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1 Introduction 
 
This deliverable describes the work done and results achieved in WP 4 of the CATNETS 
project- In detail, these tasks are finished in year 3 of the work package: 
 

� T 4.1 Metrics specification and implementation, prototype and simulator (Month 
7-30) 

� T 4.2 Evaluation of implemented market mechanisms (Month 13-30) 
� T 4.3 Prototype evaluation (Month 19-30) 
� T 4.4 Performance analysis, comparison, evaluation (Month 25-30) 
� T 4.5 Further research on properties of Catallaxy applied to computer networks 

(Month 19-30) 
  

The deliverable reports the performance assessment of the Catallactic approach. It 
depends on the work done and results achieved in the other workpackages, particularly 
WP2, the simulator and scenario generator development, and WP3, the prototype 
development. 
 
Table 1 summarizes the work of WP4 over the three years of the project. The third year 
targeted on the evaluation of the Catallaxy in two ways: by assessing the developed 
prototype, and by evaluating the performance of the Catallaxy in several simulation 
scenarios like comparison to the implemented centralized approach. By the end of the 
first year, the metrics framework was presented in terms of a metrics pyramid. In the 
second year, an implementation of a performance measuring framework was achieved. 
 

CATNETS PERFORMANCE EVALUATION 
year 3 Evaluation of the Catallactic mechanism by assessment 

of the prototype and simulations.  
year 1 & 
year 2 

Design of metrics pyramid.  
Implementation of performance measuring components 
in prototype and simulator, initial tests of performance 
measuring infrastructure.   

Table 1. Evolution of performance evaluation work in CATNETS 

 

1.1 Structure of the document 

The document is divided in four parts: The second chapter recalls the metrics used for 
assessment of the prototype experiments and the simulations. Compared with previous 
deliverable, they are now set into the context of how they were used in experimets. 
Chapter 3 describes the market mechanisms, which were finally implemented in 
prototype and simulator. Parts of our evaluation are based on the results of the 
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comparision of the different market mechanism. Chapter 4 describes our assessment of 
the Catallaxy concerning the feasibility of its implemention in real application layer 
networks. In chapter 5 our general assessment about Catallxy for resource allocation in 
application layer networks is presented. Chapter 6 discusses the results obtained. Chapter 
7 contains our conclusions. 
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2 Metrics in prototype and simulator 
 
This chapter describes the metrics finally applied to assess Catallaxy in experiments with 
the prototype and the simulator. 
 

2.1 Metrics of the prototype 

As results from year two of the project, a performance measuring framework was 
available in order to assess the prototype performance. The measuring framework 
essentially follows this process: 
 

� During the execution of an experiment, data was periodically or in an event-based 
way obtained from the three main layers of the prototype (application, 
middleware, base platform) at each node of the deployed prototype.  

� At each node, components of the middleware collected the data from the different 
layers and wrote it into several local text files.  

� After the experiment, the raw data files were collected from the local nodes and 
moved with the help of scripts (see Annex A) to a global metrics collector.  

� Scripts were also used to process the data, compute metrics and to provide a 
format of the data which could be used for graphical representation. 

  
During the development of the prototype, three kind of economic agents have been 
implemented. The architecture of the prototype allows to derive from a given base agent 
class different economic agents. This requires only few code changes for each of agent 
implemenation. The available agents are: 
 

� Catallactic agents  
� Zero Intelligence Plus (ZIP) agents 
� Contract Net (CNet) agents 

 
Compared to the Catallactic agents, the ZIP agent and CNet agents are simpler regarding 
to their configuration and their messaging protocol, easier to use and earlier available. An 
early version of the ZIP agents includes also real measured resource usage in the price 
calculations. Later versions of the agents work only with a dedicated resource model. In 
that model, the price calculation does not take into account the detailed resource usage. 
 
Each agent type generates for the performance measuring components of the middleware 
several text files. These raw data text files are collected from each node and stored in a 
central repository. For the three agent types (ZIP agents, CNets agents, and the 
Catallactic agents), the following data files (Table 2, Table 3, and Table 4) are obtained 
in the prototype: 
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FILE NAME DESCRIPTION 
Price.txt current price of an agent 

Match.txt contains the price at which an offer is accepted 
((offer+bid)/2) 

Active.txt logs if the CS is in the market or not (after a 
successful match an agent leaves the market and 
returns with the certain probability, for example 1/3) 

Table 2. Output files for the ZIP agents 

 
 

FILE NAME DESCRIPTION 
Price.txt current price of an agent

sellSucces.txt contains the number of succesfull trades 

Table 3. Output files for the CNet agents 

 
 

FILE NAME DESCRIPTION 
negotiation_request.txt 
 

CFP received by the BS 

negotiation_start.txt 
 

Negotiation start events between 2 agents 

negotiation_end.txt 
 

Negotiation end events between 2 agents 

strategy_metric.txt Contains the Catallactic strategy values like current 
market price (see Table 5 for more information) 

Table 4. Output files for the Catallactic agents 

 
In order to allow understanding of the behaviour of the different agents, each agent 
forwarded data to the middleware which wrote it to particular text files. It was not 
straightforward to find common parameters which could be obtained in all agent types in 
the same way. For this reason and also due different time of implementation, there are 
different text files for each agent type. In order to compare, the raw data of each of agent 
type has to be processed with scripts a posteriori and off-line, aiming to extract common 
metrics. 
 
Table 5 illustrates the data written into the strategy_metric.txt file of the Catallactic 
agents. The strategy metric.txt file contains the following fields, which provide details on 
the parameter values used in the agent strategy. 
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PARAMETER DESCRIPTION 
Agent Name of the agent 
Acquisitiveness Value for concession level in %
Price Step Price step size in % 
Price Next Deal range adoption in %
Satisfaction Satisfaction level of the ongoing negotiation in %  
weightMemory Influence of the price history for the current market price estimation in % 
averageProfit Average profit of the agent 
generation Crossover counter 
currentMessageID ID of negotiation 
currentMessagePrice Agreement price of the negotiation. 
currentAverage Estimated market price 
currentLowerLimit Current lower limit of the deal range 
currentUpperLimit Current upper limit of the deal range 

Table 5. Data structure of the agent strategy metrics: the strategy_metric.txt file 

 
From Table 5, it can be observed that the data describing the Catallactic agents contains a 
large number of parameters. Compared to the other two agent implementrations, there is 
more information available than for the ZIP and CNet agents. The goal is to find a set of 
metrics which is available for all three agent implementations. 
 
The allocationRate metric was identified as a metric which could be obtained from the 
data of all the three agent types. It is computed posteriori form the raw data files. The 
allocationRate metric in the ZIP agents is obtained by counting the events in the file 
Match.txt and dividing it by the total number of requests issued till the moment of the 
metric collection. The allocationRate metric in the CNet agents is obtained by counting 
the events in the file sellSuccess.txt and dividing it by the total number of requests issued 
till the moment of the metric collection. In order to calculate the allocation rate metric in 
the Catallactic agents, all complex service negotiation_end events are counted. Also, the 
negotiation_end events of the BSs are taken into account, since both complex services 
and basic services can close a negotiation. 
 
The evaluation of the service market only takes the allocationRate metric into account 
because this metric is available in all middleware agent implementations. However, it 
needs to be noticed, that the Catallactic agent strategy uses a learning mechanism which 
makes these agents to work in another time scale. On the contrary, the fairly simple 
decision making in the ZIP and CNet agents could allow obtaining results in experiments 
with shorter time duration. 
 

2.2 Metrics implemented in the simulator 

All metrics - as reported in D4.2 [Del06b] - have been implemented in the simulator. 
Deliverable D2.3 [Del07a] describes the measured values during a simulation run. 
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The simulator metrics set is definined following the D4.1 [Del05b]. The complete list of 
metrics has been refined taking into account two main issues: the simulator development 
process and the current metric setting available for the prototype. The main changes have 
been done on the technical level: since the first year’s project it was established to collect 
12 technical metrics which has been merged together or redefined in the definition. The 
upper levels (economic, aggregated indicators and final indexes) have been kept 
unchanged.  
 
Before dicussing the changes, we recapitualte that the technical metrics are used to 
evaluate two main economic indicators: On DeMand availability (ODM) and 
Infrastructure Costs (IC). Therefore, technical metrics are divided into two subgroups 
corresponding to the economic indicators. The ODM group contains the allocation rate, 
agent satisfaction, discovery time, negotiation time, and service provisioning time. The 
IC group aggregates number of hops (referred to the distance metric), message size and 
number of messages, and service and resource usage. The simulator output log provides a 
larger set of data than the technical metric set requires.  
 
The evaluation process selects the technical metrics defined above and processes them to 
build a metrics database. The technical metrics at the bottom level of the matrics pyramid 
are organized per agent and per transaction. The raw data os collected from different 
simulator output files in the first step. The second step assigns the collected data to the 
individual agent.  
Table 6 shows the available metric set for each agent role. Not all agents have a full set of 
metrics. But, this scheme holds for each experiment preserving the comparabilty of 
results. 
 
Metric CSAgent BSAgent RSAgent 
Allocation Rate X X X 
Satisfaction X X X 
Allocation Time X X  
Provisioning Time X   
Distance X X X 
Latency X X X 
Usage X X  
Messages X X X 

Table 6. Implemented and evluated metric set for each agent role in the simulator 

 
The following aggregation process is applied for each metric listed in Table 6. We 
assume a technical metric mit with i as agent index and t as agent transaction. A 
normalized indicator is computed in a general fashion as  
 

( )itit mfI =    and  YX:f  
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where ]1,0[Y . The benefit of normalized indicators is twofold: the first benefit is to 
get interoperability between the different metrics used to compose upper level indicators. 
This is achieved mainly by normalization to the interval between 0 and 1 which let the 
metrics leave their initial measurement system units. The second benefit is the ordinal 
measurement system. We build an ordinal measurement system in which the goodness of 
system behavior related to the specific metric m is better than the value approach. The 
size of the metric value in absolute numbers is not meaningful any more, and the 
evaluation and interpretation can only be performed in a realtive fashion, i.e. comparing 
the same metric for two or more experiments. 
The function f is specified depending on the individual metric. An exponential function 
(see Dev05b, pag. 31) is applied for allocation time, provisioning time and usage time: 
 

itm�_
it eI =  

 
where � is arbitrarily choosen1. The behavior for the metric is depicted in the Figure 1. 
The problem is to find a function which gives 1 for time value near 0 (this would measure 
optimality of the behavior system, for example a service provisioning time = 0 it is an 
ideal and optimal occurrence for the final social utility index) and 0 for large time 
intervals. 
 

 
Figure 1– Exponential normalization function between 0 and 50000 milliseconds and the resulting value 
range; a beta value of 0.0001 is selected for this plot.

 
The allocation rate is defined as the ratio between the accepted requests and the total 
number of received request: 
                                                 
1 The beta parameter defines the curve shape and is fixed for all time metrics and all experiment runs. In 
particular, the beta value used for the time evaluation is set to 0001.0� =  . 
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requests.agent
accepts.agent

Rate.Allocation =  

 
The satisfaction is alreadly normalized and calculated during simulation. The calculation 
is twofold, depending on the seller or buyer role of the agent: 
 

i

it
it price.max

price
 -1buyer.onsatisfacti =  

i

it
it price.min

price
 -1seller.onsatisfacti =  

where price.max and price.min are the price intervals for the agent2. 
 
The distance metric it is normalized taking into account the number of links between the 
trading agents. This measure addresses the costs in terms of time and space to trade with 
longer distance traders. The normalization is performed with repsect to the worst 
situation for an agent: to trade with an agent at the other side of the network when the 
topology is a row with all agents: 
 

Agents#
links

cetandis it =  

 
Finally the message normalization is done taking the total number of messages3:  
 

message#
messages

usage.network it= . 

 
2.2.2 Economic metric layers 

The normalized, technical metrics are taken as input for the economic metric layer. The 
economic metric layer appregates the metrics using mean and variance of the indicators: 
 

)I(�E iti =  
 

( )2

t
iiti E-m

n
1

� =  

                                                 
2 The price intervals are heterogeneous and can be thougth as demand and supply schedules for the 
resourcce and service market, as they measure the maximum and minimum price level the agent are willing 
to trade. 
3 This is the main change in the technical metric level because the metric message size is no more collected. 
The metric has a constant value for every transaction and agent. This reduces the formula in deliverable 
D4.2, page 34 to the above one. 
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where E and � are the mean and variance for each agent, respectively. This layer 
computes the mean values of the metrics for each agent during the simulation run and its 
variability. The mean and variance indicators are incorporated in the aggregated indexes 
definded at top of the metric pyramid. 
The aggregated economic layer is defined by two indexes: On DeMand availabilty 
(ODM) and Infrastructure Costs (IC). Both contain information about the ability of the 
system to provide the service to a user of the CATNETS allocation approaches and the 
costs needed to provide them at a high abstraction level.  
Renaming the variable as ODM-1X = and ICY = , and recalling the fact that X and Y 
are random variable, the final social utility index is defined as a function of ODM, IC and 
their variances4.  
In this context, it is needed to evaluate the mean and variance values of agent metrics. 
They are derived from these formulas:  
 

=
i

ij En
1�  

=
i

ij �n
1�     

metrics,...#1j = . 
 

Finally the ODM and IC are obtained by computing the mean and variances: 
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4

1
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7

5
jy �3

1�   (IC) 
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The final social utility index is  
 

2
z

2
u

2
y

2
x ��������L +++=   (Final). 

 
In brackets behind the formulas, the short names of the values are printed as they are used 
in the figures of the evaluation section of this deliverable. The alpha and beta weights are 
set to 0.5 for all evaluations of the allocation approaches. This assumes equal importance 
of both composite indexes and enables a better comparison of the different scenarios. If 

                                                 
4 See [Del05b] for details. 
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one or the other index should be more or less emphasized, a policy maker for a concrete 
application layer network can adjust the final evaluation function. 
 

2.3 Performance evaluation process in the prototype and 
the simulator 

 
The performance evaluation process was reported in D4.2 [Del06b]. In year 3, the work 
continued with adapting and adjusting to practical issues occurring during experiments 
and observed in the evaluation tasks.  
 
Recalling the main steps, the performance evaluation process of the prototype is made in 
the following way: The vxarg script is used to obtain in parallel the data from the 
different nodes. Once collected the data, other scripts are used to extract the needed data 
from the data files. Aggregated values can be computed by Matlab. Graphics are obtained 
with Matlab and/or GNUPlot. A more detailed description of the particular design of the 
performance measuring framework on the middleware level of the prototype is described 
in [FCC2007]. The evaluation process in the context of the simulation environment is 
presented in deliverable D2.3. [Del07a]. 
 
This section presents the main function behavior of the scripts for the analysis of 
decentralized and centralized behavior in the simulator. The scripts are divided in two 
packages Catnets_decentral and Catnets_central, which contain the scripts for the 
scenario evaluation. Both script packages are available on the CATNETS website for 
doenload. The main behavior scheme could be depicted as in Figure 2: 
 
 
 
 
 
 
 
 
 

Figure 2. Main behaviour of scipts

 
 
The raw simulator output data is mapped to a structured format, the agent database, by 
the agent analysis script. Data stored in the agent data base is selected by the agent 
evaluation script to produce the final index and plot the graphs for data analysis and 
comparison. In detail, the packages are organized as shown in Table 7. 
 
 
 

AGENT  
 
DATABASE 

RAW 
 

DATA 

OUTPUT  
 

DATA 

Agentanalysis Agent_eval 
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Catnets_decentral Catnets_central Behavior 

import_decentral Import_central 
The scripts import the data from txt files and 
save the metrics in a cell matrix *_mat. Each 
row contains a dataset of an experiment. 

Agentanalysis2 Agentanalysis_c

The scripts select the agents which have 
traded in the experiment. For each agent, the 
scripts collect the defined set of metrics and 
store them in a database like schema called 
structure. 

Agent_eval Agent_eval_c 

These scripts evaluate the upper layer metrics 
and compute the final social utility index L. 
Plots are automatically generated which 
enable the graphically comparison of several 
simulation runs. 

Catnetsplot Catnetsplot 
Using the database structure of the analysis 
scripts, the catnets plot scripts produce metric 
plots at agent population level. 

Table 7. Scripts package organization 

 
At the end of the evaluation process, there is the final_comparison package available 
which performs a grahical comparison of the simulations runs between the centralized 
and decentralized allocation approaches and between several simulation runs of the same 
scenario. 
 
The main scripts are Agentanalysis2, Agentanalysis_c and agent_eval, agent_eval_c. The 
agent analysis scripts build the following database structure where the evaluation script 
can be applied to. 
 
The root element of the structure is test.T1<experiment_id>. Experiment id is the folder, 
which contains the output files of the simulation run. For example, the root element of the 
structure for experiment id 184664821646 is test.T1184664821646. The fields of the data 
structure are organized by the agent id. Agent ids of the simulation follow this format:  
 
<agent role> <consecutive agent number for this node> Site 
<consecutive node number> 
 
An example structure has this format in MATLAB: 
 
CSA0Site3: [1x1 struct] 
CSA3Site15: [1x1 struct] 
BSA0Site9: [1x1 struct] 
BSA0Site6: [1x1 struct] 
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BSA1Site9: [1x1 struct] 
RA1Site29: [1x1 struct] 
RA0Site24: [1x1 struct] 
RA0Site15: [1x1 struct] … 
 
The structure test contains one experiment called T1184664821646. The experiment 
contains a list of agents. Each agent has its metrics list, which can be accessed using the 
“.” operator in MATLAB.  
 
For example, this operation selects agent CSA1Site8 in the given experiment: 
test.T1184664821646.CSA1Site8. This results in the metrics list for agent CSA1Site8: 
 
Allocation_rate: 0.7579 
Satisfaction: [95x1 double] 
Allocation_Time: [1x95 double] 
Provisioning_Time: [95x1 double] 
Distance: [80x1 double] 
Latency: [80x1 double] 
Usage: [1x80 double] 
Messages: 1 
 
Further details on the datastructure computation and the source code of the evaluation 
scripts are moved to the Annex B and Annex C. The whole script packages are available 
on the CATNETS web site. 
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3 Evaluation of the implemented market mechanisms 
 

3.1 Market mechanism implemented in the simulator 

 
The market mechanisms implemented in the simulator have been the decentralized 
Catallactic market mechanism and the centralized approach based on auctions. A 
detailled description can be found in deliverbale D2.2 [Del06a]. 
 

3.1.1 Centralized market 
 
In the simulator, a market for service and resources has been implemented for simulation 
of the centralized approach. A brief description about practical issues is given here. 
 
Service Market:  
 
For the service market, we implemented a double auction institution [Fri91]. Such 
auctions are organized by means of order books, each for a set of homogeneous goods. 
An order book is responsible for storing non-executed orders of the agents. For instance, 
in the service market there will be n different order books, each for one of the n different 
services. Buyers and sellers submit their bids in a sealed envelope to the auctioneer. The 
auctioneer aggregates the bids to form supply and demand curves. Once these curves are 
aggregated, they are used to set a specific price for trading – the price at which supply 
equals demand. Double auctions can be either cleared continuously (Continuous Double 
Auction) or periodically (Periodic Double Auction, Call Market): A Continuous Double 
Auction (CDA) is a double auction where buyers and sellers simultaneously and 
asynchronously announce bids and offers. Whenever a new order enters the market, the 
auctioneer tries to clear the market immediately. A Call Market is a double auction with 
periodic uniform clearing, e.g. the auctioneer clears the market every five minutes. All 
orders in a period are collected in an order book and will be cleared periodically. In the 
implemented component, both clearing can be selected by means of an external 
parameter. 
 
In the CATNETS simulator, the service market auctioneer is represented as an agent. 
This auctioneer gets instantiated by the simulator during its initialization and can be 
contacted by every other agent. Complex service agents and basic service agents 
communicate with the auctioneer by means of messages, i.e. they can submit their bids in 
form of messages. Furthermore, they can receive further information from the auctioneer 
agent such as the current market price. In case the auctioneer cleared the market – i.e., it 
computed an outcome and prices – agents get informed whether or not they are part of the 
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allocation. A detailed description of the integration can be found in Deliverable 2.2 
[Del06a]. 
 
 
Resource Market: 
 
In the resource market, participants are the basic services as resource consumers (buyers) 
and resource services (sellers) offering computational services having specific capacities, 
e.g. processing power. The same resources (e.g. CPUs) can differ in their quality 
attributes, e.g. a hard disk can have 30GB or 200GB of space. An adequate market 
mechanism for the resource market has to support simultaneous trading of multiple 
buyers and sellers, as well as an immediate resource allocation. Furthermore, the 
mechanism has to support bundle orders – i.e. all-or-nothing orders on multiple resources 
– as basic services usually demand a combination of computer resources. For comprising 
the different capacities of the resources (i.e. resources can differ in their quality), the 
mechanism has to support bids on multi-attribute resources.  
 
Reviewing the requirements and surveying the literature, no classical auction mechanism 
is directly applicable to the resource market. Instead, a multi-attribute combinatorial 
exchange (MACE) is applied that satisfies the described requirements [Sch07]. 
 
MACE allows multiple buyers and sellers simultaneously the submission of bids on 
heterogonous services expressing substitutabilities (realized by XOR bids) and 
complementarities (realized by bundle bids). Furthermore, the mechanism is capable of 
handling cardinal attributes as well as an immediate execution of given orders as the 
clearing can be done continuously. For instance, a resource consumer can bid on a bundle 
consisting of a computation service and a storage service. The computing service should 
have two processors where each processor should have at least 700MHz. Furthermore, 
the storage service should have 200MB of free space. After the participants submitted 
their bids to the auctioneer, the allocation (winner determination) and the corresponding 
prices are determined. 
 
The resource market is integrated similarly into the CATNETS simulator as the service 
market. The auctioneer is represented as an agent and has access to the market 
implementation. A detailed description of the integration can be found in Deliverable 2.2 
[Del06a]. 

3.1.2 Decentralized market  
 
This section describes an alternative, decentralized approach. The bargaining mechanism 
introduced here, implements the selection decision in the requesting client itself. Related 
realizations of decentral approaches are found in P2P Networks, where Gnutella [AH00] 
is a typical example. An optimization of network performance is out of the scope of the 
clients behavior; in contrast, the selfish conduct of each peer leads to performance and 
congestion problems in the P2P network, which are principally hard to solve [AH00]. 
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Gnutella uses a flooding algorithm for service discovery. The catallactic approach also 
uses flooding for decentral service and resource discovery.  
 
In decentral matchmaking models, agents communicate directly with each other, decide 
on their own, and do not take the system state into account. In the Edgeworth process 
[Var94] economic subjects trade bilaterally with each other only if their utility is 
supposed to increase after the barter. In that case, the sum of all utilities increases after 
each successful barter; the final state is Pareto-optimal and has maximum system utility. 
A theoretical fundament for how dynamic market processes, heterogeneous agents and 
choice under incomplete information work together can be found in Neo-Austrian 
Economics, in particular in Friedrich August von Hayek’s Catallaxy concept [HBK+89]. 
Catallaxy describes a state of spontaneous order, which comes into existence by the 
community members communicating (bartering) with each other and thus achieving a 
community goal that no single user has planned for. The implementation of Catallaxy 
uses efforts from both agent technology and economics, notably agent-based 
computational economics [Tes97]. 
 
