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ABSTRACT

The central goal of this thesis is the development and application of sound data analysis
frameworks to assess trends in mean and extreme river run-off. This includes the con-
sideration of the auto-correlation structure (memory) of the data. Such an approach is
very useful to, e.g., assess the anticipated intensification of the hydrological cycle due to
anthropogenic climate change. The costs related to more frequent or more severe floods
and droughts are enormous. Therefore an adequate estimation of these hazards and the
related uncertainties is of major concern. We analyse discharge of basins of the Danube
River and Neckar River in Southern Germany. Thereby we compare our frameworks
with methods common in hydrology with respect to the calculation of assessment mea-
sures used by water management authorities. Furthermore, we look for spatial patterns
of trends.

In the first part of this thesis, we evaluate trends of average discharge data. We use
a trend test, where the auto-correlation structure of the data is explicitly modelled using
stochastic FARIMA processes. This is a crucial task, because auto-correlations are capable
of producing spurious trends. We assume that the data consists of an additive combina-
tion of natural variability, which is represented by the stochastic process, and potentially a
deterministic trend component. The trend is estimated using wavelets and represents the
fluctuation of the data on large time scales. In case the trend adds more variability to the
data than the natural variability is likely to generate we consider the trend as significant.
Hydrological data possesses short- and long-term memory, due to, e.g., weather regimes
or consequences of large scale atmospheric patterns. This is confirmed by our results
when analysing about 90 discharge records in the Neckar and Danube River basin: We
find a spatially heterogeneous auto-correlation structure incorporating short- and long-
term correlations. Thus, the complexity of our novel approach is necessary to adequately
represent the data. Our results therefore differ from those of the Mann-Kendall trend
test which is a common tool in hydrology. This test too often detects significant trends
in case memory is present in the data. Trends and memory are interrelated phenomena.
Thus, when applying our trend test we find that the chosen stochastic model influences
the uncertainty of the trend estimate as well as the trend test result. We detect increasing
and decreasing trends in both basins considered and the resulting spatial pattern is not
ad hoc interpretable.

In the second part of this thesis, we use a point process to model trends in the ex-
tremes of river discharge data. Thereby we use exceedances over a threshold as extremes
which we assume to be distributed according to a generalized Pareto distribution. In or-
der to eliminate auto-correlation, the data are thinned out. Contrary to ordinary extreme
value statistics, potential non-stationarity is included by allowing the model parameters
to vary with time. By this, changes in frequency and magnitude of the extremes can be
tracked. The model which best suits the data is selected out of a set of models which
comprises the stationary model and models with a variety of polynomial and exponen-
tial trend assumptions. Common assessment measures, such as 100-year return levels,

xi
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can be calculated from this model. Analysing winter discharge data of about 50 gauges
within the Danube River basin, we find trends in the extremes in about one third of the
gauges examined. The spatial pattern of the trends in extremes is not immediately inter-
pretable. Importantly, assuming stationary models for non-stationary extremes results in
biased assessment measures. This underlines the necessity of the proposed methodology.
The magnitude of the bias depends on the trend strength. Furthermore, the proposed ap-
proach allows to quantify the uncertainty of assessment measures such as return levels.

Summing up, this thesis provides enhanced trend and extreme value assessment
frameworks, which account for the idea of memory in the data and environmental change.
Trends in the mean values and extremes are found to be common in discharge when
analysing river basins in Southern Germany. However, as yet no ubiquitous signal of
increasing or decreasing discharge trends primarily related to climate change can be de-
tected in these river basins. We observe neighbouring gauges often to display distinct
behaviour, possibly due to non-climatic factors such as changes in land use or soil con-
ditions. In any case, a sound trend assessment is the necessary basis for any process
oriented, physical interpretation. Moreover, common practice of water management au-
thorities can be improved by applying the proposed methods, and costs for flood pro-
tection buildings can be calculated with higher accuracy. That is, construction costs are
reduced in case return level estimates are evidenced to be too high and possible future
damage costs are dampened in case it is shown that those estimates are too low.

Keywords: trend assessment, auto-correlation, extreme value analysis, threshold ex-
cesses, declustering, wavelets, stochastic modelling, discharge



ZUSAMMENFASSUNG

In dieser Dissertation wird ein profunder Datenanalyse-Methodenkanon entwickelt und
angewendet, um Trends im Mittelwert und den Extremen von Abflusszeitreihen zu un-
tersuchen. Insbesondere findet dabei die Autokorrelationsstruktur der Daten (das Ge-
dächtnis) Berücksichtigung. Ein solcher Ansatz ist zum Beispiel sehr nützlich, um ei-
ne mögliche Intensivierung des globalen Wasserkreislaufes aufgrund des anthropogenen
Klimawandels zu untersuchen. Die Kosten häufigerer oder schwererer Hochwasser und
Dürren sind sehr hoch, deshalb ist eine akkurate Abschätzung dieser Gefahren samt ih-
rer Unsicherheiten von großer Bedeutung. Wir analysieren Abflüsse von Einzugsgebieten
der Donau und des Neckar in Süddeutschland. Hierbei vergleichen wir unseren Metho-
denkanon mit in der Hydrologie gängigen Methoden, um Unterschiede und Gemeinsam-
keiten bezüglich der Berechnung von Bemessungsgrößen, die von Wasserwirtschaftsäm-
tern genutzt werden, feststellen zu können. Außerdem suchen wir nach räumlichen Mus-
tern von Trends.

Im ersten Teil dieser Arbeit untersuchen wir Trends im Mittelwert von Abflussdaten.
Beim Trendtest wird hierbei die Autokorrelationsstruktur der Daten mittels stochastisch-
er FARIMA-Prozesse modelliert. Dies ist ein entscheidendes Merkmal des Trendtests, da
durch Autokorrelationen unechte Trends vorgetäuscht werden können. Wir nehmen an,
dass die Daten additiv zusammengesetzt sind aus natürlicher Variabilität, die durch den
stochastischen Prozeß repräsentiert wird, und möglicherweise einer deterministischen
Trendkomponente. Dieser Trend wird mit Hilfe von Wavelets bestimmt und repräsentiert
die Fluktuationen der Zeitreihe auf großen Skalen. Falls der Trend mehr Variabilität ver-
ursacht als die natürliche Variablität zu generieren vermag, betrachten wir den Trend
als signifikant. Hydrologische Zeitreihen zeichnen sich durch Kurzzeit- und Langzeit-
Gedächtnis aus, das zum Beispiel durch Wetter oder Folgen großskaliger atmosphärischer
Muster verursacht werden kann. Dies wird durch die Ergebnisse unserer Analyse von
ca. 90 Abflusspegeln der Einzugsgebiete von Neckar und Donau bestätigt: Wir finden
räumlich sehr heterogene Autokorrelationsstrukturen der Daten, die sowohl Kurzzeit-
als auch Langzeit-Korrelationen beinhalten. Dies zeigt, dass die Komplexität des hier
präsentierten Ansatzes zur Bewertung von Trends notwendig ist, um die Zeitreihen adä-
quat zu repräsentieren. Unsere Ergebnisse unterscheiden sich deshalb auch von denen
des in der Hydrologie gebräuchlichen Mann-Kendall-Trendtests, der zu oft signifikan-
te Trends diagnostiziert, falls die analysierten Daten Autokorrelationen besitzen. Trends
und Gedächtnis sind zusammenhängende Phänomene. Beim Anwenden unseres Tests
stellen wir also fest, dass das gewählte stochastische Modell sowohl die Unsicherheit
des Trendschätzers beeinflusst als auch das Ergebnis des Trendtests. Wir finden sowohl
steigende als auch fallende Trends in beiden Einzugsgebieten und es ist kein ad hoc in-
terpretierbares räumliches Muster auszumachen.

Im zweiten Teil dieser Arbeit modellieren wir Trends in den Extremwerten von Ab-
flussdaten mittels Punktprozessen. Hierbei nehmen wir an, dass Überschreitungen eines
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xiv ZUSAMMENFASSUNG

Schwellenwertes gemäß der verallgemeinerten Pareto-Verteilung verteilt sind. Autokor-
relationen in den Extremwerten werden entfernt, indem man die Daten ausdünnt. Im Ge-
gensatz zu konventioneller Extremwertstatistik wird eine mögliche Instationarität über
zeitabhängige Modellparameter zugelassen. Auf diese Weise können Änderungen so-
wohl in der Häufigkeit als auch im Betrag der Extremwerte berücksichtigt werden. Das
beste Modell wird dann aus einer Menge gewählt, zu der sowohl das stationäre Modell
als auch Modelle mit einer Auswahl an polynomialen und exponentiellen Trendannah-
men gehören. Gängige Bemessungsgrößen, wie das Jahrhunderthochwasser, können nun
mit Hilfe dieses Modells berechnet werden. Wir analysieren Winter-Abflussdaten von ca.
50 Pegeln innerhalb des Einzugsgebietes der Donau und finden in ungefähr einem Drit-
tel der Daten Trends in den Extremwerten. Das räumliche Muster der Trends in den Ex-
tremwerten ist nicht direkt interpretierbar. Wesentlich ist, dass die Anpassung stationärer
Modelle an instationäre Extrema zu einer Verzerrung der Bemessungsgrößen führt. Dies
unterstreicht die Notwendigkeit der vorgeschlagenen Methodik. Die Größe der Verzer-
rung hängt von der Stärke des Trends ab. Die hier vorgestellte Methode bietet außerdem
die Möglichkeit, die Unsicherheit der ermittelten Bemessungsgrößen, wie zum Beispiel
Wiederkehrschwellen, abzuschätzen.

Die vorliegende Dissertation liefert einen Methodenkanon zur verbesserten Trend-
und Extremwertanalyse, die die Vorstellung von Gedächtnis in den Daten und einer sich
mit der Zeit verändernden Umwelt aufgreift. Bei unseren Untersuchungen von Abflüssen
in Flusseinzugsgebieten von Süddeutschland ermitteln wir oft Trends im Mittelwert und
den Extremen. Dennoch ist in diesen Flusseinzugsgebieten kein einheitliches, in Bezie-
hung zum Klimawandel stehendes, Signal fallender oder steigender Abfluss-Trends zu
erkennen. Oft stellen wir vielmehr fest, dass sich benachbarte Pegel unterschiedlich ver-
halten. Dies wird möglicherweise durch Faktoren wie Änderung der Landnutzung oder
der Bodenbeschaffenheit bestimmt, die primär nichts mit dem Klimawandel zu tun ha-
ben. Auf jeden Fall ist eine fundierte Trendbewertung die notwendige Grundlage für jeg-
liche prozeßorientierte, physikalische Interpretation. Weiterhin kann die gängige Praxis
von Wasserwirtschaftsämtern verbessert werden indem die vorgestellte Methodik an-
gewandt wird und Kosten für den Hochwasserschutz können genauer kalkuliert wer-
den. So werden zum Beispiel Baukosten reduziert, wenn die Schätzung zu hoher Wie-
derkehrschwellen aufgezeigt werden kann und Kosten möglicher zukünftiger Schäden
werden vermindert, falls die Unterschätzung solcher Wiederkehrschwellen belegt wer-
den kann.

Stichworte: Trendbewertung, Autokorrelation, Extremwertanalyse, Schwellenwert-
Überschreitungen, Entclustern, Wavelets, stochastische Modellierung, Abfluss



CHAPTER 1

MOTIVATION

River discharge data may exhibit trends because of a variety of reasons, thereby climate
change is an anticipated factor. This thesis analyses non-stationarities of river discharge
during the 20th century in Southern Germany and evaluates the significance of such
trends for mean values as well as for extremes, i.e. floods. Regional patterns are looked
for to come to a better understanding of the potential for change in river discharge data.

1.1 CLIMATE CHANGE

Since several decades mankind has become aware of its ability to change its environmen-
tal conditions, even on a global scale. The emergence and the containment of the ozone
hole may serve as an impressive example for the interaction of ecosphere and anthropo-
sphere on a global scale. Several approaches have been made to formalise this interaction
at least in a qualitative way (cf. Schellnhuber and Kropp 1998 and Schellnhuber 1998).

Already in the 1860’s scientists like Tyndall (1861) recognised the earth’s natural green-
house effect. During the 1980s and 1990s then a scientific awareness began to emerge that
the emission of “greenhouse gases” (basically carbon dioxide and methane) into the at-
mosphere was leading to an increase in global temperatures. This effect nowadays is
labelled as global warming and has been demonstrated in many ways by science (see,
e.g., IPCC 2001, Rahmstorf and Schellnhuber 2006 and IPCC 2007). In this context, the
field of time series analysis, in which also this thesis is located, contributed notably. Re-
constructions of Northern Hemisphere temperatures for the last 1 000 years have been
studied, for example, to assess the question of global warming (cf. Mann et al. 1998 and
Mann et al. 2004). Luterbacher et al. (2004), for example, affirm an increase in tempera-
ture in the late 20th and early 21th century as highest in the record regarding European
climate. The detection of potential anthropogenic impacts is as well addressed using data
analysis methods (see Bloomfield 1992, Smith 1993 and Schär et al. 2004).

To examine the evidence for anthropogenic effects on climate change the Intergovern-
mental Panel on Climate Change (IPCC) was established by the United Nations and the
World Meteorological Organisation. This institution also worked on the formulation of
plausible greenhouse gas emission scenarios in order to predict future climatic changes.
The scientific assessment reports of the IPCC (IPCC 2007) state that most of the observed
increase in globally averaged temperatures since the mid-20th century is very likely due
to the observed increase in anthropogenic greenhouse gas concentrations. The associated
impact assessments (cf. Stern 2006) suggest that the social, economic and environmental
consequences of climate change are likely to be severe.

1
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Regarding the identification of changes in extreme events, a widespread assumption
is that climate change leads to an increase in the frequency and magnitude of severe
weather events. This is confirmed by a large number of meteorological records (such as
highest temperature events, most intense precipitation or longest dry spell), which have
been surpassed within the past two decades (FOE 1997). The IPCC states (IPCC 2001)
that “small changes in the mean climate or climate variability can produce relatively large
changes in the frequency of extreme events”, acknowledging that substantial changes in
the extreme behaviour are not implausible from a scientific perspective.

Thereby the concern is not so much the mean temperature increase of about 0.74◦C
that has occurred since 1906, but the best estimates for projections of globally average
surface air warming, which range from 1.8◦C for the low emission scenario (B1) up to
4.0◦C for the high emission scenario (A1FI) (IPCC 2007). Climate researchers now have
to interact with economists, sociologists and political scientists in order to assess the full
implications of climate change for sustainable development. Nowadays the existence of
a global warming phenomenon is widely accepted by politicians, which is documented
by various self-commitments of a lot of states to take the necessary steps to protect the
climate.

1.2 INFLUENCE OF CLIMATE CHANGE ON THE HYDROLOGICAL

CYCLE

Changes in the atmospheric composition may add to the risk of floods (Frei et al. 2000
and IPCC 2001). This is because the capacity of the atmosphere to hold water grows with
increasing temperature. In this way the potential for intense precipitation also increases.
Higher and more intense rainfall has already been observed (cf. Osborn et al. 2000 or
Kundzewicz and Schellnhuber 2004). This trend is expected to continue, which gives rea-
son to anticipate a rise of flood hazards because of global climate change as well.

In Europe floods have been a known natural hazard for centuries (cf. Pfister et al. 1999,
Brázdil et al. 1999, Brázdil et al. 2005 and DFO 2004). Nevertheless, the occurrence of ex-
treme flood events seems to have grown considerably over recent decades. IPCC (2001)
and Kundzewicz and Simonovic (2002), for example, find a higher occurrence of flood
events worldwide in the time span of 1990-1998 than in the nearly four times longer pe-
riod of 1950-1985. Also recently occurred extreme river floods have had severe effects in
central Europe. The Elbe flood in August 2002, for example, caused 36 deaths and over
15 billion USD damages and the Oder flood in July 1997 caused 114 deaths and around 5
billion USD damages (Mudelsee et al. 2004). This might support the assumption that the
anticipated influence of global warming on the hydrological cycle also has an effect on
hydrological extremes. Therefore the question of detection of changes in various flood
and drought-related indices attracts more and more interest. This thesis also aims at in-
vestigating trends in extreme values of hydrological data.

Furthermore, average river run-off is an important hydrological statistics for assess-
ing river catchments. Therefore systemic change in average river run-off is as well in-
vestigated in this dissertation. The importance of the topic is shown by various studies
(cf. Burlando and Rosso 2002 and KLIWA 2003).
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Yet, there is no common trend tendency detectable in drainage basins of rivers (catch-
ments) or even larger regions. Therefore the picture composed by various studies, which
assess trend tendencies in hydrological data, is very diverse. Black (1995) analyses annual
mean run-off time series in Scotland and partly detects an increasing trend, predomi-
nantly after 1989. Caspary and Bárdossy (1995) find an increasing trend at some stations
in Germany for annual maxima data. Robson et al. (1998) and Robson (2002) analyse run-
off extremes of UK rivers and cannot find evidence of significant trends. For U.S. rivers
Douglas et al. (2000) do not detect trends in flood flows, but they find indication for an
upward trend in low flows. Analysing stream flow data in Switzerland, the results of
Bı̂rsan et al. (2003) indicate an increasing run-off in winter and a decrease in summer.
Zhang et al. (2001) detect no increasing trend for Canadian rivers, but in some cases de-
creasing changes. Kundzewicz et al. (2004), who analyse maximum annual flow all over
the world, find significant increasing and decreasing trends – but no regional patterns.

Systemic change is difficult to detect in river run-off data in any case. The observed
system is complex and anyway possesses a large variability, which in addition is delayed
by large storage capacities such as groundwater reservoirs. Furthermore, regarding the
detection of climate change, the interactions between precipitation, temperature and river
run-off are not universal or linear. Last but not least, the separation of systemic change
and natural variability, that is the detection of trends, does not yet solve the attribution
problem. The systemic change may be caused by a lot of different phenomena. Socio-
economic factors such as population increase (and therefore different settlement patterns,
cf. Haase and Nuissl 2007) or accumulation of wealth in vulnerable areas may be a rea-
son for an increase in impacts. Changes of local or site-related factors such as soil type,
land use, urbanisation patterns or river engineering (e.g. drainage or flood alleviation
schemes) are important sources for trends in the data and related effects may overlay a
possible trend due to global warming.

Hence up to now, there is no general and conclusive proof of anthropogenically caused
climate change having an impact on floods (cf. Kundzewicz and Schellnhuber 2004 and
Katz et al. 2002), but also no disproof. This task remains an important field of scientific
investigation. For practical water management reasons, a reliable estimation and predic-
tion of peak flows under changing climatic conditions, preferably with an assessment of
the uncertainty of these estimates, is desirable. These problem fields and requirements
motivated our thesis, which presents a framework for assessing non-stationary peak flow
data and incorporating confidence intervals.

1.3 APPROACHES TO ASSESS TRENDS

One way to distinguish scientific techniques to assess changes may be the division into
a process oriented, explanatory modelling approach on one side and a descriptive data
analysis approach on the other.

By functional, process oriented modelling, parts of a real system (i.e. a range of natural
processes) are mapped to a mathematical model. Such models can be used for simula-
tion studies. The output then is evaluated and the conclusions drawn are used to explain
and interpret possible reactions of the real system. This procedure is especially useful
for studying behaviour of the system for yet not observed circumstances, e.g. scenarios
or future settings. In the field of hydro-meteorology there exists a wide range of process
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oriented models for a variety of purposes. Regional climate models (cf. Thodsen 2007)
provide rainfall and temperature scenarios as input for, e.g., hydrological models, which
generate the run-off. They include processes of interception, evapotranspiration and wa-
ter storage in soils and aquifers (see, e.g., Bremicker 2000 and Jones et al. 2006). Models
on a global scale, such as general circulation models (GCM), contain process oriented
parts. They are designed to conduct global climate studies and they are widely used
for modelling the development of the global climate under various emission scenarios
(see, for example, Claussen 1996, Stott et al. 2004, Schneider von Deimling et al. 2006 and
Baettig et al. 2007). These approaches are established by now, their results have advanced
scientific research and form a basis for political decision making. However, some draw-
backs also appeared. Kirchner (2006), for example, questions the upscaling premise used
for a lot of physically based models of hydrologic systems. Besides, the GCM models
are tuned to reproduce the 30 year average behaviour of the system adequately. There-
fore the reproduction of extreme events is difficult. Thus the anticipation of extreme
scenarios by the help of GCM model runs, for example, does not seem to be satisfactory
(Lucio 2004). Furthermore, no probabilistic forecasts with numerical models exist, which
systematically investigate the range of possible responses of the hydrological cycle to an-
thropogenic climate change (Allen and Ingram 2002). This is due to the complexity and
the computational expenses of the issue.

Data analysis possesses a long tradition in the field of hydro-meteorology as well.
Among others Bloomfield (1992) and Smith (1993) have assessed trends in global temper-
ature by analysing observed data. Hurst (1951) investigated the Nile River and formu-
lated a universal law concerning water storage. Extreme value analysis theory, which has
especially been developed to deal with extreme events (Embrechts et al. 1997), is used by
water management authorities and engineers to estimate return levels of floods and to set
up protecting constructions. A variety of statistical models and analysis techniques are
utilised in time series analysis and modelling (cf. Lange 2006). The variability in a system
is partly represented using probability distributions and random variables to model vari-
ations in empirical data rather than using non-linear deterministic functions. Time series
analysis also has to deal with several drawbacks: Analysing data, one has to cope with
the relative shortness of the empirical record in comparison to the time span of processes
which might influence the variability of the system. Predictions are made by extrapolat-
ing statistical models into the future, but usually the conditions under which the model
has been constructed are assumed to stay constant, which may be misleading. Further-
more, all time series methods require a certain length of the data to obtain credible results.
Measurement errors (which may be as high as 10% of the total variability of the data in
the case of river run-off) might also affect the findings (this also holds for process oriented
models, which naturally rely on empirical data).

Nevertheless, the modelling and the data analysis approach both contribute to the
assessment of the current and important issue of the detection and attribution of climate
change and resulting changes in the global hydrological cycle. Furthermore, they inter-
twine fruitfully for a variety of purposes. Time series analysis and statistical methods are
used for model validation by comparing model output and empirical data according to
some statistical criterion (see, e.g., Fuentes et al. 2003 and Vyushin et al. 2004). Stochas-
tic models may be used to build simple and fast emulators of complex process oriented
models. In this way Monte Carlo studies of these models can be mimicked, which helps
to assess the uncertainty of deterministic flood risk models (Apel et al. 2004) or GCM
output (cf. Oakley and O‘Hagan 2002, Lefebvre 2002, and Goldstein and Rougier 2006).
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Time series regression analysis is capable to use model output as deterministic predictor
variable, which e.g. is utilised by Smith et al. (2003) to detect trends in hemispheric mean
temperatures. These few examples of the combination of modelling and data analysis
methods underline the necessity of both approaches.

1.4 AIMS AND OUTLINE OF THE THESIS

The appearance of floods is affected by short-term phenomena in the first place. Heavy
precipitation and other weather conditions have a large impact on the evolution of river
discharge. However, the examination of processes, which act on large time scales, also
have to be taken into account to adequately assess the evolution of river discharge and to
make predictions for the nearer future. In this context, the separation of systemic changes
and natural variability is a key question, especially in the context of the anticipated im-
pact of global warming on the hydrological cycle. This work aims at contributing to these
topics by means of time series analysis, that is by examining observed records. Thereby
a special focus is set on the modelling of non-stationary data, i.e. of observations where
a trend in the mean or other moments of the distribution is present. It is assumed that
this trend is traceable as a slow change, which takes effect on large time scales. Thereby
the trend is explicitly modelled. By this means, all empirical information available can
be used at once. This is contrary to, e.g., comparing statistical characteristics of two time
windows. The non-stationarity may be caused by a variety of factors, such as climate
change due to anthropogenic influence, local river regulation schemes or by natural fac-
tors, for example, large scale atmospheric patterns influenced by El Niño and general
weather circulation patterns. Therefore we do not presume a certain trend shape, e.g.
“linearly increasing”, but we test for a deterministic signal, which may also exhibit peri-
odic oscillations.

We expect this signal to be hidden by the “natural variability” of the system, which
we model via the auto-correlation structure of a time series. A lot of standard methods
assume independent, e.g. non-correlated data. Concerning river discharge data this as-
sumption is questionable (cf. Montanari et al. 2000 and Mudelsee 2007) and has to be
verified before applying such methods. Auto-correlations describe the correlation be-
tween different points in time of a process. Therefore they are a kind of time dependence,
as well as trends. River discharge may exhibit natural variability because of a lot of pro-
cesses, such as evaporation, groundwater storage or the composition of the soil next to
the river. Apparently these factors operate on small and large time scales. However,
auto-correlations are a stochastic phenomenon, whereas trends are regarded as systemic
or deterministic change. Thus, both phenomena have to be treated differently. Further-
more, the auto-correlation structure of river discharge typically is stationary, i.e. although
the auto-correlations may cause the data to fluctuate away from its mean for a long time
period, the data is always expected to return to its mean value.

It is our aim to separate the deterministic trend component from the stochastic vari-
ability. However, the mutual confusion of trend and auto-correlations is a known fact
(see Beran 1994). Trend estimation methods may detect a “trend”, which actually is pro-
duced by a stationary auto-correlated series and vice versa. To cope with this problem, in
this work a method of trend analysis which takes care of auto-correlations is applied. We
verify the methodology, compare it with established methods and apply it to empirical
data in Southern Germany.
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Furthermore, we assume that non-stationarities in the time series influence the evolu-
tion of extreme events (i.e. floods or droughts) in one or the other way. Therefore in the
second part of this thesis a framework to adequately model non-stationary extreme val-
ues is presented. Thereby the auto-correlation structure of the extremes is not modelled
explicitly, but it is removed. This is reliable, because auto-correlations play a much less
important role when looking at extreme events. Trends in extremes are of special interest
because of their heavy impacts on society. We incorporate them by allowing the param-
eters of a point process, which is fitted to the data, to vary with time. In this work we
verify the extreme value assessment methodology for non-stationary extremes and apply
it to empirical data in Southern Germany.

Hence the key questions of this thesis are:

• Are there trends in the mean of hydro-meteorological data?

• Are there trends in the extremes of hydro-meteorological data?

• Do these non-stationarities affect assessment measures commonly used by water
management authorities?

• Do regional trend patterns emerge?

By developing a sound framework to address these questions, an essential require-
ment for the attribution of the detected trends to potential causes is achieved. Together
with data and expert knowledge out of a variety of application fields, such as hydrol-
ogy, climatology, history or soil sciences, the results of this thesis may serve to identify
potential causes for trends, which is beyond the scope of this work.

The research results of this thesis are applicable in many ways. On the one hand, the
findings of the assessment of trends and the auto-correlation structure in hydrological
data are important for practitioners. The examination of these statistical characteristics
provide indicators for water management authorities. They may use them to adjust mea-
sures for risk assessment, to tune flood protection systems, and to build up adequate
protection constructions. The Bavarian Environmental Protection Agency for instance is
engaged in several scientific projects to this purpose. This thesis originates from one of
those, namely the German Ministry of Education and Research (BMBF) project for scaling
analysis of hydro-meteorological data (Kropp and Schellnhuber 2006). On the other hand, the
results of this dissertation are interesting in a scientific context. A better description of
hydro-meteorological data is a valuable basis to interpret natural processes. Furthermore,
an improved insight in the impacts of natural disasters (such as floods) on human society
may be obtained by combining studies conducted in this thesis with an assessment of
the development of society, which addresses the sensitivity and adaptive capacity of the
exposed societal entities. Thus, the quantification of the vulnerability of a society, even
in monetary terms, may be possible, at least from a “site-based”, i.e. local, point of view
(Turner et al. 2003 and Glaser and Stangl 2003).

This thesis is organised in four main parts. In Chap. 2 the methodological framework
to assess trends of average and extreme data by means of time series analysis is sketched.
Here the utilised data and its preparation are presented as well. Details of the assessment
of trends in mean values and results of a study of basins in Southern Germany are given



AIMS AND OUTLINE OF THE THESIS 7

in Chap. 3. We combine a trend estimate obtained by wavelet filtering and the class of
stochastic fractional auto-correlated moving average (FARIMA) models to assess trends
in a semi-parametric approach. A trend test framework is provided, which allows for
data adaptive and flexible trend estimation and the consideration of short-term as well
as long-term auto-correlation of the data. By doing so, we extend the trend test proposed
by Craigmile et al. (2004) and therefore refer to it as Craigmile-Guttorp-Percival (CGP)
trend test. In Sec. 3.5.2 we compare the CGP trend test to the Mann-Kendall trend test
(cf. KLIWA 2003), which is common in hydrology but may be biased in the presence of
auto-correlations (cf. Hamed and Rao 1998). In Chap. 4 a framework for examining non-
stationary extreme values is formulated and findings of a study of the Danube River basin
are presented and discussed. Common extreme value statistics assumes independent and
identically distributed data (Embrechts et al. 1997). In the context of climate change and
the availability of longer measurement records these assumptions become questionable.
We examine possibly non-stationary extreme values with a point process approach. By
doing so, a generalized Pareto distribution is fitted to excesses over a threshold, which
allows for the elimination of auto-correlations in the extremes. The frequency of occur-
rence is modelled by a Poisson process. Trends in magnitude as well as in frequency of
occurrence can be assessed and uncertainty measures are provided along with the results.
Finally a summary is given and conclusions are drawn in Chap. 5.





CHAPTER 2

BASIC METHODS AND DATA

2.1 STOCHASTIC PROCESSES

2.1.1 Basic definitions

As outlined in Chap. 1, we use data analysis methods to retrieve information about hy-
drological processes. This methodology is not restricted to assess observed data, but is
also capable to reproduce empirical data, which is useful either for prediction purposes
or for simulation studies to assess uncertainty issues. In time series analysis stochastic
processes are used to model the data. These processes are rather driven by randomness
to model fluctuations of empirical data than by non-linearity (which mostly is utilised
by dynamical models built up by e.g. differential equations). In the following we re-
fer to standard concepts and definitions of stochastic processes as given, for example, in
Priestley (1981). In Chaps. 3 and 4 these concepts are used to build up our trend assess-
ment frameworks.

A random variable X is a function from a sample space S into the real numbers. With
every random variable, we associate a function called the cumulative distribution func-
tion (cdf) of X, which we denote FX(x). It is defined by

FX(x) = PX(X ≤ x) for all x . (2.1)

The expected value or mean of a random variable X, denoted by E(X), is

E(X) = µ =
∫ ∞

−∞
x fX(x)dx , (2.2)

where fX(x) is the density (pdf) of X. It is the first moment of X and the nth centralised
moment is defined by µn = E(X − µ)n. The second moment is the variance of a random
variable. The moments of a distribution are important characteristics of a distribution,
but they do not need to exist.

A sequence of random variables in time {Xt} ≡ X1, X2, . . . is called a stochastic pro-
cess, or random process. A sample of observations x1, x2, . . . , xn can be interpreted as a
realisation of a stochastic process. In this case, the values of these observations cannot
be predicted precisely beforehand but probabilities can be specified for each of the dif-
ferent possible values at any particular time. These probabilities are determined by the
marginal cdf of each random variable Xt.

9
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Let FX1,X2,...,Xn(x1, x2, . . . , xn) denote the joint distribution of X1, X2, . . . , Xn. A stochas-
tic process {Xt} is completely stationary in case

FXt1
,Xt2

,...,Xtn
(x1, x2, . . . , xn) ≡ FX(t1+k),X(t2+k),...,X(tn+k)

(x1, x2, . . . , xn) (2.3)

holds for any admissible t1, t2, . . . , tn ∈ R and any k.

This basically means that for any set of time points t1, t2, . . . , tn the joint probability
distribution of Xt1

, Xt2 , . . . , Xtn must remain unaltered if each time point is shifted by the
same amount k. Complete stationarity implies independence from time for all moments
(in case they exist). This requirement can be relaxed to stationarity up to an order m. Here
it is only demanded that the main features of the distributions of Xt1

and X(t1+k) are
similar, i.e. that their moments up to order m have to be the same. Definitions of weak
stationarity only assume time independence of moments up to order 2 (for further details
see Priestley 1981). The distribution of a normal distribution is determined by its first
two moments. Thus, for a Gaussian time series, weak stationary is equivalent to strict
stationary.

The auto-correlation function ρ(τ) of weak stationary processes depends only on the
differences τ = ti − tj, which results in

ρ(τ) =
E([Xt − E(Xt)][Xt+τ − E(Xt)])

E(X2
t ) − [E(Xt)]2

=
E(XtXt+τ) − [E(Xt)]2

VAR(Xt)
. (2.4)

2.1.2 Autoregressive moving average processes

Autoregressive moving average (ARMA) processes are linear stochastic processes which
model the auto-correlation structure of a data series. In our setting, the domain over
which these random functions are defined, is a time interval. The auto-correlation struc-
ture can be seen as the “memory” of a time series, e.g. due to auto-correlation events in
the past influence events in the present or future despite of the concept of randomness,
which drives stochastic processes. The intensity of this memory depends on the influence
of factors such as weather or soil conditions. Precipitation, for example, often does not
have a memory at all and therefore is said to be purely stochastic. Hipel and McLeod (1994)
present an overview for the physical justification of using ARMA models to represent
river flow data. Autoregressive moving average (ARMA) processes now are well-known
discrete parameter models incorporating auto-correlations of the random variable itself
(AR) and a noise part (MA). Assuming µ = E(Xt) = 0 an ARMA(p, q) process is defined
by

φ(B)Xt = ψ(B)ǫt (2.5)

with B denoting the back-shift operator BXt = Xt−1 and ǫt being independent and iden-
tically distributed (iid) normal random variables with zero expectation and variance σ2

ǫ

and

φ(z) = 1 −
p

∑
i=1

φiz
i ,

ψ(z) = 1 +
q

∑
j=1

ψjz
j (2.6)
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are the autoregressive (AR) and moving average (MA) polynomials of order p and q,
respectively.

