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Abstract
We develop a globalized Proximal Newton method for composite and possibly 
non-convex minimization problems in Hilbert spaces. Additionally, we impose less 
restrictive assumptions on the composite objective functional considering differenti-
ability and convexity than in existing theory. As far as differentiability of the smooth 
part of the objective function is concerned, we introduce the notion of second order 
semi-smoothness and discuss why it constitutes an adequate framework for our 
Proximal Newton method. However, both global convergence as well as local accel-
eration still pertain to hold in our scenario. Eventually, the convergence properties of 
our algorithm are displayed by solving a toy model problem in function space.

Keywords  Non-smooth Optimization · Optimization in Hilbert space · Proximal 
Newton

Mathematics Subject Classification  49M15 · 49M37

1  Introduction

Subject of this work is to generalize the idea of Proximal Newton methods for com-
posite objective functions to a Hilbert space setting, aiming for the efficient solution 
of non-convex, non-smooth variational problems. The optimization problem reads
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where f ∶ X → ℝ is assumed to be smooth in some adequate sense and g ∶ X → ℝ 
is possibly not. The domain of both f and g is given by a subset of an arbitrary Hil-
bert space X.

Originally, Fukushima and Mine introduced the Proximal Gradient method in 
the Euclidean ℝn for optimization problems of the above form, cf. [8]. More spe-
cifically, this early version of the Proximal Gradient method constitutes a special 
case of a procedure studied by Tseng and Yun, cf. [27]. Further research showed 
that variously defined line search techniques lead to global convergence of the 
algorithm even under appropriate inexactness conditions for the solutions of the 
subproblem for step computation, cf. for example [3, 7, 9, 15, 22, 24]. Addition-
ally, local acceleration results have been achieved by utilizing second order infor-
mation of the smooth part close to optimal solutions of the original minimization 
problem.

Obviously, further assumptions on the form of the composite objective func-
tional open the door to more specific adaptions of the solution algorithm. For 
example in [6, 17, 25], the authors assume convexity and self-concordance of 
the smooth part f in order to employ damped Proximal Newton methods. Alter-
natively, reformulations of the original minimization problem can be useful. 
As a consequence, methods which have been proven to work for other problem 
classes can also be applied in our case. For example in [4, 5, 18] fixed point algo-
rithms were employed or consider [1] for a reformulation of (1) as a constrained 
problem.

A different point of view onto this class of problems was taken by Milzarek 
and Ulbrich in [20]. For g(x) ∶= �‖‖x‖‖1 with 𝜆 > 0 , they considered a semi-smooth 
Newton method with filter globalization which Milzarek later on generalized to 
work also for arbitrary convex functions for g, cf. [19].

Recently, Kanzow and Lechner discussed a globalized, inexact and possi-
bly non-convex Proximal Newton-type method in Euclidean space ℝn , cf. [13]. 
There, the algorithm resorted to Proximal Gradient steps in the case of insuffi-
cient descent together with a line-search procedure in order to achieve global con-
vergence and cope with lacking convexity of the objective functional.

The work of Lee and Saunders [16] gives an instructive overview of a generic 
version of the Proximal Newton method as well as several convergence results. 
Our contributions beyond [16] can be summarized as follows: Most obviously, 
we generalize the Euclidean space setting to a Hilbert space one. Additionally, in 
[16] only elliptic bilinear forms for the second order model are considered and the 
non-smooth part g is required to be convex. We use a more general framework of 
convexity assumptions for the composite objective function F. Furthermore, we 
do not demand second order differentiability with Lipschitz-continuous second 
order derivative of the smooth part f but instead settle for adequate semi-smooth-
ness assumptions. We replace the simple line-search approach for globalization 
with a more sophisticated proximal arc-search method which additionally softens 
the convexity assumptions on the objective functional. Eventually, we establish a 

(1)min
x∈X

F(x) ∶= f (x) + g(x)
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more refined version of the global convergence proof and also give a dual inter-
pretation for the stopping criterion of the algorithm. To our knowledge, also the 
notion of second order semi-smoothness for f is yet to appear in literature. On 
the other hand, our work here covers neither inexact nor Proximal Quasi-Newton 
methods.

An important practical aspect of splitting methods, such as Proximal Newton, is that 
the non-smooth part g of the composite objective functional F yields a proximity oper-
ator proxg that can be evaluated easily. This is, for example, the case, if g and also the 
employed scalar product have diagonal structure. Then the solution of the subproblem 
within the proximity operator can be computed cheaply in a componentwise fashion. In 
function space problems, in particular if Sobolev spaces are involved, it is known that 
instead of a diagonal structure, a multi-level structure should be used in order to reflect 
the topology of the function space properly. Diagonal proximal operators would suffer 
from mesh-dependent condition numbers. In our numerical computations we therefore 
employ non-smooth multi-grid techniques to compute the Proximal Newton steps, in 
particular Truncated Non-smooth Newton Multigrid Methods, cf. [10].

Let us first specify the setting in which we will discuss the convergence properties of 
Proximal Newton methods in a real Hilbert space (X, ⟨⋅, ⋅⟩X) with corresponding norm 
‖v‖X =

√
⟨v, v⟩X and dual space X∗ . The Hilbert space structure of X also gives us 

access to the Riesz-Isomorphism R ∶ X → X∗ , defined by Rx = ⟨x, ⋅⟩X , which satisfies 
‖‖Rx‖‖X∗= ‖‖x‖‖X for every x ∈ X . Since R is non-trivial in general, we will not identify 
X and X∗.

We will assume the smooth part of our objective functional f ∶ X → ℝ to be con-
tinuously differentiable with Lipschitz-continuous derivative f � ∶ X → X∗ , i.e., we can 
find some constant Lf > 0 such that for every x, y ∈ X the estimate

holds.
Next we will specify our assumptions on the second order model for f. In what fol-

lows, we will notationally identify the linear operators Hx ∈ L(X,X∗) with the corre-
sponding symmetric bilinear form Hx ∶ X × X → ℝ , and write (Hxv)(w) = Hx(v,w) , 
using the abbreviation Hx(v)

2 = Hx(v, v) . We will assume uniform boundedness of Hx 
along the sequence (xk) of iterates:

In addition, along the sequence of iterates xk we assume a uniform bound of the 
form

For 𝜅1 > 0 estimate (3) represents ellipticity of Hx with constant �1 . When consider-
ing exact (and smooth) Proximal Newton methods, where Hx is given by the second-
order derivative of f at some point x ∈ X , (3) is equivalent to �1-strong convexity of 
f. In the case 𝜅1 > 0 we may also define an energy-norm and write:

(2)‖‖f �(x) − f �(y)‖‖X∗≤ Lf
‖‖x − y‖‖X

∃M ∈ ℝ∀k ∈ ℕ ∶ ‖Hxk
‖L(X,X∗) ≤ M .

(3)∃�1 ∈ ℝ∀v ∈ X, k ∈ ℕ ∶ Hxk
(v)2 ∶= Hxk

(v, v) ≥ �1
‖‖v‖‖

2

X
.
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For most of the paper we may choose Hx freely in the above framework. For fast 
local convergence, however, we will impose a semi-smoothness assumption, cf. (15). 
Semi-smooth Newton methods in function space have been discussed, for example, 
in [12, 23, 28, 29]. Furthermore, in order to guarantee transition of our globalization 
scheme to fast local convergence, we suppose f to suffice the notion of second order 
semi-smoothness (cf. Sect. 5) which generalizes second order differentiability in our 
setting and the definition of which slightly differs from semi-smoothness of f ′ in 
(15).

We assume that the non-smooth part g is lower semi-continuous and satisfies 
a bound of the form

for all x, y ∈ X and all s ∈ [0, 1] for some �2 ∈ ℝ . For 𝜅2 > 0 estimate (4) represents 
�2-strong convexity of g. It is known that �2-strong convexity of g implies that g is 
bounded from below, its level-sets L�g bounded for all � ∈ ℝ and their diameter 
shrinks to 0, if � → infx∈X g . In the case of 𝜅2 < 0 , g is allowed to be non-convex in 
a limited way.

The theory behind Proximal Newton methods and the respective convergence 
properties evolves around the convexity estimates stated in (3) and (4). We will 
assign particular importance to the interplay of the convexity properties of f and 
g, i.e., the sum �1 + �2 will continue to play an important part over the course of 
the present treatise.

Let us now shortly outline the structure of our work: In Sect. 3 we will con-
sider undamped update steps computed as the solution of an adequately formu-
lated subproblem. These can also be represented using (scaled) proximal map-
pings the definition and key properties of which we shortly address. Afterwards, 
local superlinear convergence of the Proximal Newton method is shown. In 
Sect. 4 we present a modification of the aforementioned subproblem in order to 
damp update steps and globalize the Proximal Newton method. This enables the 
proof of optimality of all limit points of the sequence of iterates generated by 
our method. Section 5 concerns the introduction of second order semi-smooth-
ness for f and showcases how it helps to verify the admissibility of both full and 
damped update steps sufficiently close to optimal solutions in Sect.  6. This in 
turn enables local fast convergence of our globalized method. In Sect. 7 the per-
formance of our algorithm is substantiated by numerical results.

As a start, we want to introduce the definition of undamped update steps and 
investigate the behavior of the ensuing Proximal Newton method close to opti-
mal solutions of problem (1).

‖‖v‖‖
2

Hx
∶= Hx(v, v).

(4)g(sx + (1 − s)y) ≤ sg(x) + (1 − s)g(y) −
�2

2
s(1 − s)‖‖x − y‖‖

2

X
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2 � General dual proximal mappings

We compute a full step for the Proximal Newton method at a current iterate x ∈ X 
by solving the subproblem

In this section Hx denotes a general bilinear form, as introduced above. If a mini-
mizer exists, we determine the next iterate via x+ ∶= x + �x . We will consider this 
update scheme and investigate its convergence properties close to optimal solutions, 
and in particular fast local convergence if Hx is adequately chosen as a so-called 
Newton derivative from �Nf �(x) , also known as the generalized differential �∗f �(x) in 
the sense of Chapter 3.2 in [29].

Proposition 1  If 𝜅1 + 𝜅2 > 0 , then (5) admits a unique solution.