An iterative bilateral negotiation protocol, similar to a contract-net, is used since no 
complete information is available [ST98]. Both agents approximate to the trade-off point 
in iterative steps exchanging offers and counter-offers. This process is described as 
monotonic concession protocol [RZ94]. If an agent receives an offer or counter-offer, it 
decides to either make a concession or send the same price as in the last negotiation until 
the negotiation ends with an accept or a reject. After the negotiation, the autonomous 
agents adapt their negotiation strategies using a feedback learning algorithm. The 
learning concept used in this simulation is derived from so-called gossip learning. This 
means that the agents learn from received information about other transactions in the 
market. This information may not be accurate or complete, but serves as an indication 
about the gross direction of the market. In our implementation, this gossip information is 
created and broadcast by a successful agent, in analogy to issuing an adhoc information 
in stock market periodicals. In economic simulations lots of research efforts on 
evolutionary algorithms can be found. We selected the STDEA (Smith Taylor Decentral 
Evolutionary Algorithm) [ST98]. The STDEA is a decentral evolutionary algorithm, 
which has no global evaluation metric (fitness value), used in genetic algorithms to 
separate the under performing participants [Gol93]. A fundamental quality of the 
mechanism is the decentral communication and fitness evaluation, using local available 
data. Every agent sends a plumage object after a successful transaction, advertising its 
average income (fitness) and its genes (genotype) to all agents of the population after an 
evaluation phase, i.e. after it has carried out a certain number of negotiations with this 
genotype. If an agent receives a plumage object from other agents, it decides using a 
blindness probability, whether the plumage objects is evaluated, avoiding premature 
unification of the genotype. 
 
Sender and recipient remain anonymous. If a certain maturity threshold of received 
plumage is exceeded, the agent replaces his old genotype with the evolved version after 
the completion of evaluation, selection, recombination and mutation phases as in normal 
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genetic algorithms. The mutation rate is also influencing the algorithm, which determines 
the frequency and the extent of explorative behavior of the population. 
 
Ongoing communication by using price signalling leads to constant adaptation of the 
system as a whole and propagates changes in the scarcity of resources throughout the 
system. The resulting patterns are comparable to those witnessed in human market 
negotiation experiments [KR95] [ST99] [Pru81]. 
 

3.2 Evaluation of the market mechanism implemented in 
the simulator 

 

3.2.1 Comparision of the centralized and the decentralized allocation 
approach 

 
The objective of this section is the performance comparison of the centralized and the 
decentralized allocation approach. Therefore, two sets of scenarios where developed. The 
goal of the first set is to evaluate how the centralized and the decentralized approach deal 
with a raising number of agents within a fixed large network topology. The second set of 
scenarios is designed to evaluate how the density of agents within a network topology 
affects the outcomes of both mechanisms. 
In Section 3.3, the different types of services, their relation to each other and the market 
property files are introduced. This service configuration remains the same all simulation 
runs in both scenario sets. In Section 3.4, the scenarios from the first set and the second 
set are described in detail. The description of the different experiments and their 
evaluation is presented in Section 3.5 and Section 3.6. 

3.3 Services, Resource Types and Market Configuration Files 
 
The service types on service and resource markets are the same for both sets of scenarios. 
Three complex service types, four basic service types and three resource service types are 
specified. In detail, these are CS1, CS2, CS3, BS1, BS2, BS3 as well as ARB1, ARB2, 
ARB3. The dependences between the services are depicted in Figure 3. 
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Figure 3. Service types and their dependencies 

For example, a complex service of the type CS1 requires a basic service of the type BS1 
in order to perform its task. Each type of basic service needs some resources to perform 
its tasks. In the specific case of BS1, these are the resources r1 and r2. These resources 
are at most partially provided by the resource service types ARB1 and ARB2. For the 
complete set of configuration files (arb.conf, bs.conf and cs.conf) the reader is referred to 
the example package of the simulator release. This is available for download on the 
CATNETS website. 
 
The same market configuration files are used in all scenarios. These files are 
market_decentral.properties, strategy.conf, and learning.conf for the decentralized case 
and market_central.properties for the centralized case. The reader is referred to 
deliverable D2.3 for a detailed parameter description of those files. In the 
market_decentral.properties file, the starting price ranges for buyers and sellers on the 
service as well as the resource market are specified as depicted in Table 8. 
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Basic service price ranges Resource product price ranges

bs1.seller.minPrice = 55 
bs1.seller.maxPrice = 65 
bs1.buyer.minPrice = 55 
bs1.buyer.maxPrice = 65 
bs1.hard.lower.limit = 25 
bs1.hard.upper.limit = 85 
bs1.resource.itemids = r1r2_0 

r1r2_0.seller.minPrice =50.0 
r1r2_0.seller.maxPrice =60.0 
r1r2_0.buyer.minPrice =50.0 
r1r2_0.buyer.maxPrice =60.0 
r1r2_0.hard.lower.limit =20.0 
r1r2_0.hard.upper.limit =80.0 
r1r2_0.baseunit.r1= 1 
r1r2_0.baseunit.r2= 1 
r1r2_0.resourceids = r1 r2 

bs2.seller.minPrice = 30 
bs2.seller.maxPrice = 35 
bs2.buyer.minPrice = 30 
bs2.buyer.maxPrice = 35 
bs2.hard.lower.limit = 15 
bs2.hard.upper.limit = 45 
bs2.resource.itemids = r4_0 

r1r3_0.seller.minPrice =50.0 
r1r3_0.seller.maxPrice =60.0 
r1r3_0.buyer.minPrice =50.0 
r1r3_0.buyer.maxPrice =60.0 
r1r3_0.hard.lower.limit =20.0 
r1r3_0.hard.upper.limit =80.0 
r1r3_0.baseunit.r1= 1 
r1r3_0.baseunit.r3= 1 
r1r3_0.resourceids = r1 r3 

bs3.seller.minPrice = 55 
bs3.seller.maxPrice = 65 
bs3.buyer.minPrice = 55 
bs3.buyer.maxPrice = 65 
bs3.hard.lower.limit = 25 
bs3.hard.upper.limit = 85 
bs3.resource.itemids = r1r3_0 

r4_0.seller.minPrice =25.0 
r4_0.seller.maxPrice =30.0 
r4_0.buyer.minPrice =25.0 
r4_0.buyer.maxPrice =30.0 
r4_0.hard.lower.limit =10.0 
r4_0.hard.upper.limit =40.0 
r4_0.baseunit.r4= 1 
r4_0.resourceids = r4 

bs4.seller.minPrice = 55 
bs4.seller.maxPrice = 65 
bs4.buyer.minPrice = 55 
bs4.buyer.maxPrice = 65 
bs4.hard.lower.limit = 25 
bs4.hard.upper.limit = 85 
bs4.resource.itemids = r4r5_0 

r4r5_0.seller.minPrice =50.0 
r4r5_0.seller.maxPrice =60.0 
r4r5_0.buyer.minPrice =50.0 
r4r5_0.buyer.maxPrice =60.0 
r4r5_0.hard.lower.limit =20.0 
r4r5_0.hard.upper.limit =80.0 
r4r5_0.baseunit.r4= 1 
r4r5_0.baseunit.r5= 1 
r4r5_0.resourceids = r4 r5 

Table 8: Initial price configuration for the services and products traded on the service and 
resource market 

The left column of the table contains the valuations for the basic service types the service 
market participants start with. The right column lists the valuations for the products on 
the resource market resource market participants start with. The starting price ranges are 
the same for basic service buyers and sellers. The valuations depend on the product 
assigned to the basic service types. If a product consists of two resource types, the price 
ranges almost double (cf. bs4 and bs2). The same configuration model is applied to the 
resource market. This guarantees that the product r4_0 consisting of the resource r4 
cannot be more valuable than the product r4r5_0 consisting of the resources r4 and r5. 



 28

The hard lower and the hard upper price limits are set on the service market 5 units above 
the corresponding limits on the resource market. This models value creation between the 
two markets. A basic service type should have at minimum the same value than the sum 
of resource types it is consuming have. In the learning.conf file, the strategy parameters 
used for the comparisons were defined as depicted in Table 9. 
 
 

Strategy 
maturityThreshold = 5 
courterThreshold = 20 
mutationProbability = 0.05 
ringSize = 10000 
crossOverSelectionModel = 0 
gaussWidth = 0.01 
min = 0.001 
max = 0.999 
genotype.randomize = no 
genotype.acquisitiveness = 0.05 
genotype.satisfaction = 0.99 
genotype.priceStep = 0.5 
genotype.priceNext = 0.05 
genotype.weightMemory = 0.9 

Table 9: Strategy parameter set

 
Agents using that strategy are likely to continue negotiations making high concessions. 
That leads to fast negotiation rounds that are not likely to be aborted. 
 
In the market_central.properties file, the parameters were set as depicted in Table 10. The 
imitate strategy parameter was set to zero. A simpler version of the valuation generator 
was used. The valuations of the agents were drawn form a normal distribution with a 
mean of 10 and a deviation of 1. The lower limit for the values to be generated was set to 
2.85 units. It was verified by the evaluation of simulation runs, that this configuration 
models best the strategy applied by the agents in decentralized case. LPSolve was used as 
solver and the search for disjunctive sets within the orderbooks was switched off. The 
time limit of the solver was set to 1200ms. For a detailed insight into the configuration 
files themselves the reader is referred to the simulator package. 
 
 

Central market configuration 
basic.useServiceMarketPrice = 1 
service.kprice = 0.5 
resource.kprice = 0.5 
resource.numberattributes = 1 
resource.updateunsuccessful = 0 
resource.orderbook.finddisjunctivesets = false 
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resource.orderbook.split = 0 
resource.allocator.model = 3 
resource.allocator.solver = 1 
resource.allocator.timelimit = 1200 
valuation.imitateStrategy = 0 
valuation.smallestvalue = 2.85 
valuation.normal.mean = 10 
valuation.normal.deviation = 1 

Table 10: Parameter valus of the central market configuration file

 

3.4 Scenarios 

The scenarios of the first set are developed to evaluate how the centralized approach and 
the decentralized approach deal with a rising number of agents within a large topology. 
Three scenarios are created. Each of those scenarios is based on the same network 
topology with 500 nodes, which are partially connected. If there is a link between two 
nodes, the transmission rate has a minimum capacity of 1024 Mb/s. The probability of 
node failure is set to zero. The agents are randomly distributed in each scenario. 20% of 
the total agent number are complex service agents, 40% are basic service agents and 40% 
are resource service agents. A complex service agent is able to handle each type of 
complex service request. The basic and resource service agents are dedicated to a specific 
service type. The number of these types was uniformly distributed. The scenarios were 
defined as follows: 
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For a detailed view on the network topology and the precise location of each service 
within the topology, the reader is referred to the example package on the CATNETS 
website. 

The scenarios of the second set are developed to evaluate how the centralized approach 
and the decentralized approach deal with the same number of agents within topologies 
differing in size. Again, three scenarios are created whose topologies have up to 50 
nodes. This network is also partially connected; not all nodes are connected to each other 
like in a fully connected mesh. The links have a constant maximum bandwidth of 1024 
Mb/s. The nodes’ failure probability is zero. The agents are randomly distributed on the 
nodes in each scenario. 20% of the total agents’ number is complex service agents, 40% 
are basic service agents and 40% are resource service agents. A complex service agent is 
able to handle each type of complex service request. The basic service and resource 
service agents are dedicated to a specific service type. The number of agent types is 
uniformly distributed. The scenarios are defined as follows: 
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For a detailed view on each network topology and the precise location of each service 
within the specific topology, the reader is referred to the example package on the 
CATNETS website. 

3.5 Experiments Scenarios 1 

The goal of the experiments is to evaluate how the centralized and the decentralized 
mechanism perform in scenarios with a topology of 500 nodes with up to 300 agents.  
During the third year, we are not able to achieve meaningful simulation results for the 
scenarios of the first set in centralized case. The reason is the not properly working 
advanced Grid time model of the simulator for the centralized allocation approach. 
Instead of using the advanged Grid time model, only the real time model could be used 
for simulations. This extends the duration of simulation runs a lot in comparison to 
decentralized case. 
It was planned to perform simulation runs with at least 10000 requests. But, even a single 
simulation run with only 1000 requests lasts up to one week depending from the number 
of agents placed in the topology. It is not possible to calibrate the simulator parameters in 
a manner that a meaningful comparison could have been achieved. Therefore, there is no 
analysis part in this section. 

3.6 Experiments Scenarios 2 

The experiments presented in this section are all based on the second scenario set. In 
Section 3.6.1, the simulator configuration, which is used for each experiment, is 
described. The results of the experiments are used to gain experience of how the 
centralized as well as the decentralized mechanism perform in different scenarios (3.6.2). 
In Section 3.6.3, the results of centralized and decentralized simulation runs are 
compared to each other. In Section 3.6.4, the influence of the hopcount parameters on the 
decentralized allocation approach is evaluated. Simulation runs with different hopcount 
values are analyzed. 
 

3.6.1 Simulator Configuration 
 
Each experiment is started with 1000 complex service requests. The complex service 
selection probability is the same for all complex service types. Demand is submitted 
randomly to the complex service agents. The time interval between the submissions of 
complex service requests is set to 1000 milliseconds. The queue size, which indicates 
how many requests a complex service agent is able to store, is set to 2000. This ensured 
that no request is lost. The basic service execution time is set to 100 milliseconds. Both 
markets are connected. The budget of a basic service buyer is limited by the earnings it 
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has achieved on the service market. The negotiation timeout is set to 5000 milliseconds 
and the message size to 2 kByte. A small message size avoids transmission problems 
which are out of scope in this scenario. 
 
For the centralized market mechanism, the clearing policy of the service market is set to a 
continuous double auction. The continuous double auction is chosen because the 
simulator is not able to perform simulations in call market mode if the advanced Grid 
time model is switched on. On the resource market, the clearing policy is set to a call 
market. The according clearing interval is set to 400 milliseconds. 
 
The parameters for the decentralized market mechanism are set as follows: The starting 
price ranges are not randomized. The dedicated resource model is used and the proposals 
are selected according to the option: best price – one shot. Co-allocation is switched off. 
The parameter hop count is set to one hop count. 
 

3.6.2 Comparison of centralized and decentralized simulation results 
 
In this section, centralized and decentralized simulation runs are analyzed separately from 
each other. The goal is to evaluate whether the results differ for topologies of varying 
size. 10 simulation runs are performed in the centralized as well as in the decentralized 
mode for each scenario. The overall results of the simulation runs performed in the 
centralized mode are depicted in Figure 4, Figure 5, and Figure 6. 
 
 
 
Figure 4 shows the final index computed for each single simulation run executed in  
 

Figure 4: Final (social utility index) bar diagram centralized comparison of 50 agent and different 
topologies; 10 simulation runs for each scenario are plotted.
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Figure 6: Mean spider centralized comparison

 

Figure 5: ODM and IC for centralized comparison
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For the centralized mode (three scenarios, ten runs each), the values are almost stable 
even if the topology size changes. The final index is computed by the inverse On 
DeMand availability (1-ODM), the Infrastructure Costs (IC) as well as the related 
standard deviations. These values are depicted in Figure 5. They do also not change 
significantly. A high inverse On DeMand availability (1-ODM) and low infrastructure 
costs can be observed. 
 
Figure 6 shows the mean and the standard deviation of the values the IC and the 1-ODM 
are computed of. The runs performed for a specific scenario are plotted in the same color. 
The figures show that the mean values as well as the related standard deviations differ 
slightly for the different scenarios. Only two simulation runs differ significantly in the 
allocation rate. 
 
The small deviations of the overall results imply that the density of agents within a 
topology does not influence the performance of the centralized mechanism. This is an 
obvious observation for a market mechanism where supply and demand are coordinated 
by a central auctioneer. The low IC value can be explained by the short distances between 
the auctioneer and each node that does not deviate (Figure 7). The low value of the 
distance parameter flattens the second influencing value of IC, which is usage. The high 
usage value shows that an agent has almost no idle times – it is biding or delivering a 
service. The high value of the allocation time parameter indicates that agents spend low 
time on allocation of service and resources. The solver computes very fast the allocation. 
This parameter drives the (1-ODM) value. 
 

 
Figure 7: Standard deviation spider centralized comparison
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The overall results of the decentralized mode are depicted in Figure 8,Figure 9,Figure 10 
and Figure 11. 

 
Figure 8: Final bar decentralized comparison

 

 
Figure 9: ODM and IC decentralized comparison
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Figure 10: Mean spider decentralized comparison

 
Figure 11: Standard deviation spider decentralized comparison
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Figure 8 shows the final index computed for each single simulation run executed in the 
decentralized mode (three scenarios, ten runs each). The final values are slightly 
fluctuating between the runs of the same scenario. Furthermore the final values change 
significantly if the topology size changes. The final index is computed by the mean 
invese on demand availability (1-ODM), the mean infrastructure costs (IC) as well as the 
related standard deviations. These values are depicted in Figure 9. They also change 
significantly between different scenarios. In the scenario 50A_10N, a lower inverse on 
demand availability and high infrastructure costs can be observed, whereas this changes 
for the scenarios 50A_30N and 50A_50N. Here, the graph shows a high inverse on 
demand availability (1-ODM) and low infrastructure costs.  
 
The related standard deviation values are constant over all simulation runs. Figure 10 and 
Figure 11 show the mean and standard deviation values the IC and 1-ODM values are 
computed of. The runs which correspond to a specific scenario are plotted in the same 
color. The figures show a significant change in the mean values for the runs of different 
scenarios. The related standard deviation values differ only slightly. Only the values of 
the allocation rate deviate a bit. 
The deviations of the final values between the different scenarios show that the topology 
size influences the outcome of the decentralized approach. Two effects can be observed if 
the topology size is increased. On the one hand the number of negotiation partners 
decreases. This is caused by the parameter hopcount which limits the range of the call for 
proposal message. The decreasing number of negotiation partners results in decreasing IC 
(Figure 9). On the other hand in a bigger network topology the 1-ODM increases. This is 
mainly caused by the decreasing number of negotiation partners. The less the negotiation 
partners are available the higher the probability is that they are busy. This is verified by 
the values IC and 1-ODM are computed of. The bigger the topology the more the 
numbers of sent messages declines. Agein, the reason is that the number of possible 
negotiation partners decreases, whereas the distance value rises a little bit and the usage 
parameter is constant. That causes a declining IC value. The 1-ODM value decrease is 
caused by a lower allocation rate as well as a lower satisfaction. The best final result 
using the decentralized mechanism was achieved in the scenario 50A_30N. In that case, 
IC and 1-ODM are balanced best. 
 

3.6.3 Comparison of centralized to decentralized simulation results 
 
In this section, the centralized and the decentralized mechanism are compared to each 
other by means of the results of 10 simulation runs for each scenario. The goal is to 
evaluate which mechanism performs better in which scenarios. 
Like Figure 4 and Figure 8 from section 3.6.2, they show that the centralized mechanism 
performs better in each scenario. The final social utility index value is almost constant 
around 0.51, whereas the final value for the decentralized mechanism fluctuates between 
0.61 and 0.53. The better performance of the centralized approach is based on the lower 
IC costs compared to the decentralized approach. The On DeMand availability of the 
resources is higher for all runs performed in decentralized case (Figure 5 and Figure 9). 
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But, the mean IC and their standard deviation are higher in decentralized simulation runs. 
The overall results show the centralized mechanism outperformes the decentrlaized 
approach.  
 
Figure 12, Figure 13, Figure 14, and Figure 15 show a comparison of the results of the 
simulation runs for the scenario 50A_30N. This scenario is chosen for the direct 
comparison of the centralized to the decentralized approach because it showed the best 
results for decentralized case. Figure 12 depicts the final values for each simulation run. 
It can be observed that the decentralized case results are slightly worse than the ones of 
centralized case. This is caused by the high mean IC of decentralized case compared to 
the ones of centralized case (Figure 9). Furthermore the better 1-ODM mean value of 
decentralized case is not able to turn the tide because of its high standard deviation. That 
is what Figure 14 and Figure 15 depict in detail. The mean allocation rate, which drives 
odm, is really high for the decentralized case compared to the centralized approach 
(Figure 14). But it is combined with a high standard deviation (Figure 15). That is why 
the decentralized case cannot outperform the decentralized case. The high mean 
allocation rate which drives the ODM value is neutralized by its high standard deviation. 
Moreover the IC values usage and distance turn out better for the centralized case. That 
combination makes the centralized case superior to the decentralized case. 
 

 
Figure 12: Final bar decentralized vs. centralized
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Figure 13: ODM and IC decentralized vs. centralized

 
Figure 14: Spider mean centralized vs. decentralized
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Figure 15: Standard deviation spider decentralized vs. centralized

 

3.6.4 Influence of hopcount on decentralized simulation results 
 
This section analyzes the influence of the hopcount parameter on the decentralized 
simulation results. The parameter hopcount determines the range of call for proposal 
messages. The analysis was done based on the scenario 50A_10N. The hopcount 
parameter is evaluated with a value of zero, two and four. For each parameter setting, 10 
simulation runs are executed. 
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Figure 16: Final bar hopcount comparison

 

 
Figure 17: ODM and IC hopcout comparison
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Figure 18: Mean spider hopcount comparison

 

 
Figure 19: Standard deviation spider hopcount comparison

The Figure 16, Figure 17, Figure 18 and Figure 19 show the results for each hopcount 
setting. Figure 16 shows the final values for each parameter setting. The best values are 
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achieved if hopcount is set to zero. If hopcount is set to two or four the results differ only 
slightly. Figure 17 depicts IC and 1-ODM values for each experiment type. It can be 
observed that a raising hopcount causes higher mean IC costs. On the other hand, the 
mean 1-ODM value and its deviation are decreasing the higher the parameter hopcount 
was set. This can be explained by the graphs depicted in the Figure 18 and Figure 19. 
Figure 18 shows that the parameters influencing the 1-ODM value are raising only 
slightly for a higher hopcount. But the message parameter, which drives IC value, is 
rising by a large value. The standard deviations for the different parameters are almost 
stable (Figure 19). Small deviations can be observed for the parameters distance and 
allocation rate. The experiments show that raising the hopcount parameter lowers the 
final value. The gain that can be achieved by communicating to a bigger set of 
negotiation partners is lower than the costs arising to enable the communication. In a 
topology with high a density of agents, the hopcount parameter has to be set as low as 
possible. 
 

3.6.5 Evaluation of the catallactic approach with failure swichted on 
 
This experiment analyses the influence of message failure on system performance of the 
catallactic strategy. 300 agents were distributed over a topology with 500 nodes. The 
failure rate of each node increases from 0% up to 10%. Two different catallactic strategy 
variations are compared to each other. 
 

Description Configuration 
complex service types and 
their basic service 
configuration 

cs1 bs3  
cs2 bs1 bs2 
cs3 bs1 bs4 

basic services and their 
requested resource bundle 

bs1 bs1 bronze r1 3 r2 3 
bs2 bs2 gold r4 2 
bs3 bs3 bronze r1 25 r3 10 
bs4 bs4 bronze r4 33 r5 25 

resource provider types and 
available resources for each 
type 

arb1 r1 50 r2 30 r3 30 
arb2 r4 50 r5 50 
arb3 r1 50 r3 44 r4 45 

Table 11. Service and resource supply and demand configuration.

 
The configuration of the service market encompasses three complex service types. The 
detailed configuration shows Table 11. Complex service cs1 requests only basic service 
bs3 while complex services cs2 and cs3 need two basic services (bs1 and bs2 for cs2, bs1 
and bs4 for cs3) to fulfill their demand. The user demands are equally distributed to 
available complex services in the system. Every site, which hosts a complex service, is 
able to process cs1, cs2 and cs3 complex service user demands. On the service market, 
sellers offer four basic services, which are all requested by complex services. On the 
resource market, the basic services bs1 – bs4 request a resource bundle from the three 
available resource provider types arb1 – arb3. The resource providers use a dedicated 
resource model, which assigns the whole resource to one single basic service. The not 
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used resources are not available for another basic service. Using this resource model, bs1 
and bs3 compete for resource provider arb1, bs2 and bs4 compete for resource provider 
arb2 and bs2 and bs3 compete for resource provider arb3.  
 
In this scenario, the products on the service market are bs1 – bs4. The prices follow the 
price configuration of Table 12. The left side of the table presents the basic service price 
configuration; the right side of the table shows the corresponding price configuration of 
the resource market. Each basic service requests one specific resource product. The hard 
upper and lower limit prices for basic services on the resource market are 5 units above 
the price level of the corresponding limits of the resource products traded on the resource 
market. This forces resources to be cheaper than the services on the service market in 
general. But, there is still the possibility of a resource product to be more expensive than 
a basic service is able to pay. If a basic service bs1 sells his service for 55 price units and 
the resource bundle is traded with 70 resource units, a basic service bs1 fails in buying 
the resource bundle. For a detailed explanation of the individual properties, the reader is 
referred to deliverable D2.3. 
 
