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Abstract

Identifying key traits that can serve as proxies for species drought resistance is

crucial for predicting and mitigating the effects of climate change in diverse

plant communities. Turgor loss point (πtlp) is a recently emerged trait that has

been linked to species distributions across gradients of water availability. How-

ever, a direct relationship between πtlp and species ability to survive drought

has yet to be established for woody species. Using a manipulative field experi-

ment to quantify species drought resistance (i.e., their survival response to

drought), combined with measurements of πtlp for 16 tree species, we show a

negative relationship between πtlp and seedling drought resistance. Using long-

term forest plot data, we also show that πtlp predicts seedling survival

responses to a severe El Niño-related drought, although additional factors are

clearly also important. Our study demonstrates that species with lower πtlp
exhibit higher survival under both experimental and natural drought. These

results provide a missing cornerstone in the assessment of the traits underlying

drought resistance in woody species and strengthen πtlp as a proxy for evaluat-

ing which species will lose or win under projections of exacerbating drought

regimes.
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INTRODUCTION

Rainfall is becoming increasingly variable and unpredictable
in many locations around the world, with pervasive con-
sequences for biodiversity, ecosystem services, and

climate–vegetation feedbacks (IPCC, 2014; Schwalm
et al., 2017). Over the last few decades, widespread plant
mortality due to an increase in drought intensity and fre-
quency has been observed globally in forests and grass-
lands (Allen et al., 2010; Moran et al., 2014). Mortality
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induced by drought varies widely among species within
and among communities (Meir et al., 2009; Tilman &
Elhaddi, 1992). To predict which species will be winners
or losers under changing drought regimes, and to project
ecosystem consequences, it is crucial to understand the
mechanisms contributing to differential drought resis-
tance of plant species (reviewed in O’Brien et al., 2017).
Despite decades of studies on plant–water relations,
mechanisms related to species differential drought resis-
tance remain elusive (O’Brien et al., 2017; Powers
et al., 2020). This is especially acute for tropical forests,
which harbor enormous tree diversity and are globally
important carbon sinks (Ferreira et al., 2018). Under
global change, increased mortality induced by extreme
drought events such as El Niño, is expected to accelerate
biomass loss and cause changes to forest structure and
composition in tropical forests (Rowland et al., 2015; van
der Sande et al., 2016).

Turgor loss point (πtlp, MPa), the leaf water potential
at which leaf wilting occurs (Bartlett, Scoffoni, Ardy,
et al., 2012), has emerged as a promising physiological
trait that can be used as a proxy for plant drought resis-
tance (Bartlett, Scoffoni, & Sack, 2012; Sun et al., 2020).
Turgor loss point is related to a suite of physiological
mechanisms relevant for maintaining critical functions
under drought, including the water potential at stomatal
closure and the vulnerability to xylem embolism (Bartlett
et al., 2016). The importance of πtlp in plant–water rela-
tions has long been recognized (e.g., Tyree &
Hammel, 1972). However, only recently has a relatively
fast method to measure πtlp been developed (Bartlett,
Scoffoni, Ardy, et al., 2012), resulting in a surge of studies
that have assessed πtlp across multiple species (e.g., Bart-
lett, Scoffoni, & Sack, 2012; Kunert et al., 2021; Mar-
échaux et al., 2015; McFadden et al., 2019; McGregor
et al., 2021; Sun et al., 2020; Zhu et al., 2018). Most of
these studies have related πtlp to species distributions
across natural moisture gradients, including at local,
regional and biome scales. In woody plants, species with
lower πtlp have been generally associated with drier sites
(Baltzer et al., 2008; Bartlett, Scoffoni, & Sack, 2012;
Kunert et al., 2021; Maréchaux et al., 2015; McFadden
et al., 2019; Mitchell et al., 2008; Rosas &
Mencuccini, 2019; Zhu et al., 2018). πtlp has therefore fre-
quently been explicitly or implicitly assumed to deter-
mine species distributions by being negatively related to
species drought resistance, that is, their ability to with-
stand periods of low water availability (ensu
Larcher, 2003). However, the direct relation of πtlp to dif-
ferential survival of woody species under drought condi-
tions has, to our knowledge, only been addressed in one
study, which found no relation (Powers et al., 2020).

Moreover, studies on πtlp have focused on adult trees (but
please refer to Baltzer et al., 2008), whereas seedlings,
which are a bottleneck in the life cycle of trees
(Harper, 1977) and determine future forest composition,
may respond differently to stressors.

