n = 7:

abcdefg : f = b⊕ c⊕ d⊕ e, g = a⊕ b⊕ c⊕ d

0a∗bbc̄a : c = a⊕ b

ab00a∗c̄ : c = a⊕ b

ab00āc∗ : c = a⊕ b

ab0∗1c̄b̄ : c = a⊕ b

∗ab11c̄c : c = a⊕ b

∗abb̄0aā
abaāa∗c : c = a⊕ b

ab1a∗bb
ab1aāb̄∗
a∗1ā0bc̄ : c = a⊕ b

abā1∗b̄b̄
1ab∗bca : c = a⊕ b

abcdefg : f = b⊕ c⊕ d⊕ e, g = a⊕ b⊕ c⊕ d

0a∗bc̄b̄ā : c = a⊕ b

0abb∗bā
1ab∗c̄bā : c = a⊕ b

1abbc∗a : c = a⊕ b

∗abdēba : e = a⊕ d

abdegd̄∗ : e = a⊕ d, g = a⊕ b⊕ d

abdd̄ḡ∗c : c = a⊕ b, g = a⊕ b⊕ d

a∗bc̄db̄g : c = a⊕ b, g = a⊕ b⊕ d

2.7 Maximal minimum dimension

All irreducible subcube partitions we have exhibited so far contain points. Is this necessary? More generally,
given n, what is the maximal d such that there exists a tight irreducible subcube partition in which every
subcube has dimension at least d? (The question doesn’t make sense without assuming tightness, since ∗n
is always irreducible.)

The constructions we give below suggest the following conjecture.

Definition 2.30 (Minimum dimension). For a subcube partition F , let δ(F ) denote the minimum dimension
of a subcube of F .

Conjecture 5. Every tight irreducible subcube partition F of length n satisfies δ(F ) ≤ n/2− o(n).
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One can similarly ask for the maximum value of ∆(F ), which is the minimum codimension of a subcube
of F , over all irreducible formulas of length n. If F has length n then clearly ∆(F ) ≤ n − 1 (for n ≥ 3).
Conversely, Section 2.6 suggests that there are irreducible formulas of length n with ∆(F ) = n− 1.

In the remainder of this section, we give a construction matching Conjecture 5. The construction is based
on the following lemma.

Lemma 2.31. Let F be a subcube partition of length n. Define

G = {∗t∗∗ : t∗ ∈ F} ∪ {0tb∗, 1t∗b : b ∈ {0, 1}, tb ∈ F}.

Then

(a) G is a subcube partition of length n+ 2.

(b) If F is tight then G is tight.

(c) If F is irreducible and contains a subcube ending with a star then G is irreducible and contains a subcube
ending with a star.

(d) δ(G) ≥ δ(F ) + 1. Furthermore, if δ(F ) is attained at a subcube not ending with a star then the same
holds for G, and moreover δ(G) = δ(F ) + 1.

Proof. Let F0 = {tc∗ : tc ∈ F} and F1 = {t∗c : tc ∈ F}, where c ∈ {0, 1, ∗} in both cases. Applying
Lemma 2.13 to F0, F1, we obtain the subcube partition G.

Suppose that F is tight. For every i ∈ {1, . . . , n − 1}, some subcube of F mentions coordinate i. The
corresponding subcube or subcubes of G mention coordinate i+1. Some subcube of F mentions coordinate
n. The corresponding subcubes of G mention the remaining coordinates 1, n+ 1, n+ 2.

Suppose that F is irreducible and contains a subcube s ∈ F ending with a star. The irreducibility of F
directly implies the irreducibility of F0 and F1. Since s∗ ∈ F0∩F1, Lemma 2.13 implies that G is irreducible.
Furthermore, ∗s∗ ∈ G is a subcube ending with a star.

The remaining claims are easy to verify directly once we notice that the dimension of a subcube is the
number of star coordinates.

We apply the construction on three specific tight irreducible subcube partitions (one only for n = 4) in
order to obtain the following result, which gives the best constructions we are aware of.

Theorem 2.32. For every odd n ≥ 3 there is a tight irreducible subcube partition F of length n with
δ(F ) = n−3

2 .
For n = 4 there is a tight irreducible subcube partition F of length n with δ(F ) = n−4

2 .
For every even n ≥ 6 there is a tight irreducible subcube partition F of length n with δ(F ) = n−2

2 .

Proof. The first part follows from applying Lemma 2.31 to the tight irreducible subcube partition S3 of
Theorem 2.14. The second part follows from taking the tight irreducible subcube partition S4 of the same
theorem. The third part follows from applying Lemma 2.31 to the following tight irreducible subcube
partition, whose irreducibility can be checked using Algorithm 1:

0∗0∗1∗ 00∗∗0∗ 001∗1∗ 010∗0∗ 0110∗∗
1∗∗0∗1 10∗∗∗0 10∗1∗1 11∗0∗0 1101∗∗

∗111∗∗

2.8 Homogeneous subcube partitions

So far we have considered various parameters of irreducible subcube partitions, attempting to optimize them.
The final question we consider concerns subcube partitions in which all subcubes have the same codimension.

16



Definition 2.33 (Homogeneity). An (n, k)-homogeneous subcube partition is a tight subcube partition of
length n in which all subcubes have codimension k.

In this section, we explore the following question: for which n, k does there exist an irreducible (n, k)-
homogeneous subcube partition?

Here is a table with some experimental results:

n = 4 n = 5 n = 6 n = 7 n = 8 n = 9
k = 3 Y N N N N N
k = 4 N Y N N N
k = 5 Y Y Y Y
k = 6 Y Y Y
k = 7 Y Y
k = 8 Y

This leads to the following conjecture.

Conjecture 6. For every k ≥ 5 there exists an irreducible (k + 1, k)-homogeneous subcube partition. (In
this subcube partition, all subcubes are edges.)

In Section 2.8.1 we prove several elementary results: an irreducible (n, 1)-homogeneous subcube partition
exists only for n = 1; no irreducible (n, 2)-homogeneous partition exists; and for k ≥ 3, if an irreducible
(n, k)-homogeneous subcube partition exists then k + 1 ≤ n ≤ 2k − 3.

In Section 2.8.2 we show that the weight distribution of an (n, k)-homogeneous subcube partition is
binomial.

In Section 2.8.3, we present a construction of two infinite families of irreducible homogeneous subcube
partitions.

Finally, in Section 2.8.4 we show that an irreducible (n, 3)-homogeneous partition exists only for n = 4,
and in Section 2.8.5 we show that an irreducible (n, 4)-homogeneous partition exists only for n = 6.

2.8.1 Elementary bounds

We start with the following general bound.

Lemma 2.34. Suppose that n ≥ 4 and k ≥ 2. If there exists an irreducible (n, k)-homogeneous subcube
partition then k + 1 ≤ n ≤ 2k − 3.

Proof. Let F be an irreducible (n, k)-homogeneous subcube partition. Clearly n ≥ k. If n = k then all
subcubes in F are points, and so F is not irreducible. Hence n ≥ k + 1. Since F has size 2k, the upper
bound n ≤ 2k − 3 follows from Theorem 2.9.

We now determine when an irreducible (n, k)-homogeneous subcube partition exists for k = 1 and k = 2.

Lemma 2.35. If F is an irreducible (n, 1)-homogeneous subcube partition then n = 1 and F = {0, 1}.

Proof. The two subcubes in F contain a single non-star position, which must be identical. Since F is tight,
necessarily n = 1, and so F = {0, 1}.

Lemma 2.36. There are no irreducible (n, 2)-homogeneous subcube partitions, for any n.

Proof. If n ≥ 4 then Lemma 2.34 implies that 3 ≤ n ≤ 1, which is impossible. If n = 2 then all subcubes in
the subcube partition are points, and so it cannot be irreducible. It remains to rule out the case n = 3.

