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Abstract

Noether’s theorem of invariant variations is an important mathematical theorem
in functional analysis that Emmy Noether derived in 1918 as part of her habilitation
thesis. In the physics community her theorem is mainly known for linking the
symmetries of a given system to corresponding exact conservation laws. In this thesis
we use the invariance of statistical mechanics functionals with respect to several
continuous symmetries to determine on the basis of Noether’s theorem exact identities
for many-body systems. These statistical mechanical identities are then exploited
within various applications, in particular for active Brownian particles, which form
a simple nonequilibrium model system of self-propelled entities. The self-propulsion
leads to several interesting phenomena including a gas-liquid-like phase transition
which even occurs for purely repulsive interparticle interactions and is hence motility-
induced. Further application addresses the behaviour of active Brownian particles in
a gravitational field confined by a lower bounding wall. Such active sedimentation is
experimentally accessible.

We lay out Noether’s theorem to statistical mechanics both in the grand canonical
and in the canonical ensemble. Therefore, we consider the invariances of various
important and fundamental statistical functionals such as the grand potential and
the free energy under symmetry operations including spatial shifts and rotations.
The argument rests on two facts. On the one hand the invariant functional does not
change under the symmetry transformation. On the other hand one can still expand
the transformed functional around the original (i.e. non-transformed) functional with
respect to the variation parameter. Comparing the results of either perspective, it
becomes apparent that the linear as well as all higher order contributions in the
expansion have to vanish individually. In linear order the procedure yields sum rules
that describe the vanishing of mean values such as both global and spatially resolved
(“local”) forces and torques. In quadratic order the cancellation relates variances and
curvatures, e.g. the variance of the external force with a mean curvature of the external
potential. Functional differentiation of global first order sum rules gives a full hierarchy
of local sum rules which relate several correlation functions that are essential in liquid
state theory. While some of the hierarchies are already known in the literature, the
identification of the underlying Noether concept enables their systematic derivation
and it provides a constructive way to obtain new sum rules. Those sum rules include
exact memory identities of nonequilibrium time-correlation functions. The Noether
concept generalizes from classical to quantum statistical mechanics as we demonstrate.
The sum rules that Noether’s theorem generates hold quite generally in statistical

mechanics as long as the system is closed by an impenetrable external potential and
no boundary contributions arise. Considering boundary terms is necessary when we
apply Noether’s theorem to the thermal sedimentation-diffusion equilibrium, active
sedimentation, and the phase separation of both active and thermal Brownian particles.
For the later system we recover the well-known mechanical pressure balance at phase
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coexistence and show that this relationship also holds in nonequilibrium for active
Brownian particles. Boundary contributions are also crucial for the presented proof of
the viral hard wall contact theorem, which states that the density at a hard wall is
determined by the virial bulk pressure. The proof itself is based on the global total
force balance, which is a direct consequence of the Noether invariance under a global
displacement.

We take the continuity equation as the direct origin of an exact sum rule which relates
the global polarization at the interface with the current at the system boundaries far
away from the interface. This has since been verified experimentally and numerically.
In systems that are bounded by bulk states such as sedimentation and motility-
induces phase separation of active Brownian particles, the global polarization is solely
determined by bulk values and hence constitutes a state function. In both examples
we give explicit expressions for this state function. In combination with Noether’s
theorem the polarization sum rule is then applied to global force balance equations.
This combined use of sum rules yields deeper insights into the dynamics of the center
of mass motion as we demonstrated for the example of active Brownian particles.
We demonstrate that all applicable sum rules are satisfied within a previously

developed theoretical power functional description of the bulk and the interface at
motility-induced phase separation of active Brownian particles. The variational theory
works on the basis of forces and rests on the force density balance and the continuity
equation. We consider the validity of the sum rules as a strong support of the theory
and determine on the basis of this description the free interfacial tension. Using a
square gradient approximation for the interfacial force contributions we obtain positive
results for the nonequilibrium tension, which is in accordance with the observed
mechanical stability of the interface in both simulations and experiments.
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Zusammenfassung

Das Noether-Theorem über invariante Variationsprobleme ist ein wichtiges Theorem
der Funktionalanalysis, das 1918 von der Mathematikerin Emmy Noether im Rahmen
ihrer Habilitationsschrift beschrieben wurde. In der Physik ist ihr Theorem vor
allem für die Verbindung zwischen den vorliegenden Symmetrien in einem System
und den zugehörigen exakten Erhaltungssätzen bekannt. Innerhalb der vorliegenden
Dissertation wird die Invarianz von Funktionalen der statistischen Mechanik unter
verschiedenen kontinuierlichen Symmetrien verwendet, um auf Basis des Noetherschen
Theorems exakte Identitäten für Vielteilchensysteme zu bestimmen. Diese statistischen
Identitäten werden für vielfältige Anwendungen verwendet, insbesondere für aktive
Brownsche Teilchen, einem einfachen Modellsystem von selbstangetriebenen Objekten
im Nichtgleichgewicht. Der Selbstantrieb führt zu mehreren interessanten Phänomenen
wie beispielsweise der Phasenseparation in eine gas- und flüssig-ähnliche Phase. Diese
Separation tritt selbst bei einem rein repulsiven Wechselwirkungspotential zwischen
den Teilchen auf und ist daher durch die Beweglichkeit der Teilchen verursacht. Eine
weitere Anwendung beinhaltet das Verhalten aktiver Brownscher Teilchen in einem
Gravitationsfeld an einer unteren begrenzenden Wand. Aktive Sedimentation und
Phasenseparation sind experimentell zugänglich.

In der Dissertation wird die Anwendung des Noether Theorems für das großkanonis-
che und kanonische Ensemble in der statistischen Mechanik demonstriert. Aus diesem
Grund wird die Invarianz von verschiedenen, wichtigen statistischen Funktionalen
betrachtet, wie dem großkanonischen Potential oder der freien Energie unter Sym-
metrievariationen, die räumliche Verschiebungen und Rotationen beinhalten. Die
Argumentation stützt sich auf zwei Fakten. Auf der einen Seite ändert sich ein in-
variantes Funktional nicht unter seiner zugehörigen Symmetrietransformation. Auf
der anderen Seite kann man das transformierte Funktional dennoch formal um das
ursprüngliche (also das nicht transformierte) Funktional in Abhängigkeit eines Varia-
tionsparameters entwickeln. Vergleicht man beide Betrachtungsweisen miteinander,
stellt man fest, dass alle Beiträge linear sowie höherer Ordnung im Transformation-
sparameter jeweils einzeln Null ergeben müssen. In linearer Ordnung folgen aus
dieser Bedingung Summenregeln, die das Verschwinden von Erwartungswerten für
globale und räumlich aufgelöste („lokale“) Kräfte und Drehmomente beschreiben. In
quadratischer Ordnung verknüpft dieses Wegheben Varianzen mit Krümmungsbeiträ-
gen, beispielsweise die Varianz der externen Kraft mit dem Mittelwert der Krümmung
des externen Potentials. Die Funktionalableitung von globalen Summenregeln gibt
eine vollständige Hierarchie von lokalen Summenregeln, die verschiedene fundamen-
tale Korrelationsfunktionen aus der Flüssigkeitstheorie miteinander in Verbindung
setzt. Einige dieser Hierarchien sind bereits in der Literatur bekannt, doch die
Identifikation des zugrundeliegenden Noetherschen Konzeptes ermöglicht nun eine
systematische Konstruktion neuer Summenregeln. Diese Summenregeln schließen
exakte Gedächtnis-Identitäten für Nichtgleichgewichts-Zeitkorrelationsfunktionen mit
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ein. Das Noether Konzept lässt sich von der klassischen auf die quantenmechanische
statistische Mechanik verallgemeinern, wie ebenfalls in der SChrift gezeigt wird.
Die vom Noether Theorem erzeugten Zusammenhänge gelten allgemein in der

statistischen Mechanik, solange das betrachtete System durch ein undurchdringliches
externes Potential begrenzt wird und entsprechend keine Flussterme am Rand auftreten
können. Die Betrachtung von Randbeiträgen wird beispielsweise dann nötig, wenn
man das Noether-Theorem auf thermische und aktive Sedimentation oder auf die
Phasenseparation von aktiven und thermischen Brownschen Teilchen anwendet. Für
Letzteres wird die bekannte mechanische Druck-Bilanz bei Phasenkoexistenz wiederge-
funden. Dieses Druckgleichgewicht gilt für aktive Brownsche Schwimmer auch noch
im Nichtgleichgewicht. Randbeiträge tragen entscheidend bei zum Beweis des virialen
Kontakttheorems der harten Wand, welches die Kontaktdichte an einer harten Wand
durch den Virialdruck der zugehörigen Bulk-Phase ausdrückt. Der Beweis selbst
basiert auf dem globalen Gleichgewicht der totalen Kraft, das wiederum selbst eine
direkte Konsequenz der Noether Invarianz unter einer globalen Verschiebung ist.
Weiterhin verwende ich die Kontinuitätsgleichung als direkten Ursprung für eine

weitere exakte Summenregel. Diese setzt die globale Polarisation an der Grenzfläche
mit dem Bulkstrom an den Systemgrenzen, weit weg von der Grenzfläche, in Beziehung.
Diese Summenregel wurde mittlerweile experimentell und numerisch bestätigt. Für
Systeme, die von Bulkphasen begrenzt werden, wie Sedimentation oder bewegungsin-
duzierte Phasenseparation von aktiven Brownschen Teilchen, ist die globale Polarisation
dann nur über Bulkgrößen bestimmt und stellt daher eine Zustandsfunktion dar. In den
beiden genannten Beispielfällen werden explizite Ausdrücke für diese Zustandsfunktion
angegeben. Man kann sowohl die Noether-Summenregel als auch die Polarisationssum-
menregel auf die globale Kraftbilanz anwenden. Die kombinierte Verwendung beider
Relationen erlaubt es, tiefere Einsichten in die Dynamik der Schwerpunktsbewegung
zu gewinnen, wie am Beispiel der aktiven Teilchen explizit gezeigt wird.
Die Gültigkeit der Summenregeln wird demonstriert für eine zuvor entwickelte

approximative Theorie für aktive Phasenseperation zur Validierung der Approxima-
tion. Diese Variationstheorie arbeitet auf der Basis von Kräften und beruht auf der
Kraftdichtebilanz und der Kontinuitätsgleichung. Die nachgewiesene Gültigkeit der
Summenregeln dient zur Validierung der Theorie. Auf Grundlage dieser Beschreibung
wird die Oberflächenspannung der freien Grenzfläche bestimmt. Unter Verwendung
einer quadratischen Gradientennäherung für die nichtlokalen internen Kraftbeiträge
wird ein positive Nichtgleichgewichts-Grenzflächenspannung bestimmt, in Überein-
stimmung mit der beobachteten mechanischen Stabilität der Grenzfläche.
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1 Introduction

Emmy Noether’s theorem for invariant variational problems [8] is a well-known and
important relation in a wide range of physics. Students are usually introduced to it
early on in their undergraduate studies within teaching of the Lagrangian mechanics
section of a theoretical classical mechanics lecture course [9]. The theorem reveals
the deep connection between symmetries and associated conservation laws and it
shows the very significant value of symmetries beyond mere geometric simplification.
Arguably the most prominent example is that of a translational invariant system, i.e.
one which does not depend on its position in space along a given direction and as a
consequence conserves momentum along this direction. Invariance with respect to
time translations, which originates from the homogeneity of time, similarly causes
conservation of energy. However, Emmy Noether’s work is neither of mere didactic nor
of only historic interest. Rather the theorem has innumerable applications in a broad
range of physical fields such as quantum mechanics, high energy particle physics and
(quantum) gauge-field theory [10,11]. There is current research on generalizations of
the theorem including the extension to systems with stochastic forces [12, 13], Markov
processes [14] and thermodynamic systems [15–17]. Although often referred to in
singular, there are in fact two types of the theorem. Noether’s first theorem applies to
invariances with respect to rigid transformations where the dependence is only on a
uniform transformation parameter. The corresponding conservation laws represent
(exact) statements about global quantities such as the conservation of the global
momentum or of the energy. Noether’s second theorem applies to functionals that
are symmetric under transformations that depend on varying an entire function. The
identities constitute and yield nontrivial locally resolved relations.
Both intrinsic symmetries and spontaneously broken symmetries are highly rele-

vant in soft matter not least due to the prominence of microscopy techniques and
visualization in computer simulations. Soft condensed matter encompasses systems
such as colloids, liquid crystals and active matter, with prominent phenomena such as
drying, wetting [18,19], bubble formation [20] and not least bulk phase coexistence [21].
Therefore predicting the behavior of such complex systems is usually challenging in
particular when starting with a microscopic description. The presence of thermal
fluctuations is non-negligible and it leads to the important effect of Brownian motion
which underlies and drives much of the dynamics on the mesoscale.

One popular example of a nonequilibrium system are active Brownian particles
(ABPs). ABPs show interesting self-aligning behaviour [21–27]. These particles belong
to the more general material class of active matter which encompasses further artificial
and natural systems that are intrinsically out of equilibrium by construction. One
important feature of active motion is the self-propelled movement of particles. For
ABPs this swimming or self-motility is due to force along an intrinsic orientation,
given e.g. by the orientation of Janus particles. Active Brownian particles also undergo
Brownian diffusion as their name already suggests. Diffusion of the particle positions
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1 Introduction

plays a minor role for high particle swim speeds, but the rotational diffusion of the
particle orientations is of significant importance for the collective particle dynamics.
Although ABPs are typically exposed to no external torques they are also known to
display spontaneous polarization effects.

Experimentally prepared hemispherical realizations of active particles include Janus
particles [28,29], which are spheres with two different surfaces such as latex colloids
where on half of the surface is coated with platinum [29]. The motion of such particles
is induced by the solvent itself, e.g. by the dissociation of hydrogen peroxide [29] or by
imposing external radiation with techniques such as photon nudging [30–33]. Examples
for active particles are bacteria such as E. coli that propel with their flagella [34,35], but
the concept is also widened beyond the soft matter realm to birds and fish and addresses
respectively their gathering in flocks and schools [25–27,36,37]. Theoretical models to
capture and describe the experimentally (and naturally) observed phenomena are the
aforementioned active Brownian particles, but also run-and-tumble particles [38,39]
and active Ornstein-Uhlenbeck particles [40, 41]. In a similar way to ABPs, these
particles self-propel by the action of a swim force, but they differ in the type of
rotational motion. Such models then serve as the basis for developing theories and
carrying out direct simulations. In contrast, field theories such as the active model
B [42] and the active model B+ [20] form a different basis to model active matter and
are also taken to represent ABPs. Those theories are based on identifying relevant
coarse-grained fields such as the orientationally-averaged density field and sometimes
also include higher orientational orders of the density such as the polarization field
or the nematic order parameter tensor. Lee [43] investigated the polar, nematic and
higher order parameters at the interface of MIPS based on integral formulas that
he derived. The large number of models and the breadth of different and mutually
competing theories for their description alone can be taken as an indication for the
current popularity of this topic.
Active matter in general tends to phase separate into a dense and a dilute phase

due to the intrinsic particle propulsion. This effect is therefore both a relevant and
also useful testbed for the study and fundamental modeling of nonequilibrium phase
transitions. The description of the motility-induced phase separation and especially the
determination of the coexistence densities turned out to be a particularly challenging
and controversial problem. Attempts to transfer Maxwell’s equal area construction to
nonequilibrium did not yield satisfactory coexistence densities [44, 45]. In contrast the
treatment based on power functional theory rests on the Maxwell construction and the
results do agree well with simulation data [46]. A natural next question is to hence
address the interfacial tension of the “free” interface between the phase separated bulk
states. Bialké et al. [47] were first in obtaining the tension from simulations. They
determined a large negative value (several hundred kBT ). The negative sign seemingly
strictly contradicts the observed stability of the interface. This finding started a
controversy about a meaningful definition and the resulting sign of the tension in
nonequilibrium [45,47–59]. We put our own work [SH7] in perspective below.

For descriptions of phase transitions that occur in soft condensed matter one usual
considers the density profile, which serves as a locally resolved order parameter.
(Fluctuation profiles can be an equally well or an even more suitable choice in some
situations like for critical drying [18,19,60].) Besides the density profile, correlation
functions are important quantities for the characterization of fluids. Correlation
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functions help to obtain a systematic understanding of the structure and dynamics of
the system under investigation. Therefore exact identities, so-called sum rules, that
relate different types of correlation functions to each other (typically via integration)
are often invaluable for carrying out practical work. Lovett, Mou and Buff [61] and
Wertheim [62] derived independently one relation that connects the one-body density
distribution with the two-body direct correlation function, known by the acronym
LMBW equation. Besides its use in carrying out consistency checks this equation is
useful for the development of integral equation theories [63–66] and density functional
theories [67–69]. Baus [70] determined a range of further sum rules related to the
LMBW equation. His article also gives a nice and well structured overview of the field.
Density functional theory (DFT) is a powerful framework which is based on a

formally exact variational principle and the existence of the generating grand potential
functional [71,72], which e.g. in the case of hard spheres can be well approximated with
fundamental measure theory [73,74]. References [75,76] provide textbook presentations
of the theory and reference [77] gives a review of newer developments. In a nutshell
DFT is a method to consider equilibrium many-body systems with inhomogeneous
density distributions using statistical mechanics. Its nonequilibrium generalization is
the power functional theory (PFT) [78], see reference [79] for a recent review. Here the
generating power functional depends functionally not only on the density but also on
the current. This allows to predict and also to rule out certain dependencies. Kinematic
contributions to the functional thus only depend on the density and the current, but
not on the external potential which itself only occurs in the external contributions to
the power functional. The structure of dependencies can then be exploited in Taylor
expansions in velocities or velocity gradients [80,81]. Power functional theory allows to
theoretically describe nonequilibrium phenomena such as the occurrence of viscous and
structural forces [81–83] and deconfinement [84] in sheared fluids, viscoelasticity and
memory [85–87] and nonequilibrium fluid demixing as it occurs in lane formation [88].
The application of PFT to phase separation of active Brownian particles is central and
has proven to be very fruitful [46, 89,90]. The theory was developed for overdamped
systems but it can be generalized to molecular dynamics and hence systems with
inertia including quantum systems [91,92].

In the wide gamut of soft and active matter, fluctuations and correlations, density
functional and power functional methods, we seek for common ground on the basis
of symmetries and from the perspective of Noether’s theorem. In the application
of Noether’s theorem one exploits the continuous symmetry of a functional. Such
functionals of course appear naturally within functional theories such as DFT or PFT.
The sum rules that result from the functional invariances relate distinct correlation
functions via integration with each other. In the context of soft matter Noether’s
theorem proves the validity of the LMBW equation, which relates the one-body and
the two-body direct correlation function to each other. For active systems the pressure
balance for phase separated ABPs is obtained in nonequilibrium.

In this thesis we exemplify and emphasize the importance of the connecting bridge
that Noether’s theorem forms between symmetries and sum rules in these different
areas. The thesis is structures as follows. We first recall elementary conservation
laws and the application of Noether’s theorem in classical mechanics in chapter 2.
In chapter 3 we show how Noether’s theorem applies to statistical mechanics using
the explicit example of translational invariance of the grand potential. We proceed
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with an overview over the possible applications and generalizations of Noether’s
theorem in statistical mechanics. This material has originally appeared in publications
[SH1,SH2,SH3,SH4,SH5]. The selection of the here presented material includes the
invariance of the free energy, rotational invariances, nonlinear order contributions,
boundary effects and the application to active and passive Brownian particles. In
chapter 4 we introduce a sum rule for the global interfacial polarization which relates
this quantity with the boundary values of the current. The derivation is shown
from a slightly different perspective than that adopted in publication [SH6], as our
restriction to special system geometries is applied at a later stage of the derivation. The
polarization sum rule is then applied to active Brownian particles that are exposed to a
gravitational potential and undergo motility-induced phase separation. Our treatment
yields the magnitude and the time evolution of the global interfacial polarization.
We also report new insights from the combination of the interface polarization sum
rule with the sum rules [SH1,SH2] resulting from Noether’s theorem. This gives the
time evolution of the center of mass velocity for sedimenting ABPs [SH1]. Finally in
chapter 5 we give a short overview of the calculation of the interfacial tension of active
Brownian particles which is the central result of publication [SH7]. The tension is
determined via the van der Waals route on the basis of our theory of motility-induced
phase separation. The formulation of the theory itself was part of the author’s prior
work [93, 94]. Main ideas and concepts are described in appendix A for clarity and
for providing a self-contained presentation for the benefit of the reader. A detailed
description of the content of the papers that contribute to this cumulative thesis along
with a declaration of the present author’s contributions is given in section 7.1 on page
67.

2 A reminder: Noether’s theorem in
classical mechanics

2.1 Conservation laws in classical mechanics

In this introductory chapter we recapitulate the significance of conservation laws and
of Noether’s theorem in classical mechanics. Undoubtedly the study of conserved
quantities is an important tool to describe physical phenomena. A conserved quantity
is one that is constant in time. The time derivative hence vanishes and the conserved
quantity satisfies a conservation law. Famous examples include the conservation of the
total momentum as a consequence of the homogeneity of space which expresses the
equivalence of all points along a given direction in space and implies the invariance of
the Lagrangian under spatial translations in that direction.

Let us start with a simple example and consider the throw of an apple. The system,
which we take to consist of both the apple and Earth, and hence also its Lagrangian
are independent of the overall position in space, so the total momentum is conserved.
Effects of friction of the apple against air are neglected here for simplicity. In a partial
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2.1 Conservation laws in classical mechanics

system which includes only the apple but not Earth, the momentum of the apple is
not a constant of motion. Instead the momentum increases as the apple accelerates
(during its fall) perpendicular towards the surface of the earth. This is no contradiction
to momentum conservation as the Lagrangian of the apple depends via the external
gravitational potential on the height and hence on its spatial position. There is no
spatial homogeneity for the apple alone. [In the combined system of apple and Earth
not only the apple but also Earth are accelerated and both (anti-parallel) momentum
changes sum to zero.] However, for the contribution of the movement parallel to the
surface of Earth (disregarding its curvature) the momentum is conserved, even if one
considers solely the apple. This parallel component of the of motion differs from the
perpendicular motion. A spatial shift in the parallel direction would not change the
movement itself. It is independent of the absolute position in space. The trajectory of
the apple stays the same independent of whether it is thrown at the given or at any
other starting place. The only difference is the trivial general offset. The trajectory
itself changes qualitatively only if the initial height or the initial velocity of the throw
is varied. So there appears to be a connection between the invariance under a spatial
displacement and the conservation of momentum.
A more formal and entirely mathematical reason for the conservation of mo-

mentum parallel to Earth’s surface is that the corresponding position coordinates
are cyclic. Recall that within classical mechanics a generalized coordinate qi(t) is
called cyclic, when the Lagrangian L is independent of it. The general dependence
L(q1, ...,qN , q̇1, ..., q̇N , t) on the coordinates qi(t) of all N particles, the corresponding
velocities q̇i(t) and time t simplifies to L(q1, ...,qi−1,qi+1, ...,qN , q̇1, ..., q̇N , t). (In
the following we suppress the dependences of L on its variables for clarity of notation.)
So the corresponding derivative of the Lagrangian vanishes, hence

0 = ∂L
∂qi

= d

dt

(
∂L
∂q̇i

)
, (2.1)

where we used the Euler-Lagrange equation to obtain the second equality in equation
(2.1). The derivative ∂L/∂q̇i = pi can be interpreted as a generalized momentum
conjugate to qi. Integration in time of equation (2.1) in the form of 0 = dpi/dt
shows that the generalized momentum is a constant in time. So from the invariance
∂L/∂qi = 0 one can conclude that the momentum pi is a temporally conserved
quantity in this system, see footnote [95]. Hence cyclic coordinates state a more
general and widely known connection between invariances and conservation laws in
classical mechanics [9].
In case of the example of the throw of an apple, the Lagrangian of the apple does

only depend on its velocity (due to the kinetic energy contribution) and on its height
(because of the potential energy). We take the generalized coordinate to be just a
(Cartesian) vectorial position variable. Its components parallel to the earth surface are
cyclic as they neither affect potential nor kinetic energy. This yields the conservation
of momentum in the two directions perpendicular to the gravitational force field.

These basic considerations demonstrate that conservation laws seem to be connected
to the invariances and the symmetries of a system. This observation raises general
questions under which circumstances conservation laws are valid in systems with
external forces, and how or if the form of a conservation law connects to invariances.
Both questions are directly related to the more general question of why conservation
laws hold in the first place.
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2 A reminder: Noether’s theorem in classical mechanics

Figure 2.1: Emmy Noether (front, center) and some of her colleagues and students during a
trip to the Gasthof Vollbrecht in the district Nikolausberg, Göttingen. The mathematicians
Hermann Weyl (4th from left) and Emil Artin (behind Emmy Noether) are notable. The
photograph was taken in 1932 by Natascha Artin [98].

2.2 Connecting symmetries and conservation laws

Emmy Noether (1882-1935) was one of the foremost mathematicians of the 20th century.
Today she is one of the most well-known female mathematicians if not scientists of all
times. Several schools, a lecture hall at the University of Erlangen-Nuremberg, the
physics and math building of the University of Siegen and a funding program for young
scientist of the German Research Foundation (Deutsche Forschungsgemeinschaft),
were named in her honor.

In the following we give some interesting biographical facts and several anecdotes
about Emmy Noether as a person [96, 97]. Her collaborators describe her as a very
obliging and friendly person. One thing that characterizes her quite well is her ardor
and love for mathematics. An anecdote that captures this passion very nicely is
a conversation with fellow mathematician Emil Artin in 1934, after the seizure of
control of Hitler. Both were discussing very fast, intensely and loudly about Links- und
Rechtsideale (left and right ideals), Gruppen (groups), and Untergruppen (subgroups) in
the subway of Hamburg. In German all these words have a strong political connotation
besides the mathematical meaning. Given the historical period the chance of getting
arrested for these statements was quite high, but she was completely oblivious to the
danger [96]. Another habit of her was to go on long walks to the country side and
discuss about mathematics with her colleagues and students. At one of these trips
they took a group picture in front of the Gasthof Vollbrecht, see figure 2.1. Emmy
Noether stands confidently and relaxed in the center of the group. Directly behind
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2.2 Connecting symmetries and conservation laws

her is her subway companion, friend and colleague Emil Artin, whose wife took the
photograph.
Being a very passionate person, Emmy Noether’s enthusiasm might have helped

her to overcome several difficulties and resistances during her career. One reason for
her troubles is politics since she was Jewish and expressed Marxism-inclined opinions.
The second reason is simply her being a woman. Women have been given the right to
vote in Germany only since 1918. So when young Emmy started to study in Erlangen
in 1903 she had to ask the professors if she was allowed to sit and follow the lecture.
Emmy Noether’s first application for habilitation 1915 in Göttingen was rejected
although she made already important contributions to the theory of differential and
algebraic invariants. (Reasons were the fear of stealing jobs from the soldiers who
returned from world war I and the question if the female brain is even capable to do
proper mathematics although Emmy Noether was seen as an exception [97].)
Her habilitation thesis, which was finally accepted in 1918, addressed Invariant

Variation Problems [8]. Within this work she was able to find the connection between
invariances and divergence relationships, which reduce to conservation laws for dynami-
cal variational problems. She further translated this finding into a formal mathematical
description and fathomed the deeper mathematical origin of conservation laws. These
insights in invariants are referred to as the so-called Noether’s theorem which states
informally:

To each continuous symmetry corresponds a related conservation law. (2.2)

The theorem links a physical property (the conservation law) with a continuous
symmetry (of the invariant quantity). This connection is very useful across a range
of fields in physics, from classical mechanics to field theory and high-energy particle
physics. One reason is that symmetries are usually easier to obtain than conservation
laws which then of course greatly simplifies the physical description of a system.
Furthermore Noether’s theorem is often viewed to answer the questions posed above
of why conservation laws hold.
To understand theorem (2.2) we first clarify the meaning of the terminology. As

already stated above a conservation law is a statement that expresses the fact that a
given physical observable does not change in time. A symmetry occurs when a func-
tional, such as the action or the Lagrangian, does not change under a transformation,
which can be a transformation of coordinates such as shifts and rotations in space. An
object that resides on an (infinite) table is symmetric under spatial displacements in
all directions parallel to the table surface. One would not be able to realize that the
object was moved without reference to a coordinate system. There are two different
kinds of symmetry: discrete and continuous ones. A continuous symmetry implies
invariance under a symmetry operation even in the infinitesimally small limit of this
operation. For a discrete symmetry the invariance only holds for special values of
the transformation and it hence describes non-continuous changes, such as reflections,
rotations by a certain fixed angle or translations by a certain fixed vector. (Each of
these discrete operations is of course highly relevant in crystallography.) In contrast
a continuous symmetry has an infinite number of symmetry operations, whereas
discrete symmetries only have a finite or countably infinite number of operations. An
equilateral triangle has a discrete rotational symmetry as it is only identical to itself
when rotated around its center for multiples of 120◦. An example for a continuous
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2 A reminder: Noether’s theorem in classical mechanics

symmetry is the rotation of a circle (or a sphere) around its center. The object is
invariant under this symmetry operation for rotations either with an infinitesimally
small angle or with any arbitrary finite angle.
Let us now be more specific and turn to classical mechanics. Applications of

Noether’s theorem in the form (2.2) usually exploit the continuous symmetries of the
action functional

S =
∫ t2

t1
dt L. (2.3)

The time integral runs between the initial time t1 and the final time t2 and symmetries
of the Lagrangian itself are relevant. In the following we determine the conservation
law in classical mechanics for transformations qi(t)→ qεi(t) = qi(ε, t), where ε denotes
the constant parameter of the transformation performed on each generalized coordinate
qi(t) for all i. In the limit of vanishing ε the original (i.e. non-transformed) coordinate
is regained, qε→0

i (t) = qi(t). (Explicit examples of such transformations are given
below and include a uniform shift and a uniform rotation.)
To be able to apply Noether’s theorem the action functional has to be invariant

under the given transformation, hence

S = Sε, (2.4)

where Sε indicates the action which results from applying the transformation. Note
that the symmetry has to be continuous, such that equation (2.4) needs to remain
valid particularly for infinitesimal values of ε, so one can perform a Taylor expansion.
The expansion of Sε around ε = 0 up to linear order yields

Sε = S + dSε

dε

∣∣∣∣
ε=0

ε+O(ε2). (2.5)

Exploiting the symmetry of the action (2.4) allows to cancel the left-hand side of
equation (2.5) with the first term on the right-hand side. As the transformation
parameter ε is arbitrary, we conclude that the derivative in the second term on the
right-hand side of equation (2.5) must vanish:

0 = dSε

dε

∣∣∣∣
ε=0

(2.6)

=
t2∫
t1

dt
dLε

dε

∣∣∣∣
ε=0

(2.7)

=
t2∫
t1

dt
N∑
i=1

(
∂L
∂qi
· dqεi
dε

+ ∂L
∂q̇i
· dq̇εi
dε

)
ε=0

, (2.8)

where we have inserted in equation (2.7) the definition (2.3) of the action S and Lε
indicates the transformed Lagrangian. As the transformation parameter ε is constant,
the phase space derivatives trivially commute with the time integral. Using the
chain rule we rewrite equation (2.7) to (2.8) exploiting that ∂L/∂qi = ∂Lε/∂qεi and
∂L/∂q̇i = ∂Lε/∂q̇εi hold in case of ε = 0 for each i, such that the derivatives do no
longer depend on ε. To proceed we interchange the order of the derivatives d/dε and
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2.2 Connecting symmetries and conservation laws

d/dt in the factor dq̇εi/dε of equation (2.8) and perform an integration by parts on
this term, which yields

0 =
t2∫
t1

dt
N∑
i=1

[
∂L
∂qi
− d

dt

(
∂L
∂q̇i

)]
· dqεi
dε

∣∣∣∣
ε=0

+
N∑
i=1

∂L
∂q̇i
· dqεi
dε

∣∣∣∣
ε=0

∣∣∣∣∣
t2

t1

. (2.9)

The first contribution in equation (2.9) vanishes due to the Euler-Lagrange equation

∂L
∂qi
− d

dt

(
∂L
∂q̇i

)
= 0, (2.10)

which ultimately describes the force balance of the generalized forces with the temporal
change of the generalized momentum for the ith particle. One can hence conclude
that the remaining boundary term (that results from integration by parts) in equation
(2.9) has the same value at the initial time t1 and the final time t2. Recall, that both
times t1 and t2 are arbitrary. (We consider cases where the symmetry for the action is
valid for all times t.) Therefore, we have shown that

N∑
i=1

∂L
∂q̇i
·
(
dqεi
dε

)
ε=0

= const. (2.11)

Hence the left-hand side of equation (2.11) is a constant of motion, i.e. its value is
independent of time. We conclude that equation (2.11) constitutes a conservation law.
We have thus explicitly shown that the invariance of the action (2.4) under trans-

formations of the form qi(ε, t) leads to the conservation law (2.11). The derivation
exploits the invariance of the action under Taylor expansion. (A similar structure
as in the determination of conserved quantities in publication [SH2] where we used
Noether’s theorem in statistical mechanics within the canonical ensemble. We will
turn to to statistical mechanics below in chapter 3.)

As the above considered transformations are formal we give some concrete examples
of possible transformations. One simple transformation is a mere uniform shift of
all generalized coordinates, qεi = qi + εeζ , where eζ denotes the unit vector in the
direction of the displacement and the index ζ enumerates this direction, e.g. ζ = x, y, z
for the Cartesian axes. The magnitude of the invariant shift is arbitrary but their
direction is fixed along eζ . Hence the derivative of qεi(t) simplifies to dqεi/dε = eζ
and the conserved quantity (2.11) immediately becomes the eζ-component of global
generalized momentum p,

∑
i

∂L
∂q̇i
· eζ = const. (2.12)

Exploiting the fact that the global momentum p =
∑
i pi corresponds to a global

force F via Newtons second law, ṗ = F, allows to rephrase the conservation law (2.12)
after differentiation with respect to time as the vanishing of the global force, F = 0.
When applied to the concrete example of the apple throw we have N = 1 and take the
generalized coordinate q(t) to be given in the Cartesian coordinate system. Due to the
gravitational force the invariance of the system and hence of the action (2.4) only holds
for displacements eζ perpendicular to gravity. So the sum in the conservation law
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2 A reminder: Noether’s theorem in classical mechanics

(2.11) that is implied in the dot product only holds for components in that directions
and reduces to one summand. Identifying ∂L/∂q̇ as the momentum of the apple,
we have shown the momentum conservation for its components parallel to the earth
surface. This conservation law was expected from the previous force and momentum
considerations in section 2.1. The uniform shift is one of the symmetry transformation
which we also apply later in the context of statistical mechanics (see subsections 3.2.1,
3.2.2 and 3.3.2).

We give a further example to illustrate the general conservation law (2.11) and hence
consider the uniform rotation of the system as the relevant symmetry transformation.
An infinitesimal rotation around the eζ-axis can be expressed as a transformation of
all generalized coordinates as qεi = qi + εeζ × qi, where ε here indicates the angle of
rotation. The change of this transformation is dqεi/dε = eζ × qi. Hence the action
symmetric under rotation yields the conservation of equation (2.11)

∂L
∂q̇i
· (eζ × qi) = eζ · (qi × pi) = const, (2.13)

where we exploited the cyclic permutability of the triple product and the definition
of the generalized momentum pi = ∂L/∂q̇i in the first equality. The conserved
quantity in (2.13) can be identified as the eζ-component of the angular momentum
L = qi × pi. As for the above case of a uniform shift (2.12) one can here differentiate
the conservation law (2.13) with respect to time and find vanishing of the global torque
T = L̇ = 0.
For cases where equation (2.13) is valid for all Cartesian axes, ζ = x, y, z, the

system is isotropic in space which results in the conservation of angular momentum
or equivalently in the vanishing of global torque. (The sum rules that follow from
rotation using Noether’s theorem in statistical mechanics are shown in subsection
3.3.3.)

One of the advantages of using Noether’s theorem is its universality, which is
a characteristic feature for the work. Emmy Noether’s original work focused on
the invariance of a general functional with respect to any continuous symmetry
transformation. In practice, most physicists usually consider the symmetry of the
action functional or the corresponding Lagrangian. Even with this apparently restricted
type of application her theorem applies and is useful for many theories in physics,
which includes classical mechanics, quantum mechanics, quantum field theory, high-
energy particle physics and general relativity [10, 11]. Noether’s theorem [8] solved
the back then important problem of energy conservation in general relativity, see
reference [99] for a description. In classical mechanics energy conservation results
from homogeneity in time, i.e. the absence of an explicit time dependence of the
Lagrangian, ∂L/∂t = 0 [9]. It is also possible to derive Maxwell’s equations of classical
electromagnetism from a gauge symmetry [100]. Applications of Noether’s theorem are
not restricted to such historically important works. Rather current research addresses
generalizations of the theorem, including the treatment of stochastic forces [12–14]
and drawing conclusions for thermodynamic properties such as the entropy being a
Noether invariant [15–17].
In this thesis we apply Noether’s theorem to statistical mechanics problems, as

we lay out in detail in the following chapter 3. In contrast to the usual applications
this one does not consider symmetries of the action integral nor of the underlying
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Lagrangian. Instead we focus on equally central objects from statistical mechanics such
as the grand potential or the free energy. These thermodynamic potentials depend in
general on the external potential function and can hence be expressed as a functional
of this functions. Additionally one can look at these thermodynamic potentials from
the viewpoint of classical density functional theory where they are phrased with a
functional dependence on the density. A key difference to the previously shown usage
of Noether’s theorem in classical mechanics is the level of corresponding physical
description. Classical mechanical systems are entirely deterministic, so one given state
is (in principle) sufficient to predict both the past and the future states of the system
based on solving the equations of motion. In statistical mechanics the relevant physical
problems depend on probabilities and fluctuations they exhibit. Our description hence
focuses on probability statements and on averages. The difference also influences the
exact identities that result from Noether’s theorem. The dynamical description in
classical mechanics induced time as a variable and hence yields conservation laws,
whereas in statistical mechanics the theorem determines sum rules. Here sum rules are
relations which contain integrals (“sums”) that occur due to the statistical averages
and phase space integrals.

Independent of the different structure we will show in the following chapter 3 that
Noether’s theorem in statistical mechanics enables one to obtain comparably deep
insights as in classical mechanics. We derive simple but essential identities such as
the vanishing of forces and torques as well as more complex relations such as between
time direct correlation functions that all result from fundamental symmetries. Hence
this arguably elementary concept allows to gain important insights into the structure
of the physical world.

3 Noether’s theorem in statistical
mechanics

In this chapter we demonstrate how Noether’s theorem can be applied in statistical
mechanics. Noether’s theorem is shown to generate exact statements for correlation
functions from continuous symmetries of functionals to which we refer as Noether sum
rules. Therefore we give in section 3.1 a short overview of classical density functional
theory, where statistical mechanical functionals feature naturally and prominently sum
rules are valuable e.g. in the development of new approximations. We also introduce
more general readers to direct correlation functions and show the spirit of the original
derivation of the inverse LMBW sum rule, as determined by Lovett, Mou and Buff [61]
and Wertheim [62] (section 3.1). The derivation of these authors makes no reference
to Noether’s theorem but it exploits the consequences of a uniform and global shift on
the system. In the section 3.2 we exemplify Noether’s theorem of the grand potential
(as a functional of the external potential) under translational invariance, which we
developed in publication [SH1]. We derive the resulting sum rule of vanishing of the
global external force and show further equations related to this sum rule, such as the

11



3 Noether’s theorem in statistical mechanics

inverse LMBW equation which can be interpreted as being a direct consequence of
the underlying system symmetries. Section 3.3 contains an overview of the possible
applications and generalization of the developed concept to determine sum rules.
Explicit applications of Noether’s theorem in statistical mechanics include systems of
active and passive particles, where we focus on the phenomena of thermal and active
sedimentation (subsection 3.2.3).

3.1 Density functional background and sum rules in
statistical mechanics

The physical description of many-body systems such as the currently popular model
of active particles is a challenging task due to the mutual interactions between the
particles. The only available possibility to handle and describe these complex classical
systems is statistical mechanics. One specific formalism of equilibrium statistical
mechanics is the classical density functional theory (DFT).
We give an introduction to classical DFT, which was established by Evans [72],

and covered in several sources [72,76,77,79]. The review [79] gives a nicely written,
low-level introduction to the topic and also presents important concepts from statistical
mechanics (for completeness). Many of the presented relations and proofs, such as
the Mervin-Evans theorem [72,101], are proven or derived explicitly. The paper [79]
also includes a review of the historical evolution of the field and famous landmark
contributions and an introduction to the dynamical generalization of DFT, the so-
called power functional theory. For a more condensed overview of classical DFT one
can read the corresponding chapter within the book [76], the standard reference within
(and far beyond) the field of simple liquids. Theory of Simple Liquids [76] presents an
accessible and self-contained description of liquid state theory on the basis of classical
statistical mechanics. Going beyond the basics of DFT, the review [77] covers more
recent developments of the field. Here we just give a short sketch of the main concepts
of DFT.

Density functional theory is based on treating the density profile ρ(r) = 〈
∑
i δ(r−ri)〉

as a variable, where δ(·) denotes the Dirac delta distribution and ri indicates the
position of the i = 1, . . . , N particle, where N is the total number of particles. The
term within the brackets is the density operator, ρ̂(r; r1, ..., rN ) =

∑
i δ(r− ri) and the

(angular) brackets indicate a statistical average. The DFT is usually formulated in
the grand canonical ensemble. As a short reminder, grand-canonically the statistical
average is defined as 〈·〉 = Tre−β(H−µN)/Ξ, where the trace is given as a series of
phase space integrals Tr =

∑
N (h3NN !)−1 ∫ drNdpN and e−β(H−µN)/Ξ denotes the

probability distribution for microstates. Here µ is the chemical potential, β = 1/kBT
indicates the inverse temperature with Boltzmann constant kB and temperature T ,
and h denotes the Planck constant. We used the shorthand rN = r1, ..., rN and
pN = p1 . . .pN , where ri indicates the position of the ith particle and pi is its
momentum. The partition function Ξ is given as the trace of the Boltzmann factor,
i.e. Ξ = Tre−β(H−µN), with the Hamiltonian

H =
N∑
i=1

p2
i

2m + u(rN ) +
N∑
i=1

Vext(ri), (3.1)
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3.1 Density functional background and sum rules in statistical mechanics

which consists of a kinetic part, an interparticle interaction term u(rN ) and an external
contribution. So the one-body density distribution ρ(r), which only depends on one
position coordinate, follows from the average of the N -body density operator ρ̂(r; rN ),
which depends on all particle positions ri.

Within DFT one exploits that the “real” physical density profile corresponds to
the minimum of the grand potential Ω[ρ] expressed as a functional of the density.
Throughout the square brackets indicate a functional dependence. To determine the
minimum in practice one performs the functional differentiation of the grand potential
with respect to a trial density ρ̃(r),

δΩ[ρ̃]
δρ̃(r)

∣∣∣∣
ρ̃(r)=ρ(r)

= 0, (3.2)

which is after insertion of Ω[ρ] the Euler-Lagrange equation of the system. Solving this
equation (3.2) allows to determine the equilibrium density ρ(r) and the thermodynamic
properties of the system, because Ω[ρ] is the “real” value of the grand potential. Despite
the fact that they are referred by the same term this is different from the Euler-Lagrange
equation of motion (2.10) in classical mechanics. Here the Euler-Lagrange equation
expresses the (one-body) balance of locally resolved chemical potentials.
The grand potential consists of four distinct contributions,

Ω[ρ] = Fid[ρ] + Fexc[ρ] +
∫
dr ρ(r)(Vext(r)− µ), (3.3)

where in the third term Vext(r) indicates the external potential and in the fourth term
µ is the chemical potential as before. The ideal gas free energy density functional
Fid[ρ] is known exactly and it has the following form:

Fid[ρ] = kBT

∫
dr ρ(r)

[
ln(ρ(r)Λd)− 1

]
, (3.4)

where Λ is the thermal de Broglie wavelength and d indicates the spatial dimension.
After differentiation with respect to the density according to equation (3.2), the locally
resolved intrinsic ideal gas free energy (3.4) yields the ideal gas chemical potential.
The excess free energy density functional Fexc[ρ] results from the mutual interactions
between the particles and therefore it has to be approximated in practice. The
knowledge of an exact expression of Fexc[ρ] would imply the solution of the many-body
problem for systems under the influence of arbitrary external potentials, which surely
will remain an insurmountable problem as concerns analytic work.

The functional derivative of the excess free energy functional with respect to the
density gives up to inverse temperature β the (negative) one-body direct correlation
function, c1(r) = −δβFexc[ρ]/δρ(r), whose gradient determines the internal force
density field fint(r) = kBT∇c1(r). Using this definition of the direct correlation
function is sometimes referred to as potential-DFT [SH3]. This DFT based on
potentials is complemented by force-DFT, based on forces, see footnote [102] and
reference [SH3]. Further differentiation of c1(r) defines the two-body direct correlation
function c2(r, r′) = δc1(r)/δρ(r′) as is central in liquid state theory [76].

In order to find practical approximations for Fexc[ρ] it is helpful to be aware of sum
rules, which are exact equations that relate different physical (correlation) functions
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3 Noether’s theorem in statistical mechanics

to each other. One famous sum rule relates the one-body direct correlation function
to an integral (“sum”) over the two-body direct correlation function via [72]

∇ ln ρ(r) + β∇Vext(r) =
∫
dr′ c2(r, r′)∇′ρ(r′), (3.5)

where ∇ indicates differentiation with respect to r and ∇′ is differentiation with respect
to r′. This so-called LMBW equation (3.5) was derived originally independently in
1976 by Lovett, Mou and Buff [61] and in 1976 by Wertheim [62]. The LMBW
equation has found numerous applications in integral equation theory [63–66] and
in classical density functional theory [68,69]. It is often considered to be an equally
valuable alternative to the Triezenberg-Zwanzig equation [103] or to the first member
of the Yvon-Born-Green (YBG) hierarchy [104, 105]. As it relates the density with
the two-body direct correlation function equation (3.5) can complement the Ornstein-
Zernike (OZ) equation together with a further closure relation [63] in the construction
of inhomogeneous liquid state theories. The LMBW equation was used to consider
freezing and its structural precursors [63, 67], nonideal crystals [67–69], fluids at
semipermeable walls [64], viscoelastic surface waves of liquids [106], and liquid-vapour
as well as liquid-liquid interfaces [65,66].

As our considerations are within the grand canonical ensemble the LMBW relation
(3.5) has a formal inverse,

−∇ρ(r) =
∫
dr′ βH2(r, r′)∇′Vext(r′), (3.6)

where H2(r, r′) is the density-density correlation function that denotes the covariance
of the local density operator, H2(r, r′) = 〈ρ̂(r)ρ̂(r′)〉 − ρ(r)ρ(r′). It has been shown
[61,62,72] that the inverse LBMW equation (3.6) follows from the effects of a uniform
coordinate transformation, r→ r+ε. This is equivalent to section 2.2, where the scalar
transformation parameter ε and the direction of the displacement eζ are combined
within the vector of the uniform spatial shift ε.

In the remainder of this section we sketch the derivation of the inverse LMBW
equation (3.6). Due to the global displacement the external potential shifts accordingly
as Vext(r)→ Vext(r+ε). The density distribution is a unique functional of the external
potential, ρ(r, [Vext]), such that density is (unambiguously) for the given interparticle in-
teraction potential determined by the external potential via this functional dependence.
Therefore the coordinate transformation might as well be interpreted as a shift of the
external potential. Regardless of the chosen interpretation the density itself will in
general change under the applied global displacement. As the only object that fixes the
position of the equilibrium density profile in space is the external potential, the density
will shift in the same way as the external potential, ρ(r)→ ρ(r, [Vext(r+ε)]) = ρ(r+ε).
Recall that the interparticle interaction contribution solely depends on relative particle
positions and that it is hence unaffected by the shift. The determined change of the
density, ρ(r + ε)− ρ(r), implies that the functional ρ[Vext] is not invariant under the
considered global transformation. Hence Noether’s theorem (see chapter 2) does not
apply, as the theorem generates identities from the invariances of functionals.

To proceed one (functionally) Taylor expands the shifted density profile around the
unshifted external potential Vext(r) up to linear order [61,62,72], which yields:

ρ(r + ε) = ρ(r) +
∫
dr′ δρ(r, [Vext])

δVext(r′)
(
Vext(r′ + ε)− Vext(r′)

)
, (3.7)
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3.2 Noether’s theorem for the translational invariance of the grand potential

where the response of the density due to changes in the external potential can
be rewritten as the correlation function of the density fluctuations, H2(r, r′) =
−kBTδρ(r)/δVext(r′) [76]. In the limit of small displacements, ε→ 0, the changes in
the density ρ(r + ε)− ρ(r) and in the external potential Vext(r + ε)− Vext(r) in equa-
tion (3.7) can be rewritten as gradient expressions, which leads to and constructively
proves equation (3.6). As already mentioned earlier, the LMBW equation (3.5) is the
inverse relation of (3.6). It can be hence derived from a density-shift and the fact
that the external potential is a unique functional of the density [72], Vext(r, [ρ]), using
the identical argumentation as above. The existence and uniqueness of Vext(r, [ρ])
was shown within the Mermin-Evans theorem [72,101], see e.g. reference [76] for an
accessible account of the proof of that theorem.

3.2 Noether’s theorem for the translational invariance of the
grand potential

Although the above derivations of the sum rules (3.5) and (3.6) are closely related to
Noether’s theorem, they are not yet direct applications of her theorem. The structure
of the derivation is based on the consequences of a (coordinate) transformation as is
Noether’s theorem. However, in the above example there is no explicit exploitation of
the symmetry as the density functional was not invariant with respect to the considered
uniform shift. The exploitation of symmetries and invariances and their consequences
is an important characteristic and the basis of Noether’s theorem as we have seen
for deterministic systems within classical mechanics in chapter 2. We have shown
that the conservation law (2.12) holds in the case of classical mechanics in section
2.2 above. Knowing that Emmy Noether herself was a mathematician (see section
2.2) it is natural that she aimed to formulate and to prove her theorem as generally
as possible. So her theorem is not only valid for the action functional but for any
functionals that is invariant under a symmetry transformation. Notably this generality
was already honored by Albert Einstein, who wrote in a letter to Hilbert [107]:

“Yesterday I received from Miss Noether a very interesting paper on
invariant forms. I am impressed that one can comprehend these matters
from so general a viewpoint. It would not have done the old guard at
Göttingen any harm had they picked up a thing or two from her. [...]”

While standard applications of Emmy Noether’s theorem are typically restricted
to invariances of the action functional (which for instance solved the problem of
energy conservation in general relativity [99]), here we intend to push these boundaries
and test the generality that Einstein had immediately recognized. We therefore
apply the theorem to the invariance of several different functionals from statistical
mechanics [SH1,SH2].

3.2.1 Grand canonical ensemble

We start with a consideration in the grand canonical ensemble. To be applicable
the theorem needs the identification of a continuous symmetry operation and of a
specific functional which is invariant under this transformation. As the symmetry
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transformation we choose a displacement of the external potential, Vext(r)→ Vext(r+ε),
as in the above case to determine the inverse LMBW equation (3.6). Similarly, this shift
is equivalent to a uniform global transformation of the coordinates, as we considered
in section 2.2.
For small ε one can expand the displaced external potential around ε = 0 up to

linear order: Vext(r + ε) = Vext(r) + ε ·∇Vext(r). Naively one would expect this change
in Vext to influence the grand potential Ω[Vext], due to the functional dependence of
the latter on the external potential. Functional Taylor expansion of the shifted grand
potential functional with respect to Vext up to linear order gives

Ω[Vext(r + ε)] = Ω[Vext(r)] +
∫
dr′ δΩ[Vext]

δVext(r′)
∇Vext(r′) · ε. (3.8)

The main requirement to apply Noether’s theorem is the identification of a functional
that is invariant under the given transformation, here the shift of the external potential.
As can be easily seen, the grand potential is invariant under this transformation,
Ω[Vext(r)] = Ω[Vext(r+ε)]. This invariance can be determined from explicitly evaluating
the effects of displacing the statistical mechanical definition Ω[Vext] = −kBT ln Ξ[Vext]
[76, 79], where Ξ = Tre−β(H−µN) is the grand canonical partition function. Therefore
the left-hand side of equation (3.8) cancels with the unshifted grand potential Ω[Vext],
i.e. the first term on the right-hand side. As the magnitude and direction of the shift
ε are arbitrary, we can conclude that∫

dr δΩ[Vext]
δVext(r)∇Vext(r) =

∫
dr ρ(r)∇Vext(r) = 0, (3.9)

where we have evaluated the functional derivative δΩ[Vext]/δVext(r) = ρ(r), see e.g.
reference [79] for an explicit derivation of this identity. One can identify in equation
(3.9) the external force, fext(r) = −∇Vext(r) [which only contains the conservative
contribution due to the external potential Vext(r), as we are in equilibrium]. Equation
(3.9) states that the global external force Fo

ext =
∫
drρ(r)fext(r) vanishes in equilibrium

[SH1,SH2],

−
∫
dr ρ(r)∇Vext(r) = Fo

ext = 0. (3.10)

This exact relation (3.10) can be interpreted as the “conservation law” resulting from
Noether’s theorem applied to the global translational invariance of the grand canonical,
although we usually refer to such equations as sum rules due to the occurrence of
integrals (“sums”). The result (3.10) is in similar to the conservation of the global
momentum (2.12) or vanishing global force determined in section 2.2 from invariance
of the action function under a uniform displacement. However, here the sum rule holds
for the external contribution (3.10) and the shifting operation acts on the external
potential (instead of on the general position r).
Equation (3.10) and its derivation do not require the use of the functional Taylor

expansion. An ordinary Taylor expansion with respect to the displacement ε is
sufficient as we briefly sketch in footnote [108]. The grand potential does satisfy the
translational invariance for all closed systems such that equation (3.10) holds in every
equilibrium system which is confined by an external potential. The confinement also
ensure the vanishing of all boundary terms as required by the argumentation. The
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3.2 Noether’s theorem for the translational invariance of the grand potential

case of open boundaries and the consideration of subvolumes of the entire (infinite)
system are treated in the subsection 3.3.8 below.
The vanishing of the global external force (3.10) is also starting point for the

derivation of further sum rules. We show in the following direct consequences of
equation (3.10). Because of its generality, equation (3.10) is satisfied independently
of the exact form of the external potential. This allows to functionally differentiate
(3.10) with respect to Vext and keep the equality satisfied. The differentiation gives
two contributions due to the product rule. The first term contains the functional
derivative of the density, which can be again identified as the correlation function
of density fluctuations H2(r, r′) = −kBTδρ(r)/δVext(r′). It forms the right-hand side
of (3.6). The second term results from the functional differentiation of the external
potential gradient, δ∇Vext(r)/δVext(r′) = ∇δ(r− r′). Integration by parts leads to the
left-hand side of (3.6) and thus the inverse LMBW equation (3.6) is determined as a
local external Noether sum rule [SH1].
One could stop at this point, as one has regained a known sum rule. But one can

also go further and realize that equation (3.6) still holds for a considerable variety
of forms of the external potential. As first realized and carried out by Baus [70] it
is hence possible to continue differentiating the sum rule (3.6). The nth functional
derivative of equation (3.10) is then [SH1,70]

−
n∑

α=1
∇αHn =

∫
drn+1 βVext(rn+1)∇n+1Hn+1, (3.11)

which relates the (n+1)-body density-density correlation function Hn+1 = δHn/δβVext
to its n-body version Hn = Hn(r1, ..., rn) [72,76]. The position arguments in equation
(3.11) have been omitted for clarity. The inverse LMBW equation (3.6) and its higher-
order generalizations (3.11) are well-known results, see e.g. reference [70]. Here we
have found a new derivation of these sum rules. The method allows us to derive the
relations with great ease and to ultimately identify them as consequences of Noether’s
theorem and hence of the symmetry properties of the system.
We now multiply equation (3.6) by Vext(r) and integrate over position. The left-

hand side then becomes equal to the global external force (3.10) and hence vanishes.
We have thus shown that after integration by parts the following global sum rule
ensues [SH1]: ∫

dr Vext(r)
∫
dr′

[
∇′Vext(r′)

]
H2(r, r′) = 0, (3.12)

where the derivative ∇′ only acts on the external potential as indicated by the brackets.
The n-body version of equation (3.12) is determined similarly by multiple position
integration of the hierarchy (3.11) as∫

dr1 Vext(r1)...
∫
drn Vext(rn)∇αHn(r1, ..., rn) = 0, (3.13)

with α = 1, ..., n and n ≥ 2. For n = 2 equation (3.13) reduces again to the global
Noether sum rule (3.12) upon integration by parts. The sum rule hierarchies (3.12)
and (3.13) are new results to the best of our knowledge [SH1]. To find a physical
interpretation of these results it is useful to rewrite each equation by exploiting the fact
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3 Noether’s theorem in statistical mechanics

that H2 is the covariance of the density operator, H2(r, r′) = 〈ρ̂(r)ρ̂(r′)〉 − ρ(r)ρ(r′).
Using the definition of the grand canonical ensemble average and the vanishing of the
external force (3.10), the sum rule (3.12) becomes after integration by parts [SH2]

−
〈

N∑
j=1

Vext(rj)
N∑
i=1
∇iVext(ri)

〉
= 0, (3.14)

which states that there is no correlation between the global external potential and the
global external force. The higher orders (3.13) mean that the correlation between the
global external force and higher moments (powers) of the global external potential
also vanishes. We will see below in subsection 3.3.7 that not all such correlators vanish
when addressing the autocorrelation of the external force.

3.2.2 Canonical ensemble

Although the above derivations were performed in the grand canonical ensemble,
the resulting identities remain valid in the canonical ensemble [SH2]. Baus [70] was
first in demonstrating the universality of the sum rules in the canonical and the
grand canonical ensemble. We re-derived his results and made the connection to
Noether’s theorem applied canonically [SH2]. The representation in the canonical
ensemble is relevant for simulations with fixed particle numbers where there can be
pronounced differences between the results of these two ensembles when the particle
number is small. (Also for undergraduate students the canonical ensemble might be
more accessible and intuitive as it does not require to engage with the arguably more
abstract chemical potential.)

We again consider the shift of the external potential, Vext(r) → Vext(r + ε), but
now applied to a system that is described on the basis of the canonical ensemble.
Here the invariant quantity is the (canonical) free energy FN [Vext], which functionally
depends on the external potential Vext(r). (The consequences of the translational
invariance of the free energy density functional F [ρ] are also relevant and yield
different sum rules as shown in subsection 3.3.2.) In (elementary) statistical mechanics
the free energy is FN [Vext] = −kBT lnZN [Vext], i.e. the negative logarithm of the
partition function ZN = TrNe−βH times thermal energy. The canonical trace is
given as TrN = (h3NN !)−1 ∫ drNdpN , where the phase space integrals run over all
particle positions ri and momenta pi and i = 1, ..., N indicates the ith particle. The
Hamiltonian is independent of the chosen ensemble and is hence again taken to have
the standard form defined by equation (3.1). The ensemble average in the canonical
average is 〈·〉N = TrNe−βH · /ZN .