An ARMA(p, q) process is stationary in case all solutions of φ(z) = 0 lie outside the
unit circle and φ(z) and ψ(z) do not have common roots1. It is causal if all solutions of
ψ(z) = 0 lie outside the unit circle.

For ARMA processes, the asymptotic decay of the correlations is exponential in the
sense that there exists an upper bound for the auto-correlation function ρ(k), i.e.,

|ρ(k)| ≤ bak , (2.7)

where 0 < b < ∞, 0 < a < 1. |a| < 1 holds, therefore we have ∑
∞
k=0 ρ(k) = constant < ∞.

Stochastic processes with this kind of correlation structure are called short-range correlated
processes. For further details see, e.g., Box and Jenkins (1976).

2.1.3 Fractional ARIMA processes

An autoregressive integrated moving average (ARIMA) process (Box and Jenkins 1976) is
obtained by integrating an ARMA process. Thus, if Eq. (2.5) holds for the δth difference
(1 − B)δXt, then Xt is called an ARIMA(p,δ,q) process for δ being integer values.

Fractional ARIMA (FARIMA) processes (Granger and Joyeux 1980) are an extention
of these well studied processes incorporating long-range dependence or long memory or long-
term correlation. Long-range dependence is qualitatively different from the short-ranged
AR or MA dependence. Auto-correlations of long-range dependent data decay slower
than exponential and it is not possible to determine a specific time lag so that we find
correlations of larger lags getting negligible. To be more specific, a process has long-
range dependence or long-range correlation if the auto-correlation function ρ(k) decays
algebraically in the limit of large time lags k:

lim
k→∞

ρ(k)

ck−β
= 1 , (2.8)

with β ∈ (0, 1) and c > 0 being a finite constant. This implies that, contrary to the short-
range dependent case, ∑

∞
k=−∞ ρ(k) = ∞ holds, that is the correlations are not summable.

Assuming µ = E(Xt) = 0, a FARIMA(p, δ, q) process is defined by

φ(B)(1 − B)δXt = ψ(B)ǫt , (2.9)

with B, ǫt, φ(z) and ψ(z) as introduced in Eq.( 2.6) and δ ∈ R being the fractional dif-
ference or long-memory parameter. A FARIMA(p, δ, q) process is causal and stationary if
δ < 0.5 and all solutions of φ(z) = 0 and ψ(z) = 0 are outside the unit circle. A variety of
non-stationary long-memory processes have stationary backwards differences, i.e. they
can be made stationary by differencing. Thus, to obtain a stationary process out of a
non-stationary one, where the non-stationarity is caused by the long-memory parameter,
Xt must be differenced δi times, thereby δi is the integer part of δ. Also a random walk
process can be made stationary by differencing (Percival and Walden 2000). A FARIMA

1Roots are the solutions of a polynomial set equal to zero.
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process exhibits long memory for 0 < δ < 0.5. FARIMA(p, δ, q) models with δ < 0 are
called intermediate memory or “overdifferenced”. In practice, this case is rarely encoun-
tered (Beran 1994).

In case δ ∈ Z+, that is the ARIMA case, (1 − B)δ can be calculated by

(1 − B)δ =
δ

∑
k=0

(
δ

k

)
(−1)kBk . (2.10)

For any real number δ ∈ R, i.e. the FARIMA case, the difference operator can be expanded
to an infinite power series

(1 − B)δ ==
∞

∑
k=0

( Γ(δ + 1)

Γ(k + 1)Γ(δ − k + 1)

)
(−1)kBk . (2.11)

Here, Γ(x) denotes the gamma function. This formula can be reduced to Eq. (2.10) for
the ARIMA case (for negative integers the gamma function has poles, that is the bino-
mial coefficient is zero if k > δ and δ is an integer). For more details see Beran (1994),
Ooms and Doornik (1999), and Sibbertsen (1999). Further details concerning the auto-
covariance function ρ(k) of a FARIMA process or its spectrum (the Fourier transform of
ρ(k)) are given in appendix A-1.

Three of the most simple models out of the FARIMA(p, δ, q) class are:

1. FARIMA(1,0,0) or AR(1)
(1 − φ1B)Xt = ǫt , (2.12)

2. FARIMA(0,δ,0) or FD(δ)
(1 − B)δXt = ǫt , (2.13)

3. FARIMA(1,δ,0)
(1 − φ1B)(1 − B)δXt = ǫt . (2.14)

The first model consists of only a short-range correlated component with parameter φ1,
the second model of a long-range correlated component only with long memory param-
eter δ. The third model combines the previous two in the sense that for δ = 0 or φ1 = 0 it
recovers the first or the second model, respectively.

The assessment of long-range dependence first became famous with the work of the
hydrologist Hurst (1951), who was interested in modelling the storage capacity of reser-
voirs of the River Nile. By studying the flow of the Nile, he formulated a power law. In
this formula the famous Hurst coefficient H is used. H is related to δ by H = δ + 0.5 for
stationary processes (for non-stationary long memory processes H is not defined).

In Fig. 2.1 as an example a realisation of a FD(δ) process with parameter δ = 0.4
and an AR(1) process with parameter φ1 = 0.8 and their auto-correlation functions are
depicted. Both processes have mean 0 and standard deviation 1. The AR(1) process
exhibits an exponential decay and its auto-correlation function is summable (depicted
in green in the right figure). On the other hand, ρ(k) of the FD(δ) process decays much
slower, algebraically.
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Figure 2.1: Example of a FD(δ) and AR(1) series and auto-correlation function. Left: Realisation
of a FD(δ) process with δ = 0.4 (black) and of an AR(1) process with φ1 = 0.8 (blue). The standard
deviation of both processes is 1 and the mean zero, though the AR(1) process is shifted to be-
come visible. Right: Auto-correlation function of the FD(δ) process (black) and the AR(1) process

(blue). The auto-correlation function of the AR(1) process decays exponentially, i.e. ρ(k) ≤ bφ
|k|
1

(which can be rewritten as exp{ln(b) + |k|ln(φ1)}). This function is depicted in green. The auto-
correlation of the FD(δ) process decays much slower, i.e. algebraically, according to c|k|2δ−1, which
is shown in red. Hereby b > 0 and c > 0 are constants.

2.2 WAVELET ANALYSIS

Within the last decade wavelet methodology has had a significant impact in areas as im-
age processing, statistics and differential equations. Wavelets in the sense used nowadays
have been introduced by Goupillaud et al. (1984) as an alternative to local Fourier analy-
sis. Wavelets are a special class of functions or sequences. The shape of these functions
resembles a small wave, or wavelet in French-English notation. We use wavelet analysis
to filter a time series, that is to split it in small-scale and large-scale parts.

A time series can be fully reconstructed with a linear combination of wavelet filters,
which constitute the wavelet transform. This is analogous to a reconstruction by sinusoids
in Fourier analysis. The members of the transform are generated from a mother wavelet,
which is shifted in time and dilated. Each wavelet is non-zero only within a finite inter-
val of time, which allows for the assessment of the variability of a time series not only
local in scale (e.g. frequency) but also local in time. The mother wavelet is dilated when
processing larger scales. Thus, the problem of under- or over-localisation, which occurs
in case the windowed Fourier transformation is used, can be minimised. For more de-
tails see, e.g., Kaiser (1994), Vetterli and Kovacevic (1995), and Blatter (1998). The choice
of the mother wavelet depends on the data to be analysed. Possible choices of wavelet
and method lead to an orthogonal or non-orthogonal, a discrete or continuous or a real
or a complex transform (or basis in linear algebra). An overview about the noteworthy
aspects is given by Torrence and Compo (1998).

2.2.1 Discrete wavelet transform

The discrete wavelet transform (DWT) of {Xt} is an orthonormal transform like the Fourier
transform. The algorithm to compute the wavelet coefficients operates on dyadic time
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series, that is the length of the time series must be a power of two. The transform is
as well only computable for scales which are powers of two. This reduces redundancy
(which occurs because of time and scale locality) and computing efforts. On the other
hand, the examined scales cannot be chosen arbitrarily any more.

The DWT is given by a set of wavelet filters {hj,l}, retrieved out of a mother wavelet.

Here j denotes the levels j = 1, ..., J, which are associated with the scales τj ≡ 2j−1. l runs
over time (−∞ < l < ∞), but the wavelet is transformed to a filter with the length of
the time series n, i.e. it is periodised (for further details see Percival and Walden 2000). Lj

denotes the width of the wavelet at level j. This refers to the fact that the wavelet filter
is defined over an infinite time domain, but is only non-zero within the finite interval Lj.
Thereby the width of the mother wavelet at scale 1 is L ≡ L1. All wavelet filters on one
particular scale do have the same length, i.e. all other wavelet filters on scale 1 are just
shifted versions of the mother wavelet. The length of the wavelet filters of the higher
levels j > 1 is derived from L by dilation: Lj = (2j − 1)(L − 1) + 1.

Each wavelet filter has an associated scaling filter {gj,l}, which is completely defined
by the wavelet filter. This has technical reasons, which are immanent to the DWT: Wavelet
filters here are used to split up the time series into its fractions at certain scales and a
“rest”. To define this rest, we need the scaling filter. On the first level, the scaling filter,
for example, is constructed out of h1,l as follows: g1,l ≡ (−1)l+1h1,L−1−l (on the next
levels, more complicated relationships exist). Let n = 2K be the length of the time series.
Then the highest level J up to which we are able to compute the DWT is given by 1 ≤ J ≤
(K + 1).

Formally, a wavelet filter is a sequence that sums up to zero and is orthogonal to itself
shifted by an even number of points. It also has unit energy, i.e. its squared Euclidean
norm equals 1. In that sense the energy can be seen as an indicator of the variability of a
stochastic process. For all j and all nonzero integers i we get:

i)
∞

∑
l=−∞

hj,l = 0 and ii)
∞

∑
l=−∞

hj,lhj,l+2i =

{
1 if i = 0
0 otherwise

, (2.15)

where hj,l ≡ 0 for l < 0 and l ≥ Lj, i.e. the wavelet filters have a finite width Lj. Eq. (2.15 i)
implies that any excursions above zero have to be cancelled out by excursions below zero,
whereas Eq. (2.15 ii) signifies that generally the wavelet has to undergo some excursions
away from zero (for more details see Percival 2002).

Let the time series {yt} be a realisation of a stochastic process with random variables
Yt , t = 0, ..., n − 1; n being dyadic2. Now let Y be the vector representation of {yt}, that is
Y = [y0, . . . , yn−1]. Applying, for example, the LA(·) wavelet transform (cf. Sec. 2.2.2) to
a time series Y yields essentially a contrast between yt and values before and after yt at a
fixed point in time t and a fixed scale, i.e. the length of the interval in which the contrast is
measured. The LA(·) scaling filter yields a weighted average of the time series. Its length
depends on the chosen scale. As an example in Fig. 2.2 a chirp signal3 is depicted and
the logarithm of its wavelet power spectrum for levels j = 1, . . . , 6 (derived with a LA(8)
wavelet). The wavelet power spectrum consists of the squared norm of the wavelet coef-
ficients and the logarithm is taken for better visibility. The intensity of the wavelet power
goes to the smaller scales at the end of the time series, where its fluctuations become
faster. It is also visible that the wavelet power spectrum smoothes the effects.

2That is n must be a power of two.
3A chirp signal is a sine wave whose frequency increases at a linear rate with time.
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Figure 2.2: Chirp signal and wavelet power spectrum. Top: Chirp signal (only the first half of
the time series is depicted for better visibility of its shape). Bottom: Logarithm of wavelet power
spectrum of chirp signal for levels j = 1, . . . , 6, derived with the LA(8) wavelet.

By convolution of the wavelet filters with {yt}, the wavelet coefficients Wj,k and scal-
ing coefficients Vj,k for level j = 0, ..., J and time k = 0, .., nj − 1 are obtained (with the

number of coefficients nj = n2−j ). The larger the scales, the wider the applied filters.
Thus, using an orthogonal transform implies that for larger scales fewer convolutions are
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done, i.e. fewer wavelet coefficients are available:

Wj,k ≡
Lj−1

∑
l=0

hj,lY2j(k+1)−1−l mod n ,

Vj,k ≡
Lj−1

∑
l=0

gj,lY2j(k+1)−1−l mod n . (2.16)

The calculation of the DWT is efficiently implemented by means of a pyramid algorithm
(Mallat 1989). Formally, the DWT of {yt} is defined via matrix multiplication that yields
vectors Wj ≡ [Wj,0, Wj,1, . . . , Wj,nj−1]

T and Vj ≡ [Vj,0, Vj,1, . . . , Vj,nj−1]
T4.

Wj is proportional to differences (changes) in values adjacent to yt at scale τj, which
gives the size of the interval around yt, in which the changes are measured. Vj is propor-
tional to the average of the data on scale τj+1.

Reconstruction

Let W = [W1, W2, . . . , WJ , VJ ]
T. Then the time series, represented by the vector Y ≡

[Y0, Y1, ...., Yn−1]
T, is reconstructed as Y = W

TW, where the DWT matrix W is a n × n
matrix with rows constructed from the filters hj,l and V is constructed from gj,l , respec-
tively. The exact form of W is provided in Percival and Walden (2000). This reconstruc-
tion scheme can also be used to split up the time series into various details D and a smooth
S . The technique is realised as a pyramid algorithm. According to this algorithm W con-
sists of sub-matrices W1, . . . , W J and so does V . This defines a multiresolution analysis
(MRA). For the first scale, e.g., one gets

Y = W
T
1 W1 + V

T
1 V1 ≡ D1 + S1 . (2.17)

D1 may be regarded as the variations of Y at the first scale and S1 as the variations of Y

up from scale one, i.e. a smoothed version of Y. Applying the pyramid algorithm, V1 can
be split up again, yielding W2 and V2 and so forth. Thus, Y may be reconstructed as

Y =
J

∑
j=1

D j + S J . (2.18)

As an example in Fig. 2.3 the MRA of the chirp signal in Fig. 2.2 is given for levels
j = 1, . . . , 6, that is scales from 2 time steps up to 64 time steps. We clearly see that
the fluctuations of the signal, which we know to become faster with time, are distributed
over all details. In S6, the “rest”, the fluctuation for scales larger than 64 units, is captured.

Maximum overlap discrete wavelet transform (MODWT)

The MODWT (maximum overlap DWT) is a modified version of the DWT. With the
MODWT time series of non-dyadic length can be analysed. In contrast to the orthonor-
mal DWT, the MODWT of level J is a highly redundant non-orthogonal transform yield-
ing the column vectors W̃1,W̃2,....,W̃J and ṼJ , each of dimension n. Like the DWT, the
MODWT is defined in terms of a pyramid algorithm. In this thesis the DWT and the
MODWT are used. For more details see Percival and Walden (2000).

4[.]T : notation for the transposed vector.
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Figure 2.3: MRA of chirp signal. The chirp signal and its MRA for levels j = 1, . . . , 6 are shown.

2.2.2 Daubechies least asymmetric wavelet filters

In this work a discrete and orthonormal transform is used, which is constructed from the
Daubechies least asymmetric wavelet5 (LA(·)) (Daubechies 1992). The special characteris-
tics of the classes of Daubechies wavelet filters is that they can be described in terms of
(generalised) differences of adjacent (weighted) averages. Furthermore, the particularity
of the class of the least asymmetric wavelet filters is that they get as close as possible to
that of a linear phase filter. This practically means that events in a time series at time
t0 also are located at t0 in the filtered series. They may be smoothed (depending on the
width of the wavelet), but they are not shifted in time by filtering. This is important for
interpreting the meaning of a filtered series in physical applications. Besides, the LA(·)
wavelet filters filter out polynomials. We benefit from this feature when setting up the
trend test procedure. The width of the mother wavelet determines the degree of accuracy
we either want to achieve in the time or in the frequency domain. The choice of this width
depends for example on the roughness of the data analysed. We conducted simulation
studies on our empirical river discharge data and have found that the LA(8) wavelet fil-
ter of width 8 (see Fig. 2.4) gives the most reliable results. Therefore we use it in all our

5The LA(·) is also called symmlet in literature.
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Figure 2.4: Daubechies least asymmetric wavelets. Top row: (Left) Non-zero part of the
Daubechies least asymmetric wavelet filter of width 8 (LA(8)) in the time domain, first scale.
(Middle) Squared gain function of the LA(8). (Right) LA(8) in the frequency domain. Bottom
row: As upper row, but for the corresponding scaling filter.

analyses.

The application of the LA(·) wavelet filter to a time series essentially yields a contrast
between an observation yt at a fixed time point t and values before and after this obser-
vation. The LA(·) scaling filter yields a weighted average of the time series. The width
of the smoothing depends on the scale τj.

As can be seen in Fig. 2.4 the wavelet filter h1,l ≡ hl has a certain width in time and
frequency and therefore comprises smoothing in both dimensions.

The frequency domain representation of a filter on the Fourier frequencies ω is given
by its transfer function. Since in general these transfer functions are complex valued, it is
convenient to consider their polar representation, namely

(i) G(ω) = |G(ω)|eiθG(ω) and (ii) H(ω) = |H(ω)|eiθH(ω) , (2.19)

for the scaling and wavelet filter respectively. In this connection G(ω) = |G(ω)|2 and
H(ω) = |H(ω)|2 denote the squared gain functions and measure the amplitude of the
filters, θ(ω) is their phase function.

The squared gain functions are the same for all Daubechies wavelet filters. They are
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given by

H1,L(ω) =

∣∣∣∣∣
L−1

∑
l=0

hle
−i2πωl

∣∣∣∣∣

2

= 2 sinL
(πω

2

) L/2−1

∑
l=0

(
L/2 − 1 + l

l

)
cos2l

(πω

2

)
, (2.20)

on the first scale. The associated squared gain function for the scaling filter is retrieved by
G1,L(ω) = H1,L(π − ω). The squared gain functions are depicted in the middle figures of
Fig. 2.4. Here noticeably the high frequencies are removed by the scaling filter, whereas
the wavelet filter erases the low frequencies.

Then, for different phase functions θ(ω), distinct Daubechies wavelet filter families
are defined. By choosing the transfer function G(ω) in such a way that the phase function
θ(·) has the smallest maximum deviation from a linear phase filter6, i.e. it is as close as
possible to that of a linear phase filter, the definition of a LA(·) filter is completed.

2.2.3 Wavelet variance

In case a wavelet transform is orthonormal, the energy of a process Y is preserved, that
is: ‖W‖2 = ‖Y‖2. In this connection ‖Y‖2 ≡ ∑

n−1
t=0 y2

t denotes the squared norm of the
vector Y. Let {Yt} be a stochastic process, then the wavelet coefficients Wj,t define a new
stochastic process that reflects variations in {Yt} on scale τj. Assuming that it exists, the
wavelet variance is defined as the variance of all wavelet coefficients at a certain scale τj:

ν2
Y(τj) ≡ VAR(Wj,t) for τj = 2j−1 , (2.21)

for all t at that scale. In case ν2
Y(τj) exists for a process {Yt}, and it is finite and inde-

pendent of t, we get σ2
Y = ∑

∞
j=1 ν2

Y(τj) because of the energy preservation (with σ2
Y being

the variance of {Yt} itself). The scale-based decomposition of σ2
Y is analogous to the

frequency-based decomposition given by the Fourier power spectrum.

Plotting log(ν2
Y) against log(τj) leads to the global wavelet spectrum. The global wavelet

spectrum provides information about the variance of the process on a scale-by-scale ba-
sis. Therefore scales, which are important contributors to the process variance, can be
identified by using the global wavelet spectrum (cf. (Torrence and Compo 1998)).

In case {Yt} is a pure self-similar process, its spectral density function (sdf) is ap-
proximated by SY(ω) ∝ |ω|α. The wavelet coefficients at scale τj are associated with

frequencies in the interval [1/2j+1, 1/2j]. So, by analysing the global wavelet spectrum,
one gets an idea about the shape of the sdf. Using this relationship between the sdf and
the wavelet variance also yields a power law for the wavelet variance for increments of
self-similar processes, e.g. the FD(δ) process:

ν2
Y(τj) ∝ τ−α−1

j . (2.22)

6θ(·) is a linear phase filter, in case it is a linear function of ω. This excludes the possibility of wraps at
±π. A linear phase filter just scales an incoming cosine signal and does not shift it.
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By using Eq. (2.22) and the relation α = −2δ, the long-memory parameter δ can be esti-
mated by fitting a straight line to the global wavelet spectrum. α is related to the Hurst
coefficient H, i.e. α = 1 − 2H for the defined regions of H.

Daubechies least asymmetric wavelet filters of width L filter out polynomial trends
up to an order r with L

2 ≥ r + 1. Therefore the long-memory parameter can also be
estimated in case such a kind of trend is present in the data. Further details are provided
in Percival and Walden (2000) or Stoev et al. (2005).

2.3 EXTREME VALUE STATISTICS

We give a short overview of extreme value theory to specify the basis of our extreme
value assessment, outlined in Chap. 4. A more detailed presentation is provided by, e.g.,
Leadbetter et al. (1983), Embrechts et al. (1997), Coles (2001) and Katz et al. (2002). The
statistics of extremes play an important role in water resources management, e.g. for cal-
culating design values for flood protection buildings, such as dams or dykes. Extreme
events are rare by definition. It is thus common in extreme value statistics to fit a theoret-
ical distribution to these events and to derive results from this model. By doing so and
by using appropriate parameter estimation techniques, an assessment of the uncertainty
of derived statistical indicators, such as quantiles or occurrence rate, can be provided.

2.3.1 Models for block maxima

Let
Mm = max{X1, . . . , Xm} (2.23)

be the maximum drawn out of m random variables Xi, i = 1, . . . , m, which have a com-
mon distribution function F(·). We denote maxima obtained in this way as block maxima.

A variety of distributions are known to represent these extremes of river run-off data
in an adequate manner, e.g. the log-normal, the Pearson Type III, the gamma distribution
(see, e.g., Apel et al. 2004, Pakosch 2004, Strupczewski et al. 2001 and Maidment 1993) or
the generalized extreme value distribution, which we will discuss in further detail in the
following.

Generalized extreme value distribution

The generalized extreme value distribution (GEV) has proven to be useful for a wide range
of applications. It is theoretically well founded by the powerful Fisher-Tippett theorem
(Fisher and Tippett 1928), which has been defined in full generality by Gnedenko (1943).

The Fisher-Tippett theorem states that for identically and independent (iid) random
variables {Xi} from any of a wide class of distributions Mm converges in distribution for
interval size m → ∞ towards the GEV distribution. This theorem also holds for weakly
dependent {Xi} (see, e.g., Embrechts et al. 1997).

The GEV distribution has a location parameter µ, a scale parameter σ and a shape
parameter ξ. Depending on ξ it is divided into three subclasses. With ξ < 0 the Weibull
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Figure 2.5: GEV distribution. Left: Tails of the Gumbel, Weibull and Frechet distribution with pa-
rameters µ = 0 and σ = 1 (semi-logarithmic depiction). The shape parameter ξ is for the Weibull
distribution −0.2 and for the Frechet distribution 0.2. Right: Tails of the same distributions are
depicted, but with parameters ξ = −0.5 for the Weibull distribution and ξ = 0.5 for the Frechet
distribution.

distribution is obtained, here the magnitude of the extremes is limited by a finite end-
point. For ξ → 0 the occurrence of extreme values decays double exponentially with
their magnitude (Gumbel distribution) and for ξ > 0 the distribution decays according
to a power-law (Frechet distribution). In Fig. 2.5 these subclasses of the GEV are depicted
with parameters µ = 0, σ = 1 and various ξ values. In case the observations lie in the
domain of attraction of the Frechet distribution, the extreme value distribution exhibits
heavy tails. This implies a more frequent occurrence of extremes and an increased occur-
rence of arbitrarily large extreme events than in the Gumbel case. There is significant
evidence that hydrologic variables exist whose extremes possess a heavy tailed distribu-
tion. An accordant listing with potential physical explanations, e.g. a certain influence of
covariates, is given in Katz et al. (2002) and Katz et al. (2005).

Let Mm be a sequence of maxima drawn from iid random variables with a common
distribution function F(·). In case there exist constants {am > 0} and {bm} such that
P{(Mm − bm)/am ≤ z} → GEV(z) as m → ∞, then, according to the Fisher-Tippett
theorem, GEV(z) is a non-degenerate cumulative distribution function and given by

GEV(z) = exp
{
−

[
1 + ξ

( z − µ

σ

)]−1/ξ}
. (2.24)

The GEV(·) is defined on {z : 1 + ξ(z − µ)/σ > 0}, where −∞ < µ < ∞, σ > 0 and
−∞ < ξ < ∞.

In the limit (lim ξ → 0) the Gumbel distribution is obtained

GEV(z) = exp
[
− exp

{
−

( z − µ

σ

)}]
, −∞ < z < ∞ . (2.25)

The rate of convergence towards the GEV(·) depends on the marginal distribution F(·)
of the Xi. The exponential distribution and the normal distribution, for example, both
lie in the domain of attraction of the Gumbel distribution. Nevertheless, the asymptotics
is reached much slower for block maxima drawn out of normal distributed data, i.e. a
larger interval size m is necessary than for marginal exponential distributed data to obtain
adequate results (Zhang et al. 2004; Embrechts et al. 1997).
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The use of the Gumbel distribution is very common in hydrology. Several meth-
ods have been established to determine whether the simple Gumbel case is sufficient
to describe the data or whether the more complex class of GEV distributions has to be
used. There exists, e.g., the test of Hosking (see Küchenhoff and Thamerus 2004) or the
deviance may be utilised as test statistics (cf. Coles 2002 and Sec. 2.5.2). It is advanta-
geous to start with the more general GEV approach and to reduce this class of distribu-
tions to the Gumbel model, in case this is feasible (cf. Cox et al. 2002). The estimation of
the GEV parameters, especially the estimation of the shape parameter ξ, is afflicted with
uncertainty. Fisher and Tippett (1928) have already stated that for a finite block size m,
the extreme values from a stationary Gaussian process are described best by a Weibull
distribution, and not by the asymptotically correct Gumbel distribution. Furthermore,
choosing the more simple Gumbel model results in much smaller confidence intervals
for the estimated parameters. This might result in the underestimation of the uncertainty
and therefore misinterpretation (see Coles et al. 2002, for an example). Therefore, in this
thesis we first fit the more general GEV distribution to the extremes and, in case a model
selection criterion suggests so, we reduce the model class to the more simple Gumbel
case.

One restriction for the Fisher-Tippett theorem is that it relies on independent data.
Nevertheless, a wide variety of maxima of classes of dependent, but stationary data, also
converge towards the GEV distribution - in case the dependence is not too strong. More
concretely, a mixing condition of asymptotic independence has to be fulfilled, which lim-
its the long-range dependence being present in the maxima and thus ensures that extreme
events are near-independent if they are sufficiently distant in time. The maxima of depen-
dent but stationary data converge to a GEV distribution with other parameters than their
independent counterparts. The relation between both parameter sets is expressed via
the extremal index. Thus, let X1, X2, . . . be a stationary and dependent process, where the
condition of asymptotic independence is fulfilled. This may be expressed by the D(un)
condition, which is satisfied for all i1 < . . . < ip < j1 < . . . < jq with j1 − ip > l,

|P(Xi1 ≤ um, . . . , Xip
≤ um, Xj1 ≤ um, . . . , Xjq ≤ um) −

P(Xi1 ≤ um, . . . , Xip
≤ um)P(Xj1 ≤ um, . . . , Xjq ≤ um)| ≤ α(m, l) , (2.26)

where α(m, l) → 0 for some sequence lm such that lm/m → 0 as m → ∞.

Furthermore, let X∗
1 , X∗

2 , . . . be a sequence of independent variables with the same
marginal distribution F(·) as X1, X2, . . .. Define their maxima as Mm = max{X1, . . . , Xm}
and M∗

m = max{X∗
1 , . . . , X∗

m}. Then, in case the D(un) condition is satisfied for a specific
sequence of thresholds um that increase with m, we get according to the Fisher-Tippett
theorem, cf. Eq. (2.24), P{(M∗

m − bm)/am ≤ z} → GEV1(z) for normalising sequences
{am > 0} and {bm} as m → ∞. This holds, if and only if P{(Mm − bm)/am ≤ z} →
GEV2(z), where

GEV2(z) = GEVθ
1(z) (2.27)

for a constant θ such that 0 < θ ≤ 1. This extremal index θ may be interpreted as the
reciprocal of the mean cluster size of the dependent maxima (Hsing et al. 1988) and can be
calculated in several ways (cf. Ferro 2003). The FARIMA class of auto-correlated data also
converges towards the GEV for a moderate δ value (see, e.g., Embrechts et al. 1997 and
Davison and Ramesh 2000). Therefore auto-correlations in the data can be considered by
using the extremal index. Similar results hold for the GPD and the point process approach
(see Sec. 2.3.2).
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However, the relation described in Eq. (2.27) is an asymptotic result. In case of short
samples or a small interval size m are given, auto-correlations in the data result in broader
confidence intervals for the estimated GEV parameters and related values, that is quan-
tiles (Rust et al. 2007).

2.3.2 Threshold excess models

Extracting maxima out of intervals of a fixed length may seem to be a rather artificial way
to find the extreme events of a time series. A more intuitive way is to define a threshold
u and treat every observation above this threshold as an extreme event. By this means,
excesses Yt for a sequence of random variables {Xt} are given by Yt = Xt − u, conditional
on Xt > u.

Peaks over threshold

The peaks over threshold (POT) technique models the occurrence of peaks of an iid se-
quence of random variables {Xi} above a threshold u by a Poisson process with rate λ.
To be able to do so, the excess values must be independent and have a common distri-
bution function. Then λ only depends on the length of the observed time span. Neg-
ative extremes, below a threshold, are examined accordingly. Non-stationary extremes
can be modelled by using an inhomogeneous Poisson process with non-stationary oc-
currence rate λt. For this non-stationarity of λ, various shapes may be assumed, see,
e.g., Mudelsee et al. (2004). A theoretically well-founded approach suggests the use of
the generalized Pareto distribution to model the magnitude of the excesses. This also
determines the type of non-stationarity of λ (cf. Leadbetter 1991) and results in point
processes to model extremes (see further below). Various authors denote such a more
specific point process as POT model (e.g. Parent and Bernier 2003).

Generalized Pareto distribution

The generalized Pareto distribution (GPD) is used to model the magnitude of the excesses,
not the frequency of occurrence. Let X1, X2, . . . be a sequence of iid random variables with
a common distribution function F(·) and let the block maxima Mm = max{X1, . . . , Xm}
be distributed according to a GEV distribution. Then, for large enough u the distribution
function of the excesses Y, conditional on X > u, is given by the GPD with parameters ψ
and ξ̃:

GPD(y) = 1 −
(

1 +
ξ̃y

ψ

)− 1
ξ̃

. (2.28)

The GPD(·) is defined on {y : y > 0 and (1 + ξ̃y/ψ) > 0}.

For u → ∞, the parameters of the GPD are uniquely determined by those of the
associated GEV distribution (see, e.g., Coles 2001). This relation is given by

ψ = σ + ξ(u − µ) and ξ̃ = ξ . (2.29)

The accuracy of the estimated GPD parameters depends on an adequately chosen thresh-
old u.
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Regarding auto-correlations, consider a marginal distribution F(·), such that a lim-
iting GPD distribution for the maxima Mm of a sequence of iid random variables {X∗

i }
exists. Then maxima out of a stationary but dependent sequence of random variables
{Xi}, which have the same marginal distribution F(·), often also converge towards the
GPD distribution. Here “often” refers to the type of dependence, which still has to fulfil
certain criteria, i.e. the maxima have to be asymptotically independent. As outlined in
Sec. 2.3.1, these criteria are achieved for long-range dependent FARIMA processes with
a moderate value for δ. The limiting distribution of the excesses of the stationary but de-
pendent series is of the same qualitative type as the one derived from the corresponding
iid random variables (with respect to ξ). However, the rescaling coefficients am and bm

are different. The relation between the parameter vectors of the dependent and the inde-
pendent case can be formulated by the extremal index (cf. Eq. (2.27)). For further details
see Leadbetter (1991) or Cox et al. (2002).

Methods relying on threshold excesses possess the important advantage that auto-
correlations can be considered to a certain extend, namely by eliminating them with a
declustering algorithm (see Sec. 2.8.2 for more details). By doing so the correlation struc-
ture is not explicitly modelled, as in the FARIMA approach (see Sec. 2.1.3). The data are
merely thinned out to derive an independent series. This new series converges approxi-
mately in the same way as its dependent counterpart.

Point processes

The point process (PP) approach comprises the POT approach to model the occurrence of
extreme events in time and the Fisher-Tippett framework to determine the magnitude of
the excesses by a theoretical distribution. In this way, the occurrence in time as well as the
magnitude of the extreme events is modelled using a point process. The point process,
which is fitted to the threshold excesses, is realised as a two-dimensional inhomogeneous
Poisson process. This implies that, contrary to the POT approach, λt has a particular form,
determined by the GEV (or GPD) parameters.

The GEV as well as the GPD distribution can be described as special cases of the point
process representation (Katz et al. 2002). By means of the relation between GPD and GEV
parameters (see Eq. (2.29)), the point process approach is capable to combine advantages
of the block maxima and the POT approach: Point process parameter estimates obtained
by MLE are based on threshold excesses. Therefore all advantages of the threshold ap-
proach can be exploited, that is the consideration of correlations by declustering. Fur-
thermore, the set of threshold excesses often contains the “more extreme” extremes of
a time series than the set of annual maxima (see Sec 2.3.3), which leads to more accu-
rate inferences. Moreover σ is invariant to the threshold choice, in case the point process
model parameterisation is done in terms of GEV parameters (see, e.g., Katz et al. 2005).
A profound overview over point processes is given, for example, in Snyder (1975) or
Guttorp (1995).