Suppose that F is an irreducible (3, 2)-homogeneous subcube partition. Without loss of generality,
00∗ ∈ F . The subcube covering 010 must be ∗10, since 01∗ would violate irreducibility and 0∗0 intersects
00∗. Similarly, the subcube covering 100 must be 1∗0. However, the subcubes ∗10 and 1∗0 intersect.
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2.8.2 Weight distribution

In this section we prove the following surprising property, which involves the concept of weight vector defined
in Section 2.4.

Lemma 2.37. The weight vector of any (n, k)-homogeneous subcube partition is(
k

0

)
,

(
k

1

)
, . . . ,

(
k

k

)
, 0, . . . , 0.

Proof. Let F be an (n, k)-homogeneous subcube partition, and let w be its weight vector. Considering the
number of points of weight ℓ which are covered, for each ℓ ∈ {0, . . . , k} we have

ℓ∑
r=0

(
n− k

ℓ− r

)
wr =

(
n

ℓ

)
.

This is a triangular system of equations, and so it has a unique solution. In other words, all (n, k)-
homogeneous subcube partitions (if any) have the same weight vector.

The argument above applies even if we don’t assume that F is tight. Therefore all (n, k)-homogeneous
subcube partitions have the same weight vector as the subcube partition {x∗n−k : x ∈ {0, 1}k}, whose weight
vector is the one in the statement of the lemma.

2.8.3 Infinite families

In this section we construct two infinite families of irreducible homogeneous subcube partitions, using the
following lemma.

Lemma 2.38. Let k ≥ 2. If there exists an irreducible (n, k)-homogeneous subcube partition then there
exists an irreducible (3n, 2k)-homogeneous subcube partition.

Proof. Let F be an irreducible (n, k)-homogeneous subcube partition. We start by observing that for each
coordinate i, there must be some subcube s ∈ F with si = ∗. Otherwise, the union of the subcubes s ∈ F
with si = 0 will be ∗i−10∗n−i, which contradicts irreducibility.

Repeat the following operation n times to F : apply Lemma 2.31, and rotate the result twice to the right
(equivalently, replace t∗ ∈ F with ∗∗∗t and tb ∈ F with b∗0t, ∗b1t, where b ̸= ∗). The observation in the
preceding paragraph ensures that the resulting subcube partition G is tight and irreducible. By construction,
G has length n+ 2n = 3n and codimension k + k = 2k.

Using appropriate starting points, we obtain two infinite families of irreducible homogeneous subcube
partitions.

Theorem 2.39. For every t ≥ 0 there are irreducible (3t · 4, 2t · 3)-homogeneous subcube partitions as well
as irreducible (3t · 6, 2t · 4)-homogeneous subcube partitions.

Proof. Apply Lemma 2.38 to the following two homogeneous subcube partitions, whose irreducibility can be
verified using Algorithm 1:

{000∗, 1∗00, 01∗0, ∗010, 10∗1, ∗101, 0∗11, 111∗},
{0000∗∗, 01∗∗00, 001∗∗1, 01∗01∗, 0∗01∗1, 0∗∗110, 10∗11∗, 10∗∗01,
1101∗∗, 111∗∗0, 1∗00∗0, 1∗∗011, ∗010∗0, ∗0∗100, ∗111∗1, ∗1∗001}.
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2.8.4 Codimension 3

Theorem 2.39 shows that an irreducible (4, 3)-homogeneous subcube partition exists. In this section, we
show that an irreducible (n, 3)-homogeneous subcube partition exists only for n = 4, and that it is unique
up to permutation and flipping of coordinates.

Theorem 2.40. If there exists an irreducible (n, 3)-homogeneous subcube partition then n = 4.

Proof. Let F be an irreducible (n, 3)-homogeneous subcube partition. If n = 3 then all subcubes in F are
points, and so F is irreducible. Therefore n ≥ 4.

Every two subcubes in F must conflict, and so they must share at least one non-star position. We show
that they must in fact share at least two non-star positions.

Indeed, assume to the contrary that s, t ∈ F share exactly one non-star position, without loss of generality
s = 000∗∗∗n−5 and t = ∗∗100∗n−5. Let u ∈ F be the subcube covering 100n−2, and let v ∈ F be the subcube
covering 010n−2. By construction u, v ̸= s, t. Also, u ̸= v, since otherwise u ⊇ 100n−2 ∨ 010n−2 = ∗∗0n−2,
and so u intersects s.

Since s conflicts with u, v, we have u1 = 1 and v2 = 1. Since t conflicts with u, v, we have u3 = v3 = 0.
If u2 = 0 then u = 100∗n−3 and so s ∪ u = ∗00∗n−3 is a subcube, contradicting irreducibility. Therefore
u1u2u3 = 1∗0, and the remaining non-star in u is 0. Similarly, v1v2v3 = ∗10, and the remaining non-star in
v is 0. But then u cannot conflict with v, and we have reached a contradiction.

The argument above shows that any two subcubes in F share at least two non-star positions. Without
loss of generality, s = 000∗n−3 ∈ F . Let t ∈ F be the subcube containing the point 10n−1. Irreducibility
implies that t ̸= 100∗n−3 and disjointness implies that t doesn’t start with ∗00, and so t = 10∗0∗n−4 without
loss of generality.

Lemma 2.11 shows that F is regular (see Definition 2.10). If n ≥ 5 then there exist two subcubes u, v ∈ F
with u5 = v5 = 0. Since u, v each share two non-star positions with both s and t, these must be the first
two positions. Since u, v must conflict with s, t, their first two positions must be either 01 or 11, and so
u, v ∈ {01∗∗0∗n−5, 11∗∗0n−5}. However, u ∪ v = ∗1∗∗0∗n−5 is a subcube, contradicting irreducibility. We
conclude that n = 4.

We prove the uniqueness of the subcube partition in Theorem 2.39 using Lemma 2.37.

Theorem 2.41. There is a unique irreducible (4, 3)-homogeneous subcube partition, up to permutation and
flipping of coordinates.

Proof. Let F be an irreducible (4, 3)-homogeneous subcube partition. According to Lemma 2.37 there is a
unique subcube of weight 0 in F , say 000∗ ∈ F .

The lemma also shows that F has three subcubes of weight 1. Since they are disjoint from one another,
each of them must contain a 1 in a different position. Since they are disjoint from 000∗, the 1 cannot appear
in position 4, and so the 1s must appear in positions 1, 2, 3.

The unique star in each of the subcubes of weight 1 cannot appear in the last position, since otherwise
the union with 000∗ would also be a subcube. Therefore without loss of generality, 1∗00 ∈ F . The subcube
with 1 in the second position cannot be ∗100 since this intersects 1∗00, and so 01∗0 ∈ F . Repeating the
argument, ∗010 ∈ F .

Lemma 2.37 shows that F has three subcubes of weight 2. Since they are disjoint from 1∗00, 01∗0, ∗010,
the last position must contain 1 (for example, 11∗0 intersects 1∗00). The unique 0 must be in different
positions, and so the 0s must appear in positions 1, 2, 3. The subcube of the form 0??1 cannot be 01∗1 since
otherwise 01∗0 ∪ 01∗1 = 01∗∗ would contradict irreducibility, and so 0∗11 ∈ F . Similarly 10∗1, ∗101 ∈ F .

Finally, the remaining points uncovered by the subcubes above are 1110, 1111, and so 111∗ ∈ F .