As the expansion of the canonical free energy viewed as a functional of the external
potential is analogous to the grand canonical expansion of the grand potential (see
subsection 3.2.1), we just give a brief overview here. A detailed derivation is contained
in reference [SH2]. The displaced free energy expanded up to linear order in the
displacement parameter ε is given as

FN [Vext(r + ε)] = FN [Vext(r)] +
∫
dr δFN [Vext]

δVext(r) ∇Vext(r) · ε. (3.15)
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3.2 Noether’s theorem for the translational invariance of the grand potential

The functional derivative of the free energy with respect to the external potential can
be evaluated as

δFN [Vext]
δVext(r) = −kBT

ZN

δZN [Vext]
δVext(r) (3.16)

= 1
ZN

TrNe−βH
δH[Vext]
δVext(r) (3.17)

= 1
ZN

TrNe−βH
N∑
i=1

δ(r− ri), (3.18)

where we have used the definition of the free energy FN [Vext] in equation (3.16), of
the partition function ZN [Vext] in equation (3.17) and of the Hamiltonian H (3.1) in
equation (3.18). As the kinetic and the internal contribution of the Hamiltonian are
independent of the external potential, only the external term contributes. Note that
the functional derivative of a function with respect to itself gives the Dirac distribution,
i.e. δVext(r′)/δVext(r) = δ(r− r′). Insertion of the derivative (3.18) in the expansion
(3.15) and exploiting the invariance FN = FN (ε) yields

0 =
∫
dr Tre

−βH[Vext]

ZN [Vext]
∑
i

δ(r− ri)∇Vext(r) (3.19)

=
∫
dr ρ(r)∇Vext(r) (3.20)

where we have used the canonical expression of the density distribution ρ(r) = 〈ρ̂〉N =
Tre−βH

∑
i δ(r− ri)/ZN to determine equation (3.20) which constitutes the (negative)

averaged global external force Fo
ext. After an integration by parts we can identify,

−Fo
ext = −

∫
dr Vext(r)∇ρ(r) = 0. (3.21)

Hence in the canonical ensemble the averaged global external force Fo
ext indeed vanishes,

as it does in the grand-canonical ensemble, see (3.10). Analogous versions of the sum
rules (3.6) and (3.11)–(3.13) are also valid in the canonical ensemble [70].

3.2.3 Application to thermal and active sedimentation

While the above derived exact sum rules are both important and valuable for equilib-
rium density functional theory, they are also useful in nonequilibrium topics such as
active matter. To give a concrete application of the vanishing external force (3.10)
and (3.21) we examine the influence of gravity in the following. We consider two cases.
First we treat the sedimentation-diffusion equilibrium and secondly we address the
active sedimentation of active Brownian particles.
We start with thermal sedimentation. We consider N Brownian particles in an

external potential, which contains the gravitational contribution and a lower confining
wall, Vext(z) = mgz + Vwall(z). Here the wall is represented by the external potential
contribution Vwall(z). The z-coordinate measures the height. For a sketch of the
system see the inset in figure 3.1. When the system has equilibrated one can apply
the Noether sum rule (3.10) as boundary terms vanish. The external wall confines the
particles at the bottom of the sample. The gravitational potential prevents escape
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3 Noether’s theorem in statistical mechanics

Figure 3.1: Schematic of sedimentation-diffusion equilibrium with a lower bounding wall,
Vext(z) = mgz − α

2 z
2θ(−z). The corresponding local external forces −V ′

ext(z) = −dVext(z)/dz
(blue line) are indicated by arrows in the inset. There the pink discs represent the particles and
the grey-shaded area denotes the density distribution. This density distribution is according
to the barometric law (orange line). Noether’s theorem states that the global external force,
i.e. the integral over the external force density −ρ(z)Vext(z), vanishes. So the area of both
green shaded regions are equal as expected. The figure is taken from [SH2], c©IOP Publishing
(2019). Reproduced with permission. All rights reserved.

on the top such that the density vanishes at both boundaries. Contributions of the
lateral system boundaries are irrelevant as we assume the system for simplicity to be
quasi-one dimensional and hence to only depend on the z-coordinate. This reduces
equation (3.10) to

0 =
∫
dr ρ(z)dVext(z)

dz
= −mgN + F o

wall, (3.22)

where we identified the total number of particles N =
∫
drρ(r) and the global vertical

force on the wall is given by F o
wall = −

∫
dr ρ(z)dVwall(z)/dz. So as the total external

force has to vanish, the gravitational force of all particles exactly cancels the force
that the particles exert on the wall, mgN = F o

wall.
We restrict ourselves to the case of an ideal gas, so there are no interactions

between the particles, u(rN ) = 0. The density distribution is then given according
to the generalized barometric law, ρ(z) = Λ3e−β(Vext(z)−µ), where µ indicates the
chemical potential and Λ denotes the thermal wavelength. Hence the density decays
exponentially with respect to the external potential as is visualized in figure 3.1. To
be able to explicitly plot this distribution we consider a truncated harmonic wall, so
Vwall(z) = −αz2θ(−z)/2, where θ(z) indicates the Heaviside step function and α is the
spring constant. Then the derivative of the external potential is constant for z > 0 and
linear for z < 0, given by: V ′ext(z) = dVext(z)/dz = mg − αzθ(−z). So the magnitude
of the external force density, −ρ(z)dVext(z)/dz, is negative outside wall and mainly
positive inside the wall. Both the negative and the positive contributions cancel each
other (indicated by the green shaded areas in Fig. 3.1), such that the global external
force vanishes as we had expected on the basis of equation (3.10).
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Going beyond of the above quite well-known sedimentation of thermal (“passive”)
Brownian particles, we next consider active Brownian particles under gravity [29,
109–111]. Active Brownian particles move similar to Brownian particles, but they
are driven out of equilibrium as they undergo self-propelled motion [23,25,30,31,44].
Their swimming is modeled as an additional force on the particle and its direction is
along the particle orientation ω. The orientation is a unit vector and it represents an
additional degree of freedom that the particles possess. Hence the Brownian diffusion
does not only affect the spatial position but also the (angular) orientation of the
particles. The motion of active Brownian particles is taken to be overdamped and we
focus here on spherical particles. For ideal gas-like and weakly interacting particles
there are explicit analytic expressions for the density distribution that describe the
system [109, 110, 112]. We have shown that the balance of gravitational forces and
wall forces (3.22) holds in the steady sedimentation state for both ideal and mutually
interacting active Brownian particles [SH1,SH2]. This may be somewhat surprisingly
as the derivation of (3.10) was restricted to equilibrium systems. More details on the
sum rule and its derivation in nonequilibrium steady states are given later in section
4.3. Note that the sum rule (3.22) holds independently of the presence and type of
interparticle interactions, independently of the form of the particle-wall interactions
and also independently of the magnitude of the swim speed and hence particle activity
in steady states.

3.3 Statistical mechanical applications and generalizations of
Noether’s theorem

3.3.1 Overview

At this point one still might wonder about the usefulness of the above (section 3.2)
determined sum rules. Baus already gathered these sum rules in his overview 1984 [70].
Except of equation (3.12) and (3.13) all relations have been previously derived in the
literature albeit with a different strategy. One important advantage of our alternative
derivation based on Noether’s theorem is to be able to generalize. The connection to
the Noether theorem makes it easy to apply the concept to further functionals and their
invariances. Identifying the sum rules as a consequences of the system symmetry allows
to gain a deeper understanding of their fundamental physical meaning. Furthermore,
we reemphasize that the given sum rule are exact relations. Hence they are useful
for carrying out consistency checks both in computer simulations and in theoretical
descriptions and they might build the basis for the development of new theories.
In this section we specify further applications and generalizations of Noether’s

theorem in statistical mechanics. So far we have investigated the effects of the theorem
considering the invariance of the grand canonical potential (subsection 3.2.1) and the
invariance of the excess free energy in the canonical ensemble (subsection 3.2.2) with
respect to a uniform spatial shift. This shows the vanishing of the global external
force (3.10) in equilibrium and can be sharpened to further position dependence using
functional differentiation. It is interesting to transfer the above considerations not only
to a different (invariant) functional, but also to use further symmetry operations [SH1].
As it turns out the choice of the functional and of the symmetry operation makes

it possible to guess the resulting sum rules, in particular the first order expansion
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term [SH1,SH2]. For invariance under a spatial displacement one gains information
about forces (see section 3.2) whereas invariance under rotation gives sum rules
for the torques (see subsection 3.3.3). The functional specifies the force or torque
contribution that vanishes globally. Invariance of the grand potential (or the free
energy in the canonical ensemble) corresponds to external contributions as we had
seen in section 3.2. Internal interaction terms are determined from the symmetry
of the excess (above ideal gas) free energy density functional as we show below in
subsection 3.3.2. In case of the superadiabatic excess free power functional P exc

t [ρ,J]
one gains information about superadiabatic forces and their correlation functions, see
subsection 3.3.4. Superadiabatic forces are genuine nonequilibrium contributions that
arise in driven systems [78,79].
The superadiabatic excess free power functional is a functional that appears in

the power functional theory (PFT), the nonequilibrium generalization of the density
functional theory (DFT). Similar to DFT, PFT is a in principle exact description based
on a one-body variational principle [78]. As we only consider invariances of P exc

t [ρ,J]
in this thesis we will not describe the power functional theory itself in detail here. For
an accessible overview and introduction to the theory, please see the review [79]. The
review also contains explicit approximations, and their applications, of the superadia-
batic excess free power functional. The term superadiabatic indicates contributions
beyond the adiabatic approximation. The adiabatic terms are independent of the flow
and they can be determined as a functional of the instantaneous density profile on the
basis of the adiabatic construction [78,79]. The construction relates the real system
to a hypothetical equilibrium system with the same one-body density distribution and
identical interparticle interaction potential (as the nonequilibrium system) and at a
fixed time t. For readers that are not familiar with power functional theory it might
help to consider P ext

t [ρ,J] as the power of those interparticle interaction effects that
result from pure nonequilibrium. This adiabatic-superadiabatic splitting is similar in
spirit but different in practice to equilibrium ideal-excess splitting where the excess free
energy contains all contributions that go beyond the interactions of a (non-interacting)
ideal gas.
Due to the nonequilibrium nature of the superadiabatic excess free power this

functional depends implicitly (but non explicitly) on time via its functional dependence
on the “kinematic” current and density fields. Therefore there are three distinct
possibilities to apply a spatial symmetry operation (such as a uniform shift or a
rotation). The first and arguably the simplest operation is a displacement that only
affects the current at time t, but not at previous times τ < t. We refer to this operation
as instantaneous shifting. Second, the uniform shifting constitutes the same uniform
displacement ε at all times and thus also affects previous times τ . The third possibility
is the time-dependent shifting where the displacement parameter ε(t) itself changes
with time. We only require the parameter to be a continuous function and to vanish
for the starting time τ = 0 and the current time t for simplicity, i.e. ε(0) = ε(t) = 0.
We give an overview over these time-dependent versions of the spatial shift and the
resulting sum rules in subsection 3.3.4.

We consider the invariance with respect to spatially-dependent translations ε(r) in
classical statistical mechanics in subsection 3.3.5 and in quantum statistical mechanics
in subsection 3.3.6. Generalizations to nonlinear order contributions and open systems
with non-vanishing boundary conditions are treated in subsections 3.3.7 and 3.3.8
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respectively. We have also generalized from spherical to uniaxial and biaxial particles,
which is an in principle straightforward generalization [SH1]. Therefore one adds one
or two orientational degrees of freedom that describe the particle orientation besides
its spatial position coordinate r. Sum rules based on translational invariance stay
(basically) valid, with just an additional integration over the orientations to be added.
In case of rotational symmetries torque terms appear, as we show in subsection 3.3.3.
In the following subsections 3.3.2 to 3.3.8 we show a summary of a selection of

interesting and important results from these different possible combinations and
applications. Further sum rules which result from invariant functionals in and out of
equilibrium due to Noether’s theorem have been presented in references [SH1,SH2,
SH3,SH4,SH5].

3.3.2 Translational invariance of the free energy

We start the overview of exemplary application of Noether’s theorem in statistical
mechanics by considering the spatial shift of the intrinsic excess free energy density
functional Fexc[ρ]. This functional arises from the interparticle interaction potential
u(rN ) and hence describes effects above the ideal gas behaviour, where u(rN ) = 0.
The excess free energy functional is thus independent of the external potential and only
depends on the density distribution. The excess free energy is invariant under a global
shift of the density, Fexc[ρ(r + ε)] = Fexc[ρ(r)]. This holds for all enclosed systems
which are confined by impenetrable boundary walls (such that the density distribution
vanishes upon penetrating the walls). Functional differentiation of the free energy
functional gives the one-body direct correlation function via c1(r) = −δβFexc[ρ]/δρ(r).
Alternatively in equilibrium the one-body direct correlation function c(1)(r) can be
expressed with the internal force density distribution [SH3,79] fint(r) = kBT∇c1(r).

Starting from the invariance of Fexc[ρ], functionally Taylor expanding with respect
to the density and integrating by parts yields a Noether’s sum rule. The technicalities
of the derivation are very similar to equation (3.8) and (3.9), so we skip the details
of the derivation here. For a detailed determination of the sum rule (3.24) please see
reference [SH1]. After some straightforward algebra the sum rule states that

0 = kBT

∫
dr ρ(r)∇c1(r) =

∫
dr ρ(r)fint(r), (3.23)

where the integral on the right hand side of equation (3.23) over the force density distri-
bution ρ(r)fint(r) can be identified as the global internal force Fo

int = −〈
∑
i∇iu(rN )〉.

We can hence conclude that there is no global internal force in equilibrium,

Fo
int = 0. (3.24)

The vanishing of the internal force (3.24) is equivalent to Newton’s third law, actio
est reactio. Therefore equation (3.24) is always satisfied for enclosed systems. This
property even holds separately for the adiabatic and for the full interaction contribution
in nonequilibrium systems. The interaction potential u(rN ) depends on all particle
positions rN ≡ r1, ..., rN , but only on the differences between the particles. (The
absolute position in space has no influence on this term.) A straightforward calculation
shows (see e.g. [SH1]) that already the global internal force vanishes, −

∑
i∇iu(rN ) = 0

irrespective of the values of the rN and hence also the average of the total force vanishes.
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We show the vanishing of the global internal force in nonequilibrium using Noether’s
theorem below in subsection 3.3.4.
A vivid application of the determined sum rule (3.24) is provided by one of the

stories of the famous Baron of Munchausen. He claimed that he rescued himself (and
his horse) out of a swamp by only pulling on his own hair (or on his bootstraps in
the English version of the story, where he often rather is a cowboy). Common sense
already tells us the story reports obviously an impossibility and the tale is fiction.
With the above relation one can immediately identify the truth. Applying the force on
himself constitutes an internal contribution. As the total internal force has to vanish,
see equation (3.24), there must be another internal contribution that cancels his force.
So in the end no net force remains which could lead to any motion.
The sum rule (3.24) is general in the sense that it remains valid upon functional

differentiation with respect to the density. This differentiation yields [SH1]:

∇c1(r) =
∫
dr′ c(2)(r, r′)∇′ρ(r′), (3.25)

where the two-body direct correlation function is defined via c(2)(r, r′) = δc(1)(r)/δρ(r′).
Alternatively using Noether’s theorem and functional differentiation, equation (3.25)
can be also derived from a shift of the density as a functional of the external potential
[61, 72], similar to the calculation that determined equation (3.6) in section 3.1.
Equation (3.25) is directly connected and hence equation (3.24) is indirectly connected
to the LMBW equation (3.5). To show this connection consider the one-body direct
correlation function on the left-hand side of equation (3.25) as being expressed with
the Euler Lagrange equation, c1(r) = ln ρ(r)Λd+βVext(r)−βµ, where Λ is the thermal
wavelength and d denotes spatial dimensionality. Evaluation of the derivative regains
the LMBW equation (3.5) if one takes into account that the chemical potential µ is a
constant.
As an aside one can also consider the consequences of the invariance of the ideal

free energy Fid[ρ] (3.4). One result is a vanishing global ideal diffusive force Fo
id in

equilibrium,

Fo
id = kBT

∫
V

dr ∇ρ(r) = 0. (3.26)

However, using the divergence theorem to rewrite the definition of the free energy
(3.26) yields

Fo
id = kBT

∫
∂V

ds ρ(r), (3.27)

where ∂V indicates the boundary of that volume V and ds denotes the vectorial
surface element of ∂V . So expression (3.27) and hence equation (3.26) vanish trivially
and do not contain any new information as we have assumed enclosed systems with
vanishing density at the boundaries.

3.3.3 Rotational invariances of the grand potential and the free energy

We next consider Noether sum rules for rotational symmetry operations. The in-
variances are with respect to system rotations around an axis n, where the absolute
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value |n| indicates the angle of rotation. This symmetry operation changes the po-
sition vector according to r → r + n × r. The invariance of the grand potential
Ω[Vext(r + n× r)] = Ω[Vext(r)] then implies a vanishing global external torque [SH1]:

T o
ext = −

∫
dr ρ(r)

(
r×∇Vext(r)

)
= 0. (3.28)

The sum rule (3.28) has some similarities to the conservation law (2.13) in classical
mechanics which results from the invariance of the action functional under uniform
rotations. These similarities become especially apparent when the latter conservation
law (2.13) is differentiated with respect to time and then expresses the vanishing of
the global total torque. However, in classical mechanics this relation holds for the
total torque, whereas in statistical mechanics the external contribution (3.28) of the
torque vanishes separately. This observation is analogous to the case of the uniform
shift, considered in section 3.2.1.

For uniaxial particles not only the positional coordinate but also the orientation ω
of the particles changes under rotation, ω → ω+ n×ω. It is important that both, the
position and the orientation of the particles are rotated, because otherwise the grand
potential would not be invariant under the operation in general. This can be seen
as follows: Consider two parallel hard rods and only rotate the particle orientations,
i.e. rotate each particle around its center but do not rotate the particle positions
themselves in space. Then the minimal distance between the rod surfaces will change
in general and the particles might even begin to overlap. Hence this rotation clearly
affects both the excess free energy and the grand potential. Tarazona and Evans [113]
corrected this problem which they identified in the work of Gubbins [114]. For global
rotations the grand potential is invariant in systems confined by an external potential
and so the global external torque vanishes [SH1,113],

T o
ext = −

∫
drdωρ(r,ω)

(
r×∇Vext(r,ω)

)
−
∫
drdωρ(r,ω)

(
ω ×∇ωVext(r,ω)

)
= 0,

(3.29)

where ∇ω denotes the orientational derivative with respect to ω. Note that for
uniaxial particles the external torque (3.29) now consists of two contributions. The
first term can be identified as an orbital contribution that originates from the particle
rotation around the axis n. This term is similar to the torque that acts on spherical
particles (3.28). The second term only occurs for anisotropic particles. We refer to
this contribution as the spin torque as it originates from each particle rotating around
its center, as is induced by carrying out the global system rotation.
Of course not only the grand potential but also the free energy of an enclosed

system is an invariant under the rotation symmetry operation. A short derivation
in reference [SH1] shows that there is also no global internal torque T o

int in the
system [SH1,113],

βT o
int = −

∫
drdωρ(r,ω)

(
r×∇c(1)(r,ω)

)
−
∫
drωρ(r,ω)

(
ω ×∇ωc(1)(r,ω)

)
= 0.

(3.30)

This torque also consists of two separate parts, an orbital and a spin torque, which
cancel each other. For spherical particles the torque (3.30) only contains the first orbital
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term; the second term vanishes trivially. The vanishing of the torque for spherical
particles (3.30) and its higher order versions obtained from functional differentiation
were determined previously by Baus [70] from the fact that the free energy does not
change under rotations. The orientationally dependent equations (3.29) and (3.30)
were first derived by Tarazona and Evans [113]. Our new Noetherian derivation [SH1]
allows to identify these global relations for the torques as consequences of the rotational
system invariances. The details of the explicit application of Noether’s theorem to
determine the internal (3.30) and the above external torque sum rule (3.29) for uniaxial
and also biaxial particles can be found in reference [SH1].

3.3.4 Time-dependent translational invariance of the free power
functional

In the following we turn from equilibrium to the dynamics of nonequilibrium over-
damped systems. In contrast to the above results [such as (3.5) or (3.10), which have
been determined before] the following nonequilibrium sum rules are new results [SH1].
To determine these nonequilibrium relations we consider the symmetries of the supera-
diabatic excess free power functional P exc

t [ρ,J] as is central in power functional theory
(PFT) [78,79]. This functional generates the nonequilibrium forces that result from
the interparticle interactions and that are beyond equilibrium accessibility [78, 79].
The functional not only depends on the time-dependent density profile but also on
the current distribution J(r, t) of the system. Similar to DFT, the PFT is based
on a one-body variational principle and the theory describes overdamped man-body
systems out of equilibrium.
As mentioned in the subsection 3.3.1 there are three different kinds of relevant

nonequilibrium shifting operations. We consider the instantaneous shift (at the current
time t) which is like a “kick” of the whole system and hence it does not affect the
system at previous times τ < t. The transformation leaves internal interactions
unchanged. The density remains unchanged, although it will be affected at future
times τ > t. However, the shift influences the current via generating an additive
contribution J(r, t) → J(r, t) − ε̇ρ(r, t) ≡ J̃(r, t). This change in the current has
no influence on the functional, P ext

t [ρ,J] = P ext
t [ρ, J̃], as the chosen description is

restricted to overdamped systems where inertial effects are absent. Using Noether’s
theorem we conclude [SH1] that the global superadiabatic force vanishes,

Fo
sup(t) =

∫
dr ρ(r, t)fsup(r, t) = 0. (3.31)

In general the superadiabatic force field fsup(r, t) as it occurs in equation (3.31)
is determined from the (negative) functional derivative of the excess free power
functional with respect to the current, fsup(r, t) = −δP exc

t [ρ,J]/δJ(r, t). This force
field occurs because of the functional Taylor expansion from applying Noether’s
theorem. In power functional theory the internal force distribution splits into two
contributions, fint(r, t) = fad(r, t) + fsup(r, t). The adiabatic force field fad(r, t) is a
quasi-equilibrium contribution, so the above equilibrium sum rule (3.24) still holds, i.e.
Fo
ad(t) =

∫
drρ(r, t)fad(r, t) = 0 for a fixed but arbitrary time t. We conclude that the

global internal force has to vanish not only in equilibrium but also in nonequilibrium
for any time t in enclosed systems, Fo

int(t) = Fo
ad(t) + Fo

sup(t) = 0. This conclusion is
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3.3 Statistical mechanical applications and generalizations of Noether’s theorem

in accordance with Newton’s third law which also holds in nonequilibrium and can
be also proven on a more fundamental level, see reference [SH1]. The fact that not
only the total internal force Fo

int(t) vanishes, but also its two separate adiabatic and
superadiabatic contributions can be seen as a support of the chosen splitting in power
functional theory.

As a second example of a nonequilibrium shift symmetry operation we consider
a temporally constant uniform displacement. In contrast to the nonequilibrium
instantaneous shifting this transformation does not only affect the current distribution
but it also affects the density profile via the change in the position coordinate, r→ r+ε,
at all times τ . (Here τ describes all previous times and must not be mistaken for
the Brownian time scale which does not appear here but is often denoted τ as well
in the literature.) The time t indicates the current time. The invariance of the
superadiabatic excess free power functional under this shifting, P exc

t [ρ(r, τ),J(r, τ)] =
P exc
t [ρ(r + ε, τ),J(r + ε, τ)], yields the sum rule [SH1]

0 =
t∫

0

dτ

∫
dr
(
m1(r, τ, t)∇ρ(r, τ) + m1(r, τ, t) · ∇J(r, τ)>

)
. (3.32)

Here m1(r, τ, t) = −βδP exc
t /δρ(r, τ) and m1(r, τ, t) = −βδP exc

t /δJ(r, τ) denote respec-
tively a scalar and a vectorial time correlation function [115,116] and the superscript
> indicates the transpose of a matrix. Although equation (3.32) appears rather
complicated and we still lack an intuitive understanding of m1(r, τ, t) and m1(r, τ, t),
it is an interesting and potentially important relation. It relates the two time corre-
lation functions with the time-dependent density and current. Thus equation (3.32)
represents an exact relation for the memory structure of the system, as is manifest via
the integration over the past time τ . Formulating a feasible approximate description
of time-dependent systems with memory is a significant challenge and of potential
interest to current research of memory kernels [117–124], see [85–87] for recent work.
Therefore, it is useful to be aware of exact expressions such as equation (3.32) which
may form the basis of possible approximations for memory kernels.

The nonequilibrium time-dependent shift is a symmetry operation that may be
seen as a generalization of the uniform shift applied to the nonequilibrium situation.
However, for simplicity we assume that the boundary values of the time-dependent
displacement ε(τ) vanish, i.e. ε(0) = ε(t) = 0. At the starting time τ = 0 the
system is assumed to be in equilibrium and τ = t indicates the current time. As the
superadiabatic excess free power functional for enclosed systems is invariant under
this symmetry operation, a Noetherian sum rule ensues,

0 = d

dτ

∫
dr ρ(r, τ)m1(r, τ, t) +

∫
dr
(
m1(r, τ, t)∇ρ(r, τ) + m1(r, τ, t) · ∇J(r, τ)>

)
.

(3.33)

As for the constant in time displacement this relation (3.33) is an exact consequence of
the translational symmetry of the system and characterizes the memory of the system
via relating different time correlation functions to each other. Note that the second
contribution is the integrand of the time integral in equation (3.32).
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3.3.5 Space-dependent translational invariance of the grand potential

A natural and significant generalization of global symmetry operations as considered
above are local transformations such as a local space-dependent shift, ε(r). When the
functional is invariant with respect to such symmetry operation, Noether’s second
theorem applies. So far our considerations only exploited Noether’s first theorem,
as we looked at invariances of functionals under a uniform shift or rotation. These
“rigid-body” transformations determined global sum rules such as the vanishing of the
global external (3.10) and internal (3.24) force. The application of Noether’s second
theorem in statistical mechanics is similar to the first theorem, but the more general
transformation yields directly locally resolved sum rules. (The time-dependent global
shifting of section 3.3.4 can be viewed as application of Noether’s second theorem.)
We restrict ourselves to equilibrium in the following.

A local displacement ε(r) in general does not only affect the absolute particle
positions, but it also affects particle positions relative to each other and hence the
distance vectors between particles change. This in turn influences the interparticle
interaction energy, and therefore the grand potential, such that in general the grand
potential is not an invariant under the transformation. However, a corresponding
(locally resolved) change of the particle momenta can compensate the occurring
variations of the functional and restore the symmetry. A detailed description and
derivation is given in reference [SH3]. The theory is based on the fact that the grand
potential in equilibrium does not change under canonical transformations of the phase
space variables [9], as such transformations leave the phase space volume unchanged
and they leave, when appropriately chosen, the Hamilton also invariant. Under the
combined symmetry operations, r → r − ε(r) and p → p + ∇ε(r) · p, the grand
potential is invariant, Ω = Ω[ε(r)]. (Here ε(r) is considered to be a small parameter.)
Applying Noether’s theorem then yields the local force density balance in equilibrium,

F(r) = −kBT∇ρ(r) + ρ(r)fint(r)− ρ(r)∇Vext(r) = 0, (3.34)

which consists of three contributions: The first term is the diffusive force density of the
ideal gas, the second term indicates the internal force density (due to the interparticle
pair potential φ(r)) and the last term represents the external contribution. As expected
from Noether’s second theorem the force density balance (3.34) depends on the position
r and is not a global position-independent but a locally resolved sum rule. When one
restricts the interparticle interactions to pair interactions with the potential φ(r) the
internal force density can be rewritten as ρ(r)fint(r) =

∫
dr′ ρ2(r, r′)∇′φ(|r−r′|), where

ρ2(r, r′) denotes the two-body density. This rewriting allows to identify equation (3.34)
as the first member of the YBG hierarchy [72,76], as originally derived by Yvon [104]
and Born and Green [105]. The YBG equation was taken as a starting point to develop
a new scheme for carrying out classical DFT based on forces [SH3].

As an aside the consideration of rotations of spheres does not gain any new infor-
mation for a locally dependent rotation axis n(r). This symmetry operation would
yield the transformation r→ r + n(r)× r ≡ r + ε(r) which can be seen as a special
case of a local spatial displacement ε(r).
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3.3.6 Quantum statistical force balance

Our findings for the application of Noether’s theorem in classical statistical mechanics
can be straightforwardly generalized to quantum statistical mechanics. We focus
here on invariances of the free energy F = −kBT lnZ in the canonical ensemble with
the partition sum Z = Tre−βH . The Hamiltonian H of the considered quantum
many-body systems is still given by equation (3.1), but the positions and momenta
are now taken to be operators. The trace is defined as a sum of expectation values
Tr · =

∑
n〈n| · |n〉, where the |n〉 label a complete orthonormal set of eigenvectors

of H. In position representation the explicit expression of the expectation value
is 〈n| · |n〉 =

∫
drNφ∗n(rN ) · φn(rN ), where |n〉 = φn(rN ) and the asterisk denotes a

complex conjugation. Recall that we use rN = r,..., rN as a shorthand. The equilibrium
ensemble average is then given by 〈·〉eq =

∑
n〈n|e−βH · |n〉/Z.

As in subsection 3.3.5 we consider invariances with respect to a local space-dependent
shift ε(r). The new position of each particle is then given by ri → ri + ε(ri).
Additionally also the corresponding momentum changes according to pi → pi −
{(∇iεi) · pi + pi · (∇iεi)>}/2, where ∇i the differentiation with respect to ri only acts
on εi = ε(ri) as indicated by the parentheses and the superscript > denotes matrix
transposition. Note that the momentum transformation is the self-adjoint version
of the transformation in classical mechanics, see subsection 3.3.5. The symmetry
operation ensures that (in linear order) the commutator relations of position and
momentum are preserved (see reference [SH4]), such that the transformation is unitary
on Hilbert space and hence denotes a quantum canonical transformation [125]. The
free energy is invariant with respect to canonical transformations in general and in
particular with respect to the given local transformation depending on the displacement
field ε(r), F [ε] = F . We determined that using Noether’s theorem this invariance
yields the local quantum force density balance [SH4,79,126]

F(r) = ∇ · τ (r) + Fint(r)− ρ(r)∇Vext(r) = 0. (3.35)

The total force F(r) (3.35) vanishes locally and contains three contributions. The first
term is a consequence of kinetic energy and is given as the divergence of kinematic
stress, τ (r) = 〈τ̂ (r)〉eq. The corresponding locally resolved one-body kinematic
stress operator is τ̂ (r) = −

∑
i(piδipi + piδip>i )/2m+ ~2∇∇2∑

i δi/4m, where δi =
δ(r− ri) is a shorthand. The second contribution in equation (3.35) is the internal
force density Fint(r) = 〈F̂int(r)〉eq, where the one-body interparticle force operator
F̂int(r) = −

∑
i(∇iu(rN ))δ(r− ri) accounts for all interparticle interactions resulting

from the interaction potential u(rN ). The third term of the total force (3.35) is the
external force density, which originates from the external potential Vext(r). Here the
density is ρ(r) = 〈ρ̂(r)〉eq with the density operator ρ̂(r) =

∑
i δ(r− ri) being identical

to its classical definition.
A comparison with the analogous classical transformation (subsection 3.3.5) shows

many similarities such as that the corresponding Noether sum rule holds. In both
cases it states the local force density balance (3.34) and (3.35). One might have even
guessed the quantal identity from the classical analogue beforehand. In the limit of
a uniform displacement ε the Noether sum rule (3.35) reduces to vanishing of the
global external force [SH4], −

∫
drρ(r)Vext(r) = 0, which also results classically from

the invariance of the canonical free energy under a uniform shift, see equation (3.21).
Nevertheless the details in the classical and quantal derivations differ [SH3,SH4].
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3 Noether’s theorem in statistical mechanics

Although the concept of forces was rarely exploited in quantum mechanics so far,
there has recently been drawn some attention and interest to the topic [79,126,127].
Tchenkoue et al. [126] suggested the construction of exchange-correlation potentials
on the basis of force balance equations which they argue to be a systematic approach
and avoid problems with differentiability and causality. Tarantino and Ullrich were
able to formulate the Kohn-Sham approach to the time-dependent DFT using the
time-dependent force balance. The authors suggest that this approach has a more
transparent structure than the usual formulation. The application of locally resolved
forces also is important within the quantum version of PFT [79,128]. Forces are also
essential to Tokatly’s approach [129–132].

3.3.7 Nonlinear contributions

We return to our starting case of uniform shifts in classical grand canonical equilibrium.
As the considered symmetries are valid for arbitrary values of ε (n for rotations) not
only the linear but also all higher orders of the expansion around ε = 0 (n = 0) vanish.
These higher nonlinear order sum rules increase in tensor rank by one unit due to
the additional tensor contraction with ε (n × r) for every additional order that is
taken into account. Therefore the resulting relations become increasingly complex
and difficult to interpret. However, considering the second order explicitly is feasible
and has been presented in reference [SH5]. From the invariance of the grand potential
under a spatial uniform displacement ε one gets as a second order contribution [SH5]∫

drdr′ H2(r, r′)∇Vext(r)∇′Vext(r′) = kBT

∫
dr ρ(r)∇∇Vext(r). (3.36)

The left-hand side of equation (3.36) is the twofold integral over the correlation
functions of density fluctuations H2(r, r′) multiplied by the gradient of the external
potential. This integral balances the average tensorial curvature (i.e. the Hessian)
of the external potential on the right-hand side of equation (3.36). Recalling the
global external force operator as F̂o

ext = −
∑
i∇iVext(ri) = −

∫
dr
∑
i δ(r− ri)∇Vext(r)

the left-hand side of equation (3.36) can be interpreted as the variance of this force
operator, 〈F̂o

extF̂
o
ext〉 [SH5]. Here the angular brackets indicate the grand canonical

statistical average. Note that the left hand side of equation (3.36) is structurally
similar to equations (3.12) and (3.14), but has an additional spatial derivative (acting
on Vext(r)). Strikingly the correlation in equation (3.36) gives a curvature contribution
(right hand side), whereas the correlator of external potential and the global external
force (3.14) vanishes.
We have gained an alternative expression for the variance of the external force

operator (3.36) from an invariance of the system, so apparently there is a deep
connection between both quantities. As we have shown in equation (3.10) the average
global external force Fo

ext = 〈F̂o
ext〉 vanishes, hence the variance of the external force

operator is equal to its covariance, 〈F̂o
extF̂

o
ext〉 = 〈F̂o

extF̂
o
ext〉 − Fo

extFo
ext. Alternatively

equation (3.36) can be obtained by multiplying the inverse LMBW equation (3.6) with
∇Vext(r) and integrating over space. However, the above derivation from the second
order displacement has the clear advantage that the connection to Noether’s theorem
becomes apparent and that there is no need to determine multiplication factors and
the necessary integrals that lead to the meaningful result. In short, Noether’s route
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is explicit and constructive. Translational sum rules similar to equation (3.36) are
presented for the internal and the (trivial) ideal force contributions in reference [SH5].

The consideration of invariances has also proven useful to determine the dependence
of physical quantities such as the grand potential on the shape of the system [133]. Roth
and his coworkers [133] restricted themselves to grand potentials which are invariant
with respect to shifts and rotations, continuous and additive. This restriction allowed
them to state an expression for the general structure of the shape dependence. In
particular these authors investigated the shape dependence of the density, the surface
tension [134], and of thermodynamic potentials [133] in the case of hard spheres in
contact with curved walls. The analytic expressions these authors determined reveal a
strong dependence on the curvature of the potential, in their case the external wall.
This potentially could be related to the mean curvature of the external potential has
appeared above (3.36).

3.3.8 Boundary contributions

So far our considerations of Noether’s theorem apply to enclosed systems (i.e. confined
by impenetrable external walls) and the respective symmetry operation acts on the
whole system. Both restrictions are implicit assumptions in all previous derivations
and consequently in the presented results. Hence so far possible boundary terms
vanish as the particle density vanishes outside of the system itself.

There are of course interesting physical systems which do not satisfy these (boundary)
restrictions. One might wonder whether and to what extent our considerations are
valid or whether they can be transferred to more general settings. It turns out that
the previously determined results still hold for systems with vanishing net boundary
conditions. Then all appearing boundary contributions cancel each other and leave the
respective sum rule itself unchanged. Examples are systems with periodic boundary
conditions, an important case to e.g. represent bulk in computer simulations. Because
of the periodically continuation the “left” and “right” boundary terms are exactly
equal to each other up to a minus sign. A similar effect cancels the boundary terms of
translational invariant directions as often occurring in theoretical descriptions. We
have exploited this fact in the above description of the thermal and of active phase
separation in section 3.2.3.

However, for systems with boundary conditions that give non-vanishing contributions
the determined sum rules need in general to be modified. These modifications are
relevant in systems with two different coexisting bulk states as they occur in motility-
induced phase separation. The internal Noether sum rule (3.24) applied to this case
(in steady state) has the physical interpretation of the pressure balance. Boundary
terms are included as we show in subsection 4.3.2.
In the following, we demonstrate the inclusion of boundary contributions with an

explicit example: For the proof of the virial version of the well-known hard wall
contact theorem boundary terms play a crucial role [SH3,135]. The theorem can be
determined on basis of the force density balance [SH3]

−kBT∇ρ(r)− ρ(r)∇Vext(r)−
∫
dr′ρ2(r, r′)∇φ(|r− r′|) = 0, (3.37)
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3 Noether’s theorem in statistical mechanics

where φ(r) denotes the pair potential of the particle interactions. In relation (3.37)
the force density contributions from the ideal gas (first term), the external potential
(second term) and the interparticle interactions (third term) balance each other.
Equation (3.37) results from equation (3.34) upon restricting the internal force density
ρ(r)fint(r) to pair interaction form. We continue by spatial integration of the force
density balance (3.37). The external potential term vanishes up to its contribution
at the hard wall, kBTρwew, where ρw is the contact density at the hard wall and
ew is a unit vector normal to the hard wall. The ideal force density yields after
integration the ideal gas pressure pid = kBTρ

b, where ρb indicates the density of the
bulk phase that corresponds to the hard wall. The direction of this contribution is
again along ew, normal to the hard wall. Because of the Noether sum rule (3.24)
the internal interaction force density in (3.37) vanishes up to boundary terms after
integration. As there is no density and no current within the hard wall and as the
boundary contributions perpendicular to the hard wall cancel each other due to the
planar symmetry, the bulk contribution at large distance away from the wall is the
only one remaining. We show that this term is equal to the internal boundary term
within the present phase separation example and hence it gives the bulk virial pressure
without the ideal gas contribution [SH3,76]

pint = −π2
(
ρb
)2 ∫ ∞

0
dr r2g(r)dφ(r)

dr
, (3.38)

where g(r) is the bulk pair distribution function. A more detailed derivation of this
boundary force is given in the section Phase coexistence in reference [SH1] as well as
section II.D of reference [SH3].

So the full contact theorem states that the density at a hard wall is proportional to
the bulk virial pressure pv in two dimensions,

pv ≡ pid + pint = kBTρw. (3.39)

In contrast to the derivation of Lovett and Baus [135] our route discloses the underlying
invariance due to Noether’s theorem. The Noether derivation holds for the approxima-
tions made in the force-DFT [SH3], which are based on fundamental measure theory
(FMT) [73, 136] in the applications of reference [SH3]. The exact theoretical result
(3.39) can be verified within numerical evaluation of the force-DFT [SH3,102]. This
implementation of DFT works on the basis of forces and it complements the usual
implementation founded on one-body potentials, the so-called potential-DFT (recall
the introduction at the beginning of section 3.1). In the potential-based case the
contact density is related to the bulk compressibility pressure [SH3, 76]. Note that
both, the virial and the compressibility pressure coincide formally one the basis of the
(unknown) exact density functional, but do not so, in general, within an approximation
for Fexc[ρ].
In conclusion, in the present chapter 3 we have shown that Noether’s theorem is

applicable to statistical mechanics. The probability-based description and the preva-
lence of fluctuations constitutes no hindrances. Noether’s mechanism allows to derive
known sum rules such as the LMBW equation (3.5) and it reveals that such relations
are consequences of system symmetries. We have shown that Noether’s theorem
holds in both the canonical and the grand canonical ensemble. We were successful in
generalizing the theorem to nonequilibrium applications as the superadiabatic excess
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free power functional which yields new memory constraints. With the given examples
we hope to have convinced the reader that our considerations are actually useful for
problems, such as the presented sedimentation and phase separation of active particles
as well as for situations beyond those.

4 Interface polarization sum rule

Before we turn from the more general and exact results shown in chapters 2 and 3 to the
more concrete but approximate applications, the present section introduces an exact
polarization sum rule (section 4.1) and shows its consequences for active Brownian
particles. As these particles have an intrinsic orientation that indicates the direction
of their self-propulsion and as the sum rule determines the global polarization within
a system, it is possible to identify several interesting relations that bear relevance for
numerical [137] and experimental work [138]. Such relations include the vanishing
of the global polarization up to boundary terms, which we will lay out in section
4.2. In section 4.3 we determine the center of mass velocity for sedimenting active
Brownian particles and validate the mechanical pressure balance for motility-induced
phase separation in nonequilibrium.

4.1 Derivation of an interface polarization sum rule

The interface polarization sum rule is a direct consequence of the continuity equation.
Therefore it can be interpreted as an indirect Noether sum rule, following the argumen-
tation of Revzen [139]: According to his considerations the continuity equation is the
statistical mechanics analogue of Noether’s theorem. In his work Revzen derives the
continuity equation as the differential conservation law corresponding to the invariance
of the partition function. As a symmetry transformation he used an arbitrary change
in the phase factor of the wave function which leaves the partition function, as a
physical quantity, unchanged [139]. The invariant quantity is the Lagrangian and not
a statistical mechanics functional as considered in this thesis.

The continuity equation for particles with an intrinsic orientation expressed by the
unit vector ω is given as

∂

∂t
ρ(r,ω, t) = −∇ · J(r,ω, t)−∇ω · Jω(r,ω, t). (4.1)

The temporal change of the density ρ(r,ω, t) is hence compensated with the (negative)
divergence of the current. The latter contains the spatial divergence (contradiction
with ∇) of the translational current J(r,ω, t) and the orientational divergence (∇ω) of
the rotational current Jω(r,ω, t). The continuity equation (4.1) hence states a local
particle conservation law.
We assume that the rotational current in equation (4.1) is purely diffusive, such

that there act no explicit torques in the system and the rotational current hence origi-
nates purely from an orientationally inhomogeneous density distribution, Jω(r,ω, t) =
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4 Interface polarization sum rule

−Drot∇ωρ(r,ω, t), where Drot indicates the rotational diffusion constant. For simplic-
ity and to focus on the main concept we restrict ourselves to two-dimensional systems
with planar geometry. The relevant axis along which the system is nonuniform we
denote as the x-axis. (In general it is possible to consider more complex geometries,
e.g. spherical setups [140].) Applying the planar restriction to the continuity equation
(4.1) yields

∂ρ(x, ϕ, t)
∂t

= −∂J
x(x, ϕ, t)
∂x

+Drot
∂2ρ(x, ϕ, t)

∂ϕ2 . (4.2)

In two dimensions the orientation ω = (cosϕ, sinϕ) simplifies to a dependence on the
angle ϕ which is measured against the positive x-axis and angular Laplace operator
∇2
ω, is simply a second derivative with respect to the angle, ∂2/∂ϕ2.

It is useful to expand the density in spherical moments as this allows to directly
evaluate the orientational derivatives. In the two-dimensional case such an expansion
is the angular Fourier series as a function of the angle ϕ. The Fourier expansion of
the density is then given as

ρ(x, ϕ, t) =
∞∑
n=0

[
ρcn(x, t) cos(nϕ) + ρsn(x, t) sin(nϕ)

]
, (4.3)

where ρcn(x, t) indicates the nth cosine Fourier coefficient and ρsn(x, t) denotes the nth
sine Fourier coefficient. Similarly the angular Fourier expansion of the x-component
of the current is

Jx(x,ω, t) =
∞∑
n=0

[
Jx,cn (x, t) cos(nϕ) + Jx,sn (x, t) sin(nϕ)

]
, (4.4)

where Jx,cn (x, t) [Jx,sn (x, t)] denotes the corresponding nth cosine [sine] Fourier coeffi-
cient [SH6].

Inserting these expansions into the continuity equation (4.2) and evaluating the
angular derivatives gives

∞∑
n=0

[
∂ρcn(x, t)

∂t
+ ∂Jx,cn (x, t)

∂x
+Drotn

2ρcn(x, t)
]

cos(nϕ)

+
∞∑
n=0

[
∂ρsn(x, t)

∂t
+ ∂Jx,sn (x, t)

∂x
+Drotn

2ρsn(x, t)
]

sin(nϕ) = 0. (4.5)

Because of the independence of the Fourier basis functions cos(nϕ) and sin(nϕ) each
other the expressions in the square brackets have to vanish separately for each n in order
that equation (4.5) is satisfied in general. Here we focus on the second contributions
to the sum, n = 1, although analog considerations apply straightforwardly to all
higher order Fourier contributions, n > 1. The first Fourier coefficient of the density
is interesting as it is proportional to the polarization M(r, t), i.e. the first momentum
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of the density distribution with respect to the particle orientation,

M(r, t) =
∫
dω ωρ(r,ω, t) (4.6)

=
2π∫
0

dϕ

(
cosϕ
sinϕ

) ∞∑
n=0

[
ρcn(x, t) cos(nϕ) + ρsn(x, t) sin(nϕ)

]
(4.7)

= π

(
ρc1(x, t)
ρs1(x, t)

)
, (4.8)

where we have inserted the orientation as ω = (cosϕ, sinϕ) and the Fourier series
expression of the density (4.3) to determine (4.7). Evaluation of the angular integral
shows that the polarization corresponds to the first Fourier components (4.8). Note
that sometimes the polarization is instead defined as as a quantity per unit radiant,
M(r, t) =

∫
dω ωρ/

∫
dω, see e.g. reference [137,138]. To compare one just needs to

divide our polarization by
∫
dω = 2π.

Inserting the definition of the polarization (4.8) into the n = 1 contribution of
equation (4.5) gives

∂M(x, t)
∂t

= −DrotM(x, t)− π ∂

∂x

(
Jx,c1 (x, t)
Jx,s1 (x, t)

)
, (4.9)

where the cosine (sine) contribution of the continuity equation (4.5) corresponds to the
x(y)-component of the polarization and we have exploited that the temporal derivative
and the orientational integration commute with each other. The spatial distribution
and temporal evolution of the first Fourier components of the current Jx,c1 and Jx,s1
are usually unknown and they are influenced by the particle polarization. Thus it
is useful to further integrate equation (4.9) over the whole system volume, L

∫ x2
x1
dx,

where x1 indicates the left and x2 the right boundary of the system. The translational
invariance of the system along the y-axis allows to directly evaluate the y-integral,
which results in the system length L in this direction. The locally resolved polarization
hence becomes the global polarization Mo(t) = L

∫ x2
x1
dx M(x, t) of the entire system.

Integrating in this way the entire equation (4.9) determines the global polarization by
the resulting differential equation:

dMo(t)
dt

= −DrotMo(t)− πL
[(
Jx,c1 (x2, t)
Jx,s1 (x2, t)

)
−
(
Jx,c1 (x1, t)
Jx,s1 (x1, t)

)]
, (4.10)

which now only depends on Drot, L and the first Fourier moments of the current
evaluated at the boundaries. Considering the trivial case in the limit of spherical
particles which have no preferred orientation, the local and hence also the global
orientation vanishes. In that case equation (4.9) will reduce to the trivial identities
M(x, t) = 0 and hence Mo(t) = 0.

4.2 Interface polarization of active Brownian particles

It is instructive to evaluate equation (4.10) for different boundary situations. One
scenario is the vanishing of the occurring boundary currents, which we consider
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4 Interface polarization sum rule

exemplary for the case of active sedimentation below in subsection 4.2.1. Another case
is the presence of bulk states at the boundaries, which occurs for example in MIPS
of active Brownian particles (see subsection 4.2.2). Additionally to the self-propelled
motion along their particle orientation, the swimmers undergo both translational and
rotational diffusion. As we assume the absence of external torques the rotational
motion of the active particles is purely diffusive with the rotational diffusion constant
Drot and hence the differential equation (4.10) is indeed applicable.

4.2.1 Active sedimentation

We first consider sedimentation of active Brownian particles that are bounded by
a lower wall with gravity acting along the x-axis [109–112]. (Hence x is taken as
the vertical coordinate.) The particle density distribution vanishes for both limits:
ρ(x→ −∞) = 0 due to the lower confining wall and ρ(x→∞) = 0 due to the counter-
acting gravitational force. Hence not only the density but also the current vanishes in
these limits. The solution of the differential equation for the global polarization (4.10)
in case of vanishing boundary currents is

Mo(t) = Mo(0)e−Drott, (4.11)

where Mo(0) indicates an initial global polarization at time t = 0. According to
equation (4.11) the global polarization decays exponentially with the inverse decay
time Drot. This behaviour is independent of the presence of interparticle forces and
independent of the type of particle-wall interactions. Therefore the sedimenting active
particles cannot develop a global polarization in the long time steady state limit, where
we obtain from equation (4.11) and t→∞ simply:

Mo = 0. (4.12)

This result is entirely plausible as there is no reason why a global polarization should
develop in view of the absence of any acting torques and the overdamped character
of the dynamics. However, active particle tend to develop a local polarization in the
proximity of a wall pointing typically towards the wall. This effect has been observed
in simulations and experiments [29, 109–111]. Using this observation we can draw the
important conclusion that in these systems there must be also a region (in further
distance of the boundary) where the particles are oriented away from the wall on
average. Then both local polarizations need to compensate each other in steady state
to satisfy equation (4.12).

4.2.2 Motility-induced phase separation

In our second polarization example we consider the formation of two different and
coexisting bulk states of active particles, where one phase forms at the left and the
other phase forms at the right boundary. We assume a steady state, where there
are no temporal changes of the global polarization, dMo/dt = 0, which simplifies the
differential equation (4.10) to an algebraic equation. Furthermore in steady state the
system becomes symmetric with respect to reflection at the x-axis, i.e. y → −y and
ϕ→ −ϕ, due to the two-dimensional planar geometry. Thus the x-component of the
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current becomes an even function in the angle ϕ and only even terms contribute to the
angular Fourier expansion, Jx(x,ω, t) =

∑
n J

x,c
n (x, t) cos(nϕ). All sine contributions

vanish, Jx,sn (x, t) = 0. Inserting into equation (4.10) yields that in steady state there is
no y-component of the global polarization, Mo

y = 0. The absolute value of the global
polarization consists solely of its x-component, Mo = |Mo| = Mo

x .
Motility-induced phase separation (MIPS) of active Brownian particles (in steady

state), although being a genuine nonequilibrium effect, shares many similarities with
equilibrium vapour-liquid phase separation. However, the phenomenon can occur for
sufficiently high density and self-propulsion speed of the swimmers even for purely
repulsive interparticle interactions. Cates and Tailleur [38] suggest an explanation by
the effective slowing down and hence accumulation of the particles in denser regions.
When the swimmers accidentally bump into each other, their direction first has to
change via diffusive rotation before they can swim on. For sufficient large densities
meanwhile other particles get stuck and hinder them from escaping, which these
authors [38] interpret as the origin of the phase separation.

We choose the planar geometry such that the system forms the more dilute gaseous-
like bulk phase for x→ xg = x1 and the dense liquid-like bulk phase for x→ xl = x2
with a free interface in between. Because of the homogeneous density distribution in
bulk the ideal and internal force contributions only affect the magnitude of the swim
current but not its direction along the internal particle orientation ω. Therefore the
bulk current only consists of its first Fourier component, Jx,c1 (x1)ω or Jx,c1 (x2)ω. We
implicitly assume here that there is no orientation-independent current contribution
Jx,c0 (x), which would also contribute to the bulk current. For phase-separated active
Brownian particles in steady states the global polarization (4.10) is hence [SH6]:

Mo = πL

Drot
(Jg − J l), (4.13)

where Jg = Jx,c1 (xg) (J l = Jx,c1 (xl)) is the magnitude of the current of the gaseous
(liquid) bulk phase. Thus the magnitude of the global polarization across the interface
is different of the two bulk values of the current. Hence the value of Mo can be seen
as a consequence of the bulk states alone and hence it can be interpreted as a state
function. This finding seriously questions the claims of Solon et al. [45,48] that the
polarization influences and controls the bulk states at coexistence. Given that the
global polarization is a state function, the suggested coupling of interface to bulk seems
implausible. The direction of Mo is oriented towards that bulk phase that possesses
the higher current. (The bulk states themselves do not develop a local polarization
as these phases are translationally and rotationally symmetric and have no preferred
direction.) Particles interacting via the Weeks-Chandler-Anderson potential, which is
a truncated and shifted Lennard-Jones potential that is hence purely repulsive, are
oriented on average towards the denser phase [SH6,46].

4.2.3 Experimental and numerical verification: the Leipzig system

The exact sum rule (4.13) has been tested and verified in several different ways.
As an example we have successfully checked its validity in our Brownian dynamics
simulations [SH6,46] for the case of motility-induced phase separation. Other systems
that posses bounding bulk states and hence satisfy the polarization sum rule (4.13)
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include the motion of a single active particle either in a ratchet potential [141] or
under a local abrupt activity step [137,138,142]. In the latter system the change of
the local activity causes the formation of two regions, where the particle is found to
have a higher probability for being in the low activity region. The phenomenology
of the resulting density distribution is comparable to that of MIPS, although the
underlying physical mechanisms that yield the respective distribution are clearly very
different. The system was investigated in the groups of Cichos and Kroy [137,138] at
the University of Leipzig and these authors confirmed experimentally and numerically
the validity of our expression for the global polarization (4.13). We give a brief account
of their work in the following.
The experimental active particle was a Janus particle realized as a polystyrene

spherical colloid half coated with gold. Radiation of a laser locally heats the particle
and propels it forward [32,143,144]. The free swim speed depends on the laser intensity.
The activity step and the system boundaries are realized by the so-called photon
nudging [30–33] which is based on a feedback mechanism. The particle position is
tracked and the laser is switched on if the particle is located in the active region of the
volume and switched off when the colloid is located within the passive region. Different
levels of activities were realized by changing the laser intensity [138]. The boundaries
are implemented in a similar way but with an additional tracking of the particle
orientation. When the particle moves outside of the actual system volume the laser
and hence the activity is only switched on when the particle points towards the system.
The process successively nudges the particle back. In this system, Söker et al. [138] find
that the global polarization vanishes. This finding is in accordance with our equation
(4.13) as in the experimental setup the current also vanishes beyond the photon
nudging boundary. Hence the measured polarization is an experimental confirmation
of the polarization sum rule (4.13). Their result allows the authors in Physical Review
Letters [138, p. 1] “to experimentally confirm, on the single-particle level, that the
interfacial polarization is emerging from unbalanced hidden bulk currents” and they
cite [SH6] as their source. This is a further indication that the suggested influence
of the interfacial polarization on the bulk states [45,48] does not exist in the present
system [SH6].
The authors also performed numerical calculations on that system [137]. The

corresponding numerical results of the Smoluchowski (Fokker-Planck) equation were
in good agreement with their theoretical truncated moment expansion. Auschra
et al. [137] were able to determine the expression (4.13) for the global polarization
within their theoretical treatments and verify its validity for their exact numerical
and approximate theoretical considerations, i.e. a truncated orientational momentum
expansion of the dynamic probability density which evolves in time according to a
corresponding Fokker-Planck equation. Hence these authors could show that the
polarization sum rule (4.13) is “verified within [their] approximate theory” [137, p. 6].

4.3 Combining polarization and Noether sum rules

The above section 4.2 shows that the polarization sum rules indeed constitute useful
relations. They can serve as a fast consistency check for results from experiments or
from simulations. Furthermore these relations allow to make statements about the
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validity of or formulate restrictions on approximations in theories. Here we demonstrate
that it can be very beneficial to combine the polarization sum rule with the Noether
sum rules. For convenience we use the same exemplary systems as above, i.e. active
sedimentation and active phase separation in two-dimensional planar geometry.

We start with the general orientation- and position-resolved one-body force density
balance of active Brownian particles [90],

γJ(r,ω, t) =− kBT∇ρ(r,ω, t) + ρ(r,ω, t)fint(r,ω, t) + γsρ(r,ω, t)ω
+ ρ(r,ω, t)fext(r,ω, t), (4.14)

where s denotes the free swim speed of the active particle. The (negative) friction
force density on the left-hand side is balanced by several contributions on the right
hand side: The ideal contribution (first term), the internal contribution originating
from the interparticle interactions (second term), the swim force density (third term)
and the external force density (fourth term).

4.3.1 Active sedimentation

In case of active sedimentation the external force consists of the force that the lower
confining wall exerts on the particles and the gravitational force, i.e. fext(x, ϕ, t) =
(fwall(x, ϕ, t)−mg) ex. Here fwall(x, ϕ, t) is the magnitude of the force that the wall
exerts on a particle, m denotes the particle mass, g is the gravitational acceleration
and ex indicates the unit vector in the x-direction. The restriction to two-dimensional
planar geometry again simplifies the position dependence on r to an x-dependence
along the axis of density inhomogeneity. The orientation ω reduces to the angle
ϕ, which measures the particle orientation against the x-axis as before. Inserting
the form of the external force in the force density balance (4.14) and exploiting the
two-dimensional planar geometry yields

γJ(x, ϕ, t) =− kBT
∂ρ(x, ϕ, t)

∂x
ex + ρ(x, ϕ, t)fint(x, ϕ, t) + γsρ(x, ϕ, t)

(
cosϕ
sinϕ

)
+ ρ(x, ϕ, t)fwall(x, ϕ, t)ex −mgρ(x, ϕ, t)ex. (4.15)

To proceed we integrate equation (4.15) over all possible positions and orientations.
As before the density vanishes at the limits of the x-integration such that there are no
boundary terms. Therefore both the global ideal and the global internal force density
contributions vanish due to the Noether sum rules (3.24) and (3.26) at all times t.
One can relate the integrated swim force density to the global polarization (4.8) and
thus the corresponding polarization sum rule (4.11) for the case of vanishing boundary
currents applies. We define the global external force exerted from the particles on
the wall as F o

wall(t) =
∫
drdωρ(r,ω, t)fwall(r,ω, t) and identify the total number of

particles as N =
∫
drdωρ(r,ω, t). With these considerations the integral over equation

(4.15) becomes

γNvcm(t) = γsMo(0)e−Drott + F o
wall(t)ex −mgNex (4.16)

where vcm(t) is the center of mass velocity vcm(t) =
∫
drdωJ/

∫
drdωρ. Equation

(4.16) describes the global motion of the system via the time evolution of its center of
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4 Interface polarization sum rule

mass. Solely the motion of the x-component is nontrivial as both the wall force and
gravity only act along this direction.

In the long-time limit the sedimentation process evolves to a steady state where the
general motion, as characterized by the center-of-mass velocity vcm(t), and the global
polarization (4.11) both vanish. One has hence shown that equation (4.16) constitutes

F o
wall = mgN (4.17)

which is remarkably the same external Noether sum rule as for thermal sedimentation
in equilibrium (3.22). Hence the gravitational force balances the global force on the
wall for sedimenting active Brownian particles in steady state. This relation (4.17)
allows to determine the weight of the active particles by simply measuring the force
on the lower confining wall after the system reached a steady state. For doing so, it is
not necessary that the particles are gathered at the bottom of the system, but they
can rather swim freely, which might be surprising at the first glance.