Basic service price configuration Resource price configuration 
bs1.seller.minPrice = 55 
bs1.seller.maxPrice = 65 
bs1.buyer.minPrice = 55 
bs1.buyer.maxPrice = 65 
bs1.hard.lower.limit = 25 
bs1.hard.upper.limit = 85 

bs1.resource.itemids = r1r2_0 

r1r2_0.seller.minPrice =50.0 
r1r2_0.seller.maxPrice =60.0 
r1r2_0.buyer.minPrice =50.0 
r1r2_0.buyer.maxPrice =60.0 
r1r2_0.hard.lower.limit =20.0 
r1r2_0.hard.upper.limit =80.0 
r1r2_0.baseunit.r1= 1 
r1r2_0.baseunit.r2= 1 
r1r2_0.resourceids = r1 r2  

bs2.seller.minPrice = 30 
bs2.seller.maxPrice = 35 
bs2.buyer.minPrice = 30 
bs2.buyer.maxPrice = 35 
bs2.hard.lower.limit = 15 
bs2.hard.upper.limit = 45 

bs2.resource.itemids = r4_0 

r4_0.seller.minPrice =25.0 
r4_0.seller.maxPrice =30.0 
r4_0.buyer.minPrice =25.0 
r4_0.buyer.maxPrice =30.0 
r4_0.hard.lower.limit =10.0 
r4_0.hard.upper.limit =40.0 
r4_0.baseunit.r4= 1 
r4_0.resourceids = r4  

bs3.seller.minPrice = 55 
bs3.seller.maxPrice = 65 
bs3.buyer.minPrice = 55 
bs3.buyer.maxPrice = 65 
bs3.hard.lower.limit = 25 
bs3.hard.upper.limit = 85 

bs3.resource.itemids = r1r3_0 

r1r3_0.seller.minPrice =50.0 
r1r3_0.seller.maxPrice =60.0 
r1r3_0.buyer.minPrice =50.0 
r1r3_0.buyer.maxPrice =60.0 
r1r3_0.hard.lower.limit =20.0 
r1r3_0.hard.upper.limit =80.0 
r1r3_0.baseunit.r1= 1 
r1r3_0.baseunit.r3= 1 
r1r3_0.resourceids = r1 r3  

bs4.seller.minPrice = 55 
bs4.seller.maxPrice = 65 
bs4.buyer.minPrice = 55 
bs4.buyer.maxPrice = 65 
bs4.hard.lower.limit = 25 
bs4.hard.upper.limit = 85 

r4r5_0.seller.minPrice =50.0 
r4r5_0.seller.maxPrice =60.0 
r4r5_0.buyer.minPrice =50.0 
r4r5_0.buyer.maxPrice =60.0 
r4r5_0.hard.lower.limit =20.0 
r4r5_0.hard.upper.limit =80.0 
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bs4.resource.itemids = r4r5_0 
r4r5_0.baseunit.r4= 1 
r4r5_0.baseunit.r5= 1 
r4r5_0.resourceids = r4 r5 

Table 12. Initial price configuration for services and resource bundles.

 
Next to the scenario configuration, the main simulator configuration integrates the 
configuration described above and sets the simulation parameters. A user submits 10000 
complex requests to the simulation scenario. Each complex service type is requested 
equally. The complex service dispatcher randomly selects an inbox queue of complex 
service instance hosted on a Grid site. The delay between each complex service request is 
set to 1000ms. The delay remains constant during the simulation run. The execution time 
of each basic service is 1000ms. A constant execution time disables the effects of service 
execution times on the resource allocation approach. Both markets are connected to each 
other. This means, the agreement price of a basic service seller equals the budget of a 
resource buyer. As already mentioned, the resource providers use a dedicated resource 
model. Co-allocation of resource on the resource market is switched off. A buyer uses a 
fifo policy for selecting a seller to negotiate with. The fastest answering seller is selected. 
The hop count for all broadcast messages is set to 3 hops. A discovery timeout of 500ms 
limits the waiting time for reaching a proposal. If a negotiation partner does not answer at 
all, a negotiation timeout of 2500ms for each market resets the negotiation. The size of 
each message is set to 2 kByte which will lead to low delays on the network. 
 
Strategy 1 Strategy 2 
maturityThreshold = 5 maturityThreshold = 5 
courterThreshold = 20 courterThreshold = 20 
crossoverProbability = 0.20 crossoverProbability = 0.20 
mutationProbability = 0.7 mutationProbability = 0.05 
ringSize = 10000 ringSize = 10000 
crossOverSelectionModel = 0 crossOverSelectionModel = 0 
gaussWidth = 0.1 
min = 0.001 
max = 0.999 

gaussWidth = 0.01 
min = 0.001 
max = 0.999 

genotype.randomize = yes 
genotype.acquisitiveness = [0.4, 0.8] 
genotype.satisfaction = [0.4, 0.8] 
genotype.priceStep = [0.1,0.4] 
genotype.priceNext = [0.1,0.6] 
genotype.weightMemory = [0.3,0.7] 

genotype.randomize = no 
genotype.acquisitiveness = 0.05 
genotype.satisfaction = 0.99 
genotype.priceStep = 0.5 
genotype.priceNext = 0.05 
genotype.weightMemory = 0.9 

Table 13. Two strategy configurations for the failure scenario analysis.

 
Two different learning setups were compared to each other for the defined failure 
scenarios whose configuration lists Table 13. The characteristic of the first strategy is a 
randomized initial behavior and fast adaption to new behavior. A random number is 
drawn between the given interval bounds for each gene of the agent. This assures a 
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diverse trading behavior of the agents. Additionally, a mutation probability of 0.7 forces 
the agent to mutate 70% of the 5 genes in every learning step. A large Gaussian width 
causes adaptations steps up to 10% of the current gene value. Together with the high 
mutation rate, the agents have the possibility to move very fast away from an initial bad 
trading performance.  
 
The strategy 2 does not randomize the initial trading behavior. Every agent uses the given 
genotype as a start behavior. The characteristic of this behavior is a high satisfaction 
value together with a high price step value which leads to only a few negotiations round 
and low cancellation of negotiations. A low acquisitiveness forces the agent to make 
concessions even if the agent doesn’t make profit any more. The genes of the genotype 
are quite stable, only with a probability of 5% a gene is mutated with at maximum 1% of 
the gene’s value (Gaussian width). 
 
Using this simulation and strategy configuration, Table 14 gives an overview of the 
simulation runs. 10 simulations with two strategies and failure settings are examined. The 
following plots print only the experiment id due to amount of space. The table helps to 
map the results to the experiment setting.  
 
Experiment Id Parameter setup 
1189323882133 Strategy 1, 0% failure 
1189326383709 Strategy 1, 1% failure 
1189327402864 Strategy 1, 2% failure 
1189328268368 Strategy 1, 5% failure 
1189330779897 Strategy 1, 10% failure 
1189333572714 Strategy 2, 0% failure 
1189337074555 Strategy 2, 1% failure 
1189344749997 Strategy 2, 2% failure 
1189347224464 Strategy 2, 5% failure 
1189348828710 Strategy 2, 10% failure 

Table 14. Mapping of experiment ids to parameter setup.

 
Figure 20 depicts the overall performance of the catallactic allocation approach. The 
strategy shows less loss from the optiomal allocation performance in both 0% failure 
simulation runs. The final index value is about 0.1 units better in the second strategy than 
in the first strategy. The second strategy shows a better inverse on demand availability (1-
ODM) than the first strategy. But, the infrastructure costs remain almost the same. As 
expected, the introduction of failure to the system increases the non availibility and leads 
to more loss of the system. Additionally, the infrastrubure costs increase. The standard 
deviations of both indexes IC and ODM equal in both strategy settings. 
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Figure 20. Bar graph for 10 simulations runs and different scenario setup. The simulations runs are 
compared with the On Demand Availability (ODM) and Infrastructure Cost (IC) index which are used to 
compute the final loss function (Final). 

 
A more detailled analysis enables the mean and stadard deviation radar plot in Figure 21 
and Figure 22. Seven metric values are aggregated on agent population level and 
normalized between the interval 0 and 1. Each colored line equals an experiment run. The 
experiment with the yellow line (0% failure and strategy 1) shows the the best average 
satisfaction value with low standard deviation. Beside the best allocation time, this 
simulation run has second best allocation rate. A very high number of messages are 
needed to reach this performance. All agents in the system show high usage. This means, 
the agents show low idle times. There are two reasons for low idle times: first the agent 
spends lots of time in negotiations and deliverance of services or the agents are blocked 
until simulation end due to lost unblocking messages. Additionally, the strategy 1 applied 
to this scenario selects trading partners with low distance. The provisioning time is worse 
in failure scenarios. This occurs due to the low number of obersvation in these scenarios. 
All other simulation runs spend more time on service provisioning. 
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Figure 21. Spider plot for 10 simulations runs.

 

 
Figure 22. Spider plot for 10 simulation runs.
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Table 15 lists the number of observations used in the scenario for index computations. 
Strategy 2 with the predefined genotype outperforms strategy 2 with the randomized 
genotype initialization. Increasing the failure rate rapidly decreases the number of 
observation. Only a few of the 10000 requests are successfully completed. The current 
catallactic strategy implementation is very sensitive to message failures. There is also a 
difference between the numbers of agent involved in trades. This number is decreases in 
strategy 1 faster than in strategy 2. 
 

Experiment Id Observation 
1189323882133 BSA_buyer: 43, BSA_seller: 79, RSA: 34, 

CSA: 54 
1194 observations (accepts SM + RM) 

1189326383709 BSA_buyer: 38, BSA_seller: 77, RSA: 27, 
CSA: 52 

356 observations (accepts SM + RM) 
1189327402864 BSA_buyer: 8, BSA_seller: 54, RSA: 8, 

CSA: 40 
78 observations (accepts SM + RM) 

1189328268368 BSA_buyer: 1, BSA_seller: 40, RSA: 1, 
CSA: 28 

51 observations (accepts SM + RM) 
1189330779897 BSA_buyer: 8, BSA_seller: 38, RSA: 8, 

CSA: 31 
46 observations (accepts SM + RM) 

1189333572714 BSA_buyer: 65, BSA_seller: 86, RSA: 53, 
CSA: 54 

14518 observations (accepts SM + RM) 
1189337074555 BSA_buyer: 67, BSA_seller: 90, RSA: 54, 

CSA: 54 
1911 observations (accepts SM + RM) 

1189344749997 BSA_buyer: 64, BSA_seller: 86, RSA: 50, 
CSA: 51 

571 observations (accepts SM + RM) 
1189347224464 BSA_buyer: 55, BSA_seller: 77, RSA: 44, 

CSA: 49 
242 observations (accepts SM + RM) 

1189348828710 BSA_buyer: 53, BSA_seller: 77, RSA: 46, 
CSA: 49 

220 observations (accepts SM + RM) 
Table 15. Observation and involved agents for index computation

 
Summarizing the failure experiments, the catallactic strategy shows a high messaging 
vulnerability in the analyzed scenarios. The reason is the high number of messages which 
have to be transferred until an agreement is closed. The final system loss increases with 
the increasing unavailability of the agents and their services. But, the numbers of 
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observation have to be taken into accounts, which prevent higher loss measures of the 
system. The infrastructure costs also increase with higher failure rates because agents 
wait for the trading partners to answer until a predefined timeout. In case of no failure, 
the standard deviations are higher than in case of message failure. Agents trade to reach 
an agreement with very different success. This is the reason for a high allocation rate 
deviation in the failure free simulation runs. The main reason for the different success is 
the one shot policy of the agents (agents have only one try to reach an agreement) and no 
parallel negotiations supported. 
 

3.6.6 Decentralized approach and the learning algoithm 
 
This experiment analysis the co-evolutionary algorithm used in the catallactic strategy for 
adapting the strategy’s genotype. The genotype, the price estimation and the fitness 
evolvement is measured in a large scale scenario. The automated scenario generator is 
used for generating this scenario. The scenario topology follows the Waxman model of 
Brite with 2000 nodes randomly distributed. Table 16 shows the scenario generator 
configuration. The bandwidth of the links was set to a fixed value. This will almost 
exclude any bandwidth influence on the simulation results. Table 16 gives an overview of 
the CATNETS service and resource market scenario setting for the automated scenario 
generator. Keeping the complexity low, the scenario generator produces a set of three 
resource providers with a resource bundle size of at maximum 3 resource items and a 
maximum quantity of 100 resource units. The set of basic services and complex service is 
also limited to 3 different types. Additionally, the workflow length of a complex service 
is limited to 3 basic services. The topology is assumed to be stable, no failures occur. The 
automated scenario generator places 2000 agents on the topology with 20 % complex 
service and 40 % basic service and resource service using a uniform distribution to map 
the number of agents to service and resource types. The last two configuration entries 
BSTable and ARBTable display the mapping of how many instances of each agent type 
are distributed on the network nodes. 
 
Scenario generator parameter Value 
#Resources Number ResNum = 3 
#Resource Max Quantity ResMaxQuantity = 100 
#Available Resource Bundle 
Number 

ARBNumber = 3 

#Available Resource Bundle Max 
Number 

ARBMaxResNum = 3 

#Basic Service Number BSNumber = 3
#Complex Service Number CSNumber = 3 
#Complex Service Max 
Cardinality 

CSMaxCardinality = 3 

#Node Min Failure probability FailProbMin = 0.0 
#Node Max Failure probability FailProbMax = 0.0 
#Quality Number QualityNumber = 4 
#Quality Level Quality0 = platinum, Quality1 = gold, 

Quality2 = silver, Quality3 = bronze 
#0 Centralized; 1 Catallactic allocationMechanism = 1 
#Agents Number agentsNum = 2000 
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#CS Schedule 0= All, 1= random 
set 

csSchedule = 0 

#Agent share in percent csaPercentage = 20, bsaPercentage = 40, 
raPercentage = 40 

#Probability distribution (0 = 
uniform) 

csaDistrProb = 0, bsaDistrProb = 0, 
raDistrProb = 0 

#BSTable bs1 = 33.0, bs2 = 33.0, bs3 = 33.0 
#ARBTable arb1 = 33.0, arb2 = 33.0, arb3 = 33.0 

Table 16. Scenario generator parameters for generating complex service, basic service and available 
resource bundle types and their distribution over the network topology using probability distributions.

 
The automated scenario generator creates the scenario presented in Table 17. There is a 
supply of three different basic service types and a demand of three different basic service 
sequences of the complex services. The resource market offers three resource bundles 
which are asked by basic services. 
 
Description Configuration 
complex service types and their basic 
service configuration 

cs1 bs2  
cs2 bs1 bs3 bs2  
cs3 bs2 bs3 

basic services and their requested resource 
bundle 

bs1 bs1 bronze r1 20 r3 3 
bs2 bs2 bronze r2 52 
bs3 bs3 bronze r2 6 r3 1 

resource provider types and available 
resources for each type 

arb1 r1 21 r3 10 
arb2 r2 25 r3 1 
arb3 r2 59 

Table 17. Generated scenario configuration with different workflow lengths for complex services and three 
different complex service, basic service and resource types.

 
The price configuration is similar to the price configuration described in the last section. 
The prices help to explain the following analysis of the price estimation of the agents 
presented later in this section. The hard upper and lower limit price help to identify the 
price ranges of the traded products. 
 
Basic service price configuration Resource price configuration 
bs1.seller.minPrice = 55 
bs1.seller.maxPrice = 65 
bs1.buyer.minPrice = 55 
bs1.buyer.maxPrice = 65 
bs1.hard.lower.limit = 25 
bs1.hard.upper.limit = 85 

bs1.resource.itemids = r1r3 

r1r3.seller.minPrice =50.0 
r1r3.seller.maxPrice =60.0 
r1r3.buyer.minPrice =50.0 
r1r3.buyer.maxPrice =60.0 
r1r3.hard.lower.limit =20.0 
r1r3.hard.upper.limit =80.0 
r1r3.baseunit.r1= 20 
r1r3.baseunit.r3= 3 
r1r3.resourceids = r1 r3  

bs2.seller.minPrice = 30 
bs2.seller.maxPrice = 35 
bs2.buyer.minPrice = 30 
bs2.buyer.maxPrice = 35 
bs2.hard.lower.limit = 15 
bs2.hard.upper.limit = 45 

r2.seller.minPrice =25.0 
r2.seller.maxPrice =35.0 
r2.buyer.minPrice =25.0 
r2.buyer.maxPrice =35.0 
r2.hard.lower.limit =20.0 
r2.hard.upper.limit =40.0 



 51

bs2.resource.itemids = r2 
r2.baseunit.r2= 52 
r2.resourceids = r2  

bs3.seller.minPrice = 55 
bs3.seller.maxPrice = 65 
bs3.buyer.minPrice = 55 
bs3.buyer.maxPrice = 65 
bs3.hard.lower.limit = 25 
bs3.hard.upper.limit = 85 

bs3.resource.itemids = r2r3 

r2r3.seller.minPrice =50.0 
r2r3.seller.maxPrice =60.0 
r2r3.buyer.minPrice =50.0 
r2r3.buyer.maxPrice =60.0 
r2r3.hard.lower.limit =20.0 
r2r3.hard.upper.limit =80.0 
r2r3.baseunit.r2= 6 
r2r3.baseunit.r3= 1 
r2r3.resourceids = r2 r3 

Table 18. Price configuration for basic services and resource bundles. 

 
The simulation run is started with 100000 complex service requests with a delay of 1000 
ms between. The maximum queue size is increased to 20000 to ensure there is enough 
capacity to store all requests, if the system is not able to fulfill the current request faster 
than the incoming requests. The execution time of basic services is set to 1000 
milliseconds. Both, the service and the resource market are connected. The service 
seller’s income is his budget on the resource market. The resource providers use a 
didcated resource model. The buyers select the first incoming proposal for the succeeding 
bilateral negotiation. Co-allocation is switched off. The call-for-proposal and the plumage 
broadcast is limited to 3 hops. The discovery timeout is set to 500 ms. The simulation run 
uses the advanced Grid time model. 
 
 

Strategy 1 
maturityThreshold = 5 
courterThreshold = 20 
crossoverProbability = 0.20 
mutationProbability = 0.7 
ringSize = 10000 
crossOverSelectionModel = 0 
gaussWidth = 0.01 
min = 0.001 
max = 0.999 
genotype.randomize = yes 
genotype.acquisitiveness = [0.4, 0.8] 
genotype.satisfaction = [0.4, 0.8] 
genotype.priceStep = [0.1,0.4] 
genotype.priceNext = [0.1,0.6] 
genotype.weightMemory = [0.3,0.7] 

Table 19. Strategy configuration for the simulated scenario; the initial genotype is randomized between the 
given interval limits. 
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Table 19 presents the selected starting configuration of the strategy and the learning 
algorithm. The initial genotype of each agent is randomized at the beginning between the 
given interval limits. A high mutation probability and a low Gaussian width enable the 
agent to adapt their genes often and in small steps. They wait for 5 generations until they 
broadcast their plumage and perform a crossover when they have received 20 plumages. 
 
A pair of agents for each agent role was chosen for analysis. Figure 23 and Figure 24 
show two pairs of complex service agents. The left plot displays the genotype evolution, 
the plot in the middle the price estimations and right plot the fitness evolution for 200 and 
500 observations. An observation is a successful trade between a complex service agent 
and a basic service agent. In Figure 23, both agents are very successful in their trades. 
Their fitness increases from 0 at the beginning to a peak around 10 to a quite stable 
fitness value. One reason for this high fitness value is a low price step. Together with a 
decreasing satisfaction value, the agents follow a strategy of fast agreement with only low 
price concessions. The agent with a higher price concession rate (acquisitiveness) is able 
to make more profit. A weighting memory value of 0.6 seems a good parameter taking 
old agreement prices into account for new price range estimations.  
 
The price estimation plot shows for both agents of Figure 23 basic service agent trades at 
different estimated market price level. Both trade at least two different basic services. 
The market price estimation is more stable for the upper agent than the lower one. The 
means, the upper complex service agent gets enough offers from basic service. He hasn’t 
to increase his price estimations to a possible scarceness of basic services. The lower 
agent has to increase his price estimations to be able to contract basic services. 
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Figure 23. A pair of successful complex service agents in the simulated scenario; the left graph displays 
the genotype evolution, the plot in the middle the price estimations and right plot the fitness evolution for 
200 observations.

 
In Figure 24, a second set of complex services is selected. This set isn’t as successful as 
the first set in estimating the market price but engages in more trades than the first set. 
The set uses a higher satisfaction value than the first set, which leads to more negotiation 
round and a higher possibility of reaching an agreement. The upper agent is more 
successful in making some large concession steps than the lower agent. A low 
acquisitiveness value between 0 and 5 % still enables the agent to reach agreements but 
with only with negative fitness. 
 
Summarizing up, successful strategies of service sellers follow a strategy with a low 
concession rate together with a high concession step or a high concession rate with lower 
concession steps. The higher the satisfaction value, the more successful trades are 
possible. 
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Figure 24. A pair of unsuccessful complex service agents in simulated scenario; the left graph displays the 
genotype evolution, the plot in the middle the price estimations and right plot the fitness evolution for 500 
observations.

 
The basic services have two roles on in the CATNETS scenario: a seller role on the 
service market and a buyer role on the resource market. Figure 25 presents a set of 
selected basic service sellers for 300 observations. Both agents show a positive fitness, 
which indicates a successful strategy. They follow the strategy of many negotiation 
rounds together with a low concession rate and high concession steps. But, their market 
price estimation differs a lot. The upper basic service seller is at the beginning not 
successful. He has to lower his price estimations. After a while, he gets more and more 
selected and increases the prices for his service. The lower agent is successfully at the 
beginning and has to lower his prices step by step because he did not succeed in 
negotiations. As a result of this, his fitness decreases over time. 
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Figure 25. A pair of basic service sellers in the simulation scenario; the left graph displays the genotype 
evolution, the plot in the middle the price estimations and right plot the fitness evolution for 300 
observations.

 
Figure 26 and Figure 27 plot a set of basic service buyer agents and resource agents. In 
general, the number of observation decreases on the service market because resource 
negotiations are started only after successful service market agreements. One basic 
service buyer agent with 60 and one agent with 150 observations present Figure 26. Both 
agents depend on the results of the service market seller agents. This agreement price is 
used to adapt the price ranges. Comparing to the price range adaptation before, the upper 
and lower bounds show higher variability. The market price estimations for resource 
products are fairly stable. The lower agent shows a successful strategy, low price steps 
together with a high concession and satisfaction rate. The upper agent is not able to reach 
positive fitness values because he isn’t able to reach his current price estimation due to a 
high concession step. In the current simulation scenario configuration, it is not possible to 
initialize the resource market with a different strategy setup. A faster adaptation of the 
genotype on the resource market could help to improve the fitness results. 
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Figure 26. A pair of basic service buyers; the left graph displays the genotype evolution, the plot in the 
middle the price estimations and right plot the fitness evolution for 150 observations.
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Figure 27. A pair of resource agents; the left graph displays the genotype evolution, the plot in the middle 
the price estimations and right plot the fitness evolution for 50 observations.

 
Finally, Figure 27 depicts two selected resource agents. Both agents show similar results 
as before. Only a few observations are recorded for the resource agents because there is 
no scarceness of resources. From the total number of 2000 agents, 40% are resource 
agent, which are requested by 40% basic service agents. The basic service agents have 
the possibility to choose between several resource agents in between their 3 hop 
broadcast limit. The fitness of both agents reaches a stable point slightly above 0. The 
agent strategy with higher acquisitiveness and a higher price step is more successful 
according the successful trades. The upper agent is able to trade several resource products 
because he has several distinct price intervals whereas the lower agent only offers one 
resource product. This also helps the upper agent to adapt his genotype more often to 
current situations. 
 
