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Composition Variables and Partial Specific

Quantities

Almost the same nomenclature as in the book by de Groot and Mazur [16] is used. Compo-

sition variables and partial specific quantities will be abbreviated as follows:

K number of components in the mixture

mk total mass of component k 1

m =
∑

mk total mass

Nk total number of particle of component k

N =
∑

Nk total number of particles

Vk volume occupied by species k

V =
∑

Vk volume

ρ = m/V =
∑

ρk total mass density

ρk = mk/V mass density of component k 2

n = N/V =
∑

nk total number density

nk = Nk/V number density of component k

Mk = mk/Nk = ρk/nk molecular mass of component k 1

ck = mk/m = ρk/ρ weight fraction of component k

xk = Nk/N = nk/n mole fraction of component k

φk = Vk/V = υkρk volume fraction of component k

U internal energy

u = U/m specific internal energy

uk =
(

∂U
∂mk

)

p,T,m1,...,mk−1,mk+1,...mK
partial specific internal energy of component k

1Note that in the book by de Groot and Mazur [16] mk and Mk are defined reversely.
2Only (K − 1) mass densities ρk are independent, since, for given temperature T and pressure p an equation

of state ρK = f(p, T, ρ1, . . . ρK−1) holds in (local) thermodynamic equilibrium.
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S entropy

s = S/m specific entropy

sk =
(

∂S
∂mk

)

p,T,m1,...,mk−1,mk+1,...mK
partial specific entropy of component k

H = U + pV enthalpy

h = H/m specific enthalpy

hk =
(

∂H
∂mk

)

p,T,m1,...,mk−1,mk+1,...mK
partial specific enthalpy of component k

G = U − TS + pV Gibbs free energy

g = G/m specific Gibbs free energy

µk =
(

∂G
∂mk

)

p,T,m1,...,mk−1,mk+1,...mK
chemical potential of component k

µ′
k =

(
∂G
∂Nk

)

p,T,N1,...,Nk−1,Nk+1,...NK
= Mkµk chemical potential of component k per particle

υ = V/m = 1/ρ specific volume

υk =
(

∂V
∂mk

)

p,T,m1,...,mk−1,mk+1,...mK
partial specific volume of component k
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Chapter 1

Introduction

The interest in transport coefficients of multicomponent liquid mixtures is rooted both in

their relevance for technical applications and in their fundamental importance for a better

theoretical understanding of fluids. During the last decade especially the number of publi-

cations on the Soret effect [60, 93], also known as the Ludwig-Soret effect, thermal diffusion,

or thermodiffusion, has constantly been growing. This off-diagonal effect accounts for the

occurrence of mass diffusion that is not driven by a concentration but rather by a temper-

ature gradient. Even though the phenomenon was discovered by Ludwig already in 1856,

it is still poorly understood at the microscopic level. There exists, however, a successful

thermodynamic phenomenological theory [16], which relates the mass diffusion flux ~J in a

binary mixture to the gradients of temperature and concentration by

~J = −ρD~∇c − ρDT c(1 − c)~∇T. (1.1)

c is the concentration of component 1 in weight fractions, ρ the density, and T the tempera-

ture. Of course, the magnitude of the mass diffusion coefficient D and the thermal diffusion

coefficient DT can only be be determined from a microscopic theory. Nevertheless a deep

understanding of the thermodynamic phenomenological theory is indispensable, since all mi-

croscopic theories have to be in agreement with thermodynamics. There are comprehensive

textbooks on irreversible thermodynamics by de Groot and Mazur [16] and by Haase [40],

which treat all classes of irreversible phenomena in a very general way. However, as the

underlying concepts are sometimes rather complex, it is difficult and time consuming for a

reader who is mainly interested in the Soret effect, to find the relevant information. Further-

more, since thermal diffusion is only one irreversible phenomenon among many others, these

books do not treat it to the last detail. We will therefore give a brief overview of the aspects

of the thermodynamic phenomenological theory being important for the description of diffu-

sion and thermal diffusion. Our considerations are based on the above mentioned books, but

go beyond them in some cases. To mention only two examples, the differences between irre-

versible and reversible mass transfer between the two homogenous phases of a heterogenous

system or the invariance of transport coefficients against shifts of entropy or enthalpy zero

and its consequences have not been considered in Refs. [16, 40] and will be treated in detail.

Moreover, we will briefly discuss recent literature work, where thermodynamic principles
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have not been correctly incorporated.