Proof  By assumption, the functional to be minimized is lower semi-continuous, and 
𝜅1 + 𝜅2 > 0 implies that it is strictly convex as well as radially unbounded. Since X 
is a Hilbert space a minimizer exists and is unique. 	�  ◻

Remark 1  Let us shortly elaborate on both constants �1 and �2 as well as the assump-
tion 𝜅1 + 𝜅2 > 0 . While �2 is a global convexity constant for g, �1 is a purely local 
quantity which differs from iterate to iterate together with the corresponding second 
order bilinear form Hxk

 . This has two immediate consequences: On the one hand, 
ellipticity of the second order bilinear forms can locally compensate for non-con-
vexity of g and on the other hand (global) convexity of g enables us to locally use 
non-elliptic Hx even close to optimal solutions of our minimization problem. Com-
paring these convexity assumptions to similar works on the topic, we recognize that 
the authors in both [16] and [13] require ellipticity of their ∇2f (x∗) in addition to 
convexity of g. In contrast, our (�1, �2)-formalism from above suitably quantifies the 
contribution to convexity of both f and g.

For the following discussion we keep the assumption 𝜅1 + 𝜅2 > 0 . To introduce 
an adequate definition of a proximal mapping in Hilbert space we reformulate (5) 
directly for the updated iterate x+ via

In the literature existence of a continuous inverse H−1
x

∶ X∗
→ X is frequently 

assumed, giving rise to a mapping H−1
x
f � ∶ X → X . Then (6) can be rearranged to

(5)�x ∶= argmin
�x∈X

f �(x)�x +
1

2
Hx(�x, �x) + g(x + �x) − g(x).

(6)x+ = argmin
y∈X

f �(x)(y − x) +
1

2
Hx(y − x, y − x) + g(y) − g(x) .

(7)x+ = argmin
y∈X

g(y) +
1

2
Hx(y −

(
x − H−1

x
f �(x)

)
)2 .
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In [16], this form of the updated iterate is considered and the notion of a proximal 
mapping is introduced by

such that there (7) takes the form x+ = prox
Hx

g

(
x − H−1

x
f �(x)

)
.

However, in this work we want to follow a different, more direct approach towards 
proximal mappings which allows us to use the structure of the dual space X∗ more 
accurately and dispense with an invertibility assumption on Hx . In [25] (scaled) 
proximal mappings are introduced for X = ℝ

n according to

Observing that xT represents a dual element in ℝn here, we generalize this notion to 
the setting of Hilbert spaces and consider

obtaining a mapping from the dual space back to the primal space.
With this definition in mind, (6) can directly be rewritten as

Our notion allows us to dispense with the use of the inverse H−1
x

 , which would 
require in addition 𝜅1 > 0 . We will refer to (8) as the direct or dual formulation of 
scaled proximal mappings.

First order conditions for the minimization problem posed in (9) yield the 
equation

in the dual space X∗ for some (Frechét-)subderivative � ∈ �Fg(x+) (if g is convex, 
�Fg coincides with the convex subdifferential �g , cf. [14]). As we rearrange this 
identity, one could formally write:

If Hx is additionally invertible, this is equivalent to

which once again substantiates the interpretation of proximal-type methods as for-
ward-backward splitting algorithms. Note that in particular the subdifferential of g is 
evaluated at the updated point x+.

proxH
g
(x) ∶= argmin

y∈ℝn

g(y) +
1

2
(y − x)TH(y − x) = argmin

y∈ℝn

g(y) +
1

2
‖‖y − x‖‖

2

H

P
H
g
∶ ℝ

n
→ ℝ

n , PH
g
(x) ∶= argmin

y∈ℝn

g(y) +
1

2
yTHy − xTy .

(8)P
H
g
∶ X∗

→ X , PH
g
(�) ∶= argmin

y∈X

g(y) +
1

2
H(y, y) − �(y),

(9)x+ = argmin
y∈X

g(y) +
1

2
Hx(y)

2 −
(
Hx(x) − f �(x)

)
(y) = P

Hx

g
(Hx(x) − f �(x)).

� + Hx(x+ − x) + f �(x) = 0

x+ =
(
Hx + �Fg

)−1(
Hx − f �

)
x.

x+ =
(
Id + H−1

x
�Fg

)−1(
Id − H−1

x
f �
)
x
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We can shift convexity properties of the respective parts of the composite objective 
functional by inserting adequate bilinear form terms. However, this procedure does not 
affect the sequence of iterates generated by the update formula from above:

Lemma 1  Let q ∶ X → ℝ be a continuous quadratic function and denote its second 
derivative (which is independent of x) by Q ∶= q��(x) ∶ X → X∗ . Consider the modi-
fied (but obviously equivalent) minimization problem

Then, the update steps computed via (9) are identical for both problems (1) and (10) 
if we choose H̃x = Hx − Q as the corresponding bilinear form.

Remark 2  If we choose q(x) ∶= �

2
‖‖x‖‖

2

X
 for some � ∈ ℝ , the modified quantities H̃x 

and g̃ suffice estimates (3) and (4) for 𝜅̃1 = 𝜅1 − 𝜅 and 𝜅̃2 = 𝜅2 + 𝜅 . In particular, 
𝜅1 + 𝜅2 = 𝜅̃1 + 𝜅̃2 remains unchanged and g̃ is (� + �2)-strongly convex for 𝜅 > −𝜅2.

Proof  The only claim which is not apparent is the identity of update steps. To this 
end, we consider the fundamental definition of the update step for problem (10) at 
some x ∈ X given by

and consequently for q(y) = 1

2
Q(y)2 + ly + c and c ∈ ℝ constant

which directly shows the asserted identity of update steps. 	�  ◻

Remark 3  If the bilinear form for update step computation is chosen as Hx ∈ �Nf
�(x) 

and thereby as H̃x ∈ 𝜕N f̃
�(x) in the modified case, we have H̃x = Hx − Q , 

automatically.

(10)min
x∈X

F̃(x) ∶= f̃ (x) + g̃(x)

(11)f̃ (x) ∶= f (x) − q(x), g̃(x) ∶= g(x) + q(x).

𝛥x̃ = argmin
𝛿x∈X

f̃ �(x)𝛿x +
1

2
H̃x(𝛿x)

2 + g̃(x + 𝛿x) − g̃(x)

x̃+ = argmin
y∈X

(
f �(x) − q�(x)

)
(y − x) +

1

2

(
Hx − q��(x)

)
(y − x)2 + g(y) + q(y)

= argmin
y∈X

(
f �(x) − (Qx + l)

)
(y − x) +

1

2

(
Hx − Q

)
(y − x)2 + g(y) +

1

2
Q(y)2 + ly

= argmin
y∈X

g(y) +
1

2
Hx(y)

2 −
(
(Hx − Qx) − (f �(x) − Qx)

)
y

= P
Hx

g
(Hx(x) − f �(x)) = x+
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3 � Regularity and fast local convergence

The representation of the updated iterate as the image of a scaled proximal mapping 
in (9) will turn out to be very useful in what follows which is why we dedicate the 
next two propositions to the properties of scaled proximal mappings in our scenario. 
The first proposition generalizes the assertions of the so called second prox theorem, 
cf. e.g. [2], to our notion of proximal mappings.

Proposition 2  Let H and g satisfy the assumptions (3) and (4) with 𝜅1 + 𝜅2 > 0 . 
Then for any � ∈ X∗ the image of the corresponding proximal mapping u ∶= P

H
g
(�) 

satisfies the estimate

for all � ∈ X.

Proof  The proof of the estimate above is an easy consequence of the characteriza-
tion of the convex subdifferential of gH ∶= g +

1

2
H(⋅, ⋅) and (4). First order condi-

tions of the minimization problem in (8) yield

where � denotes the convex subdifferential since in particular gH is convex due to the 
positivity of the sum �1 + �2 . This inclusion directly implies the estimate

for arbitrary y ∈ X which is equivalent to

As pointed out before, now we want to take advantage of the convexity assump-
tions on g according to (4). To this end, we insert y = y(s) ∶= s� + (1 − s)u above 
for s ∈]0, 1] and use (4) on the right-hand side. This yields

where we now divide by s ≠ 0 and subsequently evaluate the limit of s to zero. This 
procedure provides us with the asserted estimate for � , � and u as specified above. 	
� ◻

The inequality from Proposition 2 can be used in order to prove several useful con-
tinuity results for general scaled proximal mappings in Hilbert spaces. However, for 
our purposes it suffices to assert and verify the following result, which generalizes 

[� − H(u)](� − u) ≤ g(�) − g(u) −
�2

2
‖‖� − u‖‖

2

X

� ∈ �

(
g +

1

2
H(⋅, ⋅)

)
(u) = �gH(u)

�(y − u) + g(u) +
1

2
H(u, u) ≤ g(y) +

1

2
H(y, y)

[
� −

1

2
H(y + u)

]
(y − u) ≤ g(y) − g(u).

s
[
� − H(u) −

s

2
H(� − u)

]
(� − u) ≤ s

[
g(�) − g(u) −

�2

2
(1 − s)‖‖� − u‖‖

2

X

]
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non-expansivity of proximal mappings in Euclidean space to our setting. It plays a sim-
ilar role as boundedness of the inverse of the derivative in Newton’s method.

Corollary 1  (Regularity of the Prox-Mapping) Let H and g satisfy the assumptions 
(3) and (4) with 𝜅1 + 𝜅2 > 0 . Then, for all �1,�2 ∈ X∗ the following Lipschitz-esti-
mate holds:

Proof  Let us choose H and �1,�2 as stated above. According to Proposition 2, the 
first order conditions for the respective minimization problems yield the inequalities

since we can choose � ∶= u2 or � ∶= u1 respectively. Now, we add (12) and (13) 
which yields

As we rearrange this inequality we obtain

and eventually assumption (3) on H yields the assertion of the proposition. 	�  ◻

Even though the above continuity result for proximal mappings will turn out to be an 
important tool for the proof of local acceleration of the Proximal Newton method, we 
still have to deduce some crucial properties of the full update step �x . These will help 
us to characterize optimal solutions of (1) as fixed points of the method and then verify 
local acceleration afterwards.