Survival of plants under drought conditions in the
field, as well as species distribution across moisture
gradients, are not only shaped by water availability,
but also by other abiotic and biotic factors, namely
light, nutrients, herbivore and pathogen pressure, com-
petition, as well as dispersal limitation (Engelbrecht
et al., 2005). Because these factors may modulate or
even override direct effects of drought in driving spe-
cies’ survival and distributions, experiments are
required to isolate the direct effects of reduced water
availability on species performance from other factors
that determine drought survival (Engelbrecht &
Kursar, 2003). To be able to rigorously test the rele-
vance of πtlp for plant survival responses to drought, we
need to directly link πtlp to experimental multispecies
assessments of comparative whole-plant drought resis-
tance, based on survival responses. However, such
studies are still lacking (reviewed in Delzon, 2015). To
our knowledge, the only study explicitly linking πtlp to
comparative drought performance responses across
multiple species was conducted on herbaceous peren-
nials (Sun et al., 2020). They found the opposite of
what has been assumed for woody species: herbaceous
species with higher πtlp exhibited higher (rather than
lower) drought survival. This highlights the need to
directly test the relationship between πtlp and drought
performance in different life forms and/or ecosystems.
At the same time, we need to evaluate if πtlp is a useful
proxy for species survival responses to natural drought
conditions, such as those associated with El Niño
Southern Oscillation (Powers et al., 2020).

Here, we explicitly tested if πtlp of tropical woody spe-
cies is negatively related to seedling drought resistance by
directly linking πtlp to seedling survival under dry, rela-
tive to irrigated, conditions in a common garden soil
moisture manipulation experiment in the forest under-
story in central Panama. Using long-term seedling sur-
vival censuses across multiple forests, we also tested
whether πtlp is related to decreased seedling survival in
response to an extreme El Niño event that caused severe
drought conditions in the region (Burton et al., 2018;
Spinoni et al., 2019). We hypothesized that tree species
with lower (i.e., more negative) πtlp exhibit higher experi-
mentally assessed drought resistance (as determined by
seedling survival in dry vs. irrigated treatments) and
smaller reductions in seedling survival in response to El
Niño-related drought.
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METHODS

Study species and site

We selected 16 tree species from lowland tropical forests
for which seedling comparative drought resistance in
terms of survival has been experimentally assessed (please
refer to the following paragraphs) and that spanned a wide
range of drought resistance, distribution, and families
(Appendix S2: Table S1). Seeds were collected in the Pan-
ama Canal watershed, including the Barro Colorado
Nature Monument (BCNM, 9�900 N, 79�5100 W).

Leaf turgor loss point (πtlp, MPa) was measured on
seedlings (5–28 per species, depending on seed/seedling
availability; Appendix S2: Table S1) grown in a shaded
screenhouse in central Panama at 5%–10% light under
fully watered conditions. Seedlings were �1 year old and
20–40 cm tall at the time of measurements, comparable
with the size at the beginning of their first dry season and
the drought experiment (please refer to the following para-
graphs). We assessed πtlp following the method of Bartlett,
Scoffoni, Ardy, et al. (2012) from measurements of leaf
osmotic potential at leaf full turgor (πo, MPa). In brief,
seedlings were rehydrated overnight, and osmotic poten-
tial was measured with an osmometer (Vapro 5600;
Wescor, Logan, UT, USA) on one mature leaf per individ-
ual after freezing in liquid nitrogen. A tight relation
between πtlp and πo holds across life forms, from woody
species, including tropical trees, to perennial forbs and
grasses (reviewed in Sun et al., 2020).

We analyzed the relation of species’ πtlp with their
experimentally assessed drought resistance, and their sur-
vival response to a strong El Niño drought event. To evalu-
ate if relations between πtlp and species distributions with
respect to moisture that have previously been established
(e.g., Kunert et al., 2021) also hold for our species set and
for the seedling stage, we additionally related πtlp with spe-
cies abundance at the seedling and adult stages in dry rela-
tive to wet habitats in a Forest Dynamics Plot in the
BCNM (please refer to Appendix S1).

Seedling drought resistance was based on experimental
assessments of seedling survival in dry conditions (covered
with rainout shelters) relative to irrigated, wet conditions in
the understory of a second growth forest in central Panama
during the dry season (for experimental details please refer
to Engelbrecht et al., 2007 and Appendix S1). Drought resis-
tance (DR) was assessed as the response ratio of survival of
seedlings in dry, relative to wet, plots (DR = log[survivaldry/
survivalwet]; please refer to Hedges et al., 1999).