The rest of the thesis deals with the measurement of heat, mass, and thermal diffusion.

Eq. (1.1) is not suitable for the interpretation of time–resolved experiments. Usually, the

heat equation for the temperature T ,

ρcp∂tT = ~∇ · [κ~∇T ] + Q̇, (1.2)

and the extended diffusion equation for the concentration c,

∂tc = ~∇ · [D~∇c + c(1 − c)DT
~∇T ], (1.3)

are used for the description of coupled heat and mass transport in binary liquids. Here cp

is the specific heat at constant pressure, κ the thermal conductivity, and Q̇ a source term.

The derivation of Eqs. (1.2, 1.3) is not as trivial as it might appear at first glance. Strictly

speaking, they only hold if the center of mass velocity ~v vanishes. It will be shown, that

Eqs. (1.2, 1.3) can also be used in case of non-zero ~v, if all gradients are small and second

order terms may be neglected. For that purpose we will generalize the considerations of

Ref. [16] to non–isothermal systems.

Although the concept expressed by Eqs. (1.2, 1.3) appears rather simple, experiments that are

not hampered by artifacts are not easily conducted. Especially unwanted convection caused

by the unavoidable temperature gradients is a major obstacle, and microgravity experiments

have been conducted [101] to overcome this problem. Over the years a certain body of

experimental data for the Soret coefficient had been accumulated but hardly any values had

been cross-checked by another group, and if so, agreement was not guaranteed [51]. In 2003

the results of a measurement campaign with five participating laboratories utilizing different

experimental techniques were published and reliable Soret coefficients could be established

for three equimolar reference systems [75].

Challenged by the experimental difficulties a number of methods have been developed, which

all have certain strengths and weaknesses. A popular classical method is based on the

determination of the degree of separation of the fluid components that can be obtained

in a thermogravitational experiment. This method has a long history and a large amount

of the thermal diffusion data accumulated in the literature has been obtained with this

technique [18, 58, 63, 26, 27, 28]. A comprehensive description can be found in the book

by Tyrell [98]. Nowadays mainly annular thermogravitational columns are used [9] and in

some experiments the space between the two cylinders is filled with a porous medium [14].

Another recent development in this field are thermogravitational columns with laser Doppler

velocimetry as optical detection [25, 76]. As all thermogravitational methods are based on

the interplay of thermodiffusion and convection, the interpretation of the measurements is

necessarily complex. The amount of material needed is substantial and can be a problem
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in case of expensive isotopic or biological samples. Additional complications arise in case of

negative separation ratios.

Another method where flow and thermal diffusion are combined is thermal field flow frac-

tionation (TFFF), which mainly aims at the separation of polymers and colloids in dilute

solution [87]. It is neither suitable for higher concentrations nor, because of their rapid

diffusion, for small molecules.

Methods that allow for minute sample volumes and small temperature gradients are typically

based on optical techniques, either for detection or both for detection and generation of the

temperature gradients.

In an optical beam deflection experiment a diffusion cell is heated from above and cooled

from below. The concentration gradient induced by the temperature gradient is detected by

deflection of a laser beam which passes through the cell in a direction parallel to the top

and bottom plates. The time dependence of the deflection angle contains a fast contribution

stemming from the temperature and a slow contribution from the concentration gradient.

Beam deflection is caused by changes of the refractive index of the liquid associated with the

nonuniform temperature and concentration. Optical beam deflection was already used by

Meyerhoff and Nachtigall, who employed a Schlieren technique [67, 66], and later by Giglio

and Vendramini [36, 37], by Kolodner et al. [54], Zhang et al. [116, 117], and Piazza et

al. [74]. Since the diffusion length, the distance between the two plates, is of the order of a

few millimeters to one centimeter, establishment of equilibrium is rather slow, especially for

systems with small diffusion coefficients such as polymers and systems close to the critical

point.

In holographic grating experiments (thermal diffusion forced Rayleigh scattering, TDFRS)

light is used not only for detection but also for heating of the fluid. A holographic interference

grating is written into the sample. An added dye absorbs and thermalizes the energy of the

light field and a temperature grating builds up. The temperature gradients of the temperature

grating give rise to thermal diffusion, and a secondary concentration grating is generated.