2.8.5 Codimension 4

Theorem 2.39 shows that an irreducible (6, 4)-homogeneous subcube partition exists. Using techniques
similar to the preceding section, in this section we show that an irreducible (n, 4)-homogeneous subcube
partition exists only for n = 6.
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Theorem 2.42. If there exists an irreducible (n, 4)-homogeneous subcube partition then n = 6. Moreover,
the irreducible (6, 4)-homogeneous subcube partition is unique up to permutation and flipping of coordinates.

Since the proof is a bit long, we break it into three parts, starting with the following lemma.

Lemma 2.43. If F is an irreducible (n, 4)-homogeneous subcube partition and s, t ∈ F are two different
subcubes, then s, t have at least two non-star coordinates in common.

Proof. Since s, t conflict, they must have at least one non-star coordinate in common. We assume that they
have exactly one non-star coordinate in common, and reach a contradiction.

Without loss of generality, s starts 0000∗∗∗ and t starts ∗∗∗1000. The subcube u(1) of F covering 10n−1

must start with 1 (to conflict with s) and its fourth symbol must be 0 (to conflict with t), and so it starts
1??0, where the question marks stand for 0 or ∗. Similarly, there are subcubes u(2), u(3) starting ?1?0 and
??10, respectively.

The subcubes u(1), u(2) must conflict, and so either u(1) starts 10∗0 or u(2) starts 01∗0 (the other question
mark must be a star since otherwise u(1) ∪ s or u(2) ∪ s would be a subcube, contradicting irreducibility).
Assume without loss of generality that u(1) starts 10∗0. Since u(1), u(3) must conflict, u(3) must start 0∗10.
Since u(2), u(3) must conflict, u(2) must start ∗100.

The subcube v ∈ F covering 1110n−3 must conflict with the subcube t which starts ∗∗∗1000, and so
v4 = 0. It must also conflict with u(1), and so v2 = 1. Similarly v1 = v3 = 1, and so v = 1110∗n−4.

Repeating the same argument with subcubes covering 0001100 0n−7, 0001010 0n−7, 0001001 0n−7, we ob-
tain the following situation (without loss of generality), where we write only the first seven coordinates:

0000∗∗∗ ∗∗∗1000
10∗0??? ???110∗
∗100??? ???1∗10
0∗10??? ???10∗1
1110∗∗∗ ∗∗∗1111

Every subcube w ∈ F with w4 = 0 other than 1110∗n−4 must conflict with 1110∗n−4, and so one of
w1, w2, w3 must be 0. Consequently, all such subcubes have weight at most 2.

Every subcube w ∈ F with w4 = ∗ must conflict with both 0000∗n−4, 1111∗n−4, and so w1, w2, w3 must
contain both a 0 and a 1. Similarly, w5, w6, w7 must contain both a 0 and a 1. Consequently, all such
subcubes have weight exactly 2.

We conclude that all subcubes w ∈ F of weight 3 other than 1110∗n−4 must have w4 = 1. According to
Lemma 2.37, there are 3 of these (excluding 1110∗n−4). The subcubes on the right side of the table above
have weights 1, 2, 2, 2, 4 (recall that question marks stand for 0 or ∗), and so there are at least 8 subcubes
in F contained inside ∗∗∗1∗n−4. Considering sizes, there must be exactly 8 such subcubes, which together
cover all of ∗∗∗1∗n−4, contradicting irreducibility.

We use this observation together with the following lemma to bound n.

Lemma 2.44. Let F be an irreducible (n, k)-homogeneous subcube partition, where n ≥ 2. Each coordinate
is mentioned in at least six subcubes of F .

Proof. We will show that the first coordinate is mentioned at least six times. For σ ∈ {0, 1, ∗}, let Fσ = {x :
σx ∈ F}. Since F0 ∪ F∗ and F1 ∪ F∗ are both subcube partitions,

⋃
F0 =

⋃
F1, and so |F0| = |F1|.

Lemma 2.11 shows that |F0| ≥ 2. Suppose that |F0| = 2. The two subcubes in F0 must conflict, and so
without loss of generality, assume that F0 = {0x, 1y}.

Recall that |F1| = 2 and
⋃
F0 =

⋃
F1. If none of the subcubes in F1 starts with a star then F1 = {0x′, 1y′}

(since 0x′ ∪ 0x′′ doesn’t cover 1y), and so x′ = x and y′ = y. However, that implies that 00x, 10x ∈ F ,
contradicting irreducibility.
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Therefore at least one of the subcubes in F1 starts with a star. If both start with a star then
⋃

F1 starts
with a star, implying that x = y and so 00x, 01x ∈ F , contradicting irreducibility. Hence without loss of
generality, F1 = {0x′, ∗z′}.

Considering the points starting with 1, we see that z′ = y′. However, this means that 01y′, 1∗y′ ∈ F ,
contradicting homogeneity. We conclude that |F0| = |F1| ≥ 3.

We can now prove the theorem.

Proof of Theorem 2.42. Let F be an irreducible (n, 4)-homogeneous subcube partition. Suppose without
loss of generality that 0000∗n−4 ∈ F . According to Lemma 2.43, every other subcube in F mentions at most
two coordinates beyond the first four, and so at most 2 · 15/6 = 5 of these are mentioned at least six times.
Lemma 2.44 implies that n ≤ 4 + 5 = 9.

We can slightly improve on this, as follows. Let u(1), u(2), u(3), u(4) be the subcubes containing the points
1000 0n−4, 0100 0n−4, 0010 0n−4, 0001 0n−4, respectively. Each of these subcubes must be different. Indeed,
if for example u(1) = u(2) then u(1) ⊇ 1000 0n−4 ∨ 0100 0n−4 = ∗∗00 0n−4, which intersects with 0000∗n−4.

Any two of u(1), u(2), u(3), u(4) must conflict, and so for distinct i, j ∈ {1, . . . , 4}, either u
(i)
j = 0 or

u
(j)
i = 0. This means that together, u(1), u(2), u(3), u(4) contain at least

(
4
2

)
= 6 zeroes among the first four

coordinates. Therefore one of u(1), u(2), u(3), u(4) must contain at least ⌈6/4⌉ = 2 zeroes among the first two
coordinates, and so mentions at most one coordinate beyond the first four.

This means that strictly fewer than 2 · 15/6 = 5 coordinates are mentioned at least six times, and so
n ≤ 4 + 4 = 8.

Recalling that n ≥ 5 due to Lemma 2.34, we complete the proof of the theorem by checking with
a computer that no irreducible (n, 4)-homogeneous subcube partitions exist for n = 5, 7, 8, and that the
irreducible (6, 4)-homogeneous subcube partition is unique up to permutation and flipping of coordinates.

3 Nonbinary subcube partitions

So far we have considered subcube partitions of the hypercube {0, 1}n. In this section, we study subcube
partitions of {0, . . . , q − 1}n for arbitrary q ≥ 2.

Definition 3.1 (Subcube partition). A subcube partition of {0, . . . , q − 1}n (or: a subcube partition over
{0, . . . , q − 1} of length n) is a partition of {0, . . . , q − 1}n into subcubes, which are sets of the form

{x ∈ {0, . . . , q − 1}n : xi1 = b1, . . . , xid = bd}.

We identify subcubes with words over {0, . . . , q − 1, ∗}. The definitions of the following concepts are
identical to the binary case: dimension and codimension of a subcube, point, edge, size (Definition 2.1);
reducible subcube partition (Definition 2.2); tight subcube partition (Definition 2.3); conflicting subcubes
(Definition 2.4).

Given a collection F of subcubes of {0, . . . , q − 1}n, we can determine whether they form a subcube
partition using the criterion of Lemma 2.6, replacing 2 with q. Determining whether a subcube partition of
{0, . . . , q − 1}n is tight is easy using the definition, and we can determine irreducibility using Algorithm 1.