4.3.2 Motility-induced phase separation

For motility-induced phase separation the force density balance (4.14) reduces in
steady state to

γJ(r,ω) = −kBT∇ρ(r,ω) + ρ(r,ω)fint(r,ω) + γsρ(r,ω)ω, (4.18)

as no external force is present. We integrate again over the whole system volume and
all orientations in order to be able to apply the previously determined global sum rules.
Here the x-integral reaches from the gaseous to the liquid bulk phase. The integrated
current is assumed to vanish,

∫
drdω J(r,ω) = 0, so the interface between the two

phase-separated bulk states is fixed in space. Nevertheless the integrated right-hand
side of equation (4.18) has non-vanishing contributions, i.e. boundary terms from the
bulk states, which have to be taken into account. The detailed derivation of these
contributions is given in reference [SH1]. Here we only give an overview over the
derivation of the mechanical pressure balance in nonequilibrium.
The spatial and orientational integral over the diffusive force is (plid − pgid)Lex,

where L denotes again the interfacial length and we identified the ideal pressure
pbid = kBTρ

b. The bulk density ρb of the liquid or gas bulk state is indicated by the
index b ∈ {g, l} and is equal to the rotationally integrated zeroth Fourier mode of the
density: ρb = 2πρ0. Using the Noether sum rule (3.24) and taking boundary terms into
account the global internal force is given by

∫
drdωρ(r,ω)fint(r,ω) = (plint − p

g
int)Lex.

It contains the internal pressure in two dimensions given in equation (3.38). Here the
virial pressure pv = pid + pint results from the ideal and internal contributions as a
boundary contribution, see subsection 3.3.8 and references [SH1,SH3]. We use the
polarization sum rule (4.13) to evaluate the integrated self-propulsion term, which yields
(plswim − p

g
swim)Lex, where the swim pressure is defined as pbswim = γsπJb/Drot [39].

The current in the bulk does only consist of the first orientational Fourier contribution
Jb = Jx,c1 (xb). Note that there are various definitions of the swim pressure in the
literature [39,44,145–148], including the virial expression [47,146–148]. In bulk these
pressures agree with each other and with our swim pressure, which we define by the
fact that its negative gradient yields the corresponding swim force density [46, 94].
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However, the local active pressures across the interface usually differ and no universal
consensus has been reached over this rather fundamental physical quantity.

The integral of the global force density balance (4.18) can be hence expressed as a
pressure balance,

pg ≡ pgid + pgint + pgswim = plid + plint + plswim ≡ pl, (4.19)

where the total pressure includes the ideal, internal and swim contribution, pb =
pbid + pbint + pbswim. For each of these contributions there are explicit derivations of
the well-known expressions [SH1]. So the well-known mechanical pressure balance at
phase coexistence [76], pg = pl, still holds in this nonequilibrium active system.

Note that the pressure balance of the equilibrium vapour-liquid phase separation in
absence of an external field can be derived similarly from the force density balance
(4.18) and the internal Noether sum rule (3.24) [SH1]. The main difference is the
absence of a free swim speed (i.e. s = 0), so application of the polarization sum rule
is not necessary and no swim pressure contributes to the pressure balance (4.19),
pb = pbid + pbint.

We emphasize that our theoretical description of the phase coexistence of active
Brownian particles [46,94] does indeed satisfy the pressure balance (4.19) and both
the underlying Noether (3.24) and polarization sum rules (4.13). The accordance with
these exact relations supports our theory, especially as a wider community has not yet
agreed on a common theoretical description of MIPS [44,45,48]. This disagreement
becomes particularly apparent in the consideration of the interfacial tension were there
is not even consensus on neither its sign nor on the magnitude. For convenience we
summarize the main ideas of the theory in appendix A and determine the interfacial
tension on the basis of our description in the next chapter 5.

5 Free interfacial tension of active
Brownian particles

In this chapter we present our results for the interfacial tension of phase-separated
two-dimensional active Brownian particles. Therefore we first specify the system that
we are interested in and give a short overview of the existing literature about the
free interfacial tension in these systems (section 5.1). In section 5.2 we give a short
description how we determined the interfacial tension by transferring and applying
the van der Waals-route to nonequilibrium. The interfacial tension we calculate is
positive [SH7], which is in accordance with our physical intuition but contradicts many
of the previous findings [47,49–58].
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5 Free interfacial tension of active Brownian particles

5.1 Literature overview over the free interfacial tension of
active systems

We consider systems of N active Brownian particles which satisfy the following well-
known Langevin equations of motion

γṙi(t) = −∇iu(rN ) + sγω(t) + χi(t), (5.1)

where γ denotes the friction coefficient, ṙi(t) = dri(t)/dt indicates the velocity of the
ith particle, ∇i is the divergence with respect to the position coordinate ri(t) of the
ith particle at time t and u(rN ) represents the internal interaction potential, which
depends on the positions of all particles rN ≡ r1, ..., rN . For pair particle interaction
potentials φ(r) we can rewrite u(rN ) =

∑
i<j φ(|ri − rj |) and in the following we focus

on the purely repulsive Weeks-Chandler-Anderson interparticle interaction potential
φ(r) with the particle size σ. The stochastic force χi(t) models the Brownian diffusive
motion. Here it represents a Gaussian white noise, with vanishing average 〈χi(t)〉 = 0
and a delta-correlated variance 〈χi(t)χj(t′)〉 = 2kBTγδijδ(t − t′)1, where kB is the
Boltzmann constant, T is the temperature, δij denotes a Kronecker delta, δ indicates
the Dirac delta distribution, and 1 represents the 2×2 unit matrix. The second
term on the right-hand side of equation (5.1) generates the self-propulsion of the
active particle. This force is proportional to the free swim speed s and points along
the particle orientation ωi(t). In two dimensions the orientation can be written as
ωi(t) = (cosϕi(t), sinϕi(t)), where the particle angle ϕi is measured against the x-axis
and undergoes free rotational diffusion,

ϕ̇i(t) = χroti (t), (5.2)

where the random torque has again a vanishing mean, 〈χroti (t)〉 = 0 and a delta
correlated variance, 〈χroti (t)χrotj (t′)〉 = 2Drotδijδ(t− t′) with the rotational diffusion
constant Drot.

Somewhat surprisingly at first glance, the active Brownian particles tend to phase
separate into an dense and a dilute phase, if the particle density and the free swim
speed are high enough, even though the interparticle interaction potential is purely
repulsive. This phase separation was already mentioned and described in the above
applications of the Noether and polarization sum rules, see the subsections 4.2.2 and
4.3.2. The phenomena occurs due to the swimming or motility of the active particles
and is therefore called motility-induced phase separation (MIPS), which most readers
familiar with active matter will know. The reviews [21–27] give much background for
those who are unfamiliar with the topic or those who are interested in further details
in the behaviour of active particles and their theoretical description.
Important properties, which are interesting to investigate and useful to gain new

insights, are interfacial quantities of these systems, such as the interfacial tension
considered here. The first study that actually measured in simulation of equations
(5.1) and (5.2) the tension of the free interface for phase separated active Brownian
particles is that by Bialké et al. [47]. These authors surprisingly determined within
their simulations a huge negative value of γgl = −475kBT/σ2 for the tension. This
result lead to a controversy in this field concerning the magnitude and sign of the
surface tension in active systems. The discussion is still ongoing as can be seen in the
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recent work by Chacòn et al. [56] where they comment that for nonequilibrium phase
separations “a clear agreement has not been reached on the physical properties such as
the surface tension.” [56, p. 2647]. While the controversy is apparent in direct personal
exchanges with researchers at conferences [149] and elsewhere, very little criticism
has been published, with our publication [SH7] being an exception. In the following
we hence give a short overview over the main theoretical concepts to determine this
interfacial tension.

In equilibrium there are several different routes to determine the interfacial tension
(e.g. via the capillary wave spectrum, the integral over the difference in the normal and
transversal components of the pressure tensor or via the free energy cost of forming
the interface), which all lead to the same result, i.e. to the same value of the interfacial
tension [76]. It has been argued that it is a priori not clear whether this equivalence
of the mechanical and thermodynamic routes also holds in nonequilibrium, especially
because it is unclear how a thermodynamic quantity such as the free energy is defined
in nonequilibrium and whether such a definition would be useful. It turned out that
both routes indeed do not agree, which was interpreted as an indication that the free
energy does not exist for active particles [51,52]. However, mechanically the interfacial
tension should be a unique quantity determined by its physical meaning. One might
define the free interfacial tension by its mechanical interpretation and hence consider
the thermodynamic route just as a rewriting, which is entirely possible in equilibrium.
Following the equilibrium interpretation a negative tension would mean a negative
energetic cost for the system to form a interface. Therefore a maximal length of
the interface would be most beneficial which is equivalent to a homogeneous state.
In direct interpretation the phase separation would not be stable with a negative
interfacial tension in equilibrium. (A number of stability mechanisms were considered
in the literature [47,51].)

There are other theoretical and simulation studies [49–52] that seemingly support
the determined negative value obtained by Bialké et al. [47]. Some theories [45, 48]
support both positive and negative values of the interfacial tension. In other studies
the determined tension is approximately zero [53, 54] or exactly zero [59]. Some
publications [57, 58] only describe methods how the interfacial tension could be
determined in principle, but make no comment about the resulting sign or magnitude
of the tension. There are also works [SH7,55] that report the surface tension of the free
interface to be positive in nonequilibrium. The first researcher that derived a positive
surface tension was Lee [55]. Very recently Chacón et al. [56] used a capillary wave
analysis and obtained a small positive tension which remarkably seems to be (almost)
independent of the self-propulsion strength. (Bulk coexistence densities depend very
strongly on this parameter.) Values for the interfacial tension that were based on the
capillary wave theory yield by construction positive results [47]. The positive sign
is in accordance with our findings of the tension which are based on our theoretical
description developed earlier [46,94]. The key ideas and the comparison with numerical
and computer simulation results are given in reference [46] whereas reference [94] gives
much background for the analytic calculations that underlie the bulk phase diagram
and the density and current distributions across the interface. The theory is based
on the continuity equation and the force balance which are both resolved locally in
position and orientation. Preferably one would have some direct experimental data for
the free interfacial tension as a comparison or for validation. This might help to resolve
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the confusion and to solve the problems in the theoretical descriptions. Unfortunately
no such results are available at present.
As the topic of the interfacial tension in active systems is so controversial, it is

clearly very useful to have at our disposal the two previously (in subsection 3.3.2
and (4.2.2)) determined fundamental exact identities. Let us give a short reminder
and summary of these sum rules in the present context (of active Brownian particles
undergoing motility-induced phase separation). The first relation, derived in subsection
4.2.2, connects the global interface polarization Mo in the system to the bulk values
of the current. Due to the quasi one-dimensional geometry of the system and the
steady state that we consider, the direction of the global polarization is perpendicular
to the interface. This alignment of the active particles in the interfacial region is
indeed found in simulations and experiments [44,46,137,138]. Active particles that
interact via the purely repulsive WCA-potential point on average towards the denser
phase. Its magnitude of the total particle polarization across the interface in steady
state is a consequence of the continuity equation and can be expressed by equation
(4.13) as Mo = πL(Jg − J l)/Drot, where Jb denotes the strength of the bulk current
at the system boundaries, L is the system length parallel to the interface and Drot
denotes the rotational diffusion constant. The global polarization is thus determined
by bulk values, i.e. the difference between the bulk currents in the dilute and in the
dense phase. Hence the total polarization constitutes a state function, which is a
direct consequence of the continuity equation and of the free rotational diffusion of
the particle orientations [SH6]. The sum rule (4.13) does not only hold for MIPS
but for more general systems of active Brownian particles and as laid out in detail
in subsection 4.2.3 it was verified numerically [137] and in experiments [138]. The
vectorial total polarization Mo also leads to a global swim force Fo

swim = γsMo which
pushes the interface against the denser phase.

The second exact relation states that the global internal force vanishes up to trivial
boundary terms, Fo

int = 0, see equation (3.24) in subsection 3.3.2. This is a conclusion
from Noether’s theorem resulting from the invariance of the system and of the excess
superadiabatic free power functional P exc

t [ρ,J] with respect to a uniform spatial shift
at the current time [SH1]. Alternatively the interparticle interaction force can be seen
from the viewpoint of Newton’s third law, so there is no global contribution besides
boundary effects. This boundary term is in case of motility induced phase separation
the virial pressure difference (above the ideal gas pressure) between both bulk phases
as we showed in subsection 4.3.2.
Both the interface polarization sum rule as well as the internal force sum rule are

satisfied within our theory of references [46,94] which we summarize in appendix A.
The combination of both exact identities yields the mechanical pressure balance (4.19)
at phase coexistence, see section 4.3. We exploited this balance in the calculations to
determine the bulk coexistence densities (see appendix A). This material forms the
background and basis for the next step.

5.2 Theoretical determination of the free interfacial tension

Forces are undoubtedly prominent and eminently useful quantities to describe many-
body systems in statistical mechanics. In contrast to thermodynamic objects such as
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the free energy or the grand potential the concept of forces generalizes naturally to
nonequilibrium and it has a clear physical interpretation and purpose. This is one of
the reasons why our theory for the description of phase separation of active Brownian
particles is ultimately based on the force density balance. We use a microscopically
sharp one-body picture where all relevant quantities are locally resolved in position
and orientation. In the appendix A we give a brief summary of the most important
ideas and concepts of the theory [46, 93, 94] (which itself is not part of this thesis).
Within this theory the force density balance splits into two equations of which one
determines the flow as well as the higher order orientational Fourier components of
the density distribution and the second equation is used to identify the coexistence
densities and the phase diagram. We identify the former equation as the force balance
of flow contributions and the later equation as the structural force balance. The
equations are coupled but they can be analyzed separately. This splitting of the force
balance in flow and structural contributions is unique, general and it turned out to be
an insightful decomposition before [81] in the context of driven (but passive) Brownian
dynamics.

For generating the interfacial tension only the structural forces contribute, whereas
flow forces do not. Therefore we focus on the structural force balance,

fid(r) + fad(r) + fstruc(r) = 0, (5.3)

which consists of a sum of the ideal gas contribution, the adiabatic term and the
superadiabatic structural force. In general the dependence of the forces would be on
both position and orientation. However, the ideal gas contribution is usually small
compared to the other forces and we hence approximate the orientation-resolved density
by its orientational average. The adiabatic term does not depend on the interparticle
orientation by construction. We hence conclude that the intrinsic structural chemical
potential µstruc within this approximation cannot depend on the orientation either.
We identify this chemical potential as that specific scalar function whose negative
gradient gives the corresponding force, i.e. fstruc(r) = −∇µstruc(r). This concept is the
same that we apply to the ideal gas and adiabatic contributions. Spatial integration
over the structural force balance (which is now a sum of gradient terms) hence yields

µ(r) = µid(r) + µad(r) + µstruc(r) = const, (5.4)

where the total chemical potential µ(r) consists of ideal, adiabatic and structural
parts and it would be an exact constant if no approximations were made. The
ideal gas chemical potential is µid(r) = −kBT ln ρ0(r) [76], where ρ0(r) denotes the
orientational averaged density distribution. The adiabatic contribution is that specific
chemical potential that results from the interparticle interactions in the corresponding
equilibrium system, i.e. in a system with the same one-body density distribution and the
same interparticle interaction potential. (For a detailed description of the adiabatic
construction see [79].) One can hence exploit all equilibrium density functional
approximations for the adiabatic term and we chose to use the expression from scaled
particle theory for simplicity [76],

µad(r) = kBT

[
− ln(1− η(r)) + η(r) 3− 2η(r)

(1− η(r))2

]
, (5.5)
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5 Free interfacial tension of active Brownian particles

with the rescaled (to take particle softness into account) packing fraction η(r) =
0.8ρ0(r)/ρjam and the jamming density ρjam, which denotes the density at which
the system would come to arrest due to sterical hindrance. Treating the adiabatic
repulsion in a local density approximation is a frequent strategy. The ideal and the
adiabatic chemical potential only consist of the given local contributions. However,
the structural chemical potential contains both a local and a non-local, interfacial
term [46,94],

µstruc(r) = µlocstruc(r) + µnlocstruc(r) (5.6)

= e1
γ

2Drot
v2
f (r)ρ0(r)

ρjam
+∇m · ∇ρ0(r). (5.7)

The first, local contribution µlocstruc(r) originates from an expansion in the forward
velocity vf(r) and the constant e1 is the fitting parameter for the amplitude. We
know that the local nonequilibrium chemical potential depends on the velocity as
it is a kinematic contribution within power functional theory [46,78,94]. Structural
terms are described by even powers of the velocity [81]. For the nonlocal structural
chemical potential µnlocstruc(r) we use a square gradient term according to the van der
Waals route [150] and for simplicity we set m = e2γs

2/2Drotρ
2
jam to a constant, which

contains the fit parameter e2. In general m can depend on the density and the
interfacial contribution will be in reality more complex.
As the assumed interfacial contribution µnlocstruc(r) has a gradient structure, one can

translate the van der Waals route to the tension [150] to nonequilibrium. Hence the
gaseous-liquid interfacial tension γgl within this treatment is unique and given by an
integral over the interfacial density profile [SH7,150],

γgl =
∞∫
−∞

dx

[
−W + 1

2m (∇ρ0(x))2
]
. (5.8)

Equation (5.8) makes the square gradient structure resulting from the above nonlocal
structural chemical potential contribution, the second term in equation (5.8), more
apparent. The local contributions are included in the term −W (ρ0) = (µloc − µb)ρ0 −
(ploc − pb), where the local chemical potential µloc is given by the total chemical
potential µ(r) (5.4) without the nonlocal contribution µnlocstruc(r). The corresponding
local pressure is determined with an equivalent of the Gibbs-Duhem relation [46,94] as
we show in appendix A. The index b indicates the bulk values of the pressure and of
the chemical potential which are numerically identical in the two coexisting phases due
to the mechanical and chemical stability (see equations (A.7) and (A.8) in appendix
A). The mechanical balance is indeed a consequence of a deep system symmetry as we
have shown using Noether’s theorem in subsection 4.3.2.
We restrict ourselves to phase separations with quasi one-dimensional geometry,

which simplifies r to the nontrivial position coordinate x across the interface. Further
we assume ρ0(x) to be a hyperbolic tangent interpolating between the coexistence
densities, which is a common assumption and in accordance with simulation results,
see e.g. reference [44].
Following the mechanical analogy of Rowlinson and Widom [150] on can interpret

W (ρ0) in equation (5.8) as a (negative) double well energy potential as sketched in
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5.2 Theoretical determination of the free interfacial tension

figure 5.1(a). The comparison results from the mathematical similarity of the interfacial
equations with a mechanical problem. This problem has the same description as a
ball (indicated by the orange disc in figure 5.1(a)) with mass m that moves in the
potential W (ρ0). It starts at time x = −∞ at the left maximum and rolls to the right
maximum of W (ρ0) in the limit of x =∞. Here ρ0 indicates the position coordinate.
The analogue of the interfacial tension is then the action γgl, which is a integral over
the Lagrangian consisting of the kinetic energy (nonlocal term) minus potential energy
W (ρ0) (local terms). Following Noether’s theorem in classical mechanics (chapter
2) one can now consider invariances of the action γgl. As the mechanical system is
homogeneous in time (the integrand in equation (5.8) does not explicitly depend on x)
Noether’s theorem implies the conservation and vanishing of the energy, see equation
(5.9) below.

Kerins and Boiteux [151] further generalized the mechanical analogy to the van der
Waals theory of nonuniform fluids, in particular the three-phase line contact. There the
application of Noether’s theorem on the translational invariance of the excess free energy
functional determines the force balance around the contact line [151]. The authors
were also able to generalize the concept to more general density functionals [152].
Similarly the rotational invariance of the free energy functional yields with Noether’s
theorem the balance of the global torques around the three-phase contact line [153].
Using the chemical potential balance in the van der Waals theory [SH7, 150] or

alternatively expressing the energy balance within the classical mechanics analogy [150]
one finds

W + 1
2m (∇ρ0(r))2 = 0. (5.9)

Equation (5.9) states a connection between the local and nonlocal contributions and it
can be identified as the first integral of the force balance around the interface [SH7,150].
Using this equation (5.9) we can re-express the tension γgl (5.8) by three different
equivalent expressions to calculate [SH7], similar as in equilibrium [150]:

γgl =
∞∫
−∞

dx m(∇ρ0(x))2 (5.10)

= −2
∞∫
−∞

dx W (ρ0(x)) (5.11)

=
ρl∫
ρg

dρ0

√
−2mW (ρ0). (5.12)

All three routes yield the same unique interfacial tension when ρ0(x), m andW (ρ0) are
chosen such that they yield a constant total chemical potential µ(r). We have shown
that within our theory the interfacial tensions determined from the three equations
(5.10)-(5.12) agree on a very satisfactory level, consider figure 5.1(b). The first nonlocal
route given by equation (5.10) does only depend on the interfacial contribution but it
is independent of the local function W (ρ). This result is indicated by the blue solid
line in figure 5.1(b). Equation (5.11) is exactly the opposite in spirit since it only
depends on local contributions but it is independent of the nonlocal terms and of the
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5 Free interfacial tension of active Brownian particles

Figure 5.1: (a) Sketch of the classical mechanics analogy of the van der Waals theory.
The orange circle indicates a particle with mass m that moves in the (negative) double well
potential energy landscapeW (ρ0). It starts at time x = −∞ at position ρ = ρg and rolls to the
second maximum of W (ρ) at ρl for time x =∞. (b) Plot of the gas-liquid interfacial tension
γgl in dependence of the Péclet-number Pe (main panel) and of the Péclet-number above the
critical point Pe− Pecrit (inset). The three theoretical routes that determine the tension, the
non-local method from equation (5.10) (blue line), the local (yellow dash-dotted line, equation
(5.11)) and the no-profile method (red dotted line, equation (5.12)), agree with each other.
Close to the critical point the tension increases with the mean-field critical exponent 3/2 (black
dashed line). Panel (b) taken from [SH7], c©American Physical Society (2011). All rights
reserved.

constant m. We therefore refer to it as the local route. In figure 5.1(b) this is indicated
by the dash-dotted yellow line. The third relation (5.12) is called the no-profile route
(red dashed line in figure 5.1(b)) as it is independent of the density distribution. This
property distinguishes this route from the two others and it is useful in practice when
ρ0(x) across the interface is not known explicitly.

In general our result for the interfacial tension is unique and positive, γgl > 0, which
can be seen for example from equation (5.10) as both the constant m and the square
of the density gradient are positive. We find that the surface tension increases with
increasing Péclet-number Pe = 3s/σDrot. This control parameter relates the active
free swim speed s against the rotational diffusion with the diffusion constant Drot.
Recall that the length scale σ indicates the particle size as it is determined by the
Weeks-Chandler-Anderson potential. Close to the critical point the increase of the
surface tension is, as expected within the present approximations, similar to the mean
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field exponent 3/2 (dashed black line in figure 5.1(b)), γgl ∝ (Pe− Pecrit)3/2, where
Pecrit is the Péclet-number at the critical point.
Our positive result for the interfacial tension leads us back to the disagreement

about this quantity in the literature. It would be beneficial to identify the origin of
the differences. For carrying out such work the determined Noether sum rules can be
a highly useful resource. The sum rules state nontrivial exact identities and testing
whether they are satisfied within a given approach should be computationally feasible.
Recall that only structural terms (5.3) contributed in the above calculation of the phase
behaviour and the interfacial tension. The flow contributions are important for the
general description of coupled motion and dynamics, but apparently not for the spatial
structures of the system. This conceptual idea was elaborated for general Brownian
many-body systems in nonequilibrium in reference [81]. These authors analyzed the
splitting using computer simulations and determined quantitative expressions for the
splitting within power functional theory [78,79]. For these approximations one can
expand in a power series of the velocity field [80, 82]. Their results are consistent with
our observations and seems to support the utility of separating different contributions,
such as structural and flow parts, of the motion.

6 Conclusions and outlook

In this thesis we studied the consequences of symmetries in many-body problems
on the basis of Noether’s theorem. Hereby we exploited the generality of Noether’s
theorem and investigated the invariances of thermodynamic functionals such as the
grand potential and the free energy rather than symmetries of the action functional
or the corresponding Lagrangian. Our analytic calculations give exact information
about forces, torques, their variances as well as the polarization. We explicitly apply
these sum rules to active and thermal Brownian particles, e.g. in a gravitational field
or under phase separation. The considerations yield new insights into the importance
of symmetries in the treatment of both equilibrium and nonequilibrium many-body
systems. We are able to systematically derive or re-derive sum rules such as the
relation between the external force on an external wall and the mass of all particles
for thermal and active sedimentation and the connection of the global polarization in
active particle system with the boundary currents.
Noether’s theorem is usually applied to invariances of the action functional or

the Lagrangian to determine the corresponding conserved quantities. In order to
apply the theorem to statistical mechanics we considered invariances of classical and
quantum statistical mechanical functionals [SH1,SH2,SH3,SH4,SH5]. This method is
demonstrated for the translational invariance of the grand potential from which one
obtains the vanishing of the global external force in equilibrium systems. This and
the other determined sum rules are consequences of symmetries and they hold in the
grand canonical ensemble [SH1]. The vanishing of both the global external and global
internal force is also valid in the canonical ensemble [SH2]. Some of the obtained
relations, such as the LMBW equation and its inverse, are well-known and have proven
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useful [70], while others, such as the vanishing of the global superadiabatic force or
the dynamical sum rules including memory, constitute (to the best of our knowledge)
new results. From linear order terms of the expansion in the symmetry parameters we
deduce the vanishing of global force and torque terms such as the ideal, the external,
the internal and the superadiabatic contributions. Contributions quadratic in the
transformation parameter relate the variance of forces and torques to the curvature of
their corresponding potentials [SH5].
Locally resolved relations, such as the LMBW equation, can be obtained by func-

tional differentiation of global sum rules, such as the vanishing of the global external
force. Another possibility to obtain local sum rules is to consider invariant canonical
transformations on phase space. An example of this strategy is the derivation of the
force density balance in many-body quantum mechanics [SH4] and the derivation of
the first equation of the YBG hierarchy in classical statistical mechanics [SH3]. Both
are consequences of an invariance against a spatial dependent distortion of positions
and the corresponding changes in momenta. The latter forms the starting point of a
novel implementation of density functional theory (DFT) which works on the basis
of forces instead of potentials and is therefore referred to as force-DFT [SH3]. We
refer the reader to the corresponding paper [SH3] for analytic proofs of the hard
wall contact theorem within the realizations of the potential-DFT and the force-DFT.
This theorem expresses the equality of the bulk pressure with the particle density at
a hard wall up to a factor kBT . For the potential-DFT the wall contact density is
given by the bulk pressure determined from the compressibility route. In contrast the
contact density determined with the force-DFT equals the virial pressure as we show
in reference [SH3], which deviates from the compressibility pressure where using an
approximative free energy functional.
We have demonstrated that the interfacial polarization sum rule ensues from ex-

ploiting the orientation-resolved continuity equation [SH6]. The sum rule relates the
global polarization of particle orientations at the interface of a system to the boundary
values of the swim current. In case of a confined system with vanishing net-flux
through its boundaries the sum rule clearly states that no global polarization persists
in the long time limit. To make further progress we inserted the polarization relation
together with the Noether sum rule of vanishing global internal force in the force
density balance, and then integrated in space and orientation [SH1,SH6]. In case of
active sedimentation this procedure determines the center of mass velocity. In the
steady state limit this yields the equivalence of the gravitational force with the force
exerted on the wall. For motility-induced phase separation it confirms the validity of
the pressure balance at phase coexistence.

We have calculated from the pressure balance the interfacial tension for the planar
free interface between coexisting bulk phases in motility-induced phase separation of
two-dimensional active Brownian particles [SH7]. The treatment works on the basis of
a splitting of the forces balance equation into two different categories of flow forces
and structural forces. Within this theory we have shown that the three ways of the
van der Waals route to determine the interfacial tension, which are consistent with
each other in equilibrium, also agree in nonequilibrium. The value of the tension itself
turned out to be positive and be of order of unity in natural units. Both findings,
the sign and the magnitude, oppose most results from the literature which rather
suggest a very large negative or approximately zero value of the surface tension. As
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our detailed microscopical description satisfies exact Noether identities and determines
a physically reasonable tension the present work casts doubts on the validity and the
interpretation of the findings in the literature.

On the basis of this thesis a number of direct questions and corresponding possible
future projects ensue of which we describe some briefly below. The symmetry operations
we have used so far for the statistical mechanics applications Noether’s theorem have
only been spatial (namely translations and rotations). It might me worthwhile to
investigate the consequences of a temporal symmetry operation [139], such as a time
shift. The comparison with Noether’s theorem in classical mechanics suggests that this
consideration would determine the statistical mechanic analogue to the conservation
of energy which would be certainly a useful sum rule.
The local canonical symmetry transformations could also be extended to beyond

linear order terms, with the quadratic order contributions being especially interesting.
The previously determined force variance relations from second order contributions
correspond to the vanishing of the global force contributions in linear order [SH1,SH5].
In analogy we expect a relation for the locally resolved variance of the total force
from Noether’s theorem for local canonical transformations; we recall that the linear
contribution yields the locally resolved force balance [SH3]. This sum rule might be
beneficial especially when it can the further generalized to nonequilibrium, where this
and related variances appear, such as the van Hove function and van Hove current as
recently investigated in a hard sphere fluid [86, 87] or the stress-stress auto-correlator
in glass-forming fluids [154,155]. In principle it should also be possible to extend our
considerations of the Noether theorem in statistical mechanics from the overdamped
Brownian dynamics to molecular dynamics by considering the invariances of the power
rate functional Gt [79]. Additionally to the density and the current this functional also
depends on the temporal change of the current J̇(r, t), i.e. the acceleration density.
It is interesting to further explore Noether sum rules in the context of quantum
statistical mechanics in particular on the basis of quantum density functional theory
and quantum power functional theory.
Next to these generalizations of Noether’s theorem an investigation of its relation

to Nambu-Goldstone modes might be fruitful. A deep connection would be natural as
Nambu-Goldstone modes result from spontaneous breaking of a continuous symmetry
and the emerge of corresponding excitations. Nambu-Goldstone modes have been
recently studied at fluid interfaces [156,157] and in colloidal dispersions with a glass
transition [158].
Using Noether’s theorem we have shown that the mechanical stability, expressed

by the pressure balance, still holds in nonequilibrium for the simple model system of
phase-separated active Brownian particles. An obvious question that arises is whether
the chemical stability at phase coexistence can be proven similarly to give an exact
chemical potential balance. Further investigations may show the validity of these
balances for different types of particles and further systems in nonequilibrium. Both
the mechanical and the chemical stability balance can contribute to the development
of a general nonequilibrium theory for phase separation and interfacial phenomena
beyond the special case of active Brownian particles.

Actually active Brownian particle as considered here are not the only simple model
system to mimic the behavior of active matter [21–27]. Other popular particle-based
models include run-and-tumble particles (RTPs) [38,39] and active Ornstein-Uhlenbeck
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particles (AOUPs) [40,41]. These particle do not undergo free rotational diffusion but
rather have a fixed orientation which they change randomly with a given tumble rate
(RTPs) or change their self-propulsion velocity according to an Ornstein-Uhlenbeck
process (AOUPs). Nevertheless these different particle types behave similarly to ABPs
and they all tend to phase separate induced by their motility. Considering RTPs
and AOUPs within our theory for phase separations [46, 94] and also investigating
their polarization behaviour [SH6] would allow to identify and quantify differences
and similarities between the different models. Such work could supplement previous
comparisons of active Brownian particles and RTPs [38,39]. It would be interesting
to generalize the considered theory [46, 94] of phase coexistence for ABPs to RTPs
and AOUPs. Of course it is a priori not clear whether the chosen approximations,
especially for the structural chemical potential, are still valid for these different types
of particles. Therefore it would be a test and if successful an indication of the strength
of the description if the resulting phase diagrams and results for the tension are also
in good agreement with simulations.
Additionally to the investigation of active Brownian particles and their phase

coexistence in two dimensions one could also consider the analog in three dimensions.
Active Brownian particles also phase separate in three dimensions but show marked
quantitative differences in their phase behaviour in dependence of the dimensionality
[159]. From a technical point of view one has to change the Fourier series expansion in
the flow force balance equation to an expansion in spherical harmonics. This change
has effects on the entire calculation but should leave the concepts and the main steps
of the derivation unchanged (up to some dimension dependent constant prefactors).

An interesting effect that occurs in three dimensions is the formation of an ordered
dense phase, i.e. an active crystal. This phase has been observed in simulations
by Omar et al. [160] and by Turci and Wilding [161]. Both works report the fluid-
fluid motility-induced phase separation but also realize that this transition is only
metastable with respect to the gaseous-crystal phase separation for a large range
of Péclet-numbers. To be able to describe this effect one could adapt the adiabatic
chemical potential used in the theory to an expression that is valid for crystals (like
from cell theory). If it were possible to predict the crystallization phenomenon one
could also observe whether spontaneous active crystallization occurs in two dimensions
as well albeit one faces difficulties due to hexatic ordering. Such a resulting phase
diagram could be compared with simulation data of references [160,161]. Additionally
one could look for connections to the phase separation of polymer-colloid mixtures in
the theory. Turci and Wilding [161] have identified similarities to such mixtures in the
topology of their phase diagrams.
The isothermal compressibility of systems of active Brownian particles within our

description is also a worthwhile quantity to investigate. In analogy to equilibrium
there are different theoretical methods to determine the compressibility. These were
studied and compared to each other for active Brownian particles by Dulaney et
al. [162]. Turci and Wilding [161] established that the isothermal compressibility is a
useful quantity to characterize phase behaviour as it measures the proximity to the
nonequilibrium critical point at which it diverges as it does in equilibrium. These
authors investigated the compressibility from particle fluctuations in subareas of their
simulations. Investigations of this (and other) fluctuations have shown that those
can form the basis for a description of inhomogeneous fluids in equilibrium [60] and
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are relevant for the observation of hydrophobicity and drying as they can be better
indicators for transitions than the bare density profile [163–165].

To further test the validity of the chosen approximation to the structural contribution
to the chemical potential one could examine phase separation of active particles with
interparticle attraction, e.g. particles interacting with a Lennard-Jones potential.
Clearly the adiabatic chemical potential has to include an additional contribution
which models the attraction [76]. From simulations one knows that the activity weakens
the phase separation when the system is already passively phase-separated [166–168].
Only with increasing swim speed the motility-induced phase separation enters, see
reference [166] for a phase diagram consisting of simulation snapshots. Depending on
the overall density and strength of particle attractions the transition between both
phase separation mechanisms can be with or without a homogeneous phase in between.
Finally it might be interesting to try to include additional external potentials in

the description of phase coexistence [46, 94], which then also split into their flow
and structural contribution as in [81]. This would extend the theory to various new
applications as wetting phenomena [18,19] or active sedimentation [109,110].

The suggested generalizations on the description of MIPS and ABPs such as active
crystallization, adding of interparticle attraction and external potentials are also
interesting to be investigated in the context of Noether’s theorem.
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7 Publications

7.1 List of publications

Overview of full versions of all seven publications contributing to this cumulative
thesis as listed in the table below. All papers have been published [SH1,SH2,SH3,
SH4,SH5,SH6,SH7].

In these original papers we aimed to investigate symmetries and their consequences
on a variety of many-body systems such as active Brownian particles. The resulting
conclusions are useful for both theoretical and physically intuitive descriptions based
on the central concept of forces in statistical mechanics. Specific applications include
the sedimentation and phase behavior of active Brownian particles.
In publication [SH1] we studied how to conceptually transfer and apply Noether’s

theorem to statistical mechanics systems, in particular by exploiting the invariances

List of publications Ref. Pages

Noether’s Theorem in Statistical Mechanics [SH1] 71 – 83
S. Hermann and M. Schmidt, Commun. Phys. 4, 176 (2021)

Why Noether’s Theorem applies to Statistical Mechanics [SH2] 85 – 98
S. Hermann and M. Schmidt, J. Phys.: Condens. Matter 34,
213001 (2022) (Invited Topical Review)

Force density functional theory in- and out-of-equilibrium [SH3] 99 – 114
S. M. Tschopp, F. Sammüller, S. Hermann, M. Schmidt, and
J. M. Brader, Phys. Rev. E 106, 014115 (2022)

Force balance in thermal quantum many-body systems from [SH4] 115 – 132
Noether’s theorem
S. Hermann and M. Schmidt, J. Phys. A: Math. Theor. 55,
464003 (2022)

Variance of fluctuations from Noether invariance [SH5] 133 – 137
S. Hermann and M. Schmidt, Commun. Phys. 5, 276 (2022)

Active interface polarization as a state function [SH6] 139 – 144
S. Hermann and M. Schmidt, Phys. Rev. Research 2,
022003 (2020) (Rapid Communication)

Non-negative interfacial tension in phase-separated active [SH7] 145 – 150
Brownian particles
S. Hermann, D. de las Heras and M. Schmidt, Phys. Rev.
Lett. 123, 268002 (2019)

67

https://doi.org/10.1038/s42005-021-00669-2
https://doi.org/10.1088/1361-648X/ac5b47
https://doi.org/10.1088/1361-648X/ac5b47
https://doi.org/10.1103/PhysRevE.106.014115
https://doi.org/10.1088/1751-8121/aca12d
https://doi.org/10.1088/1751-8121/aca12d
https://doi.org/10.1038/s42005-022-01046-3
https://doi.org/10.1103/PhysRevResearch.2.022003
https://doi.org/10.1103/PhysRevResearch.2.022003
https://doi.org/10.1103/PhysRevLett.123.268002
https://doi.org/10.1103/PhysRevLett.123.268002


7 Publications

of statistical mechanics functionals such as the grand potential instead of the action
functional as is conventionally done. These concepts were illustrated in several
equilibrium and non-equilibrium applications for various different functionals and
different types of inherent invariances. Explicit applications include the sedimenting
and phase separating of active Brownian particles. A pedagogical and detailed
introduction to this topic is given in publication [SH2] and it is therefore a good
starting point for reading. Here we work on the basis of the canonical ensemble rather
than in the grand canonical ensemble [SH1]. Our considerations based on Noether’s
theorem also generalize from classical statistical mechanics to quantum statistical
mechanics [SH4]. In all cases we obtained statements about global forces and torques.
The underlying basic concepts were subsequently generalized in publication [SH5]
from linear to non-linear order terms. This work revealed a connection between
the invariance of the system with respect to symmetry operations and the variance
(auto-correlation) of global forces.

To go beyond global relations, which hold for the whole system, we considered local
symmetries in publications [SH3,SH4]. The invariance of the grand potential under
local canonical transformations generates the local force balance which constitutes
the first order member of the YBG-hierarchy [SH3]. This equation forms the basis
of a force-based density functional theory which was developed in [SH3]. Hence this
approach constitutes an alternative implementation of classical density functional
theory. The work [SH3] also includes proofs for the virial and compressibility contact
theorem.

Related to the sum rules that follow from applying Noether’s theorem we have also
obtained exact statements for the global polarization of particles as a result of the
continuity equation. We developed this expression for particles whose orientations
change by rotational diffusion in publication [SH6]. The global polarization depends
on the boundary values of the current and we applied the sum rule to active Brownian
particles. Those particles are intrinsically non-symmetric and can hence develop a
polarization as they have an assigned swim direction. The polarization sum rule was
verified experimentally [138] and numerically [137] for active Brownian particles under
a local abrupt activity step.
At sufficiently high densities and swim speeds active Brownian particles tend to

phase separate into a dense and a dilute phase. We derived in publication [SH7] results
for the tension of the corresponding interface based on the previously determined
theoretical description of the phase coexistence [46, 94]. We obtain positive values for
the tension in contrast to several claims in the literature [47,49–56]. All determined
sum rules [SH1,SH2,SH3,SH5,SH6] are tested for the theoretical description [46,94]
and turn out to be satisfied.

7.2 Author’s contributions

The publications [SH1,SH2,SH4,SH5,SH6] were designed, carried out and written
in close cooperation with the author’s supervisor M. Schmidt. In [SH6] the au-
thor identified the research question and independently wrote the first draft of the
manuscript.

In publication [SH3] the author derived the local force density balance using Noether’s
theorem (section III.A) together with M. Schmidt. She developed in collaboration with
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7.2 Author’s contributions

J. M. Brader and S. M. Tschopp the proofs of the virial and compressibility contact
theorem (sections III.D and III.E in [SH3]). In publication [SH7] the author performed
the computer algebra calculations and generated the theoretical data. Furthermore
the author contributed to the analytic calculations and to the preparation of the
manuscript.
The author was significantly involved in all work on the revision steps in response

to the referee comments for all the papers.
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7.3 Noether’s Theorem in Statistical Mechanics

ARTICLE

Noether’s theorem in statistical mechanics
Sophie Hermann 1✉ & Matthias Schmidt 1✉

Noether’s calculus of invariant variations yields exact identities from functional symmetries.

The standard application to an action integral allows to identify conservation laws. Here we

rather consider generating functionals, such as the free energy and the power functional, for

equilibrium and driven many-body systems. Translational and rotational symmetry opera-

tions yield mechanical laws. These global identities express vanishing of total internal and

total external forces and torques. We show that functional differentiation then leads to

hierarchies of local sum rules that interrelate density correlators as well as static and time

direct correlation functions, including memory. For anisotropic particles, orbital and spin

motion become systematically coupled. The theory allows us to shed new light on the spatio-

temporal coupling of correlations in complex systems. As applications we consider active

Brownian particles, where the theory clarifies the role of interfacial forces in motility-induced

phase separation. For active sedimentation, the center-of-mass motion is constrained by an

internal Noether sum rule.
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Emmy Noether’s 1918 Theorems for Invariant Variation
Problems1,2, as applied to action functionals both in
particle-based and field-theoretic contexts, form a staple of

our fundamental description of nature. The formulation of energy
conservation in general relativity had been the then open and
vexing problem, that triggered Hilbert and Klein to draw Noether
into their circle, and she ultimately solved the problem3. Her deep
insights into the relationship of the emergence and validity of
conservation laws with the underlying local and global symme-
tries of the system has been exploited for over a century.

While Noether’s work has been motivated by the then ongoing
developments in general relativity, being a mathematician, she
has formulated her theory in a much broader setting than given
by the specific structure of the action as a space-time integral over
a Lagrangian density, as formulated by Hilbert in 1916 for Ein-
stein’s field equations. Her work rather applies to functionals of a
much more general nature, with only mild assumptions of ana-
lyticity and careful treatment of boundary conditions of inte-
gration domains.

In Statistical Physics, the use of Noether’s theorems is sig-
nificantly more scarce, as opposed to both classical mechanics
and high energy physics. Notable exceptions include the square-
gradient treatment of the free gas–liquid interface, cf. Rowlinson
and Widom’s enlightening description4 of van der Waals’ pro-
totypical solution5. In a striking analogy, the square gradient
contribution to the free energy is mapped onto kinetic energy of
an effective particle that traverses in time between two potential
energy maxima of equal height. Exploiting energy conservation in
the effective system yields a first integral, which constitutes a
nontrivial identity in the statistical problem. This reasoning has
been generalized to the delicate problem of the three-phase
contact line that occurs at a triple point of a fluid mixture6,7.
While these treatments strongly rely on the square-gradient
approximation, Boiteux and Kerins also developed a method that
they refer to as variation under extension, which permitted them
to treat more general cases8.

Evans has derived a number of exact sum rules for inhomo-
geneous fluids in his pivotal treatment of the field9. While not
spelling out any connection to Noether’s work, he carefully
examines the effects of spatial displacements on distribution
functions. This shifting enables him, as well as Lovett et al.10 and
Wertheim11 in earlier work, to identify systematically the effects
that result from the displacement and formulate these as highly
nontrivial interrelations (“sum rules”) between correlation func-
tions. This approach was subsequently generalized to higher than
two-body direct12 and density13 correlation functions and the
relationship to integral equation theory was addressed14,15.
Considering also rotations Tarazona and Evans16 have addressed
the case of anisotropic particles, where their sum rules correct
earlier results by Gubbins17. The exploitation of the fundamental
spatial symmetries9–16 appears to be intimately related to Noe-
ther’s thinking. This is no coincidence, as Evans’ classical density
functional approach (DFT) is variational as is the general pro-
blem that she addresses.

DFT constitutes a powerful modern framework for the
description of a broad range of interfacial, adsorption, solvation,
and phase phenomenology in complex systems9,18–20. Examples
of recent pivotal applications include the treatments of
hydrophobicity21–27 and of drying23,24,26, electrolytes near
surfaces28, dense fluid structuring as revealed in atomic force
microscopy29, thermal resistance of liquid–vapor interfaces30, and
layered freezing in confined colloids31. Xu and Rice31 have used
the sum rules of Lovett et al.10 and Wertheim11 (LMBW) to carry
out a bifurcation analysis of the confined fluid state. The sum
rules were instrumental for investigating a range of topics, such as
precursors to freezing32, nonideal33 and cluster crystals34, liquid

crystal deformations35, and –prominently– interfaces of
liquids36–40. A range of further techniques besides DFT was used
in this context, including integral equation theory32,36,39, mode-
coupling theory41, and Mori-Zwanzig equations33,35.

Much of very current attention in Statistical Physics is devoted
to nonequilibrium and active systems that are driven in a con-
trolled way out of equilibrium, such as e.g. active Brownian
particles42–44 and magnetically controlled topological transport of
colloids45–47. The power functional (variational) theory48 (PFT)
offers to obtain a unifying perspective on nonequilibrium pro-
blems such as the above. In PFT the (time-dependent) density
distribution is complemented by the (time-dependent) current
distribution as a further variational field. A rigorous extremal
principle determines the motion of the system, on the one-body
level of correlation functions. The concept enabled to obtain a
fundamental understanding and quantitative description of a
significant array of nonequilibrium phenomena, such as the
identification of superadiabatic forces49, the treatment of active
Brownian particles50–53, of viscous54, structural55,56 and flow
forces56. Crucially, the DFT remains relevant for the description
of nonequilibrium situations, via the adiabatic construction48,49,
which captures those parts of the dynamics that functionally
depend on the density distribution alone, and do so instanta-
neously. Both equilibrium DFT and nonequilibrium PFT provide
formally exact variational descriptions of their respective realm of
Statistical Physics. While action integrals feature in neither for-
mulation, the relevant functionals do fall into the general class of
functionals that Noether considered in her work.

Here we apply Noether’s theorem to Statistical Physics. We
first introduce the basic concepts via treating spatial translations
for both the partition sum and for the free energy density func-
tional. Considering the symmetries of the partition sum does not
require to engage with density functional concepts; the elemen-
tary definition suffices. We demonstrate that this approach is
consistent with the earlier work in equilibrium9–16, and that it
enables one to go, with relative ease, beyond the sum rules that
these authors formulated. In nonequilibrium, we apply the same
symmetry operations to the time-dependent case and obtain
novel exact and nontrivial identities that apply for driven and
active fluids. The three different types of time-dependent shifting
are illustrated in Fig. 1. The resulting sum rules are different from
the nonequilibrium Ornstein–Zernike (NOZ) relations57,58, but
they possess an equally fundamental status. We also consider the
more general case of anisotropic interparticle interactions and
treat rotational invariance both in and out of equilibrium. To
illustrate the theory we apply it to both passive and active phase
coexistence as well as to active sedimentation under gravity.

Results and discussion
Adiabatic state. We start with an initial illustration of Noether’s
concept as applied to the grand potential Ω. We consider spatial
translations of the position coordinate r at fixed chemical

Fig. 1 Illustration of the three types of dynamical transformations
considered. The system is spatially displaced by ϵ= const at all times
(green dashed), analogously to the operation in equilibrium. The system is
dynamically displaced by ϵðt0Þ, such that the spatial displacement vanishes
at the boundaries of the considered time interval, ϵ(0)= ϵ(t)= 0 (cyan
solid). The system is displaced instantaneously only at the latest time t,
such that the differential displacement is _ϵdt (purple dotted).
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potential μ and fixed temperature T. The system is under the
influence of a one-body external potential Vext(r), cf. Fig. 2a. We
take Vext(r) to also describe container walls, such that there is no
need for the system volume as a further thermodynamic variable.
For the moment we only examine systems completely bounded
by external walls. Systems with open boundaries are considered
below. Clearly the value of the grand potential Ω is independent
of the global location of a system. Hence spatial shifting by a
(global) displacement vector ϵ leaves the value of Ω invariant. To
exploit this symmetry in a variational setting, note that the value
of Ω depends on the function Vext(r), hence Vext(r)→Ω con-
stitutes a functional map, at given μ and T. Here the grand
potential is defined by its elementary Statistical Mechanics form
Ω½Vext� ¼ �kBTlnΞ, with the grand partition sum Ξ depending
functionally via the Boltzmann factor on Vext(r). The spatial
displacement amounts to the operation Vext(r)→Vext(r+ ϵ), cf.
Fig. 2b. For small ϵ we can Taylor expand to linear order: Vext(r+
ϵ)=Vext(r)+ δVext(r), where δVext(r)= ϵ ⋅ ∇Vext(r) indicates the
local change of the external potential that is induced by the shift.
As Ω[Vext] is invariant under the shift (which can be shown by
translating all particle coordinates in Ξ accordingly), we have

Ω½Vext� ¼ Ω½Vext þ δVext� ¼ Ω½Vext� þ
Z

dr
δΩ½Vext�
δVextðrÞ

ϵ � ∇VextðrÞ:

ð1Þ

Here the second equality constitutes a functional Taylor expansion
in δVext(r) to linear order, and δΩ[Vext]/δVext(r) indicates the
functional derivative of Ω[Vext] with respect to its argument,
evaluated here at the unshifted function Vext(r), i.e. ϵ= 0. It is a
straightforward elementary exercise9,18 to show via explicit cal-
culation that δΩ[Vext]/δVext(r)= ρ(r), where ρðrÞ ¼
h∑iδðr� riÞieq is the microscopically resolved one-body density
profile. Here ri indicates the position of particle i= 1…N, with N
being the total number of particles, δ(⋅) indicates the Dirac

distribution, and the average is over the equilibrium distribution at
fixed μ and T; the sum runs over all particles i= 1…N.

Comparing the left and right hand sides of (1) and noticing
that ϵ is arbitrary, we conclude

Ftotext ¼ �
Z

drρðrÞ∇VextðrÞ ¼ 0; ð2Þ

where we have defined the total external force Ftotext using the one-
body fields ρ(r) and Vext(r). It is straightforward to show the
equivalence with the more elementary form
Ftotext ¼ �h∑i∇iVextðriÞieq, where ∇i indicates the derivative with
respect to ri. Clearly, (2) expresses the vanishing of the total
external force (consider e.g. the gravitational weight of an
equilibrium colloidal sediment being balanced by the force that
the lower container wall exerts on the particles).

Equation (2) was previously obtained by Baus13. Here we have
identified it as a Noether sum rule for the case of spatial
displacement of Ω[Vext]. We can generate local sum rules by
observing that (2) holds for any form of Vext(r) and that hence
Vext(r)→ ρ(r) constitutes a functional map (defined by the grand
canonical average hρ̂ðrÞieq, which features Vext(r) in the
equilibrium many-body probability distribution). We hence
functionally differentiate (2) by Vextðr0Þ, where r0 is a new
position variable. The first and the nth functional derivatives
yield, respectively, the identities

∇ρðrÞ ¼ �
Z

dr0βH2ðr; r0Þ∇0Vextðr0Þ; ð3Þ

∑
n

α¼1
∇αHn ¼ �

Z
drnþ1βVextðrnþ1Þ∇nþ1Hnþ1; ð4Þ

where β= 1/(kBT), with kB indicating the Boltzmann constant,
H2ðr; r0Þ ¼ �δρðrÞ=δβVextðr0Þ is the two-body correlation func-
tion of density fluctuations, and Hn= δHn−1/δβVext(rn) is its n-
body version9,18. Here position arguments have been omitted for
clarity: Hn≡Hn(r1…rn), and ∇α indicates the derivative with
respect to rα. The variable names r and r0 have been interchanged
in (3) and ∇0 indicates the derivative with respect to r0. The
derivation of (3) and (4) requires spatial integration by parts.
Recall that boundary terms vanish as we only consider systems
with impenetrable bounding walls.

The sum rule (3) has been obtained by LMBW10,11 and by
Evans9 on the basis of shifting considerations. The present
formulation based on Noether’s more general perspective allows
to reproduce (3) with great ease and to generalize to the hierarchy
(4), as previously obtained by Baus13. Equation (3) has the
interpretation of the density gradient ∇ ρ(r) being stabilized by
the action of the external force field, −∇Vext(r). The effect is
mediated by βH2ðr; r0Þ, where the correlation of the density
fluctuations is due to the coupled nature of the interparticle
interactions. Equation (4) is the multi-body generalization of this
mechanism. Via multiplying (3) by Vext(r), integrating over r, and
using (2), and iteratively repeating this process for all orders, one
obtains a multi-body analog of the vanishing external force (2):Z

dr1Vextðr1Þ¼
Z

drnVextðrnÞ∇αHn ¼ 0; ð5Þ

for α= 1…n.
We turn to intrinsic contributions. As Noether’s theorem

poses no restriction on the type of physical functional, we
consider the intrinsic Helmholtz free energy F[ρ] as a
functional of the density profile as its natural argument. Here
a functional Legendre transform9,18 yields F[ρ]=Ω[Vext]
− ∫dr(Vext(r)− μ)ρ(r). Crucially, F[ρ] is independent of
Vext(r), and its excess (over ideal gas) contribution Fexc[ρ] is
specific to the form of the interparticle interaction potential u

Fig. 2 Illustrations of the effects induced by shifting in equilibrium. a In
the presence of external potential Vext(r), the system develops an
inhomogeneous density profile ρ(r), where r denotes the position
coordinate. b Shifting the external potential by a displacement vector −ϵ
(green arrow) induces a local change in external potential δVext(r) (black
arrow) between the original (solid line) and the shifted external potential
(dashed line); the grand potential is invariant, δΩ= 0. c The displaced
density profile (dashed line) implies a local change δρ(r) (black arrow) in
comparison to the initial density profile (solid line), which leaves the
intrinsic free energy unchanged, δF= 0.
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(rN); here we use the shorthand r1…rN ≡ rN. The full intrinsic
free energy functional consists of a sum of ideal gas and excess
contributions, i.e. F½ρ� ¼ kBT

R
drρðrÞ½ln ðρðrÞΛDÞ � 1� þ Fexc½ρ�,

where Λ is the (irrelevant) thermal de Broglie wavelength and D is
the dimensionality of space.

As u(rN) is globally translationally invariant, Fexc[ρ] will not
change its value when evaluated at a spatially displaced density, ρ
(r+ ϵ)= ρ(r)+ δρ(r), where δρ(r)= ϵ ⋅ ∇ ρ(r), cf. Fig. 2(c).
Hence in analogy to (1), we obtain Fexc[ρ]= Fexc[ρ+ δρ]=
Fexc[ρ]+ ∫dr(δFexc[ρ]/δρ(r))ϵ ⋅ ∇ ρ(r). Again ϵ is arbitrary. As
boundary terms vanish in the considered systems, integration by
parts yields

Ftotad ¼ �
Z

drρðrÞ∇δFexc½ρ�
δρðrÞ ¼

Z
drρðrÞfadðrÞ ¼ 0; ð6Þ

where the first equality expresses the total internal force Ftotad ¼
�h∑i∇iuðrN Þieq in DFT language. Hence (6) expresses the fact
that the total internal force vanishes in equilibrium; the more
general time-dependent case is treated below. The functional
derivatives of Fexc[ρ] constitute direct correlation functions9,18,59,
with the lowest order being the one-body direct correlation
function c1(r)=− δβFexc[ρ]/δρ(r). The equilibrium ("adiabatic”)
force field is simply fad(r)= kBT∇ c1(r). This one-body force field
arises from the interparticle forces that all other particles exert on
the particle that resides at position r.

From the global internal Noether sum rule (6), we can obtain
local sum rules by observing that (6) holds for all ρ(r) and hence
that its functional derivative with respect to ρ(r) vanishes
identically, i.e.,

∇c1ðrÞ ¼
Z

dr0c2ðr; r0Þ∇0ρðr0Þ; ð7Þ

∑
n

α¼1
∇αcn ¼ �

Z
drnþ1ρðrnþ1Þ∇nþ1cnþ1; ð8Þ

where c2ðr; r0Þ is the (inhomogeneous) two-body direct correla-
tion function of liquid state theory18; cn≡ cn(r1…rn) is the n-body
direct correlation function, defined recursively via cn+1= δcn/δρ
(rn+1). As identified by LMBW10,11 and Evans9, (7) expresses the
conversion of the density gradient, via the two-body direct
correlations, to the locally resolved intrinsic force field; recall that
fad(r)= kBT∇ c1(r). Via the Noether formalism the correspond-
ing hierarchy (8) is obtained straightforwardly from repeated
functional differentiation12–14 with respect to ρ(r). Note that
similar to the structure of (4), only consecutive terms of order n
and n+ 1 are directly coupled in (8). A multi-body version of (6)
is obtained by multiplying (7) with ρ(r), integrating over r,
exploiting (6), and iterating for all orders. The result is:Z

dr1ρðr1Þ¼
Z

drnρðrnÞ∇αcn ¼ 0; ð9Þ

for α= 1…n. In the case α= n= 1 we recover (6).
The global sum rule (6) of vanishing total internal force can be

straightforwardly obtained by more elementary analysis. We
exploit translation invariance in this non-functional setting:
u(rN)≡ u(r1+ ϵ…rN+ ϵ). Then the derivative with respect to ϵ
vanishes, 0= ∂u(r1+ ϵ…rN+ ϵ)/∂ϵ=∑i∇iu(rN). The latter
expression follows from the chain rule and constitutes the total
internal force (up to a minus sign), which hence vanishes for each
microstate rN. The connection to (the many-body version of)
Newton’s third law actio equals reactio becomes apparent in
the rewritten form−∇αu(rN)=∑i≠α∇iu(rN), for α= 1…N. The
thermal equilibrium average is then trivial and on average
Ftotad ¼ 0. This argument is very general and it remains true if
the average is taken over a nonequilibrium many-body

distribution function. The total internal force in such a general
situation is

Ftotint ¼ �h∑
i
∇iuðrN Þi ¼ 0; ð10Þ

where the average is taken over the nonequilibrium many-body
probability distribution at time t. We have hence proven that the
total internal force vanishes for all times t. In addition, the
particles can possess additional degrees of freedom ωi, i= 1…N,
as is the case for the orientation vectors of active Brownian
particles, to which we return after first laying out the setup in
nonequilibrium.

Nonequilibrium states. To be specific, we consider overdamped
Brownian motion, at constant temperature T and with no
hydrodynamic interactions present18, as described by the Smo-
luchowski (Fokker–Planck) equation. The microscopically
resolved local internal force field is fint(r, t)=− 〈∑iδ(r− ri)∇iu
(rN)〉/ρ(r, t), where the average is over the nonequilibrium dis-
tribution (which evolves in time according to the Smoluchowski
equation) at time t. The total internal force is then the spatial
integral Ftotint ¼

R
drρðr; tÞf intðr; tÞ. Applying Noether’s theorem to

the nonequilibrium case requires to have a variational descrip-
tion, as is provided by PFT48. Here the variational fields are the
time-dependent density profile ρ(r, t) and the time-dependence
one-body current J(r, t)= 〈∑iδ(r− ri)vi〉, where vi(rN, t) is the
configurational velocity of particle i. The microscopically resolved
average velocity profile is v(r, t)= J(r, t)/ρ(r, t). PFT ascertains the
splitting f intðr; tÞ ¼ fadðr; tÞ þ f supðr; tÞ, where the adiabatic force
field is that in a corresponding equilibrium (“adiabatic”) system
with identical instantaneous density profile, fad(r, t)=−∇
δFexc[ρ]/δρ(r, t) and f supðr; tÞ is the superadiabatic internal force
field, obtained as f supðr; tÞ ¼ �δPexc

t ½ρ; J�=δJðr; tÞ, where Pexc
t ½ρ; J�

is the superadiabatic excess free power functional48.
Crucially, fad(r, t) is a density functional, independent of the flow

in the system, while f supðr; tÞ is a kinematic functional, i.e. with
dependence on both ρ(r, t) and J(r, t), including memory, i.e.
dependence on the value of the fields at times < t. As the local force
fields split into adiabatic and superadiabatic contributions, so do the
total forces: Ftotint ¼

R
drρf int ¼

R
drρfad þ

R
drρf sup � Ftotad þ Ftotsup.