Both the temperature grating and the concentration grating are accompanied by a refractive

index grating, which can be read by Bragg diffraction of a readout laser beam. Thyagarajan

and Lallemand were the first who observed the Soret effect with forced Rayleigh scattering

in the binary liquid mixture CS2/ethanol [97]. Later, Pohl studied a critical mixture of 2,6–

lutidine/water with the same technique [77]. By using heterodyne detection schemes [52] high

sensitivity is achieved and TDFRS has successfully been applied to a broad class of systems

ranging from small molecules [17, 111, 70] to polymer solutions of arbitrary concentration

[84, 45, 83, 108, 15, 50], colloidal suspensions [94, 69], and critical polymer blends [34, 33].

Another all-optical technique for heating and detection is the thermal-lens method, where the

signal is derived from the defocusing of a laser beam transmitted through a slightly absorbing

sample. The suitability of the method has been demonstrated in recent experiments [2, 3, 86],
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but convection problems are not easily avoided with this technique.

For some special systems, where fluorescent labels can be attached to large molecules such

as DNA, Duhr and Braun have demonstrated a further optical method for the study of

thermal diffusion [22, 24]. By local heating with an infrared laser and fluorescence detection

of the concentration distribution, Soret coefficients of aqueous colloidal solutions could be

determined within microfluidic devices.

When comparing all these techniques, TDFRS has a number of indisputable advantages. The

micrometer diffusion length within the grating reduces the diffusion time to the millisecond

range, which is easily accessible and about six orders of magnitude faster than in case of

macroscopic diffusion cells. In particular for systems with small diffusion coefficients of

the order of 10−10 cm2/s, such as binary glass formers [84] or critical polymer blends [34],

diffusion times can still be kept within the range of seconds. In a thermal diffusion cell they

would already exceed a week, which is hardly feasible. Another major advantage is that only

a single Fourier component, the one of the grating vector q, contributes to the signal, which

makes its interpretation particularly simple and even allows for a deconvolution into multiple

decay functions for e.g. determination of the molar mass distribution in polymer analysis

[53]. Due to the short diffusion lengths, the thin samples and the orientation of the fringes

of the grating parallel to the direction of gravity, convection problems can easily be avoided.

Being all-optical, the method is non-invasive and ideally suited for remote sensing without

direct contact to the sample. The sample volume can be below 1µL. Furthermore it should

be mentioned that this technique is not restricted to the determination of mass and thermal

diffusion but also allows for the measurement of heat conduction in liquids and solids. In

fact, the first holographic grating experiments by Eichler et al. [30] and Pohl et al. [78] in

1973 aimed at the measurement of heat conduction. Whereas Eichler et al. determined the

thermal diffusivity of methanol, glycerin and ruby crystals, Pohl et al. studied heat transport

in inorganic crystals at low temperatures. Later the method has been used to determine the

anisotropic thermal conductivity in liquid crystals [46, 95] and sheared polymer melts [102],

to mention only two examples.

There remain, however, unresolved questions and experimental problems of the holographic

grating technique. Two of them will be treated in this thesis.

The first one is related to the correct analysis of the detected diffraction efficiency. When

treating the problem in one dimension, an analytical expression for the time dependent

diffraction efficiency is easily found [8]. The thermal diffusivity Dth = κ/(ρcp), the mass

diffusion coefficient D, and the thermal diffusion coefficient DT are obtained from a fit of

the model to the measured diffraction efficiency. Most holographic grating experiments are

interpreted in terms of this one-dimensional description and heat flow into the cell walls and

a nonuniform temperature distribution along the optical axis are usually neglected. This is,

however, only permissible, if the grating period d is much smaller than the sample thickness ls.
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If this assumption is not fulfilled, the influence of the heat conducting walls must be taken into

account. A few attempts have been undertaken to incorporate the effect of heat conducting

walls on the measurement of the thermal diffusivity. The influence of three-dimensional

temperature profiles on the determination of mass diffusion and of the Soret effect, however,

which requires normalization of the amplitude of the concentration grating to the one of the

temperature grating, has not yet been considered. Nagasaka et al. [68] used Green’s functions

to determine the systematic errors of the measured thermal diffusivities evaluated according

to the one-dimensional model. Different aspects of the experiment, like heat conducting walls

or a finite beam diameter, were treated independently and the resulting errors were added

up. Wang et al. [105, 106] developed a complex three-dimensional model which depends on

a large number of parameters and also takes the spatial profile of the heating laser beam into

account. We will develop a reasonably simple, practically applicable, two-dimensional model

to account for heat conducting walls in transient grating experiments for the measurement of

both heat and mass transport. The model will be verified by experiments over a wide range

of grating periods d and sample thicknesses ls.