We start our exploration of subcube partitions over {0, . . . , q − 1} in Section 3.1, where we show how to
convert an irreducible subcube partition of {0, 1}n into an irreducible subcube partition of {0, . . . , q − 1}n.

We then study the minimal size of tight irreducible subcube partitions over {0, . . . , q− 1} in Section 3.2.

3.1 Expansion

In this section we show how to convert a subcube partition of {0, 1}n into a subcube partition of {0, . . . , q−1}n
in a way which preserves tightness and irreducibility.
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Lemma 3.2. Let F be a subcube partition of {0, 1}n, let q ≥ 2, and let ϕ1, . . . , ϕn : {0, . . . , q − 1} → {0, 1}
be surjective functions.

Extend the definitions of ϕ1, . . . , ϕn to {0, . . . , q−1, ∗} by defining ϕi(∗) = ∗. Define a function ϕ : {0, . . . , q−
1, ∗}n → {0, 1, ∗}n as follows: ϕ(σ1 . . . σn) = ϕ(σ1) . . . ϕ(σn). Let

G = {s ∈ {0, . . . , q − 1, ∗}n : ϕ(s) ∈ F}.

Then

(a) G is a subcube partition of {0, . . . , q − 1}n.

(b) If F is tight then so is G.

(c) If F is irreducible then so is G.

Proof. We start by showing that G is a subcube partition. Notice first that the subcubes in G are disjoint.
Indeed, suppose that s, s′ ∈ G are distinct. If ϕ(s) = ϕ(s′) then s, s′ must disagree on a non-star position,
and so conflict. If ϕ(s) ̸= ϕ(s′) then ϕ(s), ϕ(s′) conflict at some position i, and s, s′ conflict at the same
position.

In order to show that the subcubes in G cover all of {0, . . . , q − 1}n, let x ∈ {0, . . . , q − 1}n. Since F is
a subcube partition, ϕ(x) is covered by some subcube t ∈ F . Define a subcube s as follows: if ti = ∗ then
si = ∗, and otherwise si = xi. Then ϕ(s) = t and so s ∈ G, and s covers x by definition.

Now suppose that F is tight. Then for every i ∈ [n] there is a subcube t ∈ F mentioning i. Since ϕ is
surjective, we can find a subcube s mentioning i such that ϕ(s) = t. Hence s ∈ G, and so G also contains a
subcube mentioning i. Hence G is tight.

Finally, suppose that F is irreducible. IfG is reducible then there is a a subsetH ⊂ G, with 1 < |H| < |G|,
whose union is a subcube r. We claim that the union of ϕ(H) = {ϕ(s) : s ∈ H} is the subcube ϕ(r).

Indeed, on the one hand, any s ∈ H satisfies s ⊆ r and so ϕ(s) ⊆ ϕ(r), hence
⋃

ϕ(H) ⊆ ϕ(r). On the
other hand, let x ∈ ϕ(r) be an arbitrary point. Define a point y ∈ {0, . . . , q − 1}n as follows: if ri = ∗ then
yi is an arbitrary element of ϕ−1

i (xi), and otherwise yi = ri; in the latter case, ϕi(yi) = ϕi(ri) = xi. By
construction, y ∈ r, and so y is covered by some s ∈ H. Since ϕ(y) = x, it follows that ϕ(s) covers x.

Since F is irreducible, either |ϕ(H)| = 1 or |ϕ(H)| = |F |. In the latter case, ϕ(r) = ∗n and so r = ∗n,
implying that H = G, contrary to assumption. In the former case, ϕ(s) = ϕ(r) for all s ∈ H. Choose two
distinct subcubes s, s′ ∈ H. Let i ∈ [n] be a coordinate at which s, s′ conflict. Since r ⊇ s ∨ s′ we have
ri = ∗, and so ϕ(r)i = ∗. On the other hand, si, s

′
i ̸= ∗, contradicting ϕ(s) = ϕ(s′) = ϕ(r).

3.2 Minimal size

Section 2.3 studies the minimal size of a tight irreducible subcube partition of {0, 1}n. In this section we
extend this study to tight irreducible subcube partitions of {0, . . . , q− 1}n, asking: what is the minimal size
of a tight irreducible subcube partition of {0, . . . , q − 1}n?

Applying Lemma 3.2 to the tight irreducible subcube partitions constructed in Theorem 2.23, we obtain
a tight irreducible subcube partition of size (n− 1)q(q − 1) + 1. We conjecture that this is optimal.

Conjecture 7. If n ≥ 3 then for all q ≥ 2, the minimal size of a tight irreducible subcube partition of
{0, . . . , q − 1}n is (n− 1)q(q − 1) + 1.

We formally describe the matching construction in Section 3.2.1, where we also show that this is the
minimal size that can be achieved by a direct application of Lemma 3.2, assuming Conjecture 1.

We prove Conjecture 7 for n = 3 in Section 3.2.2, where we also show that no tight irreducible subcube
partition exists for n = 2. We have also verified the conjecture using a computer for n = 4 and q ≤ 6, as
well as for n = 5 and q = 3.

We close the section by proving a modest lower bound of (q − 1)n + 1 on the size of a tight subcube
partition of {0, . . . , q− 1}n, using the technique of Tarsi [AL86]. The lower bound applies more generally to
tight minimal subcube covers, where it is sharp.
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3.2.1 Construction

In this section we show how to construct tight irreducible subcube partitions of {0, . . . , q − 1}n of size
(n − 1)q(q − 1) + 1 using Lemma 3.2, and explain why this is the minimal possible size when using the
lemma, assuming Conjecture 1. We start with the construction.

Theorem 3.3. For each n ≥ 3 and q ≥ 2 there exists a tight irreducible subcube partition of {0, . . . , q− 1}n
of size (n− 1)q(q − 1) + 1.

Proof. Theorem 2.23 constructs a tight irreducible subcube partition of {0, . . . , q− 1}n whose weight vector
is 1, n− 1, n− 1, 0, . . . , 0. Applying Lemma 3.2 with the mappings ϕi given by ϕi(0) = 0 and ϕi(1) = · · · =
ϕi(q − 1) = 1 for all i ∈ [n], we obtain a tight irreducible subcube partition of size

1 · (q − 1)0 + (n− 1) · (q − 1)1 + (n− 1) · (q − 1)2 = (n− 1)q(q − 1) + 1.

We now show that this construction is the optimal way of applying Lemma 3.2, assuming Conjecture 1.

Theorem 3.4. Assume that Conjecture 1 holds for some n ≥ 3. Let F be a tight irreducible subcube partition
of {0, 1}n. Let G be a subcube partition obtained by an application of Lemma 3.2 on F , for some q ≥ 2.
Then G has size at least (n− 1)q(q − 1) + 1.

Proof. Let g(z1, . . . , zn) be the size of G when Lemma 3.2 is applied with functions ϕ1, . . . , ϕn : {0, . . . , q −
1} → {0, 1} such that |ϕ−1

i (0)| = zi for all i ∈ [n]. The function g is multilinear, and so its minimal value over
{1, . . . , q− 1}n is attained at some z ∈ {1, q− 1}n. Define a subcube partition F ′ by flipping all coordinates
i such that zi = q − 1. Then

|G| ≥ g(z) =
∑
s∈F ′

(q − 1)#1(s).

Since F ′ is tight and irreducible, a combination of Theorem 2.22 and Lemma 2.20 shows that

|G| ≥ min
(
1 + (n− 1)(q − 1) + (n− 1)(q − 1)2, 1 + n(q − 1) + (n− 3)(q − 1)2 + (q − 1)3.

)
.

If we subtract the first sum from the second then we obtain

(q − 1)3 − 2(q − 1)2 + (q − 1) = (q − 2)2(q − 1) ≥ 0,

and so the minimum equals the first sum.