We have seen above that Ftotint ¼ Ftotad ¼ 0. Hence also

Ftotsup ¼ �
Z

drρðr; tÞδP
exc
t ½ρ; J�

δJðr; tÞ �
Z

drρf sup ¼ 0: ð11Þ

While the above reasoning required to rely on the many-body level,
the same result (11) can be straightforwardly obtained in a pure
Noetherian way, by considering an instantaneous shift of
coordinates at time t, i.e. Jðr; tÞ ! Jðr; tÞ � _ϵρðr; tÞ, cf. Fig. 3a
(Fig. 3 gives an overview of the three different types of shifting).
Here _ϵ is the corresponding instantaneous change in velocity with
vðr; tÞ ! vðr; tÞ � _ϵ, as obtained by dividing the current by the
density profile. Due to the overdamped nature of the Smoluchowski
dynamics, the internal interactions are unaffected and the shift
constitutes a symmetry operation for the generator of the
superadiabatic forces, Pexc

t ½ρ; J�. Hence the instantaneous current
perturbation δJðr; tÞ ¼ � _ϵρðr; tÞ that is generated by the invariance
transformation leads to Pexc

t ½ρ; J� ¼ Pexc
t ½ρ; Jþ δJ� ¼ Pexc

t ½ρ; J��R
drðδPexc

t ½ρ; J�=δJðr; tÞÞ � _ϵρðr; tÞ. As _ϵ is arbitrary, we obtain
(11). Treating the dynamical adiabatic contribution _F½ρ� ¼R
drJðr; tÞ � ∇δFexc½ρ�=δρðr; tÞ in the same way, we re-obtain (6).

As Noether’s theorem is converse, it allows for alternative
reasoning: the invariance of Pexc

t ½ρ; J� to the instantaneous shift of
the current (or analogously of the velocity) can hence be derived
from (11) by simply reversing the above chain of arguments.
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We can generate nonequilibrium sum rules by differentiating
the Noether identity (11) with respect to J(r, t), which yieldsZ

dr0M2ðr; r0; tÞρðr0; tÞ ¼ 0; ð12Þ

where M2ðr; r0; tÞ ¼ �βδ2Pexc
t ½ρ; J�=δJðr; tÞδJðr0; tÞ is the tensorial

two-body equal-time direct correlation function57,58. Its n-body
version is obtained from Mn+1(r1…rn+1, t)= δMn(r1…rn, t)/δJ(rn+1,
t), and it satisfies the hierarchyZ

drnþ1Mnþ1ρðrnþ1; tÞ ¼ 0; ð13Þ

as obtained by differentiating (12) repeatedly with respect to the
current.

Open boundaries. All our considerations have been based on
applying the symmetry operation to the entire system confined by
external walls. The effects of these system walls are modeled by a
suitable form of Vext(r). The position integrals formally run over
all space, with the cutoff provided by hard (or steeply rising)
external wall potentials. In many practical and relevant situations,
it is more useful to consider a system with open boundaries.
Alternatively one can consider only a subvolume V of the entire
system, and restrict the accounting of force contributions to those
particles that reside inside of V at a given time. In doing so, one
needs to take account of boundary effects60, as the boundaries of
V are open, such that interparticle forces can be transmitted, and
flow can occur.

In case that there are no net boundary contributions, all
previous derived sum rules still hold. This includes e.g. an
effectively one-dimensional system in planar geometry that
evolves to the same bulk state at the left and right boundaries
or if the boundary conditions are periodic. In both cases left and
right boundary terms are equal up to a minus sign and hence
cancel each other. This example can be generalized straightfor-
wardly to more complex geometries.

For nonvanishing net boundary terms additional contributions
arise in the above sum rules. These contributions occur if the

system develops different (bulk) states, e.g. for x→ ±∞ as is
relevant for bulk phase separation (see the section below). We
demonstrate that such cases can be systematically treated in the
current framework, by exemplary considering the total internal
force. Then boundary force contributions arise due to an
imbalance of “outside” particles that exert forces on “inside”
particles. The outside particles are per definition excluded from
the accounting of the total internal force exerted by all particles
inside of V. The sum of all interactions between inside particles
vanishes due to the global internal Noether sum rule (10). For
simplicity we restrict ourselves to systems that interact via short-
ranged pairwise central forces, where Fij indicates the force on
particle i exerted by particle j. So only forces exerted from an
inside to an outside particle contribute. The total internal force
that acts on V is hence Ftotint ¼ h∑0

ij Fiji, where the restricted sum
(prime) runs only over those i∈V and j 2 �V , where �V indicates
the complement of V. The total internal force between particles
inside of V, i.e. i∈V and j∈V, vanishes due to (10). We then
rewrite Ftotint via inserting the identity ∫drδ(r)= 1 twice into the
average. Then the restrictions of the sums can be transferred to
restrictions on the spatial integration domains. As a result the
total internal force acting on V can be expressed via correlation
functions as

Ftotint ¼
Z

V
dr
Z

�V
dr0h ∑

i;j≠i
δðr� riÞδðr0 � rjÞFiji ð14Þ

¼ �
Z

V
dr
Z

�V
dr0ρðrÞρðr0Þgðr; r0Þ∇ϕðjr� r0jÞ; ð15Þ

where ϕ(r) indicates the interparticle pair potential as a function
of interparticle distance r. In order to obtain the form (15) we
have identified the many-body definition of the radial distribution
function gðr; r0Þ ¼ h∑i;j≠iδðr� riÞδðr0 � rjÞi=ðρðrÞρðr0ÞÞ. Recall
that the pair distribution function g and the density-density
correlation function H2, as used in (3)–(5), are related via
H2ðr; r0Þ ¼ ðgðr; r0Þ � 1ÞρðrÞρðr0Þ þ δðr� r0ÞρðrÞ. Equation (15)
still holds for non-conservative interparticle forces, when
�∇ϕðjr� r0jÞ is replaced by the (nongradient) interparticle force
field. We demonstrate in the following section the practical
relevance of these considerations.

Phase coexistence. We turn to situations of phase coexistence. As
we demonstrate, considering a large, but finite subvolume V of
the entire system is useful but it also requires to take boundary
terms into account. Here we take V to be cuboidal and to contain
the free (planar) interface between two coexisting phases, see
Fig. 4a for a graphical illustration. The volume boundaries parallel
to the interface are taken to be seated deep inside either bulk
phase. The internal force contributions on those faces of V that
“cut through” the interface, i.e. have a normal that is perpendi-
cular to the interface normal, vanish by symmetry. It
remains to evaluate (15) over each of the two faces in the
respective bulk region. Therefore the position dependences
simplify to ρ(r)= ρb= const, where ρb indicates the bulk number
density, and the inhomogeneous pair distribution function sim-
plifies as gðr; r0Þ ¼ gðjr� r0jÞ. Furthermore only force contribu-
tions colinear with e, the outer interface normal of the considered
bulk phase b, contribute. For a single face in bulk phase b, it is
straightforward to show that the result is the virial pressure
multiplied by the interface area A, i.e. the force Apbint e, where the
internal interaction pressure pbint in phase b is e.g. given via the

Clausius virial18, pbint ¼ � π
2 ρ

2
b

Rr0
0
dr r2gðrÞ dϕdr in two spatial

Fig. 3 Illustrations of the effects induced by shifting in nonequilibrium.
All transformations affect both the density profile ρ(r, t) (blue) and the
current profile J(r, t) (yellow), while the superadiabatic excess power
functional is invariant, δPexct ¼ 0. Here t indicates the time and r is the
position coordinate. a An instantaneous spatial shift by _ϵ at time t induces a
current change δJ ¼ � _ϵρ. b A static shift by ϵ= const is applied at all times
t. c A time-dependent shift ϵðt0Þ is applied between initial time 0 and final
time t of the considered time interval.
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dimensions (the argument remains general). The constant r0
denotes the range of the interparticle interactions.

The total force density balance for equilibrium phase
separation contains thermal diffusion and the internal force
density, which cancel each other,

0 ¼ �kBT∇ρðrÞ þ ρðrÞf intðrÞ: ð16Þ

Integration over the volume V yields the total force which is
proportional to the pressure. Hence the total internal force Ftotint ¼R
Vdr ρf int on V, cf. (15), amounts to the pressure difference

ðpgint � plintÞAe, where e is the (unit vector) normal of the
interface, pointing from, say, the gas (index g) to the liquid phase
(index l). The total diffusive force is ðpgid � plidÞAe with the
pressure of the ideal gas pid= kBTρ, evaluated at the gas (ρg) and
liquid bulk density (ρl). As there are no external forces (Vext≡ 0)
then requesting the volume V to be forcefree amounts to
pgtot ¼ pltot, where the total pressure is the sum ptot= pid+ pint.
Hence the boundary consideration yields the mechanical
equilibrium condition of equality of pressure in the coexisting
phases.

We conclude that the internal interactions that occur across the
free interface do not influence the (bulk) balance of the pressure
at phase coexistence, as the net effect of these interactions
vanishes. At the heart of this argument lies Noether’s theorem for
invariance against spatial displacements.

Anisotropic particles. We turn to anisotropic interparticle
interactions, where ωi, ϖi are two perpendicular unit vectors that
describes the particle orientation in space. Such systems are
described by an interparticle interaction potential u(rN, ωN, ϖN),
which is assumed a priori to be invariant under spatial transla-
tions. Similarly one-body fields in general depend on position r
and orientations ω and ϖ of the particles, e.g. Vext(r, ω, ϖ) for the

external field. The fully resolved one-body density distribution is
ρ(r, ω, ϖ, t)= 〈∑iδ(r− ri)δ(ω− ωi)δ(ϖ− ϖi)〉.

It is straightforward to ascertain that all the above (force) sum
rules for translation remain valid, as the orientations are unaffected
by translations, upon trivially generalizing from position-only to
position-orientation integration, ∫dr→ ∫drdωdϖ etc.

In the following for simplicity of notation we first consider
uniaxial particles. Uniaxial particles depend only on one single
orientation ωi, as the particles are rotationally invariant around
this vector. Hence the ϖ-dependence of both the one- and many-
body quantities vanish and the total integral simplifies to ∫drdω.

Motility-induced phase separation. We use active Brownian
particles as an example for uniaxial particles. For simplicity we
consider spherical particles (discs) in two dimensions. The par-
ticles repel each other and they undergo self-propelled motion
along their orientation vector ω. Hence an additional one-body
force γsω acts on each swimmer, with γ the friction constant and s
the speed of free swimming. This self-propulsion creates char-
acteristic trajectories (see Fig. 4b for a schematic) which are also
affected by thermal diffusion (omitted in the schematic) of the
particle position ri and orientation ωi. Experimental realizations
of active Brownian particles include e.g. Janus colloids driven by
photon nudging61–65. If the density is high enough, motility-
induced phase separation (MIPS) into an active gas and active
liquid phase occurs for high enough values of the swim speed s, cf.
Fig. 4c.

The force density balance (see e.g. the work of Hermann
et al.52) of such a system in steady state (no time dependence) is

γJðr;ωÞ ¼ � kBT∇ρðr;ωÞ þ ρðr;ωÞf intðr;ωÞ þ γsρðr;ωÞω
þ ρðr;ωÞfextðr;ωÞ:

ð17Þ

The (negative) frictional force density on the left hand side is
balanced with the ideal gas contribution (first term), the
interparticle interactions (second term), the self-propulsion (third
term) and the external contribution (fourth term) on the right
hand side. As in case of the equilibrium phase separation we
integrate (17) over the volume V (see Fig. 4(a) for an illustration)
and over all orientations ω. In the following we discuss each term
separately. For simplicity we assume planar geometry of the
system and we assume a vanishing external force, fext(r, ω)= 0.
Here, the interaction contribution pintAe is obtained as above in
equilibrium via (15), but the virial is averaged over the
nonequilibrium steady state many-body probability distribution.
The integral over the current ∫drdωJ is assumed to vanish in
steady state.

The total swim force that acts on V contributes to the total
force. In the considered situation, the swim force is entirely due to
the polarization Mtot= ∫drdω ωρ of the free interface in MIPS.
Particles at the interface tend to align against the dense phase43 if
they interact purely repulsively (cf. Fig. 4(c)), and they align
against the dilute phase if interparticle attraction is present44. No
such spontaneous polarization occurs in bulk. The interface
polarization is a state function of the coexisting phases53 as
verified both experimentally66 and numerically67. The total swim
force that acts on V is ðpgswim � plswimÞAe, where
pbswim ¼ γsJb=ð2DrotÞ, with Jb the bulk current in the forward
direction ω and Drot indicating the rotational diffusion constant.
Apart from the ideal term no further forces act, cf. the force
density balance (17). The integral over the ideal term is similar to
the total equilibrium ideal contribution, ðpgid � plidÞAe. Combina-
tion of all results from integration yields the total force balance.

As the negative integral over the force density defines the
nonequilibrium pressure, the volume V being force free amounts
to pgtot ¼ pltot, where ptot ¼ pid þ pint þ pswim. Hermann et al.52

Fig. 4 Phase separation into macroscopically distinct phases.
a Illustration of the geometry of phase separation of passive or active
particles. Shown are the gaseous ρg and liquid ρl plateau values of the
density profile (indicated by the color gradient) and the direction vector
e normal to the interface. The total system volume V þ �V consists of the
subvolume V and its complement �V. b Illustration of an active Brownian
particle (blue disc) with position ri and orientation ωi undergoing
translational and rotational diffusion. The self propulsion along ωi creates
directed motion as indicated by the trajectory (magenta line). c Schematics
of motility-induced phase separation into active gas (left) and active liquid
phases (right). The arrows indicate the orientations ωi of the active
particles. The interface is polarized.
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demonstrate the splitting of pint into adiabatic and superadiabatic
contributions and present results for the phase diagram based on
approximate forms for the interparticle interaction contributions.
The pressure, especially its swim contribution is defined in
various different ways in the literature68–73.

We conclude that the internal interactions that occur across the
free interface do not influence the (bulk) balance of the pressure
at phase coexistence, as the net effect of these interactions
vanishes. In essence this argument follows from Noether’s
theorem for invariance against spatial displacements.

Active sedimentation. Sedimentation under the influence of
gravity is a ubiquitous phenomenon in soft matter that has
attracted considerable interest, e.g. for colloidal mixtures74–77 and
for active systems78–81. As sedimentation is a force driven phe-
nomenon the Noether sum rules apply directly, as we show in the
following.

We assume that the system is translationally invariant in the x-
direction and that an impenetrable wall at z= 0 acts as a lower
boundary of the system82 (cf. Fig. 5). We assume the wall-particle
interaction potential to be short-ranged. Its precise form is
irrelevant for the following considerations. The force density
balance for such a system is (17) with the external force field
chosen as

fextðr;ωÞ ¼ �mgez þ fwallðr;ωÞ; ð18Þ
where m denotes the mass of a particle, g is the gravitational
acceleration and ez indicates the unit vector in z-direction. Hence
the external force field fext consists of gravity and the wall
contribution fwall.

To proceed we integrate the force density balance over
all positions r in the volume V and over all orientations ω.
The total integral of the density distribution (per radiant) ∫drdωρ,
as appears in the gravitational term, gives the total number
of particles N. The integral over the total current ∫drdω J
is proportional to the center of mass velocity
vcmðtÞ ¼

R
drdω ρv=

R
drdω ρ ¼ 1

N

R
drdω J. Here vcm(t) is a

global quantity and hence it is independent of both position
and orientation. We first only consider steady states, so the
center of mass velocity vcm(t)= 0 and hence the total
current vanishes. The total thermal diffusion term vanishes
because ∫dr∇ ρ= ∂V dS ρ = 0 as there is no contribution of ρ
from the boundaries ∂V of the integration volume V. At the upper
and lower boundary the density is zero as it vanishes in the wall
and also for z→∞. The left and the right boundary contributions
cancel each other as the density is independent of x due to
translational invariance. The total internal interaction force
density vanishes, Ftotint ¼

R
drdω ρf int ¼ 0, using the global

internal Noether sum rule (10). The integrated swim force
density is proportional to the total polarization Mtot= ∫drdω ωρ.
This quantity vanishes, Mtot= 0, as there is no net flux through
the boundaries in steady state (see Eq. (10) by Hermann et al.53).
Combination of all integrals yields the relation

Ftotwall ¼
Z

drdω ρfwall ¼ mgNez: ð19Þ

Hence the z-component of the total force on the wall Ftot
wall is equal

to the total gravitational force acting on all particles (see Fig. 5 for
a graphical representation). Equation (19) of course also holds for
passive colloids (s= 0).

Keeping the translational invariance in the x-direction, we next
turn to time-dependent systems. Therefore all one-body field in
(17) additionally depend on the time t. Integration of the force
density balance (17) gives identical results for the thermal
diffusion, the internal force density and for the gravitational
contribution as in the above case of steady state. Even for the
time-dependent dynamics these integrals are independent of time
t. The total wall force density is given as Ftotwall ¼ Ftot

wallez and it only
acts along the unit vector in the z-direction ez, due to the
symmetry of the system. The integral of the self-propulsion term
is still proportional to the total polarization. However, the total
polarization does not vanish in general but decays exponentially
(see Eq. (21) by Hermann et al.53),

MtotðtÞ ¼ Mtotð0Þe�Drott; ð20Þ
where Mtot(0) indicates the initial polarization at time t= 0 and
the time constant 1/Drot is the inverse rotational diffusion
constant. Similarly, integration of the current still gives the (time-
dependent) center of mass velocity vcm(t).

Insertion of these results into the spatial and orientational
integration of (17) leads to the total friction force

γNvcmðtÞ ¼ sγMtotð0Þ e�Drott þ Ftot
wallðtÞ ez �mgNez; ð21Þ

which is hence a direct consequence of the Noether sum rule (10).
We find that the x-component of the center of mass velocity
decays simultaneously with the total polarization, cf. the first term
on the right hand side of (21). The z-component of vcm(t)
depends on Mtot(t) and additionally on the time-dependent total
force exerted by the wall and the total graviational force. Hence
measuring the total force on the wall (i.e. by weighing, cf. Fig. 5)
and knowledge of the total initial polarization and the total
particle number allows one to determine the center of mass
velocity. Note that in the limit of long times, t→∞, the total
polarization vanishes and this system evolves to a steady state.
Hence the center of mass velocity vanishes and (19) is recovered.
As we have demonstrated both statements (19) and (21)
ultimately follow from the global Noether identity (10).

Rotational invariance. We return to the general case and initially
consider spatial rotations in systems of spheres, i.e. systems where
u(rN) depends solely on (relative) particle positions, and where it
is invariant under global rotation of all rN around the origin. We
parameterize the rotation by a vector n. The direction of n
indicates the rotation axis and the modulus ∣n∣ is the angle of
rotation. To lowest nonvanishing order, the rotation amounts to
r→ r+ n × r. One-body functions change accordingly: the
external potential undergoes Vext(r)→Vext(r)+ δVext(r), with
δVext(r)= (n × r) ⋅ ∇Vext(r) and the density profile ρ(r)→ ρ(r)+
δρ(r) with δρ(r)= (n × r) ⋅ ∇ ρ(r). Much of the reasoning of the
above case of spatial displacement can be applied readily: Ω[Vext]
is invariant under the rotation, and δΩ= ∫dr(δΩ/δVext(r))
δVext(r)= ∫drρ(r)(n × r) ⋅ ∇Vext(r)= 0. As the rotation vector n
is arbitrary, we can conclude that the total external torque T tot

ext

Fig. 5 Illustration of sedimentation of active Brownian particles under
gravity g. The active particles with orientation ω (black arrows) are
confined by a lower wall and periodic boundary conditions on the sides
(dashed lines). The total force that the swimming particles exert on the
bottom wall (left scale pan) is equal to their weight (right scale pan) in
steady states of the system.
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vanishes in equilibrium13,

T tot
ext � �

Z
drρðrÞðr ´∇VextðrÞÞ ¼ 0: ð22Þ

As this holds true for any form of the applied Vext(r), we can
differentiate with respect to Vextðr0Þ, and obtain13

r ´∇ρðrÞ ¼ �
Z

dr0βH2ðr; r0Þðr0 ´∇0Vextðr0ÞÞ; ð23Þ

∑
n

α¼1
ðrα ´∇αHnÞ ¼ �

Z
drnþ1βVextðrnþ1Þðrnþ1 ´∇nþ1Hnþ1Þ:

ð24Þ
The excess free energy density functional Fexc[ρ] can be treated
accordingly. It is invariant under rotation, as its sole dependence
is on u(rN), which by assumption is rotationally invariant. Ana-
logous to this reasoning, we obtain the result that the total
interparticle adiabatic torque T tot

ad vanishes,

T tot
ad ¼

Z
drρðrÞðr ´ fadðrÞÞ ¼ 0: ð25Þ

Differentiation with respect to the independent field ρ(r) once
and n times yields the respective identities13,14:

r ´∇c1ðrÞ ¼
Z

dr0c2ðr; r0Þðr0 ´∇0ρðr0ÞÞ; ð26Þ

∑
n

α¼1
ðrα ´∇αcnÞ ¼ �

Z
drnþ1ρðrnþ1Þðrnþ1 ´∇nþ1cnþ1Þ: ð27Þ

The multi-body versions of the theorems of vanishing total
external (22) and adiabatic internal (25) torques are, respectively,Z

dr1Vextðr1Þ¼
Z

drnVextðrnÞðrα ´∇αHnÞ ¼ 0; ð28Þ

and Z
dr1ρðr1Þ¼

Z
drnρðrnÞðrα ´∇αcnÞ ¼ 0; ð29Þ

for α= 1…n. These identities are respectively derived from (23)
by multiplying with Vext(r), integrating over r and exploiting (22),
and from (26) by multiplying with ρ(r), integrating over r and
exploiting (25), and iteratively repeating for each order n.

On the many-body level, it is straightforward to see that the
total internal torque−∑i(ri ×∇iu(rN))= 0. Hence, as this
identity holds for each microstate, its general, nonequilibrium
average vanishes, T tot

int ¼ 0. The force field splitting f int ¼ fad þ
f sup induces corresponding additive structure for the internal total
torque: T tot

int ¼ T tot
ad þ T tot

sup, with the total superadiabatic (inter-

nal) torque T tot
sup ¼

R
drρðrÞ½r ´ f supðr; tÞ�. As T tot

int ¼ T tot
ad ¼ 0, we

conclude T tot
sup ¼ 0, ∀ t.

To apply Noether’s theorem to the power functional, we
consider an instantaneous rotation, with infinitesimal angular
velocity _n at time t. The effect is a change in current J→ J+ δJ
with δJ ¼ ð _n ´ rÞρðrÞ. Correspondingly, the velocity field acquires
an instantaneous global rotational contribution, according to
vðr; tÞ ! vðr; tÞ þ _n ´ r. The superadiabatic excess power func-
tional is invariant under this operation and hence Pexc

t ½ρ; J� ¼
Pexc
t ½ρ; Jþ δJ� ¼ Pexc

t ½ρ; J� þR
drðδPexc

t ½ρ; J�=δJðr; tÞÞ � ð _n ´ rÞρðr; tÞ.
As _n is arbitrary, we can conclude

T tot
sup ¼

Z
drρðr; tÞðr ´ f supðr; tÞÞ ¼ 0; 8t; ð30Þ

as is consistent with the result of the above many-body derivation.
As (30) holds for any (trial) J(r, t), the derivative of (30) with respect
to J(r, t) vanishes. Hence

Z
drρðr; tÞðr ´M2ðr; r0; tÞÞ ¼ 0; ð31Þ

where the cross product with a tensor is defined via contraction
with the Levi-Civita tensor. At nth order we obtain

Z
drnρðrn; tÞðrn ´MnÞ ¼ 0: ð32Þ

This identity and (31) express the vanishing of the total
superadiabatic torque, when resolved on the n-body level of (time
direct) correlation functions.

Orbital and spin coupling. The case of rotational symmetry of
uniaxial particles is clearly more complex, as both particle coor-
dinates and particle orientations are affected by a global (“rigid”)
operation on the entire system, i.e. both positions and orienta-
tions are rotated consistently. Noether’s theorem ensures though
that this operation is indeed the fundamental one, and that the
physically expected coupling of orbital and spinning effects will
naturally and systematically emerge. Here we use (common)
terminology for referring to spin as orientation vector rotation
(i.e. particle rotation around its center), as opposed to orbital
rotation (of position vector) around the origin of position space.
Hence all the above considered torques that already occur in
systems of spheres are of orbital nature. These of course remain
relevant for anisotropic particles, but the nontrivial orientational
behavior of the latter will generate additional spin torques. The
global rotation consists of an orbital part, r→ r+ n × r, and a
spin part, ω→ω+ n × ω; see Fig. 6 for a graphical
representation.

For anisotropic systems the external field naturally acquires
dependence on position r and orientation ω, i.e. Vext(r, ω), where
−∇Vext(r, ω) is the external force field as before, and
−ω ×∇ωVext(r, ω) is the external torque field, where ∇ω is the
derivative with respect to ω in orientation space. Hence the
induced change of external potential is δVext(r, ω)= (n × r) ⋅ ∇
Vext+ (n × ω) ⋅ ∇ωVext. This change leaves the grand potential Ω
[Vext] invariant, hence δΩ= ∫drdω(δΩ/δVext(r, ω))n ⋅ (r ×∇Vext

+ ω ×∇ωVext)= 0, from which we identify the rotational Noether
theorem for the total external torque of anisotropic particles:

T tot
ext ¼ �

Z
drdωρðr;ωÞðr ´∇Vext þ ω ´∇ωVextÞ ¼ 0: ð33Þ

Fig. 6 Illustration of the rotation operation of uniaxial particles. The
particles (rectangular shapes) at position r and with orientation ω are
shown in original (black) and rotated (blue) configuration, where n
indicates the rotation axis (direction) and angle (length).
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Differentiation with respect to Vext(r, ω) yields

r ´∇ρþ ω ´∇ωρ ¼ �
Z

dr0dω0βH2ðr;ω; r0;ω0Þðr0 ´∇0V 0
ext þ ω0

´∇0ωV 0
extÞ;

ð34Þ

∑
n

α¼1
ðrα ´∇αHn þ ωα ´∇

ω
αHnÞ

¼ �
Z

dr0dω0βV 0
extðr0 ´∇0Hnþ1 þ ω0 ´∇0ωHnþ1Þ;

ð35Þ

where we have used V 0
ext ¼ Vextðr0;ω0Þ as a shorthand,

H2ðr;ω; r0;ω0Þ ¼ �δρðr;ωÞ=δβVextðr0;ω0Þ is the density-density
correlation function, and its n-body version Hn=Hn(r1, ω1…rn,
ωn) with Hn+1= δHn/δβVext(rn+1, ωn+1); in (35) the prime refers
to the n+ 1th degrees of freedom. On all levels of n-body
correlation functions, the spin and orbital torques remain
coupled.

Turning to internal torques, the change of density upon global
rotation is δρ(r, ω)= n ⋅ (r ×∇ ρ+ ω ×∇ωρ) and the net effect on
the excess free energy is δFexc= ∫drdω(δFexc[ρ]/δρ(r, ω))n ⋅
(r ×∇ ρ+ ω ×∇ωρ)= 0. We hence obtain

T tot
ad ¼

Z
drdωρðr;ωÞðr ´ fad þ τadÞ ¼ 0; ð36Þ

where the adiabatic spin torque field is τad(r, ω)=
− ω ×∇ωδFexc[ρ]/δρ(r, ω). From differentiation with respect to
ρ(r, ω) we obtain

r ´ fad þ τad ¼
Z

dr0dω0c2ðr;ω; r0;ω0Þðr0 ´∇0ρ0 þ ω0 ´∇0ωρ0Þ;
ð37Þ

∑
n

α¼1
ðrα ´∇αcn þ ωα ´∇

ω
α cnÞ

¼ �
Z

dr0dω0ρ0ðr0 ´∇0cnþ1 þ ω0 ´∇0ωcnþ1Þ;
ð38Þ

where ρ0 ¼ ρðr0;ω0Þ. Multi-body versions of (33) and (36) read asZ
d1Vextð1Þ¼

Z
dnVextðnÞðrα ´∇α þ ωα ´∇

ω
α ÞHn ¼ 0 ð39Þ

and Z
d1ρð1Þ¼

Z
dnρðnÞðrα ´∇α þ ωα ´∇

ω
α Þcn ¼ 0: ð40Þ

Here we have used the shorthand notation 1≡ r1, ω1 etc., and the
derivation is analogous to the above rotational case of spherical
particles.

The two-body sum rules (34) and (37) are identical to those
obtained by Tarazona and Evans16 using rotational invariance
arguments applied directly to correlation functions. Our meth-
odology not only allows to naturally re-derive their results, but
also to identify the full gamut of adiabatic rotatational sum rules,
from the global statements (33) and (36) to the infinite
hierarchies (35) and (38) (we use notational convention different
from Tarazona and Evans16: our ∇ω is (only) a partial derivative
with respect to ω, i.e. ∇ω≡ ∂/∂ω, whereas their ∇ω≡ ω × ∂/∂ω.
The modulus is fixed, ∣ω∣= 1, in both versions. Tarazona and
Evans16 notate H2 as G in their (18) and (19)).

Again for each microstate ∑iðri ´∇iuþ ωi ´∇ω
i uÞ ¼ 0 and

hence on average T tot
int ¼ 0. From the splitting

T tot
int ¼ T tot

ad þ T tot
sup, we conclude T tot

sup ¼ 0. From rotational
invariance of Pexc

t ½ρ; J; Jω�, where Jω(r, ω, t) is the rotational
current50, against an instantaneous angular “kick” δJ ¼ ð _n ´ rÞρ

and δJω ¼ ð _n ´ωÞρ, we find

T tot
sup ¼ �

Z
drdωρðr;ω; tÞ r ´

δPexc
t

δJ
þ ω ´

δPexc
t

δJω

� �
¼ 0: ð41Þ

Local sum rules can be obtained straightforwardly by building
derivatives with respect to J(r, ω, t) and Jω(r, ω, t). The result is:Z

dr1dω1ρð1Þ½r1 ´ δ=δJð1Þ þ ω1 ´ δ=δJ
ωð1Þ�Mn;m ¼ 0: ð42Þ

Here the tensorial equal-time direct correlation functions are defined
as Mn;m ¼ �βδnþmPexc

t =δJð1Þ¼ δJðnÞδJωðnþ 1Þ¼ JωðnþmÞ,
where the roman numerals refer to position, orientation and time t
(no index), e.g. 1≡ r1,ω1, t. We have assumed that all functional
derivatives commute.

So far we have restricted ourselves to uniaxial particles. The
derived rotational sum rules can be analogously determined for
general anisotropic particles with an additional orientation vector
ϖ. This can be done by simply replacing ω ×∇ω→ ω ×∇ω+
ϖ ×∇ϖ, ω ´ ∂=∂Jω ! ω ´ ∂=∂Jω þ ϖ ´ ∂=∂Jϖ and ∫drdω→ ∫
drdωdϖ in (33)–(42). This replacement also affects the adiabatic
spin torque field τad and all one-body field depend additionally to
r and ω on the orientation ϖ. For anisotropic particles there exists
a more general version of (42) by exchange of Mn,m→Mn,m,l,
where l denotes the number of functional derivations with respect
to the rotational current Jϖ. The indices n and m belong to the
number of functional derivatives with respect to J and Jω as
before.

Memory invariance. In the above treatment of nonequilibrium
situations we have exploited invariance against an instantaneous
transformation applied to the system. As we have shown, the
corresponding Noether identities carry imminent physical
meaning. These sum rules hold for the nonequilibrium effects
that arise from the interparticle interaction, i.e. they constrain
superadiabatic forces and torques, as obtained from translation
and rotation, respectively. Here we exploit that the corresponding
nonequilibrium functional generator Pexc

t carries further invar-
iances, once one allows the transformation to act also on the
history of the system. As we demonstrate in the following, the
resulting identities constitute exact constraints on the memory
structure that are induced by the coupled interparticle interac-
tions. Recall that a reduced one-body description of a many-body
system is generically non-Markovian (i.e. nonlocal in time)83. The
study of memory kernels, often carried out in the framework of
generalized Langevin equations, is a topic of significant current
research activity84–91.

Our approach differs from these efforts in that no a priori
generic form of a reduced equation of motion is assumed. Rather
our considerations are formally exact and interrelate (and hence
constrain) time correlation functions, which are generated from
the central nonequilibrium object Pexc

t via functional differentia-
tion. Very little is known about the memory structure of
superadiabatic forces, with exceptions being the NOZ
framework57,58 and the demonstration of the relevance of
memory for the observed viscoelasticity of hard sphere liquids92.
Both the Ornstein–Zernike (OZ) and NOZ relations are different
from the Noether identities. The former relations are a direct
consequence of the generality of the variational principle. Per se,
neither the OZ nor the NOZ relations reflect the Noether
symmetries.

Recalling the illustrated overview of the different types of
shifting in Fig. 1, in the following we treat two further types of
invariance transformations: One is the static transformation. This
operation is formally analogous to the above equilibrium
treatment of the adiabatic state, but it is here carried out in the
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same way at all times. This static transformation contrasts (and
complements) the instantaneous transformation used above for
the time-dependent case. The corresponding changes to density
and current are graphically illustrated in Fig. 3b. The second
invariance operation is that of memory shifting, where the
transformation parameter is taken to be time-dependent, cf.
Fig. 3c for a graphical representation. For simplicity we restrict
ourselves to cases where at both ends of the considered time
interval, no shifting occurs (i.e. such that the transformation is
the identity at the limiting times).

The static spatial shift consists of ρðr; t0Þ ! ρðrþ ϵ; t0Þ and
Jðr; t0Þ ! Jðrþ ϵ; t0Þ, where the time argument t0 is arbitrary, and
ϵ= const characterizes magnitude and direction of the transla-
tion, see the illustration in Fig. 3b. Hence the time derivative
_ϵ ¼ 0 such that the current does not acquire any displacement
contribution, as also � _ϵρ ¼ 0 at all times. The spatial shift applies
to all times t0 considered, and we can restrict ourselves to
0≤ t0 ≤ t. Hence the changes in kinematic fields are to first order
given by δρðr; t0Þ ¼ ϵ � ∇ρðr; t0Þ and δJðr; t0Þ ¼ ϵ � ∇Jðr; t0Þ. As
Pexc
t originates solely from the interparticle interaction potential,

the invariance of u(rN) against the global displacement at all
times induces invariance of Pexc

t . Hence
Pexc
t ½ρ; J� ¼ Pexc

t ½ρþ δρ; Jþ δJ� ¼ Pexc
t ½ρ; J� þ δPexc

t . Here δPexc
t

indicates the change in superadiabatic free power and due to
the invariance δPexc

t ¼ 0. On the other hand we can express δPexc
t

via the functional Taylor expansion. To linear order the result
consists of two integrals. One integral comes from the time-slice
functional derivative at fixed (end) time t and is given byR
dr½ðδPexc

t =δρÞδρþ ðδPexc
t =δJÞ � δJ�. The second integral is from a

functional derivative at (variable) time t0, given byR t
0 dt

0 R dr0½ðδPexc
t =δρ0Þδρ0 þ ðδPexc

t =δJ0Þ � δJ0�, where the prime
indicates dependence on arguments r0 and t0. We then exploit
that the displacement ϵ of the static shift (which parametrizes the
changes in density and in current) is arbitrary. The result is a
global nonequilibrium Noether theorem, given byZ

dr
�δPexc

t

δρ
∇ρ� f sup � ∇JT

�
þ

Z t

0
dt0

Z
dr0

�δPexc
t

δρ0
∇0ρ0 þ δPexc

t

δJ0
� ∇0J0T

�
¼ 0;

ð43Þ

where we have used the relationship of the superadiabatic force
field to its generator, f supðr; tÞ ¼ �δPexc

t ½ρ; J�=δJðr; tÞ, the primed
symbol ∇0 indicates the derivative with respect to r0, and the
superscript T denotes the matrix transpose (in index notation the
k-component of the vector a ⋅ ∇ bT is ∑k0ak0∇kbk0 ).

Equation (43) constitutes a global identity that links
density, current, and superadiabatic force field in a nontrivial
spatial and temporal form. As the central variation principle48

allows to vary J(r, t) freely, (43) remains true upon building the
functional derivative with respect to J(r, t). The result is a local
identity

β∇f sup ¼
Z

dr0ðm2ðr; r0; tÞ∇0ρðr0; tÞ þM2ðr; r0; tÞ � ∇0JTðr0; tÞÞ

þ
Z t

0
dt0

Z
dr0ðm2ðr; t; r0; t0Þ∇0ρ0 þM2ðr; t; r0; t0Þ � ∇0J0TÞ;

ð44Þ
where two-body time direct correlation functions occur in
vectorial form: m2ðr; r0; tÞ ¼ �βδ2Pexc

t =δJðr; tÞδρðr0; tÞ,
m2ðr; t; r0; t0Þ ¼ �βδ2Pexc

t =δJðr; tÞδρðr0; t0Þ, as well as in tensorial
form: M2ðr; r0; tÞ ¼ �βδ2Pexc

t =δJðr; tÞδJðr0; tÞ, M2ðr; t; r0; t0Þ ¼
�βδ2Pexc

t =δJðr; tÞδJðr0; t0Þ. Here we have made the (common)
assumption that the second derivatives can be interchanged.

Repeated differentiation of (44) with respect to J(r, t) generates
a hierarchy,

∑
n�1

α¼1
∇αMn�1ðrn�1; tÞ ¼

Z
drnðmnðrn; tÞ∇nρðrn; tÞ þMnðrn; tÞ

� ∇nJðrn; tÞTÞ

þ
Z t

0
dt0

Z
drnðmnðrn�1; t; rn; t

0Þ∇nρðrn; t0Þ þMnðrn�1; t; rn; t
0Þ

� ∇nJðrn; t0ÞTÞ;
ð45Þ

where the n-body equal-time direct correlation functions of rank
n are Mnðrn; tÞ ¼ �βδnPexc

t =δJðr1; tÞ¼ δJðrn; tÞ and mnðrn; tÞ ¼
�βδnPexc

t =δJðr1; tÞ¼ δJðrn�1; tÞδρðrn; tÞ, where we have used the
shorthand rn= r1…rn. Furthermore at unequal times we have:
Mnðrn�1; t; rn; t

0Þ ¼ �βδnPexc
t =δJðr1; tÞ¼ δJðrn�1; tÞδJðrn; t0Þ as a

rank n tensor, and also a rank n− 1 tensor
mnðrn�1; t; rn; t

0Þ ¼ �βδnPexc
t =δJðr1; tÞ¼ δJðrn�1; tÞδρðrn; t0Þ.

In the second case, we consider a more general invariance
transformation that is obtained by letting the transformation
parameter be time-dependent. In this case of time-dependent
shifting, we prescribe a displacement vector ϵðt0Þ for times
0≤ t0 ≤ t, i.e. between the initial time, throughout the past and up
to the "current” time t. We restrict ourselves to vanishing shift at
the boundaries of the considered time interval, i.e. ϵ(0)= ϵ(t)= 0.
Due to the overdamped character of the dynamics, its
interparticle contributions are unaffected by this transformation,
and hence Pexc

t is invariant. The induced changes that the density
and the current acquire arise from shifting their position
argument, but the current also acquires an additive shifting
current contribution. The latter contribution is analogous to the
(sole) effect that is present in the instantaneous shifting, but here
applicable at all times (in the considered time interval).

Hence the time-dependent shifting, as illustrated in Fig. 3c,
induces the following changes to the density and the current:
δρðr0; t0Þ ¼ ϵðt0Þ � ∇0ρðr0; t0Þ and δJðr0; t0Þ ¼ ϵðt0Þ � ∇Jðr0; t0Þ�
_ϵðt0Þρðr0; t0Þ, where _ϵðt0Þ ¼ dϵðt0Þ=dt0. Next we can regard Pexc

t ½ρþ
δρ; Jþ δJ� as a functional of ϵðt0Þ and _ϵðt0Þ. Its invariance
amounts to stationarity, i.e. vanishing first functional derivative,
with respect to the displacement. This problem, in particular for
the present case of fixed boundary values, amounts to one of the
most basic problems in the calculus of variations. It is realized,
e.g., in the determination of catenary curves and indeed, in
Hamilton’s principle of classical mechanics. Exploiting the
corresponding Euler–Lagrange equation leads to

d
dt0

Z
dr0m0

1ρ
0 þ

Z
dr0m0

1 � ∇0J0T þ
Z

dr0m0
1∇

0ρ0 ¼ 0; ð46Þ

where the one-body time direct correlation functions are
m0

1ðr0; t0; tÞ ¼ �βδPexc
t =δJðr0; t0Þ and m0

1ðr0; t0; tÞ ¼ �βδPexc
t =

δρðr0; t0Þ. Differentiation with respect to J(r, t) yields again a local
memory identity.

Conclusions. We have demonstrated that Noether’s theorem for
exploiting symmetry in a variational context has profound
implications for Statistical Physics. Known sum rules can be
derived with ease and powerfully generalized to full infinite
hierarchies, to the rotational case, and to time-dependence in
nonequilibrium. Recall the selected applications31–41 of the
equilibrium sum rules, as we have laid out in the introduction.
For the time-dependent case, we envisage similar insights from
using the newly formulated nonequilibrium sum rules in inves-
tigations of e.g., the dynamics of freezing, of liquid crystal flow,
and of driven fluid interfaces. On the conceptual level, Noether’s
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theorem assigns a clear meaning and physical interpretation to all
resulting identities, as being generated from an invariance prop-
erty of an underlying functional generator. Although the sym-
metry operation that we considered are simplistic, and only their
lowest order in a power series expansion needs to be taken into
account, a significantly complex body of sum rules naturally
emerges. Hence the application of Noether’s theorem is sig-
nificantly deeper than mere exploiting of symmetries of argu-
ments of correlation functions, i.e. that the direct correlation
function c2ðr; r0Þ in bulk fluids depends solely on jr� r0j. Rather,
as governed by functional calculus, coupling of different levels of
correlation functions occurs.

The Noether sum rules are different from the variational
principle, as embodied in the Euler–Lagrange equation. On the
formal level, the difference is that the Euler–Lagrange equation
(both of DFT and of PFT) is a formally closed equation on the
one-body level. In contrast, the Noether rules couple n- and (n+
1)-body correlation functions, hence they are of genuine
hierarchical nature. They also describe different physics, as the
Euler–Lagrange equation expresses a chemical potential equili-
brium in DFT and the local force balance relationship in PFT. In
contrast, the Noether identities stem from the symmetry proper-
ties of the respective underlying physical system.

The standard DFT approximations, ranging from simple
local, square-gradient, and mean-field functional to more
sophisticated weighted-density-schemes including fundamental
measure theory satisfy the internal force relationships. This can
be seen straightforwardly by observing that these functionals
do satisfy global translation invariance (the value of the
free energy is independent of the choice of coordinate origin).
All higher-order Noether identities are then automatically
satisfied, as these inherit the correct symmetry properties from
the generating (excess free energy) functional. Our formalism
hence provides a concrete reason, over mere empirical experience,
why the practitioners’ choices for approximate functionals are
sound. The situation for more complex DFT schemes could
potentially be different though. As soon as, say, self-consistency
of some form is imposed, or coupling to auxiliary field comes into
play, it is easy to imagine that the Noether identities help in
restricting choices in the construction of such approximation
schemes.

The sum rules imposed by the three types of dynamical
displacements are satisfied within the velocity gradient form of
the power functional54,56. It is straightforward to see that the
functional is independent of the coordinate origin (static
shifting). For the cases of dynamical shifting, the invariance of
the functional stems from invariance of the velocity field against
shifting. For both instantaneous and memory shifting, the
velocity gradient remains invariant under the displacement.

We envisage that the higher than two-body Noether identities
can facilitate the construction of advanced liquid state/density
functional approximations. Such work should surely be highly
challenging. In the context of fundamental measure theory (see
e.g. the work by Roth20 for an enlightening review) it is worth
recalling that in Rosenfeld’s original 1989 paper93, he calculated
the three-body direct correlation function from his then newly
proposed functional. The result for the corresponding three-body
pair correlations compared favorably against simulation data.
Furthermore, the recent insights into two-body correlations in
inhomogeneous liquids94 and crystals95 demonstrates that work-
ing with higher-body correlation functions is feasible.

In future work it would be very beneficial to bring together the
Noether identities with the nonequilibrium Ornstein–Zernike
relations57,58, in order to aid construction of new dynamical
approximations. One could exploit the rotational invariance of
the superadiabatic excess power functional Pexc

t to gain deeper

insights in its memory structure and also generalize the
translational memory relations (43)–(46) to anisotropic particles.
It would be highly interesting to apply (49) to the recently
obtained direct correlation function of the hard sphere crystal.
This would allow to investigate whether Triezenberg and
Zwanzig’s concept that they originally developed for the free
gas–liquid interface applies to the also self-sustained density
inhomogeneity in a solid. Furthermore, addressing further cases
of self motility42–44, including active freezing96,97, as well as
further types of time evolution, such as molecular dynamics or
quantum mechanics should be interesting. This is feasible, as the
Noether considerations are not restricted to overdamped classical
systems, as (formal) power functional generators exist for
quantum98 and classical Hamiltonian99 many-body systems. On
the methodological side, besides power functional theory, our
framework could be complemented by e.g. mode-coupling theory
and Mori-Zwanzig techniques100, as well as approaches beyond
that101. Given that the equilibrium force sum rules are crucial in
the description of crystal33,34 and liquid crystal35 excitations, the
study of such systems under drive is a further exciting prospect.

Methods
Relationship to classical results. We give an overview of how the Noether sum
rules relate to previously known results. The famous LMBW-equation was derived
independently by Lovett et al.10 and by Wertheim11 and reads

∇ln ρðrÞ þ β∇VextðrÞ ¼
Z

dr0c2ðr; r0Þ∇0ρðr0Þ: ð47Þ

We can conclude that (47) is a combination of the local internal Noether sum rule
(7) for translational symmetry and the equilibrium Euler–Lagrange equation
c1ðrÞ ¼ ln ρðrÞ þ β∇VextðrÞ � βμ, where μ indicates the chemical potential. LMBW
also derived a lesser known external relation, which is equivalent to (47) and reads

∇ρðrÞ þ βρðrÞ∇VextðrÞ ¼
Z

dr0ðgðr; r0Þ � 1ÞρðrÞρðr0Þ∇0Vextðr0Þ: ð48Þ

We find that (48) contains the local external Noether sum rule (3) along with the
relation H2ðr; r0Þ ¼ ðgðr; r0Þ � 1ÞρðrÞρ0ðr0Þ þ ρðrÞδðr� r0Þ18.

The Triezenberg–Zwanzig equation102 holds for vanishing external potential
Vext(r)= 0 and is given by

∇ln ρðrÞ ¼
Z

dr0c2ðr; r0Þ∇0ρðr0Þ: ð49Þ

Originally (49) was derived for the free liquid–vapor interface in a parallel
geometry. We find that the relation consists of the local internal Noether sum rule
(7) and the equilibrium Euler–Lagrange equation. The LMBW equation (48)
reduces to the Triezenberg–Zwanzig equation (49) for cases of Vext(r)= 0.

Another related equation is the first member of the Yvon–Born–Green (YBG)
hierarchy103,104,

ρð∇ln ρðrÞ þ β∇VextðrÞÞ ¼ �β

Z
dr0gðr; r0ÞρðrÞρðr0Þ∇ϕðjr� r0jÞ; ð50Þ

where ϕ(r) denotes the interparticle pair potential as before. Although (50) has a
similar structure as the LMBW equation, it is not based on symmetry or Noether
arguments but arises from integration out of degrees of freedom. If one would like
to include the translational symmetry one can simply replace the left hand side of
(50) with the right hand side of the LMBW equation (47), which leads toZ

dr0c2ðr; r0Þ∇0ρðr0Þ ¼ �β

Z
dr0gðr; r0Þρðr0Þ∇ϕðjr� r0jÞ: ð51Þ

Some of the here derived sum rules are rederivations of known relations. We
reiterate the relationships. In his overview Baus13 showed that in equilibrium the
total external (2) and internal (6) force vanish and derived the corresponding local
hierarchies (3), (4) and (7), (8). Similar sum rules13 hold for the external (22) and
internal (25) total torques and their corresponding hierarchies (23), (24) and (26),
(27). Tarazona and Evans16 generalized these equations for uniaxial particles and
derived the first order of the external (34) and internal (37) hierarchies due to
rotations.

To the best of our knowledge the hierarchies of global Noether sum rules, such
as (5), (9), (28), and (29), have not been determined previously. Furthermore the
global external (33) and internal (36) Noether sum rules for uniaxial colloids and
their corresponding hierarchies (35) and (38) (with exception of the first order) are
reported here for the first time. As the considerations in the literature focused on
equilibrium, all our nonequilibrium relations, as e.g. (11)–(13) and especially the
ones including memory (43)–(46) have not been found before.
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Abstract
Noether’s theorem is familiar to most physicists due its fundamental role in linking the
existence of conservation laws to the underlying symmetries of a physical system. Typically
the systems are described in the particle-based context of classical mechanics or on the basis
of field theory. We have recently shown (2021 Commun. Phys. 4 176) that Noether’s reasoning
also applies to thermal systems, where fluctuations are paramount and one aims for a statistical
mechanical description. Here we give a pedagogical introduction based on the canonical
ensemble and apply it explicitly to ideal sedimentation. The relevant mathematical objects,
such as the free energy, are viewed as functionals. This vantage point allows for systematic
functional differentiation and the resulting identities express properties of both macroscopic
average forces and molecularly resolved correlations in many-body systems, both in and
out-of-equilibrium, and for active Brownian particles. To provide further background, we
briefly describe the variational principles of classical density functional theory, of power
functional theory, and of classical mechanics.

Keywords: statistical mechanics, density functional theory, power functional theory,
invariance, Noether’s theorem, liquid state theory, sum rules

(Some figures may appear in colour only in the online journal)

1. Introduction

Symmetries and their breaking in often stunningly beautiful
ways are at the core of a broad range of phenomena in physics,
from phase transitions in condensed matter to mass generation
via the Higgs mechanism. Most readers will be very familiar
with the importance of symmetry operations, including com-
plex operations such as CPT-invariance in high energy physics
as well as the simple challenge of centering the webcam while
having mirroring switched off in a video call.

1 www.mschmidt.uni-bayreuth.de
∗ Authors to whom any correspondence should be addressed.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

The exploitation of the underlying symmetries of a phys-
ical system is an important and central concept that allows
to simplify the mathematical description and arguably more
importantly to gain physical insights and achieve an under-
standing of the true mechanisms at play. This is what
the mathematician Emmy Noether did in her groundbreak-
ing work in functional analysis early in the twentieth
century [1].

Noether analyzed carefully the changes that occur upon per-
forming a symmetry operation on a system. Her work solved
the then open deep problems of energy conservation in general
relativity, as the new theory of gravity that Einstein had just
formed. Noether considered the formulation of general relativ-
ity via Hilbert’s action integral, which is a formal object—a
functional—that generates Einstein’s field equations. Nowa-
days Noether’s theorems [1–3] are widely known and used to
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connect each continuous symmetry of a system with a corre-
sponding conservation law. Noether’s work therefore forms a
staple of physics, relevant from introductory classical mechan-
ics to advanced theories such as the standard model of high
energy particle physics.

In practice the theorems are usually applied to the action
functional in a Lagrangian or Hamiltonian theory. This strat-
egy is not of mere historic interest, as much active current
research is being carried out, see e.g. recent developments that
addressed the action functional for systems that include ran-
dom forces [4–6] and work that shows, starting from the sym-
metry of an action functional, that the thermodynamic entropy
can be viewed as a Noether invariant [7–9]. However, from
a mathematical point of view, Noether’s theorem is actually
not restricted to the specific case of the action integral. The
theorem rather applies to a much more general class of func-
tionals, where it specifies general consequences of invariance
under continuous symmetry transformations.

We recall some basics of functional calculus. A functional
is a mathematical object that maps an entire function, i.e. the
function values together with the corresponding values of the
argument, to a single number. A popular introductory example
of a functional is the definite integral, say over the unit interval
from 0 to 1. When viewed as a functional, the definite integral
accepts the integrand (a function) and it returns a number (the
area under the curve that the function represents). Although
the functional point of view might appear slightly uncom-
mon (or even trivial in this case), the inherent abstract concept
allows to formulate very significant insights and use powerful
mathematical techniques of variational calculus which can be
straightforwardly and widely applied.

The occurrence of functionals in physics is not restricted
to the study of behaviour at very large length scales, such as
that of the cosmos in the case of general relativity, or to very
high energies, as is the case for fundamental theories of ele-
mentary particles. In fact the mathematical concept of a func-
tional dependence is very general. Hence there is an according
wide variety of objects in physics, such as e.g. the partition
sum and the free energy in statistical mechanics that can be
viewed as being a functional [10–13]; we give an introduc-
tion below. As soon as one is willing to accept this notion,
making much headway is possible by analyzing physical prop-
erties of the considered system from this formal point of
view.

To perform the transfer and use Noether’s theorem for ther-
mal systems, from a formal point of view one would need both
to identify a suitable functional as well as a symmetry transfor-
mation under which this functional is invariant. One primary
candidate for the choice of the functional is the partition func-
tion, which constitutes an integral over the high-dimensional
phase space of classical mechanics. Within this context, phase
space describes all degrees of freedom, i.e. the positions and
momenta of all particles in the system. The partition sum itself
is hence an integral over all these variables. Its integrand is,
up to a constant, the Boltzmann factor of the energy function
that characterizes the system. So the partition sum actually
complies with the nature of a functional as it maps this func-
tion to just a number, i.e. the value of the partition sum. (As

detailed below the interesting functional dependence is that
on the external potential.) The partition sum is arguably the
most fundamental object in statistical physics, as all thermody-
namic quantities, such as thermodynamic potentials including
the free energy, the equation of state, but also position-resolved
correlation functions can be obtained from it, at least in
principle.

Within statistical mechanics, where one identifies the free
energy with the negative logarithm of the partition sum, ordi-
nary (parametric) derivatives of the free energy with respect
to e.g. temperature and other thermodynamic variables gen-
erate thermodynamic quantities [11–13]. While the familiar
process of building the derivative of a function, as giving a
measure of the local slope, is a concept that dates back to
Newton and Leibniz, functional differentiation is slightly less
common. However, functionals can be differentiated in much
the same way that functions can be differentiated. In case of
the free energy, functional derivatives give microscopically
resolved correlation functions [11–13]. These are quantities,
such as the structure factor of a liquid, that are measurable in a
lab, say with a scattering apparatus or even with a microscope
upon further data processing.

When applying Emmy Noether’s thinking to the free
energy, one could expect mere abstraction to result, but that is
not the case [14]. Consider the invariance under a spatial shift.
This classical application of Noether’s theorem to the action
functional yields the well-known result of momentum conser-
vation. When rather exploiting the invariance of the partition
function and hence of the free energy with respect to shift-
ing, what follows are fundamental statements about forces that
act in the system [14]. One of them states that the total inter-
nal force vanishes. Here the total internal force is that which
arises from the interactions only between the constituents of
the system. The famous Baron Munchausen tale of bootstrap-
ping himself out of the swamp by pulling on his own hair
is identified as a fairytale by the Noetherian argument. The
impossibility of this feat holds on the scale of his entire body,
but also when locally resolving his structure on the molecular
scale.

In addition to shifting, one can also consider rotations. In
case of the action functional being invariant under rotations
Noether’s theorem implies that the angular momentum around
the rotation axis is conserved. If the free energy has rotational
symmetry, fundamental statements about torques emerge
[14, 15]. These sum rules express inherent coupling of spin and
orbital degrees of freedom. Figuratively speaking, the identi-
ties state that a bolt cannot screw itself into the wall and that
a Baron Munchausen stuck in mud cannot spontaneously start
to rotate by twisting his head.

Recognizing the functional dependence of the free energy
allows to build a theory fully founded on a variational prin-
ciple of thermal systems, as formulated by Mermin [10] and
Evans [11, 12]. Their so-called density functional theory is a
well-accepted and widely used theory, see reference [13] for
a textbook presentation and reference [16] for an overview of
recent work. Excellent approximations are available for rel-
evant model fluids, such as for hard spheres [17, 18] (see
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reference [19] for recent work addressing hard sphere crys-
tal properties). The density functional approach hence allows
explicit calculations to be carried out to predict the behavior
of a wide range of physical systems, including solvation [20],
hydrophobicity [21–23], critical drying of liquids [24], sol-
vent fluctuations [25], electrolyte solutions near surfaces [26],
interpretation of atomic force microscopy data [27], temper-
ature gradients at fluid interfaces [28], and local fluctuations
[22–25, 29]. In reference [14] we also apply Noether’s
thinking to a very recent variational approach for dynam-
ics, called power functional theory [30, 31], which propels
the functional concepts from equilibrium to nonequilibrium
[30–45], including the recently popular active Brownian par-
ticles [46–52]. The generalization is important, as it shows
that not only a dead Munchausen cannot bootstrap himself
out of his misery, but that being alive does not help (in this
particular case).

In the present contribution we demonstrate that the con-
cepts of reference [14] apply to the canonical ensemble, as is
relevant for confined systems [53–55] and for the dynamics
[56–58]. Hence having an open system with respect to parti-
cle exchange is not necessary for the Noetherian arguments to
apply. We give a detailed and somewhat pedagogical deriva-
tion of the fundamental concepts and also make much rele-
vant background explicit, which has not been spelled out in
reference [14].

The paper is organized as follows. In section 2 we go
into some detail and we present in the following the arguably
simplest example of the application of Noether’s theorem to
statistical mechanics. We expect the reader to be familiar with
Newtonian mechanics and to ideally know about classical
mechanics formulated in a more formal setting (we supply
some basic notions thereof below). We lay out the canoni-
cal ensemble and averages in section 2.1. Forces and their
relation to symmetries are addressed in section 2.2. Statistical
functionals and their invariances are described in section 2.3.
As an example we describe the application to sedimentation
in section 2.4. The relationship of the Noether invariance to
correlation functions is laid out in section 2.5. We give fur-
ther background that is relevant for reference [14], such as the
details of the grand canonical treatment and the variational
principles of density functional theory and of power func-
tional theory, in section 2.6. We present our conclusions in
section 3.