Lemma 2  The undamped update steps computed via (5) are descent directions of the 
composite objective functional, i.e., the following estimate holds:

Proof  Since f is assumed to be continuously differentiable and g suffices the esti-
mate (4), we can deduce the following bound on the composite objective functional:

‖‖P
H
g
(�1) − P

H
g
(�2)

‖‖X≤ 1

�1 + �2

‖‖�1 − �2
‖‖X∗

(12)(�1 − H(u1))(u2 − u1) ≤ g(u2) − g(u1) −
�2

2
‖‖u2 − u1

‖‖
2

X

(13)(�2 − H(u2))(u1 − u2) ≤ g(u1) − g(u2) −
�2

2
‖‖u1 − u2

‖‖
2

X

(�2 − �1 + H(u1 − u2))(u1 − u2) ≤ −�2
‖‖u1 − u2

‖‖
2

X
.

H(u1 − u2)
2 + �2

‖‖u1 − u2
‖‖
2

X
≤ (�1 − �2)(u1 − u2) ≤ ‖‖�1 − �2

‖‖X∗
‖‖u1 − u2

‖‖X

F(x + s�x) ≤ F(x) − s(�1 + �2)
‖‖�x‖‖

2

X
+O(s2).
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Let us now deduce an estimate for the term in brackets on the right-hand side of 
(14). To this end, we remember the proximal mapping representation of updated 
iterates in (9) and consider the corresponding estimate from Proposition 2 for � ∶= x 
which is given by

or equivalently

which we insert into (14) and directly obtain the asserted inequality. Note that over 
the course of this section we assume the positivity of the sum �1 + �2 which indeed 
implies from above that �x is a descent direction. 	�  ◻

As mentioned beforehand, this directly enables a more insightful characterization 
of optimal solutions of the composite minimization problem.

Proposition 3  Consider f continuously differentiable with Lipschitz derivative as 
well as H ∈ L(X,X∗) which satisfies (3) with 𝜅1 + 𝜅2 > 0 and �2 from (4) for g. 
Then, the search direction �x∗ according to (5) is zero at every local minimizer 
x∗ ∈ X of problem (1). In particular, we obtain the fixed point equation

Proof  If x∗ is a local minimizer, F(x∗ + s�x) ≥ F(x∗) for sufficiently small s > 0 . By 
Lemma 2 this implies �x = 0 . 	�  ◻

Having in mind these properties of update steps and optimal solutions in addi-
tion to the continuity result for scaled proximal mappings from Proposition 1, we 
can now prove the local acceleration result for our Proximal Newton method with 
undamped steps near optimal solutions.

For the following we require f ′ to be semi-smooth near an optimal solution x∗ of 
our problem (1) with respect to Hx , i.e., the following approximation property holds:

(14)

F(x + s�x) ≤ f (x) + sf �(x)�x + O(s2)

+ sg(x + �x) + (1 − s)g(x) −
�2

2
s(1 − s)‖‖�x‖‖

2

X

≤ F(x) + s(f �(x)�x + g(x + �x) − g(x) −
�2

2
‖‖�x‖‖

2

X
) + O(s2)

[
Hx(x) − f �(x) − Hx(x+)

]
(x − x+) ≤ g(x) − g(x+) −

�2

2
‖‖x+ − x‖‖

2

X

f �(x)�x + g(x + �x) − g(x) −
�2

2
‖‖�x‖‖

2

X
≤ −Hx(�x)

2 − �2
‖‖�x‖‖

2

X

≤ −(�1 + �2)
‖‖�x‖‖

2

X

x∗ = P
H
g

(
H(x∗) − f �(x∗)

)
.

(15)‖‖f �(x∗) − f �(x) − Hx(x∗ − x)‖‖X∗= o
(‖‖x − x∗

‖‖X
)
.
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As pointed out before, adequate definitions of Hx can be given via the Newton deriv-
ative Hx ∈ �Nf

�(x) for Lipschitz-continuous operators in finite dimension as well as 
for corresponding superposition operators, cf. Chapter 3.2 in [29].

Theorem 1  (Fast Local Convergence) Suppose that x∗ ∈ X is an optimal solution of 
problem (1). Consider two consecutive iterates x, x+ ∈ X which have been generated 
by the update scheme from above and are close to x∗ . Furthermore, suppose that 
(15) holds for Hx in addition to the assumptions from the introductory section with 
𝜅1 + 𝜅2 > 0 . Then we obtain:

Proof  Consider the proximal mapping representations deduced above for both the 
updated iterate x+ in (9) and for the optimal solution x∗ in Proposition 3 via

Next, we directly take advantage of these identities together with the continu-
ity result for scaled proximal mappings from Proposition 1 in order to deduce the 
estimate

where in the last step also the semi-smoothness of f ′ played a crucial role. This 
directly verifies the asserted local acceleration result. 	� ◻

In particular, this implies local superlinear convergence of our Proximal New-
ton method if we can additionally verify global convergence to an optimal solu-
tion. Note that even for the local acceleration result, ellipticity of Hx ∈ �Nf

�(x) 
does not necessarily have to be demanded. Also here, all that matters is strong 
convexity of the composite functional. This might be surprising since what actu-
ally accelerates the method is the second order information on the (possibly 
non-convex) but differentiable part f with semi-smooth derivative f ′ . As a conse-
quence, this means that the (strong) convexity of g can not only contribute to the 
well-definedness of update steps as solutions of (5) but also to the local accelera-
tion of our algorithm.

The main reason for this generalization of the local acceleration result is our 
slightly generalized notion of proximal mappings. In particular, we did not deduce 
(firm) non-expansivity in the scaled norm as for example in [16] but also there took 
advantage of the strong convexity of the composite objective functional in the form 
of assumptions (3) and (4) with 𝜅1 + 𝜅2 > 0.

‖‖x+ − x∗
‖‖X= o

(‖‖x − x∗
‖‖X

)
in the limit of x → x∗.

x+ = x + �x = P
Hx

g

(
Hx(x) − f �(x)

)
and x∗ = P

Hx

g

(
Hx(x∗) − f �(x∗)

)
.

‖‖x+ − x∗
‖‖X = ‖‖P

Hx

g

(
Hx(x) − f �(x)

)
− P

Hx

g

(
Hx(x∗) − f �(x∗)

)‖‖X

≤ 1

�1 + �2

‖‖Hx(x) − f �(x) − (Hx(x∗) − f �(x∗))
‖‖X∗

=
1

�1 + �2

‖‖Hx(x − x∗) − (f �(x) − f �(x∗))
‖‖X∗

= o
(‖‖x − x∗

‖‖X
)
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Note that for the above results to hold it was crucial that the current iterate x is 
already close to an optimal solution of problem (1) which is why over the course of 
the next section we want to address one possibility to globalize our Proximal Newton 
method. We will see that eventually we will be in the position to use undamped update 
steps for the computation of iterates and thereby benefit from the local acceleration 
result in Theorem 1.

4 � Globalization via an additional norm term

Let us consider the following modification of (5) and define the damped update step at 
a current iterate x as a minimizer of the following modified model functional:

As a consequence, we define

Here 𝜔 > 0 is an algorithmic parameter that can be used to achieve global conver-
gence. Setting H̃ ∶= Hx + 𝜔R with the Riesz-isomorphism R ∶ X → X∗ we observe 
that (16) is of the form  (5) with 𝜅̃1 = 𝜅1 + 𝜔 , so that the existence and regularity 
results of the previous sections apply.

The updated iterate then takes the form x+(�) ∶= x + �x(�) . Apparently, the update 
step in (16) is well defined if 𝜔 + 𝜅1 + 𝜅2 > 0 . Consequently, for what follows, we only 
consider 𝜔 > −(𝜅1 + 𝜅2) in order to guarantee unique solvability of the update step 
subproblem. The full update steps from (5) are here damped along a curve in X which 
is parametrized by the regularization parameter � ∈] − (�1 + �2),∞[.

However, note that here the Hilbert space structure of X is also important for the 
strong convexity of functions of the form g + �

2
‖‖⋅‖‖

2

X
 with g as in (4) for arbitrary 

�2 ∈ ℝ . In a general Banach space setting, we can not assume additional norm terms to 
compensate disadvantageous convexity assumptions, cf. [2], Remark 5.18].

Let us now take a look at how we can rearrange the subproblem for finding an 
updated iterate by using the scalar product ⟨⋅, ⋅⟩X as well as the Riesz-Isomorphism R:

Note that Hx + �R ∶ X × X → ℝ satisfies (3) with constant (�1 + �) such that the 
combination of g and Hx + �R still suffices the requirements for the results from 

��(�x) ∶= f �(x)�x +
1

2
Hx(�x, �x) +

�

2
‖‖�x‖‖

2

X
+g(x + �x) − g(x).

(16)�x(�) ∶= argmin
�x∈X

��(�x).

(17)

x+(�) = argmin
y∈X

f �(x)(y − x) +
1

2
Hx(y − x, y − x) + g(y) − g(x) +

�

2
��y − x��

2

X

= argmin
y∈X

g(y) + f �(x)y +
1

2
Hx(y)

2 − Hx(x, y) +
�

2
��y��

2

X
−�⟨x, y⟩X

= argmin
y∈X

g(y) +
1

2

�
Hx + �R

�
(y)2 −

�
Hx(x) + �Rx − f �(x)

�
y

= P
Hx+�R
g

�
(Hx + �R)x − f �(x)

�
.
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Proposition 2 for all 𝜔 > −(𝜅1 + 𝜅2) . Additionally, the results of Lemma 1 appar-
ently also hold in the globalized case.

The formulation of updated iterates via the above scaled proximal mapping 
enables us to establish some helpful properties of the damped update steps �x(�).

Proposition 4  Under the assumptions (3) for Hx and (4) for g the inequality

holds for the update step �x(�) as defined in (16) and arbitrary −(𝜅1 + 𝜅2) < 𝜔 < ∞.