A point process on a set A is a stochastic rule for the occurrence of point events. The
counting of events occurring in time is a simple example for point processes. Let the
counting process N(A) be a non-negative integer-valued random variable on a region A
of a set A such that N(A) denotes the number of points in A. Specifying the probability
distribution of each of the N(A) in a consistent way determines the characteristics of the
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Figure 2.6: Counting pro-
cess example. Daily dis-
charge of the Inn River
at Eschelbach is shown in
black (winter season, not
declustered) with thresh-
old u = 324m3/s (red,
determined with MRL plot
and fit over a range of
thresholds). The count-
ing processes N(A) count
the number of events in
subsets of A = (0, 1) ×
[u, ∞]. Exemplarily the
subsets A1 ⊂ A and A2 ⊂
A are shown (orange).

point process. The intensity measure Λ(A) = E{N(A)} of the point process gives the
expected number of points in any subset A ⊂ A. In case the derivative λ of Λ(A) exists,
we define

Λ(A) =
∫

A
λ(x)dx . (2.30)

λ is the intensity (density) function or rate of the process.

Now let A = [t1, t2] ⊂ R and λ > 0 be a constant rate. Then the canonical point process
is the one-dimensional homogeneous Poisson process Poi{Λ(A)} defined on this set. The
number of points k in A follow a Poisson distribution and we get

P(N([0, t2]) − N([0, t1]) = k) =
e−λ(t2−t1)(λ(t2 − t1))

k

k!
for k = 0, 1, 2, . . . , (2.31)

that is Λ(A) = λ(t2 − t1)) for all A = [t1, t2] ⊂ R. The homogeneous Poisson process can
be generalised to a model for points that occur randomly in time, but at a time varying
rate λt.

To apply the point process theory to extreme values, let {Xt} be a series of indepen-
dent and identically distributed random variables with common distribution F(·) such
that the block maxima Mm = max{X1, . . . , Xm} are distributed according to the GEV for
a sufficiently large m (see Sec. 2.3.1). Then define a sequence of point processes Nm on R

2

by Nm = {(i/(m + 1), (Xi − bm)/am) : i = 1, ...., m} (in this way the time axis is mapped
to (0, 1)). According to the Fisher-Tippett theorem, a convergence law can be obtained
for the point processes: For a sufficiently large threshold u, Nm converges for m → ∞

on regions of the form A := (t1, t2) × [u, ∞) with [t1, t2] ⊂ [0, 1] to a homogeneous marked
Poisson process with intensity measure

Λ(A) = (t2 − t1)
[
1 + ξ

( z − µ

σ

)]−1/ξ
(2.32)

on A = [t1, t2] × [z, z+]. Here z+ is the upper endpoint of the GEV distribution of Mm.
A marked Poisson process denotes a process, which models occurrence time and position
of the events. In Fig. 2.6 exemplarily two subsets A1 and A2 of A = (0, 1) × [u, ∞] are
shown for the Inn River at Eschelbach.
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The point process counts events in the region above the threshold. This implies that
the event {(Mm − bm)/am ≤ z} is equivalent to the event Nm(A) = 0. To obtain maxi-
mum likelihood estimates (MLE) of the GEV parameters via the point process approach,
the intensity measure given in Eq. (2.32) is inserted in the likelihood function of a Poisson
process (see Eq. (2.55)).

It is convenient to factorise Λ(A) as two independent Poisson processes, i.e. Λ(A) =
Λ1([t1, t2]) × Λ2([z, ∞]) with

Λ1([t1, t2]) = (t2 − t1) and Λ2([z, ∞)) =
[
1 + ξ

( z − µ

σ

)]−1/ξ
. (2.33)

In this way Poi(Λ1([t1, t2])) gives the random times at which Xi > u. With Poi(Λ2([z, ∞]))
the rescaled sizes (Xi − bm)/am of these Xi are calculated, respectively. Poi(Λ1([t1, t2])) is
a homogenous Poisson process with intensity

λ1(t) ≡ λ = {1 + ξ(u − µ)/σ]}−1/ξ , (2.34)

for {1 + ξ(u − µ)/σ]} > 0. Apparently, the time rate is related to the GEV parameter
vector Θ = (µ, σ, ξ).

The sizes of the excesses follow an inhomogeneous Poisson process with intensity

λ2(z) =
1

σ

(
1 + ξ

z − µ

σ

)− 1
ξ −1

(2.35)

for z > u.

It is also possible to express the point process in terms of the GPD parameters ψ and
ξ and the time rate λ. By using the relation between the GPD parameter ψ and the GEV
parameter σ (cf. Eq. (2.29)) and the factorisation of two independent Poisson processes to
a point process (given in Eq. (2.33)) and by applying Eq. (2.35), we are able to express the
point process part, which models the magnitude of the extremes, in terms of the GPD:

P{(Xi − bn)/an > z|(Xi − bn)/an > u} =
Λ2[z, ∞)

Λ2[u, ∞)
=

[
1 + ξ

( z − u

ψ

)]−1/ξ
. (2.36)

This is equivalent to the distribution of the GPD, i.e. Eq. (2.28). Now the point process
is described using the parameter vector Θ = (λ, ψ, ξ). The point process likelihood to
estimate these parameters is given in Eq. (2.54).

Regarding auto-correlations, the same limiting behaviour holds as for the GPD case,
i.e. stationary but dependent excesses converge towards the same limiting distribution
(with a different parameter vector) as their stationary counterparts with the same mar-
ginal distribution F(·), in case they are near-independent if they are sufficiently distant
in time (cf. Sec. 2.3.2 and Beirlant et al. 2004). The relation between both parameter vec-
tors is given by the extremal index (cf. Eq.(2.27)). Auto-correlations furthermore may
be considered using non-stationarity: Exceedances of long-term correlated processes are
approximately Poisson distributed, but with a slowly varying rate between time periods
(Cox et al. 2002). Like for the other threshold excess models it is also possible to eliminate
auto-correlations by declustering (see Sec. 2.8.2).
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Figure 2.7: Threshold
selection. Mean
Residual Life Plot.
Mean Residual Life
plot for the Danube
River at Pfelling with
confidence intervals
based on approximate
normality of the sam-
ple means. The dotted
line indicates the
slope of the estimated
theoretical mean ex-
cess for u = 916m3/s,
which is marked with
the solid, vertical line.

Threshold selection

To be able to fit threshold excess models a reliable threshold u has to be selected. On
the one hand, a high threshold is preferred, such that it is reliable to assume a limiting
distribution for the excesses. On the other hand, a sufficient number of excesses must
be available to estimate the model with a reasonable amount of uncertainty. Therefore
a tradeoff between bias and variance has to be found. To operationalise this choice to
a certain extent, we apply two heuristic methods. These methods are theoretically well
founded, as outlined below, and represent the state-of-the art of threshold selection ap-
proaches used in extreme value statistics (cf. Coles 2001). In our analyses of empirical
data (see 4.7 and Tab. A-4) we are capable to make a reliable selection in every case by
using these methods. The credibility of the choice has been verified by analysing the
threshold excesses obtained (see Sec.2.3.3).

The mean residual life (MRL) plot is a non-parametric method to determine the thresh-
old. In this plot the sample mean of the threshold excesses for different u is depicted.
This sample mean serves as estimate for the expected value of the excesses which holds
in case the excesses are GPD distributed. The expected value of the GPD for a certain
threshold u0 exists for ξ < 1 and is given by

E(X − u0|X > u0) =
ψu0

1 − ξ
. (2.37)

Eq. (2.37) should also hold for thresholds u > u0, in case the asymptotics is reached for
u0. From Eq. (2.29) we get ψu = ψu0 + ξ(u − u0) and together with Eq. (2.37) this yields

E(X − u|X > u) =
ψu0 + ξu0

1 − ξ
+

ξ

1 − ξ
u , (2.38)

i.e. a linear relationship between E(X − u|X > u) and u. Thus we look for the lowest u0

such that for u > u0 the MRL plot changes linearly in u. u0 is then regarded as lowest
threshold for which the asymptotics is reached. In Fig. 2.7 an example for an MRL plot
for discharge of the Danube River at Pfelling is given. Evaluating the plot by following
the proposed method we get u0 ≈ 916m3/s.
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Figure 2.8: Threshold selection. GPD fit over range of thresholds for the Danube River at
Pfelling. GPD parameter estimates for a range of thresholds, which are chosen such that about
25% to 3% of the data exceed them. The modified scale parameter ψ∗ = ψ − ξu (left) and the
shape parameter ξ (right) are shown. The parameter estimates for the thresholds (black circles)
are depicted with relating 95% confidence intervals (black vertical lines). The lowest threshold,
for which the confidence intervals for the parameter estimates include all parameter estimates for
higher thresholds, is at approximately 840m3/s (CI’s are depicted in orange and the respective
parameter estimates are accented with horizontal black lines). For comparison reasons the CI for
the estimates of the nearest lower threshold are depicted in pink.

Of course the MRL plot is also obtainable by using a point process with GEV parame-
trisation (see Eq. (2.55)). Here the transformation between GEV and GPD parameters
given in Eq. (2.29) can be utilised. In case the time series is too short or noisy, the inter-
pretation of the MRL plot is ambiguous.

As second method, we therefore apply a parametric technique to verify the threshold
selection. For this purpose a GPD is fitted for a range of thresholds. Then the param-
eter estimates and their confidence intervals are compared. We expect the fitted GPD
distribution parameters to be stable in case the asymptotic behaviour is reached. More
specifically, ξ should stay approximately the same for all thresholds u above a threshold
u0 in case the GPD is a reasonable model. According to Eq. (2.29), the GPD scale param-
eter changes with u, i.e. ψu = ψu0 + ξ(u − u0). Therefore we analyse a modified scale
parameter ψ∗ = ψu − ξu which is also expected to stay constant for all u > u0.

u0 is chosen as the lowest threshold such that the confidence intervals of the param-
eter estimates cover all parameter estimates for higher thresholds. As an example, the
parameter estimates and corresponding 95% confidence intervals are shown for a range
of thresholds in Fig. 2.8 for the Danube River at Pfelling. From this analysis we derive
u0 ≈ 840m3/s. It is visible that the according confidence intervals for the parameter es-
timate cover all parameter estimates for higher thresholds, i.e. they lie within the orange
rectangle. The confidence intervals for the nearest lower threshold would not include the
following parameter estimates, e.g. some estimates lie outside the pink rectangle.
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The same methodology certainly is applicable by fitting a range of point processes
with GEV parametrisation to the extremes.

For all our studies on empirical data we use both methods to be able to cross-check
and to derive reliable results. In the given example we chose the lower threshold of
u = 840m3/s, which is indicated by the fit over several ranges of thresholds (Fig. 2.8).

2.3.3 Comparison of block maxima and threshold excesses approach

In practice threshold excesses as well as block maxima are used to assess extreme values.
Both sets therefore should represent the tails of river discharge data reasonably well. The
comparison of a GPD fit to threshold excesses and a GEV fit to block maxima does not
lead to a concluding decision about which technique has to be preferred: Cox et al. (2002)
compare the relative efficiency between the two extreme value approaches by numerical
investigations. They find that the goodness of the technique heavily depends on the cho-
sen interval size m and the parameters. The threshold approach always gains efficiency
in case the threshold is chosen in a way that more extreme values are available than with
the block maxima approach, that is more information can be evaluated. Thus, the choice
of block maxima or threshold excesses depends on the characteristics of the empirical
data analysed.

For the empirical series used in this thesis, we compared the block maxima obtained
with an interval size of m = 365 days and the threshold excesses obtained by selecting a
threshold according to Sec. 2.3.2. In all cases we find that the set of declustered threshold
excesses includes more extreme events of our data than the set of block maxima. As an
example, in Fig. 2.9 annual maxima (black) and threshold excesses (red) for u = 116m3/s
and u = 8m3/s are depicted for the Iller River at Kempten and Vils River at Pfrontenried,
respectively. The thresholds are derived with the methodology outlined in Sec 2.3.2. Be-
fore the comparison, the threshold excesses are declustered by using a cluster size of 3
(4) days, which means the set of excesses is thinned out to eliminate correlations (for
further details see Sec. 2.8.2). Therefore 54 out of 101 threshold excesses remain for the
Iller at Kempten, i.e. nearly as many as the 60 block maxima obtained from the 60 years
of measurement. In the case of the Vils River at Pfrontenried 100 extreme values out of
295 remain. In Fig. 2.9 both sets of extremes are compared. The maxima are sorted and
for better visibility we start with the most extreme event. Naturally both techniques are
able to select the highest values in the time series. Nevertheless, the clustering in the
data obviously causes the block maxima technique not to find all highest extreme values
available: The block maxima series decays faster than the threshold excesses series and
also falls below the threshold. We find a similar situation as depicted in Fig. 2.9 for all
analysed gauges, even when a threshold had to be chosen such that the number of thresh-
old excesses is equal or lower than the number of block maxima (which is exemplified in
the left hand side of Fig. 2.9). This is caused by the auto-correlations present in the data.
Because of these findings, we use a threshold approach to assess extreme events in all our
analyses.

2.3.4 Non-stationary extreme value models

Conventional extreme value analysis needs the assumption of independent and identi-
cally distributed observations, which implies iid extreme values. Both assumptions can
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Figure 2.9: Comparison of block maxima and threshold excesses. Left: Sorted annual block

maxima (black) and threshold excesses (red) above the threshold u = 116m3/s (blue) for dis-
charge of the Grosse Vils River at Vilsbiburg. Right: Sorted annual block maxima (black) and
threshold excesses (red) above the threshold u = 8m3/s (blue) for discharge of the Vils River at
Pfrontenried.

be relaxed simultaneously: Certain forms of auto-correlations can be handled by declus-
tering (see Sec. 2.8.2) and non-stationary extreme values can be modelled by allowing the
parameters of the models to vary with time. All models for extremes, which are presented
in this work, can be extended in this way, so they can be used to model non-stationary
extreme values.

In all analyses we use a non-stationary point process model with GPD parametrisa-
tion, therefore here we present only extensions for this type of model (cf. Sec. 4.7).

As outlined in Sec. 2.3.2, we model the point process by means of two independent
Poisson processes, which can be transferred to the combination of a Poisson process and
the GPD distribution: Poi{Λ(A)} models the frequency of occurrence of the extremes.
Dependent on the number of occurred extremes the magnitude of the excesses is mod-
elled by using a GPD distribution (according to Eq. (2.36)). Non-stationarity is introduced
by allowing ψ, ξ and λ to vary with time, i.e. by using a non-stationary GPD(ψt, ξt) dis-
tribution and an inhomogeneous Poisson process Poi(λt). We estimate the parameters of
the point process by maximising the likelihood (see Sec. 2.4.2). By this means, it would
also be possible to introduce a time-varying threshold ut.

Estimation of the shape parameter

The framework presented is capable to allow for the time-dependence of all three param-
eters λ, ψ and ξ. However, the variation of ξ around 0 lacks a theoretical interpretation.
According to the Fisher-Tippett theorem (see Sec. 2.3.1), different marginal distributions
of the random variables X1, . . . , Xn have different domains of attraction of the limiting ex-
treme value distribution, that is Weibull (ξ < 0), Gumbel (lim ξ → 0) or Frechet (ξ > 0).
In case the best fitted model includes a ξt which changes sign, this therefore may indi-
cate the usage of too few observations and therefore too large errors of the estimates or a
too low threshold, that is the asymptotics has not been reached yet. Another explanation
would indeed be the change of the marginal distribution of the X1, . . . , Xn. Stochastic
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models, which incorporate such forms of non-stationarity, are beyond the scope of this
work.

We chose to only use models with constant ξ in all our analyses. This is in line with
the work of other authors, such as Coles (2001), Cox et al. (2002), and Pakosch (2004). It
seems practicable, because even if the assumption of a constant ξ actually is not fulfilled
for a specific empirical time series, non-stationary models with a fixed ξ might still be
adequate. This is because small time variations of the shape parameter can be emulated
by time-varying location and scale parameters (Katz et al. 2002 and Zhang et al. 2004),
which is transferable to time-varying rate and scale parameters in case of the GPD para-
metrisation of the point process model. The goodness-of-fit procedures described in
Sec. 2.6 provide information about the feasibility of this reduction of the model class.

In all cases where we find that a non-stationary model suits the extremes best, its
estimate of the shape parameter ξ is smaller than the corresponding shape parameter es-
timate of the stationary model. Our findings are in line with Morrison and Smith (2002),
who show that a mixture of Gumbel distributions may cause the estimation of a heavy
tailed distribution in case a stationary model is assumed. This implies that in case only
stationary models are fitted to the data, falsely a heavy tailed distribution may be as-
sumed and therefore the probability of occurrence of severe floods may be overestimated.

Non-stationary rate and scale parameter

To model extremes, we use point process models with a GPD representation and possibly
varying rate λt and scale ψt. According to the needs of the modeller, all sorts of shapes
may be assumed, i.e. linear,

ψt = β0 + β1t , (2.39)

or exponential,
λt = exp(β0 + β1t) . (2.40)

More complex structures are also thinkable, e.g., a change-point model,

ψt =

{
ψ1 for t ≤ t0

ψ0 for t > t0
, (2.41)

or the modelling of seasonal dependencies (cf. Coles 2001). We use polynomial and ex-
ponential shapes to model the non-stationarity of λt and ψt, which is outlined in more
detail in Sec. 4.4.

Return level estimation

Quantiles of extremes, that is return levels, are of crucial importance in water management
since they are the basis for design flood probability calculations. For the GEV distribution
the return level zp is calculated as

zp =

{
µ − σ

ξ [1 − {− log(1 − p)}−ξ ] for ξ 6= 0

µ − σ log{− log(1 − p)} for ξ = 0
, (2.42)

where (for m = 365 days) zp is expected to be exceeded by the annual maximum in any
particular year with probability p. A less precise formulation is that zp is exceeded on
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Figure 2.10: Return level calculation. Left: Annual block maxima of the Ilz River at Kalteneck
(orange). GEV models are fitted to the data from 1941 to 1989. The evolution of the location pa-
rameter µ is shown for the stationary model (black) and the best model according to the deviance
statistic (blue, non-stationary model with quadratic trend in µ and constant ψ and ξ). The pre-
diction period from 1989 to 1994 covers 5 years (pink). Right: The 100-year return levels for the
stationary GEV model (black), the non-stationary GEV model (blue) and the non-stationary GEV
model with trend extrapolated within the prediction period (turquoise) are depicted.

average once every 1/p years. This notion deals with periods of time, i.e. 1/p is the return
period. It is possible to consider auto-correlations in the data when estimating the return
level by using the extremal index. Further details are given in Embrechts et al. (1997). In
Fig. 2.10 the annual block maxima of the Ilz River at Kalteneck are shown. A stationary
GEV model is fitted to the data of the period 1941 to 1989, that is we pretend not to know
the subsequent measurements. Its estimate for the parameter µ is shown in black on the
left hand side. The best fitting model assumes a quadratic trend in the parameter µ, which
is added in blue, and no trend for the shape and scale parameter. The best fitting model
is selected using the deviance statistic, as described in Sec. 2.5.2. The 100-year return
level estimate ẑ0.01, is depicted in black for the stationary case on the right hand side. Its
standard deviation is given in grey, calculated by the profile likelihood (cf. Coles 2001,
for details).

In the non-stationary case, for every observed time point t a different GEV parameter
vector Θ is possible. Nevertheless, a return level can still be provided by choosing a fixed
time point t0. The return level is then calculated such that it is valid from t0. To do so,
Θ(t0) is inserted in Eq. (2.42). In this setting, an estimated trend in the extreme values is
considered but not extrapolated into the future. Several authors proceed in this manner
(see, e.g., Bárdossy and Pakosch 2005). In Fig. 2.10 we set t0 = 1989 and the according
return level estimate ẑ0.01 considering the trend in the past is shown in blue. Fig. 2.10
clearly shows that the incorporation of non-stationarity in extreme value analysis leads
to different results of important assessment measures, such as the return level. Therefore
it is a crucial task to model non-stationary extreme values with processes which allow for
non-stationarity. The trend shape determines, whether its influence lowers or augments
the return level. Results for the Danube River basin are presented in Sec. 4.7.

In case an estimated trend is extrapolated into the future, which is feasible in the fully
parametric approach presented here, we have to define a “prediction period”. Then all

return levels (zt0
p , . . . , ztk

p ) within this prediction period [t0, tk] can be calculated, according
to a specified return period 1/p. The highest return level out of this range of return
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levels now is chosen to get an estimator for the return level within this prediction period,
which is crossed with probability p once in a year. This method follows the precautionary
principle. In Fig. 2.10 the prediction period is set to a length of 5 years, i.e. from 1989 to
1994. The estimate ẑ0.01 considering the extrapolated trend within the prediction period
is shown in turquoise.

In case a probability for the whole prediction period shall be given, we can use the
assumption of independence of the extreme events. The probability p′ that zp is exceeded
within a prediction period of length (k + 1) is given by

p′ ≈ 1 − {P(X < zp)}k+1 = 1 − (1 − p)k+1 . (2.43)

We allow for non-stationarity and therefore may have a different zp for every time point

within the prediction period. Thus, we calculate the range of quantiles (zt0
p , . . . , ztk

p ) ful-
filling Eq. (2.43) and again choose the highest out of them. For a prediction period of
100 years and 95% flood protection (i.e. p′ = 0.05), for example, we have to compute
z0.0005 over the whole prediction period and choose the highest return level out of this se-
quence as reference. Regarding the example in Fig. 2.10, the return level, which is crossed
only once within the prediction period of 5 years with a probability of 99%, is given by
372m3/s, which is not depicted.

The calculation of the return level is transferable to the point process approach. In
the stationary case we can easily stick to the common unit for return periods, i.e. years,
though the unit for threshold excesses rather is the number of observations per time unit. Let
p be the probability that zp is exceeded once in a year. We calculate p by using the GPD
distribution, which depends on the occurrence of the extreme event. This is determined
by λ, i.e.

p = P
{ (Xi − bn)

an
> z

∣∣∣
(Xi − bn)

an
> u

}
P
{ (Xi − bn)

an
> u

}
. (2.44)

By using Eq. (2.36) and setting z = zp we get

zp =

{
u + ψ

ξ [(λ/p)ξ − 1] for ξ 6= 0

u + ψ log(λ/p) for ξ = 0
. (2.45)

Thereby we either may use the parameter vector Θ = (λ, ψ, ξ), which is estimated on the
whole time series of length n. Then λ denotes the number of excesses for this whole time
period. We may also use the adjusted scale and shape parameters ψ and ξ of the GPD,
which are linked to the GEV parameters for annual maxima by Eq.(2.29). In this case λ
denotes the number of excesses per year to make Eq. (2.45) valid.

In the non-stationary case all three parameters may be time dependent. Therefore
we have to determine a fixed time point t0. Then the return level at this time point can
be calculated in the same ways as outlined for the return level obtained by using a non-
stationary GEV model. Although the occurrence of extreme events may vary from time
series to time series when using threshold excesses, any time point t0 may be chosen: By
using the assumed trend shape with its estimated parameter values, the non-stationary
parameters of the extreme value distribution are at hand for each t in 1, . . . , n through
interpolation. In all our point process analyses, we estimate the occurrence rate λ and the
GPD parameters (which are adjusted to GEV parameters for annual maxima), and insert
this parameter vector in Eq. (2.45).
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Concerning uncertainty analysis, we approximate confidence intervals for the return
level estimates (see Eq. (2.45)) by using the delta method. As outlined in Secs. 2.4.2 and
2.4.3, we estimate all parameters by maximising the likelihood and benefit from the con-
sistency and efficiency properties of these estimators. When applying the delta method,
we assume a multivariate normal distribution for the parameter estimates and calculate
the error propagation by using the variance-covariance matrix of the parameter estimates
(cf. Coles 2001).

By the delta method, we get

VAR(ẑp) ≈ ▽zT
p Σ ▽ zp , (2.46)

where Σ is the variance-covariance matrix of (λ̂, ψ̂, ξ̂). COV(λ̂,ψ̂) and COV(λ̂,ξ̂) are zero,
because we use two independent Poisson processes to construct the point process, as
described in Sec. 2.3.2. For ξ 6= 0 we get

▽ zT
p =

[∂zp

∂λ
,

∂zp

∂ψ
,

∂zp

∂ξ

]

=
[ ψ

pξ
λξ−1, ξ−1

{(λ

p

)ξ
− 1

}
,

ψ

ξ

(λ

p

)ξ
ln

(λ

p

)
− ψ

ξ2

{(λ

p

)ξ
− 1

}]
, (2.47)

whereas for ξ = 0, zp depends only on ψ and λ and we get

▽ zT
p =

[∂zp

∂λ
,

∂zp

∂ψ

]
=

[ψ

λ
, ln

(λ

p

)]
. (2.48)

In the non-stationary case, Θt = (λt, ψt, ξ) itself is time-dependent. We provide the func-
tional form of this dependence, therefore we are able to calculate the derivative of zp by
using the chain rule. For example for λt = exp{a0 + a1t + a2t2 + a3t3 + a4t4} and the ai

being constants we get,

▽ λT =
[ ∂λ

∂a0
,

∂λ

∂a1
,

∂λ

∂a2
,

∂λ

∂a3
,

∂λ

∂a4

]
= [λ, λt, λt2, λt3, λt4] , (2.49)

and for ψt = b0 + b1t + b2t2 + b3t3 + b4t4 with the bi being constants, we get

▽ ψT =
[ ∂ψ

∂b0
,

∂ψ

∂b1
,

∂ψ

∂b2
,

∂ψ

∂b3
,

∂ψ

∂b4

]
= [1, t, t2, t3, t4] . (2.50)

For λt = exp{a0 + a1t} and ξ 6= 0 the derivative ∂zp/∂a0, for example, is given by

∂zp

∂a0
=

∂zp

∂λ

∂λ

∂a0
=

ψ

pξ
λξ , (2.51)

and in Eq. 2.46 we have to use the variance-covariance matrix Σ of the estimates of ai and
bi and ξ.

2.4 PARAMETER ESTIMATION

2.4.1 FARIMA process parameter estimation

The parameters of the FARIMA(p,δ,q) models, which describe the auto-correlation struc-
ture of the data, are estimated via Whittle’s approximation to the Maximum-Likelihood
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estimator (MLE) (see, e.g., Sibbertsen 1999). The latter is based on minimising

Q(Θ) = ∑
j

P(ωj)

S(Θ; ωj)
, (2.52)

where P(ωj) denotes the periodogram of the data at the Fourier frequencies ωj = 2π j/N
and S(Θ; ωj) the spectral density of the FARIMA process with parameter vector Θ com-

prising (φ1, ..., φp, δ, ψ1, ..., ψq). At the minimum of Q(Θ̂), Θ̂ is an estimate for the model
parameters. The standard deviation provided for the parameters is based on the assump-
tion of a Gaussian process and is calculated from the asymptotic distribution of the esti-
mators in the limit of long records.

An extensive discussion on modelling long-range dependence also with respect to
FARIMA(p, δ, q) models and the Whittle estimator can be found in Beran (1994).

2.4.2 Point process parameter estimation

In extreme value analysis, which is related to the Fisher-Tippett theorem (see Sec. 2.3.1),
the estimation of the model parameters is especially important, because the type of ex-
treme value distribution and therefore the behaviour of the most extreme events depends
on the magnitude of the shape parameter ξ.

To estimate the parameters for extreme value models (see Sec. 2.3) we use the maxi-
mum likelihood approach. This method is well established for parameter estimation for
probabilistic models and very well described in the standard literature (cf. DeGroot 1984
and Cox and Hinkley 1994).

The performance of maximum likelihood estimation of parameters of extreme value
models may be very erratic for small samples, say n ≤ 25 (cf. Coles and Dixon (1999) and
Katz et al. (2002)). Such small-sample behaviour can not be ruled out on a theoretical
basis, because the justification for ML arises from its asymptotic properties (i.e. for large
samples). Therefore probability weighted moment estimators are superior for small sam-
ples in estimating upper quantiles. Nevertheless, we restrict our parameter estimation
method to ML in this work. We always use empirical data with at least 50 extreme values
at hand. Besides, the ML technique is preferable because of its universal applicability, for
example to non-stationary data. Furthermore, the ML method automatically provides ap-
proximate confidence intervals for parameter estimates, either via the information matrix
or by means of the profile likelihood (for details see, e.g., Coles 2001).

To derive the maximum likelihood of a non-stationary point process approximation
to extreme values let X1, . . . , Xn be iid random variables and let δi be an indicator for Xi

lying above some given threshold u. Moreover, let P(X > u) = λ/n, so λ is the rate. The
likelihood contribution for an Xi falling below u is thus 1 − λ/n, and for an Xi above u it
is λ/n times the GPD approximation with parameters (ψ, ξ), because we actually model
excesses, i.e. the conditional probabilities P(X > y + u|X > u).

The density gpd(·) of GPD(y) (see Eq. (2.28)) is given by

dGPD(y)

dy
= ψ−1

i

[
1 + ξi

(
xi − u

ψi

)]− 1
ξi
−1

. (2.53)
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So the likelihood function for sufficiently large u and n is, apart from a scaling factor,

L(λ, ψ, ξ; x1, . . . , xn) = {P(Xi < u)}1−δi{P(Xi > u)P(Xi = x|Xi > u)}δi

∝

n

∏
i=1

[{
1 − λi

n

}1−δi
{λi

n
ψ−1

i

[
1 + ξi

( xi − u

ψi

)]− 1
ξi
−1}δi

]
.(2.54)

This likelihood is expressible in terms of the GEV parameters (cf. Coles 2001), i.e. we use
λi = {1 + ξi(u − µi)/σi}−1/ξi , approximate the number of not exceeding the threshold as
n and approximate 1 − λ/n with exp{−λ/n} by utilising ln(1 − z) ≈ −z. Thus we get

L(λ, ψ, ξ; x1, . . . , xn) = L(µ, σ, ξ; x1, . . . , xn)

∝ exp
{
− 1

npy
∑

i

[
1 + ξi

(u − µi)

σi

]− 1
ξi
}

∏
n
i=1

{
σ−1

i

[
1 + ξi

( xi − µi

σi

)]− 1
ξi
−1}δi

.(2.55)

npy is the number of observations per year. By scaling with this factor, the parameter
estimates (µ, σ, ξ) instantly correspond to the GEV parameters of the annual maxima
distribution.

Maximising the likelihood given in Eq. (2.55) leads to estimates for the parameters
(µ, σ, ξ) whereas maximising the likelihood given in Eq. (2.54) gives parameter estimates
for (λ, ψ, ξ) of the limiting intensity measure Λ(·). The likelihood approach provides an
innovative way to incorporate non-stationarity in the extreme value model by allowing
for non-stationary parameters. This may even include the use of covariates, that is the
dependence from other variables in the system.

In all studies presented in this thesis, we use the point process approach in terms of
the GPD parameters ψ and ξ and the time rate λ. By using Eq.(2.54) we are able to pro-
ceed in two steps: We separately maximise the likelihood for an inhomogeneous Poisson
process with λt to model the occurrence of extreme events in time and the likelihood of a
GPD(·) to model the magnitude of the extremes.

2.4.3 Consistency and efficiency

To check the validity of a parameter estimator, or to choose an estimator from a range
of possible estimators, several statistical evaluation procedures have been developed in
mathematics (cf. Casella and Berger 2002). The most basic concepts are presented in the
following together with a classification of the parameter estimators used in this thesis.

A consistent estimator converges to the true value as the sample size n becomes in-

finite, that is bias7 and variance of the estimator get zero. Let {T̂
n
t∗} be a sequence of

estimators at the fixed time point t∗ and increasing sample size n. Then {T̂
n
t∗} is a consis-

tent sequence of estimators for Tt∗ if

lim
n→∞

VARTt∗ (T̂
n
t∗) = 0 , and (2.56)

lim
n→∞

BIASTt∗ (T̂
n
t∗) = 0 , (2.57)

for every Tt∗ in the parameter space.

7The bias of an estimator θ̂ is given by E(θ̂) − θ.
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The limit of the variance as large sample measure is known to be problematic. So
often the estimator is measured against its asymptotic variance. The asymptotic variance

or variance of the limiting distribution of the estimator T̂
n
t∗ is defined as the variance

parameter σ2 of a normal distribution with mean zero in case

lim
n→∞

kn(T̂
n
t∗ − τ(Tt∗)) → N(0, σ2) (2.58)

in distribution and {kn} being a sequence of constants and τ(·) a continuous function. In
case an estimator is asymptotically normal it is also consistent (Casella and Berger 2002).

Whereas consistency expresses the asymptotic accuracy of an estimator, efficiency as-
sures the existence of an upper bound for its asymptotic variance. An estimator is asymp-
totically efficient in case Eq. (2.58) holds, i.e. its asymptotic variance exists, and if it satisfies
the Cramér-Rao Lower Bound (see DeGroot 1984 and Casella and Berger 2002 for further
details). Then the estimator is the best unbiased estimator in terms of a small variance.

Thus let X1, X2, . . . be iid random variables with density f (X|Tt∗). An estimator T̂
n
t∗

is asymptotically efficient for a parameter Tt∗ , if
√

n[T̂
n
t∗ − τ(Tt∗)] → N(0, v(Tt∗)) in dis-

tribution and its asymptotic variance v(Tt∗) satisfies the Cramér-Rao Lower Bound, that
is

v(Tt∗) =
[τ′(Tt∗)]2

ETt∗

(
( ∂

∂Tt∗
log f (X|Tt∗))2

) . (2.59)

ETt∗

(
( ∂

∂Tt∗
log f (X|Tt∗))2

)
is the expected Fisher information of the sample, τ′(·) denotes the

derivative of τ.