2. Theory

2.1. Canonical ensemble and averages

We consider a system with fixed number of particles N. The
state of the system is characterized by all positions r1, . . . , rN

and momenta p1, . . . , pN , where the subscript labels the N
particles, which we take to all have identical properties. We
assume that the total energy consists of kinetic and potential
energy contribution, according to

H =

N∑

i=1

p2
i

2m
+ u(r1, . . . , rN) +

N∑

i=1

Vext(ri). (1)

Here H is the Hamiltonian of the system, with the interpar-
ticle interaction potential u(r1, . . . , rN) and the external one-

body potential Vext(ri) acting on particle i. The equations of
motion are generated via ṙi = ∂H/∂pi and ṗi = −∂H/∂ri,
where the overdot indicates a time derivative, m is the parti-
cle mass, and the index i = 1, . . . , N. Using the explicit form
(1) of the Hamiltonian then leads to the equations of motion in
the familiar form

ṙi =
pi

m
, (2)

ṗi = fi, (3)

where fi indicates the force on particle i, which consists of
a contribution from all other particles as well as the external
force. Explicitly, the force on particle i is given by

fi = −∇iu(r1, . . . , rN) − ∇iVext(ri), (4)

where ∇i denotes the derivative with respect to ri. (Build-
ing the derivative by a vector implies building the derivative
with respect to each component of the vector, hence ∇i can
be viewed as building the gradient with respect to ri.) Cer-
tainly we could have written down the equations of motion (2)
and (3) a priori. Equation (2) expresses the standard relation
of velocity ṙi with momentum pi, and (3) is Newton’s second
law. Hence we have reproduced the Newtonian theory within
the Hamiltonian formalism.

So far everything has been deterministic and we were con-
cerned with obtaining a description on the level of individual
particles. As our aim is to describe very large systems, we wish
to ‘zoom out’ and investigate and describe the macroscopic
properties of the system, as they result from the above for-
mulated microscopic picture. Statistical mechanics provides
the means for doing so. We will not attempt to give a com-
prehensive description of the concepts of this theory. Rather
we will guide the reader through some essential steps, includ-
ing in particular how thermal averages are built, to see how
Noether’s theorem applies in this context. As we will see, both
the physical concept and the outcome are different from the
standard application of Noether’s theorem based on the action
expressed as a time integral over a Lagrangian that corresponds
to (1); we give a brief description of this standard argument at
the end of section 2.2.

Statistical mechanics rests on the concept of having a sta-
tistical ensemble, in the sense of the collection of microstates
r1, . . . , rN , p1, . . . , pN , i.e. all phase space points. These
are transcended beyond classical mechanics by each being
assigned a probability for its occurrence. (There is much
discussion about who throws the dice here; we recommend
Zwanzig’s cool-headed account [59].) The microstate prob-
ability distribution is given by a standard Boltzmann form,

Ψ(r1, . . . , rN , p1, . . . , pN) =
e−βH

ZN
, (5)

where the inverse temperature is β = 1/(kBT), with the Boltz-
mann constant kB and absolute temperature T. Here ZN is the
partition sum, and it acts to normalize the probability distribu-
tion to unity, when summed up over all microstates. The sum
over microstates is in practice a high-dimensional integral over
phase space, explicitly given as

3
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ZN =
1

N!h3N

∫
dr1 . . . drN dp1 . . . dpN e−βH , (6)

where h indicates the Planck constant. Here each position
integral and each momentum integral runs over R3. (We are
considering systems in three spatial dimensions.) The system
volume is rendered finite by confining walls that are modelled
by a suitable form of the external potential Vext(r). As a note
on units, recall that h carries energy multiplied by time, i.e. Js,
such that the partition sum (6) carries no units.

The purpose of the probability distribution (5) is to build
averages. Taking the Hamiltonian (1) as an example, we
can express the total energy, averaged over the statistical
ensemble, as

E =
1

N!h3N

∫
dr1 . . . rN dp1 . . . dpNHΨ. (7)

Here we recall the dependence of the Hamiltonian (1) on the
phase space point, and in the notation we have left away the
arguments r1 . . . , rN , p1, . . . , pN of both H and Ψ.

It is useful to introduce more compact notation, as this
reduces clutter and allows to express the structure of the the-
ory more clearly. Let us denote the integral over phase space,
together with its normalizing factor in (6) as the ‘classical
trace’ operation, hence defined as

TrN =
1

N!h3N

∫
dr1 . . . drN dp1 . . . dpN , (8)

which is to be understood as acting on an integrand, such as
on HΨ in the example (7) above. Equation (7) can hence be
expressed much more succinctly as

E = TrN HΨ. (9)

In a similar way we can express other averaged quantities, such
as the average external (potential) energy,

Uext = TrN Ψ

N∑

i=1

Vext(ri). (10)

In order to build some trust for the compact notation, we use
(5) and (8) to re-write (10) explicitly as

Uext =
1

N!h3N

∫
dr1 . . . drN dp1 . . . dpN

× e−βH

ZN

N∑

i=1

Vext(ri). (11)

This allows to see explicitly that Uext depends on the number of
particle N and on the temperature T (via the Boltzmann factor
and the partition sum). Surely (10) allows to see the physical
content, that of an average being carried out, more clearly than
(11) and we will continue to use the compact notation. (Read-
ers who wish to familiarize themselves more intimately with
these benefits are encouraged to put pen to scratch paper and
re-write the following material in explicit notation.)

2.2. Forces and symmetries

Before continuing with thermal concepts, such as the free
energy, we take a detour from standard paths in statistical
mechanics, and return to forces. After all, it was the micro-
scopically and particle-resolved forces fi in (4) that formed
the starting point for the description of the coupled system. As
an example, let us hence consider the total external force that
acts on the system, in the sense that we sum up the external
force that acts on each individual particle, −∇iVext(ri). This
accounting results in − ∑

i ∇iVext(ri). Note that this expres-
sion still applies per microstate, or in other words, the total
external force varies in general across phase space. As a cau-
tionary note on terminology, we use throughout the term ‘total’
in the above sense of denoting a global, macroscopic, exten-
sive quantity. This usage is different from the also frequent
meaning of total referring to the sum of intrinsic and external
contributions.

In order to obtain the macroscopic description we need
to trace over phase space and respect the probability for the
occurrence of each given microstate. Hence the average total
external force is given by

Fo
ext = −TrN Ψ

N∑

i=1

∇iVext(ri). (12)

Due to the structure of (12), Fo
ext depends on the number of par-

ticles N (via the upper limit of the sum and the dimensionality
of the phase space integrals), on temperature T (via the thermal
distribution Ψ, cf (5) and (6)), and it of course also depends on
the form of the function Vext(r). Note that the function Vext(r)
appears both explicitly in the gradient in (12) as well as in
a more hidden form in the probability distribution Ψ, cf (5)
and (1).

Let us halt for a moment and ponder the physics. Imagine
having a vessel with impenetrable walls, such that the system
stays confined inside of the vessel. Furthermore, to add some
flavour, imagine an external field such as gravity acting on the
system. Then the external potential consists of two contribu-
tions, i.e. the potential energy that the container walls exert on
each given particle plus the gravitational energy. In an equilib-
rium situation, what would we expect the total external force to
be like? Surely, it should not change in time. (Technically any
time evolution had been superseded by the ensemble, which is
a static one in the present case.) The reader might expect that

Fo
ext = 0, (13)

because otherwise the system would surely start to move!
However, as for any given microstate the total external force
will in general not vanish, (13), if true, is a nontrivial property
of thermal equilibrium. See figure 1 for an illustration of this
concept, based on a system confined in a spherical cavity.
Hence we wish to address carefully in the following whether
we can prove (13) from first principles.

In the following we give two derivations of (13), which both
rest on spatial translations of the system. The first derivation
only requires vector calculus. The second derivation shows
the Noetherian symmetry argument based on the functional
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Figure 1. Three representative microstates rN for N = 3 particles
inside of a spherical cavity modelled by a confining external
potential Vext(r) (orange). Shown are the particle positions ri (pink
dots) and the respective external force −∇iVext(ri) acting on particle
i (black arrows). The resulting total external force
F̂o

ext = −∑
i∇iVext(ri) is shown for each microstate (blue arrows

and blue dot, the later indicating zero). Although F̂o
ext for each

microstate is in general nonzero, the average over the thermal
ensemble vanishes, Fo

ext = 〈F̂o
ext〉 = 0.

setting. This requires to adopt the notion of functional depen-
dencies, which we have used only implicitly so far. In the fol-
lowing we make these relationships and dependencies explicit.
We also supply the necessary methodology of functional dif-
ferentiation and will attempt to convince the reader that their
background in ordinary calculus can be flexed in order to
follows these steps.

The fundamental ingredients to both derivations are identi-
cal though. We use the free energy and we monitor its changes
upon spatial displacement of the system. The free energy, and
more generally thermodynamic potentials, are central to ther-
mal physics, and the following material can be viewed as a
demonstration why this indeed is the case.

The free energy FN , or more precisely: the total Helmholtz
free energy is given by

FN = −kBT ln ZN , (14)

where ZN is the partition sum, as defined in (6). One can show
that the relation of free energy and internal energy is given
by the thermodynamic identity FN = E − TS, where S is the
entropy, here defined on a microscopic basis and the internal
energy E is given by (9). One can surely be surprised by the
promotion of the rather banal normalization factor ZN to such
a prominent and as we show decisive role. We demonstrate in
the following that ZN had been a dark horse, and that its status
to generate the free energy via (14) is well-deserved.

Besides the free energy, the second ingredient that we
require is a spatial shift of the entire system according to a
displacement vector ε of the system. We hence displace the
external potential spatially by a constant vector ε. (Although
we Taylor expand in ε below, the displacement ε can be finite
and arbitrary.) The displaced system is then under the influ-
ence of an external potential which has changed according to

Vext(r) → Vext(r + ε). (15)

Formally, the free energy of the displaced system will depend
on the displacement vector, i.e.

FN → FN(ε), (16)

where FN is the free energy (14) expressed in the original
coordinates, and the new free energy is given by

FN(ε) = −kBT ln ZN(ε). (17)

Here the partition sum of the shifted system is

ZN(ε) = TrN exp

[
−β

(
Hint +

∑

i

Vext(ri + ε)

)]
, (18)

where the intrinsic part Hint of the Hamiltonian consists of
kinetic energy and interparticle interaction potential energy
only, i.e. Hint =

∑
i p2

i /(2m) + u(r1, . . . , rN).
We proceed by first recognizing that the shift does not

change the value of the free energy (in other words, the choice
of origin of the coordinate system does not matter). We can
see this explicitly by performing a coordinate transformation
ri → ri − ε. This leaves Hint invariant, as the momenta are
unaffected and the internal interaction potential is unaffected.
Recall that the interparticle energy only depends on relative
particle positions, which remain invariant under the transfor-
mation: ri − r j → (ri − ε) − (r j − ε) = ri − r j. Furthermore,
due to the simplicity of the coordinate transformation that the
shift represents, the phase space integral, cf the classical trace
(8), is unaffected as the Jacobian of the transformation is unity.
Note that in the shifting operation, the momenta are unaf-
fected and their behaviour remains governed by the Maxwell
distribution throughout. Hence we have shown that the orig-
inal free energy is identical to the free energy of the shifted
system

FN = FN(ε), (19)

for any value of the displacement vector ε.
At this point one could conclude mission accomplished.

This is not what Emmy Noether did in her mathematical for-
mulation of the problem—we hint at her variational techniques
below. The way forward at this point is to rather ignore (19) and
return to the explicit expression (17) for the free energy in the
shifted system. We consider small displacements ε and Taylor
expand to first order,

FN(ε) = FN +
∂FN(ε)

∂ε

∣∣∣∣
ε=0

· ε, (20)

where quadratic and higher order terms in ε have been omitted.
The partial derivative in (20) can be calculated explicitly:

∂FN(ε)
∂ε

= − kBT
ZN(ε)

∂

∂ε
ZN(ε) (21)

= − kBT
ZN(ε)

TrN
∂

∂ε
e−βH(ε) (22)

= − kBT
ZN(ε)

TrN e−βH(ε) ∂

∂ε
(−β)

N∑

i=1

Vext(ri − ε),

(23)

where in the first step (21) the partition sum in the denomina-
tor arises from the derivative of the logarithm in (17) and in the
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second step (22) we have interchanged the phase space integra-
tion (as notated by TrN , cf (8)) and the ε-derivative. The third
step (23) follows directly from the structure of the Hamilto-
nian (1) and the fact that Hint is independent of ε. We continue
to obtain

∂FN(ε)
∂ε

= TrN
e−βH(ε)

ZN(ε)

N∑

i=1

∂

∂ε
Vext(ri − ε) (24)

= −TrN Ψ(ε)
N∑

i=1

∂

∂ri
Vext(ri − ε), (25)

where in (24) we have pulled the partition sum as a constant
inside of phase space integral and have moved the ε-derivative
inside the sum over all particles. In (25) we have combined the
Boltzmann factor with the partition sum in order to express
the many-body probability distribution function in the shifted
system, Ψ(ε) = exp(−βH(ε))/ZN(ε), in generalization of (5).
Furthermore the spatial derivative of the external potential is
re-written via using ∂/∂ε = −∂/∂ri (which is valid due to
the dependence on only the difference ri − ε). Considering the
case ε = 0 allows us to conclude that

∂FN(ε)
∂ε

∣∣∣∣
ε=0

= −TrN Ψ

N∑

i=1

∂

∂ri
Vext(ri). (26)

Remarkably the right-hand side is the average total exter-
nal force as previously defined in (12). The left-hand side is
identically zero, as ε is arbitrary in (20) and the linear order
(as well as all higher orders) need to vanish in the Taylor
expansion (20) by virtue of the invariance (19) of the free
energy upon spatial displacement. Hence

− TrN Ψ

N∑

i=1

∂

∂ri
Vext(ri) = 0, (27)

which proves constructively the anticipated vanishing (13) of
the average total external force (12).

As a preliminary summary, we have shown that the invari-
ance of a global thermodynamic potential, the Helmholtz free
energy expressed in the canonical ensemble, against spatial
displacement (as generated by a shift of the external potential)
leads to the non-trivial force identity of vanishing total exter-
nal force. This identity holds true for any value of the number
of particles in the system, at arbitrary temperature, and most
notably irrespective of the precise form of the external poten-
tial. Hence we refer to statements such as Fo

ext = 0, cf (13),
as a Noether identity or Noether sum rule. Clearly the con-
cept is general, as both the symmetry operation can be altered
(rotations are considered in reference [14]) as well as the type
of thermodynamic object can be changed (the grand potential
and the excess free energy density functional are considered in
reference [14] and we shift the total external energy Uext below
in section 2.5).

We have presented here the shifting from the point of
view that the actual physical system is moved to a different
location. Alternatively, one could adopt a ‘passive’ point of
view and displace only the origin of the coordinate system,

in the sense of using shifted coordinates that still describe
an unchanged physical system. Then going through a chain
of arguments analog to those given above yields identical
results.

For completeness we contrast the present statistical
mechanical treatment with the standard application of
Noether’s theorem to deterministic dynamics. We keep the
same N-body classical many-body system as before, i.e. with
Hamiltonian H given by (1). The equations of motion (2) and
(3) follow from the action integral S =

∫ t2
t1

dtL, where the
Lagrangian L is obtained via L =

∑
i piṙi − H and t1 and t2

are two fixed points in time. We apply the global shifting trans-
formation ri → ri − ε, as before, to all particle coordinates in
the system and at all times. As a consequence, the Lagrangian
acquires a corresponding dependence on ε. Taylor expanding
the action to first order in ε then yields

S(ε) = S +
∂S(ε)

∂ε

∣∣∣∣
ε=0

· ε (28)

= S +

∫ t2

t1

dt
∂L
∂ε

∣∣∣∣
ε=0

· ε (29)

= S −
∫ t2

t1

dt
∑

i

∂L
∂ri

∣∣∣∣
ε=0

· ε (30)

= S −
∫ t2

t1

dt
∑

i

dpi

dt
· ε (31)

= S −
∑

i

pi

∣∣∣∣∣

t2

t1

· ε, (32)

where S = S(ε = 0) is the action in the original unshifted
system; we have used the representation of S(ε) as the time
integral of the Lagrangian in the derivation of (29), the iden-
tity ∂L/∂ε = − ∑

i ∂L/∂ri to obtain (30), the Lagrangian
equations of motion dpi/dt = ∂L/∂ri to derive (31), and the
fact that the integrand of (31) is a total time differential to
obtain (32).

Suppose now that the system is invariant under the dis-
placement, such that S = S(ε) for any value of ε and the sec-
ond term in (32) needs to vanish. This implies that the global
momentum Po =

∑
i pi is conserved, i.e. Po(t2) = Po(t1).

2.3. Functionals and invariances

The abstraction that is yet to be performed and that allows to
see the above statistical mechanical force result in an even
wider setting, is based on functional methods. As we had
hinted at in the introduction, integrals often allow for direct
interpretation as functionals as they map their integrand (or
part thereof) to the value of the quadrature. In the specific
case at hand, we stay with the canonical free energy FN and
observe that its value certainly depends on the form of the
external potential Vext(r), cf its occurrence in the Hamilto-
nian (1), which via the partition sum (6) enters the free energy
(14). Hence we have FN[Vext], where we indicate the func-
tional dependence by square brackets (and leave away in the
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notation the position argument r, despite the fact that the func-
tional depends on the entire function). In order to highlight
this point of view, we rewrite (14) and (6), respectively, in the
form

FN[Vext] = −kBT ln ZN[Vext], (33)

ZN[Vext] = TrN exp

(
−βHint − β

N∑

i=1

Vext(ri)

)
, (34)

where still the partition sum, viewed now as a functional of the
external potential, ZN[Vext] is given by its elementary form, i.e.
the right-hand side of (6). In a more compact form, eliminating
ZN[Vext] as a standalone object, we have

FN[Vext] = −kBT ln TrN exp

(
−βHint − β

N∑

i=1

Vext(ri)

)
.

(35)
We dwell on the functional concept and demonstrate some
practical consequences. As an analogy, viewing the functional
dependence in (35) akin to the dependence of an ordinary
function f (x) on its argument x brings concepts of calculus
immediately to mind, such as building the derivative f ′(x) and
investigating its properties.

This analogy extends to functionals and their derivatives
with respect to the argument function, in a process referred
to as functional differentiation. For the present case, function-
ally deriving Fext[Vext] with respect to Vext(r) can be viewed
as monitoring the change of the value of the functional upon
changing its argument function at position r. The change will
in general depend on position r, hence building functional
derivatives creates position dependence. (The result of the
functional derivative is again a functional, as the dependence
on the argument function persists.) Functional calculus is in
many ways similar to ordinary multi-variable calculus. We do
not attempt to give a tutorial here (see e.g. the appendix of ref-
erence [31] for a very brief one), but rather present a single
example that is relevant for the present physics of invariance
operations applied to many-body systems.

We use standard notation and denote the functional deriva-
tive with respect to the function Vext(r) as δ/δVext(r). Applying
this procedure to the free energy (33) yields

δFN[Vext]
δVext(r)

= −kBT
δ

δVext(r)
ln ZN[Vext] (36)

= − kBT
ZN[Vext]

δ

δVext(r)
ZN[Vext], (37)

where in the first step we have taken the multiplicative con-
stant −kBT out of the derivative and in the second step have
used the ordinary chain rule, which also holds for functional
differentiation. We next use the explicit form (34) to obtain

δFN[Vext]
δVext(r)

= − kBT
ZN[Vext]

TrN
δ

δVext(r)
e−βH (38)

= − kBT
ZN[Vext]

TrN e−βH δ

δVext(r)
(−βH)

(39)

=
1

ZN[Vext]
TrN e−βH δ

δVext(r)

N∑

i=1

Vext(ri), (40)

where we have first exchanged the order of the functional
derivative and the phase space integral, i.e. moved the deriva-
tive inside of the trace in (38), then in the second step (39) have
used the chain rule to differentiate the exponential, and in the
last step (40) have exploited the structure (1) of the Hamil-
tonian. Moving the derivative inside of the sum over i and
identifying the many-body probability distribution function Ψ
according to (5) yields the final result

δFN[Vext]
δVext(r)

= TrN Ψ
∑

i

δ(r − ri) ≡ ρ(r), (41)

where we have used one central rule of functional dif-
ferentiation: differentiating a function by itself gives
δVext(ri)/δVext(r) = δ(r − ri), where the result δ(·) is the
Dirac delta distribution (here in three dimensions, as its
argument is a three-dimensional vector).

Notably in (41) we have arrived at the form of a thermal
average over the statistical ensemble; recall the generic form
exemplified by the average internal energy (9). Rather than the
expectation value of the Hamiltonian, the present case rep-
resents the average of the microscopically resolved density
operator

∑N
i=1 δ(r − ri), which can be viewed as an indicator

function that measures whether any particle resides at the given
position r. The result of the average is the one-body density
distribution, or in short the density profile ρ(r). That functional
differentiation yields useful, spatially-resolved (‘correlation’)
functions is a general mechanism. See e.g. [13] for much back-
ground on correlation functions and their generation via func-
tional differentiation. Reference [14] carries this concept much
further than we do here.

We return to the shifting symmetry operation of above, but
now monitor the system response via tracking the changes in
the function Vext(r) that are induced by the spatial shifting.
Recall the elementary Taylor expansion

Vext(r + ε) = Vext(r) + ε · ∇Vext(r), (42)

where ∇ indicates the derivative (gradient) with respect to r
and we have truncated at linear order. See figure 2 for an illus-
tration. The first order term in (42) can be viewed as a local
change in the external potential, δVext(r), which is given by

δVext(r) ≡ ε · ∇Vext(r). (43)

In order to capture the resulting effect on the functional, we
can functionally Taylor expand the dependence of the free
energy on Vext(r) + δVext(r) around the function Vext(r). To
linear order in δVext(r) the functional Taylor expansion reads

FN[Vext + δVext] = FN[Vext] +

∫
dr

δFN[Vext]
δVext(r)

δVext(r) (44)

= FN[Vext] +

∫
drρ(r)ε · ∇Vext(r), (45)

where in (45) we have used the explicit form (43) of δVext(r)
as it arises from the fact that the variation in the shape of the
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Figure 2. Illustration of the shifting. A sinusoidal external potential
Vext(r) (blue lines) is spatially displaced by a displacement −ε (blue
arrows). The density profile ρ(r) (amber lines) measures the local
probability to find a particle; it hence has e.g. peaks at the troughs of
the external potential and it is shifted accordingly (amber arrows).
Also shown is the magnitude of the external force density
−ρ(r)∇Vext(r) (green line); the green arrows represent its local
direction. The horizontal dashed line is a guide that indicates the
position of locally vanishing external force density.

external potential is specifically generated by a spatial dis-
placement, cf (42). Furthermore we have used (41) to identify
the functional derivative in (44) as the density profile.

The result (45) is based on the properties of functional cal-
culus alone. Hence the identity is general and holds, to linear
order in ε, irrespective of any invariance properties. For the
case of the total free energy, which as we have shown above in
(19) is invariant under spatial displacement, we have

FN[Vext] = FN[Vext + δVext], (46)

where δVext(r) is generated from the spatial displacement of
the system, cf (43). Hence (43) together with (46) express in
functional language the translational symmetry properties of
the free energy.

From the identity (46) and the linear Taylor expansion (45)
we can conclude that the correction term needs to vanish,

∫
drρ(r)ε · ∇Vext(r) = 0. (47)

The displacement vector ε is arbitrary, as there was no restric-
tion on the direction of the shift. Hence the above expression
can only identically vanish provided that [14, 66]

Fo
ext = −

∫
drρ(r)∇Vext(r) = 0, (48)

where we have multiplied by −1 in order to identify the one-
body expression for the total external force Fo

ext; the equiv-
alence with the many-body form (12) is straightforward to
show upon using the definition of the density profile (41). See
figure 2 for an illustration of the local force density profile, i.e.
the integrand of (48).

2.4. Application to sedimentation

We exemplify the general result (48) using the concrete
example of a thermal system under gravity, such that
sedimentation-diffusion equilibrium is reached. Recall that we
consider systems at finite temperature, where entropic effects
compete with ordering generated by the potential energy. We
first omit the interparticle interactions, and hence consider the
classical monatomic ideal gas. We assume that the external
potential consists of a gravitational contribution, mgz, where
g indicates the gravitational acceleration and z is the height
variable. Furthermore due to the presence of a lower container
wall, there is a repulsive contribution, which we take to be a
harmonic potential with spring constant α acting ‘inside’ the
wall, i.e. at altitudes z < 0. Hence the specific form of the total
external potential is

Vext(z) = mgz +
αz2

2
Θ(−z), (49)

where Θ(·) indicates the Heaviside (unit step) function, which
ensures that the parabolic potential only acts for z < 0. There
is no need for the presence of an upper wall to close the
system, as gravity alone already ensures that Vext → ∞ for
z → ∞. The magnitude of the external force field is obtained as
−V ′

ext(z) = −mg − αzΘ(−z), see figure 3 for an illustration
(blue line).

The density distribution of the isothermal ideal gas is given
by the generalized barometric law [13],

ρ(z) = Λ−3 e−β(Vext(z)−μ), (50)

where Λ is the thermal de Broglie wavelength which arises
from carrying out the momentum integrals in TrN (this is ana-
lytically possible due to the simple kinetic energy part of the
Boltzmann factor). The chemical potential μ in (50) is a con-
stant that ensures the correct normalization,

∫
dzρ(z) = N/A,

where A is the lateral system size (i.e. the area perpendicu-
lar to the z-direction). That the value of the chemical potential
μ controls the number of particles in the system is universal.
However, the mathematical formulation in the grand ensemble,
where the particle number in the system can fluctuate, is very
different from the present canonical treatment. (Some basics
of the grand canonical description, as used in reference [14],
are described below in section 2.6.)

The general expression for the total external force (48)
together with the specific density profile (50) gives

Fo
ext = −Aez

Λ3

∫ ∞

−∞
dz e−β(Vext(z)−μ)V ′

ext(z) (51)

=
Aez

Λ3β

[
e−β(Vext(z)−μ)

]∞
−∞ (52)

= 0, (53)

where ez is the unit vector pointing into the positive z-direction
and the prime denotes differentiation with respect to the argu-
ment, hence ∇Vext(r) = V ′

ext(z)ez. The integrand in (51) is a
total differential, d e−β(Vext−μ)/dz, which upon integration gives
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Figure 3. Illustration of sedimentation of a fluid against a lower soft
wall represented by a harmonic potential. The total external
potential is Vext(z) = mgz + Θ(−z)αz2/2. The resulting external
force field is −V ′

ext(z) ≡ −∂Vext(z)/∂z = −mg − Θ(−z)αz (blue
line). The direction of both force contributions is indicated in the
inset (arrows), where pink dots represent particles. In the main plot
the density profile ρ(z) (amber line) decays for large and for small
values of z. The external force density is the product −ρ(z)V ′

ext(z)
(green line). The total external force (per unit area) is the integral
−

∫
dzV ′

ext(z)ρ(z) = 0; note that the shaded green areas cancel each
other. Representative values of the parameters are chosen; the unit of
length is the sedimentation length kBT/(mg) and all energies are
scaled with kBT.

(52); for (53) we have exploited that for z → ±∞ the exter-
nal potential Vext → ∞, leading to vanishing Boltzmann fac-
tor. We have hence shown explicitly the vanishing of the total
external force acting on a bounded ideal gas in thermal equilib-
rium under gravity. Figure 3 illustrates the density profile ρ(z)
and the force density profile −V ′

ext(z)ρ(z) for representative
values of the parameters.

We briefly sketch the effect of interparticle interactions. On
a formal level, and returning to the general case of arbitrary
form of Vext(r), the density profile is given by a modified form
of (50), which reads

ρ(r) = Λ−3 e−β(Vext(r)−μ)+c1(r), (54)

where the so-called one-body direct correlation function
[11, 13] c1(r) contains the effects of the interparticle inter-
actions. The total interparticle force density is then given by

Fo
int = kBT

∫
drρ(r)∇c1(r) = 0. (55)

Here the vanishing of the total internal force can be viewed as
a consequence of Newtons’ third law actio equals reactio; see
reference [14] for the derivation. Note the formal similarity of
the total external and total intrinsic force Noether sum rules,
cf (48) and (55). The no-bootstrap theorem (55) holds beyond
equilibrium, as shown in reference [14], and it hence debunks
any swamp escape myths.

An alternative derivation of (55) rests on the Noether invari-
ance of the free energy, where the later is constructed to be a
functional of the density profile; we refer the reader to refer-
ence [14] for a description of these considerations and com-
ment briefly on the embedding into the frameworks of classical
density functional theory and power functional theory below in
section 2.6.

2.5. Relationship to correlation functions

Global identities, such as the sum rules of vanishing exter-
nal force (48) and of vanishing internal force (55), can be
used as a starting point to obtain position-resolved identities.
Functional differentiation with respect to an appropriate field
creates dependence on position. Integrating over these addi-
tional variables (or ‘root points’ [13]) then yields novel global
identities. While we refer the reader to reference [14] for this
treatment, we wish to demonstrate here the direct derivation of
such global identities.

We stick to the canonical ensemble and as a specific case
return to our initial example of a thermal average, i.e. the
global external potential energy Uext, as equivalently expressed
in compact notation (10) or the explicitly written out phase
space integral (11). Let us shift! The external energy in the
new system is then given by

Uext(ε) = TrN
e−βH(ε)

ZN(ε)

N∑

i=1

Vext(ri − ε). (56)

We Taylor expand to first order,

Uext(ε) = Uext +
∂Uext(ε)

∂ε

∣∣∣∣
ε=0

· ε. (57)

Here the derivative of (56) can be calculated via the product
rule as

∂Uext(ε)
∂ε

∣∣∣∣
ε=0

= Tr
∂Ψ(ε)

∂ε

N∑

i=1

Vext(ri)

− Tr Ψ
N∑

i=1

∇iVext(ri). (58)

We can recognize the second term as the average external
force, which we have proven to vanish, cf (27). The first term
in (58) requires carrying out the derivative of Ψ(ε) with respect
to the displacement ε, which yields

∂Uext(ε)
∂ε

∣∣∣∣
ε=0

= −Tr Ψ

N∑

i=1

βVext(ri)
N∑

j=1

∇ jVext(r j). (59)

Here an additional term, generated by the derivative, vanishes:
−βUextFo

ext = 0, again due to (27).
Clearly (59) is the correlator of the global external potential

energy and the global external force. Using the by now familiar
invariance argument, we argue that the value of Uext(ε) is an
invariant under the displacement, and that hence the first order
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term in (57) needs to be zero. As ε is arbitrary, we conclude

− Tr Ψ

N∑

i=1

Vext(ri)
N∑

j=1

∇ jVext(r j) = 0, (60)

where we have divided by β. Hence the global exter-
nal potential,

∑
i Vext(ri), and the global external force,

− ∑
j ∇ jVext(r j), are uncorrelated with each other. The sum

rule (60) is derived in reference [14] via the route of integration
over free position variables (root points), cf (5) in reference
[14] for the order n = 2 of the sum rule hierarchy. An impor-
tant distinction in the presentation though lies in the choice
of ensemble, which is an issue to which we turn in the next
subsection.

As a final comment, when applied to the above example
of sedimentation against a lower harmonic wall, (60) can be
explicitly verified by carrying out the z-integral, which yields
−A

∫ ∞
∞ dzρ(z)Vext(z)V ′

ext(z) = 0.

2.6. Density functional and power functional

In all of the above, we have described the thermal system on the
basis of the canonical ensemble, as specified by the classical
phase space, the probability distribution (5) and the canoni-
cal partition sum (6). Hence the system is coupled to a heat
bath at temperature T , where the value of T determines the
mean energy E in the system, cf the form of E as an expecta-
tion value (7). The system is thermally open, and hence energy
fluctuations occur between system and bath.

Corresponding fluctuations in particle number N can be
implemented in the grand canonical ensemble where the sys-
tem is furthermore coupled to a particle bath. The particle
bath sets the value of the chemical potential μ, which then
determines the average number of particles N̄ in the system.
(This mechanism is analogous to the relationship of T and
E described above.) Although the grand canonical formalism
poses this additional level of abstraction, and the bare formu-
lae increase somewhat in complexity due to the average over
N, in typical theoretical developments this framework is signif-
icantly more powerful and more straightforward to use. (There
is no need having to implement N = const, which in practice
can be awkward.) We briefly sketch the essentials of the grand
ensemble as they underlie reference [14].

The grand canonical ensemble consists of the microstates
given by phase space points of N particles, with N being a non-
negative integer, which is treated as a random variable. The
corresponding probability distribution is

Ψ(r1, . . . , rN , p1, . . . , pN , N) =
e−β(H−μN)

Ξ
, (61)

where the grand partition sum is given by

Ξ = Tr e−β(H−μN), (62)

with the grand canonical trace operation defined by

Tr =
∞∑

N=0

TrN (63)

=
∞∑

N=0

1
h3NN!

∫
dr1 . . . drN dp1 . . . dpN , (64)

where we have obtained (64) by using the explicit form (8)
for the canonical trace. The thermodynamic potential which
is fundamental for the grand ensemble is the grand potential
(also referred to as the grand canonical free energy) and it is
given by

Ω = −kBT ln Ξ, (65)

with the grand partition sum Ξ according to (62). Note
the strong formal analogy with the corresponding canonical
expressions for: the probability distribution (5) with (61); the
partition sum (6), i.e. ZN = TrN e−βH , with (62); the trace (8)
with (63); and the free energy (14) with (65).

Despite the system being open to particle exchange,
Noether’s reasoning continues to hold [14]. Briefly, the grand
potential is a functional of the external potential, Ω[Vext] (we
suppress the dependence on the thermodynamic parameters
μ, T), and Ω[Vext] is invariant under spatial displacements
according to (15). As a consequence, the sum rule of vanishing
external force (13) emerges, expressed in the form (27) with
TrN replaced by Tr, as is appropriate for the open system.

Why is the functional point of view important? In what we
have presented above it had played the role of adding abstrac-
tion and re-deriving results that we could obtain via more
elementary arguments. The importance of the variational for-
mulation stems from two sources, one being that it provides
a mechanism for the generation of correlation functions via
functional differentiation, in extension of the generation of the
density profile via (41), see e.g. references [13] for a com-
prehensive account. The second point lies in the variational
principle itself which formulates the many-body problem in
a way that allows to systematically introduce approximations
and make much headway in identifying and studying phys-
ical mechanisms in complex, coupled many-body problems.
While giving a self-contained overview of these concepts is
beyond the scope of the present contribution (see reference
[31] for a recent account), we wish to briefly describe certain
central points, to—hopefully—provide motivation for further
study.

We hence sketch the two variational principles as they are
relevant for equilibrium (classical density functional theory)
and for the dynamics (power functional theory); these form the
basis of reference [14]. Classical density functional theory is
based on treating the density profile ρ(r), rather than the exter-
nal potential Vext(r), as the fundamental variational field. The
grand potential, when viewed as a density functional [11, 12],
has the form

Ω[ρ] = F[ρ] +

∫
drρ(r)(Vext(r) − μ), (66)

where F[ρ] is the intrinsic Helmholtz free energy functional.
Crucially, F[ρ] is independent of the external potential, which
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features solely in the second term in (66). Here ρ(r) is concep-
tually treated as a variable; its true form as the equilibrium
density profile is that which minimizes Ω[ρ] and for which
hence the functional derivative vanishes,

δΩ[ρ]
δρ(r)

= 0 (min). (67)

Inserting the split form (66) of the grand potential into the min-
imization condition (67) and using the splitting into ideal gas
and excess (over ideal gas) free energy contributions, F[ρ] =
kBT

∫
drρ(r)[ln(ρ(r)Λ3) − 1] + Fexc[ρ], yields upon exponen-

tiating the modified barometric law (54). Here the one-body
direct correlation function c1(r) is identified as the functional
derivative of the excess free energy functional, i.e. c1(r) =
−βδFexc[ρ]/δρ(r). As the functional dependence on the den-
sity profile persists upon building the derivative, i.e. in more
explicit notation c1(r, [ρ]), equation (54) constitutes a self-
consistency condition for the determination of the equilib-
rium density profile; determining the solution thereof requires
to have an approximation for Fexc[ρ] and typically involves
numerical work.

Power functional theory generalizes the variational concept
of working on the level of one-body correlation functions to
nonequilibrium. For overdamped Brownian motion, as is a
simple model for the description for the temporal behaviour
of mesoscopic particles that are suspended in a liquid, the
free power is a functional of both the time-dependent density
profile ρ(r, t) and of the locally resolved current distribution
J(r, t), where t indicates time. The power functional has the
form

Rt[ρ, J] = Ḟ[ρ] + Pt[ρ, J]

−
∫

dr(J(r, t) · fext(r, t) − ρ(r, t)V̇ext(r, t)),

(68)

where Ḟ[ρ] is the time derivative of the intrinsic free energy
functional, Pt[ρ, J] consists of an ideal gas and a superadia-
batic part, where the latter arises from the internal interactions
in the nonequilibrium situation, fext(r, t) is a time-dependent
external one-body force field, which in general consists of a
(conservative) gradient term −∇Vext(r, t) and an additional
rotational (non-gradient, non-conservative) contribution, and
V̇ext(r, t) is the time derivative of the external potential. The
density profile and the current distribution are linked by the
continuity equation, ∂ρ(r, t) = −∇ · J(r, t), which is sharply
resolved on the microscopic scale. The dynamic variational
principle states that Rt[ρ, J] is minimized, at time t, by the
physically realized current,

δRt[ρ, J]
δJ(r, t)

= 0 (min). (69)

Inserting the splitting (68) of the total free power into the mini-
mization condition (69) yields the formally exact force density
relationship,

γJ(r, t) = −kBT∇ρ(r, t) + Fint(r, t) + ρ(r, t)fext(r, t), (70)

where γ is the friction constant of the overdamped motion,
such that the left-hand side constitutes the (negative) fric-
tion force density at position r and time t. The right-
hand side of (70) consists of an ideal, an internal and an
external driving contribution, with Fint(r, t) being the inter-
nal force density distribution, as it arises from the effect
of all interparticle interactions that act on a given parti-
cle at position r and time t. The internal force density
Fint(r, t) consists of an adiabatic contribution, which fol-
lows from the excess free energy functional via Fad(r, t) =
−ρ(r, t)∇δF[ρ]/δρ(r, t) and an additional genuine nonequi-
librium contribution, i.e. the superadiabatic force density,
Fsup(r, t). Honoring its functional dependence on the kinematic
fields ρ(r, t) and J(r, t) forms the basis for much recent work
in nonequilibrium statistical mechanics based on the power
functional concept. See reference [31] for an overview.

As a comment on terminology, we note that sometimes
the term Euler–Lagrange equation is applied generically to
refer to the vanishing of the first functional derivative of the
given variational problem, i.e. equation (67) for the case of
DFT and equation (69) for PFT, which respectively turn into
the explicit forms (54) and (70). This terminology is dif-
ferent from the also frequent use of referring specifically to
the Euler–Lagrange equations of motion of classical mechan-
ics, as they result from Hamilton’s principle, i.e. the sta-
tionarity of the action functional (see e.g. the appendix of
reference [31] for a description of the functional methods
involved).

3. Conclusions

In conclusion, we have demonstrated on an elementary level
how fundamental symmetries in statistical mechanics lead
to exact statements (sum rules) about average forces when
considering translations. These considerations also apply to
torques when considering rotations [14]. We have based our
presentation on the canonical ensemble, as is relevant in a vari-
ety of contexts [53–58]. While the canonical ensemble avoids
the complexity of particle number fluctuations that occur grand
canonically, nevertheless an open system is retained with
respect to energy exchange with a heat bath. As we have
shown, treating such fluctuating systems is well permissible
on the basis of Noetherian arguments. The arguably simplest
Noether sum rule is that of vanishing average total external
force in thermal equilibrium. As an application we have pre-
sented the case of a fluid confined inside of a container and
subject to the effect of gravity. While we have selected this
example for its relative simplicity, the influence of gravity on
mesoscopic soft matter is also a topic of relevance for studying
e.g. complex phase behaviour in colloidal mixtures; see e.g.
reference [60] for recent work that addresses colloidal liquid
crystals. Our derivations imply that the symmetry operation is
applied to the entire system. Here the system must be enclosed
by an external potential that represents confinement by e.g.
walls. The shift then applies also to these walls. In cases where
system boundaries are open (as can be suitable for a periodi-
cally repeated system like that shown in figure 2), Noether’s
theorem remains applicable upon taking account of additional
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boundary terms, see reference [14] for a detailed discussion of
such treatment.

In the presented considerations, we have started on the
basis of arguably the most fundamental statistical mechani-
cal object, i.e. the partition sum, as it enters the elementary
definition of the (here canonical) free energy. Investigating
invariance properties of further statistical objects, such as the
global external energy, is also worthwhile, as then Noether’s
reasoning leads to the correlator identity (60) of vanishing
correlation between global external force and global external
potential. Investigating the outcome of invariance applied in
this way constitutes an interesting task for future work.

Statistical mechanical derivations often rely on very simi-
lar reasoning; reference [14] gives an overview. A particularly
insightful example is the work by Bryk et al on hard sphere
fluids in contact with curved substrates [64]. These authors
derive a contact sum rule of the hard sphere fluid against
a hard curved wall. Their argumentation rests on the obser-
vation that the force that is necessary to move the wall by
an amount ε is balanced by the presence of the fluid. The
authors then succeed in relating this force to the value of the
density profile close to the wall. Closely related work was
carried out for the shape dependence of free energies [65].
Further studies that are related to Noether’s theorem were
aimed at broken symmetries [66] and emerging Goldstone
modes [67–69].

The general form of Noether’s theorem applies to varia-
tional calculus, and statistical mechanics falls well into this
realm. We have spelled out the connections explicitly, such
as the canonical free energy being viewed as a functional of
the external potential [13]. Notably only elementary statisti-
cal objects such as the partition sum are required. We have
also described two more advanced variational theories. Classi-
cal density functional theory [11–13] allows to view the grand
potential as a functional of the one-body density distribution.
A formally exact minimization principle then reformulates
the physics of system in thermal (and chemical) equilibrium.
The dynamic variational principle of power functional theory
[30, 31] consists of instantaneous minimization with respect to
the time- and position-resolved current distribution. Together
with the continuity equation, a formally closed one-body refor-
mulation of the dynamics of the underlying many-body system
is achieved.

Both density functional theory and power functional the-
ory can be viewed as systematic approaches to coarse-graining
the many-body problem to the level of one-body correlation
functions. In the static case, the correlation functions hence
depend on position alone, in the dynamics case the depen-
dence is on position and on time. Crucially, a microscopically
sharp description is formally retained, which is important for
the description of correlations on the particle (i.e. molecular
or colloidal) level. One of the most important features of these
theories is the identification of a universal intrinsic functional
that contains the coupled effects of the interparticle interac-

tions, but is independent of the external forces that act on the
system.

A wealth of productive research has been devoted to con-
structing powerful approximations for free energy function-
als for specific model systems. In the context of liquids the
important case of the hard sphere fluid is treated with excel-
lent accuracy within Rosenfeld’s fundamental measure theory
[17, 18], see e.g. reference [61] for a quantitative assessment
of the quality of theoretical density profiles against simula-
tion data. Notable recent progress to incorporate short-ranged
attraction into density functional theory is due to Tschopp,
Brader and their co-workers [62, 63], who systematically
addressed and exploited two-body correlations.

Despite power functional theory [30, 31] being signifi-
cantly younger than density functional theory, its usefulness
has been amply demonstrated, both for formal work as well as
for practical solution of physical problems and the discovery
of novel fundamental mechanisms. The reformulation on the
basis of the velocity gradient [39], instead of the current dis-
tribution, allowed to identify and to study structural forces
[40, 41] in driven systems that are governed by overdamped
Brownian dynamics. The splitting of the total internal force
field into flow and structural contributions is fundamental to
understanding the emerging effects in microscopically inho-
mogeneous flows [41]. Active Brownian particles, as a model
for self-propelled colloids (see e.g. [46–48]), are well suited
for the application of power functional theory. The general
framework [33, 34] for active systems was shown to physically
explain and quantitatively predict the motility-induced phase
separation that occurs in such systems at high enough levels
of driving [35–37]. Interfacial properties such as polarization
[38] and surface tension [35] were systematically studied.

The dynamical sum rules for forces and correlation func-
tions presented in reference [14] offer great potential for
systematic progress in the description of complex tempo-
ral behaviour, including memory [44, 45]. The nonequilib-
rium rules play a similar role than fundamental equilibrium
sum rules such e.g. the Lovett–Mou–Buff–Wertheim equation
[70, 71]. The section on ‘methods’ in reference [14] gives
a detailed description of the relationship of the equilibrium
Noether sum rules to such classical results from the liquid state
literature. Together with the nonequilibrium Ornstein–Zernike
relations [42, 43] the dynamical sum rules provide fertile
ground for making progress in nonequilibrium many-body
physics; see also the recent study of the relevance of invari-
ance in inhomogeneous dense liquids [72] and of the role of
fluctuations when going to effects that are higher than linear
in the displacement [73]. Hence the fundamental character of
Emmy Noether’s work will surely continue to prove its worth
in the future.
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When a fluid is subject to an external field, as is the case near an interface or under spatial confinement, then
the density becomes spatially inhomogeneous. Although the one-body density provides much useful information,
a higher level of resolution is provided by the two-body correlations. These give a statistical description of the
internal microstructure of the fluid and enable calculation of the average interparticle force, which plays an
essential role in determining both the equilibrium and dynamic properties of interacting fluids. We present a
theoretical framework for the description of inhomogeneous (classical) many-body systems, based explicitly on
the two-body correlation functions. By consideration of local Noether-invariance against spatial distortion of the
system we demonstrate the fundamental status of the Yvon-Born-Green (YBG) equation as a local force-balance
within the fluid. Using the inhomogeneous Ornstein-Zernike equation we show that the two-body correlations are
density functionals and, thus, that the average interparticle force entering the YBG equation is also a functional
of the one-body density. The force-based theory we develop provides an alternative to standard density functional
theory for the study of inhomogeneous systems both in- and out-of-equilibrium. We compare force-based density
profiles to the results of the standard potential-based (dynamical) density functional theory. In-equilibrium, we
confirm both analytically and numerically that the standard approach yields profiles that are consistent with the
compressibility pressure, whereas the force-density functional gives profiles consistent with the virial pressure.
For both approaches we explicitly prove the hard-wall contact theorem that connects the value of the density
profile at the hard-wall with the bulk pressure. The structure of the theory offers deep insights into the nature of
correlation in dense and inhomogeneous systems.

DOI: 10.1103/PhysRevE.106.014115

I. INTRODUCTION

The analysis of spatial inhomogeneity is a primary means
to characterize a wide range of self-organized and complex
states of matter [1]. Representative examples of systems and
effects with inherent position-dependence cover a broad range
of soft matter [2,3], including hydrophobic solvation in com-
plex environments [4], desorption of water at short and long
length scales [5], liquids at hydrophobic and hydrophilic sub-
strates characterized by wetting and drying surface phase
diagrams [6,7], critical drying of liquids [9], solvent-mediated
forces between nanonscopic solutes [10], electrolyte aqueous
solutions near a solid surface [11], layering in liquids [12],
the structure of liquid-vapor interfaces [13,14], and locally
resolved density fluctuations [6–10].

Obtaining a systematic understanding of the physics that
emerges in such systems can be achieved by using micro-
scopically resolved correlation functions. In particular the
one-body density profile captures a broad spectrum of be-
haviours, from strong oscillations in dense liquids, where
molecular packing effects dominate [4,8,11–13], to pro-
nounced drying layers near hydrophobic substrates when

*salomee.tschopp@unifr.ch
†Matthias.Schmidt@uni-bayreuth.de
‡joseph.brader@unifr.ch

approaching bulk evaporation [5–7,9,10]. Effects such as
these can be induced by walls or other external influence,
which typically is modeled by a position-dependent external
potential Vext(r). The physical relationship of the external
potential with the density profile ρ(r′) is often viewed in a
causal way, such that a change in the external potential at
some position r will create a density response in the system
[1]. In general this response will not only occur at the same
position, but also, mediated by the interparticle interactions,
at positions r′ further away. Near a surface phase transition
[6,7] the associated length-scale can become very large.

On a formal level, Vext(r) and ρ(r′) form a pair of conju-
gate variables within the variational framework of classical
density functional theory (DFT) [1,15–17]. DFT is based
on the existence of a generating (free energy) functional.
Its nontrivial contribution, the intrinsic excess free energy
functional, Fexc[ρ], originates from the interparticle interac-
tions. Due to inherent coupling of the degrees of freedom
of the many-body system, exact expressions for this quantity
do not exist except for rare special cases. Approximations
are thus required for most applications. Minimizing the
grand potential functional, �[ρ], typically by numerically
solving the associated Euler-Lagrange (EL) equation, then
gives results for the spatial structure and the thermodynam-
ics of the inhomogeneous system under consideration. The
EL equation can be viewed as a condition of local chemi-
cal equilibrium throughout the system [15]. Here the local
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chemical potential consists of three physically distinct con-
tributions: a trivial ideal gas term, an excess (over ideal) term
which arises from the interparticle interactions and an external
contribution.

An analogous point of view, which at first sight seems
to be based on quite different physical intuition, is that of
a force balance relationship. As an equilibrium system is
on average at rest, the total local force must vanish at each
point in space. This is a classical result obtained by Yvon
[18], Born and Green [19] (YBG) and it forms an exact
property (sum-rule). Within computer simulation methodol-
ogy, working on the level of force distributions has recently
received a boost through the introduction of smart sampling
strategies. “Use the force” [20] constitutes a new paradigm
for obtaining data with significantly reduced statistical noise
[21–23], as compared to direct sampling via simple counting
of events. Force distributions naturally generalize to nonequi-
librium, where the equilibrium ensemble average is replaced
by a dynamical average over the corresponding set of states,
e.g., for overdamped Brownian dynamics [24,25]. For quan-
tum systems, the locally resolved force-balance relationship
was recently addressed for dynamical situations [26,27]. Fur-
thermore, two-body correlation functions are central to the
recently developed conditional probability DFT [28,29].

On a fundamental level it is apparent that out of equilib-
rium, it is forces, rather than potentials, that play the central
role in determining the particle motion. A dynamical theory
based on potentials will clearly be incapable of treating non-
conservative forces and can also be expected to break down
whenever the microstructure of the system deviates strongly
from that of equilibrium. These difficulties present a fun-
damental limitation to the usefulness of existing dynamical
density functional (DDFT) approaches [15,30,31] and have
served to motivate development of the force-based power
functional theory (PFT) [32,33].

Focusing on equilibrium, the YBG derivation convention-
ally rests on formally integrating the full N-body equilibrium
distribution over N − 1 spatial degrees of freedom [1,18,19].
The one-body density is thus expressed in terms of an integral
of the two-body density. In contrast, DFT is closed on the
one-body level (using the EL equation) and hence neither re-
quires consideration of the two-body level, nor does it permit
to systematically incorporate such information. In this paper
we present a theoretical density functional approach, which
accounts explicitly for the interparticle forces and enables
calculation of the one-body density for inhomogeneous fluids
both in- and out-of-equilibrium.

II. ROADMAP

In the following we give an overview to guide the reader
through the main results and concepts presented in this work.
We begin, in Sec. III A, by developing the Noether theorem
for the invariance of the grand potential under spatial distor-
tions, as characterized by a vector displacement field ε(r).
Expressing the grand potential as a functional of ε(r) leads
to the variational condition,

δ�[ε]

δε(r)

∣∣∣∣
ε(r)=0

= 0,

which generates the following force-balance (YBG) relation

−kBT ∇r1 ln(ρ(r1)) − ∇r1Vext(r1)

−
∫

dr2
ρ (2)(r1, r2)

ρ(r1)
∇r1φ(|r1 − r2|) = 0,

where the subscripted position variables r1 and r2 play the
role of a fixed point in space, r1, and a “field point” which is
integrated over, r2. The two-body density and pair interaction
potential are indicated by ρ (2) and φ, respectively (kB denotes
the Boltzmann constant and T is the absolute temperature).
Our variational derivation highlights the fundamental status of
the YBG equation, which we then take as a starting point for a
self-consistent approach to determining the one-body density.
It can be written without approximation in the following form:

ρ(r1) = eβ[μ−Vext (r1 )]+c(1)
f (r1 ),

where μ is the chemical potential, β = (kBT )−1 and the
contribution −kBT c(1)

f (r1) acts as an effective external field
arising from interparticle interactions. In Sec. III B, we intro-
duce the concept that the two-body correlation functions are
functionals of the one-body density and we then use this to
reinterpret the YBG equation as a closed integral equation for
the one-body density. This leads us to the definition

c(1)
f (r1) ≡ −∇−1

r1
·
∫

dr2
ρ (2)(r1, r2; [ρ])

ρ(r1)
∇r1βφ(|r1 − r2|),

in which the interparticle forces appear explicitly via ∇r1φ.
The integral operator ∇−1

r1
is defined in the main text and the

square brackets indicate a functional dependence. An essential
feature of our approach is that we have a computation-
ally feasible scheme to evaluate the inhomogeneous density
functional ρ (2)(r1, r2; [ρ]), which then leads to a closed, self-
consistent “force-DFT.”

In Sec. III C, our force-based approach is contrasted with
the standard DFT methodology (referred to in this work as
potential-DFT) in which the grand potential is expressed as a
functional of the one-body density and satisfies the variational
condition,

δ�[ρ]

δρ(r)

∣∣∣∣
ρ(r)=ρ0 (r)

= 0,

where ρ0(r) is the equilibrium density profile (the subscript
will be omitted in the following). This leads to the well-known
EL equation

ln ρ(r) − β(μ − Vext(r)) − c(1)
p (r) = 0,

which can be expressed in the following alternative form

ρ(r) = eβ(μ−Vext (r))+c(1)
p (r),

where the function c(1)
p is defined as a functional derivative of

the excess Helmholtz free energy,

c(1)
p (r) = −δβFexc[ρ]

δρ(r)
.

In contrast to the force-DFT, the potential-DFT involves
only one-body functions. We thus require only a single vec-
tor position, r, as an independent variable and there is no
need to employ additional subscripts. The EL equation is
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the potential-DFT analog of the YBG equation arising from
invariance with respect to spatial distortions. If the free energy
and the two-body density functionals are known only approxi-
mately, then the two approaches to DFT will lead in general to
different density profiles for a given external field. This allows
for deep insight into the inner workings of DFT. Section III C
is intended primarily for readers who are less familiar with the
details of potential-DFT.

In potential-DFT the well-used contact theorem predicts
that the contact density at a hard planar wall is equal to βP c,
where P c is the compressibility pressure, see Ref. [1] for
its definition. For the force-DFT we find that the equivalent
result links the contact density to βP v, where P v is the virial
pressure. In Secs. III D and III E, we prove the corresponding
contact theorem for both approaches. These sum-rules are
exact and hold within any reasonable approximation scheme.
If the reader is prepared to accept these assertions without
proof, then both of these subsections can be passed-over on
a first reading of the manuscript.

As mentioned previously, to implement the force-DFT, we
require a feasible method to obtain the density functional
ρ (2)(r1, r2; [ρ]). Therefore, from that point onwards we will
rely on approximation schemes. In Secs. III F and III G, we re-
call the fundamental measure theory (FMT) for hard-spheres
and provide information about the numerical implementation.
The FMT generates an explicit expression for the two-body
direct correlation function, c(2)(r1, r2; [ρ]), as a functional of
the one-body density. The two-body direct correlation func-
tion, now uniquely determined by the one-body density, can
be used as input to the inhomogeneous Ornstein-Zernike (OZ)
equation,

h(r1, r2) = c(2)(r1, r2) +
∫

dr3 h(r1, r3)ρ(r3)c(2)(r3, r2),

which is then a linear integral equation for determination of
the total correlation function, h. By self-consistent solution of
the OZ equation we obtain h for any given one-body density;
h is thus a density functional. It has been shown that the in-
homogeneous OZ equation can be numerically solved to high
accuracy both in planar and spherical geometry [14,34,35].
Using the relation

ρ (2)(r1, r2) = ρ(r1)ρ(r2)(h(r1, r2) + 1)

then gives a clear self-consistent scheme to determine ρ (2) as
a functional of the one-body density. In Sec. III H, we show
numerical results for the equilibrium density of hard-spheres
at a hard-wall using both force- and potential-DFT, and val-
idate the analytical predictions for the contact density. This
demonstrates explicitly that the presented framework is not
merely formal, but that it forms a concrete numerical scheme
for the systematic study of inhomogeneous fluids.

In Sec. IV, we consider nonequilibrium systems subject
to overdamped Brownian dynamics and show how the force-
DFT allows calculation of the time-dependent density, ρ(r, t ).
We argue that the force-DFT provides the most natural start-
ing point for the development of a dynamical theory for the
density, as it is the forces which are responsible for moving
the particles. Conservation of particle number dictates that the

density obeys the continuity equation

∂ρ(r1, t )

∂t
= −∇r1 · j(r1, t ),

where j(r1, t ) is the current, which needs to be specified to
have a closed theory.

In Sec. IV A, we describe the force-DDFT, which is based
on the following exact expression for the current

j(r1, t ) = −D0 ρ(r1, t )

(
∇r1 ln[ρ(r1, t )] + ∇r1βVext(r1)

+
∫

dr2
ρ (2)(r1, r2, t )

ρ(r1, t )
∇r1βφ(|r1 − r2|)

)
,

where D0 is the diffusion coefficient. Using the previously
described equilibrium functional for ρ (2) yields a closed adi-
abatic theory for the one-body density. At each time-step
the integral term is explicitly evaluated to obtain the average
force due to interparticle interactions. In contrast, the familiar
potential-DDFT, recalled in Sec. IV B, employs only one-
body functions. The current in this case is given by

j(r, t ) = −D0 ρ(r, t )∇r(ln(ρ(r, t )) + βVext(r) − c(1)
p (r, t )).

In Sec. IV C, we employ the FMT to generate numerical
results for the density relaxation in a harmonic-trap and we
compare the predictions of the force-DDFT with those of
the potential-DDFT. This demonstrates that our force-based
theory provides a firm basis for developing a systematic un-
derstanding of nonequilibrium phenomena. Finally, in Sec. V,
we draw our conclusions and give an outlook for future work.

III. EQUILIBRIUM THEORY

A. Force-balance generated by Noether’s theorem

We begin our development of force-DFT by starting
with the microscopic Hamiltonian and using invariance ar-
guments. Let us consider a classical system of N particles
described by position coordinates r1, . . . , rN ≡ rN and mo-
menta p1, . . . , pN ≡ pN . The Hamiltonian H has the standard
form consisting of kinetic, internal, and external potential
energy contributions according to

H =
N∑

i=1

p2
i

2m
+ UN (rN ) +

N∑
i=1

Vext(ri ). (1)

Here m indicates the particle mass, UN denotes the total inter-
particle interaction potential and Vext is an external one-body
field.

We consider a canonical transformation on phase-space,
parameterized by a vector field ε(r) that describes a spatial
displacement (“distortion”) at position r. The transformation
affects both coordinates and momenta and is given by

ri → ri + ε(ri ) ≡ r′
i, (2)

pi → pi − ∇riε(ri ) · pi ≡ p′
i, (3)

where the primes indicate the new phase-space variables and
∇ri denotes differentiation with respect to ri. We consider the
displacement field ε(r) and its gradient to be small.
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The change in phase space variables affects the Hamilto-
nian and renders it functionally dependent on the displace-
ment field, H → H[ε]. Inserting transformations (2) and (3)
into Eq. (1) and expanding in the displacement field to linear
order yields

H[ε] = H0 −
N∑

i=1

pipi

m
: ∇riε(ri )

+
N∑

i=1

ε(ri ) · ∇ri (UN (rN ) + Vext(ri )), (4)

where H0 = H[ε = 0] is the original Hamiltonian as given in
Eq. (1). The colon indicates the contraction pipi : ∇riε(ri ) =∑

α,γ piα piγ ∇riγ εα , where Greek indices indicate Cartesian
components.