 

3.6.7 Influence of bandwidth on the catallactic approach 
 
This experiment analyses the effect of varying network bandwidth on the catallactic 
allocation approach. Four different bandwidth scenarios are compared to each other. In 
each scenario, 200 agents (66 CSA, 67 BSA, and 67 RSA) and a topology with 200 nodes 



 58

are simulated. The agents are distributed on the nodes using a uniform distribution. 
Keeping the scenario simple, there is only one complex service type which request one 
instance of a basic service bs1. A basic service bs1 requests one unit of resource service 
r1. The number of agents equals the number of service and resource instances. Table 20 
shows the scenario configuration. 
 
Description Configuration 
complex service types and their basic 
service configuration 

cs1 bs1 

basic services and their requested resource 
bundle 

bs1 bs1 bronze r1 1 

resource provider types and available 
resources for each type 

arb1 r1 1 

Table 20: Simple scenario configuration with a 1 to 1 to 1 mapping between complex services, basic 
services and resources 

Depending on the service configuration, the price configuration also simplifies. Only 
prices for one basic service and one resource product have to be initialized. The large 
price interval limits and the same initial price interval for buyers and seller (see Table 21) 
will isolate effects of the price configuration on the simulation runs. 
 
Basic service price configuration Resource price configuration 
bs1.seller.minPrice = 100 
bs1.seller.maxPrice = 160 
bs1.buyer.minPrice = 100 
bs1.buyer.maxPrice = 160 
bs1.hard.lower.limit = 80 
bs1.hard.upper.limit = 200 

bs1.resource.itemids = r1 

r1.resourceids = r1 
r1.baseunit.r1 = 1 
r1.seller.minPrice = 100 
r1.seller.maxPrice = 160 
r1.buyer.minPrice = 100 
r1.buyer.maxPrice = 160 
r1.hard.lower.limit = 80 
r1.hard.upper.limit = 200 

Table 21: Price configuration for basic service bs1 and resource bundle r1 

 
The strategy and learning setup are presented in Table 22. The configuration is similar to 
the configurations of the simulation runs in the previous sections. Differences from 
previous strategy setups are the low mutation rate of 0.05 together with a low Gaussian 
width of 0.01. This keeps the change of the initial genotype fairly stable for all agents. 
The initial step size of 0.3 enables fast agreements between the negotiation partners. 
Again, this setup selection intends to isolate the effects of the agent’s trading 
performance from the different bandwidth scenarios. 
 

Strategy 1 
maturityThreshold = 5 
courterThreshold = 20 
crossoverProbability = 0.20 
mutationProbability = 0.05 
ringSize = 10000 
crossOverSelectionModel = 0 
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gaussWidth = 0.01 
min = 0.001 
max = 0.999 
genotype.randomize = no 
genotype.acquisitiveness = 0.05 
genotype.satisfaction = 0.99 
genotype.priceStep = 0.3 
genotype.priceNext = 0.05 
genotype.weightMemory = 0.9 

Table 22: Strategy configuration for the simulated scenario 

During a simulation run, 1000 complex service requests are submitted to the system with 
a delay of 2000 milliseconds. A basic service execution guarantees low input queues 
because the system is able to process the requests fast. Again, both markets are connected 
to each other and a dedicated resource model is used. A buyer selects its proposals using 
the best price selection policy. For all simulation runs, the hop counters for broadcast 
messages are set to 4 hops. The discovery timeout is 500 milliseconds and the negotiation 
timeout 10000 milliseconds. 
 
Table 23 lists the message size and bandwidth parameters. In the first simulation run, it is 
assumed a message size of 0 which is interpreted by the simulator as unlimited 
bandwidth. The messages are transported to the receiver without any latency. The second 
simulation run uses a fixed bandwidth of 100 and a message size of 10 whereas the third 
run uses a uniform distribution to assign a bandwidth between 100 and 1000 to the links 
of the network. Finally, the last experiment uses a fixed bandwidth of 1000 keeping the 
message size the same.  
 
Experiment Id Parameter setup 
1190403910890 message.size = 0; bandwidth = unlimited 
1190404122296 message.size = 10; bandwidth = 100 
1190404999250 message.size = 10; bandwidth = [100, 

1000] uniformly distributed 
1190405643250 message.size = 10; bandwidth = 1000 

Table 23: Mapping of experiment ids to parameter setup
 
For each experiment, 10 simulations runs are performed. One characteristic simulation 
run is selected for final analysis in Figure 28. The best final social utility achieves the 
experiment with unlimited bandwidth and no message delay. The instantaneous message 
delivery leads to high infrastructure costs in terms of number of messages and increased 
waiting times due to the blocking of agents during the discovery phase. But, the low 
distance between the trading partners and high agent satisfaction (see Figure 29) lead to 
high on demand availability. The 100 bandwidth scenario shows about 25 % worse 
system performance. Both infrastructure costs and inverse on demand availability 
increase. Additionally, a higher standard deviation of the on demand availability was 
measured. The high delay on the network results in few successful allocations as 
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displayed in Table 24. Compared to the first scenario, the second scenario achieves only 
1.2% of the successful trades. 
 

Experiment Id Observation 
1190403910890 CSA: 66, BSA_seller: 40, BSA_buyer: 40, 

RSA: 23 
1951 observations 

1190404122296 CSA: 14, BSA_seller: 16, BSA_buyer: 4, 
RSA: 4 

24 observations 
1190404999250 CSA: 66, BSA_seller: 51, BSA_buyer: 51, 

RSA: 58 
1871 observations 

1190405643250 CSA: 66, BSA_seller: 38, BSA_buyer: 37, 
RSA: 25 

1109 observations 
Table 24: Observation and involved agents for index computation

 
Surprisingly, the scenario with varying delay on the network links almost reaches the 
performance of the scenario with unlimited network bandwidth whereas the system 
performance decreases again in the scenario with constant high available bandwidth. The 
reason for this behavior is blocking policy during service and resource discovery. In 
scenario 3, the varying network bandwidth controls the number of proposals for the 
requesting agent. A high number of messages on a link come along with high message 
latency. This high latency delays broadcast messages to be delivered on network link 
which doesn’t have enough capacity. The services are available to other requestors which 
have a better connection with lower latency to a given node.  
 

 
Figure 28: Final bar graph of 4 different bandwidth configurations 
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The influence of the blocking policy during discovery phase influences again the results 
of scenario 4. The same bandwidth on all nodes leads similar infrastructure costs like in 
the first scenario. The mean radar diagram of Figure 29 evidences better allocation times, 
allocation rate and provisioning time. But, higher deviations as shown in Figure 30 
compensate these positive effects. 

 
Figure 29: Radar plot of normalized mean values for seven selected metrics; four simulation runs 
with different bandwidth configurations are compared. 

 

 
Figure 30: Radar plot of normalized standard deviation values for seven selected metrics; four 
simulation runs with different bandwidth configurations are compared. 
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In scenario 4, the number of observations is 43 % lower than in the best scenario. There 
is no clear evidence for this low number of observations yet because a similar number of 
unique agents trade. After a competition on the service market, the basic services 
compete for resources on the resource market. This could lead to a negotiation timeout on 
the resource market because the discovery timeouts are extended in case of no proposals 
in the inbox queue.  
 
A clearer picture shows scenario 3. The varying delay on the network leads to a higher 
number of agents involved in trades with complex services and basic services. This 
scenario even outperforms the scenario 1 with unlimited bandwidth. More than the 
double numbers of resource agents are involved in trades. Therefore, scenario 3 shows 
the most distributed behavior. As expected, only a few agents are involved in the trades 
of scenario 2. There is a large gap between the two roles of the basic service. The limited 
bandwidth the basic service seller is able to sell his services, but the basic service buyer is 
not successful in making agreements on the resource market. Only one fourth of the 
successful service market trades reach an agreement on the resource market. 
 
Summarizing up, varying bandwidth helps the catallactic strategy to achieve good results 
because it reduces the competition on the service and resource markets. Higher 
competition leads to lower performance on the investigated scenario.  
 
 

3.6.8 Evaluation of the decentralized approach with different agent 
distributions 

 
The following experiments evaluate the decentralized allocation approach for a set of 
agent distributions. Different distributions of complex services, basic services and 
resources services are evaluated concerning their influence on the final social utility 
index. The topology for all agent distributions has 400 nodes. The bandwidth of the 
network varies between 100 and 500. The message size was set to 2. This reduces the 
influence of the network to a minimum. The service and resource market configuration 
equals the configuration used the previous sections. Therefore, the configuration is not 
explained here again. The complex service dispatcher submits 10000 complex services 
requests in each simulation run. A total number of 300 agents are divided into 100 
complex service instances, 100 basic service instances and 100 resource instances. The 
build-in distributions of the automated scenario generator are used to assign the agent 
instances to network nodes. As described in Deliverable D2.3, the automated scenario 
generator supports the following distributions:  
 

� Uniform. The site for the agent is chosen using uniform probability distribution. 

� Links (dir). The site for the agent is chosen with probability proportional to the 
number of site links. The more the site is connected, the greater the probability to 
hosts agents. 
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� Links (inv). The site for the agent is chosen with probability inverse proportional 
to the number of site links. The more the site is connected, the smaller is the 
probability to host agents. 

� Dist (dir). The site for the agent is chosen with probability proportional to the 
distance between the site and a pivot site (the more the distance, the greater the 
probability). 

� Dist (inv). The site for the agent is chosen with probability inverse proportional to 
the distance between the site and a pivot site (the less the distance, the greater the 
probability). 

It is possible to assign a different distribution to each agent role. Table 25 gives on 
overview of the selected distributions. Experiment 2 uses uniform distribution for all 
agents which is the configuration used in all previous experiments. This experiment is 
intended to be the reference. Experiment 1 and 3 change the distribution for complex 
service and basic service agents whereas experiments 4 and 5 analyze the behavior of 
different resource distributions. 
 
Experiment Id Parameter setup 
1190458974250 CSA: links (dir), BSA: distance (dir), RSA: 

uniform 
1190464452609 CSA: uniform, BSA: uniform, RSA: 

uniform 
1190469414062 CSA: distance (inv), BSA: links (inv), 

RSA: uniform 
1190470099828 CSA: uniform, BSA: uniform, RSA: links 

(dir) 
1190472995750 CSA: uniform, BSA: uniform, RSA: 

distance (dir) 
Table 25: Mapping of experiment ids to parameter setup

 
Using this setup, two experiments are executed. The first set uses a broadcast hop limit of 
4 and the second set a broadcast limit of 2. The hop limit of 2 will reduce the possibility 
of requestors to receive proposals and increase the influence of the agent distributions. 
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Figure 31: Final bar plot for 5 experiments with different agent distributions and 4 hops broadcast 
limit 

Figure 31 presents the indexes for the different agent distributions and 4 hops broadcast 
limit. All experiments lie in between a small value range. Experiment 4 with more 
resources on better connected nodes achieves best performance. The reference 
experiment with all agents distributed uniformly shows worst performance.  

 
Figure 32: Radar plot of normalized mean values for 7 selected metrics; 5 simulation runs with 
different agent distributions and a hop count of 4 are compared. 
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Similar results show Figure 32. All values are close together, no experiment outperforms 
significantly another one. Deviations of the trading display Figure 33. The deviation of 
the allocation rate is less than then deviations in any other experiment. Most deviations 
are measured in experiment 2 with its uniformly distributed agents. 
 
 

 
Figure 33: Radar plot of normalized standard deviation values for 7 selected metrics; 5 simulation 
runs with different agent distributions and a hop limit of 4 are compared. 

 
 
The observation collected in Table 26 give also no clear picture of the agents 
distributions influence. The number of observations slightly varies between the worst 
value in the uniformly distributed agents experiment and the experiment 4. Also the 
unique number of trading agents is best in the experiment 4 by a high number of agents 
involved in trades at the same time. 
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Experiment Id Observation 

1190374885203 CSA: 96, BSA_seller: 79, BSA_buyer: 76, 
RSA: 69 

16785 observations 
1190383507406 CSA: 98, BSA_seller: 89, BSA_buyer: 76, 

RSA: 72 
16398 observations 

1190385618343 CSA: 98, BSA_seller: 73, BSA_buyer: 69, 
RSA: 65 

16958 observations 
1190399266453 CSA: 100, BSA_seller: 89, BSA_buyer: 85, 

RSA: 77 
17951 observations 

1190401744218 CSA: 99, BSA_seller: 81, BSA_buyer: 76, 
RSA: 70 

17118 observations 
Table 26: Observation and involved agents for index computation

 
In the experiment set with 4 hops broadcast limit, no clear evidence could found. 
Therefore, the number of hops was reduced to 2. All other parameters remain the same. 
Table 27 gives the overview of the experiments and their parameter setup. 
 
Experiment Id Parameter setup 
1190458974250 CSA: links (dir), BSA: distance (dir), RSA: 

uniform 
1190464452609 CSA: uniform, BSA: uniform, RSA: 

uniform 
1190469414062 CSA: distance (inv), BSA: links (inv), 

RSA: uniform 
1190470099828 CSA: uniform, BSA: uniform, RSA: links 

(dir) 
1190472995750 CSA: uniform, BSA: uniform, RSA: 

distance (dir) 
Table 27: Mapping of experiment ids to parameter setup

 
In general, the reduction of the hop limit increased the final social utility index by a small 
number. As indicated in the 4 hop scenario set, the gap of on demand availability 
between the worst and best case increases. Both, the resource distribution experiments 3 
and 4 increase their on demand availability and decrease their non on demand availability 
respectively. Also the low deviation of the on demand availability is emphasized for 
experiment 4. 
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Figure 34: Final bar plot for 5 experiments with different agent distributions and 2 hops broadcast 
limit 

 

 
Figure 35: Radar plot of normalized mean values for seven selected metrics; 5 simulation runs with 
different agent distributions and a hop count of 2 are compared. 
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Figure 35 and Figure 36 depict the measured mean and standard deviation. The agents of 
experiment 1 achieve on average better satisfaction than the agent of all other 
experiments. The selected trading partners achieve good results mainly on the resource 
market. As already seen in the last experiment set, main deviation shows the allocation 
rate. The trading agents gain high allocation rates and low standard deviation in 
experiment 2. The larger distance and number of message deviation compensate the 
better allocation rate deviation. 
 

 
Figure 36: Radar plot of normalized standard deviation values for 7 selected metrics; 5 simulation 
runs with different agent distributions and a hop limit of 2 are compared. 

 
Table 28 shows significant influence of the service and resource distributions on the 
number of agents involved in agreements and the total number of observations. The 
highest number of observations was measured in the experiment 4, which gives evidence 
for being a good strategy to place resources on good connected nodes. In experiment 1, 
complex services select only a subset of the available basic service agents, whose number 
decrease again on the resource market. Not every successful basic service seller can find 
a resource instance on the resource market. This gap between service and resource market 
is even worse in experiment 2 with its uniform distributions. A strong competition for 
resources lead to this result. The worst number of observations shows experiment 5. 
Choosing a pivot site right in the center of the network will place the resources at the 
network border. The basic service agents are not able to reach enough resources within 
the 2 hop broadcast limit. 
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Experiment Id Observation 
1190458974250 CSA: 81, BSA_seller: 59, BSA_buyer: 45, 

RSA: 45 
12235 observations 

1190464452609 CSA: 84, BSA_seller: 70, BSA_buyer: 44, 
RSA: 46 

12561 observations 
1190469414062 CSA: 80, BSA_seller: 60, BSA_buyer: 43, 

RSA: 44 
11956 observations 

1190470099828 CSA: 100, BSA_seller: 87, BSA_buyer: 85, 
RSA: 79 

16621 observations 
1190472995750 CSA: 77, BSA_seller: 59, BSA_buyer: 39, 

RSA: 42 
11296 observations 

Table 28: Observation and involved agents for index computation
 
In the evaluated scenario, no clear evidence of different agent distributions could be 
found. Possible drawbacks of an increasing distance to trading partners could be 
overcome with an increasing hop limit. Resources should be placed on good connected 
nodes which increases the number of successful allocations. 
 

3.7 Market mechanism implemented in the prototype  

The prototype has been evaluated with three different decentralized economic agent 
implementations (see Table 29). 
 
 

Mechanism Description 
Catallactic Catallactic agents, which maintain a 

complex strategy for negotiation, evolved 
trough evolutionary learning. 

ZIP ZIP agents, which employ a token based 
protocol to coordinate the issuing of 
bids/offers, which are then cleared upon 
the token completing each round. A 
previous implementation of ZIP-based 
agents worked with only local information 
but considered the resource usage in the 
price determination strategy. 

CNet Basic Contract-Net agents using a simple 
offer/demand protocol. 

Table 29. Economic agents implemented in the CATNETS prototype.
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In the following sections the three different agent types are outlined. 
 

3.7.1 Contract-Net (CNet) simple offer/demand agents 

The Contract-Net protocol (Figure 37) starts with a task announcement phase by the 
initiator (the buyer), which can be answered by one or more participants (the sellers). 
This announcement is carried out by a groupcast of a call for proposals (CFP).  After 
conclusion of this period, the initiator selects from the set of collected proposals the best 
one, informing the winner. In top of this protocol, we apply a simple offer/demand-based 
economic algorithm: The sellers will answer the CPFs which meet its current selling 
price. If the CFP does not meet its requirements, the seller will lower its expectations and 
it will decrease the selling price. As for the buyers, if a seller rejects the CFP, then it will 
lower its expectation by increasing the offer in the next CFP. Both the buyers and the 
sellers will increase their expectations in case of receiving offers/bids which meet their 
expectations. The price updating is done at fixed small price steps. 

 
Figure 37. Contract-Net [taken from FIPA web site]

 

3.7.2 Zero intelligence plus (ZIP) agents 
 
The bidding algorithm is based on extended ZIP agents. This allows reaching the 
equilibrium price P0, at which the maximum resources will be exchanged, with simple 
agents. Therefore, they have to know the minimum price of the shouted offers from seller 
Smin and the maximum price of the shouted bids from buyer Bmax. The bidding 
algorithm calculates the new price P(t+1) using the Smin and Bmax values. The 
algorithm implemented in the ZIP agents of the prototype is listed in Figure 38. A 
datailled description of the algorithm is outlined in deliverable D3.3. 
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Algorithm 1: Bidding algorithm of the BS (seller). 
  
 Input: random1 > 0 and < 0.2 
 Input: random2 > 0 and < 0.2 and not random1; 
 if Smin > Bmax then 
     PT = Smin - ( random1 * P(t) + random2); 
 else 
     PT = Bmax + ( random1 * P(t) + random2); 
 endif 
 priceChange = • * priceChange + (1-•) * • * (PT-P(t)); 
 P(t+1) = maximum (P(T)+priceChange, Pmin) ; 

 
 

Algorithm 2: Bidding algorithm of the CS (buyer). 
  
 Input: random1 > 0 and < 0.2 
 Input: random2 > 0 and < 0.2 and not random1; 
 if Smin > Bmax then 

         PT= Bmax + ( random1 * P(t) + random2); 
 else 
     PT = Smin - ( random1 * P(t) + random2); 
 endif 
 priceChange = • * priceChange + (1-•) * • * (PT-P(t)); 
 P(t+1) = minimum (P(T)+priceChange, budget) ; 

 
Figure 38. Bidding algorithm for BS (buyer) and CS (seller) implemented in ZIP agents.

 

3.7.3 Catallactic Agents 
 
The catallactic agents and their implementation are described in the deliverbales D1.1 
and D1.2. The reader is referred to those deliverables for more information about the 
catallactic allocation approach and its implementation. 
 

3.8 Evaluation of the market mechanism in the prototype 

We have carried out experiments with the prototype using the three different economic 
agent types. In the following sections, the experiments and results are explained. 

3.8.1 Experiments with the Contract-Net simple offer/demand agents 
 
The goal of the experiments is to show the performance of the GMM (Grid Market 
Middleware5) as an automated economic-aware resource management tool by means of 
the the DataMining Grid prototype application. We evaluate the ability of the Contract-
Net based negotiation protocol for stabilizing fair prices in the Grid service, trading in 
different scenarios. We setup controlled experiments by deploying several instances of 
the GMM in a Linux server farm. Each machine has a 2 CPU Intel Xeon at 2.80GH and 2 
                                                 
5 The middleware of the Catnets prototype is called Grid Market Middleware (GMM) in the context of that 
paper. 
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GB of memory. The server farm nodes are connected by an internal Ethernet network at 
100Mps. The topology is a mesh: All nodes are interconnected. CFPs are transmitted via 
groupcast to all the nodes in the destination groups (in our scenario CFPS are groupcasted 
from CSs to BSs).  
 
We deploy the GMM in 4 nodes. Two nodes host a BS each and the Data Mining Web 
Service and other two nodes host the CSs, access points and clients. The Web Services 
are exposed in Tomcat servers. The experiments consist in launching 2 clients 
concurrently, which use each one of the CS as broker. Each client makes 100 requests to 
the CS in intervals of 2 seconds.  Whenever a CS wins a bid with a BS, it invokes the 
Data Mining Service in the selected node, and the resource in the corresponding node 
gets locked for the duration of the service execution. We measure the selling prices of the 
BSs and observe the proportion of successful CFPs issued by the CSs. 
 
We have two different scenarios in the dedicated resource model. The demand indicates 
the rate at which new CFPs are issued. If the proportion demand rate/Data Mining Web 
Service execution time is lower than 1, then the resources are potentially able to handle 
all the demands. In the contrary case, the demand exceed the offer of resources, hence 
several CFPs will be disregarded even in the case they meet the pricing criteria of the BS. 
 
In a first experiment, we set up a demand rate lower than 1. Resources therefore are able 
to cope comfortably with the demand. We set up two CSs with initial bidding prices of 
75, and 2 different BSs, with initial offer prices of 60 and 90 respectively. In Time (sec)
Figure 39, it can be seen that the price quickly stabilizes to a “fair” value around 72. This 
result holds true independently of the initial prices on the CSs. As for the initial prices of 
the BSs, the BS1 starting with a lower price trades more in the beginning, but trying to 
increment its surplus it soon reaches the equilibrium price. As for the BS2 starting with a 
higher price, it does not trade in the first CFPs which leads to a continuous price dropping 
towards the equilibrium price. After stabilization, the CSs get their CFPs for resources 
granted, provided the bid equals at least the offered price, which is true during most of 
the experiment. 
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Time (sec) 

Figure 39. Evolution of prices vs time for a low demand rate. 

 

 
Time (sec) 

Figure 40. Evolution of prices vs time for a high demand rate. 

 
In a second experiment (Time (sec) 
Figure 40), we set up a high demand. In this case the resources of the providers are not 
enough to completely meet the demand. This does however not make the prices 
increasing indefinitely, since the successful trades make the CSs react trying to decrease 
bids. We set up agents with the same initial prices as in the previous example. The price 
stabilizes also quickly, but in this case to a higher price at around 80, due to the resources 
scarcity (Time (sec)
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Figure 39, right diagram). This result holds true independently of the initial prices on the 
CSs. In this scenario, the CSs gets just half of their CFPs for resources granted, but this is 
evenly distributed between the two CSs, which is a fair resource share. 
 
The results of both experiments demonstrate how a simple decentralized economic 
algorithm can be plugged into the GMM infrastructure in order to allocate resources to 
client in service oriented applications, by achieving automatic and fair trading of 
resources between Grid clients and Grid service providers, mediated by the CS and BS 
agents, respectively. 
 

3.8.2 Experiments with the ZIP agents 

We setup controlled experiments by deploying several instances of the GMM in a Linux 
server farm. Each machine has a 2 CPU Intel Xeon at 2.80GH and 2 GB of memory. The 
nodes in the farm are connected by an internal Ethernet network at 100Mps. The 
topology is a mesh: All nodes are interconnected. CFPs are transmitted via groupcast to 
all the nodes in the destination groups (in our scenario CFPS are groupcasted from CSs to 
BSs).  
 
We deploy the GMM in 8 nodes. Four nodes host a BS each and the Data Mining Web 
Service and other four nodes host the CSs, access points and clients. The Web Services 
are exposed in Tomcat servers. The experiments consist in launching 4 clients 
concurrently, which use each one of the CS as broker. Each client makes requests to the 
CS and leaves the market after a successful trade. It will re-enter a proceeding round with 
the probability of 1/3.  Whenever a CS wins a bid with a BS, it invokes the Data Mining 
Service in the selected node, and the resource in the corresponding node gets locked for 
the duration of the service execution. We measure the selling prices of the BSs and 
observe the proportion of successful CFPs issued by the CSs. 