It is typically the case that ML estimates for iid random variables are efficient, asymp-
totically normal and consistent. This holds also for iid random variables with a non-
normal distribution, in case this distribution fulfils certain regularity conditions (see,
e.g., Casella and Berger 2002).

Yajima (1985) and Dahlhaus (1989) show that ML estimators for Gaussian processes
with long-term correlations (which fulfil a few assumptions) are also consistent, asymp-
totically normal and efficient. This result holds also for FARIMA processes. The estimator
has a rate of convergence of

√
n.

Whittle’s approximation of the ML estimator, which we use to estimate parameters
of the FARIMA processes, has the same asymptotic properties as the exact ML estima-
tor (Sibbertsen 1999). It therefore is efficient, asymptotically normal and consistent for
Gaussian processes. Nevertheless, the Whittle estimator loses efficiency in case the data
is non-Gaussian (Giraitis and Robinson 2001).

Regarding extreme value statistics, we do not use the Whittle approximation, but the
exact maximum likelihood estimators. This is manageable, because we do not have to
assess many data points. It is also useful, because the distribution of extreme values
commonly is non-Gaussian. The endpoints of the GEV distribution are functions of its
parameter values: µ − σ/ξ is an upper end-point of the distribution when ξ < 0, and
a lower end-point when ξ > 0. This means that the usual regularity conditions are vi-
olated and the standard asymptotic likelihood results are not automatically applicable,
but depend on ξ. According to Smith (1985) we get:
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• when ξ > −0.5 the MLEs show the usual asymptotic properties,

• when −1 < ξ < −0.5 the MLEs exist, but do not have the standard asymptotic
properties

• when ξ < −1 the MLEs are unlikely to exist.

2.5 MODEL SELECTION

The dynamics of a system, recorded in finite time series, cannot be reconstructed un-
ambiguously. This manifests in the possibility of fitting different stochastic models rea-
sonably well to a time series (Beran 1994). Thus, the basic idea here is to select a suitable
model from a set of competing models, which best describes the data – according to some
criterion. In this work all parameter estimation is performed by using maximum likeli-
hood or approximations to this (see Sec. 2.4). It can be used as well as selection criterion
when choosing between models of the same complexity. To select between models with a
different grade of complexity we use methods which evaluate the maximum likelihood.
One always ponders between complex models which fit very well to the data but bear
the risk of over-fitting, and simple models which possibly represent the data not ade-
quately. The selection criteria reflect this choice by balancing likelihood and number of
parameters of the models.

2.5.1 Akaike information criterion

The Akaike information criterion is defined by

AIC f (κ) = −2 logL(Θ; Y) + f κ , (2.60)

where L(Θ; Y) denotes the likelihood of the parameter vector Θ. The factor f weighs
the influence of the penalty term due to the number of parameters κ. If f is set to 2 we
get the Akaike Information Criterion (AIC) (Akaike 1973; Akaike 1979), for f = log n
the Bayesian Information Criterion (BIC) (Schwarz 1978), and for f = 2c log log n the
Hannan-Quinn Information Criterion (HIC), in which we use c = 1.0001. The model to
select is the one with the smallest AIC f . For FARIMA(p, δ,0) models BIC and HIC are
shown to yield consistent estimators for the autoregressive order p (Beran et al. 1998).
For some low order FARIMA(p, δ, q) models Bisaglia (2002) performed simulation studies
and recommends BIC and HIC as selection criteria. In this thesis the HIC is used as
selection criterion between FARIMA models, see Chap. 3.

2.5.2 Deviance statistic

The deviance statistic D relies on the likelihood to compare models (see, e.g., Coles 2001,
Nelder and Wedderburn 1972, and Davison and Hinkley 1997). It corresponds to the re-
sidual sum of squares in the analysis of a linear regression model. The test based on this
statistic is also called likelihood-ratio test. The deviance statistic is formulated as follows:

D = 2{l1(M1) − l2(M2)} . (2.61)
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Here li(Mi) denotes the maximised log likelihood of model Mi and M2 is nested in M1.
Under suitable regularity conditions and for a large sample size its distribution follows a
χ2 distribution with k degrees of freedom, where k is the difference in parameters between
the two models (Coles 2001). Several authors report good results when comparing non-
nested, but reasonable similar models (Zhang et al. 2004 and Katz et al. 2005).

In extreme value statistics the deviance statistic is not only used to choose the type
of distribution of the extreme values (e.g. Weibull, Gumbel or Frechet in case of the
GEV), but also whether a trend is present in the extreme values or not (see Sec. 4.6).
Strupczewski et al. (2001) stress that the distribution function has a greater effect on the
AIC value than a trend model. This result probably is transferable to the deviance statis-
tic, because both rely on ML.

In this work the deviance statistic is used to choose between non-stationary extreme
value distributions and processes that is the GEV, GPD and PP.

2.6 MODEL VALIDATION – GOODNESS-OF-FIT

With goodness-of-fit procedures we test, whether a given time series is compatible with
being a realisation of a model, e.g. a FARIMA model, or an extreme value distribution, or
a point process. Thereby a degree of confidence has to be specified to conduct the test. A
lot of analytical procedures assume a certain class of models or distributions from which
the best is selected via some criterion (see Sec. 2.5). It is not possible to define this class
in a way that all potential models, which might be suitable to represent the time series,
are included. Therefore the best model out of this class should satisfy a goodness-of-fit
test. In the following, the standard goodness-of-fit tests used in this work are discussed
briefly.

2.6.1 FARIMA goodness-of-fit test

A goodness-of-fit test for FARIMA(p, δ, q) models formulated in the spectral domain is
proposed by Beran (1992). The test statistic

TB =
A

B2
, (2.62)

with

A =
4π

n ∑
j=1

( P(ωj)

S(ωj; Θ)

)2

, and

B =
4π

n ∑
j=1

P(ωj)

S(ωj; Θ)
, (2.63)

is asymptotically normal with mean µTB
= π−1 and variance σ2

TB
= 2π−2n−1. This

test compares the periodogram P(ω) of the empirical time series with the spectral den-
sity function S(ωj; Θ) of the fitted model. Θ denotes the parameter vector of the fitted
FARIMA model. It has been shown that this test is equivalent to the Portmanteau test (see
Percival et al. 2001). The Portmanteau test is based on the idea that for the correct model
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the residuals (in the time domain) should approximately be a realisation of a white noise
process.

The smallest significance level for which the null hypothesis “H0: The empirical data
are compatible with being a realisation of the model” is falsely rejected, is denoted by

αcrit = 1 − Φ(T′
B) for T′

B =
TB − µTB

σTB

, (2.64)

where Φ(·) is the cumulative distribution function for a standard normal random vari-
able.

In case a trend is present in the data the proposed goodness-of-fit test is biased: De-
pending on the shape of the trend the periodogram is likely to be distorted at low fre-
quencies. A possible workaround is to perform the test on the global wavelet spectrum
of the LA(8) wavelet (see Sec. 2.2.3). There a possible polynomial trend component (up
to a certain order) is removed. Unfortunately, regarding our empirical time series, the
DWT provides too few data points to do so.

2.6.2 Poisson process goodness-of-fit test

To provide a goodness-of-fit test for inhomogeneous Poisson processes Poi(λt), which
we use to model the frequency of the occurrence of excesses Y = X − u over a threshold
u, we exploit the properties of the Poisson process. For a homogeneous Poisson process
λ = MEAN(Poi(λ)) = VAR(Poi(λ)) holds and

pPoi =
VAR(Poi(λ))

MEAN(Poi(λ))
(2.65)

should be near to 1. Now we use pPoi as test statistic and generate its distribution by
simulation. We generate R series from the possibly inhomogeneous Poisson process, and
calculate the corresponding p∗Poi from them, which gives the distribution.

We derive the empirical pPoi(emp) by first transforming the empirical time series X into
a series XF of zeros and ones, thereby XF = 1 indicates the occurrence of an excess, i.e.
X > u and XF = 0 indicates X <= u. Then we get pPoi(emp) = VAR(XF)/MEAN(XF).

Let the significance level α be 0.05. This is a two-sided test, that is we then agree on
the empirical time series being a realisation of the Poisson distribution in case more than
0.025R of the p∗Poi lie above and below pPoi(emp).

2.6.3 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov (KS) statistic measures the difference of two probability distribu-
tions. We use it to determine whether a probability distribution differs from a hypothe-
sised distribution. The KS test is based on finite samples. It has the advantage that no
assumption about the distribution of data is needed, i.e. it is non-parametric and distri-
bution free (DeGroot 1984).

The null hypothesis states that a random sample X1, . . . , Xn stems from a known con-
tinuous cumulative distribution F(x) (with known parameters). The one-sample KS test
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compares the empirical distribution function F̂(x) of the sample with this theoretical cdf.
Its KS statistic is given by

K = sup
−∞<x<∞

|F̂(x)− F(x)|

= max
{

max
1≤j≤n

{ j

n
− F(X(j))

}
, max

1≤j≤n

{
F(X(j)) −

(j − 1)

n

}}
, (2.66)

where {X(j)} is the order statistics8 of {Xj}. The statistic
√

nK rapidly converges to its
limiting distribution as n → ∞. If H0 is true this limiting distribution is given by

lim
n→∞

P(
√

nK ≤ t) = 1 − 2
∞

∑
i=1

(−1)i−1e−2i2t2
. (2.67)

The quantiles of this distribution commonly are listed in tables (see, e.g., Sachs 1991). A
test for significance of the null hypothesis is established by assuming a certain signifi-
cance level and verifying whether

√
nK passes the corresponding quantile.

It is known that the Kolmogorov-Smirnov test has low power for the typically skewed
distributions of extreme values (Strupczewski et al. 2001). Besides that, the KS test is sen-
sitive to auto-correlations in the data (Dutilleul and Legendre 1992). Perhaps the most se-
rious limitation is that the distribution must be fully specified. This implies that Eq. (2.67)
is no longer valid in case the parameters are estimated from the data. Therefore we pro-
vide a test distribution by simulation. We use the KS test to evaluate the goodness-of-fit
of the GPD distribution. Let X1, X2, . . . be a series of iid random variables with block
maxima Mm converging to the GEV for m → ∞. Then the distribution of the according
threshold excesses Y = X − u, conditional on X > u, is given by the GPD (see Eq. (2.28)).
To normalise Yi, we transform it to

Ỹi = − log
{

1 + ξ
(Yi − u

ψ

)}−1/ξ
for i = 1, . . . , n . (2.68)

Ỹi is distributed according to the exponential distribution, Ỹi ∼ 1− exp−ỹi . The goodness-
of-fit of a stationary GPD model is tested by assessing whether the transformed Ỹi can be
regarded as a realisation of an exponential distribution using the KS test. This procedure
easily is transferred to non-stationary GPD models. Then Eq. (2.68) with non-stationary
parameters is applied to transform the excesses and the resulting Ỹi are as well compared
to the exponential distribution. To simulate the distribution of the KS test statistic, we
generate an ensemble of R time series from the GPD distribution, which is compared with
the empirical excesses. Then we fit the same GPD model to the simulated series, conduct
the KS test and keep the p-value at a level of α = 0.05. This ensemble of simulated
p-values provides the distribution.

2.6.4 Probability plot and quantile plot

The probability plot (pp-plot) and the quantile plot (qq-plot) are widespread tools to vi-
sually assess the validity of an estimated distribution function F̂(·) by comparing it to
the empirical distribution function of the data. Given an ordered sample of independent

8The order statistics of a random sample X1, . . . , Xn are the sample values placed in ascending order.
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observations x(1) ≤ x(2) ≤ . . . ≤ x(n) and an estimate of the distribution function F̂(·), a
probability plot consists of the points

{(
F̂(x(i)),

i

n + 1

)
: i = 1, . . . , n

}
. (2.69)

The points of the pp-plot have to be located close to the unit diagonal in case F̂(·) is
a good model for the data. As for a simple non-parametric estimate of the empirical
density function, a probability of 1/(n + 1) is attached to each of the xi. With the pp-
plot it is verified whether the estimated parametric distribution function matches this
non-parametric estimate.

A quantile plot is given by

{(
F̂−1

( i

n + 1

)
, x(i)

)
: i = 1, . . . , n

}
. (2.70)

x(i) and F̂−1(i/(n + 1)). Both provide estimates for the i/(n + 1) quantile of the distribu-
tion F(·). Therefore the quantile plot should consist of points close to the unit diagonal

in case ˆF(·) is a good estimate for F(·).

2.7 DATA

In this thesis, measurements of daily mean river run-off (measured in cubic meters per
second [m3/s]) are used. The area of investigation is located in Southern Germany com-
prising the catchments9 of the Danube River and the Neckar River10.

We selected this area on behalf of the department for water management of the Bavar-
ian Environmental Protection Agency, which wants to use further our methodology and
results. Long measurements exist for this region, the longest from 1901 to 2003. From the
Neckar basin 10 data records are used, which all cover the period from 1940 to 2003. The
length of these records is depicted in Fig. 2.11 (red). The sub-catchments near the Danube
River basin provide about 90 records for our analysis purposes. The time periods which
are covered by these series are depicted on the right hand side of Fig. 2.11. Out of them,
we chose the time period between 1941 and 2000 (which is highlighted with an orange
hatched area) to perform comparative trend analysis studies. For this purpose 50 series
out of the 90, which jointly cover this period, were selected.

The sizes of the analysed catchments in the Neckar River basin range from 6km2 to
3 995km2, as depicted in Fig. 2.12. Thereby most of the catchments have a size between
100km2 to 500km2. For the Danube River the 90 series analysed are located in catchment
areas with sizes from 91km2 to 143 600km2, as shown in Fig. 2.13. For a better classifi-
cation the size of the 70 smallest catchments is also depicted on the right hand side of
Fig. 2.13. Most of the river catchments have a size between 50km2 and 1 200km2. For a
geographical coordination, the location of the stations is shown in Fig. 2.14. In several
cases where we were mainly interested in the large-scale evolvement of the time series

9River catchments are regarded as the domain of attraction of water at a given geographical position.
10The data has been made available by the department for water management of the Bavarian Environ-

mental Protection Agency (http://www.bayern.de/lfw/), which is concerned with topics such as the protection
of the environment, geology and water management of Bavaria.
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Figure 2.11: Length of time series. Left: Time periods covered by examined time series in the
Neckar basin (red). Right: Time periods covered by examined time series in the Danube basin
(red). The hatched area (orange) highlights the period of 60 years between 1941 and 2000, which
is used to perform comparative analysis with about 50 stations out of the 90 depicted.
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Figure 2.12: Size
of Neckar River
sub-catchments. His-
togram of the sizes of
catchments analysed
near the Neckar River
(in km2).
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Figure 2.13: Size of Danube River sub-catchments. Left: Histogram of the sizes of river catch-

ments near the Danube River related to the 90 gauges analysed in this thesis (in km2). Right:
Histogram of the sizes of the smallest 70 catchments.



44 BASIC METHODS AND DATA

we aggregated the daily mean discharge data to monthly means, monthly maxima or an-
nual maxima and then analysed these series. To provide reliable results, measurement
records with too many or too long gaps were disregarded. In case there were only a few
daily measurements missing, they were replaced by the average of the according days in
other years obtained from the remaining series. In case aggregated data was used, that is
monthly maxima, the gaps are allowed to be up to 10 days long.

The regions have encountered various floods during the last decades, i.e. in May 1999,
August 2002 and August 2005. This goes along with a change in the precipitation pattern
in this area. Heavy winter precipitation events become more frequent in Bavaria and
Baden-Württemberg (Dietzer et al. 2001) and are anticipated to become even more fre-
quent in the future (Schröter et al. 2005). Local water management authorities expect an
increase in heavy floods due to climate change. As a consequence, a climate change factor
of 1.15 was introduced in Bavaria in 2006. Due to this factor, every design value for river
discharge is expanded about 15% (BlfW 2006).

The region provides a good data basis for the aims of this thesis regarding complete-
ness and statistical characteristics, such as trends and auto-correlation structure various
analysis purposes. It has already been chosen for trend assessment studies by other
projects such as KLIWA (2003).

2.8 PREPROCESSING THE DATA

2.8.1 Seasonal effects

Hydrological data underlies the annual cycle, that is seasonal effects. This deterministic,
periodic non-stationarity has to be treated differently than the stochastic part of the time
series. This holds in particular if analysis methods require independent and identical dis-
tributed (iid) data. These seasonal effects can either be incorporated by seasonal models
(see, e.g., Lohre et al. 2003 and Montanari et al. 2000), neutralised by the classification of
the data or removed by deseasonalisation. For our goals it served best to analyse seasonal
extreme values and deseasonalised mean values, as outlined below.

Data classification into seasons

We eliminate seasonality in our extreme value data by dividing them into seasons. The
division of data into seasons or even shorter time periods, that is the analysis of only
a sub-sample of the data series is performed for several purposes. Changes within the
year may be investigated, e.g. an earlier start of the snowmelt can be tracked by ex-
amining the change in winter floods (see, e.g., Mudelsee et al. 2004) or winter precipi-
tation (Robson 2002). Furthermore, a different impact of various processes on hydro-
meteorological data may be assumed for different seasons. Therefore the evolution of
a special season may be in the focus. By looking only at this season, effects due to the
influence of other seasons are avoided.

We analyse the winter season (December, January and February). This season is es-
pecially interesting for trend detection issues, several studies suggest a change in winter
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Figure 2.14: Gauges in Bavaria and Baden-Württemberg. The Danube River basin is depicted in
grey and the Neckar River basin in turquoise (source: KLIWA (2003), page 89).
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Figure 2.15:
Reference year.
Reference year of
daily measurements
from the Danube
River at Achleiten
(1901-2003). The
mean of the year is
depicted in black.
To deseasonalise the
data, it is subtracted
from the data. Nor-
malised data are
divided by its stan-
dard deviation, which
is shown in orange.

floods (Kundzewicz and Schellnhuber 2004). Furthermore the assumption of stationarity
within this season is justified, which we tested in a simulation study by comparing the
inter-seasonal variation of all four seasons. Defining the winter season as the period from
December to February is done by several authors (see, e.g., Jacobeit et al. 2003). The clas-
sification into seasons even is no obstacle to finding an extreme value model, which fits
the extreme value data for the whole year: By estimating the parameters of the models
using the likelihood function, it is possible to re-merge the models found for the different
seasons and to determine a best model for the whole year in terms of maximum likeli-
hood (Coles 2001).

Deseasonalisation

To deseasonalise the mean values, a reference year is created by calculating the average and
variance of each day of the year over all years. Then the strong periodicities of the an-
nual cycle are approximately removed from the daily measurements by subtracting the
average. We furthermore normalise the data, that is we divide each day by the standard
deviation of the respective day in the reference year. By doing so, the seasonal periodicity
in the variance is removed, see, e.g., Hipel and McLeod (1994). FARIMA(p, δ, q) models
do not reflect time-dependent variance (heteroscedasticity), therefore the results for the
series normalised in this way are expected to be more reliable. An example for the refer-
ence year of the Danube River discharge measured at the gauge Achleiten is given in Fig.
2.15.

2.8.2 Declustering

A lot of data evaluation methods assume independent data. Therefore we model auto-
correlations in the mean values explicitly with FARIMA(p, δ, q) models. Regarding ex-
treme value analysis, modelling the auto-correlation structure is difficult due to the lack
of data. We therefore eliminate the auto-correlations in the extremes via so-called declus-
tering (Embrechts et al. 1997; Chavez-Demoulin 1999).
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Declustering can be done for extreme values which are defined as exceedances over
a certain threshold u. To do so, the cluster size 2 ∗ r has to be found (Ferro 2003). It is
assumed that observations which lie further apart in time than this cluster size are in-
dependent. Actually long-range dependent data with a moderate fractional difference
parameter δ can be decorrelated in this way (Embrechts et al. 1997). As depicted in Fig.
2.16 the exceedances are grouped into the same cluster if they are separated by fewer than
r values below u. For the analysis, we keep only the highest exceedance of each cluster,
i.e. the red data points in Fig. 2.16. In practice, we compare the result of the declus-
tering algorithm for various cluster sizes and keep the smallest r, for which we see that
the number of remaining extremes is nearly the same as for larger r. For the discharge
analysed, we find r values between 3 days and 6 days to be sufficient. We furthermore
test the resulting set of extreme values for independence.





CHAPTER 3

TRENDS IN MEAN VALUES CONSIDERING

AUTO-CORRELATION

3.1 TREND DETECTION APPROACHES

Different potential driving forces have to be considered when analysing hydrological or
meteorological time series. The distinction of such components is still a matter of re-
search. The approach that we will introduce herein may be used for this purpose by
making the rather simple assumption that systemic changes can be represented by a de-
terministic, slowly changing trend component, whereas natural variability is modelled
by a stochastic process (see, e.g., Bloomfield 1992 and Smith 1993). At any rate it is de-
sirable to distinguish between these two components in a time series, because a trend is
expected to continue in the future whereas natural variability changes direction in a more
or less unpredictable manner. In case a deterministic trend component is identified in the
data, its origin and interpretation is yet another important task, which is domiciled in
different application areas, such as hydrology or meteorology.

A variety of frameworks to assess trends under consideration of auto-correlations
have been established. In all approaches the trend component and the stochastic part,
which reflects the natural variability present in the data, are combined additively. The
techniques are distinguished by the way the trend is estimated and by the assumptions
made for the auto-correlation structure, i.e. the class of stochastic models which are used
to model the auto-correlations. Bloomfield (1992), Woodward and Gray (1995) and others
evaluate trends in global temperature by combining a trend and an autoregressive inte-
grated moving average (ARIMA) component in a fully parametric approach, that is the
assumed trend shape is also derived via parameterised functions. For several decades
the examination of long-term correlations has drawn more and more attention. This
sort of auto-correlation structure, which persists over very long (theoretically infinite)
time periods, has been found to be present in river run-off data (e.g. Hurst et al. 1965,
Lawrence and Kottegoda 1977 and Montanari et al. 1997). The effect of long-term corre-
lated processes on trend estimation is well described (c.f Beran 1994). Also parts of hy-
drological statistics have already been adapted to this long-term correlation phenomenon
(Koutsoyiannis 2003). Smith (1993) utilises the standard least squares estimator to test
for trends under consideration of long-term memory. Sibbertsen (1999) uses S-estimators
to assess a trend for data with long-term correlated errors. Percival and Walden (2000)
and Craigmile et al. (2004) employ wavelets to test for the significance of a trend under
assumption of a long-term correlated fractionally differenced FD(δ) or a short-term cor-
related autoregressive AR(1) model. All these methods possess advantages and disad-
vantages concerning a correct estimation of the trend and the provision of confidence
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intervals for this estimate. We contribute to the evaluation of trends in the mean by com-
bining a trend estimate obtained by wavelet filtering and the class of fractional ARIMA
(FARIMA) models to assess trends in a semi-parametric approach.

3.2 TREND DEFINITION

There exists a wide range of trend definitions, depending on the methods used, the pur-
pose, and the area of application. Therefore no universal specification is sketched here,
but rather a definition is given, which enables us to set up a trend assessment framework.

Definition 3.1 (Trend). A trend is regarded as a continuous slowly varying change in the
mean of a time series, which has an impact at large scales.

Craigmile et al. (2004), Percival and Walden (2000), and Bloomfield (1992), for exam-
ple, share this view of a trend as fluctuations on large scales. In this connection a trend
denotes a non-stationarity in time which may also consist of periodicities, e.g. the annual
cycle, for example. We do not restrict our trend definition to trends with an increasing
or decreasing tendency. This notion especially suits river discharge data, where non-
monotonic trends are rather common. Change points in the data are not included in this
definition and therefore have to be removed before the analysis.

We furthermore assume that every observed time series {yt : t = 0, ..., n − 1} can be
modelled as a linear composition of a deterministic trend component {Tt} plus a realisa-
tion of a stochastic process {Xt}:

Yt = Tt + Xt t = 0, . . . , n − 1 . (3.1)

3.2.1 Stochastic versus deterministic trends

As presented in Secs. 2.1.2 and 2.1.3, stochastic auto-correlated processes such as ARMA
or FARIMA processes may exhibit stochastic trends, i.e. they are non-stationary stochastic
processes and do not satisfy the conditions for strict stationarity (cf. Eq. (2.3)) or weak sta-
tionarity in the case of FARIMA processes having a Gaussian noise term. Non-stationary
stochastic processes have time dependent moments. The random walk is a prominent
example for a stochastic process exhibiting a stochastic trend. Its variance is time depen-
dent.

Contrary to this, a deterministic trend is assumed to be due to non-stochastic mech-
anisms. Therefore it is modelled independently of the stochastic portion of the analysed
dynamics. The importance of the detection of deterministic trends partly lies in the un-
equal treatment of deterministic and stochastic non-stationarities. Realisations of a non-
stationary stochastic FD(δ) process, for example, are transferred to a stationary model
by (multiple) differentiation (see Sec. 2.1.3 for further details). On the other hand, time
series with a deterministic trend component become stationary by subtracting the trend
component. The disregard of this difference has more or less severe consequences (see
Rinne and Specht 2002): A deterministic trend which is not detected may bias the pa-
rameter fits in a way that a non-stationary stochastic model is wrongly chosen as the
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one fitting best. The Dickey-Fuller test is designed to distinguish between non-stationary
short-term correlated models (unit-root-models) and deterministic trends. The perfor-
mance of the Dickey-Fuller test is reduced when it is applied to long-term correlated data
(Hassler and Wolters 1994).

Within the climate community, there exist several approaches to model temperature
time series by using stochastic non-stationary models. Woodward and Gray (1993) and
Woodward and Gray (1995), for example, find an ARIMA(9,1,0) process which possesses
roots lying on the unit circle (see Sec. 2.1.3 for further details) as best fitting model for
the global temperature data reconstruction provided by Hansen and Lebedeff (1987) and
Hansen and Lebedeff (1988). They favour this process over a combination of a stationary
ARMA model with a linear deterministic trend component. Smith (2001) in contrast ar-
gues in a process oriented way saying that (a) the assumption of a non-stationary stochas-
tic process and (b) the possibility of arbitrary far shifts from their starting values over a
long time period are questionable assumptions for climatic variables.

The incorporation of non-stationary stochastic models in our approach is theoretically
possible. Nevertheless, we have always found stationary stochastic models to fit best to
the analysed empirical data (for results see Sec. 3.5). This is indicated by the parameter
estimates (see Secs. 2.1.2 and 2.1.3). Thus, in this work mean values of river discharge are
either described by a stationary stochastic model or by a stationary stochastic model with
a deterministic trend component and the model selection can be reduced to these cases.

3.2.2 Trends and auto-correlation

Smoothly varying trends are difficult to distinguish from natural variability on large
scales caused, e.g., by auto-correlation. Bhattacharya et al. (1983), Taqqu et al. (1995) and
Bunde et al. (2002) address relevant pitfalls and provide possible ways of distinction.
This exchangeability implies that the evaluation of a possible deterministic trend implic-
itly needs assumptions about the natural variability: Trends of small magnitudes will
less often be considered as significant in a system which is known to be highly variable
anyway. This fact is reflected by the selection of a stochastic model capturing the natural
variability. The choice has an important influence on the confidence interval estimated for
the trend parameters and therefore on the significance of the trend estimate (see Sec. 3.3.4
for further details).

Particularly long-term correlation, e.g. long-range dependence, causes long excur-
sions from the mean (Beran 1994). Therefore the detection of a deterministic trend in a
long-range correlated series is even more challenging than in a short-range correlated se-
ries (for a definition of these terms cf. Sec. 2.1). As noted by Diebold and Inoue (2001),
in certain circumstances deterministic trends and long memory (long-term correlations)
are ’effectively different labels for the same phenomenon, in which case attempts to label
one as “true” and the other as “spurious” are of dubious value’. An example for long-
term correlated data exhibiting spurious trends is given in Fig. 3.1. One could easily be
tempted to assume a deterministic trend component in the data series of the right hand
side. But this series is a realisation of a stationary process, i.e. has mean zero – though
with heavy long-term correlations. The simulated series are quite long with 10 000 data
points. Thus, spurious trends are not only a feature of short time series.
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Figure 3.1: Comparison of short- and long-range correlation. Realisations of a short-range cor-
related AR(1) process (left hand side) with parameter φ1 = 0.3 and a long-range correlated FD(δ)
process (right hand side) with parameter δ = 0.45. Both stochastic processes are stationary. How-
ever, in the realisation of the long-range correlated process one might suspect a trend.

Furthermore, the distinction between deterministic trend and short memory on the
one hand and long memory on the other, is still a matter of research. Giraitis et al. (2001)
clarify the difficulties of R/S-type test statistics1 to discriminate between long memory
and short memory combined with specific forms of non-stationarity. The estimation of
the long-range parameter using heuristic methods may also be biased by short-term cor-
relations. Rust (2007) discusses various methods to estimate the Hurst coefficient and to
detect long-range correlations (see also 2.1.3) and mentions potential problems.

Several authors report long-term memory being present in river discharge records
(see, e.g., Hurst 1951, Lawrence and Kottegoda 1977, Montanari et al. 1997, Beran 1994,
Ooms and Franses 2001 and Mudelsee 2007). Therefore we assess trends by modelling
the correlation structure of the data with a stochastic fractional ARIMA process, which
is able to reproduce short-term as well as long-term correlated data (see Sec. 2.1.3 for
further details). The FARIMA models as well as short-range correlated ARIMA processes
are fitted to the data and the best model is chosen with the HIC selection criterion, which

1Rescaled adjusted range statistic which is utilised by Hurst (1951) to identify the ideal storage capacity
of the Nile River reservoirs. He identifies also a power law, so the R/S statistic can be used to estimate the
Hurst coefficient.
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Figure 3.2: Trend
shape of the Dreisam
River at Ebnet. Trend
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relies on the likelihood (cf. Sec. 2.5.1).

Long-range dependence and heavy tails

Long-range dependence is often mentioned in conjunction with heavy tailed distribu-
tions. At first sight there is no connection between both phenomena. Heavy tailed dis-
tributions, such as the Pareto distribution, exhibit an asymptotic hyperbolic shape - re-
gardless of the distribution for small values of the random variable - i.e. P(X > x) ∼ x−a

for x → ∞, 0 < a < 2. These distributions are also known as power-law distributions.
Even one single observation in time can be described as a realisation of a random vari-
able with a specific distribution. Therefore the definition of a distribution does not rely
on time, but is somehow static. Long-range dependence on the other hand (as introduced
in Sec. 2.1.3), always deals with the connection between several observations (or random
variables) in time, namely the auto-correlation structure. Both phenomena need not oc-
cur together. They can, for example, in case several time dependencies interfere with each
other. Then the resulting data may exhibit heavy tails (cf. Katz et al. 2005). It is moreover
possible to connect long-range dependence with the theory of point processes, which are
used to model the occurrence and magnitude of extreme values (Daley and Vesilo 1997).

3.2.3 Trend shape and trend detection methods

Apart from the fundamental question whether a trend is present in the data or not, the
trend shape is very important. In the first place, the interpretation of this shape is use-
ful for drawing conclusions about the behaviour of the analysed system. Thereby the
direction of the trend, i.e. increasing or decreasing, is one possible outcome. Other re-
search questions, such as the retrieval of periodicities or other large scale patterns, are
conceivable. As an example in Fig. 3.2 the estimated trend of discharge anomalies for
the Dreisam River at Ebnet is depicted (red). Furthermore trend estimates for the winter
season (blue) and summer season (green) are shown. The river discharge trends exhibit
decadal periodicity.

However, we model a system which is expected to be composed of the determinis-
tic trend and a stochastic part representing natural variability. Therefore we regard the
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analysed time series just as one realisation of a stochastic system and, as pointed out in
Sec. 3.3.4, the variability of this system and the reliability of the trend estimate heavily
depend on the inherent correlation structure of the system. Hence the inclusion of confi-
dence intervals is very important for the interpretation of the trend shape and the method
chosen for trend estimation should provide parameters which are applicable for uncer-
tainty assessment and suffice mathematical standards of estimation (i.e. consistency and
efficiency conditions). Last but not least, the trend estimate determines the part of the
time series which is left to be interpreted as stochastic variability. Thus the result of a test
for a trend heavily depends on the shape of the trend estimate. This holds for the frame-
work presented here, as well as for standard regression analysis, e.g. choosing a straight
line as trend estimate (see Beran 1994 for further details).

One way to estimate trends is to proceed in a fully parametric way. This means that
a certain trend shape, e.g. polynomial or exponential, has to be assumed. These sub-
jective assumptions are at best driven by expert knowledge about the processes of the
observed system. In case of lack of information, the assumption of rather flexible trend
shapes, such as polynomials, is practical. Since in this methodology the trend shape is
known, the trend can easily be extrapolated into the future. Fully parametric approaches
therefore are very helpful in forecasting. Nevertheless, the class of assumed trend forms
has an influence on the trend test, which only tests for the existence of these particular
trends. Hence the trend assumptions have to be reliable. Fully parametric approaches
offer a setting where the trend and the stochastic model are estimated simultaneously
(see, e.g., Smith 1993). In this way the mutual dependence between both characteristics,
the trend and the complexity of the stochastic part, is fully considered. On the other
hand, here the parameter estimates for both phenomena reflect this mutual dependence.
Furthermore, the stochastic model and the trend estimate as a whole must not get too
complex. Otherwise models with a lot of parameters are used and thereby the usual op-
timisation problems arise. Therefore rather simple trend assumptions, such as straight
lines, are usually made when using a fully parametric approach. For demonstrations of
this methodology see, e.g., Bloomfield (1992) and Woodward and Gray (1995).