Proof  The proof here follows along the same lines as the derivation of the auxiliary 
estimate for the bracket term in the proof of Lemma 2. Due to the structure of the 
update formula in (17) we can take advantage of the estimate from Proposition 2 
with � = (Hx + �R)x − f �(x) , H = Hx + �R and � = x which yields u = P

H
g
(x) = x+ 

and thereby

This inequality is equivalent to the asserted estimate. 	� ◻

With the above estimate for damped update steps at hand, let us now formulate 
a criterion for sufficient decrease which will help us to verify a global conver-
gence result of our Proximal Newton method. We call a value of the regulariza-
tion parameter 𝜔 > −(𝜅1 + 𝜅2) admissible for sufficient decrease if the inequality

for some prescribed � ∈]0, 1[ is satisfied. We may interpret ��(�x(�)) as a predicted 
decrease and rewrite the condition (18) as follows:

This is the classical ratio of actual decrease and predicted decrease which is often 
used for trust-region algorithms. Before now trying to verify that the descent crite-
rion in (18) is fulfilled for sufficiently large values of � , we note that the assertion in 
Proposition 4 implies the insightful estimate

which yields that once the criterion is satisfied, update steps unequal to zero provide 
real descent in the composite objective function F according to

f �(x)�x(�) + g(x + �x(�)) − g(x) ≤ −
(�2
2

+ �
)‖‖�x(�)‖‖

2

X
−Hx(�x(�))

2

Hx(�x(�))
2 + �‖‖�x(�)‖‖

2

X
+f �(x)�x(�) ≤ g(x) − g(x+(�)) −

�2

2
‖‖�x(�)‖‖

2

X
.

(18)F(x+(�)) ≤ F(x) + ���(�x(�))

F(x+(�)) − F(x)

��(�x(�))
≥ � .

(19)
��(�x(�)) ≤ −

��2
2

+ �
����x(�)��

2

X
−
1

2
Hx

�
�x(�)

�2
+

�

2
‖�x(�)‖2

X

≤ −
1

2

�
� + �1 + �2

����x(�)��
2

X
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Let us now take a look at the existence of sufficiently large values of the regulariza-
tion parameter � . Here, the Lipschitz-continuity of f ′ comes into play for the first 
time.

Lemma 3  For f, Hx and g as above the criterion for sufficient descent introduced via 
(18) is satisfied for � ∈]0, 1[ if � satisfies

Proof  By our lower bound on � and (19) we obtain:

The Lipschitz-continuity of f ′ directly yields the estimate

from where we immediately obtain an estimate for the descent in the composite 
objective functional via

This estimate is equivalent to (18) and thereby concludes the proof of the assertion. 	
� ◻

Additionally, for global convergence, it turns out that we have to guarantee that

A simple way to achieve this is to impose the following restriction:

for some prescribed upper bound M . Due to (19) this can be achieved for a suffi-
ciently large choice of �k . All in all, this results in the following algorithm:

(20)F(x+(�)) − F(x) ≤ −
�

2

(
� + �1 + �2

)‖‖�x(�)‖‖
2

X
.

� ≥ Lf − �1

1 − �
− (�1 + �2).

Lf − �1

2
‖�x(�)‖2

X
≤ 1 − �

2
(� + �1 + �2)‖�x(�)‖2X ≤ −(1 − �)��(�x(�)).

f (x+(�)) = f (x + �x(�)) ≤ f (x) + f �(x)�x(�) +
Lf

2
‖‖�x(�)‖‖

2

X

F(x+(�)) − F(x) ≤ f �(x)�x(�) +
Lf

2
‖‖�x(�)‖‖

2

X
+g(x+(�)) − g(x)

≤ ��(�x(�)) +
Lf − �1

2
‖‖�x(�)‖‖

2

X

≤ ��(�x(�)) − (1 − �)��(�x(�)) = ���(�x(�)).

��k
(�x(�k)) → 0 implies ‖�x(�k)‖X → 0.

(21)‖�x(�k)‖2X ≤ −M��k
(�x(�k))
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Now that we have formulated the algorithm and can be sure that we can always 
damp update steps sufficiently such that they yield descent according to (18), we 
will verify the stationarity of limit points of the sequence of iterates generated by 
Algorithm 1. To this end, we will first prove that the norm of the corresponding 
update steps converges to zero along the sequence of iterates.

Lemma 4  Let (xk) ⊂ X be the sequence generated by the Proximal Newton method 
globalized via (16) for admissible values of the regularization parameter �k starting 
at any x0 ∈ domg . Then either F(xk) → −∞ or ��k

(�xk(�k)) and ‖‖�xk(�k)
‖‖X con-

verge to zero for k → ∞.

Proof  By (20) the sequence F(xk) is monotonically decreasing. Thus, 
either F(xk) → −∞ or F(xk) → F for some F ∈ ℝ and thus in particular 
F(xk) − F(xk+1) → 0 . Since 𝛾 > 0 , also ��k

(�x(�)) → 0 . Since, by assumption, 
𝜔k + 𝜅1 + 𝜅2 > 0 this implies ‖‖�xk(�k)

‖‖X→ 0.	�  ◻

If we take a look at the optimality conditions for the step computation in (16) 
at x+(�) , we obtain

with the Frechét-subdifferential of gHx

� ∶ X → ℝ, y ↦ g(y) +
1

2
Hx(y)

2 +
�

2
‖‖y‖‖

2

X
 on 

the right-hand side. This directly yields the existence of some � ∈ �Fg(x+(�)) such 
that

This implies the estimate:

(Hx + �R)x − f �(x) ∈ �Fg
Hx

� (x+(�))

(22)
� + f �(x+(�)) = rx(�x(�)) with rx(v) ∶= f �(x + v) − f �(x) −

(
Hx + �R

)
v.



480	 B. Pötzl et al.

1 3

Thus, by Lemma 4 and

we obtain

as long as Lf < ∞ exists, ‖‖Hxk
‖‖L(X,X∗)

≤ M is bounded, and �k is bounded. The lat-
ter can be guaranteed via Lemma 3 if the “appropriate increase” of �k is done by no 
more than a fixed factor 𝜌 > 1.

Remark 4  With some additional technical effort, the assumption on Lipschitz-conti-
nuity of f ′ could be relaxed to a uniform continuity assumption.

Observe that we can indeed interpret ‖‖�xk(�k)
‖‖X≤ � as a condition for the 

optimality of our the subsequent iterate up to some prescribed accuracy. How-
ever, small step norms ‖‖�xk(�k)

‖‖X can also occur due to very large values of the 
damping parameter �k as a consequence of which the algorithm would stop even 
though the sequence of iterates is not even close to an optimal solution of the 
problem. In order to rule out this inconvenient case, we consider the scaled ver-
sion (1 + �k)

‖‖�xk(�k)
‖‖X as the stopping criterion in Algorithm 1.

Now we are in the position to discuss subsequential convergence of our algo-
rithm to a stationary point. In the following, we will assume throughout that F(xk) 
is bounded from below. We start with the case of convergence in norm:

Theorem 2  Under the assumptions explained in the introductory section, all accu-
mulation points x̄ (in norm) of the sequence of iterates (xk) generated by the Proxi-
mal Newton method globalized via (16) are stationary points of problem (1).

Proof  Let us consider a modified version of our minimization problem as in (10) 
in Lemma  1 and choose q(x) = 1

2
Q(x)2 for Q ∶ X × X → ℝ such that g̃ = g + q is 

(strongly) convex on its domain.
This is always possible by (4). According to Lemma 1, the sequence of iterates 

remains unchanged and step computation takes the form

with first order optimality conditions

where 𝜕g̃(xk+1) denotes the convex subdifferential of g̃ at xk+1 . Consequently, we 
know that there exists some 𝜂̃k ∈ 𝜕g̃(xk+1) such that

dist(�FF(xk), 0) = dist(f �(xk) + �Fg(xk), 0) ≤ ‖‖rxk (�xk(�k))
‖‖X∗

‖rxk (�xk(�k))‖X∗ ≤ �
Lf +

��Hxk
��L(X,X∗)

+�k

����xk(�k)
��X

dist(�FF(xk), 0) → 0

xk+1 = x̃k+1 = argmin
y∈X

g̃(y) +
1

2

(
Hxk

− Q + 𝜔R
)
(y)2 −

(
(Hxk

+ 𝜔kR)xk − f �(xk)
)
y

Hxk
(xk) + 𝜔kRxk − f �(xk) ∈ 𝜕g̃(xk+1) +

(
Hxk

− Q + 𝜔R
)
(xk+1)
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with the remainder term on the right-hand side given by

holds. As before, the remainder term r̃xk
(
𝛥xk(𝜔k)

)
= rxk

(
𝛥xk(𝜔k)

)
 tends to zero for 

k → ∞ , i.e., we have 𝜂̃ ∶= limk→∞ 𝜂̃k = −f �(x̄) + Qx̄ . The definition of the convex 
subdifferential 𝜕g̃ together with the lower semi-continuity of g̃ directly yields

for any u ∈ X which proves the inclusion 𝜂̃ ∈ 𝜕g̃(x̄) . The evaluation of the latter limit 
expression can easily be retraced by splitting

In particular, we recognize 𝜂̃ ∈ 𝜕g̃(x̄) as −f �(x̄) + Qx̄ ∈ 𝜕g̃(x̄) and equivalently 
−f �(x̄) ∈ 𝜕Fg(x̄) for the Frechét-subdifferential �F . This implies 0 ∈ 𝜕FF(x̄) , i.e., the 
stationarity of our limit point x̄ . 	�  ◻

Also note that in general the above global convergence result does not rely on 
the strong convexity of the composite objective function F but yields stationarity 
of limit points also in the non-convex case of 𝜅1 + 𝜅2 < 0 and 𝜔k > −(𝜅1 + 𝜅2) 
chosen adequately. In particular, this ensures that also independent of strong con-
vexity assumptions near optimal solutions, the algorithm approaches the optimal 
solution and can then benefit from additional convexity at later iterations.

While bounded sequences in finite dimensional spaces always have convergent 
subsequences, we can only expect weak subsequential convergence in general 
Hilbert spaces in this case. As one consequence, existence of minimizers of non-
convex functions on Hilbert spaces can usually only be established in the pres-
ence of some compactness. On this count we note that in (23) even weak conver-
gence of xk ⇀ x̄ would be sufficient. Unfortunately, in the latter case we cannot 
evaluate f �(xk) → f �(x̄).