Having solved the problem of heat diffusion into the windows, we are still facing fundamental

experimental difficulties. A significant drawback of the holographic technique is related to the

generation of the temperature grating within the sample. For optical heating of the usually

transparent samples with a laser, a small amount of dye has to be added. This has to be

inert and should not give rise to additional signal contributions. While this requirement can

usually be fulfilled for organic liquids, it imposes a severe problem to the study of aqueous

systems, where suitable dyes are rare. In this respect, contact heating techniques, like optical

beam deflection in a diffusion cell, have clear advantages. Additionally, they do not require

an expensive laser source.

Ideally, one would combine the short diffusion length and the single q value of the TDFRS

technique with the advantages of a diffusion cell. A direct down-scaling approach is, however,

not viable, since the deflected laser cannot be focused down to the required diameter over

a distance sufficient to accumulate an appreciable deflection angle. Putnam and Cahill

[81] have designed a handy, miniaturized micron-scale beam deflection apparatus that no

longer relies on two parallel plates but rather employs two heated metal strips sputtered

onto a glass substrate. While this approach leads to significantly shorter equilibration times

than the conventional parallel plate diffusion cell, some drawbacks like the multiple Fourier

components contributing to the signal, remain.

We will present a new transient grating technique that avoids many of above disadvantages.

Its key component is a regular array of strips of indium tin oxide (ITO) with 10µm width and

10µm spacing on one inner window of the cuvette. It can be heated electrically in order to

create a periodic temperature modulation which acts, in the same way as in holographic grat-

ing experiments, as a source term for the build–up of a superimposed concentration grating.

With such a setup most advantages of TDFRS, like the small sample volume, the insensi-
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tivity to convection, short equilibration times, one single Fourier component contributing to

the signal, and optical readout by Bragg-diffraction, are retained. They are combined with

the major advantages of the beam deflection cell, namely the avoidance of a dye and an

expensive writing laser. Similar to holographic grating experiments with very thin sample

cells, heat conduction into the walls plays a major role and will be treated in detail.



9

Chapter 2

Thermodynamic–Phenomenological Theory

At first we will give a brief overview of the thermodynamic–phenomenological theory of

diffusion and thermodiffusion based on the books by Haase [40] and by de Groot and Mazur

[16]. The two fundamental laws of thermodynamics are the first law or law of conservation of

energy, and the second law or entropy law. Since the description of non–equilibrium processes

must also be built upon these two laws, these laws will first be formulated in an appropriate

way. Then the phenomenological equations can be derived from the entropy law or, more

specifically, from the entropy production. Also some own results and comments on recent

literature work will be included.

Furthermore we will discuss the issue of different reference velocities. Existing models will

be modified and extended to become suitable for the description of non–isothermal, multi-

component mixtures. We will show, under which conditions simple evolution equations for

temperature and composition variables can be obtained. These evolution equations are nec-

essary for the interpretation of our heat, mass and thermal diffusion experiments of Chaps. 3

and 4.

Contrary to Haase and de Groot and Mazur, who present more general treatments of non–

equilibrium thermodynamics, we will in particular focus on the precise formulation of all

aspects directly related to the Soret effect.

2.1 Entropy Production and Phenomenological Equations

2.1.1 First Law and Definition of Heat

For a closed system, which may exchange heat but not matter with its surroundings, the

first law of thermodynamics reads

dE = dQ + dW. (closed system) (2.1)
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dE is the change of the total energy E, which is the sum of internal energy U , potential

energy Epot and kinetic energy Ekin,

E = U + Epot + Ekin, (2.2)

in an infinitesimal state change. dQ is the heat supplied to the system and

dW = dWl + dWdiss + dWa = −
∑

i

Lidli + dWdiss + dWa (2.3)

is the work done on the system during the same infinitesimal state change. Here, the Li and

li denote the work coefficients and work coordinates, respectively. dWl contains the reversible

deformation work (−pdV with pressure p and volume V ) as well as reversible electrification

and magnetization work done on the entire system. In the following electrification and

magnetization work will be excluded and

dWl = −pdV (2.4)

will be used throughout. dWdiss or dWa is the work related to dissipative effects (friction,

turbulence or plastic flow during deformation, hysteresis phenomena during electrification

or magnetization, electric conduction due to external sources of current, etc.) or to forces,

respectively, which accelerate the entire system. For internal state changes (dE = dU ,

dWa = 0) in closed systems it follows from Eqs. (2.1, 2.2, 2.3)

dU = dQ + dWl + dWdiss. (closed system) (2.5)