3.2.2 Short length

In this section we characterize all tight irreducible subcube partitions of {0, . . . , q− 1}n for q ≥ 2 and n ≤ 3.
It is easy to see that the unique tight irreducible subcube partition of {0, . . . , q− 1}1 is {0, . . . , q− 1}. In

contrast, there is no tight irreducible subcube partition of {0, . . . , q − 1}2.

Lemma 3.5. There are no tight irreducible subcube partitions of {0, . . . , q − 1}2 for any q ≥ 2.

Proof. Let F be a tight subcube partition of {0, . . . , q−1}2. If all subcubes in F are points then F is clearly
reducible. Otherwise, without loss of generality 0∗ ∈ F . For every a ∈ {1, . . . , q − 1}, let Fa ⊂ F consist of
all subcubes of F starting with a. Since F is tight, Fa ̸= {a∗} for some a. Since

⋃
Fa = a∗, it follows that

F is reducible.

There is a unique tight irreducible subcube partition of {0, 1}3, up to flipping coordinates. An analogous
result holds for all q ≥ 2.

Lemma 3.6. Every tight irreducible subcube partition of {0, . . . , q−1}3, for any q ≥ 2, can be obtained from
S3 = {000, 01∗, 1∗0, ∗01, 111} by Lemma 3.2.
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Proof. Let G be a tight irreducible subcube partition of {0, . . . , q − 1}3. Since G is tight, ∗∗∗ /∈ G. Fur-
thermore, no subcube in G contains two stars. Indeed, suppose that 0∗∗ ∈ G. Then all subcubes in G
starting with 1 cover 1∗∗, and all subcubes in G starting with 2 cover 2∗∗. Since G is irreducible, we see
that G = {0∗∗, 1∗∗, 2∗∗}, contradicting tightness.

Let A(·?∗) denote the projection of all subcubes of G of the form ??∗ to the first coordinate, and define
other A-sets analogously.

If A(·?∗) = ∅ then no subcube of G ends with ∗. Therefore the subcubes ending with b ∈ {0, 1, 2} cover
all of ∗∗b. Since G is irreducible, ∗∗b ∈ G, which is impossible. Therefore A(·?∗) ̸= ∅.

We claim that A(·?∗) and A(·∗?) are disjoint. Indeed, if a ∈ A(·?∗) ∩A(·∗?), then ab∗, a∗c ∈ G for some
b, c ∈ {0, 1, 2}, which is impossible since these subcubes intersect.

We claim that if a ∈ A(·?∗) and b ∈ A(?·∗) then ab∗ ∈ G. Indeed, suppose that ab′∗, a′b∗ ∈ G but
ab∗ /∈ G. Consider a point abc ∈ {0, . . . , q − 1}3. This point cannot be covered by a∗c since this subcube
does not conflict with ab′∗, and cannot be covered by ∗bc since this subcube does not conflict with a′b∗.
Therefore abc ∈ G. Since this holds for all c and

⋃
c abc = ab∗, we get a contradiction with the irreducibility

of G.
It follows that G is composed of points and edges, where the edges are

{ab∗ : a ∈ A(·?∗), b ∈ A(?·∗)} ∪ {a∗c : a ∈ A(·∗?), c ∈ A(?∗·)} ∪ {∗bc : b ∈ A(∗·?), c ∈ A(∗?·)}.

We claim that A(·?∗) ∪ A(·∗?) = {0, . . . , q − 1}, and so these two sets partition {0, . . . , q − 1}. Indeed,
suppose that a is contained in neither set. Let b ∈ A(?·∗), so that b /∈ A(∗·?). By construction, points of the
form abc are not covered by any of the edges of G, hence all of them belong to G. Since

⋃
c abc = ab∗, this

contradicts the irreducibility of G.
It follows that G can be obtained by applying Lemma 3.2 to S3 with the mappings

ϕ1(a) = 1↔ a ∈ A(·∗?), ϕ2(b) = 1↔ b ∈ A(?·∗), ϕ3(c) = 1↔ c ∈ A(∗?·).

Indeed, the edges of G are

{ab∗ : ϕ1(a) = 0, ϕ2(b) = 1} ∪ {a∗c : ϕ1(a) = 1, ϕ3(c) = 0} ∪ {∗bc : ϕ2(b) = 0, ϕ3(c) = 1},

and these cover all points abc ∈ {0, . . . , q − 1}3 other than the ones satisfying ϕ1(a) = ϕ2(b) = ϕ2(c).

Corollary 3.7. Conjecture 7 holds for n = 3 and all q ≥ 2.

Proof. Let G be a tight irreducible subcube partition of {0, . . . , q − 1}3, where q ≥ 2. According to the
lemma, it can be obtained by applying Lemma 3.2. The result now follows from Theorem 3.4, since it is
known that all tight irreducible subcube partitions of {0, 1}3 have size 5.

When n ≥ 4, not all tight irreducible subcube partitions are obtained via Lemma 3.2. Here is an example:

0000, 0002, 0020, 0022, 0101, 0102, 0111, 0122, 0200, 0201, 0211, 0220, 1010, 1011, 1020, 1021, 1102,

1110, 1120, 1122, 1201, 1202, 1211, 1212, 2011, 2012, 2021, 2022, 2110, 2111, 2200, 2212, 2220, 2222,

2100, 2101, 01∗0, 02∗2, 0∗21, 10∗2, 11∗1, 1∗00, 20∗0, 22∗1, 2∗02, 001∗, 122∗, 212∗, ∗001, ∗112, ∗210.

This is a tight irreducible subcube partition of {0, 1, 2}4. The underlined subcubes show that it cannot
be obtained by applying Lemma 3.2, since 001, 122, 212 and 001, 112, 210 are not product sets.

3.2.3 Lower bound

Theorem 2.9 gives our best lower bound on the size of a tight irreducible subcube partition of {0, 1}n, slightly
improving on the “trivial” lower bound of n + 1 which follows from the well-known lemma of Tarsi [AL86]
on minimally unsatisfiable CNFs.

Tarsi’s lemma applies more generally to subcube covers.
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Definition 3.8 (Subcube cover). A subcube cover of {0, . . . , q− 1}n is a collection of subcubes whose union
is {0, . . . , q − 1}n.

A subcube cover is minimal if no proper subset of it is a subcube cover.

In this language, Tarsi’s lemma states that a tight minimal subcube cover of {0, 1}n has size at least
n+ 1. This bound is achieved, for example, by the subcube partition

{0i1∗n−i−1 : 0 ≤ i ≤ n− 1} ∪ {0n}.

The analogous subcube partition for arbitrary q ≥ 2 is

{0ib∗n−i−1 : 0 ≤ i ≤ n− 1, 1 ≤ b ≤ q − 1} ∪ {0n},

which has size (q − 1)n+ 1.
In this section, we generalize Tarsi’s lemma to the setting of matroids. A special case of our generalization

shows that every tight minimal subcube cover of {0, . . . , q − 1}n (and so every tight subcube partition of
{0, . . . , q − 1}n) has size at least (q − 1)n+ 1, proving the optimality of the above construction.

There are several proofs of Tarsi’s lemma [AL86, CS88, ML97, DDKB98, Kul00, BET01]. We generalize
the well-known proof using Hall’s theorem.

Definition 3.9 (Cover). Let M be a matroid. A collection F of subsets of the ground set of M is an
M -cover if no basis of M intersects all sets in F . An M -cover is minimal if no proper subset is an M -cover.

Theorem 3.10 (Generalized Tarsi’s lemma). Let M be a matroid with rank function r. Every minimal
M -cover F satisfies

|F | > r
(⋃

F
)
.

The statement might look opaque, so before proving the theorem, we first show how it can be used to
derive the lower bound (q − 1)n+ 1.