In order to extend our proof to this situation, we require some more struc-
ture for both of the parts of our composite objective functional. To this end, we 
remember the following well-known definition of compact operators:

Definition 1  A linear operator K ∶ X → Y  between two normed vector spaces X and 
Y is called compact if one of the following equivalent statements holds: 

𝜂̃k +
(
f �(xk+1) − Qxk+1

)
= r̃xk

(
𝛥xk(𝜔k)

)

r̃x(v) ∶= f �(x + v) − f �(x) −
(
Hx + 𝜔R

)
v

g̃(u) − g̃(x̄) = g(u) +
1

2
Q(u)2 − g(x̄) −

1

2
Q(x̄)2

≥ g(u) +
1

2
Q(u)2 − lim inf

k→∞
g(xk) − lim

k→∞

1

2
Q(xk)

2

= lim inf
k→∞

g̃(u) − g̃(xk)

≥ lim inf
k→∞

𝜂̃k(u − xk) = lim
k→∞

𝜂̃k(u − xk) = 𝜂̃(u − x̄)

(23)𝜂̃k(u − xk) = 𝜂̃k(u − x̄) + (𝜂̃k − 𝜂̃)(x̄ − xk) + 𝜂̃(x̄ − xk).
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1.	 The image of the unit ball of X is relatively compact in Y (, i.e., its closure is 
compact).

2.	 For any bounded sequence (xn)n∈ℕ ⊂ X the image sequence (Kxn)n∈ℕ ⊂ Y contains 
a strongly convergence subsequence 

(
xnk

)
k∈ℕ

⊂ X.

With this notion at hand, we can formulate the following global convergence 
theorem:

Theorem 3  Let f be of the form f (x) = f̂ (x) + f̌ (Kx) where K is a compact operator. 
Additionally, assume that g + f̂  is convex and weakly lower semi-continuous in a 
neighborhood of stationary points of (1). Then weak convergence of the sequence of 
iterates xk ⇀ x̄ suffices for x̄ to be a stationary point of (1).

If F is strictly convex and radially unbounded, the whole sequence xk converges 
weakly to the unique minimizer x∗ of F. If F is �-strongly convex, with 𝜅 > 0 , then 
xk → x∗ in norm.

Proof  We can employ the same proof as above replacing g by g + f̂  and using that 
f̃ �(Kxk) → f̌ �(Kx̄) in norm, by compactness. This then shows finally

i.e., 𝜂 = −f̌ �(Kx̄)K ∈ 𝜕(g + f̂ )(x̄) = 𝜕Fg(x̄) + {f̂ �(x̄)} which in particular implies

This again constitutes 0 ∈ 𝜕FF(x̄) and thereby the stationarity of the weak limit point 
x̄.

Let us now consider the second assertion: F being strictly convex as well as radi-
ally unbounded yields that problem (1) has a unique solution x∗ . Additionally, we 
know that our sequence of iterates is bounded as a consequence of which we can 
select a weakly convergent subsequence. The first assertion of the theorem then 
implies that the limit of each subsequence we choose is a stationary point of prob-
lem (1), and thus by convexity to the unique optimal solution x∗ . A standard argu-
ment then shows that the whole sequence converges to x∗ weakly.

If F is �-strongly convex, then as discussed below (4) the diameter the level sets 
LF(xk) tends to 0 as k → ∞ , since F(xk) → F(x∗) . This implies ‖xk − x∗‖X → 0 . 	�  ◻

5 � Second order semi‑smoothness

In order to be able to benefit from the local acceleration result in Theorem 1, we 
have to ensure that under the assumptions on F stated in Sect. 1 eventually also 
full steps are admissible for sufficient descent according to our criterion formu-
lated in (18). To this end, we want to introduce a new notion of differentiability, 

(g + f̂ )(u) − (g + f̂ )(x̄) ≥ 𝜂(u − x̄) ,

−f �(x̄) = −f̌ �(Kx̄)K − f̂ �(x̄) ∈ 𝜕Fg(x̄).
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which we call second order semi-smoothness, and investigate how it interacts 
with our Proximal Newton method.

For the smooth part f of our composite objective function F we define a second 
order semi-smoothness property at some x∗ ∈ domf  by

for any � ∈ X . This will be precisely the assumption that we need to conclude transi-
tion to fast local convergence in the following section.

We give a general definition for operators. Denote by L(2)(X, Y) the normed 
space of bounded vector valued bilinear forms X × X → Y  , equipped with usual 
norm:

Definition 2  Let X,  Y be normed linear spaces and let D ⊂ X be a neighborhood 
of x∗ . Consider a continuously differentiable operator T ∶ D → Y  , and a bounded 
mapping

We call T second order semi-smooth at x∗ ∈ X with respect to T ′′ , if the following 
estimate holds:

Since T ′′ is evaluated at x∗ + � , the choice of T ′′ is far from unique. Twice con-
tinuously differentiable operators apparently are second order semi-smooth:

Proposition 5  Assume that T is twice continuously differentiable at x∗ . Then T is 
second order semi-smooth at x∗ with respect to the ordinary second derivative T ′′.

Proof  This follows by a simple computation:

Both terms in square brackets are o(‖‖�‖‖
2

X
) . The first by Fréchet differentiability of T, 

the second by continuity of T ��(x) . 	�  ◻

(24)f (x∗ + �) = f (x∗) + f �(x∗)� +
1

2
Hx∗+�

(�, �) + o(‖‖�‖‖
2

X
) for � → 0.

‖B‖L(2)(X,Y) = sup
�1,�2≠0

‖B(�1, �2)‖Y
‖�1‖X‖�2‖X

.

T �� ∶ D → L(2)(X, Y).

‖T(x∗ + �) − T(x∗) − T �(x∗)� −
1

2
T ��(x∗ + �)(�, �)‖Y = o(‖�‖2

X
) for � → 0

T(x∗) + T �(x∗)� +
1

2
T ��(x∗ + �)(�, �)

=
[
T(x∗) + T �(x∗)� +

1

2
T ��(x∗)(�, �)

]

+
1

2

[
T ��(x∗ + �)(�, �) − T ��(x∗)(�, �)

]
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It is an obvious remark that the sum of two second order semi-smooth func-
tions is second order semi-smooth again with linear and quadratic terms defined 
via sums. Furthermore, the following chain rule can be shown:

Theorem 4  Suppose that S ∶ DS → Y  and T ∶ DT → Z with S(DS) ⊂ DT are second 
order semi-smooth at x∗ ∈ DS and y∗ = S(x∗) with respect to S′′ and T ′′ , respectively. 
Then T◦S is second order semi-smooth with respect to (T◦S)�� , defined as follows:

Proof  We introduce the notations y∗ = S(x∗) , x = x∗ + � , y = S(x) , and � = y − y∗ . 
With these prerequisites we can, as usual for chain rules, split the remainder term:

We will show that each of the expressions (25)–(28) is o(‖‖�‖‖
2

X
) . For (25) this follows 

from second order semi-smoothness of T, while second order semi-smoothness of S 
implies the desired result for (26). Continuity of T ′ and boundedness of S′′ yield that 
(27) is o(‖‖�‖‖

2

X
) . Finally, (28) can be reformulated via the third binomial formula:

By continuous differentiablity of S (which is a prerequisite of second order semi-
smoothness by our definition) we estimate:

which finally yields the desired result. 	�  ◻

(T◦S)��(x)(�1, �2) ∶= T ��(y)(S�(x)�1, S
�(x)�2) + T �(y)S��(x)(�1, �2).

(25)

(T◦S)(x) − (T◦S)(x∗) − (T◦S)�(x∗)� −
1

2
(T◦S)��(x)(�, �)

= T(y) − T(y∗) − T �(y∗)S
�(x∗)�

−
1

2

(
T ��(y)(S�(x)�, S�(x)�) + T �(y)S��(x)(�, �)

)

= T(y) − T(y∗) − T �(y∗)� −
1

2
T ��(y)(�, �)

(26)+ T �(y∗)
(
S(x) − S(x∗) − S�(x∗)� −

1

2
S��(x)(�, �)

)

(27)+
1

2
(T �(y∗) − T �(y))S��(x)(�, �)

(28)+
1

2

(
T ��(y)(�, �) − T ��(y)(S�(x)�, S�(x)�)

)

‖T ��(y)(�, �) − T ��(y)(S�(x)�, S�(x)�)‖Z = ‖T ��(y)(� + S�(x)�, � − S�(x)�)‖Z
≤ ‖T ��(y)‖L(2)(Y ,Z)‖� + S�(x)�‖Y‖� − S�(x)�‖Y .

(29)‖‖� + S�(x)�‖‖Y = O(‖‖�‖‖X)

(30)‖‖� − S�(x)�‖‖Y≤ ‖‖� − S�(x∗)�
‖‖Y+‖‖(S

�(x∗) − S�(x))�‖‖Y = o(‖‖�‖‖X),
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Remark 5  In the case T �(y∗) = 0 , we observe from (26) that S only needs to be con-
tinuously differentiable and we may set S�� = 0.

Second order semi-smoothness of T and semi-smoothness of T ′ as in (15) are 
closely related but are not equivalent in general. Even in the case of T ��(x) ∶= �NT

�(x) 
we cannot conclude one condition from the other, e.g. via the fundamental theorem 
of calculus, because of the lack of continuity of �NT ′.

Let us shortly give a both simple and illustrative example: Consider the function

which is continuously differentiable with h�(x) = x
[
3x sin

(
1

x

)
− cos

(
1

x

)]
 , x ≠ 0 , and 

h�(0) = 0 . The cubic asymptotics of h suggest that T ��(x) ≡ 0 is a possible definition 
for second order semi-smoothness of h at x∗ = 0 as above. Apparently, we obtain for 
x ∈ ℝ and �x = x − x∗ = x:

i.e., that h is indeed second order semi-smooth at x∗ = 0 with respect to T ′′ . On the 
other hand, we have

which implies that h′ is indeed not semi-smooth at x∗ = 0 with respect to the same 
T ′′ , cf. (15). However, in many cases of practical interest, both conditions can be 
shown to hold.

For instance, the function �(x) = max{0, x}2 is second order semi-smooth at the 
point x = 0 with respect to

as well as twice Fréchet differentiable (and thus also second-order semi-smooth, cf. 
Proposition 5) at any other point x ≠ 0 with the same ���(�) . By standard techniques 
we can lift this property to superposition operators on Lp-spaces for appropriate p.