Survival responses of naturally established seedlings to
a strong El Niño event in 2015–2016, which resulted in sig-
nificant precipitation decrease and a more severe dry season
in central Panama (Browne et al., 2021; Burton et al., 2018;
Spinoni et al., 2019), were analyzed based on annual

seedling censuses from 2014 to 2020 in eight 1-ha forest
plots across the Isthmus of Panama (Figure 1). Data were
available for 425 individuals from 15 of the study species.
For more detailed methods please refer to Appendix S1.

Statistical analyses

We tested for differences of πtlp among species using the
Kruskal-Wallis with post-hoc least significant difference
(LSD) tests. We used linear models to test for a relationship
of species mean πtlp with their DR as well as with their abun-
dance in dry and wet habitats (please refer to Appendix S1).
Models were weighted based on the variance of πtlp within
species, to account for differences in replication number in
πtlp among species and to improve heteroscedasticity
(weighted least squares model). All models were run for all
species as well as for evergreen species only and yielded
equivalent results (Appendix S2: Table S2).

To model the relationship between πtlp and seedling
survival response to drought during the 2015–2016 El
Niño compared with non-El Niño years, we used a hier-
archical Bayesian logistic regression controlling for spe-
cies, plot, and size effects. For model details please refer
to Appendix S1.

All analyses were conducted in R (version R 4.0.2, R
Core team, 2020).

RESULTS

Leaf water potential at turgor loss point (πtlp) differed signif-
icantly among the study species (ANOVA, F = 63.38,
p < 0.001; Figure 2a), with species’ mean πtlp showing a
wide range from �2.17 to �1.46 MPa. As expected, species’
experimentally assessed seedling DR was significantly nega-
tively related to πtlp (Figure 2b). Specifically, species with
lower (i.e., more negative) πtlp were more drought resistant.

Consistent with the experimental results, survival
responses of naturally established seedlings to the 2015–
2016 El Niño drought were related to species’ πtlp
(Figure 2c). Although species with the lowest πtlp
exhibited an estimated 4.2% increase in survival during
the El Niño drought compared with baseline non-El Niño
years (95% credible interval: �1.7% to 10.6%), the species
with the highest (most positive) πtlp exhibited an esti-
mated �3.1% decrease in probability of survival (CI:
�12.6% to 3.2%). However, wide credible intervals indi-
cate relatively high levels of uncertainty in the relation-
ship between El Niño response and πtlp, in addition to
high variability in the relationship between πtlp and sur-
vival rates across census years (Appendix S2: Figure S1).

Seedling local distribution across moisture gradients
was significantly related to πtlp, with species relatively
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more abundant in drier habitats showing lower πtlp
(Appendix S2: Figure S2A). A similar trend was seen for
adult trees, but the relationship was only statistically sig-
nificant for evergreen species (i.e., when deciduous spe-
cies were excluded; Appendix S2: Figure S2B, Table S2).

DISCUSSION

We showed for the first time in woody species that πtlp is
directly related to species survival response to drought,
that is, whole-plant DR. By experimentally assessing DR
through comparisons of survival under dry versus wet
treatments in the field, we were able to isolate the effect
of low water availability from other factors that may
influence plant survival under dry conditions (e.g., differ-
ences in soil nutrients, light availability; Engelbrecht
et al., 2005) and clearly link species drought responses to
πtlp. The experimental approach further assured that all
species were exposed to the same drought levels, such
that survival responses can be compared among species,
and that drought levels are realistic in the field. Our
approach also avoided the pitfalls of drought experiments
in pots, for example, that water depletion rates depend
on plant size (Comita & Engelbrecht, 2014). Multispecies
data sets, such as the one described here, remain surpris-
ingly scarce across ecosystems worldwide (reviewed in
O’Brien et al., 2017 for woody species), but are crucial to

rigorously establish the role of traits for plant perfor-
mance and their responses to environmental conditions
(Shipley et al., 2016). Our study therefore adds a missing
link in the effort to identify traits that are suitable proxies
for tree species response to drought. Our results substan-
tially solidify the basis for using πtlp in studies of the con-
sequences of global change for the composition, diversity,
ecosystem services and plant–atmosphere interactions in
tropical forests and beyond.