In open systems the terms work and heat are ambiguous, as has been demonstrated by means

of simple examples [39]. To overcome this difficulty we follow Haase [40], who uses Eq. (2.3)

also for open systems. This means that the work in an open system is that work which would

be done on the system if it was closed. Furthermore we define the heat absorbed by an open

phase from the surroundings during an infinitesimal state change as follows

dQ = dE − dW −
K∑

k=1

hkdemk. (2.6)

hk is the partial specific enthalpy of species k in the K–nary mixture. demk is the infinitesimal

increase of the total mass mk of substance k due to external causes, i.e not by chemical

reactions inside the phase but by exchange of matter with the outside world. For zero

transfer of matter Eq. (2.6) reduces to the first law of thermodynamics in closed systems

(Eq. (2.1)).



2.1 Entropy Production and Phenomenological Equations 11

For internal state changes (dE = dU, dWa = 0) the first law in open systems is thus given by

dU = dQ + dWl + dWdiss +
K∑

k=1

hkdemk. (2.7)

If no dissipative, electrification and magnetization effects are present, Eq. (2.7) further re-

duces to

dU = dQ − pdV +
K∑

k=1

hkdemk. (2.8)

On the basis of the last equation we can see that the definition of heat for open systems

according to Eq. (2.6) is physically meaningful. We consider a homogenous fluid mixture of

constant temperature and under constant pressure to which is added more liquid of the same

temperature, the same pressure, and the same composition. From Eq. (2.8) follows

dQ = dU + pdV −
K∑

k=1

hkdemk = dH −
K∑

k=1

hkdemk = 0, (2.9)

where H = U + pV is the enthalpy of the system. This result is felt to be reasonable. It

would not have been obtained for another definition of heat.

2.1.2 Entropy Production

Irreversible processes are usually characterized by the entropy balance equation

dS

dt
=

dSe

dt
+

dSi

dt
, (2.10)

and the relation
dSi

dt
≥ 0, (2.11)

where the equality sign is valid for the reversible limiting case. (dSe/dt) denotes the rate of

increase of the entropy of the system by exchange of heat and matter with the surroundings

and is called entropy flow. The entropy production (dSi/dt) is the rate of increase of entropy

of the system due to processes which occur inside the system.

The total rate of increase of the entropy of the system (dS/dt) and the entropy flow (dSe/dt)

can be positive, negative, or zero, according to the direction and quantity of the heat and mass

fluxes through which the system is connected to the surroundings. The entropy production

(dSi/dt) on the other hand is never negative and disappears only in the reversible limiting

case. For stationary non–equilibrium states there results (dSi/dt) = −(dSe/dt) > 0 and

(dS/dt) = 0.

Following Haase [40], the entropy flow and the entropy production will be derived for homoge-

nous, heterogenous (discontinuous), and continuous systems. In all three cases the entropy
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balance equation is calculated with the help of the Gibbs relation on considering mass and

energy balances.

Strictly speaking, the Gibbs relation

TdS = dU + pdV −
K∑

k=1

µkdmk, (2.12)

with T and µk being the temperature and the chemical potential of component k, only holds

for thermodynamic equilibrium, where the entropy is a state function

S = S(U, V,m1, . . . ,mk) (thermodynamic equilibrium) (2.13)

and can be calculated from the values of the state parameters U , V , m1, . . . , mK . The

important assumption of non–equilibrium thermodynamics is that each volume element of

the system is in a state of local equilibrium with

S

V
=

S

V

(U

V
,
m1

V
, . . . ,

mk

V

)

(local equilibrium), (2.14)

although the macroscopic state is a non-equilibrium state. Then the Gibbs relation

Td
(S

V

)

= d
(U

V

)

−
K∑

k=1

µk d
(mk

V

)

(2.15)

holds for each volume element of the system.