For convenience, we recapitulate the following lemma, which is a slight generali-
zation of a standard result on continuity of superposition operators.

Lemma 5  Let � a measurable subset of ℝd , and � ∶ ℝ ×� → ℝ . For each 
measurable function x ∶ � → ℝ assume that the function � (x) , defined by 
� (x)(t) = �(x(t), t) is measurable. Let x∗ ∈ Lp(�,ℝ) be given. Then the following 
assertion holds:

If � is continuous with respect to x at (x∗(t), t) for almost all t ∈ � , and � maps 
Lp(�,ℝ) into Ls(�,ℝ) for 1 ≤ p, s < ∞ , then � is continuous at x∗ in the norm 
topology.

h ∶ ℝ → ℝ , x ↦ x3 sin
(1
x

)

|h(x) − h(x∗) − h�(x∗)�x −
1

2
T ��(x)(�x)2| = |�x|3|| sin

(
1

x

)
|| = O

(
|�x|3

)
, �x → 0 ,

|h�(x∗) − h�(x) − T ��(x)(x∗ − x)| = |�x|||3x sin
(
1

x

)
− cos

(
1

x

)
|| ≠ o

(||�x||
)
, �x → 0 ,

𝜙��(𝜉) =

{
0 ∶ 𝜉 < 0

1 ∶ 𝜉 ≥ 0
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Proof  cf. e.g. [23, Lemma 3.1]. 	�  ◻

The standard text book result requires � to be a Caratheodory function, and 
thus in particular continuous in x for all t ∈ � . This assumption, is slightly weak-
ened here to the almost everywhere sense. It is known, for example, that point-
wise limits and suprema of Caratheodory functions yield superposition opera-
tors that map measurable functions to measurable functions. The mapping �′′ 
as defined above is an example. Importantly, this result is not true for the case 
p < s = ∞.

Proposition 6  Consider a real function � ∶ ℝ → ℝ with globally Lipschitz-contin-
uous derivative �� ∶ ℝ → ℝ , which is second order semi-smooth with respect to a 
bounded function ��� ∶ ℝ → ℝ . Let 𝛺 ⊂ ℝ

d be a set of finite measure and assume 
that the composition �′′

◦u is measurable for any measurable function u ∶ � → ℝ . 
Let p > 2 . Then for each x ∈ Lp(�) the superposition operator � ∶ Lp(�) → L1(�) 
is second order semi-smooth with respect to ���(x) ∈ L2(Lp(�), L1(�)) defined by 
���(x)(�1, �2)(�) = ���(x(�))�1(�)�2(�) almost everywhere.

Proof  Consider a representative of x ∈ Lp(�) and the function

which is defined for t ≠ 0 and rx(�, t) ∶= 0 for t = 0 . By Lipschitz-continuity of �′ 
and boundedness of �′′ we observe that rx is bounded uniformly on � ×ℝ . Thus, the 
superposition operator Rx ∶ Lp(�) → Ls(�) : Rx(�)(�) = rx(�, �(�)) is well defined 
for any 1 ≤ s ≤ ∞ . By second order semi-smoothness rx(�, ⋅) is continuous at t = 0 
for almost all � ∈ � . Hence, by Lemma 5 Rx is continuous as an operator at � = 0 
for any s < ∞ . By the Hölder inequality with 1∕s + 2∕p = 1 we conclude the desired 
estimate:

	�  ◻

Unsurprisingly and in analogy to the theory of semi-smooth superposition opera-
tors, there is a norm gap in the sense that Proposition 6 is false for p = 2 . This is 
closely related to the so call two-norm discrepancy (cf. e.g. [26]).

As in the above example, ���(�) has a discontinuity at � = 0 , so we cannot expect 
that �′′ is a continuous mapping on a given open set. However, we can show the fol-
lowing result:

Proposition 7  Let p > 2 and x∗ ∈ Lp(�) be fixed. Assume that function 
(�, t) → ���(x∗(�) + t) is continuous in t for almost all � ∈ � . Then the mapping 
��� ∶ Lp(�) → L(2)(Lp(�), L1(�)) is continuous at x∗.

rx(�, t) ∶=
�(x(�) + t) − �(x(�)) − ��(x(�))t − ���(x(�) + t)t2

t2

‖�(x + �) −�(x) −��(x)� −���(x)(�, �)‖L1(�) = ‖Rx(�) ⋅ � ⋅ �‖L1(�)

≤ ‖Rx(�)‖Ls(�)‖�‖2Lp(�)
= o(‖�‖2

Lp(�)
).
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Proof  We apply Lemma  5 to the superposition operator 𝛷̃��(x)(𝜔) ∶= 𝜙��(x(𝜔)) , 
which maps Lp(�) → Ls(�) and the use the Hölder inequality to conclude:

	�  ◻

In our example �(x) = max{0, x}2 fulfills the hypothesis of this theorem at 
x∗ ∈ Lp(�) , if x∗(�) = 0 only on a set of measure 0 in � . This kind of regularity 
assumption can also be found frequently in the literature on semi-smooth Newton 
methods (cf. e.g. [11]).

6 � Transition to fast local convergence

Let us now turn our attention back to our Proximal Newton method and consider 
the admissibility of undamped update steps near optimal solutions of problem (1). 
Both the semi-smoothness of f ′ from (15) and the second order semi-smoothness of 
f from (24) will contribute a crucial part to the proof of this result. Additionally, the 
local acceleration result from Theorem 1 will play an important role.

However, an algorithm that tests in every iterate, whether the undamped Newton 
step is acceptable is likely to compute many unnecessary trial iterates during the 
early phase of globalization. Thus, it is of interest, whether damped Newton steps 
are acceptable as well close to the solution.

In order to establish the corresponding proposition of admissibility we will first 
have to investigate the relation between damped and undamped steps more closely.

Lemma 6  Let Hx be a bilinear form as in (3) and assume that g suffices (4) where 
𝜅1 + 𝜅2 > 0 holds and x ∈ X is arbitrary. Then the damped update step �x(�) from 
(16) and the undamped update step �x from (5) satisfy the estimates

for any � ≥ 0.

Proof  The above set of estimates can all be deduced from adequate proximal repre-
sentations of the respective update steps. We can characterize the undamped step via 
�x = x+ − x where the updated iterate is given by

‖[𝛷��(x) −𝛷��(x∗)](𝜉1, 𝜉2)‖L1(𝛺) ≤ ‖𝛷̃��(x) − 𝛷̃��(x∗)‖Ls(𝛺)‖𝜉1‖Lp(𝛺)‖𝜉2‖Lp(𝛺).

(31)‖‖�x − �x(�)‖‖X ≤ �

�1 + �2

‖‖�x(�)‖‖X

(32)‖‖�x(�)‖‖X≤ ‖‖�x‖‖X ≤ ( �

�1 + �2
+ 1

)‖‖�x(�)‖‖X
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Now, consider the corresponding inequality from Proposition 2 for � = Hx(x) − f �(x) , 
H = Hx and � ∶= x+(�) given by

which can be rearranged to a more useful form via

For the damped update step we want to consider a different form than in (17) and 
attribute the additional norm term �

2
‖‖⋅‖‖

2

X
 to the lower argument function g. This 

results in the proximal representation

The deduction of the respective inequality induced by the first order conditions of 
the proximal subproblem will turn out to be slightly more complicated. We use 
H = Hx and � = Hx(x) + �Rx − f �(x) together with � = x+ in Proposition  2. Note 
here that the lower argument function g + �

2
‖‖⋅‖‖

2

X
 satisfies (4) with constant �2 + � . 

Thus, we obtain

We bring the Riesz-term �R
(
x,�x − �x(�)

)
 to the right-hand side of (34) and 

recognize

which results in

This inequality will be of importance once more later on. For now, we estimate the 
term

x+ = argmin
y∈X

f �(x)(y − x) +
1

2
Hx(y − x, y − x) + g(y) − g(x)

= P
Hx

g

(
Hx(x) − f �(x)

)
.

[
Hx(x) − f �(x) − Hx(x+)

]
(x+(�) − x+) ≤ g(x+(�)) − g(x+) −

�2

2
‖‖x+(�) − x+

‖‖
2

X

(33)
[
Hx(�x) + f �(x)

]
(�x − �x(�)) ≤ g(x+(�)) − g(x+) −

�2

2
‖‖�x − �x(�)‖‖

2

X
.

x+(�) = P
Hx

g+
�

2

‖‖⋅‖‖
2

X

(
Hx(x) + �Rx − f �(x)

)
.

(34)

[
− Hx

(
�x(�)

)
+ �Rx − f �(x)

](
�x − �x(�)

)

≤ g(x+) − g(x+(�)) +
�

2

(‖‖x+‖‖
2

X
−‖‖x+(�)‖‖

2

X

)
−

�2 + �

2
‖‖�x − �x(�)‖‖

2

X
.

‖‖x+‖‖
2

X
−‖‖x+(�)‖‖

2

X
−2R

(
x,�x − �x(�)

)
= ‖‖�x‖‖

2

X
−‖‖�x(�)‖‖

2

X

(35)

[
− Hx

(
�x(�)

)
− f �(x)

](
�x − �x(�)

)

≤ g(x+) − g(x+(�)) +
�

2

(‖‖�x‖‖
2

X
−‖‖�x(�)‖‖

2

X

)

−
�2 + �

2
‖‖�x − �x(�)‖‖

2

X
.



489

1 3

Second order semi‑smooth Proximal Newton methods in Hilbert…

such that (35) takes the form

Now, we add (33) and (36) which yields

Here we can use assumption (3) on Hx and rearrange the resulting estimate to

This is exactly the first asserted inequality (31) if we divide by ‖‖�x − �x(�)‖‖X which 
we can assume to be non-zero without loss of generality. From here, we can directly 
deduce the second part of (32) since we can take advantage of (31) by

The first part of (32) on the other hand requires some more consideration. We start 
at (35) but now take another route and directly add it to (33) which yields

and thereby

as we use (3) for Hx . All prefactors in (37) are positive due to our assumptions such 
that the first part of (32) follows. This completes the proof. 	�  ◻

The equivalence result for damped and undamped update steps in the form of 
(32) enables the proof of the following Corollary which will turn out to be useful 
for the admissibility of damped steps close to optimal solutions.