The goal of the experiments is to show the performance of the GMM as an automated 
economic-aware resource management tool by means of the Data Mining Grid prototype 
application. The extended ZIP agents are expected to show an effective and fair trading, 
which can be measured with the price and the allocation rate of each agent. Varying the 
technical parameters of the environment, we expect price adaptation of the agents in the 
marketplace. 
 

3.8.2.1 Idealized experiments with idle resources   
 
The experiments are sensitive to a competitive use of other processes, because this might 
cause an increase of the Data Mining WS execution times. Therefore we make first 
experiments with idle resource, which guarantees the stability of Data-Mining Services 
execution times (Figure 41, Figure 42). We see how high load in the Data Mining 
Services redues the resource availability, hence rising prices. 
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Figure 41. Price evolution with varying offer with constant demand rate ½ - resource execution time of 
3000ms. 

 
 

 

Figure 42. Price evolution with varying offer with constant demand rate ½ - resource execution time of 
100ms. 

 
 
Besides the effect of changing the offer, also the variation of the demand for the 
resources needs to be proved. Therefore we change the probability that a CS re-enter the 
market (by issuing a new demand) after a successful trade. In Figure 43 the demand rate 
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probability of re-enter the market is 1/6, which keeps the amount of the CS low and 
decreases the price. Figure 44 shows the price increasing when the CS re-enter the market 
after every successful trade (probability of 1/1). 
 

 

 
 

Figure 43. Price evolution with varying demand rate with constant executionTime 1000 ms – demand rate 
1/6.   

 
 

 
 

Figure 44. Price evolution with varying demand rate with constant executionTime 1000 ms – demand rate 
of 1. 
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3.8.2.2 Adaptation to different constrains 
 
In this section, the experiments illustrate the adaptation of the prototype for a changing 
environment. Here, the execution time of the Data-Mining Services varies, mapping to 
real scenarios where input data-sets to be processed might differ in size. Simulating such 
cases, the execution time of the resources will vary during the running time of the 
experiment. Every 200 seconds it changes iteratively the executions time from high 
(3000ms) to very low (100ms). 
 

 

 
Figure 45. Varying task load (WS execution times) dynamically. t = 0 – 450 (phase 0): stabilization t = 450 
– 650 (phase 1):   WSexecTime: 100; t = 650 – 850 (phase 2):   WSexecTime: 3000; t = 850 -1050 (phase 
3):   WSexecTime: 100; t = 1050 -1200 (phase 4):   WSexecTime: 3000.

 
In Figure 45, it can be observed that after stabilization phase of about 450 seconds (phase 
0), showing price adaptation to varying market constrains in form of task loads (the WS 
execution times). If the execution time of the resources is short (like 100 milliseconds), 
then the market contains many offers. Consequently the prices of the product decreases. 
Contrarily, decrementing the supply by setting the execution time to 3000 milliseconds 
leads to an increasing price.  

3.8.2.3 Process competition 
 
Increasing the realism of the environment, we consider an experiment were the nodes in 
the cluster run other competing processes which influence resource performance. This 
has an impact on resource offer which should be considered by the agents. We show how 
agents effectively react to the process competition by adapting prices (Figure 46 and 
Figure 47). In this case, there is not a clear pattern of price evolution, but generally we 
see that process competition reduces the number of matches (and resulting price risings), 
as expected in a more realistic environment.  
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Figure 46. BSs  prices with competing process.

 
 
 
 

 
Figure 47. BSs  prices with competing process.
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Figure 48. Allocation rates in competing process experiment. Allocation rate of CS. 

 

 
Figure 49. Allocation rates in competing process experiment. Allocation rate of BS.

 
The allocation rate shows the distribution of over 4000 matched trades. A nearly equal 
distribution of the resources to the CS (Figure 48) can be seen as well as the nearly equal 
distribution of the bought resources from the BS (Figure 49) can be seen. Even in a real 
application under some real process competition, an almost fair allocation is obtained. 
Figure 48 shows how CSs share almost evenly the trades, and the same pattern applies for 
BSs in Figure 49, which means the algorithm is not isolating agents from the market and 
enables the participation of all the agents in trades. 
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3.8.2.4 Evaluation of ZIP agents 
 
The results of the three experiments demonstrate how a simple decentralized economic 
algorithm based on ZIP can be plugged into the GMM infrastructure in order to allocate 
resources to client in service oriented applications, by achieving automatic and fair 
trading of resources between Grid clients and Grid service providers, mediated by the CS 
and BS agents, respectively. 
 
Furthermore, the results show that the agents react to changes in the economical 
environment. The accepted price reflects the variations in demand (trough demand rate) 
and offer (trough varying execution time of the services, which results in varying 
resource availability). It can be seen that the price increase when the demand increases 
(Figure 44) and that the price also increase when offer decreases (Figure 41), as a result 
of the services consuming more time. Nevertheless, the distribution of allocations 
between buyers and sellers remains proportioned (Figure 48 and Figure 49), as it should 
be in a fair market. It follows that the prices will increase in case of large-scale failures or 
delays. Moreover, this automatic price correction behavior is able to react to dynamic 
varying conditions in the underlying Grid resources (Figure 45). 
 

3.8.2.5 Evaluation of reource-usage dependent ZIP-like strategy 
 
In this section, we report on early experiments made with the prototype using a resource 
usage dependent price determination strategy. The agents were later replaced by other 
agent implementation working with a dedicated resource-model, i.e. the resource was 
either available for sale or completedly locked by a service execution. Reasons for this 
choice were to work both in simulator and prototype with the same model, and secondly, 
from the experiments made it appeared to be difficult to control the experimental results 
due to the feedback introduced from real resource usage (partially by other users working 
on these non-dedicated machines) in the price computation. 
 
In this resource usage depented price strategy, the agents, besides taking into account the 
success of previous sales, read the current CPU usage with was taken into account for 
computing the price for negotiations. 
 
Clients initiate negotiations with a price lower than the available budget. If they are not 
able to buy at that price, they increase their bids until either they win or reach the budget 
limit. Services start selling the resources at a price, which is influenced by the node's 
utilization. Then, the pricing model is combined with the demand. If a service agent sells 
its resources, it will increase the price to test to what extend the market is willing to pay. 
When it no longer sells, it will lower the price until it becomes competitive again or it 
reaches a minimum price defined by the current utilization of the resource. 
 
We have deployed the Grid Market Middleware in a Linux server farm. Each server has 2 
Xeon processors and 2GB of memory. The machines in the server farm are connected by 
an internal Ethernet network at 100Mbps. Three basic services (BS) are deployed on 
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three servers (BS-74 on node 74, BS-75 on node 75, BS-79 on node 79, respectively), 
and two complex services (CS) are launched on two other servers (CS-72 on node 72, 
CS-73 on node 73, respectively). On each machine with a BS we also deploy a web 
service representing the application, which performs a CPU intensive calculation. These 
web services are exposed in a Tomcat server. Access to execute these web services is 
what is negotiated between complex services (buyer) and basic services (seller). 
 
We run an artificial background load on two of the nodes (node 79, node 75) configured 
for 50% and 100% CPU usage to simulate background activity. This is chosen since in 
such a setting the behaviour of the agents should lead to load balancing of the web 
service executions.  
 
The experiments consist in launching 2 clients (represented by complex services CS-72 
and CS-73) concurrently as clients. Each client performs 50 requests in intervals of 15 
seconds.  Whenever a client wins a bid with a service, it invokes the web service in the 
selected node. The data obtained from the experiment with the performance measuring 
infrastructure has been the following:  
 

1. allocation: an entry by each successful negotiation with a basic service, reported 
by the complex service 

2. price: a periodic report of the price of the basic services 
3. utilization: a periodic report of the CPU utilization given by the resource agents 
4. execution.time: time needed to actually execute the service, reported by the 

complex service (transaction-based). 
 
The experimental results are illustrated in the following figures. Figure 50 shows the load 
(% CPU usage) on the three nodes (74, 75, 76). A background load of 50% and 100% in 
nodes 79 and 75, respectively, can be observed. The up-going spikes which can be seen 
in the load of node 79 and node 74 correspond to the execution of the negotiated web 
services on these nodes.  

 
Figure 50. Load on nodes 74, 75, and 79. Node 79 and node 75 are with 50% and 100% background load, 

respectively.
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Figure 51 shows a zoom on the price of the basic services. It can be observed that the 
price calculation of the agents takes into account the success of past negotiations, where 
the price rise is made after a successful sale. The configured buyer price is 100 money 
units. 
 

 
Figure 51. Zoom on the price evolution of the basic services in nodes 74, 75, and 79. 

 
 
Figure 52 is to assess the expected load balancing behavior, which we should obtain with 
this setting. It can be seen that effectively the BS-74, which runs on the least loaded node, 
makes most of the sales. And the BS-75, which runs on the node with the highest 
background load, makes less sells than the other two basic services. We can see that the 
performance measuring framework achieves one of our goals which was revealing such 
behavior.  
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Figure 52. Percentage of sales of the three basic services. BS-74 which resides on the least loaded node, makes 
most of the sells. 

 
Finally, we observe two metrics together in Figure 53: the successful sales by BS-74 and 
the execution of the sold service when invocated by the clients (the web service is 
executed on the same node 74). Successful sales by the BS-74 are indicted with a star 
symbol and are normalized here to the value 30 for easier visualization. An execution of 
the web service follows each successful sale and last approximately 4 seconds. 
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Figure 53.  Successful sells of BS-74 and web service execution on node 74.

 
 
The experimental results demonstrate the two contributions we want to emphasize: First, 
the measurement framework achieves obtaining multi-level performance data of the 
distributed application. The data shown in the experiment is taken from the three main 
levels of the architecture: The time of the web service execution is measured at the 
application level. The evolution of prices is taken at the economics algorithm layer of the 
middleware. Finally, the load at each node is taken from the base platform layer. 
Secondly, the obtained data is useful for the analysis of the middleware and application 
(the setting was deliberately chosen to force load balancing behavior). We have seen that 
with the obtained data the expected behavior can effectively be observed. 
 

3.8.3 Experiments with the Catallactic agents 

The allocation rate measures for the catallactic agents the number of client request which 
have been completely handled by the GMM. This comprises first reception of the 
Request by the ApplicationProxy and its forwarding to a CS; then, the CFP issuing by the 
CS and the BSs answering collection /selection in the first market; finally, the complete 
negotiation CS-BS to reach a final agreement which fires the trade completion metric. 
 
In order to calculate the allocation rate for the service market from the prototype 
experimental data, we count all the negotiation_end events containing a CS. This means 
that at least a Complex Service took part in the negotiation, implying that the trade was 
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on the first market. You need to take into account both the negotiation_end metrics fired 
by CSs or BSs. This happens since both CSs and BSs can close the negotiation. 
 
We consider experiments with 1 CS, CS1, and two competing BSs: BS1 and BS2. In each 
scenario the client application issued 100 requests to the market. The application creates 
an applicationProxyAgent for each demand request to the CATNETS market. After each 
creation the application waits for the agent to finish, e. g. for the overall market request to 
finalize. The timeout for the market to answer is set to 4000ms. If the 
applicationProxyAgent did not finish the negotiation is viewed as a failure.The execution 
time determining the time a resource is blocked was 2000ms.  
 
Each CS is able to sell one type of service, e. g. a generic service called cs1, whereas 
each cs1 service requires an instance of basic service bs1. The basic services are able to 
sell services of the type bs1 and require resources of type CPU for their sold basic service 
on the service market. This scenario is chosen due to simplicity reasons. The 
implemented agents and middleware infrastructure is however capable of trading more 
complex services as well. 
 
Each agent involved in the CATNETS market was set to have an acceptable price interval 
of 25 – 40. The discovery timeout limiting the time an agent waits for the other market 
participants to answer a cfp was set to 5000ms. 
 
The strategy of the agent was set as follows: 
aquisitiveness: 0,5 
satisfaction: 0,99 
priceStep: 0,3 
priceNext: 0,05 
weightMemory: 0,9 
 
The dynamic in agent evolution is expressed as a probability of mutation (set to 0,05) and 
of crossover (set to 0,2). 
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Figure 54. Experiment 1. Allocation rates.
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Figure 55. Experiment 2. Allocation rates.
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As we can see in Figure 54, in the first experiment a very high percent of the requests by 
the CS got fulfilled, about 96% of success. As for the trade partners, the BSs shared more 
or less evenly the 96 trades fired. In the second experiment, Figure 55, we see 82% of 
success for the CS1, in this case the BS1 got slightly more allocation than BS2.  
 

3.8.4 Comparison of Catallactic agent with ZIP agent 
 
The two mechanism differ substantially, since the ZIP agents are exchanging a token 
between them in each round, and failure to fire trades in this round are counted as a 
request failure by the agent. This is quite different from the allocation in Catallactic 
agents, where each request by the CS conveys an iterative negotiation with the selected 
BSs until an agreement/or disagreement is reached. 
 
However we can still compare how the succesfull trades are shared between BSs.For the 
ZIP agents, the allocation rate of Figure 48 and Figure 49 shows the distribution of over 
4000 matched trades. A nearly equal distribution of the resources to the CS can be seen 
as well as the nearly equal distribution of the bought resources from the BS can be seen. 
Even in a real application under some real process competition an almost fair allocation is 
obtained. If we compare this with the Catallactic agents, we see that the allocation rate 
between BSs is shared more or less evenly in both cases between the two BSs (Figure 54 
and Figure 55). However notice that both protocols are very different, since each round 
ZIP agents only perform one bidding, while each round in the Catallactic agents 
encompasses a full negotiation between the CS and the best BS answering the CFP. 
 
A high level comparison between two ZIP agents and Catallactic/C-Net protocols reveals 
that ZIP agents encompases few number of messages (just an initial multicast and then 
the token exchange), while the C-Net agents require full cycles of CPF followed by 
answers to that CFP from all potential sellers, as well as the answer from the buyer 
selecting/discarding candidates. The Catallactic agents further add on top of C-Net 
protocol number of messages the successive bilateral bargainings required to reach an 
agreement between buyers and sellers. The Catallactic agents ensure in most of the cases 
the reaching of agreements after a number of sequential negotiations between a buyer and 
potential candidates, while ZIP agents and C-Net normally reach fewer allocation rates, 
but also generating less overhead. 
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4 Prototype evaluation 
 
The assessment is on the following aspects: Implementation feasibility and available 
standards, and secondly performance. 

4.1 Evaluation of prototype development  

4.1.1 Architecture 
 
The prototype has been build based on a layered architecture (see deliverables year 2 and 
year 3 of WP3). This architecture proposing a so-called P2PAgent layer for the technical 
services, an EconomicsStrategy Layer for the economic agents, and an 
EconomicsFramework layer for separation of both layers has allowed developing the 
prototype.  
 
The benefits of defining this architecture have been the following: 
 

� Following this architecture, the different agent types could be implemented by 
substituting mainly only the components referring to the EconomicsStrategy 
layer.  

� The communication between the application and the middleware has been 
reduced to the communication to a Catallactic access point, which by means of 
the WS-Agreement specification transmits all required information to the 
middleware. The protocol describing the order of messages exchanged, however, 
is particular to the prototype. 

 
The architecture has been described in the following papers: [ACC05] and [CCF05]. 
 

4.1.2 Catallactic-enabled applications 
 
The catallactic paradigm as introduced in predecesor Catnet project has been 
implemented in a concrete middleware and prototype applications in the scope of 
CATNETS project. The experience gained on such endeavor has resulted in both 
deceiving and promising conclusions, shared in equal proportions. 
 
In the deceiving side, important trouble during prototype calibration has come from the 
requirement of dealing with decentralized decision makers (the trading agents) in a real, 
networked, infrastructure. Such a development is pioneering, since state of the art 
approaches to fully decentralized markets based on bargaining agents have been based 
purely in simulations [DUA04],[PT98]. In that sense, “touching the ground” of real 
deployment has proven hard due to the uncertainty and lack of control in such 
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“engeneering with complexity” tasks. Emergent engeneering has been largely coveted by 
large distributed systems engineers [ECE05], but to date just initial steps in form of 
proposals [TU05], [WH05] have been achieved.  In our view, and summarizing our 
experience, more advances trough extensive testing in both software lifecycle 
management and practical deployment tips need to be realized in orther to reach maturity. 
 
In the promising side, we have been indeed able to design, implement and deploy a fully 
decentralized prototype incorporating emergence and self-organization using state of the 
art tooling. The GMM implementation has been proven as useful in several applications. 
The use of the Catallactic middleware has been shown by two applications: COVITE 
being available as Grid Service and Data Mining tools given as Web Services. Both of 
these applications have been Catallactic-enabled within the project. Our results are 
documented in more detail in the following papers: [JRC+05], [JRC+06], [JRC+07]. 
From the experience obtained, we have found that applications provided as services can 
be enhanced with reasonable effort to interact with the GMM. Additionally, the GMM is 
being useful as an infrastructure root for further development in Grid Markets research 
project, as in the case of SORMA [SOR07]. The open issue with the catallactic-enabled 
applications is to achieve improved system control, in the form of more predictable 
outcomes out of the emergent properties of the markets.  
 
From the application point of view, the fact of having participants offer and request for 
application services and computing resources of different complexity and value in a 
distributed environment leads to the creation of interdependent markets. In such 
interrelated markets, allocating resources and services on one market inevitably 
influences the outcome on the other markets. A common approach of many other Grid 
market concepts is to allocate resources and services by relying on the presence of 
centralized resource/service brokers. However, the complex reality could turn such 
approaches useless, as the underlying problem is computationally demanding and the 
number of participants in a worldwide distributed environment can be huge. 
 
Different examples of application scenarios can be constructed which benefit from using 
the Catallactic markets in combination with different auction mechanisms in the Grid. 
This leads to an advantageous flexibility in terms of fulfilling the requirements and needs 
of services and resources within the applications and hides all the complexity to the users. 
Let us consider an application scenario that requires a highly specialized service such as 
medical simulation service or visualization service, while another application requires a 
specific mathematical service. The mathematical service is more or less standardized and 
there are several suppliers offering this service, and an instance of a catallactic market 
could be initiated and based, for example, on a normal double auction. The medical 
simulation service, however, does not have many service suppliers; therefore the liquidity 
of the market trading such services may be low. In such cases, an instance of a market 
could be initiated and be based on English auction mechanism. Other types of 
applications enable creation of Virtual Organizations (VOs) for planning, scheduling, and 
coordination phases within specific projects or businesses, and allows the users of a VO 
to interact among them for the duration of VO. The ability of a free-market economy to 
adjudicate and satisfy the needs of VOs, in terms of services and resources, represent an 
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important feature that markets, through the auction mechanisms, can provide to. Such 
VOs could require large amount of resources which can be obtained from computing 
systems connected over simple communication infrastructure such as Internet. There 
could also be possibilities for these VOs to try maximizing their own utilities on the 
market. 
 
In conclusion, catallactic-enabled applications are well motivated and address real need 
of current realistic Grid scenarios. We have developed the first prototype available which 
is able to deploy the complex catallactic behavior in real Grid applications. The 
experience gained is valuable as it is, but it can be also profited by engineers in the field 
of “engineering with complexity and emergence”, where prototype implementations and 
deployments in real tesbed applications are increasingly necessary to advance the state of 
the art.  

4.1.3 Standards 
 
Service Level Agreements (SLAs) provide a contract between an application user 
requiring services/resources, and application providers determining what should be made 
available for external use. To enable service/resource sharing/usage in application 
environments, SLAs may be used to define: (a) requirements that such an application 
would place on services (and resources) owned by a third party; (b) check whether these 
requirements have been met during use. An SLA may also specify the penalty that a 
service provider may incur if terms in the SLA are violated. 
 
Currently, SLAs are defined in a static manner, i.e. the terms within an SLA must adhere 
to strict constraints, and are monitored during application execution – such as in WS-
Agreement. However, within many applications, it is often difficult to define such 
constraints very precisely, thereby leading to a large number of violations. There is a 
need to modify an agreement that had already been established, especially if the 
agreement is used at a time much later than when the agreement had been defined. These 
requirements relate to comparing the cost of re-establishing a new agreement vs. being 
able to adapt an agreement that is already in place. Secondly, there is a need to support 
flexibility in the agreement if an agreement initiator is not fully aware of the operating 
environment when the agreement is defined. In this case, the agreement initiator may not 
have enough information to determine what to ask for from a provider. This is likely to 
be the case when an agreement initiator or provider operates with imprecise knowledge 
about the other party involved in the agreement. 
 
Specifications which have been applied for the development of the prototype have mainly 
used the concept of SLA using the WS-Agreement protocol. The specification allowed 
describing the services needed by the users’ application. The protocol for the exchange of 
WS-Agreement messages between the application and middleware needs to be developed 
for further negotiation interaction, which has been identified as a limitation. A use of 
WS-Agreement in the Catnets prototype is reported in [JRC+07]. 
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4.1.4 Implementation 
 
The implementation of the prototype took advantage of the functionalities already 
provided by available toolkits, like Diet agents, JXTA, GT4 (the middleware selection 
process as well as the GMMs’ early design with them is described in the first year 
deliverable of WP3 [Del05a]). When running initial experiments with the developed 
prototype, however, limitations in the practical use of these toolkits have been observed, 
like a limited number of messages which could be sent with Diet, and the difficulty of 
JXTA to work correctly with a small number of nodes.  
 
The observed limitations of the Diet toolkit affected the initial design of the performance 
measuring framework. Another design has been finally implemented which did not rely 
on the messaging mechanism of Diet, such that in the current prototype we do not have a 
limitation concerning this issue.  
 
The limitation of JXTA affects the scope of deployment of the prototype in the sense that 
in small scale scenarios the delivery of messages by JXTA is not reliable. In the 
environment of the cluster where the prototype has been used, the identified limitation 
did not appear by making use of particular JXTA messaging services for this context. 
From the experience obtained, for complete decentralized scenarios, DHT 
implementations like Pastry could have been a better choice for the implementation of the 
communication and search.  
 

4.2 Evaluation of prototype performance  

The prototype has been deployed in a cluster of Linux machines. Several experiments 
have been made with different type of economic agents, and varying the different 
parameters of the experiment configuration. The results of the experiments with the 
Catallactic agents and other agent types are covered in section 3.8. 
   
The experiments showed the behaviour of the measured parameters for concrete 
experimental settings. The character of the experimental results is rather that of 
confirming the implementation feasibility in terms of a prototype. The comparison of 
different agent approaches by means of the developped prototype is difficult. A large 
number of parameters remain uncontrolled due to the use of a real environment. The 
difficulty in configuring the Catallactic agents in the sense of being able to chose the 
most appropriate values for the parameters makes it appearing too early for stable 
quantitative studies.  
 
The level of the prototype imposed certain constraints on the system compared with what 
could be a production-quality implementation. As a consequence, quantitative results are 
only achieved within the scope of the prototype. Our performance results are experiments 
taken at different stages of the prototype development. Although they revealed the 
behavior of the system in the current experimental configuration, they gave feedback on 
the implementation and hints on the complexity of applying Catallaxy in real systems.  
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We have developed several scripts for deploying the GMM. These scripts were toroughly 
described in D3.2. Over the last year we have tailored the scripts as a tool for deploying 
the three differente flavours of decentralized economic agents in LANs and cluster. These 
scipts allow for the full deployment, remote experiment execution and metric collection 
of the GMM and application WSs. They have been released with the CATNETS software 
with a companion documentation and tutorial (see WP3 year 4 Annexes). 
 