2.1.2.1 Entropy Production in Homogenous Systems

In a homogenous open system the mass balance of each of the K components of the mixture

is given by

dmk = demk + dimk = demk +
r∑

j=1

νkjdζj k = 1 . . . K. (2.16)

The increase of the total mass mk of component k may be due to mass exchange with the

surroundings (demk) or due to internal causes (dimk). The internal causes are r chemical

reactions inside the system with νkj/Mk and ζj the stoichiometric number and the extent of

the j–th chemical reaction, and thus νkjdζj the production of species k in the reaction j. Mk

is the molecular mass of component k.1 Since mass is conserved in each separate chemical

reaction we have
K∑

k=1

νkj = 0 j = 1 . . . r. (2.17)

1If only one (r = 1) chemical reaction (2 H2 + O2 → 2 H2O) takes place in the ternary mixture of hydrogen
(k = 1), oxygen (k = 2), and water (k = 3), the stoichiometric numbers are as follows: ν11/M1 = −2
(hydrogen), ν21/M2 = −1 (oxygen), ν31/M3 = 2 (water).
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The energy balance is given by Eq. (2.8) which, strictly speaking, represents a definition

of heat dQ for an infinitesimal state change in an open phase without electrification and

magnetization and without dissipative effects.

dU = dQ − pdV +
K∑

k=1

hkdemk

In order to calculate the entropy flow and the entropy production, mass and energy balance

Eqs. (2.16, 2.8) have to be inserted into the Gibbs relation (2.12)

TdS = dU + pdV −
K∑

k=1

µkdmk

Using

Tsk = hk − µk, (2.18)

and defining the affinity of reaction j by2

Aj = −
K∑

k=1

νkjµk (2.19)

one obtains

TdS = dQ + T
K∑

k=1

skdemk +
r∑

j=1

Ajdζj , (2.20)

where sk is the partial specific entropy of component k. If Eq. (2.20) is compared to the

general form of the entropy balance equation Eq. (2.10)

dS

dt
=

deS

dt
+

diS

dt

one can identify the entropy flow

deS

dt
=

1

T

dQ

dt
+

K∑

k=1

sk
demk

dt
(2.21)

and the entropy production

diS

dt
=

1

T

r∑

j=1

Aj
dζj

dt
≥ 0. (2.22)

The inequality in Eq. (2.22) is valid for an actual (irreversible) path of the reaction, the

equality for the reversible limiting case. The entropy flow Eq. (2.21) includes the “heat flow”

(dQ/dt) and the “flows of matter” (demk/dt), which pass from the surroundings into the

homogenous system under consideration. In closed systems, the terms with the mass flows

2Note that in the book by de Groot and Mazur [16] the affinity is defined with the opposite sign.
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phase’ phase”

temperature T ′ pressure p′ temperature T ′′ pressure p′′

volume V ′ masses m′
k

volume V ′′ masses m′′
k

internal energy U ′ entropy S′ internal energy U ′′ entropy S′′

chemical potential µ′
k

partial specific enthalpy h′
k

chemical potential µ′′
k

partial specific enthalpy h′′
k

. . . . . .

Figure 2.1: Heterogenous (discontinuous) system which consists of two homogenous subsystems
(phase’ and phase”)

drop out, and one obtains the well known relation dS ≥ dQ/T , where the equality holds for

reversible processes.

2.1.2.2 Entropy Production in Heterogenous (Discontinuous) Systems

The heterogenous system is shown in Fig. 2.1. It consists of two homogenous subsystems –

phase’ (temperature T ′, pressure p′, volume V ′, masses m′
k, internal energy U ′, entropy S′,

chemical potentials µ′
k, partial specific enthalpies h′

k, partial specific entropies s′k) and phase”

(T ′′, p′′, V ′′, m′′
k, U ′′, S′′, µ′′

k, h′′
k, s′′k) – that can exchange mass and heat. The total system

shall be closed, so that mass exchange only takes place between the two subsystems. For

simplicity chemical reactions are excluded. Then the mass balance of the k–th component

of the K–nary mixture reads:

dm′
k = −dm′′

k k = 1 . . . K (2.23)

dm′
k (dm′′

k) is the increase of the mass m′
k (m′′

k) of component k in phase’ (phase”).

The energy balance of phase’ is given by Eq. (2.8)

dU ′ = deQ
′ + diQ

′ − p′dV ′ +
K∑

k=1

h′
kdm′

k, (2.24)

if no electrification, magnetization, dissipative effects or interfacial phenomena are present.

deQ
′ is the heat supplied to phase’ from the surroundings of the total system. diQ

′ is the

heat that flows from phase” to phase’. Accordingly one finds for phase”:

dU ′′ = deQ
′′ + diQ

′′ − p′′dV ′′ +
K∑

k=1

h′′
kdm′′

k, (2.25)

The energy balance of the total system is given by

dU = dQ + dW (2.26)



2.1 Entropy Production and Phenomenological Equations 15

with

dQ = deQ
′ + deQ

′′ (2.27)

dW = −p′dV ′ − p′′dV ′′. (2.28)