Theorem 3.11. Every tight minimal subcube cover of {0, . . . , q − 1}n, where n ≥ 1 and q ≥ 2, has size at
least (q − 1)n+ 1.

Proof. Let H(n, q) be the matroid over the ground set [n] × {0, . . . , q − 1} in which a set is independent if
for every i ∈ [n], it doesn’t contain all elements of the form (i, ?). A basis of H(n, q) is any set of the form
B(a1, . . . , an) := {(i, j) : i ∈ [n], j ∈ [q], j ̸= ai}, where a1, . . . , an ∈ {0, . . . , q − 1}.

Let F be a tight minimal subcube cover of {0, . . . , q − 1}n. We can represent every subcube in s ∈ F as
the following subset of the ground set of H(n, q):

ϕ(s) = {(i, si) : i ∈ [n], si ̸= ∗}.

Let ϕ(F ) = {ϕ(s) : s ∈ F}. We claim that ϕ(F ) is an H(n, q)-cover. Indeed, let B(a1, . . . , an) be any
basis of H(n, q). Since F is a subcube cover, the point a1 . . . an is covered by some subcube s. If (i, si) ∈ ϕ(s)
then si = ai, and so ϕ(s) is disjoint from B(a1, . . . , an).

A similar argument shows that ϕ(F ) is a minimal H(n, q)-cover. Indeed, any proper subset of ϕ(F ) has
the form ϕ(G) for some proper subset G ⊂ F . Since F is a minimal subcube cover, some point a1 . . . an is
not covered by G. The corresponding basis B(a1, . . . , an) intersects all sets in ϕ(G). Indeed, if ϕ(s) ∈ ϕ(G)
then s doesn’t cover a, and so si ̸= ai, ∗ for some i ∈ [n]. Consequently, ϕ(s) contains (i, si) ∈ B(a1, . . . , an).

Since ϕ(F ) is a minimal H(n, q)-cover, Theorem 3.10 shows that |F | = |ϕ(F )| exceeds the rank of
⋃
ϕ(s).

We will show that
⋃
ϕ(s) = [n]× {0, . . . , q − 1}, a set whose rank is (q − 1)n, completing the proof.

Let i ∈ [n]. Since F is tight, some subcube s ∈ F mentions i. Since F is minimal, there exists a point
x ∈ {0, . . . , q − 1}n which is only covered by s. In particular, no subcube of F contains xi→∗, the subcube
obtained from x by changing the i’th coordinate to a star. This implies that for every b ∈ {0, . . . , q − 1},
every subcube of F containing xi→b must contain b in its i’th coordinate. Therefore

⋃
ϕ(F ) contains all

elements of the form (i, b), for any b ∈ {0, . . . , q − 1}, as promised.
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The proof of Theorem 3.10 uses a generalization of Hall’s theorem to matroids.

Proposition 3.12 (Hall–Rado [Rad67, Wel71]). Let M be a matroid with rank function r, and let F be a
collection (multiset) of subsets of the ground set of M .

If each subset G ⊆ F satisfies |G| ≤ r(
⋃

G) then we can choose an element es from each set s ∈ F such
that the elements es are distinct, and {es : s ∈ F} is an independent set of M .

We can now prove Theorem 3.10.

Proof of Theorem 3.10. Let F be a minimal M -cover, and suppose that |F | ≤ r(
⋃

F ). We will show that
this assumption leads to a contradiction.

If every subset G ⊆ F satisfies |G| ≤ r(
⋃

G) then Proposition 3.12 shows that F intersects the inde-
pendent set {es : s ∈ F}. Since every independent set can be completed to a basis, this contradicts the
assumption that F is an M -cover.

We conclude that some subset G ⊂ F satisfies |G| > r(
⋃
G). Among all such subsets, choose one which

is inclusion-maximal. By assumption, G ̸= F , and so by minimality, G is not an M -cover, say the basis B
intersects all sets in G.

Let M ′ = M/
⋃
G be the contraction of M by

⋃
G. The ground set of M ′ is the ground set of M with⋃

G removed, and its rank function is r′(S′) = r(S′ ∪
⋃

G)− r(
⋃
G).

Let F ′ = {S\
⋃
G : S ∈ F \G}. Suppose thatH ′ is a non-empty subset of F ′, sayH ′ = {S\

⋃
G : S ∈ H}.

Since G is inclusion-maximal,

r′(H ′) = r
(⋃

H ′ ∪
⋃

G
)
− r

(⋃
G
)
= r

(⋃
(H ∪G)

)
− r

(⋃
G
)
> |H ∪G| − |G| = |H| = |H ′|.

Applying Proposition 3.12, we obtain a basis B′ of F ′ which intersects all sets in F ′, and so all sets in F \G.
The set B ∩

⋃
G is an independent subset of

⋃
G. Complete it to a basis BG of M |

⋃
G. Since B′ is

a basis of M ′, B′ ∪ BG is a basis of M . By construction, B intersects all subsets in F , contradicting the
assumption that F is an M -cover.

4 Affine vector space partitions

Section 2 considers partitions of {0, 1}n into subcubes. In this section, we consider partitions of {0, 1}n into
affine subspaces. The companion work [BFIK22] considers the more general case of partitions of Fn

q into
affine subspaces.

Definition 4.1 (Affine vector space partition). An affine vector space partition of length n is a partition
of {0, 1}n into affine subspaces, that is, sets of the form x + V , where x ∈ {0, 1}n and V is a subspace of
{0, 1}n (identified with Fn

2 ). The size of an affine vector space partition is the number of affine subspaces.
The linear part of an affine subspace U = x+ V is the subspace V . The dimension of an affine subspace

is the dimension of its linear part, and codimension is defined analogously.

The notion of reducibility is defined just as in Definition 2.2 and Definition 2.12, replacing subcube with
affine subspace.

Definition 4.2 (Reducibility). A collection F of disjoint affine subspaces of {0, 1}n is reducible if there
exists a subset G ⊆ F , with |G| > 1, whose union is an affine subspace of {0, 1}n other than {0, 1}n. If no
such G exists then F is irreducible.

The definition of tightness is perhaps less obvious. A subcube partition of length n is not tight if it arises
from a subcube partition of length n−1 via an embedding of {0, 1}n−1 inside {0, 1}n. If this is the case, then
there is a direction i which is “ignored” by all subcubes, in the sense that si = ∗. This definition generalizes
to our setting, where an affine subspace x+ V “ignores” a direction y ∈ {0, 1}n \ {0n} if y ∈ V .

Definition 4.3 (Tightness). An affine vector space partition F of length n is tight if the intersection of the
linear parts of all affine subspaces in F is {0n}.
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We can determine whether two affine subspaces intersect by solving linear equations. Using this, we can
determine whether a collection of affine subspaces forms an affine vector space partition as in Lemma 2.6,
by checking that ∑

s

2− codim(s) = 1.

We can check tightness using the definition, and irreducibility using Algorithm 1, suitably generalized.
For this we need to be able to compute the join of two affine subspaces, which is the minimal affine subspace
containing their union.

Lemma 4.4. The minimal affine subspace containing a+ V and b+W is a+ span(V,W, b− a).

We leave the straightforward proof to the reader.

We commence the study of affine vector space partitions in Section 4.1, where we show how to convert
an irreducible subcube partition to an irreducible affine vector space partition. We use this technique in
Section 4.2 to construct tight irreducible affine vector space partitions of length n and size 3

2n − O(1). In
the same section we also prove a lower bound of n + 1 on the size of a tight irreducible affine vector space
partition of length n.