In a semi-parametric framework the trend estimation is data driven, and a priori
knowledge about the type of trend (e.g. linear, exponential, etc.) is not necessary. There-
fore, this approach is especially useful for assessing time series like river run-off, which
are expected to have complicated and unpredictable trend forms. Using this technique,
at first the trend is usually estimated with a non-parametric method, i.e. via wavelets,
kernels, splines or by simply smoothing the time series. Then, in a second step, the
parametric stochastic part, e.g., a FARIMA model, is estimated. Since this procedure
involves several steps, the appropriateness of the trend estimate will always be ques-
tionable, although estimators based on semi-parametric approaches show properties like
consistency or efficiency. For applications in the hydro-meteorological context see, for
example, Sibbertsen (1999) and Ramesh and Davison (2002).

We chose to estimate the trends using wavelets in a semi-parametric approach. The
methodology is based on Craigmile et al. (2004). We extended it by using a broader class
of stochastic models (FARIMA), which enables us to represent the correlation structure
of empirical data more flexibly. For specific details see Kallache et al. (2005).



TREND ESTIMATE 55

3.3 TREND ESTIMATE

We assume that the observed time series can be modelled additively by a deterministic
trend component {Tt} plus a realisation of a stochastic process {Xt}: Yt = Tt + Xt for t =
0, . . . , n − 1. By proceeding in this way, auto-correlations in the time series are modelled
in Xt. In the proposed method, the influence of the variability of the system, that is the
structure of Xt, on the uncertainty of the trend estimate is taken into account.

To estimate the trend we chose a Daubechies least asymmetric wavelet of width 8. As
outlined in Sec. 2.2.2, the LA(8) wavelet possesses several advantages which are applica-
ble in trend assessment. Furthermore, the wavelet of width 8 exhibits good reconstruc-
tion properties for a variety of time series tested, therefore we use it for all our discharge
data. The trend is estimated using the DWT (see Sec. 2.2.1). By doing so, the data vector
Y is decomposed into a component T̂, representing the variability on large scales, and a
component X̂ for small scales:

Y = W
TW = W

TAW + W
T(In − A)W = T̂ + X̂ . (3.2)

In is the n × n identity matrix, W are the wavelet coefficients and W is the matrix of
the wavelet transform. A contains all non-boundary wavelet coefficients, whereas (In −
A) contains all scaling and boundary coefficients. Daubechies wavelet filter of length
L eliminate a polynomial trend of order K in the non-boundary wavelet coefficients if
K ≤ L/2 − 1. Since a reconstruction Y = W

TW gives back the original time series, the
trend {Tt} is captured by the boundary wavelet coefficients and the scaling coefficients.
The inverse wavelet transform of these coefficients T̂ can be used as an estimate for the
trend. T̂ not only contains the deterministic trend component but also the stochastic
variability on large scales and in the following is referred to as the trend estimate.

3.3.1 Separating scale

As presented in Sec. 3.3, the time series is decomposed in its fluctuations according to
different scales to estimate the trend. So one has to define this separating scale between
“trend” and fluctuations on small scales. Most reliable results are obtained by selecting
the separating scale ls between T̂ and X̂ as the largest scale with a non-zero number of
wavelet coefficients not affected by boundary conditions (Craigmile et al. 2004). Thereby
the choice of the separating scale depends on the number of analysed data points n. Fur-
thermore, the separating scale should be chosen such that the definition of trend as fluc-
tuations on large scales is met. As pointed out in Sec. 2.2.2 applying a Daubechies scaling
filter is a kind of weighted smoothing procedure. The choice of ls determines the amount
of variation of the time series being present in the trend estimate. Considering both as-
pects and using the LA(8) wavelet filter a separating scale of ls = 6 is found to meet our
requirements best. All investigations presented in the following are carried out with this
ls. It corresponds to a separating scale interval of 32 to 64 months when dealing with
monthly measurements. Thus the estimated trends reflect variations of the time series
which are larger than 5 years. The choice of the separating scale is important for the
trend test. It may be compared to the selection of a window size when smoothing data to
get a trend estimate. Percival and Walden (2000) show that shifting the separating scale
only one unit might change the trend test results.
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3.3.2 Boundary conditions

Wavelet coefficients are always a certain aggregation of the variations of the time series
around a time point t0. The larger the analysed scale, the more points get aggregated, i.e.
the more wavelet coefficients are affected by the boundary conditions. To be able to cal-
culate these wavelet coefficients some kind of assumption for the elongation of the time
series at both edges has to be made. One alternative is to assume periodic continuation,
i.e. the end of the time series is identified with the beginning. Other approaches are to
expect reflecting boundary conditions, where the time series is reflected at both edges,
or to pad the series with the mean value at the edges (see Torrence and Compo 1998 for
more details). In the following we use the latter alternative. As one goes to larger scales,
padding decreases the amplitude of the wavelet and scaling coefficients as more zero val-
ues enter the analysis. The trend estimation and the calculation of its sigma intervals are
done on this elongated padded series, whereas the test for trend is applied to the original
empirical series and its fluctuation estimate without padded parts. When using wavelet
filters with width L > 2 for the transform, the boundary coefficients cause a higher vari-
ability of the trend estimate at the endpoints of the time series and accordingly wider
confidence intervals there.

3.3.3 Stochastic component

Having estimated the trend a stochastic model is applied which represents X̂ best. The
class of FARIMA(p,δ,q) models (see Sec. 2.1 for further details) is regarded as being able
to reproduce the auto-correlation structure of the data reasonably well. Thereby iid and
normal distributed noise is assumed. Therefore the distribution of the analysed data
should be approximately normal. Deviations from this assumption result in slightly bi-
ased parameter estimates for the FARIMA model. On the other hand, methods which
explicitly consider non-normal distributed data are not robust against mis-specification
of this distribution (Giraitis and Robinson 2001). To estimate the parameters we use the
Whittle estimator as a fast and robust approximation of maximum likelihood estimators
(see Sec. 2.4.1). It shows the consistency and efficiency properties described in Sec. 2.4.3.

The maximum likelihood parameter estimation procedure of the FARIMA(p,δ,q) pro-
cesses assumes stationary data, but we use the methodology to estimate parameters of
a non-stationary series. Therefore we investigated the bias of the parameter estimation
induced by non-stationarity. Fig. 3.3 shows the results of a Monte Carlo simulation to
assess the bias when estimating the δ = 0.3 parameter due to a trend. We use simulations
from a FARIMA(p,δ,q) process of length 1 000 and with p, q = 1 for this study. Trends
with various shapes and strength (0 to 3 times the standard deviation of the process) are
added to the data. The strength of the added trend component is indicated at the x-axis,
whereas the type of the added trend is visualised with different colours, i.e. linear (black),
parabolic (red) and quadratic (green). The parameters are estimated on the original data
series (solid lines) and on the filtered series, where a potential trend is estimated using
wavelets (as described in Sec. 3.3) and is removed from the series. The bias is visualised
as deviance from the original value for δ, e.g. 0.3. As expected, the bias of the estimate
of δ due to a trend increases with the trend magnitude when fitting the parameters on
the original series. In case the parameter estimates for the FARIMA process are obtained
from the filtered series, we get a reverse picture: The bias is about as large as the bias in-
troduced through trend, but decreases with augmenting trend magnitude. Similar results
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Figure 3.3: Parameter esti-
mation under trend or filter-
ing. Assessment of the bias
of the estimate for the frac-
tional difference parameter
δ = 0.3 of a FARIMA(p,δ,q)
model with p, q = 1 due to
a trend or to filtering. Var-
ious trend shapes, i.e. linear
(black), parabolic (red) and
quadratic (green) are added
to simulated FARIMA series.
The strength of the trend is
augmented along the x-axis
(0 to 3 times the standard de-
viation of the process). In
case the fit is performed on
the original data, the bias
is depicted with solid lines,
while dashed lines indicate a
fit on the filtered series where
a trend estimate (which is ob-
tained using wavelets) is re-
moved.

are obtained for the AR parameter φ1 = 0.3. The MA parameter ψ = 0.3 is not affected.
Thus, the bias of the Whittle approximation to maximum likelihood estimation due to a
possible trend cannot be reduced by wavelet filtering. In this work we therefore use the
maximum likelihood estimates without any correction term. We consider this a reliable
approach, because trends in empirical time series are normally much weaker than e.g. 3
times the standard deviation of the process itself. Therefore the bias we might get for
the parameter estimates in case a trend is present in the data is small compared to the
confidence intervals for the estimates.

A variety of models out of the FARIMA class is fitted to X̂ and the best one is selected
via some information criterion (see Sec. 2.5.1). In the following we always use the HIC
as selection criterion to select between different FARIMA models. A goodness-of-fit test
(see Sec. 2.6.1) is applied to ensure the adequacy of the best model, afterwards the trend
test (Sec. 3.4) is carried out.

Analysing empirical data, we find that the model chosen as best one does not have
an influence on the shape of the trend, but it has an impact on the variability of the
trend estimate and therefore on the test for significance of the trend: Standard errors for
the trend parameters obtained under an assumption of long-range dependence may be
considerably larger than those obtained under a short-range correlated autoregressive
model (see Sec. 3.3.4 and 3.4 for further details). This result is also obtained by various
other authors, e.g. Smith (1993), Sibbertsen (1999) and Bloomfield (1992). Beran (1994)
infers furthermore that the broadened confidence interval for estimated trend parame-
ters can lead to an acceptance of the hypothesis that there is no trend in case of long-
term correlations, whereas this hypothesis is rejected in case of short-term correlations.
Cohn and Lins (2005) compare several trend tests applied to the annual northern hemi-
sphere mean temperature anomalies. They consider different types of auto-correlation,
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and find also that the stochastic model chosen has an important influence on the trend
test.

3.3.4 Variance of the trend estimate

The connection described in the previous section, between estimated trend T̂ and as-
sumed stochastic model X, is made explicit in our approach by reorganising Eq. (3.2),
namely

T̂ = W
TAWY = RT + RX , (3.3)

with R = W
TAW .

Therefore cov(T̂) = Rcov(X)RT holds, i.e. the variance of the trend estimate involves
the covariance of X. So if X is a realisation of a stationary stochastic process, the auto-
covariance sequence ρΘ(k) of X can be used to calculate the variance of the trend

VAR(T̂t) =
n−1

∑
k=−(n−1)

ρΘ(k)rt,k , (3.4)

with rt,k = ∑
n−1−|k|
i=0 Rt,iRt,i+|k| and n being the length of the time series. Rt,i denotes

the (t, i) element of R (for further details see Craigmile et al. 2004). Details concerning
the structure of the auto-covariance function ρ(k) of a stationary FARIMA process are
given in App. A-1. The variance of the trend estimate depends on several factors: The
wavelet transform used, the chosen separating scale ls, the number and magnitude of
the parameters of the stochastic process which complements the trend, and finally the
sample size n.

In our analysis the Daubechies LA(8) wavelet transform is chosen for all analyses (see
Sec. 2.2). This means the width of the wavelet L is larger than 2 and so the variance of the
trend estimate changes with time. The overall variability oscillates with time, dependent
on the shape of the scaling filter. Higher variability at the endpoints of the time series is
also induced due to the influence of the boundary wavelet coefficients.

Regarding the influence of the stochastic model, Eq. (3.4) implies that the variance
of the trend estimate is proportional to the variance of the stochastic process σ2. Fur-
thermore, the choice of the stochastic model as well as its estimated parameters have
an impact on the width of the confidence interval of the trend estimate. This is in line
with findings on confidence intervals of estimates for other important statistic quantities.
Koutsoyiannis (2003) and Rust et al. (2007) find confidence intervals of quantile estimates
getting larger in case long-range correlation is present in the data and Sibbertsen (1999)
reports the like for regression estimates. For an example see Fig. 3.4. Here fluctua-
tions in the confidence interval due to the choice of the wavelet transform are aver-
aged out and the confidence intervals are calculated for the padded series. The range
of influence of the boundary conditions is not depicted, but it can be derived analyti-
cally (Percival and Walden 2000). Examining the character of the influence of the chosen
model we find that under assumption of long-range dependence, the confidence intervals
obtained for the trend estimate can be considerably larger than those obtained under a
short-range correlated model. This important result has occurred repeatedly during our
analysis of hydro-meteorological data.
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Figure 3.4: Wavelet trend estimate and confidence intervals for different stochastic models.
(A) River discharge anomalies (monthly maxima) for the Erms River at Riederich and (B) trend
estimate with one-sigma intervals for a FD(δ) model (δ = 0.252, σ2 = 2.465) and an AR(1) model
(φ1 = 0.328, σ2 = 2.443). Additionally, a straight-line fit is shown.

The long-range dependence parameter δ determines the decay of the auto-correlation
function for large lags (Ooms and Doornik 1999). We therefore can conclude that for long
stationary time series δ dominates the magnitude of the sum in Eq. (3.4), i.e. the sum of
the auto-correlation function and therefore the size of the standard deviation of the trend
estimate. Unfortunately, for short series no general rule can be provided to conduct from
the FARIMA model type to the size of the confidence intervals for the trend estimate.
This relation depends on the existence and magnitude of the parameter δ, the number
and magnitude of the AR and MA parameters and on the sample size n.

3.3.5 Consistency and efficiency

The bias in estimating T with T̂ is zero, in case a Daubechies wavelet filter of adequate
length L is used such that K ≤ L/2− 1 holds. Here K denotes the order of the polynomial
trend. This means

E(T̂ − T) = 0n (3.5)

with 0n being a vector of n zeros (cf. Craigmile et al. 2004 for further details).

Furthermore, the trend estimator presented here converges to a Gaussian random
variable (Craigmile et al. 2004), i.e.

lim
n→∞

(T̂ − T) → ε ; ε ∼ N(0, Rcov(X)RT) . (3.6)

This means it is an asymptotically normal and consistent estimator (even in combination
with a FARIMA model). Further details are given in Sec. 2.4.3.

Whereas the property of consistency is concerned with the asymptotic accuracy of
an estimator efficiency assures the existence of an upper bound for the asymptotic vari-
ance of an estimator (cf. Sec. 2.4.3). This cannot be proved universally for T̂, T̂ is not an
asymptotically efficient estimator.
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There exist consistent and asymptotically efficient estimators for trends under con-
sideration of long-term correlation. Sibbertsen (1999), for example, considers a regres-
sion model with error terms having long-term correlations. He shows that the LSE (least
squares estimator) and BLUE (best linear unbiased estimator) are consistent and asymp-
totically efficient estimators. The only difference to models with independent error terms
or error terms with short-term correlations is the rate of convergence. It depends on δ
and the estimators converge more slowly. However, in this parametric regression model
the trend shape is fixed. Sibbertsen (1999) discusses also a semi-parametric regression
model with a twice differentiable continuous function as non-parametric part (presented
by Beran and Ghosh (1998)). This estimator is unbiased,

√
n-consistent, and also not effi-

cient.

3.3.6 Pointwise confidence intervals

By using the results sketched in the previous section standard 100(1 − α)% pointwise
confidence intervals are obtained for the trend estimate:

T̂t ± q1− α
2

√
VAR(T̂t) t = 0, . . . , n − 1 , (3.7)

where qα is the α-quantile of the standard normal distribution. These pointwise confi-
dence intervals are used in all following analyses.

Estimation of the parameters of the stochastic process and related uncertainty

In Sec. 3.3.5 the properties of the trend estimator are determined under assumption of
known parameters of the stochastic process X. In practice, we estimate the FARIMA
process parameters and do not know the true value of VAR(T̂t) for each t in 1, . . . , n.

Craigmile et al. (2004) investigate the properties of V̂AR(T̂t) and the coverage proba-
bilities for the confidence intervals for T̂, which have been obtained using Eq. (3.7), i.e. not

considering the difference between VAR(T̂t) and V̂AR(T̂t). This analysis is done for a
FD(δ) process with fixed δ. They find that conservative intervals are obtained for the
white noise case (δ = 0), whereas too narrow intervals are derived for positive δ.

3.4 TEST FOR SIGNIFICANCE OF THE TREND

A very common procedure to test for a trend is to fit a straight line to the data and test
for the compatibility of the slope parameter with zero. This method is well extendable to
the consideration of auto-correlations, but it does not allow for more complicated trend
forms. Therefore it exhibits the drawbacks described in Sec. 3.2.3.

When allowing for more complicated trend shapes other test statistics have to be pro-
vided. For fully parametric approaches the deviance statistic may be used to test for
trends (cf. Davison 2003 and Cohn and Lins 2005), see Sec. 2.5.2. Natural stochastic vari-
ability of the time series might also be a good measure to construct a trend test statis-
tic. The comparison of variabilities, as, for example, performed with the F-test, has a
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long tradition in statistics. Rybski et al. (2006) for instance analyse reconstructions of the
northern hemisphere temperature anomalies and test whether a smoothed version of the
time series, taken as trend, is compatible with the natural variability of a fitted stochastic
FD(δ) model. They compare the process variability with the estimated trend separately
for each time point, but without considering the multiple testing problem.

The test for trend used in this thesis compares the variability in the whole time series
Y with the fluctuations on small scales X̂. By doing so, the test statistic is composed out
of aggregates of the data over time and no point by point comparison is necessary. In
this way, the consideration of auto-correlations is possible in a sound manner. In the
following we refer to this trend test as Craigmile-Guttorp-Percival trend test.

As outlined in the previous sections, it is assumed that the time series is composed
by a deterministic and a stochastic (possibly auto-correlated) part. The test now is based
on a hypothesis testing procedure: Two complementary hypotheses are defined to make
a statement about the process Y, that is Y is solely stochastic or it is composed out of a
stochastic and a deterministic component. Without loss of generality, we assume Y has a
zero mean. The null hypothesis H0 is now: Tt = 0 ∀t = 0, ..., n − 1 versus H1: not H0.

The goal of the hypothesis test is to decide, based on a realisation of the process,
which of the two complementary hypotheses is true. For this purpose a rule is defined
that specifies for which sample values the decision is made to accept H0 as true and for
which sample values H0 is rejected and H1 is accepted as true. More precisely the test
statistic pc is defined as

pc =
‖Y‖2

‖X̂‖2
, (3.8)

where ‖.‖ denotes the Euclidean norm. For {Tt} 6= {0}, pc should be large.

To be able to define regions of rejection and acceptance of H0 the distribution of the
test statistic under assumption that H0 is true, F(pc|H0), has to be provided. In the spe-
cial case that X̂ is given by an FD(δ) process with restricted domain δ ∈ [0, 0.25] this
distribution can be derived theoretically (see Craigmile et al. 2004). However, to obtain
test results for the more general setting presented here we generate this distribution via
Monte Carlo simulation. By this means, R realisations (here always R = 4 000) of the
best fitting stochastic model with the fitted parameters (but without trend component)
are generated. Then the test statistic pr

c is calculated for each realisation r = 1, . . . , R,
which results in an estimate for the distribution of pc under the assumption that H0 is
true. Now a level of significance α has to be defined. H0 is rejected at this level in case
the test statistic derived out of the empirical time series Y, pc(empirical), exceeds the upper
100α%-quantile of the simulated pr

c values.

An inherent assumption in this comparison of variances is that a possible trend sig-
nificantly alters the ratio between the variance on small and large scales. By expecting
pc to be larger with trend than without trend, we assume that a possible trend adds to
the stochastic variability and that therefore the overall variability on large scales becomes
higher. The cases in which a deterministic trend in the data happens to be contrary to the
inherent stochastic variability and therefore reduces the variability of Y are not consid-
ered here.

A known problem of hypothesis testing is that the distribution of pc under assump-
tion of H1 has not to be taken into account to decide whether to accept or to reject H0, at
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Figure 3.5: Wavelet trend estimate for the Fox River at Wayland. The anomalies of monthly
mean discharge of the Fox River at Wayland is depicted for the years 1922 to 1988 (black). The
annual cycle is removed. The trend estimated obtained by wavelet filtering is shown in red.

least for the hypothesis testing procedure described so far. The level α quantifies the Type
I error, that is falsely rejecting H0. But no estimation about the magnitude of the Type II
error, i.e. falsely accepting H0, is made. To evaluate this error and the capacity of the test
to reject H0, the power of the test is investigated in the following section.

3.4.1 Power of the trend test

Consider a hypothesis test with H0 : θ ∈ Θ0 and H1 : θ ∈ Θc
0, the complement. Suppose

R denotes the rejection region for this test, i.e. for x ∈ R the null hypothesis is rejected.
Now the power function of a hypothesis test is given by Pθ(X ∈ R). This is an adequate
evaluation tool, because

Pθ(X ∈ R) =

{
probability of a Type I error if θ ∈ Θ0 ,
one minus the probability of a Type II error if θ ∈ Θc

0
. (3.9)

The ideal power function is 0 for all θ ∈ Θ0 and 1 for all θ ∈ Θc
0. Except in trivial

situations, this ideal power function cannot be attained. A small Type II error is a measure
of how well a test is able to discriminate between H0 and H1. In our setting the probability
distribution of the test statistic pc under assumption of H1, that is we have pc calculated
on a series with an arbitrary trend form, cannot be provided. There exist infinitely many
trend shapes and we would have to consider them all to be able to calculate the power
function. However, we have checked the ability of our trend test to reject H0 for artificial
data with certain types of trend added. In this way we get an impression about the
capability of the trend test to discriminate between series with and without trend.

To determine the power of the trend test, a Monte Carlo study is performed on reali-
sations of an AR(1) and a FD(δ) model with diverse parameter choices and deterministic
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trends superimposed. This means the power is only tested for these special cases. The
amplitude of the deterministic trend is increased in small steps from 0 to 0.4 times of
the standard deviation of the process. Analysing linear trends, where the trend starts
at t = 0 and the endpoint t = n − 1 is varied from 0 to 0.4σ, the performance of the
trend test is quite good. It is slightly lower than the power of a standard linear regression
test (cf. Craigmile et al. 2004). Furthermore, we want to analyse the performance of the
test in an empirical setting. Therefore we added a trend component to the artificial time
series, which has been derived from the Fox River at Wayland. The river is situated in
North America and has been chosen for illustrational purposes. The trend component is
depicted in red in Fig. 3.5.

The resulting power curves are depicted in Fig. 3.6. The major results are as follows:

(a) In case the artificial data exhibits a trend with a shape which as well might occur
in nature, namely the trend estimated from the Fox River at Wayland, the power
curves are fortunately nearly as good as for a linear trend, as depicted in Fig. 3.6
(A).

(b) The power of the trend test does not weaken significantly when a linear trend starts
in a later part of the time series. This was tested for a starting point as late as
t = (5/6)n (see Fig. 3.6 (B)). The setting is chosen to examine whether the test
is applicable in cases where about 200 years of measurements are available, but a
possible trend in the values just starts within the last 30 years. This is useful for, e.g.,
meteorological time series, where an increase due to anthropogenic interference is
expected to manifest only within the latter part of the series.

(c) The trend test is vulnerable against jumps in the data, which can be seen in Fig. 3.6
(C). This was tested by including a jump in the middle of the series with amplitude 0
to 0.4σ. Thereby a jump is not regarded as peak but rather as step function, that is a
shift of the whole latter part of the time series. It shows that the occurrence of jump
points should be excluded before the trend test analysis. To deal with this problem
Craigmile et al. (2004) proposed an extension to the methodology: By adopting the
wavelet coefficients to the jump points, the trend test can still be applied. However,
the jump points have to be identified before this procedure can be conducted.

(d) As shown in Fig. 3.6 (D), the trend test is robust against changes in variance of the
time series, which cancels out in Eq. (3.8).

(e) The power does not only depend on the choice of the stochastic model, but also on
the magnitude of the parameters. For an FD(δ) model, i.e. it reaches a power of one
faster for small δ, which can be seen in all figures of Fig. 3.6.

3.5 APPLICATION, RESULTS AND DISCUSSION

3.5.1 River Neckar basin

For this analysis daily river discharge records from several catchments near the Neckar
River in Southern Germany are investigated. The 10 series were selected according to
their length and completeness. The run-off data are examined for the jointly covered
time period from November 1940 to December 2003. In all datasets the annual cycle
in mean and variance is removed (see Sec. 2.8.1). Finally, the daily measurements are



64 TRENDS IN MEAN VALUES

Figure 3.6: Power of the trend test. Power curves for wavelet based test for trend under model
assumption of AR(1) with φ1 = 0.298 and FD(δ) with δ = −0.002, δ = 0.1 and δ = 0.23. (A) A
trend component which has been estimated from the Fox River at Wayland is added. The variance
of this trend is increased such that its standard deviation reaches from 0σ (no trend) up to 0.4σ of
the stochastic series. (B) A linear trend is added, starting in the last sixth of the series. (C) A jump
discontinuity is incorporated in the middle of the data. (D) The second part of the time series has
an increased variance, ranging from σ1 to 4σ1, thereby σ1 is the variance of the first part. The trend
test is robust against this change and does not falsely detect a trend.
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Figure 3.7: Influence of trend elimination. (A) Fitted parameters for the FD(δ) and the AR(1)
model and (C) the FARIMA(1,δ,0) model for the monthly maximum data and the monthly
maximum filtered data, respectively ((B) and ((D)). River Gauges: 1 Josbach/Hölzlebruck,
2 Ammer/Pfäffingen, 3 Erms/Riederich, 4 Glatt/Hopfau, 5 Wiese/Zell, 6 Dreisam/Ebnet, 7
Rems/Neustadt, 8 Fils/Plochingen, 9 Neckar/Horb, 10 Neckar/Plochingen.

aggregated to monthly mean and monthly maximum values. Records containing April to
September and October to March data are used to study the summer and winter seasons
separately and in the following are referred to as summer and winter data. Despite of the
deseasonalisation, different trends in winter and summer data are expected, for example,
because of changes in the precipitation patterns. This becomes apparent in the results
(see Tab. 3.1 for results).

The trend T̂ is estimated by means of wavelets. Stochastic models of the FARIMA
class are fitted to the remaining fluctuations on small scales X̂ using the Whittle estima-
tor. We restrict our analysis to FARIMA(p, δ, q) models with 0 ≤ δ < 0.5 and p, q ≤ 2
(q ≤ 1 for the winter and summer data due to the shortness of the time series). Filter-
ing that is removing the wavelet trend estimate from the data may produce data which
is represented best by a model with δ < 0, because not only the trend component but
also the stochastic variations on large scales have been removed there. Such occurrences
suggest that the long-term parameter δ is redundant in these cases. Therefore we exclude
models with an estimated δ < 0, the counterpart model with δ = 0 is considered in the
analysis anyway.

To evaluate the influence of the elimination of the trend estimate T̂ from the data, we
compare the parameter fits Θ̂

′
on the time series Y itself and the parameter fits Θ̂

′′
on the

filtered series X̂. In Fig. 3.7 estimates for the parameters δ and φ1, obtained for the FD(δ),
AR(1), and FARIMA(1,δ,0) models are shown for monthly maxima (original data and
filtered data, the stations are ordered according to the increase in catchment size). The
estimates for the two one-parametric models do not change qualitatively. However, the
magnitude of φ1 and δ is lower for the filtered data. For the more complex FARIMA(1,δ,0)
model filtering causes the short-term correlation parameter φ1 to become larger, whereas
the long-term correlation parameter δ becomes smaller. In some cases it becomes compat-
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ible with being zero. Therefore, as expected subtracting a possible trend estimate alters
the description of the natural variability, i.e. the parameter estimates and possibly the
choice of the best stochastic model.

As discussed in Sec. 3.3.3 a possible trend biases the parameter estimation Θ̂
′

of a
FARIMA model on Y, i.e. under assumption of no trend. To account for the bias the
parameter estimation is performed under consideration of the deterministic trend com-
ponent, represented by the trend estimate T̂, i.e. Θ̂

′′
is estimated on the filtered series X̂,

which is the recommended procedure (Craigmile et al. 2004). T̂ is a consistent estima-
tor (see Sec. 3.3.5), but it not only contains the deterministic trend component but also
stochastic variations on large scales. Therefore, for short time series, Θ̂

′′
is likely to be

biased in the other direction than Θ̂
′
, which is demonstrated in Sec. 3.3.3. Using both

estimates for the analysis helps to interpret trend test results. A more reliable parameter
set Θ̃ could be obtained by extracting a best trend guess T̃ out of T̂, that is by fitting a
polynomial to the trend estimate. Θ̃ is then estimated on the detrended series, where T̃ is
subtracted. Another possibility is to use the magnitude of T̃ in terms of the standard de-
viation of the process itself to estimate the bias of Θ̂

′
and Θ̂

′′
by a Monte Carlo simulation

(see Fig. 3.3).

To evaluate the performance of the models with optimised parameters a goodness-of-
fit test (see Sec. 2.6.1) is applied and the Akaike-type criterion HIC is used to select among
different models (see Sec. 2.5.1). In Tab. 3.1 the best performing models are listed for the
monthly averaged data and the monthly maxima, respectively. The apparently best HIC
models coincide with a goodness-of-fit test failure in some cases. This either means that
no appropriate model has been found to represent the data reasonably well within the
FARIMA(p, δ, q) model class, or that the presence of a fairly weak trend is indicated which
biases the parameter estimation on Y as well as on X̂. In most cases a goodness-of-fit test
failure occurs for the original data as well as for the filtered data. For the Erms River at
Riederich (mean values of the summer data) the best HIC model for the filtered data is
rejected by the goodness-of-fit test, while the best HIC model is accepted for the original
data. So the trend test result of not detecting a significant trend is supported here. In this
way goodness-of-fit results may be utilised to check HIC choices and trend test results.

A central result is that three relatively simple models presented in Sec. 2.1.3 perform
best in terms of the HIC in the majority of cases, which is presented in Tab. 3.1. By study-
ing these model fits, conclusions about the short and long-term behaviour of the time
series can be drawn. In particular the short-term correlated AR(1) model reproduces the
dynamics of the fluctuations of the data best in a lot of cases. However, the long-term
parameter δ is more important for the monthly maxima data than for the monthly mean
values. By considering monthly maxima as indicator for the characteristics of extreme
events. This may suggest that long-term correlation plays an important role when exam-
ining extremes.

Regarding the trend test result using the standard method, i.e. creating the estimated
distribution of the test statistic pc from the stochastic model fitted to the filtered data, we
find a significant trend in 14 of the 60 series as shown in Tab. 3.1. Mostly the trend is
combined with an AR(1) model. In case we do not want to risk to falsely detect a trend
by any means, we can consider to only accept a trend to be significant when it is found
to be significant for parameter estimations on Y as well as for parameter estimates on X̂.
Then we find a definitively significant trend for the Dreisam River at Ebnet (complete



APPLICATION, RESULTS AND DISCUSSION 67

(A) monthly means best FARIMA(p, δ, q) model (original data/filtered data)

Total Summer Winter

Josbach/Hölzlebruck [1,0,0]/[1,0,0] (1,0,0)/(1,0,0) [1,0,0]/[1,0,0]
Ammer/Pfäffingen (2,0,1)/(1,0,0) (1,0,0)/(1,0,0) (0,δ,1)/(1,0,0)

Erms/Riederich (1,0,0)/(1,0,0) (1,0,0)/[1,0,0] (1,0,0)/(1,0,0)
Glatt/Hopfau [1,δ,0]/[1,0,0] (0,δ,1)/(1,0,0) [1,0,0]/[1,0,0]
Wiese/Zell (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) [1,0,0]/[1,0,0]
Dreisam/Ebnet (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0)
Rems/Neustadt (1,δ,0)/(1,δ,0) (1,0,0)/(1,0,0) (1,0,1)/(1,0,1)
Fils/Plochingen (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0)
Neckar/Horb (1,δ,0)/(1,0,1) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0)
Neckar/Plochingen (1,0,1)/(1,0,1) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0)

(B) monthly maxima best FARIMA(p, δ, q) model (original data/filtered data)

Total Summer Winter

Josbach/Hölzlebruck [1,0,0]/[1,0,0] (1,0,0)/(1,0,0) (1,0,0)/(0,0,1)

Ammer/Pfäffingen (0,δ,0)/(0,δ,0) (0,δ,0)/(0,δ,0) (0,δ,0)/(1,0,0)

Erms/Riederich (1,0,0)/(1,0,0) [1,0,0]/[0,0,1] (1,0,0)/(1,0,0)
Glatt/Hopfau [1,0,0]/[1,0,0] (1,0,0)/(1,0,0) (1,0,0)/(1,0,0)
Wiese/Zell (0,δ,0)/(1,0,0) (1,0,0)/(1,0,0) (0,δ,0)/(1,0,0)
Dreisam/Ebnet [0,δ,0]/[1,0,0] (0,δ,0)/(1,0,0) (1,0,0)/(1,0,0)

Rems/Neustadt (0,δ,0)/(1,0,0) (1,0,0)/(1,0,0) (0,δ,0)/(1,0,0)

Fils/Plochingen (1,δ,0)/(1,0,0) [1,0,0]/[1,0,0] (1,0,0)/(1,0,0)
Neckar/Horb (0,δ,0)/(1,0,0) (1,0,0)/(1,0,0) (0,δ,0)/(1,0,0)
Neckar/Plochingen (0,δ,0)/(1,0,1) (1,0,0)/(1,0,0) (0,δ,0)/(1,0,0)

Table 3.1: FARIMA(p,δ,q) models performing best in terms of the HIC for (A) original/filtered
monthly averaged data and for (B) original/filtered monthly maxima data. By filtering, variations
on large scales are eliminated to exclude a bias due to a possible trend. Cases with significant trend
component are depicted in red. Models enclosed by round brackets have passed the goodness-of-
fit-test on a 95%-level of significance, whereas models in squared brackets have been rejected.

data) and the Ammer River at Pfäffingen (winter data) for the monthly mean values and
the Erms River at Riederich (complete data) and the Wiese River at Zell (summer data)
for the monthly maxima. Thus, all in all, trends are present in the data, but not for the
majority of the basin. In comparison to the complete data for the whole year, there is no
increased occurrence of trends detectable for the summer or winter season.