On the other hand one has

dU = dU ′ + dU ′′, (2.29)

from which follows with Eqs. (2.24) – (2.28)

diQ
′ +

K∑

k=1

h′
kdm′

k + diQ
′′ +

K∑

k=1

h′′
kdm′′

k = 0. (2.30)

The Gibbs relations of phase’ and phase” are

T ′dS′ = dU ′ + p′dV ′ −
K∑

k=1

µ′
kdm′

k (2.31)

T ′′dS′′ = dU ′′ + p′′dV ′′ −
K∑

k=1

µ′′
kdm′′

k. (2.32)

The change of entropy of the total system dS can be calculated by inserting the mass balance

(2.23) and the energy balances (2.24, 2.25) in the Gibbs relations

dS = dS′ + dS′′ =
deQ

′

T ′ +
deQ

′′

T ′′ +
( 1

T ′ −
1

T ′′

)(

diQ
′ +

K∑

k=1

h′
kdm′

k

)

−
K∑

k=1

(µ′
k

T ′ −
µ′′

k

T ′′

)

dm′
k. (2.33)

Here the relation (2.30) has been used. From comparison of Eq. (2.33) to the general form

of the entropy balance equation Eq. (2.10)

dS

dt
=

deS

dt
+

diS

dt

one obtains the entropy flow
deS

dt
=

1

T ′
dQ′

e

dt
+

1

T ′′
dQ′′

e

dt
(2.34)

and the entropy production

diS

dt
=
(

JQ +

K∑

k=1

h′
kJk

)( 1

T ′ −
1

T ′′

)

−
K∑

k=1

Jk

(µ′
k

T ′ −
µ′′

k

T ′′

)

≥ 0, (2.35)
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where JQ = (diQ
′/dt) is the heat flux from phase” to phase’ and Jk = (dm′

k/dt) the mass

flux from phase” to phase’. The inequality sign in Eq. (2.35) is true for actual (irreversible)

processes in the system, the equality sign for reversible limiting cases. Apart from the trivial

case in which the phase boundary is impermeable to matter and heat (Jk = JQ = 0) the

entropy production only disappears for T ′ = T ′′ and µ′
k = µ′′

k. From the inequality sign in

Eq. (2.35) follows that for µ′
k = µ′′

k heat flows from the box with higher temperature to the

box with lower temperature. For T ′ = T ′′ matter flows from the box with higher chemical

potential to the box with lower chemical potential.

Comments on recent literature work We will now deal with a special case of the

discontinuous system displayed in Fig. 2.1. Mass and heat are exchanged between the two

subsystems, but their pressures p′ and p′′ and their temperatures T ′ and T ′′ shall be kept

constant. According to Eq. (2.28) the work done on the total system is given by

dW = −p′dV ′ − p′′dV ′′ = −
K∑

k=1

(p′υ′
k − p′′υ′′

k)dm′
k (2.36)

with υ′
k and υ′′

k the partial specific volumes of component k in phase’ and phase”. As pressure

and temperature are kept constant, the entropy change of phase’ is

dS′ =
K∑

k=1

s′kdm′
k. (2.37)

From comparison to Eq. (2.21) it follows

diQ
′ + deQ

′ = 0 (2.38)

In the same way one obtains for phase”

deQ
′′ + diQ

′′ = 0. (2.39)

With the help of Eq. (2.30) the relation

deQ
′ + deQ

′′ = −(diQ
′ + diQ

′′) =

K∑

k=1

(h′
k − h′′

k)dm′
k. (2.40)

is found. Replacing diQ
′ in Eq. (2.35) according to Eqs. (2.38, 2.40) and using h′′

k = µ′′
k+T ′′s′′k

yields

T ′diS = −
[deQ

′′

T ′′ +
K∑

k=1

s′′kdm′
k

]

(T ′ − T ′′) −
K∑

k=1

(µ′
k − µ′′

k)dm′
k ≥ 0. (2.41)
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T ′diS is the dissipation function. It can also be interpreted in terms of dissipated work. As

will be shown below (page 17), the heterogenous systems performs the work

dWrev = dW − T ′diS, (2.42)

if the masses are exchanged reversibly between the two subsystems. Here dW is given by

Eq. (2.36).