The flow of a typical prototype experiment is quite simple, if we consider the large 
number of automated steps from the original client request till the moment when the EPR 
for service execution is returned back. An example of an expriment with 4 nodes is the 
following: Two nodes host a BS each and the Data Mining Web Service and other two 
nodes host the CSs, access points and clients. The Web Services are exposed in Tomcat 
servers. Access for execution of these Web Services on the resource node is what is 
traded between BSs and CSs. The experiments consist in launching 2 clients 
concurrently, which use each one of the CS as broker. Each client makes 100 requests to 
the CS in intervals of 2 seconds.  Whenever a CS wins a bid with a BS, it invokes the 
Data Mining Service in the selected node, and the resource in the corresponding node 
gets locked for the duration of the service execution. We measure the selling prices of the 
BSs and observe the proportion of successful CFPs issued by the Css. The development 
of the prototype has allowed assessing the feasibility of implementation, providing a flow 
of execution from the Client to the GMM access point, and from the Complex Services to 
the Basic Services, in the sequence depicted in Figure 56. 
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  Figure 56. Flow from Client request till Basic Services trading resources.
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In general the performance results have been promising in the sense that they show 
coherent self-oganized behaviours in the bargaining agents. This includes coherent 
reaction to offer/demand variations, varying computational size of services to be executed 
and the effect of background loads in the Grid. Improved control of such behaviours 
could be achieved with further refinements of both multiagent coordination protocols (i.e. 
the catatllactic agents temsleves and a measurement infrastructure incorporating latest 
advances in complexity management. Another interesting property which could not be 
assessed in the prototype (given the material limitations of the number of physisical 
nodes available) is that of scalability. However, the results from the simulator on 
improved scalability of decentralized catallactic agents over centralized approaches offers 
a good insight on the “nice” scalability properties of the catallactic agents. The results for 
the experiments with Catallactic agents in the prototype are covered in section 3.8.3.  
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5 Discussion of results 
 
Our discussion utilizes the results from simulating the centralized and catallactic 
allocation approach and the lessons learnt implemeting the catallactic approach into the 
prototype. 
 
In general, the CATNETS project has achived the following exploitable outcomes: 

� a specification of decentralized and centralized market protocols, 
� a simulator which is able to compare the centralized and the decentralized 

allocation approach, 
� a framework for economic analysis of centralized and decentralized economic 

mechanisms, 
� a prototype of the catallactic mechanism integrated into different applications, and 
� the Grid Market Middleware (GMM) which feeds into other FP6 projects like 

SORMA. 
 
In Section 5.1, the statements of the simulator are summarized. Section 5.2 discusses the 
statements of the prototype, and Section 5.3 gives a short conclusion on the applicability 
of the catallactic approach to application layer networks. Finally, further research 
properties for Hayek’s Catallaxy are presented in Section 5.4. 
 

5.1 Statements for simulator 

 
The simulator allows carrying out experiments up to a few thousands of nodes. However, 
very large-scale experiments with several thousands of nodes consume lots of main 
memory. The automated scenario generator is tested with a scenario up to 10000 nodes 
and 100000 agents. This requires a machine with 8GB of main memory. The simulator is 
able to read a scenario of this size and to start the simulation with 1000000 requests. But, 
it takes up to weeks to finish such very large simulation runs. Accessorily, the memory 
management of the Java Virtual Machine has to be optimized by modifying heap size and 
memory consumption parameters, and the Linux file system parameters have to be 
changed to be able to handle such large simulation runs. Therefore, no very large scale 
experiments are evaluated because the computational resources are needed to simulate 
the smaller experiments for the scenarios of this deliverable. 
 
In the largest scale simulations, we could only apply the Catallactic mechanism, but not 
the centralized mechanism because components of the centralized auction 
implementation consume a large number of resources depending on the size of the 
scenario. We observe that the Catallactic mechanism could principally achieve very good 
service allocation. However, this mainly depends on configuring its parameters correctly. 
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The development of the simulator and the experiments show a high complexity of the 
agent strategy in catallactic system. Agein, the performance depends on numerous 
parameters which are not easily configurable appropriately. 
 
In the simulations, a number of advantages and disadvantages of the decentralized 
mechanism compared to the centralized catallactic mechanism have been identified: 
 

� Number of messages: The centralized mechanism used a significantly smaller 
number of messages for communication. The bargaining of the catallactic 
mechanism had a significantly higher cost in terms of messages exchanged. The 
number of messages in the implemented auctions remains always the same for 
one allocation, whereas the number of messages varyies along the iterative 
negotiation steps in the decentralized allocation approach. By limiting the number 
of negotiation rounds, a lower number of messages can be achieved. For example, 
a high price step value together with a high aquisitiveness decreases the total 
number of messages for an agreement. 

 
� Negotiation attributes: In the catallactic mechanism, only single-attribute 

negotiations could take place, whereas the auctioneer mechanism of the 
centralized approach could handle multi-attribute negotiations. In our particular 
case, this limitation was imposed by the agents` strategy implementation. The 
learning and decision algorithms were implemented to cover only single-attribute 
negotiations. An extension to multi-attribute, however, has several difficulties, 
like matchmaking of multi-attribute services in a decentralized search. 

 
� Negotiations: The implementation of the agents was based on a model in which 

each Catallactic agent could only be involved in one negotiation at a time. This 
model poses serious limitations on performance. A more efficient model with 
parallel negotiations isn’t implemented due to its additional complexity. The same 
limitation holds with the centrlized allocation approach. Parallel bidding is not 
supported. 

 
The final statement “Catallaxy is more / less efficient than central mechanisms” could not 
be obtained from the experiments in general. However, there is a catallactic strategy 
configuration which achieves equal or better performance in terms of equal or better 
social utility values than the centralized allocation approach of the simulated scenarios. 
The following insights have been accomplised: 
 

� The Catallactic mechanism needs to be improved in terms of messages needed. A 
strategy proposal using only one negotiation round is presented in deliverable 
D2.3. The total number of messages could be reduced be increasing the price step 
value in the current strategy implementation. 

 
� The configuration complexity in terms of the number of parameters compared 

with other economic mechanisms is very high in the Catallactic mechanism. On 
the one hand, this flexibility enables to find a good parameter configuration in all 
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evaluated scenarios. On the other hand, there is no single configuration which can 
be applied in most scenarios. 

 
� Comparison with centralized mechanisms is difficult since the performance does 

depend on each catallactic agents` strategy in the catallactic scenarios. In the 
centralized case, the auctioneer`s decisions only depend on the incoming supply / 
demand messages. Catallactic agents follow a heuristic strategy whereas the 
centralized auctioneer implements a mathematical algorithm with theoretical 
foundations (state-of-the-art matching mechanism). 

 
� Advantages of the centralized mechanism originate in the significantly lower 

number of messages needed and the fact that the catallactic case supports only 
single-attribute negotiations can take place, whereas the auctioneer mechanism 
can handle multi-attribute negotiations. This limitation was imposed by the 
agents` strategy implementation. The learning and decision algorithms were 
implemented to cover only single-attribute negotiations. For this project a model 
was used in which each agent could only be involved in one negotiation at a time. 
This model posed serious limitations on performance – for a more efficient 
system the option of parallel negotiations would have to be implemented. This 
model also results in a very restrictive blocking policy of the agents. 

 
� Implementation aspects of the simulator were underestimated. More time was 

spent on testing of the simulator tools and the implemented agents. Therefore, the 
co-allocation implementation and the shared resource model have still 
experimental status. No meaningful simulations are evaluated with these features. 

 
� Analyzing the trading agents in the decentralized strategy, two dominant trading 

strategies lead to profit (positive fitness) in a bilateral negotiation. Either the 
agents make often concessions with small steps or the agents follow a strategy 
with a low concession rate together with a high step size. Weighting the last 
agreements with 60% seems a good value for the successful agents. 

 
� No clear picture evidences the applied service and resource distributions in 

scenarios with the catallactic strategy. A placement of resource on good 
connected nodes results in better social utility values. This is an argument for 
organizing computing centers in a centralized way. Uniformly distributed service 
and resources lead to good availability of the specific service and resource. But, 
higher deviations from the mean values could be observed than in other 
experiments. The competition for several service and resource increases the social 
utility index and the system’s loss. 

 
� In absolute numbers, the decentralized allocation approachis able to achieve a 

social utility index value of around 0.4. This value is 20 % better then the 
measured value for the centralized allocation approach in the comparison 
scenario. Agein, this indicates the strong influence of the configuration on the 
allocation performance of the catallactic approach. 
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� In the evaluated scenarios, the decentralized allocation approach shows higher 

allocation rates than the centralized allocation approach. The centralized method 
sacrifices a higher allocation rate the economic outcome of the auction.  

 
� Varying discovery timeouts increase the availability of the sellers and point at 

successful refinement of the decentralized search strategy. 
 

� The implemented decentralized bargaining protocol is error-prone which exhibits 
the failure experiments. At the time of development, the main focus was more at a 
sound and functional messaging structure and implementation than a failure-
resistant bargaining protocol. More effort is needed for improving the bargaining 
protocol. 

 
� The metric pyramid and the selected metrics enable the analysis of complex 

application layer networks. Changes in the measured metrics are mapped very 
well to the upper layers of the pyramid. The aggregation steps keep the 
characteristics of the raw data and indicate different allocation performances in 
the evaluated scenarios. The general applicability of the metrics pyramid offers a 
broad evaluation of resource allocation approaches in future application layer 
networks. However, the metrics pyramid exposes limitiations. The number of 
observations and the agent population should be evaluated in parallel to verify the 
expressiveness of the aggregated indexes. 

 
� The decentralized allocation performance does not decrease in increasing network 

sizes. The hop count and discovery timeout parameters control the accessible area 
of the network for the decentralized allocation approach. Only a subset of 
(theoretically) available service and resources can be selected as trading partners. 
This helps achieving good social utility index values in large networks. 

 
� Varying bandwidth decreases the system loss for the decentralized allocation 

algorithm. The bandwidth controls the set of available sellers. Not reachable seller 
can provide their service to another buyer which is located closer the requestor. 
Also, the set of unique trading agents increase. A more distributed behavior is 
observed. However, too low bandwidth increases the system’s loss significantly. 

 
� The hop count parameter which can be seen as a time-to-live parameter in P2P 

networks shows significant influence on the decentralized allocation approach. 
The following rule is derived from the experiments: The higher the service 
density is, the lower the hop count parameter should be selected. 

 
� Randomizing the intital genotype values lead to lower performance of the 

decentralized allocation approach because the agents need time to adapt to the 
dominant strategies described above. Compared to simulations runs with one 
predefined genotype for all agents, a siginifcant lower performance is measured. 
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� A crucial part of the catallactic strategy is the adaptation of the negotiation 
intervals for the the next negotiation which depends on the market price 
estimation. The selected dynamic strategy exhibits good performance in all 
simulation scenarios. It is expected that an improved adaptation strategy can lead 
to better performance in terms of a decreasing message number and better 
allocation times. 

 
 

5.2 Statements for prototype 

 
The implementation has been achieved in terms of a prototype. This implementation can 
be considered as successful. For a production-quality implementation of the Catallactic 
approach, however, several identified limitations would need to be solved. 
 

� Handling of messages: In order to handle the large number of messages 
exchanged, an efficient implementation of such a component is needed.  

 
� Multi-attribute: Scalable matchmaking of multi-attribute distributed objects is not 

completely solved. 
 

� The flexibility of the agent implementation in terms of handling parallel 
negotiations would need to be improved. 

 
� Particular components of the architecture, like the Catallactic Access Point (CAP) 

need to be able to handle a high load in terms of messages.  
 

� We have designed, implemented and deployed a fully decentralized prototype 
incorporating emergence and self-organization using state of the art tooling. The 
GMM implementation has been proven as useful in several applications. The use 
of the Catallactic middleware has been shown by two applications: COVITE 
being available as Grid Service and Data Mining tools given as Web Services. We 
have deployed this prototype in several scenarios. 

 
� 1CS vs. 2BS scenario is working well. Sufficient negotiations finshed. 

 
� 2CS vs. 4BS scenario fewer negotiations executed due to implemented model 

(blocking policy because of not allowed parallel negotiations) 
 

� 3CS vs. 6BS scenario suffers the same problem (worse than in 2vs4 scenario) - 
problem of catallactic model that was implemented 

 
� Important trouble during prototype calibration has come from the requirement 

deal with decentralized decision makers (the trading agents) in a real, networked, 
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infrastructure. This issues are related to the broader problematic of mastering 
complexity 

� The open issue with the catallactic-enabled applications is to achieve improved 
system control, in the form of more predictable outcomes out of the emergent 
properties of the markets. 

 
� The middleware tool produced by the project (GMM) as well as the prototype 

implementations built on it can be the seed of further advances in the endeavour 
of egeneering with complexity in distributed systems, paving the way for more 
prototype implementations and providing a valuable experience.  

 

5.3 Results on the applicability of the Catallactic approach 

In the simulations for the small scale scenarios, the centralized mechanism offers better 
performance than the decentralized catallactic mechanism. The centralized mechanism is 
able to handle small or medium scenarios very well. The highly efficient clearing 
mechanism and the ability to handle bundled goods outperform the catallactic approach. 
 
For large scale scenarios, only the Catallactic mechanism could be simulated. However, 
the message costs are very high. At least a redesign to reduce the number of messages 
would be needed. Simulations with a reduced number of messages (using high priceStep 
values) reach a total social utility of 0.4 which is better then the measured social utility of 
0.5 of the centralized allocation approach. This emphasizes the importance of the correct 
catallactic strategy setup. 
 
A Proof-of-Concept implementation of a Catallactic enabled application and the grid 
market middleware has been achieved. A production-quality implementation would 
require substantial improvements of several components like the communication layer 
and the distributed matchmaking. 
 

5.4 Further research on properties of Catallaxy applied to 
computer networks 

From a computational and engineering perspective, Hayek’s Catallaxy is successfully 
applied to computer networks in the CATNETS project. Explicit specifications of the 
Catallaxy for technical systems should encompass these agent features: 
 

� Adaptivity: Agents learn from their own experience and from previous 
agreements, there is genetic recombination, mutation and selection, and agents are 
reactive and opportunistic being able to adapt their goals to local unpredictable 
and evolving environments. The current catallactic strategy implemented the first 
two adaptivity topics. The third issue gives further research prospects. More 
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parameters could be taken into account for dynamic adaptation by the agent itself 
instead of being predefined at experiment start.  

� Autonomy and initiative: The complex service handles the task to be executed. If 
it finds an opportunity (a seller which fits the requirements) – proactively without 
the direct control of the user application – the agent delegates not only a specific 
task but also an objective to bring out in any way; the agent will find its way on 
the basis of its own learning and adaptation, its own local knowledge, its own 
comtetence and reasoning, problem solving and discretion. The results of the 
negtoation analysis demonstrate the successful application of the catallacatic 
strategy to the CATNETS scenario. Agents gain profit depending on their own 
learning and adaptation capabilities, and their local knowledge. Of course, not all 
agents are successful in making profit. They haven’t the knowledge for finding 
satisficing goals. Dissatisfaction is related to the agents’ goals, which Hayek calls 
“the conscious purpose”. The agents’ level of wealth, knowledge and 
consumption determines the “conscious purpose” as a function of which the agent 
will be more or less satisfied, and more or less responsive to existing 
circumstances. If the agent knows only other agents with low fitness and is 
unaware of what else is possible, the agent will act within its local environment 
and isn’t able to escape from it. There could be agents is the application layer 
network, which never gain profit. Further research should address finding a lower 
bound for the agent success for the catallactic strategy.  

 
� Distribution and decentralization: In CATNETS, the multi-agent systems are open 

and decentralized. As the results of the simulations runs evidence, it is neither 
established nor predictable which agents will be involved in trades. There are no 
regional analysis tools of the agents and its trading partners available. Placing 
resource on good connected and varying bandwidth on the links increase the 
distribution and decentralization of the multi-agent system. Further experiments 
are needed to find out more rules for increasing the agents’ distribution and 
decentralization. The execution times of the tasks are assumed to be constant in 
CATNETS. Agents may remain open during execution by means of being 
reactive to incoming inputs and to the dynamics of its internal state (for example, 
resource shortage or preference change). Further research on the Catallaxy could 
take this into account increasing the reactivity of the agents. The workflow 
simulations with a complex service requesting a sequence of basic service give 
prospects for further analysis, because nobody in the system knows the complete 
plan. Even the complex services don’t know to which basic service a task on 
second or third place could be delegated. Policies are needed to ensure that the 
task of long workflows could still be executed because longer workflows come 
along with an increased failure probability.  

 
The products traded on the service market are homogeneous products which are 
completely standardized. The experiment runs of the lessons learnt from CATNETS 
show, the implemented centralized and decentralized allocation approaches handle these 
products very well. The implemented Hayek’s Catallaxy can even outperform the 
centralized auctions. The introduction of heterogeneous products enables a more realistic 
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service picture. Also the users or applications of the catallactic market profit from 
heterogeneous services. They can specify their workflows with more details like service 
quality levels, priorities, etc. This leads to a broader applicability of the Catallactic 
strategy in new application domains and real world user requests. 
 
As mentioned above, CATNETS assumes an open application layer market implemented 
by an open multi-agent system. The traded quality of the products in terms of execution 
time is always constant. No service quality changes are taken into account. Further 
research prospects could extend the CATNETS model with changing service quality 
which is required by future interactive Grid and P2P application based on service-
oriented architecture (see Case Study in deliverable D3.3). Additionally, shared resource 
models have to guarantee certain quality levels to users. Hayek’s concept of a 
“spontaneous order” could be eroded by cheating agents in such evironments. There is no 
institution which forces the agents to be honest. The Catallaxy could benefit by the 
introduction of electronic institution and concepts from social control like reputation 
mechanisms. This comes along with a change from single attributive decision making to 
multi-attributive decision making and resoning. The agents have to decide how much risk 
they agree to and how they should adapt their preference structure in case of risky 
services and resources. Besides using social concepts, these risky assets can also be 
handled by economic risk management. Concepts from risk transfer like insurances or 
risk mitigation like portfolio optimization could help to reduce the financial risk of the 
agents. It would be interesting to see how the influence of the social and economic 
approaches influences the CATNETS metrics paramid for evaluation of Hayek’s 
Catallaxy. 
 
Future hardware developments will soon make possible the construction of very large 
scale (one million of agents and above) models that obviate the need for representative 
agents. Artificial agent communities and economies of such scale need more research to 
overcome the lack of understanding of realistic behaviour of agents and institutions. 
Hayek’s Catallaxy is one important concept to help understanding such complex and 
dynamic agent communities. We identified some future research prospects in the field of 
artificial economies: 
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Further research and impact of the CATENTS project is listed in the dissemination and 
use plan and the technology implementation plan. Several national and international 
projects profit from the results gained by the CATNETS project. The reader is referred to 
those deliverbales for further information. 
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6 Conclusions 
 
In Application Layer Networks like future Grid and P2P networks, optimal resource 
allocation has to be carried out in two dimensions. One is the maximization of the 
utilization of technical resources. The aim in this dimension is - independently of the 
economic incentive structure - to carry out a load balancing on heterogeneous and 
distributed computational resources. This guarantees that all resources are used and no 
resources are "wasted" while being idle. In contrary to this allocation paradigm, the 
economic resource allocation is aligning the deployment of resources along the economic 
utility of the individual Grid nodes. Mechanisms like multi-attribute combinatorial 
exchanges enable an incentive compatible, efficient, individual rational and 
computational tractable way of allocating these resources. This may imply that resources 
stay idle in case the willingness to pay of the resource requester does not reach the 
reservation price stated by the resource owner. This effect is demonstrated by the 
experiment runs: The centralized resource allocation approach shows lower allocation 
rates than the catallactic allocation method. However, it enables an economically sound 
construction of allocation for Grid resources. 
 
Within the CATNETS project, two dimensions of such markets have been investigated: 
One is the application of decentralized - catallaxy-based - market mechanisms, which 
uses flooding for resource discovery and an iterative bilateral bargaining protocol for 
negotiation of resources. The alternative is the application of classic institutional - or 
centralized central - market mechanisms. If properly designed, markets implement an 
economical efficient allocation of resources. Such multi-attribute multi-unit mechanisms 
to ALN/Grid allocations have been developed as a benchmark. They provide an 
allocation for Grid resources up to a certain size. Mechanisms are developed that enable a 
two-tiered allocation of Grid resources, which fulfill most of the above-mentioned 
desiderata. In the first tier of these markets, service consumes, who may not have a clue 
of what kind of computational resources they need, can trade with service providers about 
their service needs. These service providers themselves then act on a second market tier - 
the resource market - where they purchase the resources they need in order to carry out 
the services. These two markets are interrelated through the price that is determined in 
the first tier. State of the art in this research field is that incentive compatible, allocative 
efficient and individual rational allocation mechanisms are identified. However, these 
mechanisms are very complex to compute for large number of market participants (they 
are NP-complete) and hence not applicable on large-scale setups while the decentralized 
market mechanism still achieves performant results in large settings. 
 
The comparison of the two approaches shows that: 
 

� The centralized mechanism used a significantly smaller number of messages for 
communication. The bargaining of the catallactic mechanism had a significantly 
higher cost in terms of messages exchanged. The number of messages in the 
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implemented auctions remains always the same for one allocation, whereas the 
number of messages varyies along the iterative negotiation steps in the 
decentralized allocation approach. By limiting the number of negotiation rounds, 
a lower number of messages can be achieved. 

 
� In the catallactic mechanism, only single-attribute negotiations could take place, 

whereas the auctioneer mechanism of the centralized approach could handle 
multi-attribute negotiations. In our particular case, this limitation was imposed by 
the agents` strategy implementation. The learning and decision algorithms were 
implemented to cover only single-attribute negotiations. 

 
� The implementation of the agents was based on a model in which each Catallactic 

agent could only be involved in one negotiation at a time. This model poses 
serious limitations on performance. A more efficient model with parallel 
negotiations isn't implemented due to its additional complexity. The same 
limitation holds with the centrlized allocation approach. Parallel bidding is not 
supported. 

 
� The potential of Catallaxy as resource allocation mechanism has been motivated 

by observing its usage in many real life situations. From the project results, we 
have noted that the complex models which are behind this usage, however, have 
not shown to be easily portable into artificial systems. 

 
� The use of Catallaxy in daily live situations requires very sophisticated 

capabilities, which are not easily reproducable by technical implementations. 
Providing each artificial agent by the "intelligence" needed to work in such a 
resource allocation approach has currently a high cost and needs an expert user. 

 
� The contact with the system, the information dissemination and lookup, the 

interaction with other participantes require very challenging technical solution. It 
is considered difficult to provide technical solutions based on standard toolkits 
which could provide reliable a funtionality without limitations in large-scale 
scenarios and underrealistic conditions. 

 
� The scenarios which we could consider have shown to be successfully realizable 

with less complex solutions than Catallaxy like a centralized approach based on 
auctions. The limitations of the centralized solution have not been identified in the 
scope of the requirements. Potential bottlenecks like the centralized components 
appear to have easier solutions for overcoming them than applying Catallaxy. 

 
� We cannot exclude the possibility that particular scenarios which might arise from 

future distributed applications could provide circumstances in which Catallaxy 
remains an interesting option for providing a solution. Providing the building 
blocks of Catallaxy in a useable way, achieve a feasible configuration by the 
users, however, would ease any practical application of the approach. 
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� A final statement on the performance of the Catallaxy approach to centralized 
auction approach is difficult to obtain. A main problem lies in the technical 
aspects of the implementation. Catallaxy works best in large scale scenarios, but a 
sufficient simulation for Catallaxy needs larger technical resources. On the other 
hand, the simulation time needed for the centralized approach increases 
dramatically with growing simulation size. 

 
� From an implementation perspective, even the moderate complexity of the 

heuristic bargaining strategy leads to a noticeable variance of the simulation 
results, when compared with the predictable results of the auctioneer's algorithm. 
The calibration of the simulation and a working prototype became an important 
task in the CATNETS project. 

 
� With regard to the Grid market parameters, we have achieved various possibilities 

for adaptation to real world settings. Virtualized resources and resource bundles 
are supported. 

 
� The final statement "Catallaxy is more / less efficient than central mechanisms" 

could not be obtained from the experiments in general. However, there is a 
catallactic strategy configuration which achieves equal or better performance in 
terms of equal or lower social utility values (that means better score for social 
wellfare) than the centralized allocation approach of the simulated scenarios. 