4.1 Compression

Every subcube partition of length n can be viewed as an affine vector space partition of length n. Further-
more, if the subcube partition is tight, then so is the affine vector space partition. However, irreducibility is
not maintained in this conversion. For example,

000, 111, 01∗, 1∗0, ∗01

is irreducible as a subcube partition but reducible as an affine vector space partition, since 000 ∪ 111 is an
affine subspace, which we can represent by aaa. If we merge these two points, we get the tight irreducible
affine vector space partition

aaa, 01∗, 1∗0, ∗01.

In this section we generalize this process of merging for arbitrary irreducible subcube partitions.

Definition 4.5 (Star pattern). The star pattern of a subcube s ∈ {0, 1, ∗}n is P (s) := {i ∈ [n] : si = ∗}.

Lemma 4.6. Let F be an irreducible subcube partition. For S ⊆ [n], let FS consist of all subcubes in F
whose star pattern is S. For each S ⊆ [n], choose a partition of FS in which the union of each part is an
affine subspace, and let GS be the corresponding collection of affine subspaces. (If FS = ∅, take GS = ∅.)

If all GS are irreducible then G =
⋃

S GS is also irreducible.

Proof. If G is reducible then there exists a subset G′ ⊂ G, with |G′| > 1, whose union is an affine subspace
U other than {0, 1}n. Each affine subspace in G′ is a union of subcubes of F . Let F ′ be the collection of all
such subcubes, so that

⋃
F ′ = U .

If F ′ contains a subcube s with si = ∗ then according to Lemma 4.4, the linear part of U contains
0i−110n−i. This motivates defining S as the set of coordinates i ∈ [n] such that si = ∗ for some s ∈ F ′. Note
that S ̸= [n], since otherwise U = {0, 1}n.

Let U |S̄ be the projection of U into the coordinates outside of S, so that

U = {x ∈ {0, 1}n : x|S̄ ∈ U |S̄}.

Let y ∈ U |S̄ . Every x ∈ {0, 1}n such that x|S̄ = y is covered by some subcube s ∈ F ′. The definition of S
implies that si = yi for all i ∈ S̄. Consequently the union of all subcubes s ∈ F ′ such that s|S̄ = y is the
subcube sy := {x ∈ {0, 1}n : x|S̄ = y}. Since F is irreducible, sy ∈ F and so sy ∈ F ′. Since sy ∈ FS , it
follows that F ′ ⊆ FS , and so G′ ⊆ GS . This contradicts the irreducibility of G′.
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In general, F being tight doesn’t guarantee that G is tight. For example, applying Lemma 4.6 to the
tight subcube partition

∗000, ∗111, 001∗, 0∗01, 01∗0, 110∗, 1∗10, 10∗1

results in the non-tight affine vector space partition

∗aaa, aaā∗, a∗aā, aā∗a,

in which all linear parts contain the non-zero vector 1111.

The following lemma is a simplification of Lemma 4.6 which also includes a criterion for tightness.

Lemma 4.7. Let F be an irreducible subcube partition. For S ⊆ [n], let FS consist of all subcubes in F
whose star pattern is S.

Suppose that whenever FS is non-empty, the union of all subcubes in FS is an affine subspace gS (this is
always the case when |FS | ≤ 2). Then G = {gS : FS ̸= ∅} is an irreducible affine vector space partition.

Furthermore, G is tight if ⋂
S : FS ̸=∅

P
(∨

FS

)
= ∅, (1)

where the join is taken in the sense of subcubes.

Proof. The irreducibility of G follows directly from Lemma 4.6. Indeed, if for every non-empty FS we take
the partition consisting of a single part then the affine vector space partition G in this lemma coincides with
that in Lemma 4.6. Moreover, if FS = {a} then a is itself an affine subspace, and if FS = {a, b} then a∪ b is
the affine subspace obtained from a by adding the following vector to the linear part: vi = 1 if ai ̸= bi and
vi = 0 otherwise.

We proceed to show that if Equation (1) holds then G is tight. Let S ⊆ [n] be such that FS is non-empty.
If i /∈ P (

∨
FS) then all x ∈ gS have the same value of xi, and so yi = 0 for all y in the linear part of gS .

Therefore if yi = 1 for some y in the linear part of gS then i ∈ P (
∨

FS). Equation (1) thus guarantees that
the only vector in the intersection of the linear parts of all gS is the zero vector, and so G is tight.

4.2 Minimal size

In Section 2.3 we conjectured that the minimal size of a tight irreducible subcube partition of length n is
2n − 1. Using a computer, we have determined the minimal size of a tight irreducible affine vector space
partition of length n for small n [BFIK22]:

n 3 4 5 6 7
scp 5 7 9 11 13

avsp 4 6 7 8 10

The first row is the minimal size of a tight irreducible subcube partition of length n, and the second row is
the minimal size of a tight irreducible affine vector space partition of length n.

The constructions presented later in this section suggest the following conjecture.

Conjecture 8. The minimal size of a tight irreducible affine vector space partition is 3
2n− o(n).

We give a matching construction in Section 4.2.2. The best lower bound we are aware of is n+ 1, which
we prove in Section 4.2.1 using an argument similar to the proof of Theorem 3.10.

4.2.1 Lower bound

In this section, we adapt the proof of Theorem 3.10 to the setting of affine vector space partitions.

Theorem 4.8. Every tight affine vector space partition of length n ≥ 1 has size at least n+ 1.
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As in Theorem 3.11, the lower bound holds more generally for every tight minimal affine vector space
cover, a concept we do not define formally.

Proof. Let M be the matroid over {0, 1}n in which a subset is independent if it is linearly independent, and
let r be its rank function.

Suppose that F a tight irreducible affine vector space partition of length n ≥ 1, and let F = {V ⊥ :
x+ V ∈ F} (which we consider as a multiset).

We claim that r(F) = n. Indeed, since F is tight,

span({V ⊥ : x+ V ∈ F}) =
(⋂
{V : x+ V ∈ F}

)⊥
= {0n}⊥ = {0, 1}n,

and so r(F) = n.
Suppose that every G ⊆ F satisfies |G| ≤ r(

⋃
G). According to Proposition 3.12, we can choose an

element yx+V ∈ V ⊥ for each x+V ∈ F such that the elements yx+V form an independent set. In particular,
we can find an element z ∈ {0, 1}n such that ⟨z, yx+V ⟩ ≠ ⟨x, yx+V ⟩ for all x + V ∈ F . By construction,
z /∈ x+ V for all x+ V ∈ F , contradicting the assumption that F is an affine vector space partition.

It follows that there exists some subset G ⊆ F satisfying |G| > r(
⋃

G). Among all such subsets, choose
one which is inclusion-maximal. If G = F then we are done, so suppose that G ̸= F. Since F is an affine
vector space partition, there is a point z0 which is not covered by any subspace in G.

Let M ′ = M/ span(G), and let r′ be its rank function. Let F′ = {V ⊥ \ span(G) : V ⊥ ∈ F \ G}. If
G′ ⊆ F′ then

r′(G′) = r(G′ ∪ span(G))− r(span(G)) = r(G′ ∪G)− r(G) > |G′ ∪G| − |G| = |G′|,

using the inclusion-maximality of G′. Hence Proposition 3.12 allows us to choose y′x+V ∈ V ⊥ \ span(G) for
all x + V ∈ F \ G such that these vectors are independent in M ′, which means that no linear combination
of them lies in span(G) (and in particular, they are linearly independent).

Let z be a point such that ⟨z, y′x+V ⟩ ≠ ⟨x, y′x+V ⟩ for all x + V ∈ F \ G and ⟨z, y⟩ = ⟨z0, y⟩ for all
y ∈ span(G). By construction, z is not covered by any of the subspaces of F \ G. It is also not contained
in any x + V ∈ G, since x + V = {w : ⟨w, y⟩ = ⟨x, y⟩ for all y ∈ V ⊥} and ⟨z, y⟩ = ⟨z0, y⟩ for all y ∈ V ⊥

(recalling that z0 is not covered by G). This contradicts the assumption that F is an affine vector space
partition.