Turning to a statistical description, the grand potential,
�0 = �[ε = 0], and the grand partition sum, �0 = �[ε = 0],
of the original system are given, respectively, by

�0 = −kBT ln �0, (5)

�0 = Tr e−β(H0−μN ). (6)

In the grand canonical ensemble the trace is defined as Tr =∑∞
N=0(h3N N!)−1

∫
dr1 . . . drN dp1 . . . dpN , with h indicating

the Planck constant [1].
The transformed Hamiltonian, H[ε], can be used to de-

fine a correspondingly transformed grand potential functional,
�[ε] = −kBT ln(Tr e−β(H [ε]−μN ) ). To linear order in ε(r) the
functional Taylor expansion of �[ε] is given by

�[ε] = �0 +
∫

dr
δ�[ε]

δε(r)

∣∣∣∣
ε(r)=0

· ε(r). (7)

The functional derivative in Eq. (7) can be calculated as fol-
lows:

δ�[ε]

δε(r)
= − kBT

�[ε]
Tr

δ

δε(r)
e−β(H [ε]−μN )

= − kBT

�[ε]
Tr e−β(H [ε]−μN )

(
− β

δH[ε]

δε(r)

)

= Tr �
δH[ε]

δε(r)
, (8)

where we have identified � = e−β(H [ε]−μN )/�[ε] as the grand
ensemble probability distribution. Notably the form (8) con-
stitutes a grand ensemble average of δH[ε]/δε(r). Formally,
the average is taken in the displaced system, but we will find
the form (8) to be sufficient to calculate averages with respect
to the original, undisplaced distribution. Using Eq. (4) and
thus retaining only the lowest relevant order in ε(r) we obtain

δH[ε]

δε(r)
=

N∑
i=1

(
− pipi

m
· ∇riδ(r − ri )

+ δ(r − ri )∇ri [UN (rN ) + Vext(ri )]

)
. (9)

Here we have used the fundamental rule of functional dif-
ferentiation δε(r)/δε(r′) = δ(r − r′)1, where δ(·) indicates
the (three-dimensional) Dirac distribution, and 1 denotes the

3 × 3 unit matrix. Using Eq. (9) inside of the average (8),
carrying out the phase-space integrals, evaluating at ε(r) = 0
and multiplying by −1 yields

−δ�[ε]

δε(r)

∣∣∣∣
ε(r)=0

= −kBT ∇rρ(r) + Fint(r) − ρ(r)∇rVext(r),

(10)

where the one-body density profile is defined as the aver-
age ρ(r) = Tr �

∑
i δ(r − ri ) and the internal force density

is given by Fint(r) = −Tr �
∑

i δ(r − ri )∇riUN (rN ). Fur-
thermore, the ideal diffusion force density −kBT ∇rρ(r)
follows from carrying out the phase-space momentum in-
tegrals explicitly or, alternatively, using the equipartition
theorem Tr �pi∂H/∂pi = kBT 1. The spatial gradients in
Eq. (10) emerge by exploiting ∇r δ(r − ri ) = −∇riδ(r − ri ).
The right-hand side of Eq. (10) represents the sum of the
position-resolved average one-body force densities of ideal,
interparticle and external origin.

Using the transformations (2) and (3) one can easily ver-
ify that the differential volume elements for coordinates and
momenta follow to linear order in ε as

dri → (1 + ∇ri · ε(ri ))dri ≡ dr′
i, (11)

dpi → (1 − ∇ri · ε(ri ))dpi ≡ dp′
i. (12)

We thus see that for each particle dridpi = dr′
idp′

i holds to
linear order in ε and, therefore, for the entire phase-space

N

i=1dridpi = 
N
i=1dr′

idp′
i, as befits a canonical transforma-

tion (see Appendix A).
As the transformation is also time-independent, the Hamil-

tonian is an invariant (see again Appendix A). Then trivially
the partition sum (6) and the grand potential (5) are also
invariants. It follows that

�[ε] = �0. (13)

The linear term in the functional Taylor expansion (7) thus
vanishes and it does so irrespective of the form of ε(r). The
functional derivative (10) itself must therefore vanish,

δ�[ε]

δε(r)

∣∣∣∣
ε(r)=0

= 0,

from which we can conclude that

−kBT ∇rρ(r) + Fint(r) − ρ(r)∇rVext(r) = 0, (14)

which is the known equilibrium force density relationship
[1,33].

When considering systems interacting via a pair poten-
tial φ, the internal potential energy has the form UN (rN ) =∑

i< j φ(|ri − r j |). The internal force density can then be writ-
ten as

Fint(r1) = −
∫

dr2ρ
(2)(r1, r2)∇r1φ12, (15)

where the two-body density is defined microscopically as
ρ (2)(r1, r2) = Tr �

∑′
i j δ(r1 − ri )δ(r2 − r j ), with the prime

on the summation indicating the omission of the terms with
i = j, and we indicate the pair interaction potential by the
shorthand φ12 = φ(|r1 − r2|). We have relabeled r → r1 to
give clarity to equations involving two-body functions. Using
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the explicit form (15) in the force density relationship (14) and
rearranging yields

−kBT ∇r1 (ln ρ(r1)) − ∇r1Vext(r1)

−
∫

dr2
ρ (2)(r1, r2)

ρ(r1)
∇r1φ12 = 0, (16)

which is the explicit form of the first member of the YBG
hierarchy [1]. We have thus shown that Eq. (16) arises from
a variational principle on the grand potential. It is hence of
no lesser status than the EL equation of potential-DFT, to be
discussed in Sec. III C.

B. Force-DFT

The YBG Eq. (16), which has been derived using Noether
invariance in the previous subsection, has the appealing fea-
ture that it explicitly contains the interparticle pair interaction,
φ12. We thus take the YBG Eq. (16) as a fundamental starting
point for describing the equilibrium state. The third term in
Eq. (16), which gives the mean interparticle interaction force
at the point r1, is not written as the gradient of a potential.
However, as an equilibrium system is conservative by con-
struction we can formally rewrite it as a potential force using
the inverse of the gradient∫

dr2
ρ (2)(r1, r2)

ρ(r1)
∇r1φ12

= ∇r1

(
∇−1

r1
·
∫

dr2
ρ (2)(r1, r2)

ρ(r1)
∇r1φ12

)
, (17)

where ∇−1
r1

= 1
4π

∫
dr2

(r1−r2 )
|r1−r2|3 is an integral operator (see,

e.g., Refs. [20,21]). We thus define a scalar one-body function
c(1)

f according to

c(1)
f (r1) ≡ −∇−1

r1
·
∫

dr2
ρ (2)(r1, r2)

ρ(r1)
∇r1βφ12. (18)

Although we employ the notation usually reserved for the one-
body direct correlation function, Eq. (18) originates here from
a quite different, but arguably more intuitive and fundamental
way of thinking. We can thus re-express the YBG Eq. (16) in
the following form:

∇r1 (−kBT ln ρ(r1) − Vext(r1) + kBT c(1)
f (r1)) = 0.

Equilibrium implies that the term in parentheses is equal to a
constant μ, which leads to

ρ(r1) = eβ[μ−Vext (r1 )]+c(1)
f (r1 ). (19)

In contrast to standard potential-DFT here the function c(1)
f

is simply defined by Eq. (18) and is generated directly from
an explicit integral over the pair interaction force. Combining
Eqs. (19) and (18) yields

ρ(r1) = exp

(
β(μ − Vext(r1))

−∇−1
r1

·
∫

dr2
ρ (2)(r1, r2; [ρ])

ρ(r1)
∇r1βφ12

)
, (20)

which is the central equation of force-DFT. Given an explicit
expression for the two-body density as a functional of the

one-body density, ρ (2) ≡ ρ (2)(r1, r2; [ρ]), Eq. (20) enables
calculation of ρ(r1) for any given external potential. While
one can argue on formal grounds that the force integral and
its nontrivial essence, the two-body density distribution, are
one-body density functionals, our current treatment makes
this formal dependence both analytically explicit and compu-
tationally tractable.

C. Potential-DFT

The standard implementation of DFT (referred to in this
work as potential-DFT) is based on the grand potential density
functional, �[ρ], given by

�[ρ] = Fid[ρ] + Fexc[ρ] −
∫

dr(μ − Vext(r))ρ(r), (21)

where βFid[ρ] = ∫
drρ(r){ln[ρ(r)] − 1} is the ideal gas con-

tribution with the thermal wavelength set equal to unity.
Variational minimization of the grand potential

δ�[ρ]

δρ(r)
= 0, (22)

generates the EL equation,

ρ(r) = eβ[μ−Vext (r)]+c(1)
p (r). (23)

The function c(1)
p is defined to be the first functional derivative

of the excess (over ideal) Helmholtz free energy with respect
to the density [1,15],

c(1)
p (r) = −δβFexc[ρ]

δρ(r)
. (24)

This function c(1)
p , which is now the familiar one-body direct

correlation function, is the first member of a hierarchy of
correlation functions generated by successive functional dif-
ferentiation of Fexc with respect to the density. For situations in
which all quantities are known exactly the definition given in
Eq. (24) is equivalent to that of Eq. (18). Even though the EL
Eq. (23) has the same structure as Eq. (19), these are concep-
tually different and have distinct origins. The potential-DFT is
constructed using only one-body functions and the average in-
teraction force is generated by taking the gradient of c(1)

p . This
should be contrasted with the force-DFT, which works on the
two-body level, in which the interaction force is calculated by
explicit spatial integration of the pair-interaction, see Eq. (17).

If both the one-body direct correlation function and the
two-body density are generated from the same, exact free
energy functional, then both the potential- and force-DFT
implementations will yield the same average interaction force
and thus the same density profiles. This will not be the case
when using an approximate free energy functional and dif-
ferences can be expected. The special case of a hard-wall
substrate enables the degree of consistency between these two
routes to be examined analytically and this will be the focus of
the following two Secs. III D and III E (which can be skipped
if the reader is more interested in the numerical predictions of
potential- and force-DFT, which are presented in Sec. III H).
Route-dependency will also turn out to be highly relevant for
the dynamical versions of potential- and force-DFT, as shown
later in Sec. IV.
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D. Virial contact theorem

Before we proceed to investigate the virial route version
of the contact theorem, we recall the very general and well-
known version of it [1,36,37], namely, that ρw = βP, which
relates the density of a fluid at a planar hard-wall, ρw, to the
corresponding bulk pressure, P. This can be proven without
the need to specify by which method the one-body density
is obtained. For completeness we provide a general proof
of this in Appendix B. Other general proofs of the contact
theorem are based on the balance of forces [1,36,37], a linear
displacement of the free energy [37] and the connection be-
tween the pressure and the mean kinetic energy density [36].
The contact theorem is satisfied within DFT for excess free
energy functionals within the weighted density approximation
[38,39], with FMT [40] being an important example.

There are several generalizations of the wall theorem,
which include a version for higher-body densities [41] and
extensions to hard-walls with additional soft particle-wall
interactions [42,43] as well as to nonplanar locally curved
hard-walls [44,45], for which one can also get a local version
of the contact theorem [46]. Another important generalization
is the extension to ionic liquids [42,47–49], where an addi-
tional term proportional to the squared surface charge arises
in the contact theorem.

In the aforementioned derivations, the contact value of the
density is only related to a general bulk pressure. Exceptions
are the work of Lovett and Baus [37], where the authors iden-
tify the virial pressure and the study of Tarazona and Evans
[39], where the contact theorem for the Percus-Yevick and
the hypernetted chain approximation were determined. Due to
approximations within theoretical descriptions the pressures
from different routes do not necessarily agree with each other.
When used in potential-DFT studies it is always implicitly as-
sumed that the relevant pressure is that of the compressibility
route [38], which we prove is indeed the case in the next sub-
section. For the force-DFT we prove here first that the relevant
bulk pressure is that of the virial route. The ability to access
these two routes for inhomogeneous systems offers both the
possibility of new insight into the formal structure of DFT
and a useful tool for constructing approximate functionals.

Let us focus now on the virial contact theorem. The force-
DFT is generated by the YBG Eq. (16). We begin by spatially
integrating it over the system volume V to obtain

−
∫

dr1 ρ(r1)∇r1βVext(r1) (25)

=
∫

dr1 ∇r1ρ(r1) +
∫

dr1

∫
dr2 ρ (2)(r1, r2)∇r1βφ12.

Exploiting the planar symmetry imposed by the hard-wall
allows to simplify the density, ρ(r1) = ρ(z1), the external
potential Vext(r1) = Vext(z1) and the spatial derivative ∇r1 =
ez d/dz1, where ez is the unit vector normal to the wall and
pointing away from it (see Fig. 1 for illustration). The ideal
contribution, i.e., the first term on the right-hand side of
Eq. (25), can then be rewritten as

∫
dr1 ∇r1ρ(r1) = A

∫ ∞

−∞
dz1

dρ(z1)

dz1
ez = Aρbez, (26)

FIG. 1. Geometrical sketch of the planar geometry at a hard-wall.
For the evaluation of the virial integral [Eqs. (28) and (29)] the
space is divided into two subregions I and II. For a given value
of coordinate 1 we integrate coordinate 2 over the angle θ = 0 →
arccos(z̃/r12). The shaded region on the left indicates the wall, ez

denotes a unit vector in the z direction and z̃ is the z coordinate
measured relative to coordinate 1.

where A = ∫
dx

∫
dy indicates the area of the hard-wall. In

the second equality of (26) we used that the density reaches a
bulk value for large values of z1, ρ(z1 → ∞) = ρb, and van-
ishes inside the hard-wall, ρ(z1 → −∞) = 0. The external
contribution, i.e., the left-hand side of Eq. (25), becomes

−
∫

dr1 ρ(r1)∇r1βVext(r1) = −A
∫ ∞

−∞
dz1 ρ(z1)

dβVext(z1)

dz1
ez

= Aρw ez. (27)

In deriving Eq. (27) we used that the derivative of the hard-
wall external potential yields a (negative) δ distribution at the
wall. To obtain this result it is useful to rewrite the density
as ρ(z1) = n(z1) exp[−βVext(z1)], where n(z1) is a continuous
function of z1.

The second term on the right-hand side of Eq. (25) arises
from the internal interparticle interactions and it is related to
the global internal force, F o

int. Noether’s theorem [50] states
that the global internal force vanishes in a closed system.
As the semi-infinite system with a planar hard-wall is open,
one has to take boundary contributions into account [50]. The
boundary terms corresponding to the x and y axis cancel due
to the planar symmetry. The wall contribution, z1 → −∞,
vanishes as there are no particles inside the hard-wall. (We
refer the reader to Fig. 1 to help visualize the situation for the
following analysis.)

The remaining bulk boundary term, z1 → ∞, can be
treated by considering the force contributions between a par-
ticle inside a chosen integration volume and a particle outside
of it. The force contributions where both particles are within
the integration volume vanish for pair potential-type interpar-
ticle interactions, due to Newton’s third law (action equals
reaction). We choose the volume to be bounded from the right
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(positive values of z) by a virtual plane parallel to the hard-
wall and deep inside the bulk phase. Therefore and because of
the assumed finite interparticle interaction range the integrand
and thus the two-body density, ρ (2)(r1, r2), reduces to its bulk
expression, ρ

(2)
b (|r1 − r2|), at locations beyond this virtual

separation plane. These considerations yield the following
simplifications of the global internal force

−βF o
int =

∫
dr1

∫
dr2 ρ (2)(r1, r2)∇r1βφ12

=
∫

I
dr1

∫
II

dr2 ρ
(2)
b (r12)∇r1βφ12

= ρ2
b

∫
I
dr1

∫
II

dr2 g(r12)
dβφ12

dr12
cos θez, (28)

where r12 = |r1 − r2|. The subscript I on the integral denotes
the integration volume with z coordinate reaching from minus
infinity to the volume boundary and II indicates the outside
region at large z values. To obtain the last relation in Eq. (28)
we use the identity ρ

(2)
b (r12) = ρ2

b g(r12), where g is the pair
correlation function. The interparticle interaction force sim-
plifies to ∇r1φ(|r1 − r2|) = ez cos(θ )dφ(r12)/dr12 due to the
planar symmetry, where θ indicates the angle between the
z-axis and the difference vector r1 − r2.

We employ two different coordinate systems for each of the
integration regions. For region I we use Cartesian coordinates,
where z̃ measures the distance to the volume boundary. The
integral over region II involves only the relative coordinate
between the inside and outside regions. We express this inte-
gral in spherical coordinates, where the polar angle θ varies
only between 0 and θ̃ = arccos(z̃/r12) to ensure that the sec-
ond coordinate remains within region II. The z component of
Eq. (28) is given by

2πAρ2
b

∫ ∞

0
dr12r2

12g(r12)
dφ(r12)

dr12

∫ r12

0
dz̃

∫ θ̃

0
dθ sin θ cos θ

= 2πAρ2
b

∫ ∞

0
dr12r2

12g(r12)
dφ(r12)

dr12

∫ r12

0
dz̃

1

2

(
1 − z̃2

r2
12

)

= 2π

3
Aρ2

b

∫ ∞

0
dr12r3

12g(r12)
dφ(r12)

dr12
. (29)

Inserting Eqs. (26), (27), and (29) into the z component of
Eq. (25) gives

ρw = ρb − 2π

3
ρ2

b

∫ ∞

0
dr12 r3

12 g(r12)
dβφ(r12)

dr12

= βPid + βP v
exc = βP v, (30)

where we have identified the standard expression [1] for the
virial pressure Pv. We have thus proven the contact theorem
relevant to the force-DFT, namely, that if one uses force-DFT
to calculate the density profile at a hard-wall, then the contact
density will correspond to the reduced virial pressure, βP v.
Note that the derivation of the corresponding contact theorem
in two dimensions can be done similarly.

E. Compressibility contact theorem

The virial contact theorem derived above follows naturally
from the forces acting within the system. In contrast the

compressibility contact theorem, based on the one-body direct
correlation function, is more formal and requires therefore
more involved manipulations of the fundamental equations to
arrive at the desired result. Although the contact theorem
is a result frequently cited in the literature, there is to our
knowledge no calculation which shows explicitly that the wall
contact density from potential-DFT is given by the reduced
pressure from the compressibility route. Since potential-DFT
is generated by the EL Eq. (23), our proof begins by taking its
gradient, which yields

∇r1ρ(r1) + ρ(r1)∇r1βVext(r1)

− ρ(r1)∇r1 c(1)
p (r1) = 0. (31)

The following simple identity from the product rule of differ-
entiation

∇r1

[
ρ(r1)c(1)

p (r1)
]

= c(1)
p (r1)∇r1ρ(r1) + ρ(r1)∇r1 c(1)

p (r1),

allows us then to rewrite Eq. (31) in the following alternative
form

∇r1ρ(r1) + ρ(r1)∇r1βVext(r1)

−∇r1

(
ρ(r1)c(1)

p (r1)
) + c(1)

p (r1)∇r1ρ(r1) = 0. (32)

Equation (32) involves only the one-body direct correla-
tion function, c(1)

p , defined in its standard form by Eq. (24).
However, the bulk compressibility pressure is typically ex-
pressed in terms of the two-body direct correlation function,
c(2). Therefore, we seek to re-express ρ(r1)c(1)

p (r1) using the
method of “functional line integration” [51]. By reintegrating
the functional derivative of ρ(r1)c(1)

p (r1) with respect to the
density we obtain the formal result

ρ(r1)c(1)
p (r1)

=
∫

dr2

∫ ρ(r2 )

0
dρ ′(r2)

δ
(
ρ(r1)c(1)

p (r1)
)

δρ(r2)

∣∣∣∣∣
ρ(r2 )=ρ ′(r2 )

,

where at each spatial point r2 we integrate from an empty
system (zero density) up to the density of interest, ρ(r2).
Evaluation of the functional derivative then yields

ρ(r1)c(1)
p (r1) =

∫
dr2

∫ ρ(r2 )

0
dρ ′(r2)

(
ρ ′(r1)c(2)(r1, r2; [ρ ′])

+ δ(r1 − r2)c(1)
p (r1; [ρ ′])

)

=
∫

dr2

∫ ρ(r2 )

0
dρ ′(r2)ρ ′(r1)c(2)(r1, r2; [ρ ′])

+
∫ ρ(r1 )

0
dρ ′(r1)c(1)

p (r1; [ρ ′]).

This result can be substituted into Eq. (32) to give

0 = ∇r1ρ(r1) + ρ(r1)∇r1βVext(r1) + c(1)
p (r1)∇r1ρ(r1)

−
∫

dr2

∫ ρ(r2 )

0
dρ ′(r2)∇r1 (ρ ′(r1)c(2)(r1, r2; [ρ ′]))

−∇r1

∫ ρ(r1 )

0
dρ ′(r1)c(1)

p (r1; [ρ ′]). (33)
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We henceforth specialize to external fields which impose a
planar geometry, such that the density profile and the two-
body correlation functions exhibit cylindrical symmetry. As
pointed out above, for the case of a planar hard-wall located
at z = 0 the density only varies in the z direction, ρ(r) = ρ(z).
Equation (33) can then be integrated to yield

ρb − ρw =

A︷ ︸︸ ︷∫
dr2

∫ ρ(z2 )

0
dρ ′(z2)ρ ′

bc(2)(z1 = ∞, z2, r2; [ρ ′])

+
∫ ρb

0
dρ ′

bc(1)
p,b(ρ ′

b)︸ ︷︷ ︸
B

−
∫ ∞

−∞
dz1c(1)

p (z1)
d

dz1
ρ(z1)

︸ ︷︷ ︸
C

,

(34)

where we have used ρ(z1 → ∞) = ρb and ρ(z1 → −∞) =
0, as in Eq. (26). To connect this expression with the bulk
compressibility pressure we analyze each of the three terms
labeled A, B, and C in Eq. (34) separately.

Term A: Having z1 → ∞ as an argument of the two-body
correlation function c(2) (which is of finite range) has the
consequence that only bulk values contribute to the integral
over the coordinate labeled 2, thus

Term A =
∫ ρb

0
dρ ′

b ρ ′
b

∫
dr12 c(2)

b (r12; [ρ ′
b])

=
∫ ρb

0
dρ ′

b ρ ′
bc̃(2)

b (q = 0; ρ ′
b)

= −βP c
exc,

where c̃(2)
b (q = 0) is the Fourier transform of the two-body

direct correlation function in the zero wave vector limit. The
second equality gives the well-known integral giving the ex-
cess (over ideal) pressure in the compressibility route, P c

exc,
see Ref. [52].

Term B: This term does not require further manipulation
and it can be given a clear physical interpretation. By identi-
fying the bulk one-body direct correlation function, c(1)

p,b, with
the excess reduced chemical potential, μexc, it follows that∫ ρb

0
dρ ′

bc(1)
p,b(ρ ′

b) = −
∫ ρb

0
dρ ′

b βμexc(ρ ′
b)

= −
∫ ρb

0
dρ ′

b β
∂ fexc

∂ρ ′
b

= −β fexc(ρb),

where fexc = Fexc/V is the bulk excess Helmholtz free energy
per unit volume.

Term C: Using that c(1)
p evaluated at a bulk density becomes

position independent,

−
∫ ∞

−∞
dz1

dρ(z1)

dz1
c(1)

p (z1) = −
∫ ρb

0
dρ ′

bc(1)
p (z1; [ρ ′

b])

= −
∫ ρb

0
dρ ′

bc(1)
p,b(ρ ′

b)

= Term B.

Terms B and C cancel out and we finally get

ρw = ρb −
∫ ρb

0
dρ ′

b ρ ′
bc̃(2)

b (q = 0; ρ ′
b)

= βPid + βP c
exc = βP c. (35)

We have thus proven the contact theorem for the compress-
ibility route, namely, that if one uses Eq. (31) to calculate the
density profile at a hard-wall, then the contact density will
correspond to the reduced compressibility pressure, βP c.

So far all our definitions and analytical considerations were
not constrained to any specific system. However, at this point,
to implement these general frameworks and show numerical
results, we will focus on a particular simple model.

F. Hard-sphere FMT

We now specialize to the minimal fluid model, which we
take to be hard-spheres of radius R in three dimensions. The
force-DFT approach is in no way restricted to this particular
system. Hard-spheres simply provide a convenient test-case
for which FMT gives an accurate approximation to the excess
Helmholtz free energy functional,

βFexc[ ρ ] =
∫

dr1 �({nα (r1)}). (36)

The original Rosenfeld formulation of FMT [53] employs the
following reduced excess free energy density

� = −n0 ln(1 − n3) + n1n2 − n1 · n2

1 − n3
+ n3

2 − 3n2n2 · n2

24π (1 − n3)2
.

The weighted densities are generated by convolution

nα (r1) =
∫

dr2 ρ(r2) ωα (r1 − r2), (37)

where the weight functions, ωα , are characteristic of the ge-
ometry of the spheres. Of the six weight functions, four are
scalars

ω3(r) = �(R − r), ω2(r) = δ(R − r),

ω1(r) = δ(R−r)
4πR , ω0(r) = δ(R−r)

4πR2 ,

and two are vectors (indicated by bold indices)

ω2(r) = er δ(R − r), ω1(r) = er
δ(R−r)

4πR ,

where er = r/r is a unit vector.
Applying the definition (24) for c(1)

p to the free energy (36)
generates the following approximate form for the one-body
direct correlation function:

c(1)
p (r1) = −

∑
α

∫
dr2 �′

α (r2) ωα (r21), (38)

where the summation runs over all scalar and vector indices,
�′

α = ∂�/∂nα , and r21 = r2 − r1. The function �′
α is a vector

quantity when α takes the value 1 or 2, in which case a scalar
product with the corresponding vectorial weight function is
implied in Eq. (38), otherwise it is a scalar function.

Taking two functional derivatives of the free energy (36)
generates the following expression for the two-body direct
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correlation function:

c(2)(r1, r2) = −
∑
αβ

∫
dr3 ωα (r31) �′′

αβ (r3) ωβ (r32), (39)

where �′′
αβ = ∂2�/∂nα∂nβ . For a detailed descriptions how

to implement Eq. (39) in planar and spherical geometries we
refer the reader to Ref. [34].

The inhomogeneous OZ equation

h(r1, r2) = c(2)(r1, r2) +
∫

dr3 h(r1, r3)ρ(r3)c(2)(r3, r2)

(40)

connects the two-body direct correlation function, c(2), with
the total correlation function, h. The latter is related to the
two-body density according to

ρ (2)(r1, r2) = ρ(r1)ρ(r2)(h(r1, r2) + 1). (41)

Substitution of Eq. (39) into the inhomogeneous OZ Eq. (40)
yields a linear integral equation which can be solved for h,
given the one-body density as input. The two-body density
defined by Eq. (41) is thus a known functional of the one-body
density, as required for implementation of the force-DFT.

Numerical evaluation of the right-hand side of Eq. (39) fol-
lowed by iterative solution of the inhomogeneous OZ Eq. (40)
is a demanding, yet well-defined and ultimately manageable,
task. For researchers familiar with standard potential-DFT
implementations (which operate purely on the one-body level)
working with two-body numerics represents a significant
step. However, having explicit access to the two-body cor-
relations provides a much deeper insight into the particle
microstructure and this benefit thus outweighs the increased
computational complexity.

G. Implementation in planar geometry

Now that we have specified the model of interest (hard-
spheres) we choose to henceforth restrict our attention to
planar geometry, for which the two-body correlation functions
can be expressed using the cylindrical coordinates, z1, z2, and
r2 (see Refs. [14,34]). Although neither the potential- nor the
force-DFT are limited to any particular geometry, our choice
to focus on the planar case enables us to make connection to
the contact sum-rules proven analytically in Secs. III D and
III E.

To implement force-DFT, as expressed by the central
Eq. (20), we begin by integrating Eq. (18) to obtain the func-
tion c(1)

f . This yields

c(1)
f (z) − c(1)

f (0)

=
∫ z

0
dz1

2π

ρ(z1)

∫ z1+1

z1−1
dz2(z1 − z2)ρ (2)(z1, z2, r∗

2 ), (42)

with r∗
2 ≡

√
1 − (z1 − z2)2 and where the particle diameter

has been set to unity. Both the factor (z1 − z2) and the argu-
ment r∗

2 appearing in the two-body density are consequences
of the gradient of the hard-sphere potential in Eq. (18); a
detailed derivation of Eq. (42) is given in Appendix C. The
integration constant c(1)

f (0) is unknown, but it does not have
to be determined to calculate the density profile. Defining

a new parameter α ≡ βμ + c(1)
f (0), we obtain the following

expression:

ρ(z) = eβ(μ−Vext (z))+c(1)
f (z)

= eαe−βVext (z)+∫ z
0 dz1

2π
ρ(z1 )

∫ ∞
−∞ dz2(z1−z2 )ρ (2) (z1,z2,r∗

2 )
. (43)

If we choose the average number of particles 〈N〉 =∫ ∞
−∞ dz ρ(z) to be conserved, then the corresponding value of

α can be determined from

eα = 〈N〉∫ ∞
−∞ dz e−βVext (z)+2π

∫ z
0 dz1

∫ ∞
−∞ dz2 (z1−z2 )

ρ(2) (z1 ,z2 ,r∗2 )

ρ(z1 )

,

(44)

which circumvents the need to prescribe c(1)
f (0) and μ inde-

pendently. Given a method to calculate the two-body density
from a given one-body profile, Eqs. (43) and (44) provide a
closed system for numerical determination of the equilibrium
density profile. This is possible since the two-body direct cor-
relation function, c(2), is given as a functional of the one-body
density in Eq. (39). The connection between c(2) and ρ (2) is
given by combining the inhomogeneous OZ Eq. (40) with
the definition (41). The three-dimensional integral appearing
in Eq. (40) can be reduced to a manageable one-dimensional
integral using the method of Hankel transforms, as described
in detail in Ref. [34]. The Hankel transform of the OZ Eq. (40)
is given by

h(z1, z2, k) = c (2)(z1, z2, k)

+
∫ ∞

−∞
dz3 h(z1, z3, k) ρ(z3) c (2)(z3, z2, k),

(45)

where an overbar indicates a Hankel transformed quantity. In
Ref. [34] a convenient analytical expression is given for the
Rosenfeld form of c (2).

On the other hand, the implementation of potential-DFT to
obtain the density profile in planar geometry is a standard pro-
cedure in FMT studies. The EL Eq. (23) in planar geometry
reads

ρ(z) = eβ(μ−Vext (z))+c(1)
p (z), (46)

where c(1)
p (z) is given by the planar version of Eq. (38) (see

Ref. [34]).

H. Numerical results for hard-spheres at a hard-wall

To calculate the density profile from force-DFT, we need
to choose as input a value for the average number of par-
ticles, 〈N〉. In contrast, the potential-DFT takes as input the
reduced chemical potential, βμ. To enable comparison of the
results from the two different approaches, we first calculate
the potential-DFT density profiles for a given value of the
reduced chemical potential and then calculate the average
number of particles in the system by spatial integration. This
value is then used as input in the force-DFT calculation. The
quantities of relevance for testing the wall contact theorem are
the bulk density [taken as ρb ≈ ρ(z → ∞)] and the density
at the wall, ρw. As we employ the Rosenfeld functional, the
compressibility and virial pressures are identical to those of
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FIG. 2. Density profiles and pressure at a hard-wall. Numerical results for hard-spheres at a hard-wall calculated using potential-DFT
(dashed orange lines), force-DFT (full blue lines). The density curves from potential-DFT shown in the panels (a), (b), and (c) were calculated
at reduced chemical potentials βμ = 3, 5, and 7, respectively. The corresponding force-DFT density curves shown in the same panels were
obtained by setting the average number of particles to match the values from potential-DFT. The top right panel (d) shows the analytic PY
compressibility and virial pressures, together with numerical contact-values from potential-DFT (red filled circles) and force-DFT (green stars).
These are also indicated by dotted horizontal lines in the zoomed density profiles shown in the insets in panels (a), (b), and (c), following the
same color scheme.

the well-known Percus-Yevick (PY) integral equation theory
[1], which are given by

βP c

ρb
= 1 + η + η2

(1 − η)3
,

βP v

ρb
= 1 + 2η + 3η2

(1 − η)2
, (47)

where η = 4π
3 ρbR3 is the packing fraction.

In Fig. 2, we show three sets of representative density pro-
files and the contact density as a function of ρb compared with
the expected pressure. In the panel of Fig. 2(a) the reduced
chemical potential is rather low, βμ = 3, and the resulting
potential- and force-DFT density profiles are very similar.
Zooming to inspect the contact value highlights the difference
between the two profiles and shows that our numerical data
are highly consistent with the expected analytical pressures
(indicated by the horizontal dotted lines, red for the com-
pressibility route and green for the virial route). The panel of
Fig. 2(b) is for βμ = 5 and, although some slight differences
begin to emerge in the oscillations of the two density profiles,
the contact values remain in excellent agreement with the
respective analytical predictions. The panel of Fig. 2(c) is for
βμ = 7 and shows more significant deviation of the density
oscillations, but the contact densities still remain consistent
with Eqs. (47). We find that both the oscillation amplitude

and contact density from force-DFT are lower than those of
the potential-DFT.

We have performed similar calculations for a wider set of
reduced chemical potentials. The panel of Fig. 2(d) shows the
resulting contact densities as a function of ρb. This discrete
set of points are shown together with the analytical curves
from Eqs. (47), exhibiting an excellent level of agreement for
a broad range of bulk densities. From our numerical results it
is clear that the force-DFT does correspond to the virial route.
This demonstrates that we have constructed a method by
which DFT calculations can be reliably performed within the
“virial realm” instead of the “compressibility realm,” which
seemed to be the only one accessible before.

IV. DYNAMICAL THEORY

A. Force-DDFT

The tools we have developed can be readily extended
to explore the dynamics of the one-body density out-of-
equilibrium. In the following we consider systems subject
to overdamped Brownian dynamics (BD). These model dy-
namics are suitable for the present investigation for two
primary reasons. First, in overdamped BD the temperature
is per construction constant. Hence relating the dynamics
to an equilibrium ensemble is more straightforward than it
is in molecular dynamics. Second, the absence of inertia in
BD leads to simpler dynamical behavior emerging on the

014115-10

108



7.5 Force density functional theory in- and out-of-equilibrium

FORCE DENSITY FUNCTIONAL THEORY IN- AND … PHYSICAL REVIEW E 106, 014115 (2022)

one-body level [33]. An example is acceleration-dependent
viscosity, which arises in molecular dynamics, but not in
overdamped BD [54].

For overdamped motion the dynamics of the N-body dis-
tribution function is dictated by the Smoluchowski equation
[30]. Integration over N − 1 position coordinates generates
the exact equation of motion for the one-body density

∂ρ(r1, t )

∂t
= −∇r1 · j(r1, t ), (48)

where the current is given by

j(r1, t ) = −D0 ρ(r1, t )

(
∇r1 ln(ρ(r1, t )) + ∇r1βVext(r1)

+
∫

dr2
ρ (2)(r1, r2, t )

ρ(r1, t )
∇r1βφ12

)
, (49)

where D0 is the diffusion coefficient. The interparticle force,
−∇r1βφ12, appears explicitly in the integral term. Equa-
tions (48) and (49) form the basis of the force-DDFT.
Calculation of the current requires the exact time-dependent
two-body density, ρ (2), as an input quantity, which is not avail-
able for any interacting model of real interest. A workable
approximation can be obtained by making the assumption
that ρ (2) is instantaneously equilibrated to the nonequilib-
rium density. This adiabatic approximation enables one to
employ the two-body correlations calculated using the inho-
mogeneous OZ Eq. (40) (which is an equilibrium relation) to
obtain the average interaction force at each time-step. Note
that in-equilibrium the current (49) vanishes. Since the den-
sity is nonzero, the sum of the three terms in parentheses in
Eq. (49) must also vanish and we recover the YBG Eq. (16).
The time-dependent density of force-DDFT thus relaxes to the
density profile of force-DFT in the long-time limit.

As for the equilibrium case, we only consider hard-spheres
subject to external fields of planar geometry. The gradient
inside the integral term of Eq. (49) must therefore be treated
carefully to correctly capture the discontinuous hard-sphere
interaction potential. Fortunately, for planar geometry the
integral can be conveniently reduced to one-dimension and
Eqs. (48) and (49) can be combined and rewritten as

1

D0

∂ρ(z1, t )

∂t
= ∂

∂z1

(
∂ρ(z1, t )

∂z1
+ ρ(z1, t )

∂βVext(z1)

∂z1

− 2π

∫ ∞

−∞
dz2 (z1 − z2) ρ (2)(z1, z2, r∗

2 , t )

)
,

(50)

where r∗
2 =

√
1 − (z1 − z2)2 for the particle diameter set to

unity. This corresponds to evaluating the two-body density
only on the contact shell where the interparticle forces act.
The force-DDFT generates the dynamics of the density pro-
file in the virial realm, which contrasts and complements the
standard potential-DDFT, which we recall in the following.

B. Potential-DDFT

The current for potential-DDFT [30] is given by

j(r, t ) = −D0 ρ(r, t )∇r
(

ln(ρ(r, t )) + βVext(r) − c(1)
p (r, t )

)
.

(51)

In the construction of the force-DDFT, in Sec. IV A, we ap-
plied an adiabatic approximation to the two-body density, ρ (2),
and thus to the entire average interaction force. This approach
explicitly implements the idea of instantaneous equilibration
of ρ (2) at each time-step. Here we exploit an equilibrium sum-
rule (see Ref. [30]) to approximate the average interaction
force using the gradient of the one-body direct correlation
function, c(1)

p , which results in Eq. (51). The consequence
of making this approximation is that the potential-DDFT op-
erates within the compressibility realm. The long-time limit
of the density time-evolution then reduces to that of the
potential-DFT. As already pointed out in the previous subsec-
tion, the current must vanish at equilibrium. In the present case
this implies that the sum of terms in parentheses in Eq.(51)
must vanish, which recovers the (gradient of) the EL Eq. (23).

For the present case of planar geometry, combining
Eqs. (48) and (51) yields the following one-dimensional equa-
tion of motion

1

D0

∂ρ(z, t )

∂t
= ∂

∂z

(
∂ρ(z, t )

∂z
+ ρ(z, t )

∂βVext(z)

∂z

− ρ(z, t )
∂c(1)

p (z, t )

∂z

)
(52)

for the density profile. This can be compared with the exact
Eq. (50). Note that if we follow the adiabatic approximation
scheme on the one-body density functional ρ (2)[ρ], then we
get back Eq. (52) but with c(1)

f , defined by Eq. (18), instead of
c(1)

p .

C. Numerical results for hard-spheres in a harmonic-trap

To compare the predictions of force-DDFT with those
of potential-DDFT we consider a simple benchmark test of
the relaxational dynamics. The density is first equilibrated to
a planar harmonic external potential, βVext(z) = A(z − z0)2,
where we use the values A = 0.75 and z0 = 5 inside of a com-
putational domain covering the range from z = 0 to z = 10.
At time t = 0 we instantaneously switch the harmonic-trap
amplitude to the value A = 0.5 and then use either Eq. (50)
or Eq. (52) to calculate the relaxational time-evolution of the
density toward the equilibrium state of the new trap. The time
integration of Eqs. (50) and (52) is performed using forward
Euler integration, which amounts to approximating the partial
time derivative according to the following finite difference
expression:

∂ρ(z, t )

∂t
≈ ρ(z, t + �t ) − ρ(z, t )

�t
,

where �t is the time-step. In practice, the numerical realiza-
tion of equilibrium as a long-time limit of the dynamics may
be difficult to achieve due to the accumulation of discretiza-
tion errors over many time-steps.

The left panels (a) and (b) of Fig. 3 show the time-evolution
of the density obtained from the potential-DDFT. In the upper
panel we show only the left-half of the symmetric density
profile and in the lower panel we show a zoom of the den-
sity peak. The black dashed curves indicate the equilibrium
densities obtained from potential-DFT and can be compared
with our grand-canonical Monte Carlo simulation data [55],
given by the silver dotted lines. The simulation is equilibrated
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FIG. 3. Transient dynamics in a harmonic-trap. Time-evolution of the density following a discontinuous change in the trap amplitude from
A = 0.75 to 0.5 at time t = 0. The left panels (a) and (b) show the density obtained from potential-DDFT and the right panels (c) and (d) show
the density from force-DDFT. The black lines (dashed for potential-DFT, solid for force-DFT) give the equilibrium initial and final states. The
silver dotted lines in the lower row, in panels (b) and (d), show the initial equilibrium state and the final equilibrium state, as obtained from
grand-canonical Monte Carlo (GCMC) simulations.

for 105 sweeps and sampled for 107 sweeps, the box size is
30 × 30 × 20, where the unit of length is a hard-sphere diam-
eter, and on average there are 2142 particles in the system.

The colored dashed lines in Fig. 3 show density profiles
obtained from potential-DDFT for a selection of different
times, which we give in units of particle diameter squared over
diffusion coefficient, D0. These results should be compared
with those of the force-DFT and force-DDFT shown in the
right panels (c) and (d) of Fig. 3, where we used the same
colors as before to identify curves at equal times. We clearly
see that, in this case, the force-DDFT relaxes more slowly than
potential-DDFT, which implies that the average (repulsive)
interaction force is stronger in the latter approximation. A pos-
sible explanation for that phenomenon is that the hard-sphere
system has a very harshly repulsive interparticle potential,
which strongly influences the spatial distribution of the par-
ticles and which is captured more effectively in force-DDFT.

The implementation of potential-DDFT is rather quick and
simple since it only involves one-body functions and requires
only a single Picard update at each time-step. On the other
hand the force-DDFT is way more demanding since it in-
volves solving the OZ equation at every time-step and then
also requires a Picard update of the density. Not only are the
analytical expressions more complicated, but also the numer-
ical computational work. The shown curves therefore took
significantly more computational time to be obtained, but they
can nevertheless be calculated to high accuracy.

V. CONCLUSIONS AND OUTLOOK

Starting from fundamental principles of Noether invari-
ance, we have developed a force-based theory for the density
profile both in- and out-of-equilibrium. The equilibrium the-
ory shows that density profiles can be calculated via the
virial route by following our explicit force-DFT scheme. This
situation can be contrasted with the standard potential-DFT
that is known to follow the compressibility route. The latter
is a well-used result and often a crucial test in a significant
number of DFT studies, so we provided a mathematical proof
that explicitly shows that the planar hard-wall contact density
from potential-DFT is given by the reduced compressibility
pressure.

Our analytical proofs have been tailored to highlight the
different outcomes from the two routes. If we had access to
the exact Helmholtz free energy functional, then there would
be no route-dependency. A more general proof of the contact
theorem (shown in Appendix B or in Refs. [1,36,37]) would
then be sufficient. We thus suggest to exploit the differences
between the density profiles from the virial and compressibil-
ity routes to test, scrutinize, and ultimately attempt to improve,
approximate DFT schemes. Working with inhomogeneous
two-body correlation functions, as implemented explicitly in
the force-DFT, is both analytically and numerically more
demanding than using the standard potential-DFT scheme.
However, facing the increase in complexity is rewarded by
gaining deeper insight into the theoretical structure of DFT.
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Moreover working on the two-body level allows to explicitly
incorporate the pairwise interparticle interactions and take di-
rect account of their influence on the spatial distribution of the
particles. While carrying out force-DFT calculations comes at
an increased numerical cost, the additional workload (both in
terms of implementation and runtime) is far from prohibitive
and practical research can be efficiently performed.

The distinction between the virial and compressibility
routes is known to be important in the integral-equation theory
of bulk liquids [1]. Here we reveal an analogous scenario
for the theory of inhomogeneous fluids, which is an inter-
esting result in its own right. While both approaches, the
conventional potential-DFT and the force-DFT, construct the
density-functional dependencies in alternative forms, both ap-
proaches start from the same approximation for the excess
free energy functional. This offers clear pathways toward im-
proved theories that enforce self-consistency in a variety of
ways. For example, the virial and compressibility routes could
be mixed in the spirit of liquid-state integral-equation theories,
using approximations analogous to the Rogers-Young [56] or
Carnahan-Starling theories [57]. Another possibility would be
to enforce the exact core-condition on the total correlation
function h(r1, r2) and thus improve the description of the
inhomogeneous two-body correlations.

A particularly appealing feature of the force-DFT is that it
naturally generalizes to treat nonequilibrium systems. At the
most fundamental level, particles are moved by forces, rather
than by potentials, and hence forces form a solid basis for
developing a dynamical theory [24,25,32,33]. The adiabatic
approach that we have employed closes the dynamical de-
scription on the level of the one-body density. On this basis we
have explored the dynamical behavior of hard-spheres inside
of a harmonic-trap under a temporal switching protocol. We
found that the density dynamics that follow from potential-
and force-DDFT differ significantly from each other. Not only
are the equilibrium (long-time) profiles different, but so are
the relaxation rates.

The starting equations of force-DDFT, namely, Eqs. (48)
and (49), are exact. If we had access to the exact ρ (2) as a
functional of the one-body density, then we could calculate the
exact time-evolution of ρ. As this information is not available,
we close the theory by making an adiabatic approximation
for ρ (2), thus assuming that it equilibrates at each time-step.
This thinking is also captured in the adiabatic construction of
power functional theory [32,33].

A point of interest is to attempt to close at a higher level
of the correlation function hierarchy, with the aim to pro-
vide a first-principles superadiabatic dynamical theory. It is
hard to conceive that such progress could be made with-
out a force-based approach. The force-DFT that we present
here thus represents a first step toward full treatment of
nonequilibrium. Furthermore force-DDFT, when compared
with potential-DDFT, has the clear benefit that the average
interparticle interaction force does not appear automatically
as a gradient term in the exact Eq. (49). If this were the case,
as it is in potential-DDFT, then it would exclude de facto
all nonconservative forces. Force-DDFT thus leaves the door
open for future studies of driven systems such as systems with
shear flows. It is well known that the adiabatic approximation
within standard DDFT fails for shear fields [58]. However,

it would be interesting to investigate shear flows with higher
order force-DDFT to check on the validity of these consider-
ations and approximations.

Our derivation of the force balance (YBG) relationship
from local Noether invariance in Sec. III A is based on con-
sidering a local displacement field ε(r). This object bears
similarities with the vector field that maps between positions
in the Lagrangian and Eulerian picture in continuum mechan-
ics. The connections between this thinking and a local density
functional treatment were recently explored by Sprik. Specifi-
cally he considered the case of dielectric fluids [59]. Our more
microscopic formulation could possibly help to shed some
light on the relationship of the continuum mechanical force
balance and the DFT equilibrium equation. The connections
to the crystalline state and crystal deformations are also worth
exploring, as addressed by Sprik within continuum mechanics
[60], by Fuchs and coworkers from a more microscopic point
of view [61,62] and recently by Lin et al. [63] within DFT.

We have shown that the hard-sphere system is described
within fundamental measure theory to a good level of self-
consistency. Going beyond hard-spheres and exploring the
force-DFT for functionals that describe interparticle attraction
would be interesting. Such work could be already revealing in
the context of the standard mean-field functional [16].

In the context of power functional theory [33] the force-
based theories could play a role in the description of the
adiabatic state as applied to bulk and interfaces of active
Brownian particles [64–68], to flow phenomena in over-
damped systems [25,69], to shear [70,71], and the van Hove
function [72,73].

We would expect the treatment of long-ranged forces as
they occur in charged fluids to require extra care in deal-
ing with divergent integrals. Nevertheless, application of
force-DFT to Coulombic systems could be revealing for the
behaviour of the electrical double layer [74], the differential
capacitance [75], as well as for long-ranged decay of correla-
tions, as recently explored for the restricted primitive model
[76].

Burke and his collaborators have recently put forward a
new approach to electronic DFT. Their “blue electron approx-
imation” [28] offers a concrete way to work efficiently at finite
temperatures within what they call the conditional probability
DFT [29]. In the high-temperature limit an analogy to Percus’
classical test particle limit arises [28]. As their method works
on the two-body level cross fertilization with our present
approach is not inconceivable.

Molecular DFT generalizes classical DFT to systems with
orientational degrees of freedom, see, e.g., Refs. [4,5,77,78].
Various ingenious ways of dealing efficiently with the associ-
ated numerical burdens of accounting for the molecular Euler
angles have been formulated, see, e.g., Ref. [79]. Whether
the present approach can help to describe the corresponding
forces and torques in such systems is an interesting point for
future work. Also going beyond the planar (effective one-
dimensional) geometry and addressing fully inhomogeneous
three-dimensional situations [80–83] constitutes an exciting,
yet formidable, research task.

As the two-body correlation functions upon which the
force-DFT is built are directly accessible via many-body sim-
ulation (see Ref. [84] aimed at the direct correlation function),
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one can wonder whether using simulations data as input would
allow to construct force-DFT approximations. This could pos-
sibly be aided by machine-learning techniques [85].

The two-body density gives information about the prob-
ability to find a particle at position r2 given that there is a
particle at position r1. This enables the pair interaction forces
acting within the fluid to be analysed in detail. Moreover,
multiplying the two-body density with the gradient of the
pair-potential allows the average pair interaction force to be
calculated explicitly and thus, in the case of hard interparticle
interactions, incorporates the particle geometry directly.
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APPENDIX A: CANONICAL TRANSFORMATION

The transformation given by Eqs. (2) and (3) is canonical
and it hence preserves the phase-space volume element. That
the transformation is canonical can be demonstrated by con-
sidering a generating function G [86], which for the present
transformation has an explicit form given by

G =
N∑

i=1

p′
i · (ri + ε(ri )). (A1)

As G is a function of the original coordinates and of the new
momenta, the transformation equations are generated via r′

i =
∂G/∂p′

i and pi = ∂G/∂ri. Using the explicit form (A1) and
expanding to lowest order in ε(r) yields Eqs. (2) and (3) in a
straightforward way.

The canonical generator G defined in Eq. (3) is a func-
tion of the original coordinates r1, . . . , rN and of the new
momenta p′

1, . . . , p′
N . For the case of such dependence the

original Hamiltonian H and the transformed Hamiltonian H ′
are related by the general transformation [86]:

H ′ = H + ∂G
∂t

. (A2)

As the generator (3) carries no explicit time dependence, the
last term in Eq. (A2) vanishes, and H ′ = H . This invariance of
the Hamiltonian under the considered transformation implies
the trivial replacement of variables, i.e., that the transformed
Hamiltonian depends on the transformed coordinates and mo-
menta, i.e., H ′(r′

1, . . . , r′
N , p′

1, . . . , p′
N ). Then by construction,

the equations of motion, when expressed in the new phase
space variables, are generated from the standard Hamiltonian
procedure: dp′

i/dt = −∂H ′/∂r′
i and dr′

i/dt = ∂H ′/∂p′
i.

APPENDIX B: GENERAL DERIVATION OF THE CONTACT
THEOREM

The following Appendix shows a derivation of the contact
theorem appropriate to situations in which all quantities are
known exactly. For this reason we use the generic notation

c(1) and P for the one-body direct correlation function and the
pressure, respectively.

Let us consider a hard-wall such that the distance of closest
approach of a particle is located at z = 0. We assume that
the system reaches a bulk-like state at and around a (large)
distance L away from the wall. To have a closed system in the
z direction, we consider a second “ultrasoft” wall that vanishes
for z < L, and then gives a slowly rising energy penalty upon
increasing z, which ultimately diverges Vext(z → ∞) = ∞.

We recall the global Noether identity of vanishing total
interparticle force∫ ∞

−∞
dz ρ(z)

dc(1)(z)

dz
= 0, (B1)

where c(1)(r) = −βδFexc[ρ]/δρ(r) is the one-body direct cor-
relation function. The integrand in Eq. (B1) is, up to a factor of
thermal energy, the locally resolved interparticle force density,
kBT ρ(r)∇rc(1)(r), acting in the z direction. One can argue
equivalently and independently (see, e.g., Ref. [50]), that
Eq. (B1) holds on the basis of Newton’s third law.

Here we rather start from the alternative form∫ ∞

−∞
dz c(1)(z)

dρ(z)

dz
= 0, (B2)

which is straightforwardly obtained from the Noether sum-
rule (B1) via integration by parts; circumstances must be such
that the boundary terms at infinity vanish. More significantly,
within a DFT context, it is the form (B1) that is the primary
result from applying Noether’s theorem to the invariance of
the excess free energy functional Fexc[ρ] upon spatial shifting
of the system [50].

Here we proceed directly with the form (B2), treating three
spatial regions separately: the vicinity of the hard-wall, −� <

z < �, where � is a small parameter (as compared to all other
lengthscales in the system); the region from the wall to the
bulk-like state, i.e., � < z < L; and the soft wall region, z >

L. In the following, the limit � → 0 is implicit.
In the vicinity of the hard-wall we can identify the leading

term as∫ �

−�

dz c(1)(z)
dρ(z)

dz
=

∫ �

−�

dz c(1)(z)δ(z)ρ(0)

= c(1)(0)ρw

= ρw ln(ρw) − βμρw, (B3)

where ρw = ρ(0) and in the last step we have used the EL
equation

c(1)(z) = ln[ρ(z)] + βVext(z) − βμ,

to express the one-body direct correlation function at contact,
c(1)(0); note that the external potential term gives no contri-
bution as Vext(0+) = 0; furthermore, c(1)(z) is continuous at
z = 0.

In the region from between outside the wall and the bulk,
i.e., for � < z < L, the external potential vanishes and we
have∫ L

�

dz c(1)(z)
dρ(z)

dz
=

∫ L

�

dz [ln(ρ(z)) − βμ]
dρ(z)

dz

= [ρ(ln(ρ) − 1) − βμρ]ρb
ρw
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= ρb(ln(ρb) − 1 − βμ) − ρw(ln(ρw) − 1 − βμ), (B4)

where in the first step we have again used the EL Eq. (B1) and
the bulk density is defined as ρb = ρ(L).

In the soft wall regime, i.e., for L < z, the density inhomo-
geneity is so weak that a local density approximation becomes
accurate and hence∫ ∞

L
dz c(1)(z)

dρ(z)

dz
=

∫ 0

ρb

dρ c(1)(ρ) = fexc(ρb)

= −P − ρb[ln(ρb) − 1] + μρb. (B5)

The upper limit in the density integral is ρ(z → ∞) = 0, and
fexc(ρb) is the bulk excess free energy density per volume as a
function of ρb. The value at the upper boundary of the density
integration vanishes, as the system is infinitely dilute. The last
step identifies the pressure P.

Adding up the three contributions (B3), (B4), and (B5)
gives according to Noether invariance (B2) a vanishing result.
Rewriting yields

ρw = βP, (B6)

which is the general form of the hard-wall sum-rule.

APPENDIX C: PLANAR HARD-SPHERE FORCE
INTEGRAL

In the following we derive the one-body direct correlation
function c(1)

f , given by Eq. (42), for hard-spheres in planar
geometry. We start with the gradient of c(1)

f , from Eq. (18),
namely,

∇r1 c(1)
f (r1) = −

∫
dr2

ρ (2)(r1, r2)

ρ(r1)
∇r1βφ12, (C1)

and as a first step exploit the planar geometry. The symmetry
simplifies the dependence on the position variables such that
the one-body distributions only depend on the z coordinate.
The two-body density, ρ (2), depends on z1, z2, and r2 (see
Ref. [34]). The distance between the two particle positions is

then r12 =
√

r2
2 + (z1 − z2)2.

As c(1)
f only depends on z, the gradient on the left-hand

side of Eq. (C1) reduces to ez d/dz, where ez is the unit vector
in the z direction. The interparticle interaction potential, φ,
depends only on r12. This allows us to rewrite the gradient
of φ as a derivative with respect to this distance, er12 d/dr12,
where er12 = (r1 − r2)/r12 indicates the radial unit vector.
Equation (C1) thus simplifies to

d c(1)
f (z1)

dz1
ez = −

∫
dr2

ρ (2)(z1, z2, r2)

ρ(z1)

d βφ12

dr12
er12 . (C2)

We next express the r2 integral in cylindrical coordinates, such
that the z component of Eq. (C2) becomes

d c(1)
f (z1)

dz1
= − 2π

ρ(z1)

∞∫
−∞

dz2

∞∫
0

dr2 r2 ρ (2)(z1, z2, r2)

× d βφ12

dr12

(z1 − z2)

r12
. (C3)

To deal with the hard-sphere potential, φ, we proceed as
previously in Eq. (27). We therefore multiply the integrand in
Eq. (C3) by 1 = eβφ12 e−βφ12 . The second Boltzmann factor can
be grouped together with the derivative of the interaction po-
tential as e−βφ12 dβφ12

dr12
= −de−βφ12/dr12. For the hard-sphere

interaction potential the Boltzmann factor can be identified
as a step function, e−βφ12 = �(r12 − 1), where � indicates
the Heaviside step function. The radial derivative then gives
a Dirac δ distribution,

d �(r12 − 1)

dr12
= δ(r12 − 1) = δ(r2 − r∗

2 )

|r2/r12| ,

where r∗
2 =

√
1 − (z1 − z2)2 is the cylindrical radial distance

at contact for given coordinates z1 and z2. This yields

d

dz1
c(1)

f (z1) = − 2π

ρ(z1)

∫ z1+1

z1−1
dz2 (z1 − z2)ρ (2)(z1, z2, r∗

2 ).

To obtain the desired Eq. (42), we then integrate with respect
to z1 from 0 to z.
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Abstract
We address the consequences of invariance properties of the free energy of
spatially inhomogeneous quantum many-body systems. We consider a spe-
cific position-dependent transformation of the system that consists of a spatial
deformation and a corresponding locally resolved change of momenta. This
operator transformation is canonical and hence equivalent to a unitary trans-
formation on the underlying Hilbert space of the system. As a consequence,
the free energy is an invariant under the transformation. Noether’s theorem for
invariant variations then allows to derive an exact sum rule, which we show to
be the locally resolved equilibrium one-body force balance. For the special case
of homogeneous shifting, the sum rule states that the average global external
force vanishes in thermal equilibrium.

Keywords: force balance, quantum statistical mechanics, YBG equation,
density functional theory, Noether’s theorem

1. Introduction

When investigating global equilibrium properties such as the equation of state for a given
many-body Hamiltonian, the strategies in classical and quantum statistical mechanical treat-
ments differ markedly from each other. Obtaining the partition sum in the classical case
requires, in principle, to carry out the high-dimensional phase space integral over the
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Boltzmann factor of the Hamiltonian [1]. The quantum mechanical analog thereof is the
trace over the Boltzmann factor of the Hamiltonian, where the latter is viewed as an infinite-
dimensional matrix expressed in a suitable basis of e.g. energy eigenfunctions [2]. In both
cases, quantum and classical, the leap from the dynamics of the particle-based many-body
description to the thermal average is both powerful and abstract. As a result physically mean-
ingful quantities, such as the pressure, chemical and thermal susceptibilities etc become sys-
tematically available, at least in principle, through derivatives of the free energy, which are
readily available from the partition sum. On a higher level of detail, locally resolved correlation
functions are available as statistical averages and they characterize the microscopic structure
of the system and allow to obtain global properties via suitable integration.