 
The recommendation for future research in this domain is threefold: 
 

1. More research effort should be devoted to the combination between the 
communities that do research in the technical allocation and conceptualization of 
application layer networks as well as the economic allocation in future Grid and 
P2P networks. Both sides can - while commercializing the application layer 
networks - not continue without the other. 

 
2. Besides technical standardization, efforts for the development of economic 

standards and interaction schemes, e.g. based on Web Services or other concepts 
from Service Oriented Architectures, should be fostered for the practical 
utilization of future e-Infrastructures and e-Science. 

 
3. Efforts for starting real-life pilots for Grid/P2P business models and Grid/P2P 

markets should be fostered, where researchers from computer science, economics 
and business administration commonly work on dynamic, economically sound 
and vertically integrated business concepts for the dynamic utilization of 
application layer networks and other e-Infrastructures. 
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Annex A – CATNETS Repositories Settings 
 
The metric collector script builds on vxargs to perform remote ssh connections in parallel 
to all the nodes involved in the system, gathering all the raw data into a central 
repository: 
 
------------------- start of collecMetrics script ---------------------
--- 
 
#collectMetrics.sh 
#author: Isaac Chao; ichao@lsi.upc.edu 
#collects metrics and logs from the middleware in a set of machines 
listed in nodeListBS.txt and nodeListCS.txt 
#metrics and logs from an experiment are stored in a file 
metricAndLogsMiddleware_$LABEL 

#edit YOURPATH to change the remote nodes GMM path (this must be 
identical to  the PATH used for GMM deployment)                             
#edit RESULTSPATH in the case you need the experiment results to be 
stored in a different path 

# to run please execute ./collectMetrics yorName 
# this will identify the result of your experiment unambigously and 
store it in RESULTS_HISTORY_PATH 

YOURPATH=$HOME/GMM 
RESULTSPATH=$HOME/results 
RESULTS_HISTORY_PATH=$HOME/resultsHistory 
USER="user" 
TYPE="Catallactic" 

#variables 
LABEL=$(date +%Y-%m-%d-%H-%M)"_"$TYPE"_"$USER 

#erase results from previous collection 
#rm -rf $RESULTSPATH/logs 
#rm -rf $RESULTSPATH/metrics 
rm -rf $RESULTSPATH/ 

# create directories to collect metrics 
mkdir $RESULTSPATH 
mkdir $RESULTSPATH/metrics 
mkdir $RESULTSPATH/logs 
mkdir $RESULTSPATH/metrics/negotiation_start 
mkdir $RESULTSPATH/metrics/negotiation_request 
mkdir $RESULTSPATH/metrics/negotiation_end 
mkdir $RESULTSPATH/metrics/strategy_metric 
mkdir $RESULTSPATH/metrics/executionTime 

# use vxargs to collect remotelly the metrics and logs from the remote 
nodes (BSs and CSs) 
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echo " " 
echo "collecting negotiation_start metric from remote nodes via 
vxargs... " 
./vxargs -p -a nodeList.txt scp 
{}:$YOURPATH/middleware/negotiation_start.txt 
$RESULTSPATH/metrics/negotiation_start/BS{}_negotiation_start.txt 

echo " " 
echo "storing negotiation_start metrics from: 
$RESULTSPATH/metrics/negotiation_start/ into file: 
$RESULTSPATH/metrics/negotiation_start/negotiation_start.txt... " 
cat $RESULTSPATH/metrics/negotiation_start/* >> 
$RESULTSPATH/metrics/negotiation_start/negotiation_start.txt 

echo " " 
echo "collecting negotiation_request metric from remote nodes via 
vxargs... " 
./vxargs -p -a nodeList.txt scp 
{}:$YOURPATH/middleware/negotiation_request.txt 
$RESULTSPATH/metrics/negotiation_request/BS{}_negotiation_request.txt 

echo " " 
echo "storing negotiation_request metrics from: 
$RESULTSPATH/metrics/utilization/utilization.txt 
RESULSPATH/metrics/negotiation_request/negotiation_request.txt ... " 
cat $RESULTSPATH/metrics/negotiation_request/* >> 
$RESULTSPATH/metrics/negotiation_request/negotiation_request.txt 

echo " " 
echo "collecting negotiation_end metric from remote nodes via vxargs... 
"
./vxargs -p -a nodeList.txt scp 
{}:$YOURPATH/middleware/negotiation_end.txt 
$RESULTSPATH/metrics/negotiation_end/BS{}_negotiation_end.txt 

echo " " 
echo "storing negotiation_end metrics from: 
$RESULTSPATH/metrics/negotiation_end/ into file: 
$RESULTSPATH/metrics/negotiation_end/negotiation_end.txt... " 
cat $RESULTSPATH/metrics/negotiation_end/* >> 
$RESULTSPATH/metrics/negotiation_end/negotiation_end.txt 

echo " " 
echo "collecting strategy_metric  metric from remote nodes via 
vxargs... " 
./vxargs -p -a nodeList.txt scp 
{}:$YOURPATH/middleware/strategy_metric.txt 
$RESULTSPATH/metrics/strategy_metric/BS{}_strategy_metric.txt 

echo " " 
echo "storing strategy_metric metrics from: 
$RESULTSPATH/metrics/strategy_metric/ into file: 
$RESULTSPATH/metrics/sellsuccess/strategy_metric.txt... " 
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cat $RESULTSPATH/metrics/strategy_metric/* >> 
$RESULTSPATH/metrics/strategy_metric/strategy_metric.txt 

echo " " 
echo "collecting executionTime metric from remote nodes via vxargs... " 
./vxargs -p -a nodeListCS.txt scp {}:$YOURPATH/executionTime/* 
$RESULTSPATH/metrics/executionTime/ 

echo " " 
echo "storing price metrics from: $RESULTSPATH/metrics/executionTime/ 
into file: $RESULTSPATH/metrics/executionTime/executionTime.txt... " 
cat $RESULTSPATH/metrics/executionTime/* >> 
$RESULTSPATH/metrics/executionTime/executionTime.txt 

echo " " 
echo "collecting  BS_logs from remote nodes via vxargs into file:  
$RESULTSPATH/logs/log_BS{}.txt 
 ... " 
./vxargs -p -a nodeListBS.txt scp {}:$YOURPATH/middleware/log.txt 
$RESULTSPATH/logs/log_BS{}.txt 

echo " " 
echo "collecting CS_logs from remote nodes via vxargs  into file:  
$RESULTSPATH/logs/log_CS{}.txt 
 ... " 
./vxargs -p -a nodeListCS.txt scp {}:$YOURPATH/middleware/log.txt 
$RESULTSPATH/logs/log_CS{}.txt 

#storing all metrics in a single folder 
echo " " 
echo "storing  all metrics txt files in a single folder: 
$RESULTSPATH/metrics  ... " 
cp $RESULTSPATH/metrics/negotiation_start/negotiation_start.txt 
$RESULTSPATH/metrics/negotiation_request/negotiation_request.txt 
$RESULTSPATH/metrics//negotiation_end/negotiation_end.txt 
$RESULTSPATH/metrics/strategy_metric/strategy_metric.txt 
$RESULTSPATH/metrics/executionTime/executionTime.txt  
$RESULTSPATH/metrics 

#METRICS TAR: 
# includes config of the experiment, defininng it unambiguosly 
# includes the vcargs output of all controller script  executions 
(runExperiment.sh stopExperiment.sh clenAllNodes.sh) 
# includes all metrics and logs from remote nodes (BSs and CSs) 
# labels unamboguosly the experiment with user and date   
echo " " 
echo "tar all the results into a single experiment file: 
$RESULS_HISTORY_PATH/metricsAndLogsMiddleware_$LABEL.tar  ..." 
tar -czf $RESULTS_HISTORY_PATH/metricsAndLogsMiddleware_$LABEL.tgz  

BSHostingConfig.properties CSHostingConfig.properties 
$HOME/outputVxargs CatallacticBSHostingConfig.properties 
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CatallacticCSHostingConfig.properties complexService.properties 
basicService.properties resourceAgent.properties strategy.conf 
learning.conf 

------------------- end of collecMetrics script ----------------------- 
 
 

Annex B – Matlab scripts main function behavior of the 
scripts for the analysis of decentral and central 
behaviour
 
 
In order to access to agent adatabase an example could be useful. The command below access the structure 
test where are stored all the data experiment. To accessa t a particular experiment select an experiment 
label as T1184664821646. To do the same for an agent select CSA1Site8, and then one is ready to read the 
database content for the satisfaction metric : 
  
>> test.T1184664821646.CSA1Site8.Satisfaction 
 
ans = 
 
    0.2798 
    0.6084 
    1.0000 
    0.9018 
    0.5906 
    0.8965 

    0.6853 
    0.6917 
    0.8454 
    …. 
 
 
Both for central and decentral scenario agent 
metric are collected as follows: 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Below one can find a description and motivation for the schema in the table above: 

Metric CSagent BSagent RSagent 
 Allocation_rate X X X 

Satisfaction X X X 
Allocation_Time X X  

Provisioning_Time X   
Distance X X X 
Latency X X X 
Usage X X  

Messages X X X 
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Allocation Rate: 
 
CS: It is provided by the simulator as the ratio accepts / requests 
BS: It is evaluated by the scripts offline. Accepts and Rejects are selected from accepts.txt and rejects.txt 
files 
RS: It is evaluated by the scripts offline. Accepts and Rejects are selected from accepts.txt and rejects.txt 
files 
 
Satisfaction: 
 
CS: It is evaluated by the scripts offline. Selection of agent satisfaction for each negotiation ended 
successfully  
BS: It is evaluated by the scripts offline. Selection of agent satisfaction for each negotiation ended 
successfully  
RS: It is evaluated by the scripts offline. Selection of agent satisfaction for each negotiation ended 
successfully  
 
Allocation_Time     
CS: Negotiation id selected from CS_BS_mapping. Negotiation id matching from service_usage_mat. 
Once the pairs of usage are selected, it is evaluated end_time – start _time. 
BS: Selection of pairs of end and start usage time from resource_usage_mat. Usage metric is the the 
difference between end and start. 
RS: not available. 
 
Provisioning Time: 
CS: selection from complex_service_provisioning_time_mat. 
BS: not available 
RS: not available 
 
Distance: 
CS: selection from distance_mat. 
BS: selection from distance_mat. 
RS: selection from distance_mat. 
 
Usage:  
CS: selection usage metric from service_usage_mat 
BS: selection usage metric from resource_usage_mat 
RS: not available 
 
Messages: 
CS: selection from negotiation messages file 
BS: selection from negotiation messages file 
RS: selection from negotiation messages file 
 
 
Agentanalysis2 and Agentanalysis_c 

The scripts select the agent present in the experiment runs. They save the agent lists in the variables: 
final_CSA, final_BSA, final_RSA . The accepts and rejects numbers are selected from the 
accepts.txt and reject.txt files to evaluate the allocation rate for BSA and RSA. (The CSA allocation rate 
are already available in the complex_service_agent_allocation_rate.txt ). The formula is  
 
alloc.rate = accepts / (rejects + accepts) . 
 
For each CSA are selected the remaining variables: 
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Satisfaction.  
From util_satisfaction_service_buyer_decentral.txt the satisfaction’s agent entry are 
selected using the agent_id. 
 
So for example the lines: 
 
M=selcell(util_satisfaction_service_buyer_decentral_mat{k,1}{1,2},final
_CSA{i}); 
agent.Satisfaction=util_satisfaction_service_buyer_decentral_mat{k,1}{1
,5}(M); 

save in the agent.Satisfaction structure array the satisfaction entries stored in the variables
util_satisfaction_service_buyer_decentral_mat (k is the experiment number and 5 is 
the column where are stored the agent id). The exact entry indexes are selected with the selcell 
function, which take as input the 2th column  
util_satisfaction_service_buyer_decentral_mat (where are stored the agent_id) and 
the final_CSA{i} the i-th agent_id. The selcell function behavior is basically a string comparison 
between an array and a single string. 
 
  
complex_service_provisioning_time.  
From the related file the entry are selected using the agent_id. 
 
Distance 
From distance.txt the entry are selected using the agent_id. 
 
Usage 
From service_usage file are selected the agent entries. The final observation is usage = 
end.time_service_usage{i} - start.time_service_usage{i}.  
 
Messages. 
The messages are selected as the metric above, from the file negotiation_messages.txt 
 
Allocation time 
The entries are selected from the basic_service_Allocation_time.txt and as usage the  
time are computed as end.time_bas_alloc_time{i} - start.time_bas_alloc_time{i}.  
 
 
Agent Metrics saving 
 
In the line below: 
 
experiment=setfield(experiment,char(CSA{i}),agent);
 
are stored in the structure array experiment the agent metrics. This is done for all the 
CSagent population. 
 
BSA metrics 

As the CSA the main metrics are selected as below: 
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Satisfaction. 
From util_satisfaction_service_seller_decentral.txt the satisfaction’s agent entry 
are selected using the agent_id. 
 
Provisioning Time 
Not available 
 
 
Distance 
From distance.txt the entry are selected using the agent_id. 
 
Usage 
From resource_usage file are selected the agent entries. The final observation is usage = 
end.time_resource_usage{i} - start.time_resource_usage{i}.  
 
Resource allocation time 
as above for the complex_service_agents, this time entries are selected from 
resource_allocation_time.txt 
 
Messages. 
The messages are selected as the metric above, from the file negotiation_messages.txt 
 
Agent Metrics saving 
 
In the line below: 
 
experiment=setfield(experiment,char(BSA{i}),agent);
 
the agent metrics are stored in the structure array experiment. This is done for all the 
BSagent population. 
 
RSAgent 

For each CSA are selected the remaining variables: 
 
Satisfaction.  
From util_satisfaction_service_buyer_decentral.txt the satisfaction’s agent entry are 
selected using the agent_id. 

Provisioning Time 
Not available 
 
 
Distance 
From distance.txt the entry are selected using the agent_id. 

Usage 
Not available 
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Resource allocation time 
Not available 
Messages. 
The messages are selected as the metric above, from the file negotiation_messages.txt 
 
Agent Metrics saving 
 
In the line below: 
 
experiment=setfield(experiment,char(RSA{i}),agent);
 
the agent metrics are stored in the structure array experiment. This is done for all the 
BSagent population. 
 

Annex C– Matlab scripts for simulator analysis  
 
Agent_analysis2 and Agent_analysis_c 

The scripts has to select and associate the metrics to the agent, in ordet to biuld a 
complete database taking into account the metrics selected for the simualtor. In what 
follow are described the main procedures. Are shown the agentanalysis2 script code 
because the central counterpart it is identical. 
 
 
H=strfind(accepts_mat{k,1}{1,2},'CSA');                  % The command use the strfind function in order to find test 
with ‘CSA’              % string from the 2 column of the accept matrix in 
the k experiment 
     

for i=1:length(H)            % The folowing statements are to find the final list, 
    if isempty(H{i})==1           % of the CSAgents   
        g(i)=0; 
    else
        g(i)=i; 
    end
end
l=find(g); 
CSAgent=accepts_mat{k,1}{1,2}(l); 

clear M H              % Once the CSA list is available, eventually replication are 
deleted and               % saved in the variable final_CSA 
H_com=l; 
j=0; 
for i=1:length(CSAgent) 
    if H_com(i)>0 
        j=j+1; 
         M=selcell(CSAgent,CSAgent(i));         
         final_CSA{j}=CSAgent(i); 
         H_com(M)=0; 
    end
end

number_agent=setfield(number_agent,'CSA',length(final_CSA)) %% This statement set the field in the structure 
number_agent with the        %% number of agent 

 
The next lines are to selet and associate the data to the agent: 
 
 
for i=1:length(final_CSA)  
   M=selcell(complex_service_agent_allocation_rate_mat{k,1}{1,2},final_CSA{i});  %% A) It selects index of 
complexs.alloc.rate                                                                                                                
                         array 
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                                                                                 %%    where is present the 
'final_CSA{i}'
                                                                                  
   agent.Allocation_rate=complex_service_agent_allocation_rate_mat{k,1}{1,4}(M); %% B) It gives to the agent structure 
the selected                  Allocation Rate
                                                                                 %% In what follows are executed the 
same steps as in               A) and B)  
           %% See below for the description of 
selcell function 

   M=selcell(util_satisfaction_service_buyer_decentral_mat{k,1}{1,2},final_CSA{i});  
   agent.Satisfaction=util_satisfaction_service_buyer_decentral_mat{k,1}{1,5}(M); 
   M=selcell(complex_service_provisioning_time_mat{k,1}{1,2},final_CSA{i});  
   agent.Provisioning_Time=complex_service_provisioning_time_mat{k,1}{1,5}(M); 
   M=selcell(distance_mat{k,1}{1,2},final_CSA{i});  
   agent.Distance=distance_mat{k,1}{1,5}(M); 
   M=selcell(latency_mat{k,1}{1,2},final_CSA{i});  
   agent.Latency=latency_mat{k,1}{1,5}(M); 
   M=selcell(service_usage_mat{k,1}{1,2},final_CSA{i});       %% the usage metric evaluation start 
here: M is the            %% array index where one 
can find the Final_CSA 
   usacom=service_usage_mat{k,1}{1,1}(M); 
   o=0; 

%% The usage metric selection is more complicated: It is needed to be
%% selected the usage start and end from service_usage_mat variable. Then
%% the following procedure evaluate the difference for each pair of start
%% and end

if length(M)==1         %% Usually M should be a 2 elements 
array. But in           %% this case length of M =1 
and the end value is           %% substitute 
with the simulation end time 
       usa=simulation_time_mat{k,1}{1,5}(2)-usacom; 

else
       for j=2:2:length(M)        %% Here for each pair of usage 
observation (end and           %% start) the usa 
variable it is creatred. On it are           %% 
stored the usage time obseravtions  
           o=o+1; 
           usa(o)=usacom(j)-usacom(j-1); 
       end

end

if isempty(M)==0   
      agent.Usage=usa; 

else
      agent.Usage=[]; 

end
    
   clear usa usacom
   M=selcell(CS_BS_Mapping_mat{k,1}{1,2},final_CSA{i});  
   Negotiation=CS_BS_Mapping_mat{k,1}{1,5}(M); 

   P=selcell(negotiation_messages_mat{k,1}{1,2},final_CSA{i}); 
   neg=negotiation_messages_mat{k,1}{1,8}(P); 
   agent.Messages=ceil(neg); 
    
   clear neg
    
%% The allocation time metric selection is more complicated: It is needed to be
%% selected the usage start and end from service_usage_mat variable. Then
%% the following procedure evaluate the difference for each pair of start
%% and end
   P=selcell(basic_service_allocation_time_mat{k,1}{1,2},final_CSA{i}); 
   n=0; 

for j=2:2:length(P) 
      n=n+1; 
      csa_alloc_time1=basic_service_allocation_time_mat{k,1}{1,1}(P(j)); 
      csa_alloc_time2=basic_service_allocation_time_mat{k,1}{1,1}(P(j-1)); 
      c_alloc_t(n)=csa_alloc_time1-csa_alloc_time2; 

end
if isempty(P)==0 

   agent.Allocation_Time=c_alloc_t; 
else

   agent.Allocation_Time=[]; 
end

   clear P
   clear c_alloc_t
%% Final CSA metric storage    

   CSA{i}=regexprep(final_CSA{i}, '@', '');         
   experiment=setfield(experiment,char(CSA{i}),agent);   %% This set the experiment structure 
with agent data 
   clear Negotiation
end

Agent_eval, Agent_eval_c 
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The scripts collects all the agent data and aggregate them in the upper level metric 
indicators. 
 
The script asks initially the number of experiment to analyze and if the final comparison 
has to be done (If yes it saves in a folder the main data to compare them with other 
scenarios). For each experiment and agent the script evaluate the total number messages 
for each agent.  
 
Normalization 

for i=2:length(fieldnames(test.(testcom))) 
    agent_allocation_rate{i-1}=test.(testcom).(char(individual(i))).Allocation_rate; 
    agent_allocation_time{i-1}=exp(-test.(testcom).(char(individual(i))).Allocation_Time*0.0001); 
    agent_satisfaction{i-1}=test.(testcom).(char(individual(i))).Satisfaction; 
    agent_provisioning{i-1}=exp(-test.(testcom).(char(individual(i))).Provisioning_Time*0.0001); 
    agent_distance{i-1}=test.(testcom).(char(individual(i))).Distance./(length(fieldnames(test.(testcom)))-1); 
    agent_latency{i-1}=test.(testcom).(char(individual(i))).Latency./simulation_time_mat{1,1}{1,1}(2); 
    agent_usage{i-1}=exp(-test.(testcom).(char(individual(i))).Usage*0.0001); 
    agent_messages{i-1}=test.(testcom).(char(individual(i))).Messages./n_mess(i); 
end

test.(testcom).(char(individual(i))) selects the metrics for the agent
individual(i). In the agent_allocation rate are then saved the values for agent i Allocation rate.
Then the normalization for the time metrics is (WP4 D1 pag.31)

exp(-time*Beta), 

where Beta is a parameter of time. This formula is applied also for Provisioning_Time and 
Usage. 

Finally, Agent Message indicator is normalized taking the ratio with the total message agent number
(n_mess(i)), and The distance is obtained with the total agent number
(length(fieldnames(test.(testcom)))-1).  

Upper level indicators 
for i=1:length(fieldnames(test.(testcom)))-1 
    m_alloc_time(i)=mean(agent_allocation_time{1,i}); 
    m_satisfaction(i)=mean(agent_satisfaction{1,i}); 
    m_provisioning(i)=mean(agent_provisioning{1,i}); 
    m_distance(i)=mean(agent_distance{1,i}); 
    m_latency(i)=mean(agent_latency{1,i}); 
    m_usage(i)=mean(agent_usage{1,i}); 
    m_messages(i)=mean(agent_messages{1,i}); 

    std_alloc_time(i)=std(agent_allocation_time{1,i}); 
    std_satisfaction(i)=std(agent_satisfaction{1,i}); 
    std_provisioning(i)=std(agent_provisioning{1,i}); 
    std_distance(i)=std(agent_distance{1,i}); 
    std_latency(i)=std(agent_latency{1,i}); 
    std_usage(i)=std(agent_usage{1,i}); 
    std_messages(i)=std(agent_messages{1,i}); 

end

The above lines evaluate the standard deviation and mean indicators for the main metrics. This script show 
the indicator for each agent. 

%% Second layer: mean values over agents

    f_allocation_rate(k)=nanmean(a_l_r); 
    f_allocation_time(k)=nanmean(m_alloc_time); 
    f_satisfaction(k)=nanmean(m_satisfaction); 
    f_provisioning(k)=nanmean(m_provisioning); 
    f_distance(k)=nanmean(m_distance); 
    f_latency(k)=nanmean(m_latency); 
    f_usage(k)=nanmean(m_usage); 
    f_messages(k)=nanmean(m_messages); 

    f_std_allocation_rate(k)=nanstd(a_l_r); 
    f_std_time(k)=nanmean(std_alloc_time); 
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    f_std_satisfaction(k)=nanmean(std_satisfaction); 
    f_std_provisioning(k)=nanmean(std_provisioning); 
    f_std_distance(k)=nanmean(std_distance); 
    f_std_latency(k)=nanmean(std_latency); 
    f_std_usage(k)=nanmean(std_usage); 
    f_std_messages(k)=nanmean(std_messages); 

This lines compute the final index mean and standard deviation, giving a single indicator for the 
experiment. It is the value plotted in the spider plots. 
 
Finally the main indicators ODM, IC, std_IC, std_ODM, and the final L 

ODM(k)=1-(f_allocation_rate(k)+f_satisfaction(k)+      f_allocation_time(k)+f_provisioning(k))/4; 
s_ODM(k)=(f_std_allocation_rate(k)+ f_std_time(k)+f_std_satisfaction(k)+f_std_provisioning(k))/4; 
IC(k)=(f_distance(k)+f_messages(k)+f_usage(k))/3; 
s_IC(k)=(f_std_distance(k)+f_std_messages(k)+f_std_usage(k))/3; 
     
%% Final index
final(k)=0.5*(ODM(k))+0.5*s_ODM(k)+0.5*IC(k)+0.5*s_IC(k). 