Corollary 2  Close to an optimal solution x∗ of (1) we can find constants c1, c2 > 0 
such that the following estimates hold:

‖‖�x‖‖
2

X
− ‖‖�x(�)‖‖

2

X
−‖‖�x − �x(�)‖‖

2

X

=
(‖‖�x‖‖X+‖‖�x(�)‖‖X

)(‖‖�x‖‖X−‖‖�x(�)‖‖X
)
− ‖‖�x − �x(�)‖‖

2

X

≤ ‖‖�x − �x(�)‖‖X
(‖‖�x‖‖X+‖‖�x(�)‖‖X−‖‖�x − �x(�)‖‖X

)

≤ 2‖‖�x(�)‖‖X‖‖�x − �x(�)‖‖X

(36)

[
− Hx

(
�x(�)

)
− f �(x)

](
�x − �x(�)

)

≤ g(x+) − g(x+(�)) + �‖‖�x(�)‖‖X‖‖�x − �x(�)‖‖X
−

�2

2
‖‖�x − �x(�)‖‖

2

X
.

Hx

(
�x − �x(�)

)2 ≤ �‖‖�x(�)‖‖X‖‖�x − �x(�)‖‖X−�2‖‖�x − �x(�)‖‖
2

X
.

‖‖�x − �x(�)‖‖
2

X
≤ �

�1 + �2

‖‖�x(�)‖‖X‖‖�x − �x(�)‖‖X .

‖‖�x‖‖X−‖‖�x(�)‖‖X≤ ‖‖�x − �x(�)‖‖X≤ �

�1 + �2

‖‖�x(�)‖‖X .

Hx

(
�x − �x(�)

)2
+
(
�2 +

�

2

)‖‖�x − �x(�)‖‖
2

X
≤ �

2

(‖‖�x‖‖
2

X
−‖‖�x(�)‖‖

2

X

)

(37)0 ≤ (
�1 + �2 +

�

2

)‖‖�x − �x(�)‖‖
2

X
≤ �

2

(‖‖�x‖‖
2

X
−‖‖�x(�)‖‖

2

X

)
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Proof  For the deduction of both asserted inequalities, we will take advantage of the 
local superlinear convergence stated in Theorem 1, i.e., ‖‖x+ − x∗

‖‖X= o
(‖‖x − x∗

‖‖X
)
 

in the limit of x → x∗ . Consequently, we can write

for some function � ∶ [0,∞[→ [0,∞[ with �(t) → 0 for t → 0 . With this helpful 
representation at hand, we estimate

By the definition of � above, this directly implies the first asserted inequality. We 
can deduce the second one similarly quickly via

We can assume 𝜓
(‖‖x − x∗

‖‖X
)
< 1 close to the optimal solution x∗ and thereby 

deduce

with the additional help of (32). Taking into account that � remains bounded com-
pletes the proof of the second asserted inequality. 	�  ◻

Now we are in the position to prove the admissibility of both undamped and 
damped steps close to optimal solutions of the composite minimization problem 
(1). We will see that undamped steps will generally be admissible whereas for the 
admissibility of damped steps we will have to assume an additional property of 
the second order model bilinear forms Hx.

Proposition 8  Let x∗ ∈ X be an optimal solution of (1) and let Hx ∈ �Nf
�(x) suffice 

(3) as well as g suffice (4) with 𝜅1 + 𝜅2 > 0 in a neighborhood of x∗ . Additionally, 
suppose that (24) holds for f as well as (15) holds for f ′ at x∗.

Steps as in (16) for any � ≥ 0 are admissible for sufficient descent according to 
(18) for any 𝛾 < 1 if the second order bilinear forms Hx satisfy a bound of the form

In particular: 

‖‖x+(�) − x∗
‖‖X≤ c1

‖‖x − x∗
‖‖X , ‖‖x − x∗

‖‖X≤ c2
‖‖�x(�)‖‖X

(38)‖‖x+ − x∗
‖‖X= �

(‖‖x − x∗
‖‖X

)‖‖x − x∗
‖‖X

‖‖x+(�) − x∗
‖‖X ≤ ‖‖x − x∗

‖‖X+‖‖�x(�)‖‖X≤ ‖‖x − x∗
‖‖X+‖‖�x‖‖X

≤ 2‖‖x − x∗
‖‖X+‖‖x+ − x∗

‖‖X=
[
2 + �

(‖‖x − x∗
‖‖X

)]‖‖x − x∗
‖‖X .

‖‖x − x∗
‖‖X≤ ‖‖x+ − x∗

‖‖X+‖‖�x‖‖X= �
(‖‖x − x∗

‖‖X
)‖‖x − x∗

‖‖X+‖‖�x‖‖X .

‖‖x − x∗
‖‖X ≤ [

1 − �
(‖‖x − x∗

‖‖X
)]−1‖‖�x‖‖X

≤ [
1 − �

(‖‖x − x∗
‖‖X

)]−1( �

�1 + �2
+ 1

)‖‖�x(�)‖‖X

(39)(Hx+(�)
− Hx)(x+(�) − x∗)

2 = o
(‖‖x − x∗

‖‖
2

X

)
for x → x∗.
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1.	 full steps �x as defined in (5) are eventually admissible.
2.	 if the mapping x ↦ Hx is continuous at x = x∗ , then eventually all steps are admis-

sible.

Proof  Let us take a look at the descent in the composite objective function F when 
performing an update step and see which estimates we can deduce with the help of 
the assumptions and results preceding this proposition.

We will denote the update by �x(�) or x+(�) = x + �x(�) respectively for some 
arbitrary � ≥ 0 such that the notation comprises both the damped and undamped 
case for the update step. Now, we write

and estimate the descent in the smooth part of the objective function 
f (x + �x(�)) − f (x) . By telescoping we obtain the following identity:

In the last step we used second order semi-smoothness of f and semi-smoothness of 
f ′ at x∗.

We observe that the only critical term is

We conclude

F(x + �x(�)) − F(x) = f (x + �x(�)) − f (x) + g(x + �x(�)) − g(x)

(40)

f (x+(�)) − f (x) − f �(x)�x(�) −
1

2
Hx(�x(�))

2

= f (x+(�)) − f (x∗) − f �(x∗)(x+(�) − x∗) −
1

2
Hx+(�)

(x+(�) − x∗)
2

+ f (x∗) + f �(x∗)(x − x∗) +
1

2
(Hx+(�)

− Hx)(x+(�) − x∗)
2

− f (x) − Hx(�x(�))
2 +

1

2
(Hx(x∗ − x+(�))

2 + Hx(�x(�))
2)

− f �(x)�x(�) + f �(x∗)�x(�) + Hx(x − x∗,�x(�))

+ Hx(x∗ − x+(�) + �x(�),�x(�))

=
�
f (x+(�)) − f (x∗) − f �(x∗)(x+(�) − x∗) −

1

2
Hx+(�)

(x+(�) − x∗)
2
�

−
�
f (x) − f (x∗) − f �(x∗)(x − x∗) −

1

2
Hx(x − x∗)

2
�

−
�
(f �(x) − f �(x∗))�x(�) − Hx(x − x∗,�x(�))

�

+
1

2
(Hx+(�)

− Hx)(x+(�) − x∗)
2

= o(‖x+(�) − x∗‖2) + o(‖x − x∗‖2X) + o(‖x − x∗‖X)‖�x(�)‖X
+

1

2
(Hx+(�)

− Hx)(x+(�) − x∗)
2.

� ∶=
1

2
(Hx+(�)

− Hx)(x+(�) − x∗)
2.
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by Corollary 2 and then directly deduce

Now, we have to consider an estimate for the critical term � defined as above. We 
can define a prefactor function � ∶ X × [0,∞[→ ℝ for the admissibility criterion 
(18) by

which should be larger than some 𝛾̃ ∈]0, 1[ . We may assume that the numerator of 
the latter expression is non-positive, otherwise this inequality is trivially fulfilled. 
Thus, by decreasing the positive denominator via (19) we obtain that for any 𝜀 > 0 
there is a neigbourhood of x∗ , such that for any iterate x in this neighbourhood

where the latter �-term arises from o(‖�x(�)‖2
X
)∕‖�x(�)‖2

X
 and can be chosen arbi-

trarily small for ‖�x(�)‖X → 0 which holds by the estimate

The �-term then vanishes by assumption (39), which is implied by i) or ii) in the fol-
lowing way:

	�  ◻

f (x + �x(�)) − f (x) = f �(x)�x(�) +
1

2
Hx

(
�x(�)

)2
+ � + o

(‖‖�x(�)‖‖
2

X

)

F(x+(�)) − F(x) = ��(�x(�)) −
�

2
‖�x(�)‖2

X
+ � + o(‖�x(�)‖2

X
).

�(x,�) ∶=
F(x+(�)) − F(x)

��(�x(�))

= 1 +
−

�

2
‖�x(�)‖2

X
+ � + o(‖�x(�)‖2

X
)

��(�x(�))

= 1 +

�

2
‖�x(�)‖2

X
+ o(‖�x(�)‖2

X
) − �

���(�x(�))�

�(x,�) ≥ 1 +

�

2
‖�x(�)‖2

X
− � + o(‖�x(�)‖2

X
)

1

2
(� + �1 + �2)‖�x(�)‖2X

= 1 +
�

� + �1 + �2
−

(Hx+(�)
− Hx)(x+(�) − x∗)

2

(� + �1 + �2)‖�x(�)‖2X
− �

‖‖�x(�)‖‖X≤ ‖‖�x‖‖X≤ ‖‖x+ − x∗
‖‖X+‖‖x − x∗

‖‖X .

i) ⇒ �(Hx+(�)
−Hx)(x+(�) − x∗)

2� = �(Hx+
− Hx)(x+ − x∗)

2�

≤ (‖Hx+
‖ + ‖Hx‖)‖x+ − x∗‖2X = o

���x − x∗
��
2

X

�

ii) ⇒ �(Hx+(�)
−Hx)(x+(�) − x∗)

2�
≤ (‖Hx+(�)

− Hx∗
‖ + ‖Hx∗

− Hx‖)‖x+(�) − x∗‖2X
= o

���x − x∗
��
2

X

�
.
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The seemingly paradoxical behavior that full Newton steps yield a better model 
approximation than damped Newton steps comes from the fact that f ′ is not Fréchet 
differentiable in general. The only prerequisite that we can take advantage of is (24) 
at fixed x∗.