On the other hand the concept of forces, while being at the very heart of mechanics, often
receives less attention in both statistical and quantal contexts. Nevertheless in the realm of
quantum many-body systems several recent publications [3–5] addressed in detail the force
balance relationship on the one-body level of correlation functions. Here the forces are resolved
in position and also in time in the dynamic case. Tarantino and Ullrich [3] reformulated time-
dependent Kohn–Sham density functional theory (DFT) in terms of the second time derivative
of the density. In their approach forces feature prominently. They argue that the causal structure
of their formulation is more transparent than that of the standard Kohn–Sham formalism of
DFT. Tchenkoue et al [4] have addressed the force balance in several advanced approximations
in DFT. They state that their approach avoids differentiability and causality issues and having
to carry out the optimized-effective-potential procedure of orbital-dependent functionals.

Earlier than these advancements, Tokatly had already honed in on the force balance rela-
tionship in the framework of his time-dependent deformation functional theory [6]. The theory
is based on considering a hydrodynamic Lagrangian view of quantum many-body dynamics
[7, 8]. The force balance equation plays a role of a gauge condition that fixes the reference
frame [7]. The approach yields formally exact equations of motion and conservation laws [7]
and it provided the basis for a geometric formulation of time-dependent DFT [8]. Ullrich and
Tokatly were then able to address important nonadiabatic effects in the electron dynamics in
time-dependent density-functional theory [9].

Locally resolved force fields play a prominent role in the recent power functional frame-
work for many-body dynamics [5]. Besides the time-dependent density profile, this variational
approach includes the locally resolved current and acceleration distributions as its fundamental
physical variables. The theory has been formulated for classical [10, 11] and quantum [12, 13]
systems; a recent review [5] gives much background. The respective variational equation has
the clear physical interpretation of a nonequilibrium force balance relationship and it allows
to categorize flow and structural forces [5] and acceleration viscous forces [5], all of which go
beyond the adiabatic forces that are captured by the dynamical classical DFT [14–18]. Stand-
ard DFT is recovered as the equilibrium limit of the power functional theory [5].

Furthermore, in the classical context, forces were recently put to the fore in methods to
obtain statistically averaged quantities, such as the density profile of a spatially inhomogen-
eous system, via computer simulation of the many-body problem. In his recent review [19],
Rotenberg gives a clear account of such force-sampling techniques; see e.g. [20–22] for ori-
ginal work. On the theoretical side, classical DFT [14–16] offers access to forces via building
the gradient of the Euler–Lagrange minimization equation [5]. An alternative that applies to
pairwise interparticle interactions is the force integral over the two-body density correlation
function [23, 24]. The two-body density is explicitly available within state-of-the-art clas-
sical density functionals, such as fundamental measure theory, see e.g. [25]. Two-body density
correlation functions are also central to the recently developed conditional probability DFT for
quantum systems [26, 27].
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In prior work we have applied Noether’s theorem of invariant variations [28, 29] to the clas-
sical statistical mechanics of particle-based many-body systems [30–33]. Rather than starting
with the invariance properties of an action functional, the approach is based on considering
the symmetry properties of appropriate statistical functionals, such as the partition sum, in
order to derive exact identities. These ‘sum rules’ carry clear physical interpretation as inter-
relations between forces when starting with spatial displacement, and between torques when
starting with spatial rotations. Different types of identities result, depending on whether the
elementary free energy is displaced (leading to external force sum rules), the excess free energy
density functional (internal force identities) or the power functional (memory identities [30]
that connect time direct correlation functions [5]).

We emphasize that Noether’s original work [28] is not restricted to the action integral of a
physical system. She rather deals with functionals of a general nature, formulating carefully
necessary (and for our practical purposes very mild) assumptions of analyticity. Background
from an entirely mathematical perspective can be found in [34]. Descriptions of the stand-
ard application to the action can be found in many sources, including [35] and on a more
popular level [36]. For the classical case, the differences between the present use in thermal
physics and the standard deterministic form are discussed in [31]. Briefly, within our present
setting, we require to identify a functional F[ϵ] of a position-dependent vector field ϵ(r). On
the one hand ϵ(r) parametrizes the functional dependence on further fields (suppressed in the
notation). Noether’s theorem applies, when despite this apparent dependence, on the other
hand the functional is invariant under changes of ϵ(r). Hence trivially δF[ϵ]/δϵ(r) = 0. Quite
remarkably this leads to a nontrivial identity, when taken as a concrete recipe for calculation
of the left-hand side.

The invariant variational techniques have aided the development of a force-based approach
to classical DFT [33]. Here the fundamental starting equation is the locally resolved equilib-
rium force balance relationship, which (for pairwise interparticle forces) is a classical result [1]
that dates back to Yvon [23], and to Born and Green [24]. The derivation of this fundamental
equation is performed by considering an inhomogeneous spatial displacement of the entire
system, as described by a vector field ϵ(r) in three-dimensional space. Together with a cor-
responding change of momenta (described in detail below) the change of variables constitutes
a canonical transformation on classical phase space, and hence it preserves the phase space
volume element [37]. The specific form of the transformation (in particular it being independ-
ent of time) also preserves the Hamiltonian. Hence the partition sum itself is unchanged under
the transformation and so is the free energy. (The Hamiltonian, via its associated Boltzmann
factor, and the phase space integral are the only nontrivial ingredients in the partition sum.)
One is hence faced with an invariant variational problem, as addressed succinctly by Emmy
Noether in her classical work [28]; see [29] for a historical account.

In the present contribution, we demonstrate that Noether’s theorem is applicable to the
equilibrium statistical properties of quantum many-body systems. We present a quantal shift-
ing transformation of the position and momentum operators that reduces to the transformation
of [33] in the classical case. Quantummechanically, the transformation is canonical [38], i.e. it
preserves the fundamental commutator relation between position and momentum. Such trans-
formations represent unitary transformations on the Hilbert space of the considered system.
The partition sum is hence invariant under the transformation, as it is given as the trace of the
Hamiltonian’s Boltzmann factor, with both the trace and the Hamiltonian being invariants, as
is the case classically. The result, to first order in the displacement field, is the locally resolved
equilibrium force balance relationship [3–5]. While one could expect on general grounds that
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the Noether line of thought would indeed apply to quantum systems, the details of the deriva-
tion differ markedly from the classical case, and we spell out the details in the following.

2. Thermal invariance theory

2.1. Quantum canonical transformation

We consider Hamiltonians of the form

H =
∑

i

p2i
2m

+ u(rN)+
∑

i

Vext(ri), (1)

where the sums run over all particles i = 1, . . . ,N, with the total number of particles N. All
particles possess identical mass m and each particle i is characterized by its position (ri) and
momentum (pi) operator. The interparticle interaction potential u(rN) depends on all particle
positions and we use the compact notation rN ≡ r1, . . . ,rN. The system is under the influence
of an external one-body potential Vext(r), where r is a generic position variable.

Position and momentum satisfy the fundamental commutator relations

[ri,pj] = iℏδij1, (2)

where i is the imaginary unit, ℏ denotes the reduced Planck constant, δij is the Kronecker
symbol and 1 indicates the 3× 3-unit matrix. The commutator of two vectors involves trans-
position according to [ri,pj] = ripj −pjr

T
i , where the multiplication of two vectors is dyadic

and the superscript T denotes the transpose of a 3× 3-matrix. Hence in component notation
[rαi ,pγj ] = rαi p

γ
j − pγj r

α
i , where Greek superscripts α,γ denote Cartesian components of posi-

tion and momentum. Equation (2) then reads as [rαi ,pγj ] = iℏδijδαγ . We work in position rep-
resentation, such that the momentum operator of particle i is given by pi = −iℏ∇i, where ∇i

indicates the derivative with respect to ri.
We consider the following transformation of position and momenta

ri → ri + ϵ(ri), (3)

pi →
{
(1+(∇iϵi))

−1 ·pi +pi · (1+(∇iϵi)
T)−1

}/
2, (4)

where ϵ(r) is a given real-valued three-dimensional vector field with r indicating position,
ϵi = ϵ(ri) is a shorthand notation, and the superscript −1 indicates matrix inversion. In
equation (4) the gradient operator ∇i acts only on ϵi, as is indicated by the surrounding par-
entheses; hence in position representation each entry of the 3× 3-matrix (∇iϵi), which is
obtained as a dyadic product of the vectors ∇i and ϵi, acts only as a multiplication operator on
the wave function. In our notation the dot product of a matrix A and a vector x is understood
in the standard way as (A · x)α = Aαγxγ , with summation being implied over the repeated
index γ. For convenience we also define this product with the reversed order of factors as
(x ·A)α = xγAγα. This appears in the second term in the sum in equation (4).

We assume throughout that the vector field ϵ(r) is such that a bijection is established
between old and new coordinates. Hence the transformations (3) and (4) need to be invertible.
(A poignant counterexample is ϵ(r) = −r, which renders equation (3) to be ri → 0 and the
matrix inversion in the momentum transformation (4) becoming ill-defined.) The momentum
transformation is the self-adjoint version of the classical phase space transformation con-
sidered in [33], which is in linear order, as given in [33], simply pi → pi − (∇iϵi) ·pi. Here
there is no need to pay attention to the ordering of terms, as the classical phase space vari-
ables commute with each other. The finite version thereof is pi → (1+ ∇iϵi)

−1 ·pi, as can be

4
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shown via a generating function that via differentiation yields the transformation equations.
Equation (4) is obtained as the arithmetic mean of this expression and its adjoint. Very briefly,
the classical generator (see the appendix of [33]) is G =

∑N
i=1 p̃i · (ri + ϵ(ri)), and the trans-

formation equations are obtained via the identities r̃i = ∂G/∂p̃i and pi = ∂G/∂ri, where the
tilde indicates the transformed variables.

We expand the inverse matrix in equation (4) to linear order in the gradient of the
displacement field according to: (1+(∇iϵi))

−1 = 1− (∇iϵi), where terms of the order
(∇iϵi)

2 and higher have been omitted. Using this expansion, equation (4) in component nota-
tion is: pαi → pαi −∑γ

{
(∇α

i ϵγi )pγi + pγi (∇α
i ϵγi )

}
/2, which when resorting back to vector

notation is:

pi → pi −
{
(∇iϵi) ·pi +pi · (∇iϵi)

T}/2. (5)

We first ascertain that the new coordinates r̃i and newmomenta p̃i, as defined by the right-hand
sides of the transformation (3) and (4), also satisfy canonical commutation relations. We start
with the prominent case of position and momentum:

[r̃i, p̃j] =
[
ri + ϵi,pj −

{
(∇jϵj) ·pj +pj · (∇jϵj)

T}/2
]

(6)

= [ri,pj] + [ϵi,pj] − [ri,(∇jϵj) ·pj]/2− [ri,pj · (∇jϵj)
T]/2 (7)

= iℏδij1, (8)

where we have truncated in (7) at linear order in the displacement field and its gradient. As the
left-hand side of (6) involves no coupling between different particles, it is straightforward to
see that for distinct particles, i ̸= j, the result vanishes, as is indeed the case in equation (8). For
i= j we use the explicit form of the momentum operator pi = −iℏ∇i to find that the second
term in (7) is [ϵi,pi] = iℏ(∇iϵi). This contribution is precisely cancelled by the sum of the
third and the fourth term in (7), which can be shown to have the form −[ri,(∇iϵi) ·pi] =
−(∇iϵi) · (iℏ1) = −iℏ(∇iϵi). Hence the first term in (7) alone gives the result (8) upon using
the fundamental commutator (2).

For completeness, the new variables also satisfy [r̃i, r̃j] = 0 and [p̃i, p̃j] = 0. The former
relationship is trivial, as in position representation only coordinates are involved according
to the transformation (3). The momentum identity can be worked out straightforwardly, as
we show in appendix A.1. Furthermore the new degrees of freedom are self-adjoint operat-
ors. For the positions this is trivial, as we we have r̃†i = r†i + ϵ(ri)† = ri + ϵ(ri) ≡ r̃i, because
ϵ(r) is real-valued. For the momenta: p̃†i = p†i −{(∇iϵi) ·pi +pi · (∇iϵi)

T)}†/2 = pi −{pi ·
(∇iϵi)

T +(∇iϵi) ·pi}/2 ≡ p̃i. For completeness we demonstrate that the transformation is
quantum canonical beyond linear order in appendix A.2.

2.2. Functional derivatives by local shift

Having ascertained that the new variables form a sound basis for the description of the quantum
mechanics, we wish to illustrate the effect of the transformation on the system. The following
considerations will be an essential ingredient in the thermal physics addressed further below.
We wish to investigate the effect on the Hamiltonian H[ϵ], which is obtained by applying the
operator replacements (3) and (4) in the form (1) of the original Hamiltonian. We consider the
functional derivative of the transformed Hamiltonian with respect to the displacement field:

δH[ϵ]

δϵ(r)
=

δ

δϵ(r)

(∑

i

p̃2i
2m

+ u(r̃N)+
∑

i

Vext(r̃i)

)
. (9)
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To make progress, we first address the fundamental derivatives of the new position and new
momentum with respect to the displacement field. These are easily obtained as follows:

δr̃i
δϵ(r)

∣∣∣
ϵ=0

= δ(r− ri)1, (10)

δp̃i
δϵ(r)

∣∣∣
ϵ=0

= ∇
{
δ(r− ri)pi +piδ(r− ri)

}/
2, (11)

where δ(·) denotes the (three-dimensional) Dirac distribution and the derivatives are taken at
vanishing displacement field, ϵ(r) = 0, as is indicated in the notation on both left-hand sides.
The right-hand side of equation (10) constitutes the density operator of particle i times the unit
matrix. The right-hand side of equation (11) is the spatial gradient of the momentum density
operator of particle i. That both correctly localized operators appear naturally as functional
derivatives is an initial indication that the considered transformation indeed can be used as a
successful probe for the spatially resolved behaviour of the system.

For completeness, in index notation equation (11) reads as

δp̃αi /δϵγ = ∇α(δip
γ
i + pγi δi)/2, (12)

where we have introduced the shorthand notations δi = δ(r− ri) and ϵγ = ϵγ(r) and the deriv-
ative is again evaluated at vanishing displacement field (such that higher than linear powers in
the displacement gradient, as they occur in the finite momentum transformation (4), vanish).

In order to obtain the functional derivative (9) of the Hamiltonian we proceed by first
differentiating the kinetic energy. We defer the detailed calculations to appendix B, which
contains both the simpler one-dimensional case, where matrix-vector complexities are absent
(appendix B.1), as well as the present three-dimensional case (appendix B.2). The latter cal-
culation, carried out in index notation in appendix B.2, gives the following result:

δ

δϵ(r)

∑

i

p̃2i
2m

∣∣∣
ϵ=0

= ∇·
∑

i

piδipi +piδip
T
i

2m
− ℏ2

4m
∇∇2

∑

i

δ(r− ri). (13)

We recall that the transpose (superscript T) acts on the entire 3× 3-matrix piδipi and that the
multiplication of vector and matrix, as is relevant for the divergence, contracts the vector index
with the first matrix index; we recall our description thereof after equation (4). Equation (13)
is also given in index notation in appendix B.2.

The first term on the right-hand side of equation (13) is directly analogous to the classical
case [33], upon viewing the momentum operators as phase space variables. The second term
on the right-hand side of equation (13) is genuinely quantum mechanical, as it is quadratic
in ℏ and hence vanishes in the classical limit ℏ → 0. This contribution can be rewritten upon
expressing the gradient of the Laplace operator as ∇∇2 = ∇2 ∇ = ∇· ∇∇. Then one can
express the second term in equation (13) as −∇ · ∇∇∑i δ(r− ri)ℏ2/(4m). Here the Hessian
of the density operator, ∇∇∑i δ(r− ri), together with the factor ℏ2/(4m) forms the quantal
kinetic stress contribution ∇∇∑i δ(r− ri)ℏ2/(4m).

Together with the first term in equation (13), which already is of divergence form, we can
define the position-resolved kinetic stress operator (see e.g. [5]) as

τ̂ (r) = −
∑

i

piδipi +piδip
T
i

2m
+

ℏ2

4m
∇∇

∑

i

δi. (14)

We have hence adopted the convention to include the wave-like contribution
ℏ2∇∇ρ̂(r)/(4m) into the kinematic stress, where ρ̂(r) =

∑
i δ(r− ri) is the standard form

of the one-body density operator. The classical kinetic stress is recovered by letting ℏ → 0,
such that τ̂ (r) reduces to −∑i δ(r− ri)pipi/m, where here pi denotes the classical phase
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space variable, which trivially commutes with the spatial delta distribution, and the transpose
becomes irrelevant as for the phase space variable pipi = pip

T
i .

We have so far shown that the considered quantum canonical transformation the functional
derivative of kinetic energy with respect to the displacement field creates the following funda-
mental result:

δHkin[ϵ]

δϵ(r)

∣∣∣
ϵ=0

= −∇ · τ̂ (r). (15)

Here we have split the Hamiltonian (1) according to H = Hkin +Hpot, where the potential
energy contains the interparticle and external contributions, Hpot = u(rN)+

∑
iVext(ri). As

already laid out above, the functional dependence on ϵ(r) that is indicated on the left-hand side
of (15) arises from expressing the original positions and momenta in the Hamiltonian (1) via
the transformation (3) and (4). One could view the result (15) as being unexpectedly simple,
despite the technical complexity of the kinematic stress operator τ̂ (r). Recall that the kin-
ematic stress occurs in the Heisenberg equation of motion for the one-body current density
[5, 7, 8] and that it hence constitutes a meaningful physical object in its own right. That it is
created here from the functional derivative of kinetic energy with respect to the shift field is a
strong indicator that the thermal Noether invariance against the local shifting transformation
given by equations (3) and (4) carries actual physical significance.

Treating the effects of the local displacement transformation on the potential energy is com-
paratively easier than the above kinetic energy consideration, as here only position coordinates
are involved and hence the commutator structure is trivial. The calculation is very closely ana-
logous to the classical case [31]. We obtain

δHpot[ϵ]

δϵ(r)

∣∣∣
ϵ=0

=
δu(r̃N)

δϵ(r)

∣∣∣
ϵ=0

+
∑

i

δVext(r̃i)
δϵ(r)

∣∣∣
ϵ=0

(16)

=
∑

i

(
∇iu(rN)

)
δi +

∑

i

(∇iVext(ri))δi (17)

= −F̂int(r)+ ρ̂(r)∇Vext(r), (18)

where we have defined the one-body interparticle force density operator F̂int(r) =
−∑i(∇iu(rN))δi. The rewriting that involves the external force field −∇Vext(r) in (18) is
possible as the derivatives ∇i and ∇, as well as the positions r and ri, can be identified with
each other due to the presence of the delta function. The negative external force field ∇Vext(r)
can then be taken as a common factor outside of the second sum in equation (17) and the
density operator remains.

Summing up the kinetic energy derivative (15) and the potential energy identity (18) we
obtain

−δH[ϵ]

δϵ(r)

∣∣∣
ϵ=0

= ∇· τ̂ (r)+ F̂int(r) − ρ̂(r)∇Vext(r), (19)

which makes explicit that the Hamiltonian generates, via its negative functional derivative with
respect to the displacement field, the sum of all one-body force density distributions that act
in the system.

That the transformation (3) and (4) has an effect on the Hamiltonian could have been expec-
ted from the outset, as the transformation has a nontrivial spatial structure via its dependence
on the vector field ϵ(r). Hence Noether’s theorem seemingly does not apply, due to the absence
of a direct corresponding invariance. In contrast to this standard application, here we proceed
differently and search for an invariance that applies in thermal equilibrium. This requires an
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average to be an invariant rather than the corresponding operator itself being an invariant, as
we lay out in the following.

2.3. Force balance from thermal Noether invariance

We hence turn to a statistical mechanical description which we base on the free energy in the
canonical ensemble, expressed as

F = −kBT lnZ, (20)

Z = Tre−βH (21)

=
∑

n

⟨n|e−βH|n⟩, (22)

where kB denotes the Boltzmann constant and T is absolute temperature. The trace in Hilbert
space is denoted by Tr and it is made explicit in (22) with |n⟩ denoting the complete set of
orthonormal eigenstates of H labelled by index n. (Possibly degenerate energy eigenstates
occur multiple times in the sum.) In more explicit notation, using position representation,
|n⟩ = ϕn(rN) such that ⟨n| · |n⟩ =

´

drNϕ∗
n(r

N) · ϕn(rN), where the integral is over all posi-
tion coordinates,

´

drN· =
´

dr1
´

dr2 . . .
´

drN· and the asterisk denotes complex conjugation.
Here and throughout, we assume that the partition sum (22) and hence the free energy (20)
exists, see Giesbertz and Ruggenthaler’s [39] account of the divergences that occur in even
simple unbounded systems. In our case, we assume (as we do classically [31]) that the system
is bounded via the influence of appropriate container walls, as modelled by a corresponding
form of the external potential Vext(r). We hence adopt a pragmatic stance to the existence of
the free energy [40].

We expand the free energy (20) in the transformation parameter according to:

δF[ϵ]

δϵ(r)

∣∣∣
ϵ=0

= −kBT
Z

δZ[ϵ]

δϵ(r)

∣∣∣
ϵ=0

(23)

= −kBT
Z

Tr
δe−βH[ϵ]

δϵ(r)

∣∣∣
ϵ=0

(24)

=
∑

n

e−βEn

Z
⟨n|δH[ϵ]

δϵ(r)

∣∣∣
ϵ=0

|n⟩, (25)

where in equation (23) we have used the definition (20) of the free energy via the partition
sum Z[ϵ] of the transformed system. In equation (24) we have used the form (21) of the par-
tition sum and have exchanged the order of the functional derivative and building the trace.
Equation (25) constitutes a thermal equilibrium average, where En denotes the energy eigen-
value corresponding to the energy eigenstate |n⟩. We have hence obtained

δF[ϵ]

δϵ(r)

∣∣∣
ϵ=0

=
〈δH[ϵ]

δϵ(r)

∣∣∣
ϵ=0

〉
eq

, (26)

where on the right-hand side we have used the notation ⟨·⟩eq to indicate the average over the
canonical ensemble as it occurs in equation (25); explicitly this is ⟨·⟩eq =

∑
nZ

−1e−βEn⟨n| · |n⟩.
The identity (26) is remarkable as it indicates that the local transformation (3) and (4) to low-
est order in the displacement field generates a well-defined and physically meaningful thermal
average, that of the functional derivative of the Hamiltonian. This mathematical structure mir-
rors closely that of standard partial derivatives of the free energy with respect to thermody-
namic variables, such as e.g. obtaining the entropy via S = −∂F/∂T.
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Before exploiting the specific form of the right-hand side of equation (26) further, we first
proceed with the general invariance argument. We expand the free energy of the transformed
system to linear order in the displacement field according to:

F[ϵ] = F+

ˆ

dr
δF[ϵ]

δϵ(r)

∣∣∣
ϵ=0

· ϵ(r) (27)

= F+

ˆ

dr
〈δH[ϵ]

δϵ(r)

∣∣∣
ϵ=0

〉
eq

· ϵ(r), (28)

where equation (27) is the functional Taylor expansion to linear order and the form (28) follows
from using equation (26).

On the other hand, the free energy is an invariant under the quantum canonical transform-
ation, and hence:

F[ϵ] = F, (29)

where F is the free energy (20) of the original representation of the system. Equation (29) holds
due to the fact that canonical transformations are analogous to unitary transformations on the
underlying Hilbert space of the considered system; see e.g. the account given by Anderson
[38]. We will return to this point below.

From comparison of the Taylor expansion (28) with the free energy invariance (29) we
can conclude that the linear term in the expansions vanishes identically and it has to do so
irrespective of the form of ϵ(r). This can only hold provided that the prefactor vansishes:

〈δH[ϵ]

δϵ(r)

∣∣∣
ϵ=0

〉
eq

= 0. (30)

Equation (30) is a bare consequence of the invariance of the free energy under the displacement
operation, and it is obtained immediately from δF[ϵ]/δϵ(r)|ϵ=0 = 0, as mentioned in the intro-
duction, upon skipping the Taylor expansion argument expressed in equations (27) and (28).
The identity (30) holds irrespective of the precise form of the interparticle interaction potential
u(rN) and of the external potential Vext(r) as they appear in the Hamiltonian (1).

In order to reveal the physical significance of the Noether sum rule (30) we proceed by
inserting the explicit force form of the functional derivative of the Hamiltonian given by
equation (19), which yields

∇· τ (r)+Fint(r) − ρ(r)∇Vext(r) = 0. (31)

Here we have introduced the equilibrium averages for the locally resolved kinetic stress:
τ (r) = ⟨τ̂ (r)⟩eq, for the interparticle force density: Fint(r) = ⟨F̂int(r)⟩eq, and for the one-body
density distribution: ρ(r) = ⟨ρ̂(r)⟩eq. The force density balance relationship (31) is a known
exact equilibrium sum rule, see e.g. [3–5]. Our derivation demonstrates its origin in the invari-
ance of the free energy under the quantum canonical transformation (3) and (4).

As a special case we consider a uniform displacement such that ϵ(r) = ϵ0 = const. For
classical systems the invariance of the free energy under such homogeneous displacement
leads to the sum rule of vanishing global external force in thermal equilibrium [30, 31]. This
result readily translates to the quantum case as follows.

First we obtain the global identity by starting with the locally resolved force balance rela-
tionship (31) and integrating over all positions. Two of the resulting integrals vanish,

´

dr∇·
τ (r) = 0 and

´

drFint(r) = 0, where the former identity can be shown via integration by parts
and the latter identity is a consequence of the translational invariance of the interparticle inter-
action potential:

´

drFint(r) =
´

dr⟨F̂int(r)⟩eq = ⟨
´

drF̂int(r)⟩eq = ⟨F̂o
int⟩eq = 0. This holds due

to the global force operator vanishing identically: F̂
o
int = −∑i(∇iu(rN)) ≡ 0, which can be

9
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seen straightforwardly by displacing all positions arguments in u(rN) and observing that this
leaves its value invariant. Explicitly the invariance is u(r1, . . . ,rN) = u(r1 + ϵ0, . . . ,rN + ϵ0),
as the global shift leaves all distance vectors ri − rj unchanged. The Taylor expansion of the
right-hand side is to first order u(r1, . . . ,rN)+ ϵ0 · ∂u(r1 + ϵ0, . . . ,rN + ϵ0)/∂ϵ0|ϵ0=0. The lin-
ear term can be rewritten as ϵ0 ·∑i∇iu(rN). As this vanishes for any ϵ0, the prefactor vanishes
identically which provides the anticipated vanishing of the global interparticle force.

This reasoning is analogous to Newton’s third law, actio equals reactio, which holds due
to the interparticle forces being conservative. The standard derivation does not require (nor
identify) the translational invariance. Typically one addresses the special but important case of
pairwise interparticle interactions, with given pair potential ϕ(r) as a function of interparticle
distance r. Then the global interparticle potential energy is u(rN) =

∑ ′
k,lϕ(|rk − rl|)/2, where

the primed sum indicates that the case k= l has been omitted and the factor 1/2 corrects
for double counting. The global interparticle force is then the (negative) sum of all gradi-
ents, F̂

o
int = −∑i

∑ ′
k,l∇iϕ(|rk − rl|)/2. Via re-organizing the nested sums one obtains F̂

o
int =∑ ′

i,k[∇iϕ(|ri − rk|) −∇iϕ(|ri − rk|)]/2 = 0, identical to the above result based on invariance.
The only term that remains of equation (31) after carrying out the position integral is the

external force contribution, which reads as:

−
ˆ

drρ(r)∇Vext(r) = 0. (32)

Equation (32) expresses the vanishing of the average global external force in thermal
equilibrium.

Briefly, in our second route to equation (32) we start from the free energy (20) and directly
perform the transformation for the special case of a homogeneous displacement ϵ0. In this
case the momenta are unchanged, as the gradient of the (constant) displacement field vanishes
identically. Hence kinetic energy is trivially invariant. As laid out above, the coordinate change
does not affect the interparticle potential energy, as the difference vectors are unaffected. Hence
the only change in the Hamiltonian occurs in the external contribution andwe obtain, following
the same argumentation as in the case of position-dependent shifting, the result

−
〈∑

i

∇iVext(ri)
〉
eq

= 0, (33)

which is analogous to the previous form (32) upon prepending 1 =
´

drδ(r− ri) to
equation (33), moving the delta function into the thermal average, and identifying the density
profile ρ(r) = ⟨∑i δ(r− ri)⟩eq.

For completeness and as a final step, we make explicit that the quantum canonical trans-
formation corresponds indeed to a unitary transformation on Hilbert space, as is relevant for
the invariance (29) of the free energy under the transformation. For the present transforma-
tion, to linear order in ϵ(r), the transformed Hamiltonian is obtained via functional Taylor
expansion in the following form:

H[ϵ] = H+

ˆ

dr
δH[ϵ]

δϵ(r)

∣∣∣
ϵ=0

· ϵ(r), (34)

and we recall the explicit one-body force density form (19) of the functional derivative of
the Hamiltonian. We treat the second term in equation (34) as a perturbation to the original
Hamiltonian H. (We recall that the thermal average over the functional derivative δH[ϵ]/δϵ(r)
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directly leads to the static force density balance relationship (31).) Then the transformed (per-
turbed) energy eigenstates |ñ⟩ are given by

|ñ⟩ =
∑

k

Unk|k⟩, (35)

Unk = δnk +
1− δnk
Ek −En

ˆ

dr⟨n|δH[ϵ]

δϵ(r)

∣∣∣
ϵ=0

|k⟩ · ϵ(r). (36)

The form (36) of the matrix that performs the change of basis follows from applying time-
independent first order perturbation theory, as is appropriate to capture the effects to linear
order in ϵ(r) that we consider. (We imply that the prefactor of the integral in equation (36)
vanishes for k= n.) The matrix elements of the Hermitian conjugate to equation (36) can be
obtained via exchanging indices n and k as

U†
nk = δkn +

1− δkn
En −Ek

ˆ

dr⟨k|δH[ϵ]

δϵ(r)

∣∣∣
†

ϵ=0
|n⟩ · ϵ(r) (37)

= δnk − 1− δnk
Ek −En

ˆ

dr⟨n|δH[ϵ]

δϵ(r)

∣∣∣
ϵ=0

|k⟩ · ϵ(r), (38)

where to obtain the matrix elements (38) we have exploited that the functional derivative of
the Hamiltonian is self-adjoint. We observe that the sole difference between equations (36)
and (38) is the minus sign. Hence we can see explicitly that unitarity holds,

∑
kU

†
nkUkm = δnm

to linear order in ϵ(r), as was expected on general grounds [38].

3. Outlook and conclusions

In conclusion we have investigated the consequences of a specific local displacement operation
for the free energy of a quantummechanical many-body system. The transformation consists of
position-dependent shifting, as parameterized by a real-valued displacement (or ‘shift’) field,
and a corresponding transformation of the quantum mechanical momentum operator of each
particle. The entirety of the transformation can be viewed as the self-adjoint version of the
corresponding local shifting transformation of the classical phase space variables [33]. We
have explicitly shown that the new position and momentum operators are self-adjoint and that
they satisfy the fundamental commutator relations and hence form a valid and complete set
of degrees of freedom of the considered system. The transformation can be viewed as a basis
change of the underlying Hilbert space of the quantal system and we have spelled out explicitly
the corresponding unitary transformation between the original and the new basis.

The resulting invariance of the free energy under changes in the displacement field then
leads, following Noether’s theorem for invariant variations, to an exact local identity (‘sum
rule’) whichwe have shown to be the thermal equilibrium force balance. The present derivation
of this known and fundamental result from Noether’s theorem sheds new light on the very
nature of the identity. Existing derivations are based e.g. on the second time derivative of the
one-body density profile [3] or, equivalently, on the first time derivative of the one-body current
distribution [5] and then taking the equilibrium limit.

Our results hold for the ground state of the quantum system, as it is obtained in the limit
T → 0 of the free energy of the thermal system.We have used the canonical ensemble through-
out as it captures the essence of the required thermal physics. We expect the reasoning to carry
over straightforwardly to the grand ensemble with fluctuating particle number, as the clas-
sical canonical [31] and grand canonical cases lead to analogous results upon identifying the
respective statistical averages.
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Future work could be addressed at investigating how functional differentiation can be used
to obtain quantum sum rules for higher-body correlation functions, as previously shown for
classical systems [30]. It would be interesting to address the effects beyond linear order in
the displacement field; classically the variance of the global external force was shown to be
constrained by the external potential energy curvature [32]. Last but not least it would be
worthwhile to find possible relationships of our displacement field and the strain field that is
central to elasticity theory, see e.g. [41, 42] for recent work again in classical systems.

Identifying connections with Tokatly’s work [6–9] would be highly interesting. His
approach is more general than what we cover here, as it allows for the treatment of the dynam-
ical and nonlinear cases. Clearly, attempting to generalize our approach to the dynamics of
statistical quantum systems is an exciting and demanding research task. (We re-iterate that we
have here only considered systems in static thermal equilibrium.)

The Noether argument itself is not restricted to linear transformations. The second order
was shown, for the case of a global invariance, to relate the variance of fluctuations with the
mean potential energy curvature [32]. Carrying through this concept for the quantum case is a
further very worthwhile research task.
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Appendix A. Momentum and position commutators

A.1. Momentum-momentum commutator

To derive the commutator of the new momenta, [p̃i, p̃j], we insert the definition of the trans-
formation (5) and consider terms up to linear order in the displacement gradient. In index
notation this reads as follows:

2[p̃αi , p̃γj ] = 2[pαi ,pγj ] − [pαi ,(∇γ
j ϵδj )p

δ
j ] − [pαi ,pδj (∇γ

j ϵδj )]

− [(∇α
i ϵδi )p

δ
i ,p

γ
j ] − [pδi (∇α

i ϵδi ),p
γ
j ]. (A1)

The correlator of the original momenta, as it appears in the first term on the right-hand side,
vanishes trivially, [pαi ,pγj ] = 0. This identity also allows to take the operators pδi and p

δ
j out of

the commutator in the remaining terms on the right-hand side of equation (A1). We obtain
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2[p̃αi , p̃γj ] = −[pαi ,(∇γ
j ϵδj )]p

δ
j − pδj [p

α
i ,(∇γ

j ϵδj )]+ [pγj ,(∇α
i ϵδi )]p

δ
i

+ pδi [p
γ
j ,(∇α

i ϵδi )], (A2)

where we have exploited the anti-symmetry of the commutator, [A,B] = −[B,A], for rewriting
the third and the fourth term on the right-hand side of equation (A2).

Writing out explicitly the commutator in the first contribution in equation (A2) yields
[pαi ,(∇γ

j ϵδj )] = pαi (∇γ
j ϵδj ) − (∇γ

j ϵδj )p
α
i . Hence the momentum operator only acts on the gradi-

ent of the displacement field, (pαi ∇γ
j ϵδj ) = −iℏ(∇α

i ∇γ
j ϵδj ), where as before the parentheses

indicate that the derivative(s) only act on the displacement field and we have expressed the
momentum operator in position representation. Analog manipulation of all remaining com-
mutators in equation (A2) then yields

2i
ℏ

[p̃αi , p̃γj ] = −(∇α
i ∇γ

j ϵδj )p
δ
j − pδj (∇α

i ∇γ
j ϵδj )+ (∇γ

j ∇α
i ϵδi )p

δ
i

+ pδi (∇γ
j ∇α

i ϵδi ). (A3)

For i ̸= j it is now straightforward to see that each term on the right-hand side of equation (A3)
vanishes individually: As the displacement field ϵi only depends on positions ri, derivatives
with respect to rj vanish for i ̸= j. For i= j the first and the third term, as well as the second
and the fourth term, on the right-hand side of equation (A3) cancel each other pairwise, as the
derivatives ∇α

i and ∇γ
j commute. Collecting the cases i= j and i ̸= j the commutator of the

new momentum operators hence vanishes,

[p̃αi , p̃γj ] = 0, (A4)

which ascertains that the position-dependent momentum transformation does not generate any
spurious terms.

A.2. Momentum-position commutator for finite transformations

The transformations (3) and (4) are canonical not only in linear order of ∇ϵ(r) and ϵ(r),
but also for finite values thereof. To demonstrate this property we show that the canonical
commutation relations are satisfied given the finite transformations (3) and (4). The position-
position commutator [r̃i, r̃j] is unchanged compared to the derivation in linear order. This is
due to the transformed position operator r̃i (3) containing no higher than linear terms in ϵi.

In contrast, the transformed momenta p̃i do contain higher contributions. We express the
transformed momentum p̃i given by equation (4) as an infinite Taylor series in matrix powers
of (∇iϵi) as

p̃i = pi +
1
2

∞∑

n=1

(
(−∇iϵi)

n ·pi +pi · (−∇iϵi)
Tn
)
. (A5)

Note that here the order of transposing and raising the power can be interchanged, i.e.
(∇iϵi)

Tn = (∇iϵi)
nT.

We consider the commutator of position and momentum [r̃i, p̃j]. Only the case i= j needs to
be considered, since otherwise the commutator vanishes trivially. Insertion of the transforma-
tions (3) and (A5) and exploiting the linearity of the commutator gives
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2[r̃i, p̃i] = 2[ri,pi] +
∞∑

n=1

(
[ri,(−∇iϵi)

n ·pi] + [ri,pi · (−∇iϵi)
Tn]
)

+

∞∑

n=0

(
[ϵi,(−∇iϵi)

n ·pi] + [ϵi,pi · (−∇iϵi)
Tn]
)
, (A6)

where the contribution 2[ϵi,pi] is included as the n= 0 term of the second series in
equation (A6).

We rewrite the first term in the first series of equation (A6) using index notation:

[rαi ,(−∇iϵi)
n
βγp

γ
i ] = (−∇iϵi)

n
βγ [rαi ,pγi ] (A7)

= (−∇iϵi)
n
βγ iℏδαγ (A8)

= iℏ(−∇iϵi)
n
βα. (A9)

Here for readability the indices indicating the Cartesian components of the matrix (−∇iϵi)
n

are written as subscripts. The factor (−∇iϵi)
n
βγ is local and hence commutes with posi-

tion, [rαi ,(−∇iϵi)
n
βγ ] = 0. Therefore this term can be taken outside of the commutator in

equation (A7). We have inserted the usual position-momentum commutator in equation (A8)
and evaluated the Kronecker delta in equation (A9).

Similarly we express the first term of the second series in equation (A6) as

[ϵαi ,(−∇iϵi)
n
βγp

γ
i ] = (−∇iϵi)

n
βγ [ϵαi ,pγi ] (A10)

= (−∇iϵi)
n
βγ iℏ(∇iϵi)γα (A11)

= −iℏ(−∇iϵi)
n+1
βα , (A12)

where again the fact that ϵi and∇iϵi commute allows to take (−∇iϵi)
n
βγ out of the commutator

in equation (A10). In equation (A11) we have inserted the commutator [ϵi,pi] = iℏ(∇iϵi).
Recall that both expressions (A9) and (A12) are part of a sum in equation (A6). It becomes

apparent that the (n+ 1)th term of the first sum cancels with the nth contribution of the second
sum. (This amounts to renaming the summation index in the first sum of equation (A6) as
n → n+ 1. Then the first part of both occurring sums become identical up to a minus sign.)
The only remaining terms are both second contributions to the sums of equation (A6). These
corresponding transposed terms also cancel each other following an analogous argumentation.
Thus no contribution to the sums in equation (A6) remains and we determine the canonical
commutator as

[r̃i, p̃j] = [ri,pj] = iℏδij1. (A13)

The above considerations generalize equations (6)–(8) from linear order to the general case.
Showing explicitly that the momentum self commutator vanishes, [p̃i, p̃j] = 0 can be done

similarly to the treatment of the position-momentum commutator by explicitly using the trans-
formation (A5). The corresponding calculation is straightforward though tedious, and we omit
it here.
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Appendix B. Local shift derivative of kinetic energy

B.1. One dimension

As a preparation for the general three-dimensional case shown below, we first consider the sim-
pler case of systems in one spatial dimension, with position xi and momentum pi = −iℏ∂/∂xi
of particle i = 1, . . . ,N. We consider a one-dimensional displacement ϵ(x) of the position
coordinate x, such that xi → xi + ϵ(xi), in analog to the three-dimensional case of equation (3).
The one-dimensional momentum transformation [corresponding to equation (5)] is pi → pi −
{ϵ ′(xi)pi + piϵ ′(xi)}/2 ≡ p̃i, where the prime denotes the derivative by the argument.

We wish to derive the one-dimensional analogue of equation (15), which reads as

δ

δϵ(x)

∑

i

p̃2i
2m

=
∂

∂x

∑

i

piδipi
m

− ℏ2

4m
∂3

∂x3
∑

i

δi. (B1)

Here the density operator of particle i is defined as δi = δ(xi − x) and the identity holds at
ϵ(x) = 0. The functional derivative on the left-hand side of equation (B1) can be moved inside
of the sum over all particles and we hence need to consider

δp̃2i
δϵ(x)

= pi
δp̃i

δϵ(x)
+

δp̃i
δϵ(x)

pi. (B2)

This equality holds to first order in ϵ(x), as we have replaced p̃i by pi on the right-hand side.
The first term on the right-hand side of equation (B2) becomes

pi
δp̃i

δϵ(x)
= ∂x(piδipi + pipiδi)/2 (B3)

= ∂x{piδipi + pi(piδi)+ piδipi}/2, (B4)

where ∂x = ∂/∂x is a shortcut notation. We have used δpi/δϵ(x) = ∂x(δipi + piδi)/2,
i.e. the one-dimensional analogue of equation (12), in the first equality and the product
rule of differentiation for pi in the second equality. The remaining second term in
equation (B2) is

δp̃i
δϵ(x)

pi = ∂x(δipipi + piδipi)/2 (B5)

= ∂x{piδipi − (piδi)pi + piδipi}/2. (B6)

The minus sign in equation (B6) allows to simplify the sum of the respective second terms:

pi(piδi) − (piδi)pi = (pipiδi) (B7)

= −ℏ2
( ∂2

∂x2i
δi

)
(B8)

= −ℏ2 ∂2
x δi, (B9)

where in the second equality we have expressed the effect of the momentum operator on the
delta function by the (negative) position gradient, i.e.

(piδi) = −iℏ
∂δ(x− xi)

∂xi
= iℏ

∂δ(x− xi)
∂x

. (B10)

Collecting all terms yields

δp̃2i
δϵ(x)

=
∂

∂x
2piδipi −

ℏ2

2
∂3

∂x3
δi, (B11)
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and summation over i and division by 2m then yields equation (B1), as desired.
The three-dimensional case covered below is closely related, with the additional complexity

of the matrix and tensor indices interfering very little with the operator structure.

B.2. Three dimensions

We wish to derive equation (13), which we reproduce for convenience:

δ

δϵ(r)

∑

i

p̃2i
2m

∣∣∣
ϵ=0

= ∇·
∑

i

piδipi +piδip
T
i

2m
− ℏ2

4m
∇∇2

∑

i

δ(r− ri). (B12)

We use Einstein summation convention over pairs of Greek indices and after taking the func-
tional derivative set ϵ(r) = 0 throughout. We consider the γth component of the left-hand side
of equation (B12) for particle i only, which yields

δ

δϵγ
p̃αi p̃

α
i = pαi

δp̃αi
δϵγ

+
δp̃αi
δϵγ

pαi , (B13)

where the sum over α (repeated index) generates the square of momentum, as it occurs in the
kinetic energy. The first term on the right-hand side, using the explicit form of the transformed
momentum (5), becomes

pαi
δp̃αi
δϵγ

= ∇α(pαi δip
γ
i + pαi p

γ
i δi)/2 (B14)

= ∇α{pαi δip
γ
i + pαi (pγi δi)+ pαi δip

γ
i }/2, (B15)

where we have used equation (12) in the first equality and the product rule of differentiation
for the application of pγi in the second equality. The remaining second term in equation (B13)
is

δp̃αi
δϵγ

pαi = ∇α(δip
γ
i p

α
i + pγi δip

α
i )/2 (B16)

= ∇α{pγi δip
α
i − (pγi δi)p

α
i + pγi δip

α
i }/2. (B17)

The appearance of the minus sign in equation (B17) allows to carry out the following cancel-
lation of the respective ‘middle’ terms:

pαi (pγi δi) − (pγi δi)p
α
i = (pαi p

γ
i δi) (B18)

= −ℏ2(∇α
i ∇γ

i δi) (B19)

= −ℏ2 ∇α∇γδi, (B20)

where in the second step we have rewritten the effect of the momentum operator on the delta
function by the (negative) position gradient, i.e.

(pγi δi) = −iℏ(∇γ
i δi) = iℏ(∇γδi). (B21)

Collecting all terms we obtain the overall result for the shift derivative of kinetic energy,

δ

δϵγ

∑

i

p̃αi p̃
α
i

2m

∣∣∣
ϵ=0

= ∇α
{∑

i

pαi δip
γ
i + pγi δipαi
2m

− ℏ2

4m
∇γ∇α

∑

i

δi

}
(B22)

= −∇ατ̂αγ . (B23)

As desired, equation (B22) is the γth Cartesian component of equation (13) [reproduced above
as equation (B12)] and equation (B23) is analogous to equation (15), with tensor contractions
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and matrix transpositions expressed in index notation, and the definition of the kinetic stress
operator as given by equation (14).
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7.7 Variance of fluctuations from Noether invariance

ARTICLE

Variance of fluctuations from Noether invariance
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The strength of fluctuations, as measured by their variance, is paramount in the quantitative

description of a large class of physical systems, ranging from simple and complex liquids to

active fluids and solids. Fluctuations originate from the irregular motion of thermal degrees of

freedom and statistical mechanics facilitates their description. Here we demonstrate that

fluctuations are constrained by the inherent symmetries of the given system. For particle-

based classical many-body systems, Noether invariance at second order in the symmetry

parameter leads to exact sum rules. These identities interrelate the global force variance with

the mean potential energy curvature. Noether invariance is restored by an exact balance

between these distinct mechanisms. The sum rules provide a practical guide for assessing

and constructing theories, for ensuring self-consistency in simulation work, and for providing

a systematic pathway to the theoretical quantification of fluctuations.
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Applying Noether’s theorem1 to a physical problem
requires identifying and hence exploiting the fundamental
symmetries of the system under consideration. Indepen-

dent of whether such work is performed in a Hamiltonian setting
or on the basis of an action functional, typically it is a con-
servation law that results from each inherent symmetry of the
system. The merits of the Noetherian strategy have been
demonstrated in a variety of contexts from classical mechanics to
field theory2. However, much of modern condensed matter
physics is focused on seemingly entirely different physical beha-
vior, namely that of fluctuating, disordered, spatially random, yet
strongly interacting systems that possess a large number of
degrees of freedom. Recent examples include active particles that
display freezing3 and wetting4, hydrophobicity rationalized as
critical drying5, the structure of two-dimensional colloidal
liquids6 and that of fluid interfaces7,8.

Relating the fluctuations that occur in complex systems to the
underlying symmetries has been investigated in a variety of
contexts. Such work addressed the symmetries in fluctuations far
from equilibrium9, isometric fluctuation relations10, fluctuation
relations for equilibrium states with broken symmetry11, and
fluctuation-response out of equilibrium12. The fluctuation theo-
rems of stochastic thermodynamics provide a systematic setup to
address such questions13. Beyond its widespread use in deter-
ministic settings, Noether’s theorem was formulated and used in a
stochastic context14, for Markov processes15, for the quantifica-
tion of the asymmetry of quantum states16, for formulating
entropy as a Noether invariant17,18, and for studying the ther-
modynamical path integral and emergent symmetry19. Early work
was carried out by Revzen20 in the context of functional integrals
in statistical physics and a recent perspective from an algebraic
point of view was given by Baez21.

Noether’s theorem has recently been suggested to be applicable
in a genuine statistical mechanical fashion22–24. Based on trans-
lational and rotational symmetries the theorem allows to derive
exact identities (“sum rules”) with relative ease for relevant many-
body systems both in and out of equilibrium. The sum rules set
constraints on the global forces and torques in the system, such as
the vanishing of the global external force in equilibrium22,25 and
of the global internal force also in nonequilibrium22.

Here we demonstrate that Noether’s theorem allows to go
beyond mere averages and systematically address the strength of
fluctuations, as measured by the variance (auto-correlation). We
demonstrate that this variance is balanced by the mean potential
curvature, which hence restores the Noether invariance. The
structure emerges when going beyond the usual linear expansion
in the symmetry parameter. The relevant objects to be trans-
formed are cornerstones of Statistical Mechanics, such as the
grand potential in its elementary form and the free energy density
functional. The invariances constrain both density fluctuations
and direct correlations, where the latter are generated from
functional differentiation of the excess (over ideal gas) density
functional.

Results and discussion
External force variance. We work in the grand ensemble and
express the associated grand potential in its elementary form26 as

Ω½Vext� ¼ �kBT ln Tr exp �β Hint þ∑
i
VextðriÞ � μN

� �� �
;

ð1Þ
where kB indicates the Boltzmann constant, T is absolute tempera-
ture, and β= 1/(kBT) is inverse temperature. The grand ensemble
“trace” is denoted by Tr ¼ ∑1

N¼0 1=ðN!h3NÞ
R
dr1 ¼ drNR

dp1 ¼ dpN , where ri is the position and pi is the momentum of

particle i= 1,…,N, with N being the total number of particles and h
the Planck constant. The internal part of the Hamiltonian is
Hint ¼ ∑ip

2
i =ð2mÞ þ uðr1; ¼ ; rNÞ, where m indicates the particle

mass, u(r1,…, rN) is the interparticle interaction potential, and
Vext(r) is the external one-body potential as a function of position r.
The thermodynamic parameters are the chemical potential μ and
temperature T.

Clearly, the value of the grand potential Ω[Vext] depends on the
function Vext(r) and we have indicated this functional depen-
dence by the brackets. We consider a spatial displacement by a
constant vector ϵ, applied to the entire system. The external
potential is hence modified according to Vext(r)→Vext(r+ ϵ).
This displacement leaves the kinetic energy invariant (the
momenta are unaffected) and it does not change the interparticle
potential u(r1,…, rN), as its dependence is only on difference
vectors ri− rj, which are unaffected by the global displacement.
Throughout we do not consider the dynamics of the shifting and
rather only compare statically the original with the displaced
system, with both being in equilibrium. (Hermann and Schmidt22

present dynamical Noether sum rules that arise from invariance
of the power functional27 at first order in a time-dependent
shifting protocol ϵ(t).) The invariance with respect to the
displacement can be explicitly seen by transforming each position
integral in the trace over phase space as ∫ dri= ∫d(ri− ϵ). No
boundary terms occur as the integral is over R3; the effect of
system walls is explicitly contained in the form of Vext(r). This
coordinate shift formally “undoes” the spatial system displace-
ment and it renders the form of the partition sum identical to that
of the original system. (See the work of Tschopp et al.24 for the
generalization from homogeneous shifting to a position-
dependent operation.)

The Taylor expansion of the grand potential of the displaced
system around the original system is

Ω½Vϵ
ext� ¼Ω½Vext� þ

Z
drρðrÞ∇VextðrÞ � ϵ

þ 1
2

Z
drρðrÞ∇∇VextðrÞ : ϵϵ

� β

2

Z
drdr0H2ðr; r0Þ∇VextðrÞ∇0Vextðr0Þ : ϵϵ;

ð2Þ

where we have truncated at second order in ϵ and have used the
shortcut notation Vϵ

extðrÞ ¼ Vextðrþ ϵÞ for the functional argu-
ment on the left hand side of Eq. (2). The colon indicates a double
tensor contraction and ∇VextðrÞ∇0Vextðr0Þ is the dyadic product of
the external force field with itself. (∇0 denotes the derivative with
respect to r0). The occurrence of the one-body density profile ρ(r)
and of the correlation function of density fluctuations H2ðr; r0Þ is
due to the functional identities ρ(r)= δΩ[Vext]/δVext(r) and
H2ðr; r0Þ ¼ �kBTδ

2Ω½Vext�=δVextðrÞδVextðr0Þ26–29.
The Noetherian invariance against the displacement implies

that the value of the grand potential remains unchanged upon
shifting, and hence Ω½Vϵ

ext� ¼ Ω½Vext�23. As a consequence, both
the first and the second-order terms in the Taylor expansion (2)
need to vanish identically, and this holds irrespectively of the
value of ϵ; i.e. both the orientatation and the magnitude of ϵ can
be arbitrary. This yields, respectively, the first22,25 and second-
order30,31 identities

�
Z

drρðrÞ∇VextðrÞ ¼ 0; ð3Þ

Z
drdr0H2ðr; r0Þ∇VextðrÞ∇0Vextðr0Þ ¼ kBT

Z
drρðrÞ∇∇VextðrÞ:

ð4Þ
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We can rewrite the sum rule (3) in the compact form hF̂oexti ¼ 0,
where we have introduced the global external force operator
F̂
o
ext � �∑i∇iVextðriÞ ¼ � R

dr∑iδðr� riÞ∇iVextðriÞ. The angu-
lar brackets denote the equilibrium average h�i ¼ TrΨ�, where the
grand ensemble distribution function is Ψ= e−β(H−μN)/Ξ, with
H=Hint+∑iVext(ri) and the grand partition sum is
Ξ ¼ Tr e�βðH�μNÞ. Using these averages, and defining the density
operator ρ̂ðrÞ ¼ ∑iδðr� riÞ, where δ(⋅) denotes the Dirac
distribution, allows us to express the density profile as
ρðrÞ ¼ h∑iδðr� riÞi. The covariance of the density operator is
H2ðr; r0Þ ¼ hρ̂ðrÞρ̂ðr0Þi � ρðrÞρðr0Þ, which complements the above
definition of H2ðr; r0Þ via the second functional derviative of the
grand potential.

The second-order sum rule (4) constrains the variance of
the external force operator on its left hand side:
hF̂oextF̂

o
exti � hF̂oextihF̂

o
exti ¼ hF̂oextF̂

o
exti; recall that the average (first

moment) of the external force vanishes, see Eq. (3). The right-
hand side of Eq. (4) balances the strength of these force
fluctuations by the mean curvature of the external potential
(multiplied by thermal energy kBT), see Fig. 1(a) for an
illustration of the structure of the integrals.

The curvature term can be re-written, upon integration by parts,
as ∫ dr(− kBT∇ ρ(r))∇Vext(r), which is the integral of the local
correlation of the ideal force density,− kBT∇ ρ(r), and the negative
external force field∇Vext(r). (We assume setups with closed
walls, where boundary terms vanish.) The sum rule (4) remains
valid if one replaces H2ðr; r0Þ by the two-body density
ρ2ðr; r0Þ ¼ hρ̂ðrÞρ̂ðr0Þi, due to the vanishing of the external
force (3). Explicitly, the alternative form of Eq. (4) that one obtains
via this replacement is:

R
drdr0ρ2ðr; r0Þ∇VextðrÞ∇0Vextðr0Þ ¼

kBT
R
drρðrÞ∇∇VextðrÞ.

It is standard practice26–29 to split off the trivial density
covariance of the ideal gas and define the total correlation
function hðr; r0Þ via the identity H2ðr; r0Þ ¼ ρðrÞρðr0Þhðr; r0Þ þ

ρðrÞδðr� r0Þ. Insertion of this relation into Eq. (4) and then
moving the term with the delta function to the right-hand side
yields the following alternative form of the second-order Noether
sum rule:Z

drdr0ρðrÞρðr0Þhðr; r0Þ∇VextðrÞ∇0Vextðr0Þ

¼
Z

dr kBT∇∇VextðrÞ � ð∇VextðrÞÞ∇VextðrÞ
� �

ρðrÞ:
ð5Þ

For the ideal gas hðr; r0Þ ¼ 0 and hence the left hand side of (5)
vanishes. That the right-hand side then also vanishes can be seen
explicitly by inserting the generalized barometric law26 ρðrÞ /
expð�βðVextðrÞ � μÞÞ and either integrating by parts, or by
alternatively observing that �ðkBTÞ2

R
dr∇∇ρðrÞ ¼ 0 and insert-

ing the barometric law therein.
The right-hand side of (5) makes explicit the balancing of the

external force variance with the mean potential curvature, as
given by its averaged Hessian. For an interacting (non-ideal)
system, hðr; r0Þ is nonzero in general and the associated external
force correlation contributions are accumulated by the expression
on the left hand side of Eq. (5). For the special case of a harmonic
trap, as represented by the external potential Vext(r)= κr2/2, with
spring constant κ and Hessian ∇∇VextðrÞ ¼ κ1, where 1 denotes
the unit matrix, the mean curvature can be obtained explicitly.
The first term on the right-hand side of the sum rule (5) then
simply becomes kBThNiκ1 upon integration. Notably, this result
holds independently of the type of interparticle interactions,
although the latter affect hðr; r0Þ as is present on the left hand side
of Eq. (5). The remaining (second) term on the right-hand side of
Eq. (5) turns into− κ2∫ drρ(r)rr, where the integral is the matrix
of second spatial moments of the density profile. The alternative
form− κ2〈∑iriri〉 is obtained upon expressing the density profile
as the average of ρ̂ðrÞ and carrying out the integral over r.
Collecting all terms and dividing by κ2 we obtain the sum rule (5)
for the case of an interacting system inside of a harmonic trap as:R
drdr0ρðrÞρðr0Þhðr; r0Þrr0 ¼ R

drρðrÞðkBTκ�11� rrÞ.

Internal force variance. In light of the external force fluctuations,
one might wonder whether the global interparticle force also
fluctuates. The corresponding operator is the sum of all inter-
particle forces: F̂

o
int � �∑i∇iuðr1; ¼ ; rN Þ ¼ � R

dr∑iδðr� riÞ
∇iuðr1; ¼ ; rN Þ, where the integrand in the later expression
(including the minus sign) is the position-resolved force density
operator27. However, for each microstate F̂

o
int ¼ 0, as can be seen

e.g. via the translation invariance of the interparticle potential22,
which ultimately expresses Newton’s third law actio est reactio.
Hence trivially the average vanishes, hF̂ointi ¼ 0, as do all higher
moments, hF̂ointF̂

o
inti ¼ 0, as well as cross correlations, hF̂ointF̂

o
exti ¼ 0,

etc. Thus the total internal force does not fluctuate. This holds
beyond equilibrium, as the properties of the thermal average are not
required in the argument. Identical reasoning can be applied to a
nonequilibrium ensemble, where these identities hence continue
to hold.