In the cases where a possible trend component is found to be significant only un-
der assumption of the trend estimate, i.e. the parameter values estimated on the filtered
data, it cannot fully be excluded that this “trend” may be explained as well by stochas-
tic variability. Such a spurious case is, e.g., the monthly averaged complete data for the
Ammer River at Pfäffingen. Part of the variability of the data may be explained by a
second AR parameter or by a deterministic trend component. The goodness-of-fit values
do not provide a distinction here. Regarding the monthly maxima, a typical constellation
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occurs in several cases: Part of the variability in the data may either be explained by a
long-term correlated model or by a short-term model in combination with a deterministic
trend component (cf. Giraitis et al. 2001). In those cases a refined parameter estimation
by using a trend guess T̃, as described above, or the incorporation of knowledge about
influencing processes may lead to further conclusions. In case we rather accept the idea
of a trend being present in the data than long-range correlation, we detect a fortified
occurrence of trends for monthly maxima, that is 6 series out of 10 possess a trend.

When not only focusing on the best fitting model, but comparing the trend test re-
sults of all models which have been fitted to the data, we find that in the majority of
cases a significant trend was found only under assumption of an AR(1) model (results
not shown). This emphasises the influence of the model choice on the trend test result,
which is described in Sec. 3.3.3.

The obtained trend estimates help to assess linear trend behaviour in the data. As
shown e.g. in Fig. 3.4, the run-off data of the Erms River at Riederich (monthly maxima)
is characterised by an increase. Nevertheless, a general tendency of increase or decrease
cannot be found for the investigated river run-off data sets in the Neckar basin.

3.5.2 Comparison with Mann-Kendall trend test (Danube River basin)

The rank-based Mann-Kendall test is a very common technique to assess the significance
of trends in hydro-meteorological time series (cf. Mann 1945, Kendall 1975, Survey 1994,
Douglas et al. 2000 and Kundzewicz et al. 2004). KLIWA (2003), for example, use this test
to assess the long-term behaviour of river run-off in the Danube basin. It accepts or rejects
the null hypothesis of randomness against the alternative of a monotonic trend. In doing
so, the sum of the signs of differences of value pairs is calculated first:

sM =
n−1

∑
i=1

n

∑
j=i+1

sign(xi − xj) , (3.10)

with the sign(x) function defined as

sign(x) =





1 for x > 0 ,
0 for x = 0 ,
−1 for x < 0

. (3.11)

sM is normal distributed with expectation value 0 and variance σ2
sM

= 1/18(n(n− 1)(2n +
5)). The Mann-Kendall test statistic is now derived as

pM =
sM

σ2
sM

, (3.12)

and thus pM is a standard normal random variable, pM ∼ N(0, 1) . Therefore the standard
normal distribution can be used to apply a two-sided significance test.

An advantage of the Mann-Kendall test is that it relies only on few assumptions: The
potential trend may be either linear or non-linear and no assumptions are made regarding
the underlying statistical distribution. Nevertheless, it is well recognised that the Mann-
Kendall test is not robust against auto-correlation in the sense that false positive trend
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Figure 3.8: Auto-correlation in the Danube basin. Memory of river discharge in the Danube
basin (weak (light green) to strong (dark green)). The memory is indicated as a partial sum of the
auto-correlation function. In case the wavelet trend estimate of a time series is tested as significant,
it is removed from the data before a FARIMA auto-correlation model is fitted. Gauges with long-
range correlations are represented with squares whereas circles denote that an ARIMA model
seems most suitable.

identifications become more likely (Fleming and Clarke 2002). This effect depends on the
sample size as well as on the magnitude of the trend to be identified. Pre-whitening
techniques introduced to remove effects induced by auto-correlation may also bias the
Mann-Kendall test result and the power of the Mann-Kendall test depends on the under-
lying distribution (Yue and Wang 2002). Based on these findings, we here propose the
CGP trend test which explicitly models the auto-correlations of the data. The soundness
of this approach has already been demonstrated. Here a comparison of both method-
ologies is given for time series in the Danube River basin to assess the severity of the
differences for discharge data.

Both trend tests are carried out on monthly mean and maxima data of 97 river run-off
records, measured daily at gauges in the Danube basin. The annual cycle in mean and
variance is removed from the data as described in Sec. 2.8.1. All available measurements
are used. The longest available records cover the time span from 1901 to 2003.

The results of the CGP trend test are obtained with the methodology described in
this chapter. This means, the time series is separated into a trend component and a
stochastic component, represented by FARIMA models. For most of the analysed data
of the Danube River basin dependence is found, which is depicted in Fig. 3.8. Thereby
an indicator of the persistence is shown which takes into account the auto-correlation in
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Figure 3.9: Comparison of Mann-Kendall and CGP trend test. Trend test results (green = de-
scending, light green = weak descending, blue = not significant, pink = weak ascending, red =
ascending, grey = not examined) for river discharge data in the Danube basin. CGP trend test
results (A) and (C) and Mann-Kendall trend test results (B) and (D), for monthly mean and max-
ima, respectively. The Mann-Kendall results are further investigated according to their signifi-
cance level (from weak significance with α between 80% and 90% (pink, light green) up to strong
significance with α greater than 99% (red, green)).

the data up to a lag of 5 years, that is Memory = 1 + 2 ∑
5·365
k=1 ρ(k). As outlined, auto-

correlations are likely to bias trend tests in case they are not considered. River run-off
which comprises influences of a lot of processes on different scales, is predestined to re-
flect some of these forces by a “memory”, that is auto-correlations. In Fig. 3.8 an indicator
of the strength of the dependence in these series is shown. Some of the gauges even ex-
hibit long-range dependence (quadrates). Apparently, a lot of the gauges along the large
Danube River exhibit this long-range dependence. This may be explained by the fact that
the memory is mostly stronger for large catchments, where the time series comprises a
lot of processes (cf. Mudelsee 2007). Furthermore, gauges close to the Alpes show less
memory than stations close to the Danube River. This may be due to fast downhill trans-
portation of the water surplus.

To be able to compare the trend test results, a straight line is fitted to the trend esti-
mate of the CGP trend test. The results are depicted in Fig. 3.9. According to the slope
of the trend and the result of the significance test, the gauges are then classified into four
categories, namely “not examined” (grey), “descending” (green), “not significant” (blue)
and “ascending” (red). Because of the potential bias for the parameter estimates for the
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stochastic model (which is described in Sec. 2.4.1), the results of the trend test are fur-
thermore classified into “weak descending” (light green) and “weak ascending” (pink),
in case a significant trend was only found for the stochastic model being fitted to the fluc-
tuations on small scales X̂ and not for the stochastic model being fitted to the time series
Y itself. In Sec. 3.3.5, references to the quality of the wavelet trend estimate in terms of
consistency and asymptotic normality are given. Therefore, it would be sufficient to just
use the three categories in case the time series are long enough. However, in case the
error of falsely detecting a trend has to be reduced to a minimum, the light green and
pink marked trend test results would have to be investigated further.

The Mann-Kendall trend test results are classified into five categories, according to a
common scheme (KLIWA 2003). We have

α < 80% not significant (blue)

80% < α < 90% weakly significant (descending: light green,

ascending: light pink)

90% < α < 99% probably significant (descending: green, ascending: pink)

α ≥ 99% very likely significant (descending: dark green, ascending: red)

where α is the significance level.

In Fig. 3.9 (A) and (B) the trend test results are given for monthly mean values and in
Fig. 3.9 (C) and (D) for monthly maxima, respectively. Both tests mostly find increasing
trends, if significant. Nevertheless, the Mann-Kendall trend test often detects a significant
trend where the CGP trend test does not.

The CGP and the Mann-Kendall trend test results differ even qualitatively, which is
depicted in Fig. 3.9. The differences in the test results may be explained by the auto-
correlation structure of the data, which is considered when applying the CGP trend test
and which is likely to bias the Mann-Kendall trend test. In this case, the CGP trend
test offers more reliable results. Altogether the CGP trend test considers two-thirds of
the monthly mean trends and half of the monthly maxima trends found by the Mann-
Kendall trend test as not significant. This is an important difference. Thus, for series
which evidently exhibit auto-correlations it is more adequate to use the CGP trend test.

Most of the significant trends are increasing. Nevertheless, no directly interpretable
spatial pattern for the catchments near the Danube River is detectable. Other site-related
influences may have to be considered, e.g., catchment size, soil composition near the
station or altitude. This holds for monthly mean values and monthly maxima. Analysing
monthly maxima is an attempt to get an impression about the trends of more extreme
river run-off observations. This attempt is refined by applying standard extreme value
analysis methods as pointed out in Chap. 4.





CHAPTER 4

TRENDS IN EXTREMES

4.1 TREND DETECTION APPROACHES FOR EXTREMES

Climate change is associated with an increasing global mean temperature. The interac-
tions between this temperature rise and the hydrological cycle is still a matter of debate.
But what impact on the extremes of hydrological data, that is floods and droughts, do
we expect from global warming? As outlined in Chap. 1, an increase in frequency and
magnitude of floods and droughts because of climate change is anticipated.

There exist approaches to directly conclude from changing properties of mean values
of a series to the change in the extremes. However, this goes along with a specification of
the relationship of mean values and extremes. In general, the function between a trend in
the extremes and a trend in the mean values is non-linear and does not show an obvious
relation (Nogaj et al. 2006). The frequency of extreme events might change dramatically
as a result of even a small change in the mean of the sample (Wigley 1985). We rather try
to directly consider trends in extremes, despite of the scarcity of available data. In the last
decades several methods have been established to do so. On the one hand, there exist
semi-parametric methods. Here the distribution is described using parameters, but the
trend is estimated data driven, i.e. the trend shape is estimated from the empirical time se-
ries itself. Davison and Ramesh (2000) and Ramesh and Davison (2002) use local polyno-
mial fitting (kernels) and a generalized extreme value (GEV) distribution, which is fitted
to block maxima, to model non-stationary extremes. Gaetan and Grigoletto (2004) com-
bine this GEV distribution with a latent time process. Mudelsee et al. (2004) rather use
peaks over a threshold (POT) and kernels whereas Hall and Tajvidi (2000) combine kernel
smoothing with the generalized Pareto distribution (GPD). Splines and point processes
are joined by Chavez-Demoulin and Embrechts (2004) to model extremes. On the other
hand, non-stationary extremes are modelled using fully parametric methods. Here the
trend form of the parameters has to be assumed before the analysis and is described using
given functions, such as polynomials, et cetera. Smith (2003), Strupczewski et al. (2001),
Coles (2001), Willems (2005), Bárdossy and Filiz (2005) and others examine hydro-mete-
orological data using this technique. The parametric approach can as well be combined
with a variety of distributions, such as the GEV or GPD. Both distributions can be in-
tegrated in a class of point processes to model extremes. Smith (1989), for example, fits
point processes to ozone data. Fully parametric approaches provide the possibility to
extrapolate the estimated trend in the future and to use it, for example, for prediction
issues. The sketched methods to assess non-stationary extremes provide a sound basis
for extreme value analysis. However, they exhibit advantages and disadvantages and a
universally applicable framework does not exist. There is still potential to improve the
methodology and to apply it to hydro-meteorological data. In the following, we set up a
point process framework to examine possibly non-stationary extremes.

73
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4.2 TREND DEFINITION

Trends in sample extremes are important in many contexts. An event is classified as
extreme by society if the losses caused by this event are intolerable and future events of
this kind have to be prevented. From a procedural point of view a trend in extreme values
of hydrological data is given by a change of the severity of flood events. This is described
by a change in the magnitude of flood events of a fixed return period, or by a change
in the frequency of flood or drought events, which is expressed by a change of the return
period (i.e. frequency of occurrence) of a flood event of a fixed magnitude. We choose a
point process approach to model extreme events and therefore are able to capture both
phenomena (see Sec. 4.5).

In Sec. 3.2 we provided a definition of trend which holds also for the evaluation of
extreme values: We look at trends as a slowly varying change which manifests on large
scales. In extreme value analysis we use a fully parametric approach. This means we
have to assume a certain trend shape before the analysis. The shapes chosen, i.e. slowly
varying polynomials or exponentials, reflect this view of trends.

Here, the presented framework to assess non-stationary extreme values is capable to
deal with a broader range of trends, which even may incorporate abrupt jumps. This is
especially useful in case covariates have to be taken into account. By this means clas-
sificatory data, such as indices or series of weather regimes can be used as explanatory
variable.

4.2.1 Trend shape and trend detection methods

The necessity to incorporate non-stationarity into extremal models has been met in dif-
ferent ways. All authors referenced here introduce non-stationarity by varying the pa-
rameters of distributions, which model the extreme events, with time. There exist fully
parametric approaches where a trend shape has to be assumed before the assessment,
and semi-parametric methods where the trend shape is obtained in a data-driven way.
The aspects of both approaches which have been discussed in Sec. 3.2.3 hold also here.

A fully parametric approach is, e.g., introduced by Smith (2003), Coles et al. (2002),
Strupczewski et al. (2001), and Bárdossy and Filiz (2005). In these frameworks only the
location and scale parameter are non-stationary. A semi-parametric procedure is used
by Chavez-Demoulin (1999) and Davison and Ramesh (2000). Thereby the trend shape
of the parameters is derived directly from the data by using kernels or splines. In most
cases the GEV or GPD distribution is selected to represent the data. Naturally other
extreme value distributions can also be extended to non-stationary models (see, for ex-
ample, Strupczewski et al. 2001 and Bárdossy and Filiz 2005).

In the framework presented here, a point process is used to model magnitude and
frequency of extreme events. Thereby we combine an inhomogeneous Poisson process
with the GPD, as outlined in Secs. 2.3.2 and 2.3.4. We therefore derive the likelihood given
in Eq. (2.54) for the point process. In this fully parametric approach, non-stationarity is
introduced by a time varying rate λt and scale parameter ψt of the GPD. By this means,
we can benefit from several advantages. First of all the representation of the extremes
is improved by using threshold excesses (see Sec. 2.3.3). Furthermore, we are capable
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to model magnitude and frequency of occurrence of the extremes. Finally, we want to
separately maximise the likelihood of the two Poisson processes which model frequency
and magnitude of the extreme events. Therefore we use the notation of the point process
in terms of the GPD parameters.

Trends in parameters of extreme value models and relation to extremes

As outlined in Sec. 2.3.4 non-stationarity is introduced via non-stationary parameters.
These parameters are directly linked to the moments of this distribution. The connection
is exploited in the method of (weighted) moments, where estimators of the moments are used
to estimate the parameters of the GEV (see, e.g., Maidment 1993). Let {Mt} be a sequence
of iid Gumbel distributed maxima, then

E(M) = µ + σγ

γ ≈ 0.57722 (Eulers constant)

VAR(M) = σ2 π2

6
≈ 1.645σ2 . (4.1)

For {Mt} having a GEV distribution with shape parameter ξ > 0 or ξ < 0, we get

E(M) = µ +
σ

ξ
[1 − Γ(1 + ξ)]

and for ξ > −0.5

VAR(M) = (
σ

ξ
)2{Γ(1 + 2ξ) − [Γ(1 + ξ)]2} . (4.2)

This shows that a trend in the location or in the scale parameter of the GEV distribution
causes as well time dependence of mean and variance of the extremes.

Using Eq. (2.29) and Eq. (2.34) we transfer these relationships to a connection between
the parameters Θ = (λ, ψ, ξ) of a point process and the moments of the distribution of
the extremes. Let {Mt} be a sequence of iid Gumbel distributed maxima and Y = X − u
the corresponding excesses over a threshold u which are distributed as GPD(y) = 1 −
exp(−y/ψ) for y > 0. Then we get

E(Y) = u + ψγ

VAR(Y) = ψ2 π2

6
≈ 1.645ψ2 . (4.3)

For {Yt} having a GPD distribution with shape parameter ξ > 0 or ξ < 0 we get

E(Y) = u +
ψ

ξ
[1 − λξΓ(1 + ξ)]

and for ξ > −0.5

VAR(Y) = (
λξψ

ξ
)2{Γ(1 + 2ξ) − [Γ(1 + ξ)]2} . (4.4)

Furthermore, important assessment measures, e.g. return levels, are computed via the
point process parameters (cf. Eq. (2.45)). From there it follows that the non-stationarity
of the rate and scale parameter, respectively, influence the evolution of the return level.
We assume for all our analyses a fixed shape parameter ξ (cf. Sec. 2.3.4). In this case the
return level zp changes linearly with the scale parameter ψ and the rate λ times ξ.
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4.3 CHOICE OF EXTREMES

To be able to estimate a trend in extreme values some assumptions have to be fulfilled
which are outlined here.

4.3.1 Choice of season

In the setting proposed here, seasonality has to be handled as a deterministic part of
hydro-meteorological data. As outlined in Sec. 2.8.1 this kind of dependence can either
be modelled explicitly or has to be eliminated before the analysis. Here we decided to re-
move seasonality by looking at subsamples of the data, i.e. classifying the time series into
seasons. Thereby we assume that no intra-seasonal effects remain. For all our extreme
value analysis, we examine the winter season, that is December to February. Within this
period we find reasonably low inter-seasonal variability and, moreover, in this season
we expect variation because of changes in the precipitation pattern (see Sec. 2.7). Further
details about the treatment of the annual cycle are given in Sec. 2.8.1.

4.3.2 Threshold selection

We obtain the extreme values by selecting a threshold u and by defining all data val-
ues which exceed this threshold as extremes. To select the threshold we use the non-
parametric mean residual life (MRL) plot and a parametric approach. The MRL plot
depicts the sample mean of the threshold excesses for different u. In case the extreme val-
ues are distributed according to a GPD the sample mean is an estimator for the expected
value of the extremes. We select the lowest u0 such that the MRL plot changes linearly
for u > u0. In the parametric approach a GPD distribution is fitted to the extreme values
for a range of thresholds. Then the lowest u0 is selected, such that parameter estimates
for u > u0 stay approximately constant. Further details are given in Sec. 2.3.2.

For all our studies on empirical data we proceed as follows: For each individual river
gauge we compare the results of a MRL plot and a GPD fit over a range of thresholds
to cross-check and to derive reliable results. We had to proceed station by station and
we did not automatise this step, because an “objective” procedure in which u0 is derived
automatically from the results of the MRL method and the fit of the GPD over a range
of thresholds gave unplausible results in too many cases. For each time series, we were
able to determine a reliable threshold u by using the methods proposed in Sec. 2.3.2. The
choice is verified by analysing the corresponding threshold excesses (see Sec. 4.7).

4.3.3 Declustering

Subsequently, we take care of the auto-correlation structure in the data. The Fisher-
Tippett theorem holds for iid or dependent but stationary data (cf. Secs. 2.3.1 and 2.3.2).
Thus, to be able to introduce non-stationarity, we remove the auto-correlation structure
in the data before the analysis. By using threshold excesses we are able to group the data
into clusters and only keep the maxima of these clusters, i.e. we decluster the time series
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as described in Sec. 2.8.2. Regarding the empirical data of the Danube River basin a clus-
ter size of 6 to 12 days is sufficient to remove the auto-correlation structure in the data
(cf. Tab. A-4).

Analysing the relation between cluster size and threshold we find for some gauges
that it is more effective to choose a higher threshold than the threshold selection criteria
have suggested. In these cases at first a lot of extreme values were available because of the
low threshold. But then we always had to choose a large cluster size when declustering
which in turn reduced the number of extreme values available. In case a higher threshold
was selected, nearly the same number of extreme values was left after declustering, but
the remaining extreme values were larger, i.e. this set is better representing the extreme
events. Regarding the adequacy of the cluster size chosen, we find for two thirds of the
empirical series that the remaining excesses are compatible with being independent at a
5% level and one third at a 10% level, which we consider as satisfactory. In Tab. A-4 the
threshold choice and cluster size are listed for each station.

4.4 TREND ESTIMATE

Having selected the extremes to analyse, we select a point process with a possibly time
dependent parameters to model them (see Secs. 2.3.2 and 2.3.4 for further details). We
assume trend forms for the rate parameter λ and scale parameter ψ. As outlined in
Sec. 2.3.4, we let the shape parameter be constant for all our analyses.

Regarding the rate parameter λt, a constant λt ≡ λ = a0 is included and exponential
trend shapes:

λt = exp
{ k

∑
i=0

ait
i
}

k = 1, . . . , 4 , (4.5)

with the ai being constants. These shapes assure a slowly varying λt. Furthermore, the
exponential relation is regarded as the “most natural” simple relationship for rates of
occurrence (cf. Cox and Lewis 1966). It is chosen by various authors (see MacLean 1974
and Mudelsee et al. 2004).

With respect to the scale parameter we consider the following shapes:

(i) ψt =
k

∑
i=0

bit
i k = 0, . . . , 4

(ii) ψt = exp
{ k

∑
i=0

bit
i
}

k = 1, . . . , 4 , (4.6)

with the bi being constants. Polynomials are rather flexible and therefore fit well to a va-
riety of shapes. We test this by simulation studies: even maxima with an S-curve shaped
trend are well approximated by using models with polynomial shaped trend guesses.
Furthermore, we utilise also the exponential trend guesses described in Eq. (4.6) (ii). This
trend form does not allow for a shape parameter ψt < 0. This is a necessary condition,
because the scale parameter is related to the variance of the extreme values.

Our extreme value model class is derived from all possible combinations of Eqs. (4.5)
and (4.6). By fitting the models to the empirical data we obtain values ai and bi for each
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model and together with the respective trend guesses this results in the estimates λ̂t and
ψ̂t.

Considering consistency and efficiency we use the maximum likelihood approach to
obtain the estimates for λt of the Poisson process and the parameters ψt and ξ of the
GPD. Therefore, regarding the characteristics of the trend estimate, all statements made
in Sec. 2.4.3 about consistency and efficiency of maximum likelihood estimators hold
for ξ > −0.5 (cf. Chavez-Demoulin 1999). For almost all empirical records we found
ξ being larger than −0.5. We proceeded with those gauges to benefit from the asymptotic
properties of the ML estimator.

4.4.1 Trend extrapolation in the future

As outlined beforehand a fully parametric framework makes it possible to extrapolate
an estimated trend in the future. On the one hand, this feature is desirable, because
especially water management issues often require assumptions about future flood evo-
lution. On the other hand, caution is advised, because implicitly all assumptions about
the system which have been made for the analysis are expected to stay true in the fu-
ture as well. Several ways to use extrapolated trends for the calculation of return lev-
els are given in Sec. 2.3.4. A cautious and common procedure is to estimate and con-
sider a trend for the observed time series, but not to extrapolate it in the future (see,
e.g., Bárdossy and Pakosch 2005). We proceed also in this manner.

4.5 POINT PROCESS APPROACH

Having selected the extremes which incorporates the choice of a threshold u and a clus-
ter size 2r, a class of point process models is fitted to the extreme values by using the
likelihood given in Eq. (2.54). That is, a stationary point process model and a variety of
non-stationary point process models with non-stationary parameters λt and ψt, as given
in Eqs. (4.5) and (4.6) are used as a model library. All models are fitted to the time series
and the best one is chosen via some selection criterion (see Sec. 4.6). This model is then
used to calculate assessment measures for the represented extreme values, such as the
return levels.

To obtain a visual impression about the performance of non-stationary point process
models we compare them to a sliding window approach. In Fig. 4.1 the evolution of the
parameter estimates Θ̂ = (λ̂t, ψ̂t, ξ̂) of the best non-stationary point process for the Inn
River at Rosenheim is shown in red. Good agreement is achieved with the sliding win-
dow approach, which are depicted in black. We have to choose rather short intervals for
the sliding windows to track changes, which is a common disadvantage of the sliding
window methodology. Therefore the parameter estimates within these windows are af-
flicted with great uncertainty and for some windows no reliable estimation is possible, as
apparent in Fig. 4.1 for the scale and shape parameters around 1975. The confidence in-
tervals1 of one standard deviation are nearly never left by the parameter estimates of the

1These confidence intervals just give an indication. On the one hand, they are too broad, because only
information of 20 years of measurement is used. On the other hand, they are too narrow, because the asymp-
totics they assume is not reached yet. By Monte Carlo simulation more accurate confidence intervals could
be obtained.
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Figure 4.1: Validation of non-stationary point process. The evolution of parameter estimates
of the best non-stationary point process representing discharge of the Inn River at Rosenheim is
shown in red (left: rate λ, middle: scale ψ, right: shape ξ). For comparison, parameter estimates
of a sliding window approach are depicted in black. The estimates are obtained from a stationary
point process, which is fitted to the data in windows of a length of 20 years. The windows are
moved over the time series with annual interspace, i.e. they overlap. The corresponding confi-
dence intervals of one standard deviation, obtained with the delta method are shown in grey.

non-stationary point process. It is also visible that the sliding window approach suggests
a time varying shape parameter which even varies across zero. We obtain this outcome
for several river run-off series in the Danube River basin. Nevertheless, we keep the
shape parameter ξ constant according to the reasons sketched in Sec. 2.3.4. Altogether,
this visual validation of the non-stationary point process approach shows good results
for most of the time series analysed.

Regarding the choice between a point process notation in terms of Θ = (λ, ψ, ξ) or in
terms of Θ = (µ, σ, ξ), i.e. choosing between the likelihood given in Eqs. (2.54) and (2.55),
we conduct some simulation studies to evaluate the performance of both approaches.
First of all we assess the quality of the fit of the point process using both notations as
described in App. A-2. The point process with notation in terms of the GEV parameters
produces acceptable results, but is outperformed in most of the cases by the GPD. To
assess the performance of the point process using Θ = (λ, ψ, ξ) the uncertainty of esti-
mating λ has to be added to the GPD performance. However, this uncertainty is small
compared to the uncertainty induced by the estimation of the other parameters. The
reason is that λ is estimated on the whole time series of length n. Therefore we get sat-
isfactory results with low uncertainty when estimating λ2. Furthermore, the capability
of both approaches to generate realisations of point processes is tested (see App. A-3).

2To estimate λ, we use the standard R routine glm().
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Artificially generated data are useful for uncertainty assessment and the simulation of
distributions of test statistics in case no theoretical distributions can be assumed. Us-
ing the point process with notation in terms of Θ = (λ, ψ, ξ) we systematically obtain
more adequately simulated series. This holds, because here we are able to use the same
smooth exponential functions for λt when fitting and when generating point processes.
When generating data from the point process with notation in terms of the GEV param-
eters, we have to calculate λ from Θ = (µ, σ, ξ). Therefore we use the point process with
notation in terms of Θ = (λ, ψ, ξ) for all our studies.

4.6 TEST FOR SIGNIFICANCE OF THE TREND IN EXTREMES

In the proposed framework the trend and distribution of the data are jointly estimated.
Thus the test for significance of a trend in the extreme values is transferred to a problem
of model selection: A class of point process models with non-stationary rate and shape
parameter and a stationary point process model is fitted to the data. Then the deviance
statistic is used to select the best model. The deviance statistic is based on maximum like-
lihood estimation and designed to compare models of different complexity (Sec. 2.5.2).
By using the point process expressed as function of Θ = (λ, σ, ξ) we are able to split
the test for trend into two steps: On the one hand, the deviance statistic is used to select
between the stationary Poisson process and inhomogeneous Poisson processes with an
exponential rate which model the frequency of extreme events. On the other hand, we
use the deviance statistic to choose between a stationary GPD model and GPD models
with time-varying scale parameters which model the magnitude of the extremes. Advan-
tageously in each case only the non-stationarity of one parameter is tested. Furthermore,
in our methodology the extreme value distribution is explicitly considered when testing
for trends. Such trend detection frameworks are superior to, e.g., ordinary least squares
regression or methods based on Kendall’s tau (cf. Zhang et al. (2004)).

4.6.1 Power of the trend test

The deviance statistic is asymptotically (n → ∞) χ2 distributed. We study the power of
the trend test (based on the deviance statistic) by means of a simulation study. Thereby
the length of the time series and the magnitude of trends resemble the situation given in
our empirical analyses.

Concerning the modelling of the occurrence rate, artificial data are generated from
a Poisson process with a linear trend in the exponential function of λt, that is λt =
exp(log(λ0) + s · t) for t = 1, . . . , n where s is a constant slope. The slope s of this trend
component is varied between zero and 0.0005. Regarding the GPD distribution, artificial
data are simulated from a GPD model with a linear trend in ψt with slope ranging from
zero to 0.05. To mimic empirical conditions, the parameters for both simulation proce-
dures are taken from a stationary PP fit to the Danube River at Beuron, i.e. u = 65m3/s,
ψ0 = 43.9, ξ = 0.076 and λ0 = 0.01. We found occurrence rates ranging from 0.01 to 0.04
in our empirical series and thus we use these two rates as λ0 in our simulation study. We
generate time series with 5 415 (18 050) data points, which equals 60 (200) years of daily
measurements and evaluation at a season of three months.
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Figure 4.2: Power of the trend test (based on the deviance statistic) for the Poisson process:
Evaluated with 1 000 simulation runs for each trend slope. A non-stationary Poisson process
with an exponential trend in λt is generated (its slope is varied along the x-axis) and a stationary
Poisson process and a non-stationary Poisson process with exponential trend assumption in λt

are fitted to the artificial series. At a significance level of 5% the deviance statistic is then used
to select the best model. Left: Power of the trend test according to the deviance statistic for data
with length n =5 415. Right: Power of the trend test for data with length n =18 050.

Then two models, namely a stationary Poisson process and one assuming an expo-
nential trend in λ (the “right” model), are fitted to the artificial Poisson process data.
Respectively, the stationary GPD model and one assuming a linear trend in ψ are fitted
to the generated GPD series. In both cases the better model is chosen according to the
deviance statistic with a significance level of 5%. For each value for the slope this study is
repeated 1 000 times. In case no trend is present in the artificial data, we therefore expect
to falsely detect a trend in 50 cases (error of Type I). Even if a weak trend is present in the
data, we would like the test to detect it. That is the test should detect a trend in all cases
which is equivalent to a power of one.

In Fig. 4.2 the power of the trend test (based on the deviance statistic) for the choice
between the Poisson processes is depicted. For the length of 5 415 data points (left hand
side of the figure) and a rate of λ0 = 0.01, i.e. about 60 extreme events at hand, a trend
with slope s = 0.0002 is detected in 85% of the cases. That implies for the observation
period of 60 years the rate of occurrence of extreme events changes from once per year
to 2.7 times a year. The corresponding power curve of the trend test is depicted in green.
For a higher rate λ0 = 0.04, that is about 240 extremes available, the power of the trend
test is improved (dark green line). Here we detect 72% of the trends at a slope s = 0.0001,
which indicates a change of 0.9 extreme events per year to 1.5 extreme events per year
within 60 years. The length of the data plays an important role as well when evaluating
the power of the trend test: In the right hand side of Fig. 4.2 the results for series with a
length n =18 050 data points, representing 200 years of measurement, are depicted. Here
the performance of the trend test is much better (for better visibility only the slopes from
0 to 0.0001 are depicted). A trend is detected at a slope of 0.00005 in nearly 100% of the
cases, thereby such a trend indicates a change from one extreme event per year to 1.2
extreme events per year within 60 years.

In either case we expect to falsely detect a trend for 5% of our ensemble (this level
is indicated by the dotted grey line in Fig. 4.2) when no trend is present in the data, i.e.
s = 0. This expectation is met, the rate of falsely detecting a trend in stationary series
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Figure 4.3: Power of the trend test (based on the deviance statistic) for the GPD model: Evalu-
ated with 1 000 simulation runs for each trend slope. A non-stationary GPD process with a linear
trend in ψt is generated (the slope is varied along the x-axis) and a stationary GPD model and a
non-stationary GPD model with linear trend assumption in ψt are fitted to the artificial series. At
a significance level of 5% the deviance statistic is then used to select the best model. Left: Power
of the trend test for data with length n =5 415. Right: Power of the trend test for data with length
n =18 050.

ranges from 4.4 − 6.5% for all our simulation settings. Thus, by using this method, we
surmount the risk of a systematically false detection of trends.

We evaluate also the performance of the deviance statistic to differentiate between
types of trends, which is represented in Fig. 4.2 by blue lines. To do so, we generate series
from inhomogeneous Poisson processes with an exponential rate and a quadratic trend,
i.e. λt = exp(log(λ0) + s · t2) for t = 1, . . . , n. Then we fit an inhomogeneous Poisson
process with the assumption of a linear trend in the exponential and an inhomogeneous
Poisson process with the assumption of a quadratic trend in the exponential (the “right”
model) to the data. Finally, we use the deviance statistic to decide which model to prefer.
The corresponding power curves for the trend distinction (based on the deviance statistic)
are depicted in blue (λ0=0.01) and dark blue (λ0 = 0.04). We obtain similar results as for
the discrimination between no trend and linear trend. Therefore we conclude that no
extra procedure is necessary to decide, whether there is a trend present in the data at all
(such strategies are proposed by, e.g., Cox and Lewis 1966). We are able to fit the whole
class of the stationary model and non-stationary models to the data and then select the
best one using the deviance statistic.

Regarding the performance of the deviance statistic to discriminate between GPD
models, the results are depicted in Fig. 4.3. Here a linear trend is added to ψt. Thereby the
time unit of the slope is days, i.e. a slope s = 0.02 denotes a ∆ψ of 1.8 within 90 days or
one year. On the left hand side the results for series with a length of 5 415 data points are
depicted. A rate λ = 0.01 indicates that there are about 60 extremes available. Two GPD
models are fitted to them, namely a stationary GPD model and a GPD model with linear
trend assumption for ψt. The corresponding power curve of the trend test to discriminate
between these two models is depicted in orange. Here a trend with slope s = 0.02 is
detected in 80% of the cases. Such a trend indicates a ∆ψ = 110 within 60 years. This
variation can be expressed in terms of a change of the variance and the expected value
of the excesses (see Eq. (4.4)). For ξ remaining constant, we obtain ∆E(Y) = c1∆ψ and
∆VAR(Y) = c2(∆ψ)2 with c1 and c2 being constants. In our simulation study c1 = 0.4
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and c2 = 1.4 is given, that is a change of the mean of the extremes of 44m3/s or a change
in the standard deviation of ∆SD = 130m3/s within 60 years. This seems to be quite a lot
of change which is only detected in 80% of the cases (orange curve). So here the power
of the trend test is not good. For comparison, we examine the change in the standard
deviation which is present in the empirical series we analyse (see Sec. 4.7 for further de-
tails on extreme value analysis of the Danube River basin), and there we get a range from
∆SD = 0m3/s to ∆SD = 64m3/s.