The continuity assumption ii) on Hx can be verified for superposition operators 
via Proposition 7, it holds, for example, for max(0, t)2 , if x∗(�) = 0 only on a set of 
zero measure.

7 � Numerical results

We consider the following problem on 𝛺 = [0, 1]2 ⊂ ℝ
2 : Find u ∈ H1

0
(�,ℝ) that 

minimizes the composite objective functional F defined via

with parameters c > 0 and �, � ∈ ℝ as well as a force field � ∶ � → ℝ . The norm 
‖‖⋅‖‖ℝ2 denotes the Euclidean 2-norm on ℝ2 . In the sense of the theory of the preced-
ing sections we can identify the smooth part of F as f ∶ H1

0
(�,ℝ) → ℝ given by

We have to note here that f technically does not satisfy the assumptions made on the 
smooth part of the composite objective functional specified above in the case � ≠ 0 
due to the lack of semi-smoothness of the corresponding squared max-term. The use 
of the derivative ∇u instead of function values u creates a norm-gap which cannot 
be, as usual, compensated by Sobolev-embeddings and hinders the proof of semi-
smoothness of the respective superposition operator. However, we think that slightly 
going beyond the framework of theoretical results for numerical investigations can 
be instructive.

For our implementation of the solution algorithm we chose the force field � to be 
constant on its domain and equal to some so called load-factor 𝜌̃ > 0 which we will 
from now on refer to as simply � . Consequently, the non-smooth part of the objec-
tive functional g only consists of the scaled integral over the absolute value term 
which apparently also satisfies the specifications made on g before. Note that the 
underlying Hilbert space is given by X = H1

0
(�,ℝ) which also determines the norm 

choice for regularization of the subproblem.
In the following we will dive deeper into the specifics of our implementation of 

the algorithm: In order to differentiate the smooth part of the composite objective 
functional and create a second order model of it around some current iterate, we take 
advantage of the automatic differentiation software package adol-C, cf. [30]. With 
the second order model at hand we can then consider subproblem (16) which has 
to be solved in order to obtain a candidate for the update of the current iterate. For 
the latter endeavor we employ a so called Truncated Non-smooth Newton Multigrid 
Method with a direct linear solver. We can summarize this method as a mixture of 

(41)F(u) ∶= ∫
�

1

2
‖‖∇u‖‖

2

ℝ2+�max{‖‖∇u‖‖ℝ2−1, 0}
2 + �u3 + c |u| + � ⋅ u dx.

f (u) ∶= ∫
�

1

2
‖‖∇u‖‖

2

ℝ2+�max{‖‖∇u‖‖ℝ2−1, 0}
2 + �u3 + � ⋅ u dx.
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exact, non-smooth Gauß-Seidel steps for each component and global truncated New-
ton steps enhanced with a line-search procedure. The scheme is analytically proven 
to converge for convex and coercitive problems; for a more detailed description of 
the algorithm and its convergence properties consider [10].

However, the most delicate issue concerning the implementation of our algorithm 
and its application to the problem described above is the choice of the regulariza-
tion parameter � ≥ 0 along the sequence of iterates (xk) ⊂ X . For now, we want to 
confine ourselves to displaying the convergence properties of the class of Proximal 
Newton methods in the scenario presented above and not attach too much value to 
algorithmic technicalities. As a consequence, we took the rather heuristic approach 
of simply doubling � in the case that the sufficient descent criterion (18) (for � =

1

2
 ) 

is not satisfied by the current update step candidate and on the other hand multiply-
ing � by 

(
1

2

)n where n ∈ ℕ denotes the number of consecutive accepted update steps. 
The latter feature ensures that local fast convergence is recognized by the algorithm 
and the regularization parameter quickly decreases once the iterates come close to 
the minimizer. For the superlinear convergence demonstrated in Theorem 1 to arise, 
undamped update steps have to be conducted, i.e., the regularization parameter has 
to be zero and not merely sufficiently small. For this reason we set � = 0 once it 
reaches a threshold value �0 following the procedure described beforehand. On the 
contrary, if a full update step is not accepted by the sufficient descent criterion, we 
set � = �0 and from there on proceed as usual.

Even though the choice of � considered here is rather heuristic and not prob-
lem-specific at all, it stands in perfect conformity with the theory established over 
the course of the previous sections and also successfully displays the global con-
vergence and local acceleration of our Proximal Newton method for the model 
problem of minimizing (41) over H1

0
(�,ℝ) . Moreover, we added a threshold value 

for the descent considering the modified quadratic model ��
(
�x(�)

)
 as a stop-

ping criterion for our algorithm, i.e., the computation stops as soon as we have 
|𝜆𝜔

(
𝛥x(𝜔)

)
| < 10−14 for an admissible step �x(�).

Figure 1a constitutes a logarithmic plot of correction norms ‖‖�xk(�k)
‖‖H1(�)

 for 
constant values of c = 80 , � = 40 and � = −100 while � is increased from 0 to 240 
in equidistant steps of 40. Quite predictably from the structure of the functional, 
increasing values of � make the minimization problem more and more difficult to 
solve for our method but eventually the local superlinear convergence is evident 
also for larger values of � . Figure 1b shows the corresponding values of the regu-
larization parameter � which were used along the accepted steps on the way to the 
minimizer.

Apart from those considerations, it is always very insightful to compare the 
performance of our algorithm with other existing methods for similar prob-
lems to the one introduced in (41). To this end, we considered two alternatives: 
Firstly, we used a simple Proximal Gradient procedure with H1-regularization by 
ignoring the second order bilinear form Hx in the update step subproblem (16) 
and secondly, we took advantage of acceleration strategies for such Proximal 
Gradient methods by implementing the FISTA-algorithm as presented in [21]. 
In Fig. 2a and b, the norms of update steps are plotted for both variants for solv-
ing the same problem as above, i.e., c = 80 , � = 40 and � = −100 while � we 
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increase in equidistant steps of 40 from 0 to 160. We recognize a clear difference 
in performance in the transition both from Proximal Gradient to FISTA and from 
FISTA to Proximal Newton across all �-variations of the considered toy prob-
lem. Even in the rather mild case of � = 0 Proximal Gradient takes N = 5326 
and FISTA takes N = 2498 iterations to reach the minimizer. Note that in this 
case we only used four uniform grid refinements due to the very high computa-
tional effort of the simulations which does not diminish the qualitative signifi-
cance of our observations.

Furthermore, Table 1 displays the total number of iterations required in order 
to reach the minimizer of (1) considering different grid sizes for the discre-
tization of the objective function for the values of the prefactor � investigated 
beforehand. In the case 𝛼 > 0 we observe some moderate increase in iteration 
numbers, which is attributed to the presence of a norm-gap in the corresponding 
term.

(a) (b)

Fig. 1   Graphs of correction norms and employed regularization parameters for c = 80 , � = 40 , � = −100 
and � ∈ {0, 40, 80, 120, 160, 200, 240} for the Proximal Newton method with six uniform grid refine-
ments

(a) (b)

Fig. 2   Graphs of correction norms for Proximal Gradient and FISTA with c = 80 , � = 40 , � = −100 and 
� ∈ {0, 40, 80, 120, 160} with four uniform grid refinements
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8 � Conclusion

Now that we have sufficiently displayed the global and local convergence properties 
of our Proximal Newton method, it is time to both reflect on what we have achieved 
here as well as discuss some possible improvements on the algorithm and its imple-
mentation which are a topic of future research:

We have developed a globally convergent and locally accelerated Proximal New-
ton method in a Hilbert space setting which demands neither second order differ-
entiability of the smooth part nor convexity of either part of the composite objec-
tive function. Concerning differentiability, we have introduced the notion of second 
order semi-smoothness. Concerning non-convexity, our theoretical framework uses 
quantified information on lacking convexity instead of simply resorting to a different 
first order update scheme in the non-convex case. The globalization scheme takes 
advantage of a proximal arc search procedure and thereby establishes stationarity 
of all limit points of the sequence of iterates. Additional convexity close to optimal 
solutions of the original problem leads to local acceleration of our method which 
in particular does not rely on strong convexity of the smooth part, but only on the 
strong convexity of the composite functional thanks to a well-thought definition of 
proximal mappings within the theoretical framework. The application of our method 
to actual function space problems is enabled by using an efficient solver for the step 
computation subproblem, the Truncated Non-smooth Newton Multigrid Method. 
We have displayed global convergence and local acceleration of our algorithm by 
considering a toy model problem in function space.

As we have already mentioned beforehand, the choice of the regularization 
parameter we employed here is rather heuristic and not problem-specific at all. This 
issue can be addressed by using an estimate for the residual term of the quadratic 
model established in subproblem (16), as seen in [31] for adaptive affine conjugate 
Newton methods where non-convex but smooth minimization problems for nonlin-
ear elastomechanics have been thoroughly investigated. The idea behind the proce-
dure is to evaluate actual residual terms for formerly computed correction candi-
dates and then use them as a regularization parameter for the computation of the 
next update step candidate.

Another focal concern of our future work is taking into account inexactness in the 
computation of update steps. Inexact solutions of subproblem (16) are then required 
to at least satisfy certain inexactness criteria which still give access to similar global 

Table 1   Number of total 
iterations N for different grid 
sizes h and prefactor values � 
for fixed parameters � = 40 and 
c = 80

h �

0 40 80 120 160 200 240

2−4 5 9 9 12 13 13 14

2−5 5 11 15 20 19 22 25

2−6 6 14 21 21 23 22 24

2−7 5 19 21 28 28 32 38

2−8 7 25 26 28 30 37 39
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and local convergence properties of the ensuing algorithm as the exact version dis-
cussed throughout the present treatise.

Additionally, these inexactness criteria should be sufficiently simple to evaluate 
since they have to be considered within every iteration of solving the subproblem 
for update step computation. However, the discussion of inexact Proximal Newton 
methods then opens up the possibility of considering more challenging real-world 
applications like energetic formulations of finite strain plasticity.
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