It is tempting to conjecture a common generalization of Theorem 3.11 and Theorem 4.8, namely that a
tight affine vector space partition of Fn

q has size at least (q−1)n+1. Unlike Theorem 3.11 and Theorem 4.8,
this cannot be true for tight minimal affine vector space covers for q ≥ 4 (hence, the proof above cannot
generalize): we can construct tight minimal affine vector space covers of size (q − 1)(n − 3) + 3

2 (q + 1) − 1
for q odd, and we can construct tight minimal affine vector space covers of size (q − 1)(n− 3) + q + q/p for
q = ph, where p is a prime. These constructions derive from the two examples of minimal blocking sets in a
projective plane described in [BB86]. We leave the details for elsewhere.

4.2.2 Construction

In this section, we construct tight irreducible affine vector space partitions of length n and size 3
2n−O(1) for

all n ≥ 3, using Lemma 4.7. To construct the underlying subcube partitions, we use an inductive approach
in the style of the constructions in Sections 2.3 and 2.4.

Lemma 4.9. Let F,H be irreducible subcube partitions of length n ≥ 2 satisfying the following conditions,
where FS consists of all subcubes in F whose star pattern in S:

(i) {s ∈ F : s1 = ∗} = {s ∈ H : s1 = ∗}.

(ii) |FS |, |HS | ≤ 2 for all S.
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(iii) Equation (1) holds for H.

Let m = m(H) be the number of star patterns S such that HS is non-empty, and let m′ = m′(H) be the
number of those star patterns where 1 /∈ S (that is, the first coordinate is not a star).

For every k ≥ 0 there exists a tight irreducible affine vector space partition of length n + 2k and size
m+ km′.

Proof. For N ≥ 0, let F∗N = {s∗N : s ∈ F}, and define ∗NF similarly.
Let F ∗ = {s ∈ {0, 1}n−1 : ∗s ∈ F}. If F ∗ is empty then the union of the subcubes starting with b ∈ {0, 1}

is b∗n−1. Since F is irreducible, F = {0∗n−1, 1∗n−1}. However, this contradicts Equation (1), using n ≥ 2.
Therefore F ∗ is non-empty.

We will construct an infinite sequence of subcube partitions F (k) such that the following hold:

(i) F (k) is an irreducible subcube partition of length n+ 2k.

(ii) F ∗∗2k+1 ⊆ F (k).

(iii) Subcubes in F ∗∗2k+1 have different star patterns from subcubes in F (k) \ F ∗∗2k+1.

(iv) |F (k)
S | ≤ 2 for all S.

(v) m(F (k)) = m+ km′.

(vi) Equation (1) holds for F (k).

The result then follows by applying Lemma 4.7 to F (k).

The starting point is F (0) = {sa : as ∈ H, |a| = 1, |s| = n − 1}. By assumption, F (0) is irreducible
and F ∗∗ = H∗∗. By construction, F ∗∗ ⊆ F (0), and all subcubes in F (0) \ F ∗∗ end with a non-star. The
remaining properties are by assumption.

Given F (k), we construct F (k+1) as follows. Apply Lemma 2.13 with F0 = ∗F (k) and F1 = F∗2k+1 to
obtain a subcube partition G(k). We define F (k+1) = {tab : abt ∈ G(k), |a| = |b| = 1, |t| = n + 2k}. Since
F ∗∗2k+1 ⊆ F (k), we can explicitly write

F (k+1) = {t∗∗ : t ∈ F ∗∗2k+1} ∪ {t0∗ : t ∈ F (k) \ F ∗∗2k+1} ∪ {t1b : bt ∈ F∗2k+1, b ̸= ∗}.

We now verify the properties of F (k+1) one by one:

(i) By the induction hypothesis, F ∗∗2k+1 ⊆ F (k), and so ∗F ∗∗2k+1 ⊆ ∗F (k). Since F ∗ is non-empty,
F0 ∩F1 = ∗F ∗∗2k+1 is non-empty. Therefore Lemma 2.13 shows that G(k) is irreducible, and it follows
that F (k+1) is irreducible.

(ii) The formula for F (k+1) immediately implies that F ∗∗2k+3 ⊆ F (k+1).

(iii) The formula for F (k+1) shows that all s ∈ F (k+1) \ F ∗∗2k+3 satisfy sn+2k+1 ̸= ∗, and so have different
star patterns from any subcube in F ∗∗2k+3.

(iv) The subcubes in each of the three sets in the formula for F (k+1) have different star patterns. Since

|F ∗
S | ≤ 2 for all S and |F (k)

S | ≤ 2 for all S, it follows that |F (k+1)
S | ≤ 2 for all S.

(v) Denote the three parts in the formula for F (k+1) by A,B,C. Clearly m(A) = m(F ∗). Since the star
patterns of the subcubes in F ∗∗2k+1 are different from the star patterns of the subcubes in F (k) \
F ∗∗2k+1, we have m(B) = m(F (k)) − m(F ∗). Finally, m(C) = m′. We conclude that m(F (k+1)) =
m(F (k)) +m′ = m+ (k + 1)m′.
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(vi) Since the star patterns of the subcubes in F ∗∗2k+1 are different from the star patterns of the subcubes
in F (k)\F ∗∗2k+1, the induction hypothesis implies that the intersection of P (

∨
FS) for all star patterns

S appearing in A ∪B is contained in {n+ 2k + 1, n+ 2k + 2}.
Equation (1) for F implies that some s ∈ F satisfies s1 ̸= ∗, and so C is non-empty. All star patterns
of subcubes in S do not contain n+ 2k + 1 or n+ 2k + 2, and so Equation (1) holds for F (k+1).

Using this lemma, we construct tight irreducible affine vector space partitions of length n and size
3
2n − O(1) for all n ≥ 3. Our construction matches the optimal values in the table appearing in the
beginning of the section.

Theorem 4.10. For all odd n ≥ 3 there is a tight irreducible affine vector space partition of length n and
size 3

2n−
1
2 .

There is a tight irreducible affine vector space partition of length 4 and size 6.
For all even n ≥ 6 there is a tight irreducible affine vector space partition of length n and size 3

2n− 1.

Proof. Consider the following subcube partitions:

S3 = {∗01, 000, 111, 1∗0, 01∗},
S4 = {∗01∗, 1000, 1111, 11∗0, 1∗01, 000∗, 01∗∗},
T6 = {∗0110∗, ∗1101∗, ∗001∗1, ∗010∗0, ∗00∗∗0, ∗0∗0∗1, ∗∗111∗, 011∗0∗, 110∗1∗, 010∗∗∗, 11∗∗0∗}.

Using Algorithm 1, one can check that they are irreducible. One checks directly that the prerequisites of
Lemma 4.9 hold in all cases (with H = F ).

Since m(S3) = 4 and m′(S3) = 3, Lemma 4.9 with F = H = S3 constructs tight irreducible affine
subspace partitions of length 3 + 2k and size 4 + 3k = 3

2 (3 + 2k)− 1
2 .

Applying Lemma 4.7 directly to S4, we obtain a tight irreducible affine subspace partition of length 4
and size 6.

Since m(T6) = 8 and m′(T6) = 3, Lemma 4.9 with F = H = T6 constructs tight irreducible affine
subspace partitions of length 6 + 2k and size 8 + 3k = 3

2 (6 + 2k)− 1.

Applying Lemma 4.9 with F = S3∗ and H = S4 constructs tight irreducible affine subspace partitions of
length 4 + 2k and size 6 + 3k = 3

2 (4 + 2k), which is slightly worse that what we get using F = H = T6.
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