Naturally improved results are obtained in case a higher rate of extreme events is
available (red curves in Fig. 4.3) or in case the time series are longer (right hand side of
Fig. 4.3). For a series of 18 050 data points and a rate λ = 0.04, i.e. about 800 extreme
events at hand, the power of the trend test becomes remarkably better. In 100% of the
cases a trend with slope s = 0.002 is detected, which indicates a ∆E(Y) = 4.4m3/s or a
∆SD of 13m3/s within 60 years.

In case no trend is present in the data, a trend is detected too often for 5 415 data
points, i.e. in 8% of the cases. This effect vanishes in the other simulation settings, that is
we do not too often falsely detect a trend.

As for the Poisson model it is the aim to clarify for the GPD model whether it is
necessary to proceed the trend test in two steps. That is, first to decide whether a trend
is present in the data at all and then, in case we assume a trend in the data, to use the
deviance statistic to decide which of the non-stationary models to choose. Therefore we
generate non-stationary GPD data with a quadratic trend in ψt and fit two non-stationary
GPD models, namely one with a linear trend assumption and one with a quadratic trend
assumption in ψt (the “right” model) to the artificial data. The resulting power curves for
the trend test are depicted in violet in Fig. 4.3. The power curves are comparable to those
which indicate the power of the deviance statistic to discriminate between trend and no
trend. Therefore we here conclude as well that it is not necessary to introduce an extra
step to decide whether a trend is present in the data at all.

As outlined in Sec. 2.5.2 it is theoretically well founded to use the deviance statistic to
discriminate between the models presented here, that is to discriminate between Poisson
processes with non-stationary rate λt and GPD models with non-stationary scale parame-
ter ψt, respectively. The results shown here evaluate the power of the deviance statistic in
case it is applied to time series with few data points. They indicate the potential and lim-
its of this trend test. These limits depend on factors such as the parameters Θ = (λ, ψ, ξ),
the length of time series and the shape of the trend which has to be detected.

4.6.2 Simulating the distribution of the deviance statistic

As revealed by simulation studies in the previous section the power of the deviance statis-
tic to detect a trend in the scale parameter ψt of the GPD is weak for time series which
resemble the empirical records we analyse.

Therefore we investigate, whether the power of the deviance statistic increases in case
we simulate its distribution. Simulating the distribution of a test statistic is a feasible
method in case asymptotic results are not usable because of insufficient data length. By
simulating the distribution we do not have to consider, whether the models compared are
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nested3 or not. Furthermore, we use that a poorly fitting model generates data which do
not have the same statistical properties as the original data set. The approach we follow
is introduced in a similar way by Hinde (1992).

Let Demp be the deviance statistic, derived from the comparison of fits of models M1

and M2 to empirical data with parameter vectors Θ̂1(t) and Θ̂2(t). We now generate
a distribution of D under the condition that the empirical time series is a realisation of
model M1 by

1. generating an ensemble of R datasets from model M1 using Θ̂1(t) as parameter
vector.

2. fitting model M1 and M2 to the data and calculating D(1)i
(1)(2) for i = 1, . . . , R.

D(1)(1)(2) denotes the deviance statistic comparing models M1 and M2 using data which
is generated from model M1.

We proceed in the same way to get a distribution of D under the condition that model
M2 is the “true” model. Then we compare Demp with the two distributions to decide,
whether the observed time series has been generated from one of the models or not.
Thereby a significance level α has to be defined, which we set to 5%.

We evaluate the performance of the deviance statistic using a simulated distribution
by simulation studies. Here we use similar settings as for the simulation studies in which
the performance of the deviance statistic using its theoretical distribution is tested (see
Sec. 4.6.1) and we set R = 1 000. A Poisson process time series with a linear trend in the
exponential of λt and a GPD distributed time series with a linear trend in ψt are generated
and three types of models are fitted to them:

(1) a stationary model (too simple),

(2) a non-stationary model with a linear trend assumption (appropriate model),

(3) a non-stationary model with a trend assumption with linear and quadratic terms
(over-fitted model).

To compute the “empirical” deviance statistic the maximum likelihood for these fits (1)-
(3) is calculated and the deviance statistic is retrieved according to Eq. (2.61). D

emp

(1)(2)

compares models (1) and (2), D
emp

(1)(3)
and D

emp

(2)(3)
compare the other models, respectively.

The distributions of these deviance statistics under the condition that the data are a real-
isation of one of the processes is now generated by simulation, that is the D(a)i

(a)(b) and

D(b)i
(a)(b) are calculated with a, b = 1, 2, 3 and i = 1, . . . , R with R being the size of our

simulation ensemble.

To decide whether to choose model (1) or (2) to represent the artifically generated
Poisson process (or GPD distributed time series) we compare D

emp

(1)(2)
with the two distri-

butions which are composed of D(1)i
(1)(2) and D(2)i

(1)(2) for i = 1, . . . , R. In the same way

D
emp

(1)(3)
and D

emp

(2)(3)
are compared with the corresponding simulated distributions of D.

3Model M1 is nested in model M2 when it is a special case of M2, i.e. its parameter vector is a subset of
the parameter vector of M2.
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Figure 4.4: Power of the trend test based on the deviance statistic with simulated distribution.
Left: Simulated cumulative distribution function for the deviance statistic from a stationary GPD
model (model (1), black) and from a GPD model with linear trend assumption in ψt (model (2),
orange). The artificial data is actually a realisation of model (2) and has a length of 5 415 data
points with about 60 extreme events, i.e. the occurrence rate λ is 0.01. The trend present in the
data has a slope s = 0.02. It is tested whether this artificial data are a realisation of one of the
two models by comparing its deviance statistic (blue line) with the two simulated distributions.
Right: The same situation as for the left hand side, but the trend present in the data has a slope of
s = 0.01.

According to our setting, we expect D
emp

(1)(2)
to lie within the D(2)i

(1)(2) and not within the

D(1)i
(1)(2), i.e. the data are generated from model (2). We expect also D

emp

(2)(3)
to lie within

the D(2)i
(2)(3) and not within the D(3)i

(2)(3), because model (2) is the “true” model. We

furthermore expect D
emp

(1)(3)
rather to lie within the D(3)i

(1)(3), because this is the over-fitted

model, than within the D(1)i
(1)(3).

In Fig. 4.4 the results for the GPD distributed time series for the comparison of model
(1) and model (2) are depicted: The “empirical” series is generated from model (2), i.e. it
is generated from a non-stationary GPD model with linear trend in ψt and has a length of
5 415 data points with extreme events occurring with a rate λ = 0.01 (the GPD parameters
are the same as in Sec. 4.6.1). On the left hand side, results for a time series with a trend
slope s = 0.02 are depicted. Its “empirical” deviance statistic is shown as a blue line. Here
the deviance statistic with a simulated distribution is able to discriminate between both
models: At a level of 5% we would accept the assumption that the data are a realisation of
model (2) (orange cdf) and we would reject that it is a realisation of model (1) (black cdf).
In Fig. 4.4 correspondingly, less than 50 black circles cross the blue line. On the right hand
side, results for a time series with a trend slope of s = 0.01 are depicted. In this situation,
the deviance statistic cannot discriminate any more between both models at a level of 5%.
That is, the deviance statistic used with a simulated distribution does not produce better
results than the deviance statistic used with its theoretical distribution (see Sec. 4.6.1).

We obtain the same findings for all other cases presented in Sec. 4.6.1, also regarding
the discrimination between Poisson processes: the usage of a simulated distribution does
not enhance the power of the deviance statistic. We therefore apply the deviance statistic
with its theoretical distribution in all our analyses of empirical data.
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4.7 APPLICATION, RESULTS AND DISCUSSION

For this analysis, daily discharge observations of about 50 gauges in the Danube River
basin in Southern Germany are investigated. The examined time period is restricted to
a jointly covered period of 60 years, i.e. from 01.01.1941 to 31.12.2000. For each time
series, a threshold u is chosen and the data are declustered as described in the previous
sections. We investigate data of the winter season. Within this season trends are antici-
pated because of a changing precipitation pattern. About 5 000 data points are available
for analysis purposes, which results in approximately 30 to 120 extrema per time series.
As described before, a stationary and a range of non-stationary point processes are fitted
to these excesses. The processes are formulated in terms of a rate λ and the shape and
scale parameters ψ and ξ of the GPD. From this class of models the best one is chosen us-
ing the deviance statistic and assessment measures, such as the return level, are derived
from this model. We carry out an extreme value analysis for a station only in case more
than 30 extreme values are left after declustering and in case the best model passes all
goodness-of-fit tests.

In Fig. 4.5 the distribution of the shape parameter estimates ξ̂ of the best fitting point
process models across the Danube River basin are depicted in sorted order (blue circles).
The corresponding ξ̂ values of the stationary model are added as black stars. The shape
parameter determines the “thickness” of the upper tail of the flood frequency distribu-
tion and thus helps to characterise the properties of extreme floods. In most of the cases
a stationary GPD model represents the data best, i.e. both values are identical. In the
other 6 cases, the shape parameter of the stationary model is always larger than the one
of the non-stationary, best fitting, model. This implies that in case only stationary models
are fitted to the data, falsely a heavy tailed distribution may be assumed and therefore
the probability of occurrence of severe floods may be overestimated. Furthermore, the
estimated shape parameters in the region cover a wide range of values, that is from ξ̂ in
[−0.49, 0.72]. In about 25% of the cases the extremes exhibit an upper end point, i.e. they
are Weibull distributed. About 50% of records possess shape parameter estimates and
corresponding confidence intervals wich suggest compatibility with the Gumbel distri-
bution, that is, ξ = 0 (red line). For about 25% of the cases we detect excesses with a
heavy tailed Frechet distribution. In comparison to Gumbel distributed extremes here a
fortified occurrence of extreme floods is expected.
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Figure 4.6: Trend in frequency of occurrence of extreme events. Trend tendency of the possibly
non-stationary rate λ of the best point process model fitted to extremes of discharge data at 47
gauges of the Danube River catchment. A model with a constant rate λ is marked in blue, whereas
red indicates an increasing frequency.

Using the point process approach with a possibly non-stationary rate λ, we are able
to measure the change in the frequency of occurrence of extreme events. In Fig. 4.6 the
trend tendency of the rate λ is depicted. In most of the cases a model with a constant λ
represents the data best. These gauges are marked with blue circles. In 8 cases the fre-
quency of occurrence increases. These gauges are the Geltnach River at Hörmannshofen,
the Vils River at Rottersdorf, the Große Vils River at Vilsbiburg, the Ramsauer Ache
River at Ilsank, the Inn River at Oberaudorf and Rosenheim, the Leitzach River at Stau-
den, and the Ilz River at Kalteneck. The findings are in line with the observed increase
in frequency of heavy winter precipitation events in Bavaria and Baden-Württemberg
(cf. Dietzer et al. 2001 and KLIWA 2004). They are anticipated to become even more fre-
quent in the future (Schröter et al. 2005). More frequent winter floods are expected in
Northern Europe as well (IPCC 2007).

In Fig. 4.7 the trend tendencies of the estimated mean and variance of the excesses
are depicted. They are calculated using the parameter estimates of the best point process
model. As apparent in Eq. (4.4), the rate λ is needed for the calculation. Therefore we
here find trends at the same sites where a non-stationary rate λ is indicated in Fig. 4.6.
Furthermore, in Fig. 4.7 the influence of a non-stationary GPD model, i.e. a time varying
scale parameter ψ, becomes apparent. We did not find a station where the excesses are
modelled best by a non-stationary point process, which is composed from an inhomoge-
neous Poisson process and a non-stationary GPD. Throughout, either only the Poisson
process or only the GPD is non-stationary. To cross-check our procedure we model also
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Figure 4.7: Trend in mean and variance of extreme events. A point process model is fitted to
excesses of discharge data of 47 gauges in the Danube River basin. Mean (small circles) and
variance (big circles) are calculated from the parameter estimates. Stationary mean and variance
are depicted in blue, whereas green indicates a decreasing trend tendency and red an increasing
trend tendency.

the block maxima of the data using the GEV. In the cases where both approaches sug-
gest a stationary model as best one, the values of the parameter estimates are in the same
range. However, for several stations the GEV approach suggests a non-stationary model
where the point process approach does not, and vice versa.

In most of the cases, we find stationary extreme events (blue circles in Fig. 4.7). How-
ever, for about one third of the gauges a non-stationary model is necessary, which results
in time dependent mean and variance of the extremes. The tendency of their trend is
determined by evaluating the sign of the slope of a straight line, which is fitted to the
mean estimate and the variance estimate. In some cases mean and variance have the
same trend tendencies (an increasing tendency is marked in red, a decreasing one in
green), then we always observe a decreasing trend tendency. In the cases where both
trends are of opposite direction, we mostly observe an increasing variance and a decreas-
ing mean. An explanation for this phenomenon may be an increase in the frequency of
occurrence of extreme events, but not in magnitude. Then more outliers occur, but also
much more extreme events near the threshold. This causes the estimate of the mean to
be lower. The heterogeneous spatial pattern of the trends in extremes in Fig. 4.7 is not
directly interpretable. We observe all three sorts of trend tendencies and no spatial ac-
cumulation becomes apparent. Maximum daily water levels during winter show spatial
patterns related to topography (Pfister et al. 2004). We therefore also evaluate the eleva-
tion model (depicted at the back of Fig. 4.7), but this does not suffice to interpret the trend
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Figure 4.8: Estimates
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results. So further influencing factors have to be considered. Precipitation is the main in-
fluencing factor for floods. As outlined beforehand, the observed frequency of heavy
precipitation is increasing for the whole Danube River basin (KLIWA 2004). Land use
change also has a strong impact on changes of the rainfall-runoff relationship and land
use has undergone significant changes over the last few centuries in all European coun-
tries (cf. Pfister et al. 2004). So we would have to incorporate, e.g., information about
changes of the forested area, urbanisation patterns and agricultural land use. Further-
more river regulation measures such as construction of levees or dykes or the straighten-
ing of rivers would have to be investigated. de Wit et al. (2001), for example, analyse the
Meuse River and show that drainage and irrigation practices in agricultural lands lead
to an increase in winter discharge. Moreover, potential discharge capacity is strongly de-
pendent on the soil condition near the gauges and the hydraulic conditions within the
river system. The attribution of signals cannot be derived unambiguously from studying
time series only, so here hydrological or hydraulic models may help to assess the various
contributions of environmental conditions or changes in theses conditions to changes in
river regime and floods (cf. Bronstert et al. 2005). This more detailed attribution of the
trends we detected in the Danube River basin is beyond the scope of this work.

Further details of our findings are exemplarily presented for the Naab River at Heit-
zenhofen. We conducted the following studies for all gauges, but do not depict the results
here. The shape parameter estimate ξ̂ for the Naab River at Heitzenhofen is ξ̂ = −0.12
when using the best model, which is a point process with stationary rate λ and non-
stationary scale parameter ψ. For the stationary model we get ξ̂ = 0.12, both fits are com-
patible with a Gumble distribution when taking the confidence intervals into account.
The auto-correlation function for the 59 extremes indicates compatibility with an uncor-
related series, so the declustering worked well. In Fig. 4.8 the excesses over the threshold
u = 173m3/s and their mean estimate are shown in orange. For better visibility only the
extrema are depicted, that is the time axis is compressed. The mean is also estimated as
given in Eq. (4.4) using the parameter estimates of the stationary model (black) and the
best model (blue). Apparently the estimates of the non-stationary model are influenced
by the high magnitude of the excesses before 1949, which results in a decreasing trend
tendency for the estimated scale parameter ψ and the estimates of the mean (depicted in
Fig. 4.8) and the variance. This trend tendency is determined by the sign of the slope of a
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Figure 4.10: pp-plot and qq-plot for the Naab River at Heitzenhofen. Left: Residual probability
plot for the best fitting point process model (blue) and the stationary point process model (black).
Right: Residual quantile plot (exponential scale) for the best fitting point process model (blue)
and the stationary point process model (black).

straight line, which is fitted to the estimates.

The parameter estimates of the non-stationary GPD model seem to become less cred-
ible at the edges. Therefore we calculate all return levels at t0 = 01.01.1996, that is five
years before the end of the analysed period. For the Naab River at Heitzenhofen we get
an increase in the exceedance probability of 85%, that is the 100-year return level of the
stationary model is expected to be exceeded nearly twice every 100 years (this is indicated
by a red circle in Fig. 4.11). In Fig. 4.9 the return level for the stationary model (black) and
the best model (blue) are shown for the Naab river at Heitzenhofen. With 765.87m3/s the
return level of the best model is about 60m3/s higher than the return level which would
be assumed in the stationary case. The corresponding confidence intervals are calculated
using the delta method (see Sec. 2.3.4).

To evaluate the validity of the best model, pp-plots and qq-plots (see Sec. 2.6.4) are
created for each station. In Fig. 4.10 the results for the Naab River at Heitzenhofen are
exemplarily depicted. The stationary model (black) shows good results, though it is out-
performed by the best model. This becomes especially visible in the qq-plot. Besides this
visual tool, two goodness-of-fit tests are used to validate the quality of the best model.
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Figure 4.11: Change of probability of excessing a 100-year return level. The 100-year re-
turn level, is calculated according to a stationary point process model which is fitted to the ex-
tremes. Then we calculate p∗, the probability of exceeding this 100-year return level, using the
parameter estimates of the best fitting, possibly non-stationary point process model at time point
t0 = 01.01.1996. The corresponding changes of probability are depicted. White indicates no
change, i.e. the best fitting model is a stationary one. A decreasing probability is marked in green
and an increasing one in red.

For the GPD model a Kolmogorov-Smirnov test is used (cf. Sec. 2.6.3). To evaluate the in-
homogeneous Poisson process, properties of the Poisson process are tested (cf. Sec. 2.6.2).
Regarding the Poisson process, the best model passes the goodness-of-fit test for all sta-
tions examined. The GPD does not fit to the excesses of three stations, namely the Danube
River at Donauwörth, the Isar River at Plattling and the Weiße Traun River at Siegsdorf.
Therefore these stations are excluded from our analysis. Interestingly for these stations,
not only the best GPD model does not pass the Kolmogorov-Smirnov test, but the sta-
tionary GPD models also fail. Summing up, our models are capable to represent nearly
all empirical data we look at, which is a quite good result.

Finally, to assess the degree of change which is induced when incorporating non-
stationary models in the extreme value analysis, we examine the influence on the return
level estimation. For this purpose the 100-year return level, which is crossed once a year
with probability p = 0.01, is calculated for each station using a stationary point process
model. Then we calculate the probability of exceedance p∗ for the corresponding return
level zp for the best, possibly non-stationary, model. In Fig 4.11 the difference between p
and p∗ is depicted for stations in the Danube River basin. White circles indicate no change
implying that the stationary model fits best. A larger probability of exceedance is marked
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Figure 4.12: Flood changes and flood protection strategies. Costs of proactive and reactive adap-
tation to a change of the 100-year return level (source: KLIWA (2004), pages 184-185).

with red circles and p∗ < p is indicated by green circles. In this context a change of 100%
denotes p∗ = 0.02, that is zp is expected to be exceeded twice every 100 years when using
the best suiting model. As outlined in Sec. 2.3.4, a return level has to be calculated for a
certain time point t0 in case parameter estimates of a non-stationary model are used. We
here choose t0 = 01.01.1996.

As shown in Fig 4.11, we observe severe changes in the probability of exceedance
in case non-stationarity in the extremes is considered. The occurrence of non-stationary
river discharge extremes in the Danube River basin and the corresponding change of
flood risk is already recognised (KLIWA 2004). Nevertheless, up to now the common
methodological canon of water management authorities does not incorporate the sys-
tematic evaluation of this kind of change. We find that the probability of exceedance gets
lower in some cases, most of them are situated in the South-Eastern part of the Danube
River basin. The stations with a decreasing probability of exceedance are the Iller River
at Kempten and Wiblingen, the Lech River at Landsberg, the Schwarzer Regen River at
Teisnach and the Ammer River at Oberammergau. For 9 of the 47 assessed stations the
probability of exceedance gets higher, in some cases more than 50%. Those gauges are
the Geltnach River at Hörmannshofen, the Naab River at Heitzenhofen, the Vils River at
Rottersdorf, the Große Vils River at Vilsbiburg, the Ramsauer Ache River at Ilsank, the
Inn River at Oberaudorf and Rosenheim, the Leitzach River at Stauden, and the Ilz River
at Kalteneck. In Fig. 4.12 the adaptation costs which correspond to an increase in flood
risk are depicted exemplarily for flood control walls and dykes in Baden-Württemberg
(cf. KLIWA 2004). These costs do not change linearly with an increase in flood risk. Thus,
in case the 100-year return level (HQ100) rises 20%, additional adaptation costs of 55%
are implied. In case the rise of the return level is already considered in the planning
phase, additional costs of 10% become due. The figures get even worse in case the 100-
year return level increases 30%. Thus, a sound extreme value analysis framework which
allows for non-stationarity is a necessary basis for an adequate water management cost
calculation.



CHAPTER 5

CONCLUSION AND PERSPECTIVES

We motivated our thesis by the search for trends in mean values and extreme values of
hydro-meteorological data. Furthermore we wanted to assess the impact of these non-
stationarities on common assessment measures.

To track these questions we assessed trends within the Neckar River and Danube
River basin in Southern Germany. We detected significant trends for up to one half of the
mean value records and one third of the extreme value records. Furthermore, we found
interdependences between trends and auto-correlation in the data. We showed that these
phenomena have an impact on the calculation of assessment measures commonly used
by water management authorities such as trend test statistics and return levels. The re-
sults presented here therefore particularly highlight the necessity of a sound trend and
extreme value assessment framework for hydro-meteorological time series, which con-
siders non-stationarity and the auto-correlation structure (memory) in the data. By simu-
lation studies we investigated the potentials and limits of the approaches provided here
regarding the properties of empirical data, and therefore demonstrated their value for a
broad range of applications.

The results of this thesis furthermore suggest that we have to proceed gauge by gauge.
We found specific, site related structures for all statistical characteristics assessed. We
did not detect immediately interpretable spatial trend patterns, neither for mean nor for
extreme values. We often observed neighbouring gauges to behave distinctively. These
results show that the impact of climate change is not directly detectable in river discharge
yet, but is blurred by other factors. Evidence for trends in precipitation, for example, is
globally stronger than for changes in flooding (Robson 2002 and Kundzewicz et al. 2004).
Possible factors, which are not necessarily in tune with gross climate-related drivers, may
be land use, soil conditions, weather regimes, elevation, moisture or catchment size. The
extreme value and trend assessment framework presented here is a necessary basis for
a physical interpretation of the trends. Besides, the statistical characteristics of river dis-
charge obtained in this thesis may be used to validate the output of, e.g., hydrological
models.

5.1 TRENDS IN MEAN VALUES

One part of this thesis is devoted to the analysis of trends in mean river discharge. We
analysed monthly mean values and monthly maxima of daily river discharge. Most
of these records cover the time period between 1941 and 2000. Regarding the Neckar
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River basin, we furthermore examined the summer and winter seasons. We found non-
stationarity and auto-correlation being common phenomena in river run-off. Both sta-
tistical characteristics are interrelated, which calls for the consideration of the memory
in the data when assessing trends. We achieved this by applying and enhancing the
Craigmile-Guttorp-Percival (CGP) trend test (Craigmile et al. 2004). Thereby the time se-
ries is modelled by an additive combination of a stochastic component and potentially
a deterministic trend. We extended the test by allowing for short- and long-term cor-
relation in the stochastic part by using FARIMA models. This enabled us to apply the
test to a broad range of empirical time series. We regard trends as fluctuations on large
scales. Our results suggest that river discharge data often possesses rather complicated
trend shapes with large oscillations. Therefore trend tests which only check linear trend
assumptions seem to be inappropriate for this kind of time series. We found a variety of
different trend shapes, and typical shapes could not be extracted. A significant trend was
detected for about 10% of the analysed 10 gauges in the Neckar River basin and about
45% of the 90 gauges within the Danube River basin. Most of the significant trends are
increasing. However, the spatially heterogeneous patterns of increasing and decreasing
trends could not be interpreted directly. This is in line with findings of other authors,
e.g. Kundzewicz and Schellnhuber (2004), who investigate river discharge worldwide.
We compared the results obtained using the CGP trend test with the outcome of the
Mann-Kendall trend test (Mann 1945), which is very common in hydrology and does not
explicitly consider auto-correlations. For many stations in the Danube River catchment
the results differ: The Mann-Kendall trend test does detect a significant trend where the
CGP trend test does not. We conclude that this is partly due to the memory being present
in the data, and that therefore the usage of the CGP trend test provides the more reliable
results.

The natural variability in the data has been modelled using stochastic FARIMA(p, δ, q)
processes up to an order of FARIMA(4,δ,3). We found short- and long-term correlation
being present in hydro-meteorological data. Both types of correlation have a distinct im-
pact on the uncertainty of statistical estimates such as trend slopes, which underlines the
necessity to model them. River discharge possesses strong auto-correlations for periods
of one day to two weeks, for example because of weather or soil conditions. Long-range
correlation may occur because river networks aggregate precipitation and convert it into
long-memory run-off (see Mudelsee 2007). FARIMA(p,δ,q) processes only reflect the lin-
ear auto-correlation structure being present in the data. Further enhancements are pos-
sible, e.g. GARCH models, which consider also dependence in the variance of the data.
However, by the use of goodness-of-fit evaluation procedures, we found that our stochas-
tic models adequately represent most of the empirical data we examined. We detected a
spatially heterogeneous auto-correlation structure in the assessed region. Regarding the
Danube river basin, gauges close to the Alpes show less memory than stations close to
the Danube River. The latter possess especially often long-memory. This may be due to
the fact that persistence is stronger for large catchments, where the time series comprises
a lot of processes. Although we did not find a predominant correlation pattern in the
region, in most cases the short-term correlated AR(1) process is the most suitable model.
The long-term correlated FD(δ) process often suffices to represent the series as well. Both
models are the most simple representatives of their classes. We therefore have strong
evidence that simple models seem to represent the dynamics of the data quite well. The
distinction between trend and auto-correlation structure was not possible in some cases,
as we have demonstrated for a few records in the Neckar River basin. Due to the short-
ness of the time series two alternative models represent the data well, e.g. a long-range
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correlated model and a short-term correlated model with a deterministic trend compo-
nent. In these cases, further physically driven information is needed to accurately decide
which model to prefer.

Regarding methodological aspects, we chose to estimate the trend by using wavelets,
that is, data-driven. Advantageously, we thus do not need a priori assumptions about
the trend shape. A potential drawback is that the selection of the wavelet and the de-
gree of smoothing to obtain the trend estimate are not fully objective choices. The idea
of trends as fluctuations on large scales allows to address diverse questions related to
trend detection. Significant trends, for example, might be examined for oscillations they
all share. This serves to assess the relation between discharge and processes acting on
decadal scales, such as atmospheric patterns influenced by El Niño. The wavelet trend
estimate is consistent, as outlined in this work, and the methodology allows for the as-
sessment of uncertainty by providing confidence intervals for the trend estimate. Fur-
thermore, trend and auto-correlation structure are estimated separately in our approach.
On the one hand, this might be a drawback, because the trend is estimated without con-
sidering the auto-correlation structure. This might bias the results. On the other hand, a
potential bias is avoided which may occur due to the mutual influence of trend and auto-
correlation parameters during the estimation process. Moreover, the approach presented
here allows for more complicated structures of trend and memory than in case trend and
auto-correlation are jointly estimated.

The trend test is conducted by comparing the variance of the time series with and
without the estimated trend. On the basis of simulation studies we showed that this
trend test possesses sufficient power for various settings. In case a linear trend is added
to the data, the power of the CGP trend test is comparable to the one of a standard linear
regression test. Two of the key findings of this thesis are that the width of the confidence
intervals for the trend estimate as well as the acceptance or rejection of a trend depends
on the chosen stochastic model to represent the natural variability. The intercomparison
of trend test results for a specific time series under the assumption of different stochas-
tic models shows that a significant trend is less often detected under the assumption of
long-range correlated data than under the assumption of short-range correlated or inde-
pendent data. The reason for this is that long-term correlated data causes long excursions
from the mean as well as local trends (Beran 1994 and Kallache et al. 2005). These find-
ings imply that trend tests which do not account for auto-correlation in the data are likely
to give unreliable results for auto-correlated data (cf. Yue and Wang 2002).

We conclude that our approach to assess trends in mean values, i.e. the modified CGP
trend test, is well applicable for empirical hydro-meteorological records of the length of
60 to 100 years of daily measurement. Trends in mean values are a common phenomenon
in river discharge records of Southern Germany. The proposed consideration of the auto-
correlation structure in the trend test procedure is crucial to obtain reliable results. Fur-
thermore, a basis for uncertainty analysis is given by the provision of confidence intervals
for the trend estimate.

5.2 TRENDS IN EXTREME VALUES

In the second part of this thesis, we developed a methodological framework to assess
extremes of hydro-meteorological data which accounts for non-stationarity and auto-
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correlation. An unjustified assumption of stationarity may lead to considerable under-
estimation of the probability of a disastrous extreme event (see, e.g., Coles et al. 2002). In
our approach we take the skewed distribution of the extremes into account and apply the
Fisher-Tippett theorem. By doing so, we are able to examine independent observations
with almost arbitrary distribution: The convergence of their extreme values towards the
generalized Pareto distribution (GPD) is theoretically well founded. The extremes are de-
rived as excesses over a threshold and are modelled using a point process (cf. Coles 2001).
This allows for a sound modelling of the frequency of occurrence and the magnitude of
the extreme values. The auto-correlation structure in the extremes is eliminated by thin-
ning out the data, and non-stationarity is incorporated by allowing for non-stationary
model parameters. The most suitable model is then selected out of a class of models
which comprises the stationary model and models with a variety of polynomial and ex-
ponential trend assumptions. Thus, trend detection is transfered to a model selection
problem.

Regarding methodological aspects of our extreme value assessment framework, we
evaluate its adequacy and its power to detect trends by simulation studies. The point
process representing the extreme events is a combination of two components: An in-
homogeneous Poisson process with possibly non-stationary rate of occurrence to model
the frequency of occurrence of the extreme events, and the GPD with a possibly non-
stationary scale parameter to derive the magnitude of these extreme events. From our
empirical data we obtain sets of extreme values with a size ranging from 30 to 120. We
find that this is the minimum size to get reliable results. Very good results are obtained
for estimating and simulating the frequency of occurrence of extreme events and testing
for a trend in the rate of occurrence. We also reliably detect the strong trends in the mag-
nitude of the extremes. However, to be able to detect even weak trends in the magnitude
as well, there should be rather 200 extrema at hand. We therefore assume that we did
not find every weak trend being present in the Danube River basin. To cross-check our
procedure, we compared it to results obtained by using the generalized extreme value
(GEV) distribution. Here the extremes are derived by drawing maxima from intervals of
equal length and we chose the standard interval length of 365 days. In those cases where
both approaches suggest a stationary model as best suiting one, we find good agreement
between both approaches. However, they differ regarding the significance of trends: Of-
ten the GEV approach suggests a non-stationary model where the point process approach
does not and vice versa. We consider the point process framework to be more reliable,
because we found that the set of threshold excesses contains the more extreme events of
our empirical data and therefore better represents the extremes.

We analysed extremes of daily discharge measurements of about 50 stations within
the Danube River basin. Thereby we focused on the winter season and analysed the
jointly covered time period between 1941 and 2000. Basic assumptions of standard ex-
treme value theory such as independent and identically distributed extremes are often
not fulfilled by hydrological data. Discharge is influenced by complex dynamical pro-
cesses (precipitation, snow accumulation and snowmelt, evapotranspiration, et cetera),
therefore a univariate distribution with two or three parameters is not necessarily a good
approximation of its multifaced nature (Engeland et al. 2004). Indeed, we had to remove
auto-correlations in all discharge records of the Danube River basin and one third of the
stations exhibit also non-stationary extremes. Importantly, the estimates of the extreme
value distribution parameters may be biased in case a stationary model is used to repre-
sent non-stationary extremes. The magnitude of this bias depends on the trend strength.



TRENDS IN EXTREME VALUES 97

By using the framework proposed in this thesis, we are able to augment the number of
empirical records which can be adequately analysed.

Concerning the characteristics of the extreme values of the Danube River basin, we
give particular attention to the estimated shape parameter of the GPD. The shape pa-
rameter determines the “thickness” of the upper tail of the flood frequency distribution
and thus helps to characterise the properties of extreme floods. Dependent on the mag-
nitude of this shape parameter, the extreme value distribution can be distinguished into
three types. We found all three of them being present in the Danube River catchment.
About 25% of the gauges possess a Weibull distribution, i.e., a finite endpoint can be de-
termined. About 50% of the records are compatible with being Gumbel distributed, and
the region exhibits 25% discharge records with heavy-tailed extrema. This Frechet distri-
bution deserves special interest, because arbitrarily high and more frequent outliers than
in the Gumble case have to be expected here. We found a heterogeneous spatial distri-
bution of the different extreme value distributions. The estimate of the shape parameter
was always lower using the most suitable, non-stationary point process model than us-
ing the stationary model. This supports the theoretical finding that a mixture of Gumbel
distributions (that is the shape parameter is compatible with being zero) is capable to
mimic a heavy tailed distribution (here the shape parameter is larger than zero). We con-
clude that in case a stationary model is solely fitted to the data, heavy-tailed distributions
may falsely be detected. This may result in the estimation of too high return levels and
therefore too high construction costs of flood protection buildings.