The relation between πtlp and experimentally assessed
DR in the study species was consistent with the survival
response of naturally established seedlings to the extreme
natural drought imposed by a recent strong El Niño
event; drought-sensitive species with higher πtlp tended to
experience higher relative decreases in survival compared
with drought-resistant species with lower πtlp. The rela-
tively high levels of uncertainty in the relationship
between El Niño response and πtlp, however, suggest that
other traits and/or other factors besides drought also con-
tribute to seedling mortality. For instance, increased solar
irradiance during the El Niño event may have led to the
increased survival observed in the more drought-resistant
species (please refer to Wright & Calderon, 2006). Using
πtlp as a proxy for DR can help us to understand and pro-
ject species differential responses to drought under cur-
rent and future climate conditions.

Consistent with these results, we documented for the
first time at the seedling stage, that πtlp is related to

F I GURE 1 Wilting of tropical tree seedlings in the dry season. Barro Colorado Nature Monument, Panama. Photograph credit:

Christian Ziegler
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distribution across local moisture gradients, with seed-
lings of species with lower πtlp being relatively more
abundant in drier habitats. Previous studies at our study
site and elsewhere (Kunert et al., 2021; McFadden
et al., 2019) have reported significant relationships
between πtlp and species adult distributions across local
moisture gradients. For our focal species, the relationship
between species distributions and πtlp at the adult stage
was similar to, but weaker than, at the seedling stage,
perhaps because several of our focal species are decidu-
ous (please refer to Kunert et al., 2021). Together, these
results support the notion that differential DR of seed-
lings has pervasive consequences for species abundance
and distribution across moisture gradients at the juvenile
as well as adult stage (Engelbrecht et al., 2007).

A low (more negative) πtlp can lead to high plant DR
as a mechanism of a dehydration tolerance strategy by
allowing the leaf to remain turgid despite decreasing leaf
water potentials, and to thereby maintain photosynthesis,
water transport, transpiration, and growth. Conversely, a
high (less negative) πtlp can also improve DR as a mecha-
nism of a dehydration avoidance strategy by leading to
early stomatal closure, and therefore enabling plants to
maintain high water potentials and hydration, even
under declining soil water status. Our finding that πtlp
decreases with increasing DR underscores the role of πtlp
as a mechanism of dehydration tolerance in woody spe-
cies. This is consistent with the relation of πtlp to other
relevant functional traits, for example, water potential at
stomatal closure and vulnerability to xylem embolism
(Bartlett et al., 2016; Delzon, 2015), its relation to growth
responses to drought (McGregor et al., 2021), as well as
with the now widely reported decrease of πtlp with species
association to drier sites in woody plants (Baltzer
et al., 2008; Bartlett, Scoffoni, & Sack, 2012; Kunert
et al., 2021; Maréchaux et al., 2015; McFadden
et al., 2019; Mitchell et al., 2008; Zhu et al., 2018). How-
ever, the opposite relation between πtlp and DR of sur-
vival has emerged in herbaceous temperate plants
(including both grasses and forbs), indicating that in
these life forms πtlp acts as a mechanism of dehydration
avoidance rather than tolerance (Sun et al., 2020). Inter-
estingly, clear links of πtlp to species local and regional
distribution have been found for evergreen, but not for
deciduous, tree species in a recent study in the same
study area in central Panama (Kunert et al., 2021). Simi-
larly, the only available study linking πtlp to tree mortality
during a natural drought (also the 2015/2016 El Niño),
also found no relation for deciduous species (Powers
et al., 2020). The discrepancies among life forms and
between trees with different leaf phenology clearly indi-
cate that the mechanistic role of πtlp in the interplay of
traits that determine how plants respond to drought can
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differ between different ecosystems with different func-
tional, ecological, or phylogenetic constraints. Similarly,
the relative importance of the direct role of water avail-
ability versus other factors determining species mortality,
distribution, diversity, and ecosystem functioning across
spatial or temporal moisture gradients varies between
systems (Baltzer et al., 2008; Comita & Engelbrecht,
2014). Our study established for the first time a direct
relation between πtlp and survival under experimental
drought in woody species, providing a missing corner-
stone in the assessment of the traits underlying DR. Simi-
lar studies will be needed that rigorously test links
between plant performance responses to environmental
factors, and traits in different life forms and ecosystems.
These links are crucial in the quest for traits that can
serve as reliable and practical proxies for projecting
which species will lose or win under exacerbating
drought regimes with global change.
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