 

Annex D – setup of the strategy for the experiment 
analyzing the effect on message failure on the catallactic 
strategy
 

cs.conf: 
 
cs1 bs3  
cs2 bs1 bs2  
cs3 bs1 bs4 
 
bs.conf 
bs1 bs1 bronze r1 3 r2 3 
bs2 bs2 gold r4 2 
bs3 bs3 bronze r1 25 r3 10 
bs4 bs4 bronze r4 33 r5 25 
 
arb.conf 
arb1 r1 50 r2 30 r3 30 
arb2 r4 50 r5 50 
arb3 r1 50 r3 44 r4 45 
 
market_decentral.properties 
 
########################## 
# decentral market setup # 
########################## 
 
 
 
################## 
# Basic Services # 
################## 
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################ 
#bs2 
################ 
 
bs2.seller.minPrice = 30 
bs2.seller.maxPrice = 35 
bs2.buyer.minPrice = 30 
bs2.buyer.maxPrice = 35 
bs2.hard.lower.limit = 15 
bs2.hard.upper.limit = 45 
 
bs2.resource.itemids = r4_0 
 
 
################ 
#bs3 
################ 
 
bs3.seller.minPrice = 55 
bs3.seller.maxPrice = 65 
bs3.buyer.minPrice = 55 
bs3.buyer.maxPrice = 65 
bs3.hard.lower.limit = 25 
bs3.hard.upper.limit = 85 
 
bs3.resource.itemids = r1r3_0 
 
 
################ 
#bs1 
################ 
 
bs1.seller.minPrice = 55 
bs1.seller.maxPrice = 65 
bs1.buyer.minPrice = 55 
bs1.buyer.maxPrice = 65 
bs1.hard.lower.limit = 25 
bs1.hard.upper.limit = 85 
 
bs1.resource.itemids = r1r2_0 
 
 
################ 
#bs4 
################ 
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bs4.seller.minPrice = 55 
bs4.seller.maxPrice = 65 
bs4.buyer.minPrice = 55 
bs4.buyer.maxPrice = 65 
bs4.hard.lower.limit = 25 
bs4.hard.upper.limit = 85 
 
bs4.resource.itemids = r4r5_0 
 
 
#################### 
#     Products     # 
#################### 
 
 
 
#################### 
#r1r2_0 
#################### 
 
r1r2_0.seller.minPrice =50.0 
r1r2_0.seller.maxPrice =60.0 
r1r2_0.buyer.minPrice =50.0 
r1r2_0.buyer.maxPrice =60.0 
r1r2_0.hard.lower.limit =20.0 
r1r2_0.hard.upper.limit =80.0 
r1r2_0.baseunit.r1= 1 
r1r2_0.baseunit.r2= 1 
r1r2_0.resourceids = r1 r2  
 
#################### 
#r1r3_0 
#################### 
 
r1r3_0.seller.minPrice =50.0 
r1r3_0.seller.maxPrice =60.0 
r1r3_0.buyer.minPrice =50.0 
r1r3_0.buyer.maxPrice =60.0 
r1r3_0.hard.lower.limit =20.0 
r1r3_0.hard.upper.limit =80.0 
r1r3_0.baseunit.r1= 1 
r1r3_0.baseunit.r3= 1 
r1r3_0.resourceids = r1 r3  
 
#################### 
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#r4_0 
#################### 
 
r4_0.seller.minPrice =25.0 
r4_0.seller.maxPrice =30.0 
r4_0.buyer.minPrice =25.0 
r4_0.buyer.maxPrice =30.0 
r4_0.hard.lower.limit =10.0 
r4_0.hard.upper.limit =40.0 
r4_0.baseunit.r4= 1 
r4_0.resourceids = r4  
 
#################### 
#r4r5_0 
#################### 
 
r4r5_0.seller.minPrice =50.0 
r4r5_0.seller.maxPrice =60.0 
r4r5_0.buyer.minPrice =50.0 
r4r5_0.buyer.maxPrice =60.0 
r4r5_0.hard.lower.limit =20.0 
r4r5_0.hard.upper.limit =80.0 
r4r5_0.baseunit.r4= 1 
r4r5_0.baseunit.r5= 1 
r4r5_0.resourceids = r4 r5  
 
#################### 
#  arb item ids   # 
#################### 
 
arb.itemids =r1r2_0 r1r3_0 r4_0 r4r5_0 
 
parameters_catnets.conf 
#
# This file contains all the parameters required for OptorSim 
# using the Properties class to store this information. 
#
# Aln configuration files 

aln.topology.file = examples/300A_500N_W1/topology.conf 
aln.bs.file = examples/300A_500N_W1/bs.conf 
aln.arb.file = examples/300A_500N_W1/arb.conf 
cs.configuration.file = examples/300A_500N_W1/cs.conf 

#Number of complex services to be submitted 
number.complexservices = 10000 
#
# The categories of users available are: 
# (1) Simple - wait cs delay between submitting CSs 
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# (2) Random - wait uniform random time between 0 and 2 * cs delay 
users = 1 
#
# The choice of the policy for the ComplexServiceDispatcher is: 
# (1) random 
# (2) queue length  
#
policy = 1 
#
# The cs delay is the interval in ms between the 
ComplexServiceDispatcher 
# submitting each CS. 
#
#cs.delay = 600 
cs.delay = 1000 
#
# The choice of access pattern generators is: 
# (1) SequentialAccessGenerator - BSs are accessed in order. 
# (2) RandomAccessGenerator - BSs are accessed using a flat random 
#        distribution. 
# (3) RandomWalkUnitaryAccessGenerator - BSs are accessed using a 
#        unitary random walk. 
# (4) RandomWalkGaussianAccessGenerator - BSs are accessed using a 
#        Gaussian random walk. 
# (5) RandomZipfAccessGenerator - BSs are accessed using a 
#         Zipf distribution 
#
access.pattern.generator = 1 
# Shape parameter for Zipf-like distribution > 0 
shape = 0.85 
#
# The random seed for deciding which cs are chosen can be random or 
# fixed. 
#
random.seed = no 
#
# The maximum queue size is the maximum number of CS the CsHandler 
# will keep in its queue. 
#
max.queue.size = 2000 
#
# The time (in ms) it takes each BS to be executed 
#
#bs.execution.time = 800 
bs.execution.time = 1000 
#
# The choice of market model is: 
# (1) Catallactic 
# (2) Centralised 
market.model = 1 
########################################### 
# central market parameters               # 
########################################### 

# Clearing Policy for the Service Market 
# (1) Call Market 
# (2) Continuous  
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market.central.service.clear = 2 

# Call Market Clearing Interval for the Service Market 
# Defines after how many ms the market will be cleared 
market.central.service.clearinterval = 400 

# Clearing Policy for the Resource Market 
# (1) Call Market 
# (2) Continuous  
market.central.resource.clear = 1 

# Call Market Clearing Interval for the Resource Market 
# Defines after how many ms the market will be cleared 
market.central.resource.clearinterval = 400 

########################################### 
# decentralized market parameters         # 
########################################### 

# market initialisation 
market.decentral.file = 
examples/300A_500N_W1/market_decentral.properties 

# randomize initial price range 
price.range.randomize = 0 

# min price range 
#price.range.min = 5 

# connect the prices of the service market and resource market 
# if swichted on, the basic service seller's outcome is the budget  
# of the basic service buyer on the resource market 
# values: yes/no 
#markets.connect = no 
markets.connect = yes 

# resource model selection (resource) 
# values: shared, dedicated 
resource.model = dedicated 

# how to select proposals 
# 0 = fifo - one shot (working) 
# 1 = fifo - multi-shot (NOT working) 
# 2 = best price - one shot (working) 
# 3 = best price - multi shot (NOT working) 
cfp.selection.model = 0 

# maximum number of co-allocated resources 
max.coallocation = 0 

############################################### 
# negotiation stuff                           # 
# THIS PERHAPS HAS TO BE MODIFIED FOR CATNETS # 
############################################### 

# TODO document this parameter 
negotiation.flag = yes 
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# actually the number of sites contacted 
cfp_ann.hop.count = 3 

# actually the number of sites contacted 
learning.hop.count = 3 

# discovery timeout  
discovery.timeout = 500 

# negotiation timeout 
timeout = 5000 
timeout.reduction.factor = 0.5 

# size of messages (in Kbytes) - size = 0  
# implies instantaneous message delivery 
message.size = 2 
#

 
STRATEGIES: 
 
Strategy 1:  
################## 
# setup learning # 
################## 
 
# send plumages 
maturityThreshold = 5 
#maturityThreshold = 1 
 
# receive plumages  
courterThreshold = 20 
#courterThreshold = 1 
#courterThreshold = 5 
 
# crossover probability 
crossoverProbability = 0.20 
 
# mutation probability 
#mutationProbability = 0.05 
#mutationProbability = 0.25 
mutationProbability = 0.7 
 
 
# ring size 
ringSize = 10000 
 
# crossOverSelectionModel 
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# (0) select plumages which are better than my plumage 
# (1) select best received plumage 
#crossOverSelectionModel = 1 
crossOverSelectionModel = 0 
 
# init float gene 
gaussWidth = 0.1 
min = 0.001 
max = 0.999 
 
################## 
# setup genotype # 
################## 
 
# randomize genotype 
# values: yes/no 
#genotype.randomize = no 
genotype.randomize = yes 
 
# if randomize == no, use this genotype 
genotype.acquisitiveness = 0.05 
genotype.satisfaction = 0.99 
genotype.priceStep = 0.5 
genotype.priceNext = 0.05 
genotype.weightMemory = 0.9 
 
Strategy 2: 
################## 
# setup learning # 
################## 
 
# send plumages 
maturityThreshold = 5 
#maturityThreshold = 1 
 
# receive plumages  
courterThreshold = 20 
#courterThreshold = 1 
#courterThreshold = 5 
 
# crossover probability 
crossoverProbability = 0.20 
 
# mutation probability 
mutationProbability = 0.05 
#mutationProbability = 0.25 
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#mutationProbability = 0.7 
 
 
# ring size 
ringSize = 10000 
 
# crossOverSelectionModel 
# (0) select plumages which are better than my plumage 
# (1) select best received plumage 
#crossOverSelectionModel = 1 
crossOverSelectionModel = 0 
 
# init float gene 
gaussWidth = 0.01 
min = 0.001 
max = 0.999 
 
################## 
# setup genotype # 
################## 
 
# randomize genotype 
# values: yes/no 
genotype.randomize = no 
#genotype.randomize = yes 
 
# if randomize == no, use this genotype 
genotype.acquisitiveness = 0.05 
genotype.satisfaction = 0.99 
genotype.priceStep = 0.5 
genotype.priceNext = 0.05 
genotype.weightMemory = 0.9 
 

Annex F: Scenario config for the “Second experiment” 
 
Scenario config for Brite:  
GUI_GEN.conf 
#This config file was generated by the GUI.  
 
BriteConfig 
 
BeginModel 
 Name =  3   #Router Waxman = 1, AS Waxman = 3 
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 N = 2000   #Number of nodes in graph 
 HS = 1000   #Size of main plane (number of squares) 
 LS = 100   #Size of inner planes (number of squares) 
 NodePlacement = 1  #Random = 1, Heavy Tailed = 2 
 GrowthType = 1   #Incremental = 1, All = 2 
 m = 2    #Number of neighboring node each new node connects to. 
 alpha = 0.15   #Waxman Parameter 
 beta = 0.2   #Waxman Parameter 
 BWDist = 2   #Constant = 1, Uniform =2, HeavyTailed = 3, Exponential 
=4 
 BWMin = 1024.0 
 BWMax = 1024.0 
EndModel 
 
BeginOutput 
 BRITE = 1   #1=output in BRITE format, 0=do not output in BRITE format 
 OTTER = 0   #1=Enable visualization in otter, 0=no visualization 
EndOutput 
 
GUI_GEN_OPTROSIM.conf 
#This config file was generated by the GUI.  
BeginOptorSimModel 
 ResNum = 3   #Resources Number 
 ResMaxQuantity = 100   #Resource Max Quantity 
 ARBNumber = 3   #Available Resource Bundle Number 
 ARBMaxResNum = 3   #Available Resource Bundle Max Number 
 BSNumber = 3   #Basic Service Number 
 CSNumber = 3   #Complex Service Number 
 CSMaxCardinality = 3   #Complex Service Max Cardinality 
 FailProbMin = 0.0  #Node Min Failure probability 
 FailProbMax = 0.0  #Node Max Failure probability 
 QualityNumber = 4   #Quantity Number 
 Quality0 = platinum 
 Quality1 = gold 
 Quality2 = silver 
 Quality3 = bronze 
EndOptorSimModel 
 
BeginOptorSimModel2 
 allocationMechanism = 1   #0 Centralized; 1 Catallactic 
 agentsNum = 2000   #Agents Number 
 csSchedule = 0   #CS Schedule 0= All, 1= random set 
 csaPercentage = 20   # Percentage of CSAs 
 bsaPercentage = 40   # Percentage of BSAs 
 raPercentage = 40   # Percentage of RAs 
 bsaDistrProb = 0   # BSA Ditr. of Prob. 
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 csaDistrProb = 0   # CSA Ditr. of Prob. 
 raDistrProb = 0   # RA Ditr. of Prob. 
EndOptorSimModel2 
 
BeginOptorSimModel_BSTable 
 bs1 = 33.0 
        bs2 = 33.0 
        bs3 = 33.0 
EndOptorSimModel_BSTable 
 
BeginOptorSimModel_ARBTable 
 arb1 = 33.0 
        arb2 = 33.0 
        arb3 = 33.0 
EndOptorSimModel_ARBTable 
 
CATNETS Simulator configuration 
 
CS.conf 
cs1 bs2  
cs2 bs1 bs3 bs2  
cs3 bs2 bs3 
 
BS.conf 
bs1 bs1 bronze r1 20 r3 3 
bs2 bs2 bronze r2 52 
bs3 bs3 bronze r2 6 r3 1 
 
ARB.conf 
arb1 r1 21 r3 10 
arb2 r2 25 r3 1 
arb3 r2 59 
 
 
Market_decemtralized.properties 
 
########################## 
# decentral market setup # 
########################## 
 
 
################ 
#bs1 
################ 
 
bs1.seller.minPrice = 55 
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bs1.seller.maxPrice = 65 
bs1.buyer.minPrice = 55 
bs1.buyer.maxPrice = 65 
bs1.hard.lower.limit = 25 
bs1.hard.upper.limit = 85 
 
bs1.resource.itemids = r1r3 
 
 
################ 
#bs2 
################ 
 
bs2.seller.minPrice = 30 
bs2.seller.maxPrice = 35 
bs2.buyer.minPrice = 30 
bs2.buyer.maxPrice = 35 
bs2.hard.lower.limit = 15 
bs2.hard.upper.limit = 45 
 
bs2.resource.itemids = r2 
 
 
################ 
#bs3 
################ 
 
bs3.seller.minPrice = 55 
bs3.seller.maxPrice = 65 
bs3.buyer.minPrice = 55 
bs3.buyer.maxPrice = 65 
bs3.hard.lower.limit = 25 
bs3.hard.upper.limit = 85 
 
bs3.resource.itemids = r2r3 
 
 
#################### 
#     Products     # 
#################### 
 
 
 
#################### 
#r2 
#################### 
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r2.seller.minPrice =25.0 
r2.seller.maxPrice =35.0 
r2.buyer.minPrice =25.0 
r2.buyer.maxPrice =35.0 
r2.hard.lower.limit =20.0 
r2.hard.upper.limit =40.0 
r2.baseunit.r2= 52 
r2.resourceids = r2  
 
#################### 
#r1r3 
#################### 
 
r1r3.seller.minPrice =50.0 
r1r3.seller.maxPrice =60.0 
r1r3.buyer.minPrice =50.0 
r1r3.buyer.maxPrice =60.0 
r1r3.hard.lower.limit =20.0 
r1r3.hard.upper.limit =80.0 
r1r3.baseunit.r1= 20 
r1r3.baseunit.r3= 3 
r1r3.resourceids = r1 r3  
 
#################### 
#r2r3 
#################### 
 
r2r3.seller.minPrice =50.0 
r2r3.seller.maxPrice =60.0 
r2r3.buyer.minPrice =50.0 
r2r3.buyer.maxPrice =60.0 
r2r3.hard.lower.limit =20.0 
r2r3.hard.upper.limit =80.0 
r2r3.baseunit.r2= 6 
r2r3.baseunit.r3= 1 
r2r3.resourceids = r2 r3 
 
#################### 
#  arb item ids   # 
#################### 
 
arb.itemids =r1r3 r2 r2r3 
 
 
Parameter_catnets.conf 
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# 
# This file contains all the parameters required for OptorSim 
# using the Properties class to store this information. 
# 
# Aln configuration files 
 
aln.topology.file = examples/2000A_2000N_1/topology.conf 
aln.bs.file = examples/2000A_2000N_1/bs.conf 
aln.arb.file = examples/2000A_2000N_1/arb.conf 
cs.configuration.file = examples/2000A_2000N_1/cs.conf 
 
 
#Number of complex services to be submitted 
number.complexservices = 100000 
# 
# The categories of users available are: 
# (1) Simple - wait cs delay between submitting CSs 
# (2) Random - wait uniform random time between 0 and 2 * cs delay 
users = 1 
# 
# The choice of the policy for the ComplexServiceDispatcher is: 
# (1) random 
# (2) queue length  
#  
policy = 1 
# 
# The cs delay is the interval in ms between the ComplexServiceDispatcher 
# submitting each CS. 
# 
#cs.delay = 600 
cs.delay = 1000 
# 
# The choice of access pattern generators is: 
# (1) SequentialAccessGenerator - BSs are accessed in order. 
# (2) RandomAccessGenerator - BSs are accessed using a flat random 
#        distribution. 
# (3) RandomWalkUnitaryAccessGenerator - BSs are accessed using a 
#        unitary random walk. 
# (4) RandomWalkGaussianAccessGenerator - BSs are accessed using a 
#        Gaussian random walk. 
# (5) RandomZipfAccessGenerator - BSs are accessed using a 
#         Zipf distribution 
# 
access.pattern.generator = 1 
# Shape parameter for Zipf-like distribution > 0 
shape = 0.85 
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# 
# The random seed for deciding which cs are chosen can be random or 
# fixed. 
# 
random.seed = no 
# 
# The maximum queue size is the maximum number of CS the CsHandler 
# will keep in its queue. 
# 
max.queue.size = 20000 
# 
# The time (in ms) it takes each BS to be executed 
# 
#bs.execution.time = 800 
bs.execution.time = 1000 
# 
# The choice of market model is: 
# (1) Catallactic 
# (2) Centralised 
market.model = 1 
########################################### 
# central market parameters               # 
########################################### 
 
# Clearing Policy for the Service Market 
# (1) Call Market 
# (2) Continuous  
market.central.service.clear = 2 
 
# Call Market Clearing Interval for the Service Market 
# Defines after how many ms the market will be cleared 
market.central.service.clearinterval = 400 
 
# Clearing Policy for the Resource Market 
# (1) Call Market 
# (2) Continuous  
market.central.resource.clear = 1 
 
# Call Market Clearing Interval for the Resource Market 
# Defines after how many ms the market will be cleared 
market.central.resource.clearinterval = 400 
 
########################################### 
# decentralized market parameters         # 
########################################### 
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# market initialisation 
market.decentral.file = examples/2000A_2000N_1/market_decentral.properties 
 
# randomize initial price range 
price.range.randomize = 0 
 
# min price range 
#price.range.min = 5 
 
# connect the prices of the service market and resource market 
# if swichted on, the basic service seller's outcome is the budget  
# of the basic service buyer on the resource market 
# values: yes/no 
#markets.connect = no 
markets.connect = yes 
 
# resource model selection (resource) 
# values: shared, dedicated 
resource.model = dedicated 
 
# how to select proposals 
# 0 = fifo - one shot (working) 
# 1 = fifo - multi-shot (NOT working) 
# 2 = best price - one shot (working) 
# 3 = best price - multi shot (NOT working) 
cfp.selection.model = 0 
 
# maximum number of co-allocated resources 
max.coallocation = 0 
 
############################################### 
# negotiation stuff                           # 
# THIS PERHAPS HAS TO BE MODIFIED FOR CATNETS # 
############################################### 
 
# TODO document this parameter 
negotiation.flag = yes 
 
# actually the number of sites contacted 
cfp_ann.hop.count = 3 
 
 
# actually the number of sites contacted 
learning.hop.count = 10 
 
# discovery timeout  
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discovery.timeout = 500 
 
# negotiation timeout 
timeout = 5000 
timeout.reduction.factor = 0.5 
 
# size of messages (in Kbytes) - size = 0  
# implies instantaneous message delivery 
message.size = 2 
# 
# Outputs negotiation information to negotiation.log. Can slow the 
# simulation down a little bit. 
# 
negotiation.log = yes 
# 
############## 
# Time Model # 
############## 
# 
# use advanced grid time (yes) or not (no) 
# 
time.advance = yes 
# 
#################################### 
# Output path for metrics log file # 
#################################### 
metrics.path = ./log/ 
# 
# 
########################################################## 
## THE FOLLOWING PARAMETERS COULD BE USELESS FOR CATNETS # 
########################################################## 
############################# 
# BandwidthReader stuff     # 
############################# 
# flag to switch background traffic on or off 
background.bandwidth = no 
# 
# The directory in which your background bandwidth data files are stored 
data.directory = examples/bw_data/edg_testbed/ 
# 
# The datafile to use when no other background data are available.  
# For EDG, lyon_to_cern_ave.numbers is good; for UK dl_to_ncl_ave.numbers is good. 
default.background = lyon_to_cern_ave.numbers 
#  
# The time of day used as starting point. Should be in hours, with minutes after 
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# the decimal point e.g. 22.5 for 22:30, and must be on the hour or half-hour. 
time.of.day = 0.0 
# 
############# 
# GUI stuff # 
############# 
# 
# Options to use the GUI and histogram browser 
# 
# gui = no 
# histogram.browser = no 
# 
# The file with the map information 
# 
# map.info = examples/gui/europe.coords 
# 
############## 
# Statistics # 
############## 
# 
# Level of statistics to be printed out at the end of the simulation 
# (1) None 
# (2) Simple - only stats for the whole grid 
# (3) Full - full stats for all elements on all sites 
# 
# statistics = 3 
# 
# No background traffic 
bandwidth.configuration.file = examples/edg_testbed_bandwidths.conf 
# 
# automatically multiplied by scale factor 
# 
# dt = 1000000 
# 
 
Learning configuration: 
 
################## 
# setup learning # 
################## 
 
# send plumages 
maturityThreshold = 5 
#maturityThreshold = 1 
 
# receive plumages  
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courterThreshold = 5 
#courterThreshold = 1 
#courterThreshold = 5 
 
# crossover probability 
crossoverProbability = 0.20 
 
# mutation probability 
#mutationProbability = 0.05 
#mutationProbability = 0.25 
mutationProbability = 0.7 
 
 
# ring size 
ringSize = 10000 
 
# crossOverSelectionModel 
# (0) select plumages which are better than my plumage 
# (1) select best received plumage 
#crossOverSelectionModel = 1 
crossOverSelectionModel = 0 
 
# init float gene 
gaussWidth = 0.01 
min = 0.001 
max = 0.999 
 
################## 
# setup genotype # 
################## 
 
# randomize genotype 
# values: yes/no 
#genotype.randomize = no 
genotype.randomize = yes 
 
# if randomize == no, use this genotype 
genotype.acquisitiveness = 0.05 
genotype.satisfaction = 0.99 
genotype.priceStep = 0.5 
genotype.priceNext = 0.05 
genotype.weightMemory = 0.9 
 



ISSN

This report describes the work done and results 
obtained in third year of the CATNETS project. 
Experiments carried out with the different 
configurations of the prototype are reported and 
simulation results are evaluated with the 
CATNETS metrics framework. The applicability of 
the Catallactic approach as market model for 
service and resource allocation in application 
layer networks is assessed based on the results 
and experience gained both from the prototype 
development and simulations.
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