While these probabilistic correlators vanish, deeper inherent
structure can be revealed by addressing direct correlations, as
introduced by Ornstein and Zernike in 1914 in their treatment of
critical opalescence and to great benefit exploited in modern
liquid state theory26. We use the framework of classical density
functional theory26,28,29, where the effect of the interparticle
interactions is encapsulated in the intrinsic Helmholtz excess free
energy Fexc[ρ] as a functional of the one-body density distribution
ρ(r). As the excess free energy functional solely depends on the
interparticle interactions, it necessarily is invariant against spatial
displacements. In technical analogy to the previous case of the

  

H2

- ext
- Vext

r
r

kBT        Vext

==

a

b
c2

r
r

==

-   c1-

--

Fig. 1 Illustrations of the sum rules for the variance of fluctuations. The
sum rules arise from Noether invariance against spatial displacement.
Shown are the different types of identical integrals. Thick dots indicate
position variables that are integrated over. a External sum rule, Eq. (4),
which relates the correlation function of density fluctuations H2ðr; r0Þ and
the external force field−∇Vext(r) with the product of the density profile
ρ(r) and the Hessian of the external potential kBT∇∇ Vext(r). This
curvature is indicated by a schematic heat map. b Internal sum rule, Eq. (8),
where the density gradient at two different positions is bonded by the direct
correlation function c2ðr; r0Þ. This integral is identical to the integrated
Hessian−∇∇ c1(r) (indicated by a schematic heat map) weighted by the
local density ρ(r).
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external force, we consider a displaced density profile ρ(r+ ϵ)
and Taylor expand the excess free energy functional up to second
order in ϵ as follows:

βFexc½ρϵ� ¼ βFexc½ρ� �
Z

drc1ðrÞ∇ρðrÞ � ϵ

� 1
2

Z
drc1ðrÞ∇∇ρðrÞ : ϵϵ

� 1
2

Z
drdr0c2ðr; r0Þ∇ρðrÞ∇0ρðr0Þ : ϵϵ;

ð6Þ

where ρϵ(r)= ρ(r+ ϵ) is again a shorthand. The one- and two-
body direct correlation functions are given, respectively, via the
functional derivatives c1(r)=− βδFexc[ρ]/δρ(r) and c2ðr; r0Þ ¼
�βδ2Fexc½ρ�=δρðrÞδρðr0Þ. Noether invariance demands that
Fexc[ρϵ]= Fexc[ρ] and hence both the linear and the quadratic
contributions in the Taylor expansion (6) need to vanish,
irrespective of the value of ϵ. This yields, respectively:Z

drc1ðrÞ∇ρðrÞ ¼ 0; ð7Þ

Z
drdr0c2ðr; r0Þ∇ρðrÞ∇0ρðr0Þ ¼ �

Z
drρðrÞ∇∇c1ðrÞ; ð8Þ

where we have integrated by parts on the right-hand side of (8).
The first-order sum rule (7) expresses the vanishing of the global
internal force hF̂ointi ¼ 022. This can be seen by integrating by
parts, which yields the integrand in the form− ρ(r)∇ c1(r), which
is the internal force density scaled by− kBT. In formal analogy to
the probabilistic variance in Eq. (4), the second-order sum rule
(8) could be viewed as relating the “direct variance” of the density
gradient (left hand side) to the mean gradient of the internal one-
body force field in units of kBT (right-hand side), which,
equivalently, is the Hessian of the local intrinsic chemical
potential− kBTc1(r), see Fig. 1(b).

As a conceptual point concerning the derivations of Eqs. (7)
and (8), we point out that the excess free energy density
functional Fexc[ρ] is an intrinsic quantity, which does not
explicitly depend on the external potential Vext(r). Hence there
is no need to explicitly take into account a corresponding shift of
Vext(r). This is true despite the fact that in an equilibrium
situation one would consider the external potential (and the
correspondingly generated external force field) as the physical
reason for the (inhomogeneous) density profile to be stable.
Both one-body fields are connected via the (Euler-Lagrange)
minimization equation of density functional theory26,28,29:
kBT ln ρðrÞ ¼ kBTc1ðrÞ � VextðrÞ þ μ, where we have set the
thermal de Broglie wavelength to unity. For given density profile,
we can hence trivially obtain the corresponding external potential
as VextðrÞ ¼ �kBT ln ρðrÞ þ kBTc1ðrÞ þ μ, which makes the
fundamental Mermin-Evans26–29 map ρ(r)→Vext(r) explicit.

As a consistency check, the second-order sum rules (4) and (8)
can alternatively be derived from the hyper virial theorm30,31 or
from spatially resolved correlation identities22,25. Following the
latter route, one starts with

R
dr0H2ðr; r0Þ∇0Vextðr0Þ ¼ �kBT∇ρðrÞ

and
R
dr0c2ðr; r0Þ∇0ρðr0Þ ¼ ∇c1ðrÞ, respectively. The derivation

then requires the choice of a suitable field as a multiplier
(∇Vext(r) and∇ ρ(r), respectively), spatial integration over the
free position variable, and subsequent integration by parts.
However, this strategy i) requires the correct choice for multi-
plication to be made, and ii) it does not allow to identify the
Noether invariance as the underlying reason for the validity. In
contrast, the Noether route is constructive and it allows to trace
spatial invariance as the fundamental physical reason for the
respective identity to hold.

Thermal diffusion force variance. Similar to the treatment of the
excess free energy functional, one can shift and expand the ideal
free energy functional Fid½ρ� ¼ kBT

R
drρðrÞðln ρðrÞ � 1Þ.

Exploiting the translational invariance at first order leads to
vanishing of the total diffusive force:− kBT ∫ dr∇ ρ(r)= 0, and at
second order:

R
drρðrÞ�1ð∇ρðrÞÞ∇ρðrÞ ¼ � R

drρðrÞ∇∇ ln ρðrÞ.
These ideal identities can be straightforwardly verified via inte-
gration by parts (boundary contributions vanish) and they
complement the excess results (7) and (8).

Outlook. While we have restricted ourselves throughout to
translations in equilibrium, the variance considerations apply
analogously for rotational invariance22 and to the dynamics,
where invariance of the power functional forms the basis22,27. In
future work it it would be highly interesting to explore connec-
tions of our results to statistical thermodynamics13, to the study
of liquids under shear32, to the large fluctuation functional33, as
well as to recent progress in systematically incorporating two-
body correlations into classical density functional theory34,35.
Investigating the implications of our variance results for Levy-
noise36 is interesting. As the displacement vector ϵ is arbitrary
both in its orientation and its magnitude our reasoning does not
stop at second order in the Taylor expansion, see Eqs. (2) and
(6). Assuming that the power series exists, the invariance against
the displacement rather implies that each order vanishes indi-
vidually, which gives rise to a hierarchy of correlation identities
of third, fourth, etc. moments that are interrelated with
third, fourth, etc. derivatives of the external potential (when
starting from Ω[Vext]) or the one-body direct correlation func-
tion (when starting from the excess free energy density func-
tional Fexc[ρ]).

Future use of the sum rules can be manifold, ranging from the
construction and testing of new theories, such as approximate
free energy functionals within the classical density functional
framework, to validation of simulation data (to ascertain both
correct implementation and sufficient equilibration and sam-
pling) and numerical theoretical results. To give a concrete
example, in systems like the confined hard sphere liquid
considered by Tschopp et al.24 on the basis of fundamental
measure theory, one could apply and test the sum rule (5)
explicitly, as the inhomogeneous total pair correlation function
hðr; r0Þ is directly accessible in the therein proposed force-DFT
approach.

Data availability
Data sharing is not applicable to this study as no datasets were generated or analyzed
during the current study.
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We prove three exact sum rules that relate the polarization of active Brownian particles to their one-body
current: (i) The total polarization vanishes, provided that there is no net flux through the boundaries, (ii) at
any planar wall the polarization is determined by the magnitude of the bulk current, and (iii) the total interface
polarization between phase-separated fluid states is rigorously determined by the gas-liquid current difference.
This result precludes the influence of the total interface polarization on active bulk coexistence and questions the
proposed coupling of interface to bulk.
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Systems of active Brownian particles (ABPs) consist of
thermally diffusing spheres that self-propel along an intrin-
sic direction, which itself undergoes free rotational diffusion
[1–3]. ABPs form the prototypical statistical model for active
matter [1–3]. In order to characterize the local orientational
order, the polarization M is a measure of the strength and
direction of the local preferred alignment of the particle orien-
tations. A multitude of relevant situations have been reported
in the literature where ABPs display spontaneous polarization
effects [4–13]. In many of these cases, the spontaneous polar-
ization occurs in the absence of any explicit torques that act
on the particles: No external torques occur when all external
fields depend and act on position only, and no internal torques
arise when the particles are spheres. In equilibrium systems
of spheres, the absence of torques implies local isotropy,
and hence the emergence of nonzero local polarization is
a genuine effect of nonequilibrium, as characterized by a
nonzero spatially and orientationally resolved local one-body
current J.

Important examples of these nonequilibrium situations in-
clude the spontaneous orientational ordering of ABPs against
gravity in the sedimentation profile at large altitudes [4–7],
the ordering upon adsorption against a (hard) wall [10–13],
and the spontaneous polarization of the free interface between
phase-separated active gas and liquid phases [13–17]. There,
M points toward the active liquid in the case of purely
repulsive particles [13–15], but toward the gas in the case of
active Lennard-Jones particles [16,17]. A range of different
mechanisms and descriptions for the occurrence of the bulk
phase separation has been put forward, such as, e.g., kinetic
blocking as a feedback mechanism [18,19], the existence of
a nonequilibrium chemical potential [13,14], and effective
interparticle attraction [20].

*Matthias.Schmidt@uni-bayreuth.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

The status of the nonequilibrium interface, however, has
been claimed to be very different from what is known in equi-
librium. Tailleur and coworkers [15,21] find in their approach
interface-to-bulk coupling, i.e., the properties of the free inter-
face affect the gas and liquid bulk states, which are in stable
nonequilibrium coexistence. Further, one can argue that due to
the swim force, any nonvanishing polarization is necessarily
associated with a one-body force distribution γ sM, where
γ is the translational friction constant and s is the speed of
free swimming. It is not inconceivable (and consistent with
simple interface versus bulk dimensional analysis) that this
force density compresses the phase toward which M points at
the expense of the other phase, and hence that it changes the
properties of the coexisting phases.

Here we prove rigorously from first principles that the total
interfacial polarization is a straightforward quantitative con-
sequence of differing bulk currents in the coexisting phases
and the rotational diffusion current Drot. This rules out the
total polarization as an underlying physical mechanism for the
interface-to-bulk coupling [15,21]. Similarly, the total polar-
ization of particles adsorbed at a wall is solely determined by
Drot and the current in the corresponding bulk fluid, and thus
constitutes a state function. Furthermore, we show that in a
system without explicit torques and with no total flux through
the boundaries, the global orientational distribution function
follows a free diffusion equation, so the global polarization
vanishes in steady state; we also address the time-dependent
case below. Figure 1 illustrates the three types of orientational
ordering phenomena that we address in the following. Our
derivation of the corresponding sum rules is based on the exact
rotational equation of motion and on the continuity equation.

We describe ABPs on the level of their position- and
orientation-resolved microscopic one-body density distribu-
tion ρ(r,ω, t ), where r indicates position, ω (unit vector)
orientation, and t time. Then the local polarization M(r, t ) is
a vector field defined as the first orientational moment of the
density profile,

M(r, t ) =
∫

dω ωρ(r,ω, t ), (1)

2643-1564/2020/2(2)/022003(6) 022003-1 Published by the American Physical Society
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(c)

(b)(a) 

M
g

FIG. 1. Schematic of systems in which the sum rules (10), (17),
and (18) apply. (a) Sedimentation of ABPs under gravity g, which
acts toward the lower confining wall (hatched area). (b) Adsorption
of active particles at a semi-infinite wall (hatched area). (c) Motility-
induced phase separation of purely repulsive interacting ABPs. The
yellow circles indicate active Brownian particles (ABPs) and the
corresponding yellow arrows show exemplary particle orientations.
The local particle polarization M (white disks) can either vanish,
indicated by a small circle, or point in a specific direction, indicated
by a black arrow. The color gradient displays the density modulation
from high values (dark) to low values (bright).

where the integral is over all orientations ω. The translational
one-body current J(r,ω, t ) is the (microscopically resolved)
measure of the direction and magnitude of the local flow of
particles. As there are no explicit torques, the rotational mo-
tion is purely diffusive. Thus, the (in general) inhomogeneous
density distribution ρ generates a nonzero rotational current

Jω(r,ω, t ) = −Drot∇ωρ(r,ω, t ), (2)

where Drot is the rotational diffusion constant and ∇ω in-
dicates the derivative with respect to orientation ω. As the
dynamics evolve the microstates continuously in time and
the total particle number N remains constant, the one-body
distributions satisfy the continuity equation,

ρ̇(r,ω, t ) = −∇ · J(r,ω, t ) − ∇ω · Jω(r,ω, t ), (3)

where ρ̇ = ∂ρ/∂t with ρ̇ = 0 in steady state and ∇ indi-
cates the derivative with respect to position r. Note that the
continuity equation (3) holds rigorously, independent of the
presence and the type of interparticle interactions, particle-
wall interactions, and external forces. The forces influence
the translational and rotational motion, but not the form of
(3). All occurring terms in (3) can be sampled in computer
simulations; see, e.g., Ref. [22].

We first consider the total polarization for systems with
vanishing total flux through the boundaries of volume V
at all times t , i.e.,

∫
∂V ds · J(r,ω, t ) = 0, where ds denotes

the vectorial surface element and ∂V indicates the surface
of volume V . Here V is arbitrary and can be chosen to be
either the system volume, an enclosing larger volume that
contains the system, or a subvolume of the system. The
number of particles inside V is N = ∫

V dr
∫

dω ρ(r,ω, t ).

We rewrite the spatially integrated density distribution as∫
V dr ρ(r,ω, t ) = N f (ω, t ); this defines the global orienta-

tional distribution function f (ω, t ), which is normalized at all
times t ,

∫
dω f (ω, t ) = 1. Building the time derivative of the

spatially integrated density distribution ρ leads to

N ḟ (ω, t ) =
∫

V
drρ̇(r,ω, t ) (4)

= −
∫

V
dr (∇ · J(r,ω, t ) + ∇ω · Jω(r,ω, t )), (5)

where we used the continuity equation (3) to obtain (5).
Assuming the absence of explicit torques and hence a free ro-
tational diffusion current (2), applying the divergence theorem
to the translational current contribution in (5) yields

N ḟ (ω, t ) = −
∫

∂V
ds · J(r,ω, t ) +

∫
V

dr Drot�
ωρ(r,ω, t )

(6)

= DrotN�ω f (ω, t ), (7)

where the orientational Laplace operator is �ω = ∇ω · ∇ω.
The first term on the right-hand side of Eq. (6) vanishes due to
the vanishing flux boundary condition and the second term can
be rewritten as (7) using the definition of f . Dividing Eq. (7)
by the particle number N yields a free diffusion equation for
the orientational distribution function

ḟ (ω, t ) = Drot�
ω f (ω, t ). (8)

Note that Milster et al. [23] derived an equation similar
to Eq. (8) for the orientational distribution function of two-
dimensional ABPs with negligible translational diffusion. We
consider the system to be in steady state, ρ̇(r,ω, t ) = 0, and
thus also ḟ (ω, t ) = 0, which simplifies the diffusion equation
(8) to

�ω f (ω) = 0. (9)

The only solutions in two and three dimensions (2D and 3D)
of Eq. (9) are constants, f = (2π )−1 for two-dimensional
systems and f = (4π )−1 in three dimensions. Hence, we con-
clude [24] that the global orientational distribution function f
is independent of ω and the total polarization Mtot vanishes,

Mtot =
∫

V
dr M(r) = 0. (10)

In practice, the result (10) can be used as a consistency check
in computer simulations and in theoretical descriptions. It
is trivially satisfied in equilibrium systems without explicit
torques, as such systems imply local isotropy and hence local
and total polarization both vanish.

We emphasize that Eq. (10) holds in all steady states,
independent of the existence of external potentials or the
present type of interparticle or particle-wall interactions, in
each (sub)volume V with zero net flux through its boundaries.
The local and hence also the total fluxes through the surface of
the considered volume are zero if the orientational distribution
function is homogeneous at the surface and the current can be
expressed as J(r,ω) = Jbω. The magnitude Jb is equal to the
first Fourier coefficient of the current. The condition for the
current is satisfied, e.g., in isotropic bulk states or in regions
of vanishing current.
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As a first application of Eq. (10), we consider sedimen-
tation of ABPs [5,25]. Figure 1(a) illustrates two prominent
effects that occur: (i) The particle orientation points toward
the lower confining wall [4–7]. This leads to a particle accu-
mulation at the wall on top of the effect of gravity and may be
interpreted as a self-trapping mechanism. (ii) The sedimen-
tation length increases as compared to passive particles due
to the alignment of the swimmers against gravity g at large
distances from the wall [4–7]. Both effects can be interpreted
as originating from a dynamical balance between the spatial
self-sorting of the active particles and the counteracting mech-
anism of rotational diffusion. An upward oriented particle, for
example, swims on average toward higher altitudes until its
orientation changes via particle rotation.

Each of the above phenomena (i) and (ii) generates nonva-
nishing local polarization [4–7] [cf. Fig. 1(a)] and both have
at first sight no relationship with each other. But as the flux
through the boundaries is zero [26], the total polarization
has to vanish in steady state; cf. (10). Thus, if the volume
V is divided into bottom and top subvolumes, both partial
polarizations have to cancel each other, independent of the
division itself. This effect is nonlocal as the accumulation
and polarization at the bottom determines the overall particle
orientation in the remaining volume.

We next consider nonvanishing total flux through the
boundaries. We derive a spatially resolved (“local”) version
of the sum rule for the ubiquitous two-dimensional system in
steady state. In two dimensions, the orientation vector can be
written as ω = (cos ϕ, sin ϕ), where ϕ is the angle measured
against the positive x axis, and the orientational derivative ∇ω

reduces to ∂/∂ϕ. We assume, as a relevant case, translational
invariance along the y axis. (Note, however, that this restric-
tion is not necessary [27]). Because of the assumption of
translational invariance, the density ρ(x, ϕ) and x component
of the current Jx(x, ϕ) are even in the angle ϕ as both are
invariant under reflection at x axis, y → −y and ϕ → −ϕ

[14]. So the angular Fourier decomposition of both quantities
consists only of cosines. The density thus may be expressed as

ρ(x, ϕ) =
∞∑

n=0

ρn(x) cos(nϕ), (11)

where ρn(x) indicates the nth Fourier coefficient of the density
profile. Using (11) in the expression for the polarization (1)
yields M = (πρ1(x), 0). The y-component My vanishes
due to the symmetry of the density distribution (11), so
the magnitude of the polarization is equal its x component,
M = Mx. The x component of the current can be Fourier
decomposed similarly as

Jx(x, ϕ) =
∞∑

n=0

Jx
n (x) cos(nϕ), (12)

where Jx
n (x) denotes the nth Fourier coefficient and thus the

nth orientational moment of the current. As the rotational
current consists only of the thermal free diffusion contribution
(2), the continuity equation (3) simplifies for steady states to

∂Jx(x, ϕ)

∂x
= Drot

∂2ρ(x, ϕ)

∂ϕ2
. (13)

Equation (13) is satisfied, e.g., for the case of motility-induced
phase separation [14]. Insertion of the Fourier decomposition
(12) in Eq. (13) and integrating twice in the angle ϕ allows
us to solve the equation for density ρ. Evaluation of both
indefinite integrals leads to

ρ(x, ϕ) = − 1

Drot

∞∑
n=1

∂Jx
n (x)

∂x

cos(nϕ)

n2
+ ρ0, (14)

where we have used the Fourier expansion of the current (12)
and the integration constant ρ0 indicates the average density,
i.e., the total number of particles per system volume and per
radians. The integration constant of the first integral vanishes,
since a linear ϕ term does not satisfy the 2π periodicity in
angle ϕ.

The polarization profile M(x) (1) can be simplified as
M(x) = ∫ 2π

0 dϕ ρ(x, ϕ) cos ϕ using the present symmetries.
Inserting the expansion of ρ (14) and evaluating the integral
over all orientations yields

M(x) = − π

Drot

∂Jx
1 (x)

∂x
. (15)

That is, for each position x the local polarization is propor-
tional to the spatial change in the first moment of the current.
The spatially resolved relation (15) constitutes a local sum
rule, similarly determined by Refs. [13,14] in the special
case of ABPs. The derivation here is more general and based
only on the continuity equation with freely diffusive rotational
motion.

In order to derive a global sum rule, we spatially integrate
the exact local sum rule (15),

Mtot =
∫ x2

x1

dx
∫ y2

y1

dy M(x) = πLy

Drot

[
Jx

1 (x1) − Jx
1 (x2)

]
, (16)

which determines the total polarization Mtot in the integration
volume V . For simplicity, we restrict ourself to rectangular
areas V aligned with the coordinate axes. The integration
limits are set to the arbitrary positions x1 and x2 for the x
coordinate and y1 and y2 for the y coordinate. Because of
the translational invariance, the y integral can be explicitly
evaluated and gives the length of y integration, Ly = y2 − y1.
In the following, we thus consider the total polarization per
unit length in the y direction, Mtot/Ly.

Equation (16) holds for ABPs in a large variety of situa-
tions. We address two general relevant cases in the following.
First, we consider ABPs absorbed at a (hard or soft) planar
wall [see Fig. 1(b)]. We set a wall parallel to the y axis at
x = 0. As the density vanishes inside the wall, the one-body
current J(x) = 0 for x → −∞. For x → ∞, the semi-infinite
system approaches an isotropic bulk fluid, so the current is
J(x) = Jbω, due to symmetry. The (constant) magnitude of the
bulk current, Jb, equals the first Fourier component, Jb = Jx

1 .
Setting the limits of integration in Eq. (16) to x1 → −∞ and
x2 → ∞ and using the known expressions for the currents
simplifies the total polarization at the wall per unit y length to

Mtot

Ly
= − π

Drot
Jb. (17)

Hence, the absolute value of Mtot is solely determined by
the bulk current and the rotational diffusion constant. Recall
that Mtot is oriented along the x axis due to the translational
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symmetry, so the sign of the right-hand side of Eq. (17)
determines whether the total polarization points toward or
against the wall. As the free swim speed s � 0, Jb is greater or
equal to zero, and hence the total polarization points towards
the wall. (Note that interparticle interactions only tend to
reduce the absolute value of the bulk current due to drag
effects.) Because of the global sum rule (17), the sign of the
total x polarization per unit length is negative. A vanishing
bulk current Jb = 0 constitutes a special case, which leads to
a vanishing total polarization as one would expect to occur for
a system of passive spheres. We conclude that the total swim
force density

∫
drdωsγ ρω always points toward the wall, so

that the total polarization also points to the wall (except if the
total polarization vanishes). The direction of the total polar-
ization is hence independent of both the particle-wall and the
interparticle interaction. Furthermore, due to locality of both
interactions the bulk itself, in particular the bulk current Jb, is
independent of the wall. Thus, the total polarization Mtot only
depends on bulk quantities via Eq. (17) and constitutes a state
function. This extends the work of Tailleur and coworkers
[28,29], who investigated whether pressure is a state function
in active fluids. Note that the magnitude and structure of
the local polarization profile M(x) may depend on both the
wall-particle and the interparticle interaction potentials.

As a second relevant example, we consider the phase sep-
aration of ABPs [schematic sketch in Fig. 1(c)]. The particles
phase separate in a dense (liquid) and a dilute (gas) bulk fluid.
Since both coexisting bulk states are isotropic, the coexisting
bulk currents are proportional to the orientation ω and the
corresponding magnitudes are Jg in the gas and Jl in the liquid
bulk phase. Using those relations for the bulk current and
setting the limits of integration inside an isotropic bulk phase,
i.e., x1 → −∞ and x2 → ∞, simplifies Eq. (16) to

Mtot

Ly
= π

Drot
(Jg − Jl ). (18)

Hence the difference between both local bulk currents, scaled
with the rotational diffusion constant, determines the total
polarization per transversal length. Equation (18) constitutes
an exact global sum rule. For particles interacting via the
Weeks-Chandler-Anderson potential, which is a Lennard-
Jones potential cut and shifted at its minimum to be purely
repulsive, the swimmers align toward the denser phase in
the interfacial region [13,14]; cf. Fig. 1(c). Hence, the total
polarization is also directed toward the dense phase and it is
positive. According to Eq. (18), one expects a higher current
in the dilute phase in comparison to the dense phase, which
is in qualitative and quantitative agreement with simulation
data [14,30]. In contrast, for active Lennard-Jones particles,
the total polarization was found to point toward the dilute
phase [17]. A sketch of the system would be similar to
Fig. 1(c), but with an inverted polarization arrow. Using the
total polarization to calculate the difference between both bulk
currents from the global sum rule (18), we predict a higher
current in the liquid than in the gas. Note that the particle
polarization is primarily located at the interface, since the
polarization in bulk vanishes due to isotropy; cf. Eq. (16).

A physical interpretation of the global sum rule (18) is that
the interfacial quantity Mtot is solely determined by the bulk
values Jg and Jl . In other words, the interfacial polarization is

a mere consequence of the properties of the bulk states. This
interpretation follows from the locality of the short-ranged
interparticle interactions, which is a similar reasoning as in the
case of particles in front of a semi-infinite wall [cf. Fig. 1(b)].
The combination of the expression (18) and the locality of
interparticle interactions lets the nonlocal influence of Mtot on
the entire bulk seem implausible. This questions the conclu-
sion of Solon et al. [15, p. 16] that “the phase coexistence
densities [...] is controlled by the polar ordering of particles at
the gas-liquid interface.” It seems more reasonable that the
interface is a consequence of the bulk and not vice versa,
especially since no mechanism has been identified which
would generate these nonlocal effects. Furthermore, our inter-
pretation is in agreement with the theory of Ref. [14] where
no interfacial contributions are required to describe the bulk
and the gas-liquid coexistence, as is the case in equilibrium.

We next generalize the steady-state relationship (10) and
consider the time dependence of Mtot. We restrict ourselves
to cases of vanishing total flux through the boundaries of the
considered volume V at all times. The time-dependent total
polarization Mtot(t ) is then given as

Mtot(t ) =
∫

V
dr M(r, t ) = N

∫
dω ω f (ω, t ), (19)

and thus can be determined via the global orientational dis-
tribution function f (ω, t ). We first consider two-dimensional
systems. Hence, as above, the orientation vector is ω =
(cos ϕ, sin ϕ), where ϕ is an angular coordinate and �ω

simplifies to ∂2/∂ϕ2. So, f (ω, t ) is given as the solution of
Eq. (8),

f (ϕ, t ) =
∞∑

n=0

[an cos(nϕ) + bn sin(nϕ)]e−n2Drott , (20)

where the constants an, bn are determined by the initial
conditions. Inserting the global orientational distribution func-
tion (20) into Eq. (19) and carrying out the angular integral
yields the temporal behavior of the total polarization as an
exponential decay,

Mtot(t ) =
(

a1

b1

)
e−Drott , (21)

where 1/Drot is the time constant and the vector (a1, b1) is the
initial polarization at time t = 0.

In three spatial dimensions, we parametrize ω =
(sin θ cos ϕ, sin θ sin ϕ, cos θ ), where θ and ϕ indicate
polar and azimuthal angles. Then Eq. (8) is solved by

f (θ, ϕ, t ) =
∞∑

l=0

l∑
m=−l

almYlm(θ, ϕ)e− Drot
l (l+1) t , (22)

where the constants alm are again set by initial conditions and
Ylm(θ, ϕ) indicate the spherical harmonics. Insertion of (22)
into Eq. (19) gives

Mtot(t ) =
∞∑

l=0

Ml e
− Drot

l (l+1) t , (23)

where we have defined the constants Ml = ∫
dω

∑
m alm

Ylm(θ, ϕ)ω. Hence, in both the 2D and 3D cases, Mtot decays
exponentially in time. The dynamics depend only on the rota-
tional diffusion constant and on the initial conditions. Clearly
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in the limit t → ∞, the results for the time dependence of
Mtot, (21) and (23), reduce to the steady-state sum rule (10) of
vanishing total polarization.

Furthermore, one can extend the obtained sum rules
to higher (e.g., nematic) order moments, e.g., Mn(r) =∫ 2π

0 dϕ cos(nϕ)ρ(r, ϕ) in two-dimensional systems. For a
vanishing flux through the surface of the volume, those higher
moments in the considered volume are all equal to zero in
steady state, as is the polarization [cf. Eq. (10)], and their
time evolution can be derived from Eqs. (20) and (22). In
translationally invariant two-dimensional systems the sum
rules are similar to Eqs. (15) and (16), where the nth moment
Mn corresponds to the spatial derivative of the nth moment
of the current Jx

n . Since higher moments of the bulk current
Jx

n>1 vanish in bulk due to symmetry, the total higher order
moments M tot

n>1 are also zero for particle adsorption at a
wall or motility induced phase separation. Hence, these total
moments cannot contribute to determine the bulk densities.
Note, however, that the local structure of these higher order
moments is nontrivial in general.

To conclude, we have demonstrated that polarization and
current distribution of ABPs are intimately connected. Using
the continuity equation, together with the properties of free

rotational diffusion, we have derived three exact global sum
rules (10), (17), and (18). These imply, respectively, (i) that the
total system polarization vanishes, (ii) that the polarization at
a wall is determined by the bulk current and hence represents
a state function, and (iii) that for phase-separated fluid states
the polarization of the free interface is given by the difference
of bulk current in the coexisting active bulk phases. Note that
Eq. (18) is indeed satisfied qualitatively and quantitatively
in the theory of Refs. [14,31]. These global sum rules, as
well as the local sum rule (15), can be useful as consistency
checks for simulations and theories and can also be used
as an input for theoretical descriptions. One could apply
the derived local and global sum rules to further interesting
systems: The relations hold in case of spatial inhomogeneous
activity s(r) as considered by Sharma et al. [32] and Hasnain
et al. [33] or for spatially varying translational diffusion
[33], as long as the rotational diffusion coefficient is kept
constant. It would be interesting to explore in future work
the connections of our treatment to the results presented in
Refs. [34,35].

We thank D. de las Heras for stimulating discussions and
critical reading of the manuscript.
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We present a microscopic theory for the nonequilibrium interfacial tension γgl of the free interface
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the splitting of the force balance in flow and structural contributions is general and applies to
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interfacial stability in active Brownian dynamics many-body simulations.
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The interfacial tension (or “surface tension”) of the
free interface between two coexisting bulk phases is
one of the most important quantities in the description
of a wide range of interfacial phenomena. The tension γgl
between coexisting gas and liquid bulk phases plays a
particularly central role due to the high symmetry of the
coexisting fluid phases. It is a key quantity in the Kelvin
equation for capillary condensation, for the strength of the
thermal capillary wave spectrum, and for the Laplace
pressure in droplets.
The typical valuesof the interfacial tensionvary overmany

orders ofmagnitude, when going frommolecular to colloidal
systems.Using the particle size σ and the thermal energy kBT
as the natural scales, the scaled interfacial tension γglσ2=kBT
is typically of the order of unity. The dependence on σ is
particularly dramatic when going from atoms to colloids. An
associated factor of 103 of increase in length scale translates
into a decrease of γgl by a factor of 10−6, as e.g., theoretically
[1–3] and experimentally [4–6] demonstrated in phase
separated colloid-polymer mixtures, where confocal micros-
copy can be used to great effect in studying e.g., droplet
coalescence [7] and viscous fingering [8].
Very notably, the existence of the interfacial tension is

the mechanism by which macroscopic fluid interfaces, such
as in droplets and soap bubbles, attain a minimal geometric
shape. The phase separated system minimizes the product
of γgl and the interfacial area of the interface. As γgl is
independent of curvature in a first approximation, this
amounts to minimizing the interfacial area alone. This
effect is e.g., commonly exploited in microscopic computer
simulation work, where the use of periodic boundary
conditions and suitable elongated box geometries offers
the system a preferred (short) direction for the choice of
interface orientation, and hence a stabilizing mechanism
that truncates large scale fluctuations. This also applies to
active Brownian particles, i.e., colloids where the diffusive
motion is supplemented by directed self-propulsion and

which phase separate at large enough swimming strength
[9–12]. Typical experiments rely on catalyzing a chemical
reaction to induce such “swimming” [13].
There is much current progress in the description of free

equilibrium interfaces, such as e.g., geometry-induced
capillary emptying [14], the local structure factor near
an interface [15], and Goldstone modes and resonances in
the fluid interfacial region [16]. A variety of related deep
theoretical topics have been addressed recently, including
the curvature dependence of the surface free energy of
liquid drops and bubbles [17], the adsorption of nano-
particles at fluid interfaces [18], the free energy of com-
plex-shaped objects [19], the characterization of the
“intrinsic” density profile for liquid surfaces [20–22],
and the interface tension of curved interfaces [23].
All of the above physical understanding is necessarily

based on the fundamental property γgl ≥ 0. This seemingly
indisputable fact was recently challenged based on com-
puter simulation work by Bialké et al. [24] in active
Brownian particles. The authors of Ref. [24] used the
pressure tensor route and found their results for the
interfacial tension to be negative. They argue that this
“is a genuine nonequilibrium effect that is rationalized in
terms of a positive stiffness.” Patch et al. [25] reproduce the
negative result using an expression for γgl similar to that of
Ref. [24], but with a different method for calculating the
active contribution. From analysis of the interfacial (capil-
lary wave) fluctuations, both groups find a positive value
for the interfacial stiffness [24,25]. Lee constructs a coarse-
grained model with an effective surface tension that is
positive, and he is able to describe his simulation data [26].
Solon et al. [27] in their numerical analysis find a negative
value for the tension, but they also state that their
framework supports both positive and negative values.
Marconi and Maggi [28] state that the tension would turn
out to be negative in their theory. Subsequently, Marconi
et al. [29] through analytical work have reconsidered the
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problem of the mechanical derivation of γgl, but these
authors do not report numerical results from their theory
and they do not comment on the sign of γgl in Ref. [29]. Das
et al. [30] investigated different expressions for the micro-
scopic stress. The authors state that in their treatment the
surface tension of active systems can be determined, but
they have not done so in Ref. [30]. Considering the
influence of activity on the gas-liquid interface of the
Lennard-Jones system, Paliwal et al. [31] use the pressure
tensor route and find a negative contribution from their
swim term, but overall positive values for γgl across a wide
parameter range.
Here we demonstrate, based on a nonequilibrium gen-

eralization of the microscopic treatment of the interface
pioneered by van derWaals [32], that indeed the tension
γgl ≥ 0 for phase-separated active Brownian particles. Its
scaled value in natural units is of order unity, and vanishes
with a 3=2 (mean-field) exponent near the critical point.
This proves, on a sound theoretical footing, the hitherto
unexplained stability of the planar active gas-liquid inter-
face and demonstrates the route ahead to the quantitative
description of nonequilibrium interfacial properties and
phenomena. Our treatment is based on discriminating
between structural forces that generate the tension and
the flow force balance which does not.
Our mechanism for bulk phase separation is based on the

exact translational one-body force balance equation [33,34],

γv ¼ fid þ fint þ γsω; ð1Þ

where the friction force on the left-hand side is balanced by
the ideal diffusive force fid, the internal force fint, and the
free swim force γsω on the right-hand side. The friction
constant is indicated by γ and s denotes the constant free
swim speed. The velocity v, the density ρ, fid, and fint all
depend on position r and orientation ω, but not on time as
we are considering steady states. Furthermore, we assume
(i) the interface between the dense (liquid) and the dilute
(gas) phases to be perpendicular to the x axis and (ii)
translational invariance with respect to other spatial coor-
dinates. Hence the density varies along the x axis of the
system. The ideal diffusive force field is given exactly
as fid ¼ −kBT∇ ln ρ. The internal force field consists
of adiabatic and superadiabatic contributions and is
defined as

fint ¼ fad þ fsup ¼ −
1

ρ

�X
i

δi∇iuðr1;…; rNÞ
�
; ð2Þ

where δi ¼ δðr − riÞδðω − ωiÞ is used as a shorthand
notation with δ the Dirac delta function, u indicates the
interparticle interaction potential, ∇i is the derivative with
respect to position ri of the i ¼ 1;…; N particle, and h·i is
an average in steady state. The adiabatic force field fad is
defined by the right-hand side of Eq. (2) but taken in an

equilibrium system under the influence of an “adiabatic”
external potential that generates the true density profile ρ
[35–37]. Here the corresponding equilibrium system has
no flow (s ¼ 0). Because of the rotational symmetry of the
spherical particles considered here fad is independent of the
particle orientation ω. From classical density functional
theory [38], applied to the adiabatic system, it is known that
fad is a gradient field obtained as fad ¼ −∇μad [39].
The superadiabatic force field is defined as the

difference fsup ¼ fint − fad, cf. Eq. (2). From power func-
tional theory [35] follows that fsup is a functional of the
density profile, but also of the velocity profile.
We split Eq. (1) into a flow equation and a structural

equation, given, respectively, by

γv ¼ fflow þ γsω; ð3Þ

0 ¼ fid þ fad þ fstruc; ð4Þ

where the superadiabatic force field is the sum of a flow and
a structural contribution, fsup ¼ fflow þ fstruc. The splitting
is unique. The superadiabatic flow force field fflow
describes the influence of the internal interactions on the
flow. The structural force field fstruc is that part of the total
internal force field that influences the spatial structure,
together with the adiabatic force field fad and the ideal term
(which is small in the present situation). Note that it is the
functional dependence of fsup and hence of fstruc on velocity
which renders Eq. (4) (highly) nontrivial. Since fid and fad
are gradient contributions, fstruc necessarily needs to be a
gradient field, fstruc ¼ −∇μstruc, which defines μstruc as the
negative integral of fstruc. Integrating Eq. (4) in space thus
leads to

μid þ μad þ μstruc ¼ μb ¼ const; ð5Þ

where μb is the constant value in the bulk fluid and the
sum determines the total chemical potential. The difference
to the equilibrium situation is the dependence of μstruc
on the (nonvanishing) flow profile. Conceptually, the
three chemical potential contributions play the same role
as in equilibrium in that their respective gradient is a
force field.
The ideal chemical potential μid ¼ kBT ln ρ is for sim-

plicity reduced to the orientation-independent expression

μid ¼ kBT ln ρ0; ð6Þ

with the rotational averaged density ρ0 ¼
R
dωρ=2π. The

approximation is reasonable, since the ideal chemical
potential is numerically small in the present situation,
as is the corresponding ideal diffusive force (see e.g.,
Ref. [24]). Furthermore, ρ0 is a main contribution of the
Fourier decomposed density ρ and both densities ρ and ρ0
coincide in bulk. Since within the used approximations μid
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and μad are rotationally invariant, Eq. (5) implies that μstruc
and, hence, fstruc are also independent of orientation.
We further discriminate between local and nonlocal

contributions in Eq. (5). The ideal chemical potential μid
is a purely local expression and μad is also a local term since
we base it on a local density approximation. Further
nonlocal contributions to μad were found to be negligible
in the present case. Hence the only considerable nonlocal
contribution is contained in μstruc, which we split into a sum
of local and nonlocal terms, μstruc ¼ μlocstruc þ μnloc. The
nonlocal superadiabatic chemical potential is approximated
as the lowest order gradient contribution,

μnloc ¼ −∇ · ðm∇ρ0Þ þ 1

2
ð∇mÞ · ð∇ρ0Þ; ð7Þ

where the coefficient m can depend on density ρ0 and on
velocity v. Note that μnloc vanishes in both bulk phases due
to the constant density ρb ¼ ρg; ρl, where ρg and ρl are the
constant densities in the gas and liquid phase. Thus, bulk
chemical potential and local chemical potential coincide in
bulk, μb ¼ μlocðρbÞ.
For the local chemical potential, μloc¼μidþμadþμlocstruc,

the corresponding nonequilibrium local pressure, Ploc ¼
Pid þ Pad þ Ploc

struc, can be obtained from the Gibbs-Duhem
relation [40]:

∂Ploc

∂ρ0 ¼ ρ0
∂μloc
∂ρ0 : ð8Þ

From Eqs. (5) and (7) follows directly that μlocðρlÞ ¼
μlocðρgÞ ¼ μb, and using the Gibbs-Duhem relation (8)
leads to PlocðρlÞ ¼ PlocðρgÞ ¼ Pb. The combination of both
relations allows us to determine both coexistence densities
ρg and ρl and hence the phase diagram of the system,
cf. Ref. [41].
As we have identified the structural gradient force

contributions, we can proceed in a purely mechanical
way. Hence the gas-liquid interfacial tension is given
by [32,38]

γgl ¼
Z

dx
�
m
2
ð∇ρ0Þ2 −W

�
: ð9Þ

Equation (9) consists of a nonlocal and a local part. The
first, nonlocal contribution results from an (interfacial)
square gradient expansion with coefficient m. The second,
local term is given as

−W ¼ ψ − ψb ¼ ðμloc − μbÞρ0 − ðPloc − PbÞ; ð10Þ

where ψ ¼ μlocρ0 − Ploc and ψb ¼ μbρ0 − Pb contain the
above introduced nonequilibrium (local) chemical potential
and pressure. Note that ψb is not a constant bulk con-
tribution, since ρ0 still depends on x. In equilibrium ψ can

be identified as the local Helmholtz free-energy density and
ψb is the corresponding double tangent line.
The chemical potential balance Eq. (5) can then be

rewritten as

∂W
∂ρ0 þ∇ · ðm∇ρ0Þ −

1

2
ð∇mÞ · ð∇ρ0Þ ¼ 0; ð11Þ

where we used Eq. (7) to express the nonequilibrium
chemical potential and the derivative of Eq. (10) with
respect to density, −∂W=∂ρ0 ¼ μloc − μb. The first integral
with respect to x of Eq. (11) is

W þ 1

2
m

�∂ρ0
∂x

�
2

¼ 0; ð12Þ

where we used the planar symmetry of the density ρ0 to
simplify the spatial derivative ∇ to êx∂=∂x. Rewriting the
interfacial tension (9) with relation (12) leads to three
alternative forms:

γgl ¼
Z

∞

−∞
m

�∂ρ0
∂x

�
2

dx ð13Þ

¼ −2
Z

∞

−∞
Wdx ð14Þ

¼
Z

ρl

ρg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2mW

p
dρ0: ð15Þ

The numerical values of Eqs. (13)–(15) only coincide if the
functions ρ0, m, and W are chosen reasonably and satisfy
Eq. (12). Thus, whether a choice of these three functions is
appropriate can be gauged by the agreement of the value
for γgl obtained from either of Eqs. (13)–(15). This provides
a check for the approximations for m and W as introduced
below.
Equation (13) does not depend on the local contribution

W and is thus referred to as the nonlocal route. The relation
(14) is independent of the coefficient m of the nonlocal
term. It is denoted as the local route, as the integrand is the
local quantity W. Expression (15) is called the no-profile
route, as it is independent of the density distribution ρ0. In
practice it can be useful to calculate γgl without knowledge
of ρ0. In the equilibrium limit of passive particles (s ¼ 0)
and vanishing particle velocity v ¼ 0, our expressions for
the interfacial tension coincide with the known equilibrium
relations, cf. e.g., Ref. [32].
We apply our general theory for the nonequilibrium

interfacial tension to a system of two-dimensional active
particles which interact via a Weeks-Chandler-Anderson
potential. This is a Lennard-Jones potential cut at its
minimum and shifted to be continuous. The corresponding
energy scale is ϵ and the characteristic length scale σ is also
referred to as the diameter of the spherical particles. The
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orientational motion is freely diffusive with rotational
diffusion constant kBT=γω, where γω denotes the rotational
friction constant. The rotational averaged density can be
approximated with high accuracy as a hyperbolic tangent
profile [12],

ρ0ðxÞ ¼
ρg þ ρl

2
þ ρl − ρg

2
tanh

�
x
λ

�
; ð16Þ

where λ indicates the interfacial width. The coexistence
densities ρg and ρl were determined from the pressure
and chemical potential balance at theoretical coexistence
and coincide with results from simulations very
well [41,42].
The chemical potential contributions are chosen in

accordance with Ref. [41]. The ideal term is given by
relation (6). For the adiabatic chemical potential we use the
local density approximation on a scaled particle theory for
two-dimensional hard disks [43]. This yields

μad ¼ kBT½− lnð1 − η0Þ þ η0ð3 − 2η0Þ=ð1 − η0Þ2�; ð17Þ

where the rescaled packing fraction η0 ¼ 0.8η models
the soft Weeks-Chandler-Anderson potential. The pack-
ing fraction η ¼ ρ0=ρj and ρj ¼ const indicates the
jamming density, where the motion comes to arrest.
The remaining μstruc corresponds to the quite life
chemical potential [41], which in homogeneous bulk
is given as

μbstruc ¼
e1γγω

2kBT
v2b

ρb
ρj
; ð18Þ

where the strength is determined by the dimensionless
constant e1. The expression (18) is linear in bulk density
ρb, quadratic in the bulk speed vb, and the resulting force
acts toward the liquid phase. Note that due to its velocity
dependence μbstruc is a genuine nonequilibrium expression.
To obtain the local structural chemical potential, we
expand Eq. (18) across the interface using the orienta-
tional averaged density ρ0 instead of ρb and the known
linear decrease vloc ¼ sð1 − ρ0=ρjÞ [11] for the speed vb.
This yields

μlocstruc ¼
e1
6
Pe2kBT

�
1 −

ρ0
ρj

�
2 ρ0
ρj
; ð19Þ

where the introduced Péclet number is Pe ¼ sσγ=kBT ¼
3sγω=kBTσ. This dimensionless constant relates active
swimming to rotational diffusion.
The nonlocal chemical potential is approximated in the

simplestway,with a constant coefficientm¼e2Pe2kBT=6ρ2j ,
such that Eq. (7) simplifies to μnloc ¼ −m∇2ρ0 and one
obtains

μnloc ¼ −
e2Pe2

6

kBT
ρj

∇2
ρ0
ρj

; ð20Þ

where the amplitude is determined by the dimensionless
constant e2. One can show within the power functional
framework [33,35] that μstruc is an intrinsic quantity and can
be written as a kinematic functional, hence only dependent
on density ρ and velocity v. Therefore, μlocstruc and μnloc are
“naturally“independent of the swim speed and Eq. (19) can
be expressedwithout s as an intrinsic expression [41,44]. The
local pressure can be determined straightforwardly from the
Gibbs-Duhem relation Eq. (8).
The parameters of the system are chosen as follows.

The system is at temperature kBT=ϵ ¼ 0.5, has a rotational
friction coefficient γω=γσ2 ¼ 1=3, a jamming density of
ρj2πσ

2 ¼ 1.4, and the dimensionless prefactors e1 ¼
0.0865 and e2 ¼ 0.0385. Requiring e2 to be constant
and the chemical potential balance (5) to be satisfied,
the interfacial width λ is determined. The swim speed s
changes with Péclet number, Pe ¼ sσγ=kBT, while the
other parameters are kept constant. We use the approx-
imations for the orientational averaged density profile ρ0,
the chemical potential contributions Eqs. (6), (17), (19),
and (20), and the corresponding pressures to determine the
interfacial tension by evaluating the expressions (13)–(15).
The results from the three methods are displayed in

Fig. 1. We find the behavior of the function W and of the
interfacial tension to be qualitatively similar to what is
found in equilibrium [32]. Figure 1 shows γgl as a function
of Pe. The interfacial tension is only different from zero for

FIG. 1. Interfacial tension γgl determined from the nonlocal
route Eq. (13) (full blue line), from the local route Eq. (14) (dash-
dotted yellow line), and from no-profile route Eq. (15) (dotted red
line) in dependence of the Péclet number Pe. Close to the critical
point the tension increases with a critical exponent of 3=2, as
indicated by the dashed black line. The inset also shows γgl but in
a double-logarithmic plot and the x axis is shifted by the critical
Péclet number and, hence, is Pe-Pecrit.
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Péclet numbers larger than Pecrit ¼ 59.3 [41], when the
system phase separates. Here the critical value of the Péclet
number [41] is determined by the magnitude of e1. The
tension increases with rising particle activity and hence
with the Péclet number (cf. Fig. 1). Close to the critical
point γgl increases with a critical exponent of 3=2, as
indicated by the black dashed line. This corresponds to the
theoretical mean-field coefficient of the van der Waals
theory, which might be expected since there are many
similarities between both descriptions. In order to empha-
size the agreement of the interfacial tension with a function
proportional to ðPe − PecritÞ3=2, both quantities are dis-
played in a double logarithmic plot (cf. the inset of Fig. 1).
For Péclet numbers close to the critical point, the functions
nearly have the same slope. Far from the critical point the
interfacial tension increases faster than with the critical
exponent. For a detailed simulation study of the bulk
critical behavior of active Brownian particles, see Ref. [45].
The values of the tension are positive, γgl > 0, which

directly explains the stability of the interface. This is in
contrast to Bialké et al. [24], who calculated a negative
interfacial tension using the pressure tensor. The results for
three differentmethods, the nonlocal route Eq. (13), the local
route Eq. (14), and the no-profile route Eq. (15), agree to a
very satisfying degree (cf. Fig. 1). Even far from equilib-
rium, for example, at Pe ¼ 200, the respective results
deviate by only about 3%. This indicates that the chemical
potential balance (5) and hence the structural force balance
(4) are both satisfied with very good accuracy. Finally, the
splitting (3) and (4) [together with (9) within a square
gradient approximation] forms a general route toward the
interfacial tension of out-of-equilibrium interfaces.We have
also ascertained that the “flow” equation of motion (3)
creates a vanishing contribution to the interfacial tension in
the present system, since after orientational integration the
associated pressure tensor contributions either vanish or are
isotropic. Hence the splitting (3) and (4) does not imply
omission of any relevant terms.
Because of the square gradient character of our treat-

ment, we do not find layering effects at the interface, which
would require us to take account of nonlocal interfacial
packing effects [20]. Furthermore, our treatment yields the
“intrinsic density profile” [21,22], as large scale capillary
wave fluctuations are neglected. Thus, interesting future
work could be devoted to studying capillary wave fluctua-
tions and the wave vector dependence of the interfacial
tension [21,22]. Furthermore, it would be interesting to
relate our treatment to that presented in Ref. [27] and to
consider fluctuations beyond mean field that could alter the
value of the critical scaling exponent.
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A Bulk and interfacial theory of
motility-induced phase separation

In the following we give an overview of background and hence summarize the main
ideas of the theory to describe the phase separation of active Brownian particles. For
more theoretical details, especially for the treatment of the flow contributions, please
consider the corresponding references [46,94]. Reference [93] contains an earlier version.
In reference [46] we construct approximative theoretical expressions by comparing to
the results from Brownian dynamic simulation. The determined profiles of the density
and the current and the resulting phase diagram agree favourably with simulation
results. In reference [94] we lay out all theoretical steps and show the calculations in
more detail than given in [46].

Our one-body theory is based on two main equations. The first one is the exact angle-
resolved continuity equation, i.e. equation (4.1), which we reproduce for convenience:

ρ̇(r,ω, t) = −∇ · J(r,ω, t)−∇ω · Jω(r,ω, t). (A.1)

The um of the negative spatial divergence ∇ of the translational current J(r,ω, t)
and the negative angular divergence ∇ω of the rotational current Jω(r,ω, t) give the
temporal change in the density ρ̇(r,ω, t) = ∂ρ(r,ω, t)/∂t. Here ρ̇(r,ω, t) = 0 as we
only consider steady states. Note that the one-body quantities such as the density
ρ(r,ω) or the currents J(r,ω), Jω(r,ω) are fully resolved in position and orientation
and we have dropped the irrelevant time argument. The active Brownian particle
orientations diffuse freely (5.2) as there are neither external nor internal torques
present. Hence the rotational current only includes a diffusive contribution which
is given by Jω(r,ω) = −Drot∇ωρ(r,ω), where Drot denotes the rotational diffusion
constant.
The second fundamental equation of the theory is the force balance,

γv(r,ω) = fid(r,ω) + fswim(r,ω) + fint(r,ω), (A.2)

which is equivalent to the previously considered force density balance (4.18) up to
division by ρ(r,ω) using the relation between the one-body current and velocity,
J(r,ω) = v(r,ω)ρ(r,ω). The frictional force on the left-hand side of equation (A.2) is
canceled with the ideal term fid(r,ω) = −kBT∇ ln ρ(r,ω), the swim force fswim(r,ω) =
γsω and the internal contribution fint(r,ω) resulting from the interparticle interactions.
Here kB is the Boltzmann, T denotes the temperature, γ indicates the friction constant
and s is the free swim speed. For each force contribution there are exact and explicit
expressions, except for the interaction force for which one has to make approximations
in order to make progress. Hence this term is the most difficult one to treat, as it
contains the entire complexity of the problem.
It turns out to be useful to split the internal force into a sum of three distinct

contributions, which are a flow force, an adiabatic force and a structural force,
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fint(r,ω) = fflow(r,ω) + fad(r,ω) + fstruc(r,ω). The adiabatic force fad(r,ω) describes
the interparticle interaction force that would act if the system were in equilibrium and
have the same one-body density profile as the nonequilibrium system [79]. Therefore
this force can be seen as the equilibrium contribution to fint(r,ω). In contrast the flow
(fflow(r,ω)) and the structural (fstruc(r,ω)) force form the nonequilibrium contribution
which together form the superadiabatic (above adiabatic) force. This splitting allows
to separate the force balance equation (A.2) into a flow part, which is given by

γv(r,ω) = fswim(r,ω) + fflow(r,ω). (A.3)

Equation (A.3) directly describes the coupled motion and currents in the system. It is
coupled to structural relationship and a structural part,

0 = fid(r,ω) + fad(r,ω) + fstruc(r,ω). (A.4)

which primarily induces the formation of spatial structure and is hence relevant for
the phase coexistence. The equations (A.3) and (A.4) are taken to define fflow(r,ω)
and fstruc(r,ω), so the formulation is without approximations up to this point. On
can ascertain a posteriori that the chosen formal splitting is also physically sensible.
Further both equations (A.3) and (A.4) are fully resolved with respect to the orientation.
This level of description contrasts many other descriptions of motility-induced phase
separation which only include the orientational average and sometimes the first and
the second orientational moments of force and density distributions [44,45].

Let us focus on the flow force balance (A.3) first. We use this equation in combination
with the continuity equation (A.1) to determine the angle- and position-resolved density
and current profiles [94] within assuming the hyperbolic tangent for the orientation-
averaged density profile. One then only needs the values for the coexistence densities
and a suitable approximation for fflow(r,ω). The flow force itself consists again of
several superadiabatic contributions, fflow(r,ω) = fsup,0(r,ω)+fsup,1(r,ω)+fsup,2(r,ω).
The first term fsup,0(r,ω) is a drag contribution. Its origin lies in the motion of a
particle that moves through the fluid of surrounding others particles and this force
therefore opposes the current J(r,ω). As a simple approximation we assume that this
contribution is spherical and proportional to −J(r,ω). The contribution fsup,1(r,ω) is
a more complex interfacial correction to the spherical drag force, which we determined
from comparison with simulation data [46]. The last contribution, fsup,2(r,ω), is
generated from a superadiabatic pressure and tends to expand the active liquid phase.
This underlying pressure exactly cancels the swim pressure which originates from the
interfacial polarization and the swim force fswim(ω) = γsω.
The flow balance equation (A.3) alone cannot explain the coexistence densities of

the phase separated state. Therefore, we consider the structural force balance (A.4),
with the primary contributions being the (mutually opposing) structural and adiabatic
forces. The ideal gas force is typically negligibly small in the considered systems when
considering a high Péclet number. The Péclet-number relates the free swim speed
with the rotational diffusion constant, Pe = 3s/σDrot and it can be seen as a measure
of the strength of the particle activity. While the adiabatic force tries to expand the
denser phase to homogenize the system, the structural term compresses the liquid
phase and ultimately stabilizes phase coexistence.
Realizing that all components of the structural force balance are gradient terms

allows to rewrite the right-hand side of equation (A.4) as −∇µ(r), where we can now
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identify the total chemical potential µ(r) using the fact that the negative gradient of
a chemical potential yields a force. Spatial integration of equation (A.4) thus gives

µ(r) = µid(r) + µad(r) + µstruc(r) = const, (A.5)

where the occurring chemical potentials µα(r) are related to the corresponding forces
fα(r) = −∇µα(r) for the three contributions α ∈ {id, ad, struc}. The first term is
the well-known ideal gas chemical potential, µid(r,ω) = kBT ln ρ(r,ω). As this term
is negligibly small in the considered systems we simplify it to µid(r) ≈ kBT ln ρ0(r),
where ρ0(r) denotes the orientationally averaged density distribution or respectively
the zeroth Fourier coefficient of the density. The adiabatic term µad(r) is given via
a corresponding equilibrium relation. For simplicity we approximate this chemical
potential contribution with the expression from the scaled particle theory [76]. The
last contribution is the structural chemical potential for which we constructed an
approximation [46]. Due to symmetry we expect this term to have an even dependence
on the particle velocity, i.e. the velocity factors only occurs via even powers. We
assume for simplicity that the structural contribution is quadratic in the forward
velocity and linear in density, µlocstruc(r) = e1γv

2
f (r)ρ0(r)/2Drotρjam, where e1 is a fit

parameter to adjust the magnitude and ρjam denotes the jamming density which is a
constant that indicates the density at which the system would come to arrest because
of sterical hindrance. The forward speed vf describes the velocity that corresponds the
current projected on the particle orientation. This velocity is high in the gaseous-like
state and low in the denser liquid-like state. Note that we here for simplicity only
specify the local contribution of the structural chemical potential. While the ideal
and the adiabatic contributions (up to the considered order) just contain a local term,
the structural chemical potential also includes a nonlocal interfacial term. For the
phase diagram determined as by the Maxwell construction the bulk values and hence
the local expressions are sufficient. For the interfacial tension also the interfacial
contributions are important, as described in section 5.2.
At this point we have an explicit approximation for the total chemical potential.

From this expression one can determine the total pressure p(r) using a Gibbs-Duhem
like equation,

−∇p(r) = −ρ(r)∇µ(r). (A.6)

This equation results from the fact that the force and the force density are equal up
to a factor ρ(r). Thereby the force is expressed as the negative gradient of a chemical
potential, −∇µ(r) and the force density is considered as the negative gradient of a
pressure, −∇P (r). We known that the pressure balance (4.19) exists and that it is
valid for MIPS as it is a consequence of the Noether and polarization sum rules, see
section 4.3.

With the explicit expressions of the total chemical potential and the total pressure
one can use the usual coexistence conditions

µ(ρg) = µ(ρl), (A.7)
p(ρg) = p(ρl). (A.8)

These conditions state that the chemical potential has the same value in the gaseous
and in the liquid bulk phase and the same applies to the total pressure. If one would
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Figure A.1: Phase diagram of two dimensional active Brownian particles in dependence of
the Péclet-number Pe which measures the particle activity. The orange shaded area marks
the region of phase coexistence in an active gas and an active liquid and is bounded by the
theoretical results for the binodal. The corresponding simulation data from [44] is indicated
with orange squares. The spinodal is given by the dashed line (theory) and the blue circles
(simulations, [169]). The orientational averaged density ρ̄ = 2πρ0 and σ denoted a length
scale resulting form the Weeks-Chandler-Anderson interaction potential. It is used to make
expressions dimensionless. The figure was used within [93] and was taken from [46], c©American
Physical Society (2011). All rights reserved.

consider the parametric plot of µ(p) in dependence of the density, then phase separation
occurs when the graph intersects itself and the intersection determines the coexistence
densities ρg and ρl. This mechanism is the Maxwell construction as is well-known
from equilibrium. However, it turns out that in other approaches the transfer is not
straightforward as there the application to simulation data yields unsatisfying results,
consider e.g. reference [44, 45]. The deviation was corrected by Solon et al. [45] by
introducing an additional term that measures the violation of the Maxwell equal area
construction in their treatment.
In our approach solving equations (A.7), (A.8) for ρg and ρl determines the coex-

istence densities, which are shown as a function of the Péclet-number Pe and the
orientational averaged density in the phase diagram shown in figure A.1. For high
enough Péclet numbers the system phase separates into an active gas and an active
liquid. The theoretical results (black line) are in good quantitative agreement with
simulation data (orange squares) [44]. Note that the theory captures the feature
of quite high active gas densities as compared to the gas densities in equilibrium
liquid-vapour phase separations.

The dashed line in figure A.1 represents the theoretical prediction for the spinodal,
which is defined by densities that satisfy the condition ∂µ(ρ)/∂ρ = 0. The data for the
spinodal is compared to simulation results from Stenhammar et al. [169]. The white
circle in Fig. A.1 indicates the critical point and thus the onset of phase coexistence.
This successful bulk theory forms the basis of the interfacial treatment described in
section 5.2 and published in [SH7].
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