Regarding the trend tendencies, the frequency of occurrence of extreme events always
increases when it is detected to be non-stationary. In case a change in the magnitude
of the extreme events is found, we observe decreasing and increasing tendencies. Al-
together about one third of the 47 analysed records of the Danube River basin exhibit
non-stationarity. To demonstrate the relevance of the changes which arise when allow-
ing for non-stationary extreme value models, we exemplarily chose return levels. They
are an important assessment measure for water management authorities. We identified
changes up to 100% for the probability of exceedance of the 100-year return level. This
implies a potential doubling of the damage costs, because the 100-year return level is
then actually expected to be exceeded twice within 100 years. The spatial pattern of the
trend in extremes is not immediately interpretable. Nevertheless, most of the detected
trend tendencies are increasing, which might justify the activity of the Bavarian water
management authorities, who anticipate an increase in flood magnitude due to climate
change and therefore introduced a climate change factor of 1.15 in 2006, that is, every
design value is increased by 15% (BlfW 2006) .

Hydrological design which takes non-stationary conditions into account is a direct
consequence of accepting the idea of environmental change. As the approach we provide
is fully parametric, in principle it provides the possibility to extrapolate the trends into
the future. However, in some cases the estimated trends were found to deviate substan-
tially at the beginning and the end of the time series. Therefore, we decided to proceed
cautiously. We considered trends within the measurement period, but we did not extrap-
olate them. This is in line with other authors (cf. Bárdossy and Filiz 2005).

Our methodology provides several ways to supply uncertainty intervals along with
each parameter estimate and assessment measure, namely the delta method, the profile
likelihood or bootstrapping. The resulting confidence intervals show that the examina-
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tion of uncertainty is a crucial prerequisite for the evaluation and interpretation of the
results of extreme value analysis.

We conclude that the application of an extended extreme value analysis framework,
as presented in this thesis, is necessary to adequately assess non-stationary extreme val-
ues. We demonstrated the usability, the potential and the limits of our framework. Trends
in frequency and magnitude of extremes of river discharge are anticipated because of cli-
mate change and we already find a noteworthy fraction of the empirical records analysed
exhibiting non-stationary extremes.

5.3 FINAL REMARKS AND OUTLOOK

No universal trend tendency could be found in discharge records of river basins in South-
ern Germany. This does not imply that climate change has no impact on the hydrological
cycle. Increases in rainfall and rainfall extremes seem possible because of climate change,
and the link between rainfall and flooding suggests an impact on floods and droughts.
We conclude that the possibility of more frequent or heavier floods calls for the use of
approaches which allow for non-stationarity and assess the uncertainty related to these
events. By doing so, common practice of water management authorities can be improved
and costs for flood protection buildings can be calculated with higher accuracy. Thus,
e.g., construction costs are reduced in case return levels estimates are overestimated and
possible future damage costs are dampened in case it is shown that those estimates are
too low. The utility of the frameworks provided here is appreciated by, e.g., Bavarian wa-
ter management authorities. This thesis has been written in close cooperation with them
and the incorporation of our approaches in their methodological canon is on the way.

Regarding possible continuations of our work, the physical or process-oriented inter-
pretation of the results obtained in this thesis is one way to go. Thereby supplementary
data about soil conditions, land use or vegetation is needed and information about the
interrelation of those factors and river discharge. In this context, we can think of several
ways to extend our methodology. The extreme value assessment framework can be easily
extended to incorporate influential variables in the form of covariates (cf. Coles 2001). It
would then be possible to incorporate the influence of globally acting factors other than
climate change such as land use changes or soil degradation. The incorporation of mea-
sures of weather regimes and the El Niño phenomenon or other large-scale atmosphere-
ocean circulation patterns is of high interest as well (see, e.g., Mudelsee et al. 2004 and
Katz et al. 2002).
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Caspary, H. J. and A. Bárdossy (1995). Markieren die Winterhochwasser 1990
und 1993 das Ende der Stationarität in der Hochwasserhydrologie infolge von
Klimaänderungen? Wasser & Boden 47(3), 18–24.

Chan, N. H. and W. Palma (1998). State space modeling of long-memory processes.
Annals of Statistics 26, 719–740.

Chavez-Demoulin, V. (1999). Two problems in environmental statistics: Capture-recapture
analysis and smooth extremal models. Ph. D. thesis, Ecole Polytechnique de Lausanne.

Chavez-Demoulin, V. and P. Embrechts (2004). Smooth extremal models in finance and
insurance. The Journal of Risk and Insurance 71(2), 183–199.

Claussen, M. (1996). Variability of global biome patterns as a function of initial and
boundary conditions in a climate model. Climate Dynamics 12, 371–379.

Cohn, T. A. and H. F. Lins (2005). Nature’s style: Naturally trendy. Geophysical Research
Letters 32(23), L23402.

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Berlin: Springer.

Coles, S. (2002). The use and misuse of extreme value models in practice. Tech-
nical report, Department of Mathematics, University of Bristol, BS8 1TW, U.K.,
http://www.stats.bris.ac.uk/∼masgc/papers/semstat.ps.

Coles, S., L. R. Pericchi, and S. Sisson (2002). A fully probabilistic approach to extreme
rainfall modeling. Journal of Hydrology 273, 35–50.



REFERENCES 101

Coles, S. G. and M. J. Dixon (1999). Likelihood-based inference for extreme value mod-
els. Extremes 2, 5–23.

Cox, D. and D. Hinkley (1994). Theoretical Statistics. London: Chapman & Hall.

Cox, D. R., V. S. Isham, and P. J. Northrop (2002). Floods: Some probabilistic and statis-
tical approaches. Philosophical Transactions of the Royal Society A: Mathematical, Phys-
ical & Engineering Sciences 360, 1389–1408.

Cox, D. R. and P. A. W. Lewis (1966). The Statistical Analysis of Time Series Events. Lon-
don: Methuen.

Craigmile, P. F., P. Guttorp, and D. B. Percival (2004). Trend assessment in a long mem-
ory dependence model using the discrete wavelet transform. Environmetrics 15,
313–335.

Dahlhaus, R. (1989). Efficient parameter estimation for self-similar processes. The An-
nals of Statistics 17, 1749–1766.

Daley, D. J. and R. Vesilo (1997). Long range dependence of point processes, with
queueing examples. Stochastic Processes and their Applications 70, 265–282.

Daubechies, I. (1992). Ten Lectures on Wavelets. Philadelphia: Society for Industrial and
Applied Mathematics (SIAM).

Davison, A. C. (2003). Statistical Models. Cambridge: Cambridge University Press.

Davison, A. C. and D. V. Hinkley (1997). Bootstrap Methods and their Application. Cam-
bridge: Cambridge University Press.

Davison, A. C. and N. I. Ramesh (2000). Local likelihood smoothing of sample ex-
tremes. Journal of the Royal Statistical Society B 62(1), 191–208.

de Wit, M., P. Warmerdam, P. Torfs, R. Uijlenhoet, E. Roulin, A. Cheymol, W. van
Deursen, P. van Walsum, M. Ververs, J. Kwadijk, and H. Buiteveld (2001). Effect
of climate change on the hydrology of the river Meuse. Technical Report 104, Wa-
geningen University Environmental Sciences.

DeGroot, M. H. (1984). Probability and Statistics. Reading: Addison Wesley.

Devroye, L. (1986). Non-Uniform Random Variate Generation. Berlin: Springer.

DFO (2004). Dartmouth Flood Observatory. Technical report. Data available at:
http://www.dartmouth.edu/∼floods/.

Diebold, F. X. and A. Inoue (2001). Long memory and structural change. Journal of
Econometrics 105, 131–159.

Dietzer, B., T. Günther, A. Klämt, H. Matthäus, and T. Reich (2001). Langzeitverhalten
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(2004). The role of increasing temperature variability in European summer heat-
waves. Nature 427(22), 332–336.

Schellnhuber, H.-J. (1998). Earth System Analysis – Integrating Science for Sustainability,
Chapter Earth System Analysis – The Scope of the Challenge, pp. 3–195. Berlin:
Springer.

Schellnhuber, H.-J. and J. Kropp (1998). Geocybernetics: Controlling a complex dy-
namical system under uncertainty. Naturwissenschaften 85, 411–425.

Schneider von Deimling, T., H. Held, A. Ganopolski, and S. Rahmsdorf (2006). Climate
sensitivity estimated from ensemble simulations of glacial climate. Climate Dynam-
ics 27(2-3), 149–163.
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α significance level of hypothesis testing, page 82

B back-shift operator, page 10

D time series detail, page 16

δ long-term correlation parameter, related to Hurst coefficient, page 11

D deviance statistic, page 38

ǫt error term, noise, page 10

F(.) FX1,X2,...,Xn
(x1, x2, . . . , xn) joint distribution of X1, X2, . . . , Xn, page 9

γ(·) auto-covariance function, page 97

G(ω),H(ω) squared gain functions, page 17

gj,l scaling filter, page 14

H Hurst coefficient, page 12

hj,l wavelet filter, page 13

λ Poisson process occurrence rate, page 22

Λ(·) point process intensity measure, page 24

L(·) likelihood, page 35

l(·) log likelihood, page 38

µ location parameter of the GEV distribution, page 20

m length of interval out of which GEV maxima are drawn (typically m = 365 days), page 20

ν2
Y wavelet variance, page 19

n number of observations, page 9

ω Fourier frequency, page 17

P(ωj) periodogram, page 34

φ(z) autoregressive polynomial, page 10

ψ scale parameter of the GPD distribution, page 23

ψ(z) moving average polynomial, page 10

ρ(·) auto-correlation function, page 11

S time series smooth, page 16

S(Θ; ωj) spectral density, page 34

Σ variance-covariance matrix, page 33

σ scale parameter of the GEV distribution, page 20

σ2
ǫ variance of innovations of a stochastic process, page 10

Θ parameter vector, page 100

τj wavelet scale, page 13
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θ extremal index, page 22

θ(·) phase function, page 18

u threshold, page 22

Vj,k scaling coefficients, page 14

Wj,k wavelet coefficients, page 14

ξ shape parameter of the GEV and GPD distribution, page 20

{Xt, Yt} stochastic process, page 9

y excesses, x − u, page 22

zp return level , page 31



APPENDIX 111

A-1 SPECTRAL DENSITY AND AUTO-COVARIANCE FUNCTION OF

A FARIMA PROCESS

The spectral density of a stationary FARIMA process Xt is determinable from the accord-
ing ARMA process. Assume µ = E(Xt) = 0, then

f (ω) = |1 − eiω|−2δ fARMA(ω) = |1 − eiω|−2δ σ2
ǫ

2π

|ψ(eiω)|2
|φ(eiω)|2 . (A-1.1)

Here σ2
ǫ denotes the variance of the innovations and φ(z) and ψ(z) denote the AR and

MA polynomials, respectively (Beran 1994).

It is possible to represent a FARIMA process by an infinite sum of MA terms for δ >

−0.5:

Xt = φ−1(B)(1 − B)−δψ(B)ǫt = 1 +
∞

∑
j=1

ψjǫj . (A-1.2)

This can be used to compute the auto-covariance function γ(k) = E(XtXt−k) of a sta-
tionary FARIMA process. Assume µ = E(Xt) = 0, then the MA representation of the
auto-covariance function of a FARIMA process is given by

γ(k) =
∞

∑
j=0

ψjψj+|k|σ
2
ǫ , (A-1.3)

with ψ0 = 1 (see Chan and Palma (1998)). A drawback here is that many terms are
needed for an accurate approximation, because ψj decays hyperbolically. Further tech-
niques to approximate the auto-covariance function of a FARIMA process are listed in
Ooms and Doornik (1999).

A relatively simple alternative is to numerically integrate over the power spectrum

γ(k) =
∫ π

−π
fX(ω)eiωkdω , (A-1.4)

(Harvey 1993). The spectrum of the FARIMA process fX(ω) is easy to compute, but nu-
merical integration for each k is time consuming.

The covariances of a FD(δ) process follow directly from a formula which is outlined
in Gradshteyn and Ryzhik (1965)

γ(k) = σ2
ǫ

(−1)kΓ(1 − 2δ)

Γ(k − δ + 1)Γ(1 − k − δ)
. (A-1.5)
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A-2 SIMULATION STUDY TO EVALUATE THE LIKELIHOOD

ESTIMATION OF POINT PROCESSES

To implement the point process approach in terms of the GEV parameters Θ = (µ, σ, ξ),
the pp.fit() routine of the ismev package has been changed according to Eq. (2.55). We
conduct two simulation studies to evaluate the quality of the point process fit.

In this procedure, several parameters are fitted simultaneously. Therefore, as usual in
non-linear optimisation problems, it is possible that the algorithm runs into local minima.
To consider this problem and therefore enhance the quality of the fit, it is repeated several
(i.e. 20) times. The strength of the trend guess of the parameters is randomly varied,
which equals a variation of the initial guesses of the parameters. Then the parameter
estimate with the largest likelihood value is taken.

For the first of the two studies, an ensemble of 1 000 log-normal distributed series with
5 415 data points each is created. This equals the length of 60 years of measurement of a
90-day season and is thus a setting we also encounter in empirical records (cf. Sec. 2.7).
Then a strong trend which exhibits a fifth of the variance of the whole dataset itself is
added to the mean of the data. A non-stationary point process with time-dependent loca-
tion parameter µ, which should capture the trend added, is fitted to each of the ensemble
members. To get a well defined simulation setting with no additional sources of error,
the guess for the trend is the true trend. The threshold is chosen such that 1.22 percent of
the data (about 65 data points) lie above the threshold. We chose the threshold as such,
because this resembles our empirical settings.

To evaluate the simulation study, exemplarily 20 windows of width 10 - equally dis-
tributed over the whole data length - are chosen. In the simulation study now the non-
stationary point process which is estimated over the whole time series is compared to
“local” fits in the windows. The average of many local estimates serves as a reference to
evaluate the non-stationary fit. Thus the non-stationary point process fit which is fitted
to the whole data set is compared in these windows by

(a) averaging the GPD parameter estimates of the 1 000 non-stationary point process fits
for each window and comparing the resulting “average” GPD with the empirical
distribution of the maxima of all simulations in this window (i.e. 10 000 data points,
about 120 maxima).

(b) comparing the average of the 1 000 non-stationary fits in this window with a station-
ary point process fit to the maxima of all the 10 000 data points in the window (here
the threshold is chosen as 1.22 percent as well).

(c) comparing the return level, which is exceeded on average once every 9 000 observa-
tions (i.e. 100 “years”) in each window. They are calculated by using the stationary
and non-stationary GPD described in (b).

Although we add a trend to the mean of the data, we know that this linear trend will
also have an influence on the extremes. Furthermore, in this simulation study we look at
the maxima of a whole simulation ensemble and therefore should get an impression of
the influence of trends in the mean on extreme values for large n.

The simulation study reveals a good agreement between the averaged theoretical dis-
tribution of the non-stationary fits and the empirical data (not shown). The estimates
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are worst at the edges of the time series, which is depicted in the left of Fig. A-2.1. The
GPD resulting from averaging all parts of non-stationary point process fits covering the
first window (time points 1 to 10) lies outside the confidence interval of the stationary
point process fit of the first window. The same can be seen for the last window (time
points 5405-5410). Furthermore, the proximity of the non-stationary fits suggests that the
non-stationary fit underestimates the trend at the edges.

Nevertheless, all parameters are jointly estimated in this maximum likelihood ap-
proach. The time evolution of one parameter may balance the movement of another pa-
rameter. Therefore the parameter estimates might not be unambiguous. Hence, to get a
better picture of the adequacy of the fit, it is better to have a look at assessment measures
which involve all of the estimates, such as the return level (see also Naveau et al. 2005).
In Fig. A-2.1 we see that the estimated return levels of the non-stationary point process
fit lie well within the confidence interval of the return levels obtained by a stationary fit
in each window.
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Figure A-2.1: Comparison of non-stationary point process fits and stationary point process
fits in small windows. Left: GPD which results in averaging all parameter values of the non-
stationary point process fit in the first window (green) and in the last window (orange) in com-
parison to the GPD of a stationary point process fit over all maxima in the first window (blue) and
the last window (red) and related 95% confidence intervals obtained by the delta method. Right:
Comparison of 100-year return level in 22 windows of length 10. The quantiles are calculated
from a stationary point process fit to all maxima in the window (black) and from a GPD resulting
from averaging the parameters of all non-stationary point processes in that window (red). The
95% confidence interval (orange) is obtained by the delta method.

As a second study, we generated excesses out of a non-stationary point process with a
linear trend in σ (the generating procedure is described in App. A-3). The non-stationary
point process is chosen to have a parameter vector Θ = (69.63, 43.90, 0.076) and a thresh-
old u = 64.83, which are values taken from a stationary point process fit to run-off data of
the Danube River at Beuron. The slope s of the added trend ranges from 0 to 0.1 and the
generated series have a length of 5 415 (18 050) data points, which equals 60 (200) years of
daily data, evaluated at a season of three months. Using Eq. (2.55) we fit a non-stationary
point process to the series and compare the results to a GPD fit (the gpd.fit() routine of
the R-ismev package). In both cases we use the “true” trend as initial trend guess for the
scale parameter σ. The whole procedure is repeated for an ensemble of 1 000 runs. To
account for the uncertainty of the simulation study itself, one would have to repeat this
study several times and present the averaged results with confidence intervals. This is
beyond the scope of this work. Instead, the study is repeated a second time. The results
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do not change a lot and qualitative statements do not change at all. So only results of one
study are presented here.
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Figure A-2.2: Goodness of point process fit. Left: Distribution of 1 000 estimates of the loca-
tion parameter µ with a point process model. Middle: Distributions of estimates of the shape
parameterξ with a point process and a generalized Pareto process model. Right: Distribution of
estimates of the slope of the time-dependent scale parameter σ obtained from a point process and
a generalized Pareto process model.

In Fig. A-2.2 the goodness of the point process fit in comparison to a GPD fit is de-
picted. In this simulation study only σ is non-stationary, so the distributions of estimates
for µ and ξ are directly depicted and, regarding σ, the distribution of the estimated slope
of the linear trend in the scale parameter σ is shown. Although the true values lie in
the center of the distributions, the distributions obtained with the PP fit using GEV nota-
tion exhibit wide-spread tails, that is outliers. The GPD fit does generally not show such
far-flung outliers.

In Fig. A-2.3 the simulated cumulative distribution function of the slope of the linear
trend in σ of the PP fit using GEV notation in comparison to the GPD fit is depicted for
different slopes of the added trend and the length of 5 415 and 18 050 data points. Again
it is visible that the GPD fit outperforms the point process fit in most of the cases.

For the length of 5 415 data points which is relevant for our studies of empirical data
the point process fit is at least as good as the GPD fit in case no trend is present in the data.
For small trends the GPD fit is better than the PP fit, which means that the distribution of
the slope estimates generated by simulations is more narrow. This advantage diminishes
for strong trends, as can be seen in Figs. A-2.3 (5) and A-2.3 (6). For longer series, the
distribution generated out of the PP fit is as narrow as the distribution generated out of
the GPD fit, but has wide spread tails.

To quantify these differences, the [16%,84%] and [2.5%,97.5%] quantiles of the dis-
tribution of the slope of the scale parameter σ (generated by simulations) are given in
table A-2. The depicted intervals enclose 68% or respectively 95% of the distribution
generated by simulations. To get an impression of the variability of the estimated slope,
we compare it to the variability of σ itself in the stationary case. In our model the vari-
ability of the slope s affects σ by σ = σstat + s · t. The added linear trend is increasing.
Therefore the broadest variation of σ by incorporating the variation of the slope is ex-
pressed by σ ∈ [σstat − smin · t1, σstat + smax · tn]. This interval is given for 5 415 data points
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Figure A-2.3: Estimated slope of non-stationary σ. Comparison of point process fit and gener-
alized Pareto fit. Left: Data length of 5 415, which equals 60 years of daily data evaluated at a
season of three months. No trend added to the data (1), weak trend of 0.0002 (3) and strong trend
of 0.1 (5). Right: Data length of 18 050, which equals 200 years of daily measurements evaluated
for a season of three months. No trend added to the data (2), weak trend of 0.0002 (4) and strong
trend of 0.1 (6).

and no trend by σ ∈ [σstat − 5.036, σstat + 14.78]. In comparison, one standard devia-
tion for σ in the stationary model fit for the same data is 9.9106. For 18 050 data points
σ ∈ [σstat − 4.332, σstat + 4.8735] has to be compared with one standard deviation of 4.7863
in the stationary case. This means that the variability induced by one additional parame-
ter, that is the slope of the trend, lies well within the variability induced by the stationary
fit. For the smallest slope s = 0.0002 tested, the CI’s of one standard deviation change to
σ ∈ [σstat − 7.47, σstat + 8.126] for 5 415 data points and to σ ∈ [σstat − 2.166, σstat + 4.87] for
18 050 data points. Evaluating these figures, the variability of the estimated slope using
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5 415 68% PP 68% GPD 95% PP 95% GPD

0 [-0.0031,0.0091] [-0.0036,0.0039] [-0.0072,0.0178] [-0.0082,0.0082]
0.0002 [-0.0046,0.0050] [-0.0044,0.0039] [-0.0147,0.0420] [-0.0156,0.0068]
0.001 [-0.0028,0.0060] [-0.0030,0.0054] [-0.0069,0.0363] [-0.0070,0.0115]

0.1 [ 0.0688,0.1257] [ 0.0722,0.1251] [-0.0002,0.1647] [-0.0331,0.1569]

18 050 68% PP 68% GPD 95% PP 95% GPD

0 [-0.0008,0.0009] [-0.0006,0.0006] [-0.0042,0.0069] [-0.0011,0.0013]
0.0002 [-0.0004,0.0009] [-0.0005,0.0008] [-0.0013,0.0100] [-0.0012,0.0014]
0.001 [ 0.0000,0.0021] [ 0.0003,0.0018] [-0.0050,0.0117] [-0.0006,0.0026]

0.1 [ 0.0880,0.1142] [ 0.0879,0.1129] [ 0.0748,0.1383] [ 0.0781,0.1284]

Table A-2.1: Confidence Intervals enclosing 68% and 95% of the distribution of the slope estimates
for the non-stationary scale parameter σ. The imposed trends have slope values ranging from 0
(i.e. no trend) to 0.1 of the variability of the process. Length of data: 5 415 and 18 050 data points.

the PP fit seems to be acceptable. Anyhow, the GPD fit outperforms the PP fit with GEV
notation in most of the cases. Therefore in our studies we use a PP fit using GPD notation.
By doing so, we are able to separately estimate the GPD parameters and the parameter λ
to model the frequency of the extreme events. We consider this approach superior to the
PP fit using a notation in terms of the GEV parameters.
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A-3 GENERATION OF NON-STATIONARY POINT PROCESSES

Artificially generated point process data are useful for uncertainty assessment, e.g. to
provide confidence intervals, and to simulate the distribution of model selection criteria.
Here the methodology to generate non-stationary point processes which model extreme
values is described.

To generate non-stationary PP processes utilising the parameters of the GEV Θ =
(µ, σ, ξ), we use the likelihood given in Eq. (2.55). The inversion of the integrated rate
function and the exponential spacings method, both described in Devroye (1986), are
utilised to generate the occurrence times T of the extreme events. We particularly exploit
that the waiting time between two extreme events Tk+1 − Tk, given Tk, is exponentially
distributed. So, given Tk, we model Tk+1 = Tk + Λ−1(E + Λ(Tk)), where E is an exponen-
tially distributed random variable with rate 1. Starting with T0 = 0 and proceeding until
Tn is crossed, gives the desired times of exceedances1.

The sizes of the exceedances follow a non-homogeneous Poisson process with inten-
sity

λ2(t, y) = −∂Λ2([y, ∞])

∂y
= σ−1

t

[
1 + ξt

(
y − µt

σt

)]−1/ξt−1

+

, (A-3.6)

for y > u. So, conditional on nu exceedances over level u, we obtain the sizes of the
excesses by drawing randomly out of a Generalized Pareto distribution with parameter
vector Θt = (u, ψt, ξt) where ψt = σt + ξt(u − µt).

We evaluate the performance of the procedure sketched above to generate non-statio-
nary point processes using a notation in terms of the GEV parameters with simulation
studies. To do so, we generate log-normal distributed stationary data of length 5 415,
9 025 and 18 050 (which equals periods of 60, 100 and 200 years of daily observation,
evaluated over a season of 3 months). Then for each generated series, a threshold is
calculated such that 1.22% of the number of data points lie above it. Although stationary
data are modelled, a trend shape has to be specified when using non-stationary models.
Here three types of models are fitted to the excesses, namely

(1) a stationary point process,

(2) a point process model with a linear trend assumption in µ, and

(3) a point process with a quadratic trend assumption in µ.

The fits of model (1)-(3) now serve as reference fits, that is we want to reproduce this data
using our simulation procedure. To estimate the quality of the reproduced data, we use
each of the model fits to generate an ensemble of 1 000 artificial series according to the
above described method. Then to each generated time series the same model is fitted
from which it has been generated. In this way, a distribution of the GEV parameter es-
timates is derived for each of the three models. This provides an idea of the uncertainty
related to the point process simulation procedure using Θ = (µ, σ, ξ) (the uncertainty of
the point process fit is assessed in Sec. A-2). In Fig. A-3.1 the evolution in time of the
estimates for the parameter µ is depicted for all three models: The reference fit of the

1Alternatively, the rpois() routine of the stats package of R may be used. This routine is capable of handling
a time-dependent λt.
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Figure A-3.1: Test of simulation of non-stationary point processes: Evolution of the GEV pa-
rameter µ with time, plotted for time points where an excess occurs. Total length of series: 5 415,
Monte Carlo ensemble with 1 000 members. Left: Stationary PP fit (black) and Monte Carlo en-
semble (orange). Middle: Non-stationary PP fit with linear trend assumption in µ (blue) and
Monte Carlo ensemble (orange). Right: Non-stationary PP fit with quadratic trend assumption in
µ (green) and Monte Carlo ensemble (orange).

stationary PP fit (black), the non-stationary PP fit with a linear trend assumption in µ
(blue) and the non-linear PP fit with a quadratic trend assumption in µ (green) and their
respective Monte Carlo ensembles (orange). The variability of µ̂ of the non-stationary PP
fits does not seem to be remarkably higher than the one of the stationary PP fit. Never-
theless, the estimates often suggest a trend in µ with, at least for some fits, considerable
slope. This may partly be due to the simulation routine and partly due to the fit rou-
tine, which is tested in Sec. A-2. The original log-normal distributed data are stationary,
i.e. without trend, but the reference fits (blue and green) already show a trend tendency.
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Figure A-3.2: Test of simulation of non-stationary point processes (σ and ξ): Length of series:
5 415. Left: cdf generated by simulations (points) and value of original fit (vertical line) for the σ
parameter of the stationary PP fit (black), the non-stationary PP fit with a linear trend assumption
in µ (blue, hidden under the green points) and the non-stationary PP fit with a quadratic trend
assumption in µ (green). Right: The same as left for ξ.

The estimates of σ and ξ are depicted as cdf in Fig. A-3.2. The values of the refer-
ence fits are added as vertical lines. We see a good agreement between the cdfs of the
estimates of the stationary (black) and the two non-stationary fits (blue and green). So
for the constant parameters we do not get more uncertainty due to an assumption of
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non-stationarity in µ. The cdf for the important shape parameter ξ exhibits a remarkable
range from negative to positive values. This effect already has to be considered for sta-
tionary model assumptions. In Figs. A-3.3 and A-3.4 the same results are depicted for
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Figure A-3.3: Test of simulation of non-stationary point processes: Evolution of the GEV pa-
rameter µ with time, only plotted for time points where an excess occurs. Total length of series:
18 050, Monte Carlo ensemble with 1 000 members. Left: Stationary PP fit (black) and Monte Carlo
ensemble (orange). Middle: Non-stationary PP fit with linear trend assumption in µ (blue) and
Monte Carlo ensemble (orange). Right: Non-stationary PP fit with quadratic trend assumption in
µ (green) and Monte Carlo ensemble (orange).

series of length 18 050 (which equals 200 years of daily observation and evaluation of a
season of three months). Qualitatively the same results are obtained. Quantitatively the
distributions of all parameter estimates get more narrow, which we have expected.
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Figure A-3.4: Test of simulation of non-stationary point processes (σ and ξ): Length of series:
18 050. Left: cdf of estimates (points) and value of original fit (vertical line) for the σ parameter
of the stationary PP fit (black), the non-stationary PP fit with a linear trend assumption in µ (blue,
hidden under the green points) and the non-stationary PP fit with a quadratic trend assumption
in µ (green). Right: The same as left for ξ.

To generate non-stationary PP using the parameters Θ = (λ, ψ, ξ), we employ the
likelihood given in Eq. (2.54). The simulation procedure is exactly the same as the one
for generating PP using GEV parameters, which has just been described. But there we

have to calculate λt out of the GEV parameters, i.e. λ1(t) = {1 + ξt(u − µt)σ−1
t )}−1/ξt

+ .
Now we are able to use smooth functions to model the time dependence of λt, such as the



122 APPENDIX

exponential function. The relationship between both parameter vectors Θ = (µ, σ, ξ) and
Θ = (λ, ψ, ξ), given in Eqs. (2.29) and (2.34), remains, but here the GEV parameters µ and
σ would be expressed in terms of Θ = (λ, ψ, ξ), in case they had to be calculated. Appar-
ently, we now use the same functions to describe λt when simulating the point processes,
as we utilise as trend guesses when fitting non-stationary PP to the data (cf. Sec. (4.4)). We
are able to use “nice” shapes for λt and therefore we expect the simulation results to get
better than when generating point processes using the parameter estimates of the GEV.
We checked this for some time series and our expectations were affirmed. Therefore we
prefer the notation of the point process in terms of Θ = (λ, ψ, ξ), when generating point
processes.
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A-4 DANUBE RIVER BASIN: THRESHOLD AND CLUSTER SIZE

River/Gauge Threshold [m3/s] Cluster Size Number of Extremes
(left after declustering)

Donau/Beuron 64.83 6 67
Iller/Sonthofen 35.25 8 56
Iller/Kempten 116.21 6 54
Osterach/Reckenberg 11.57 6 50
Iller mit Kanal/Wiblingen 180.48 6 55
Zusam/Pfaffenhofen 11.83 6 66
Lech/Landsberg 87.69 4 53
Vils/PfrontenRied 8.19 8 100
Wertach/Bissenhofen 31.44 8 100
Geltnach/Hörmannshofen 4.73 8 117
Altmühl/Treuchtlingen 25.80 6 50
Altmühl/Eichstätt 27.52 8 68
Schwarzach/Mettendorf 10.19 8 111
Donau/Ingolstadt 646.59 6 50
Donau/Kelheim 722.58 4 47
Paar/Manching (Bahnbr) 21.80 4 45
Naab/Unterköblitz 86.93 6 60
Naab/Heitzenhofen 173.44 6 59
Haidenaab/Wildenau 29.15 8 66
Regen/Chamerau 79.40 10 84
Regen/Regenstauf 96.29 8 105
Schwarzer Regen/Teisnach 43.44 8 76
Donau/Schwabelweis 818.26 8 87
Donau/Pfelling 840.73 8 78
Isar/Mittenwald 9.40 6 33
Loisach/GarmischudP 11.84 6 51
Amper/Fürstenfeldbruck 37.22 6 41
Amper/Inkofen 71.25 8 60
Ammer/Oberammergau 3.93 8 42
Ammer/Weilheim 28.58 8 65
Vils/Rottersdorf 21.66 8 70
Große Vils/Vilsbiburg 12.09 6 85
Rott/Birnbach 36.69 10 75
Alz/Altenmarkt 68.95 10 34
Tiroler Achen/Staudach 51.40 10 65
Traun/Stein 32.5 10 57
Rote Traun/Wernleiten 9.95 10 74
Ramsauer Ache/Ilsank 6.51 6 52
Saalach/Unterjettenberg 56.51 8 49
Inn/Oberaudorf 201.00 10 57
Inn/Eschelbach 324.49 10 71
Inn/Passau Ingling 899.63 10 53
Leitzach/Stauden 7.13 10 54
Glonn/Bad Aibling 9.18 10 69
Inn/Rosenheim 282.04 6 50
Donau/Achleiten 2450.00 10 38
Ilz/Kalteneck 60.97 10 66

Table A-4.1: Threshold and cluster size for the Danube River basin. For each gauge the threshold
is chosen by evaluating the MRL plot and a point process fit over a range of thresholds. The
cluster size is then selected such that for the next larger cluster size not significantly more values
(i.e. more than 3 values) are eliminated.
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A-5 SOFTWARE

Most of the statistical computing for this thesis has been done with the language R. R
is available as free software under the terms of the Free Software Foundation’s GNU
General Public License and can be obtained at http://www.r-project.org/.

For the wavelet analysis, mainly the R-packages waveslim from Brandon Whitcher,
Rwave from Rene Carmona and Brandon Whitcher, and routines from Christopher Tor-
rence and Gilbert P. Compo (originally written for Matlab, ported to R by myself) have
been used (at http://atoc.colorado.edu/research/wavelets/software.html the source code can be
obtained). The estimation of FARIMA model parameters and simulation with such mod-
els has been done utilising the packages farisma from Henning Rust (the software is
available at http://www.pik-potsdam.de/ hrust/tools.html) and fracdiff from Chris Fraley and
Fritz Leisch. For the extreme value analysis the packages ismev from Stuart Coles and
Alec Stephenson, evd from Alec Stephenson and extRemes from Eric Gilleland, Rick Katz
and Greg Young have been the basis.
All these packages can be obtained via http://www.r-project.org/.

Additional software produced by myself in C- and R-code is available via email:
Malaak.Kallache@pik-potsdam.de.
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