Although Dhont [19, 20, 21] considers exactly the same discontinuous system with K = 2,

he obtains a different result. His expression for the reversible work reads

dWrev
?
= (µ′

1 − µ′′
1)dm′

1 + (µ′
2 − µ′′

2)dm′
2 =

2∑

k=1

(µ′
k − µ′′

k)dmk.
′ (2.43)

Obviously both, dW and the first term of the dissipation function Eq. (2.41) are missing in the

description of Dhont. The first term of the dissipation function, however, is quite important

and should not be neglected. It vanishes only in the absence of temperature gradients

(T ′ = T ′′) and expresses the often forgotten fact that heat flows all the time through the

system thus permanently producing entropy. Dhont uses a relation dF
?
= dWrev−SdT , which

he derives by relating the reversibly exchanged heat to the reversibly exchanged entropy by

dQrev ?
= TdS. This is, however, only true for closed homogenous systems, where no particles

are exchanged with the surroundings (see Eq. (2.21)). At this point it should also be stated

that all interpretations of thermodynamic potentials in terms of maximum work ((∆F )T ),

maximum non expansion work ((∆G)p,T ), exchanged heat ((∆H)p) are not necessarily true

for open systems, where the first law is no longer given by dU = dQ + dW .

Work for reversible mass exchange In the literature reversible heat and mass exchange

is hardly ever treated. To our knowledge, reversible mass exchange between two subsystems

at different temperatures has only been considered by Dhont [19, 20, 21], who obtained

Eq. (2.43) by relating the change in free energy to the reversible work. Since this procedure is

not necessarily correct for open systems, we will now explicitely calculate the work performed,

if heat and mass are reversibly exchanged between the two subsystems of Fig. 2.1 [44].

Again p′, p′′, T ′ and T ′′ shall be kept constant. We will assume T ′ < T ′′. The heat deQ
′′

is supplied to the heterogenous system from the hot thermal bath and the mass dm′
1 is

reversibly transfered from phase” to phase’.

1. First phase” is brought in contact with a particle reservoir of pure substance 1 with

temperature T ′′, chemical potential µ′′
1 , and pressure p′′−π′′ with π′′ being the osmotic

pressure of components 2, . . . ,K in phase”. This particle reservoir will be called system

A with volume VA, entropy SA, total mass mA, specific entropy sA = SA/mA, specific

enthalpy hA, and specific volume υA = VA/mA. The mass dm′
1 can be moved from
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phase” to the particle reservoir without any dissipative effects.

2. After separating system A from phase”, it is first isothermally expanded or compressed

and then adiabatically expanded to be converted into system B, which has temperature

T ′ < T ′′, chemical potential µ′
1, and pressure p′−π′. π′ is the osmotic pressure of species

2, . . . K in phase’. Further state parameters of system B are VB, mB = mA, SB, sB,

hB , υB .

3. In the next step system B is brought in contact with phase’. dm′
1 can be reversibly

transfered from system B to phase’.

4. The total heat supplied to the heterogenous system from the hot thermal bath at T ′′

is deQ
′′. Part of this heat has already been used in steps 1 and 2. The remaining heat

dQ′′
4 can now be used to drive a reversible heat engine between the hot thermal bath

(T ′′) and the cold thermal bath (T ′). The performed work is given by [5]

dW4 = −dQ′′
4

(

1 − T ′

T ′′

)

. (2.44)

The corresponding works and heats are:

(a) heat and mass exchange between phase”/phase’ and particle reservoir (steps 1 and 3):

Phase” and system A as well as phase’ and system B are heterogenous systems where

pressures and temperatures are kept constant within the subsystems. Therefore they

may be described by Eqs. (2.36)– (2.40). For step 1 it is found

dW ′′
1 = p′′υ′′

1dm′
1 (2.45)

dW A
1 = −(p′′ − π′′)υAdm′

1 (2.46)

deQ
A
1 + deQ

′′
1 = (hA − h′′

1)dm′
1, (2.47)

and accordingly for step 3

dW ′
3 = −p′υ′

1dm′
1 (2.48)

dW B
3 = (p′ − π′)υBdm′

1 (2.49)

deQ
′
3 + deQ

B
3 = (h′

1 − hB)dm′
1. (2.50)

(b) isothermal expansion/compression and adiabatic expansion of particle reservoir (step

2):

The particle reservoir is first isothermally (T ′′) expanded or compressed until its entropy

is equal to SB . In a second step it is adiabatically expanded until its temperature equals
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T ′. During these two processes it exchanges the heat

∆Q2 = T ′′(SB − SA). (2.51)

with the thermal bath of temperature T ′′ and it performs the work

∆W2 = ∆U2 − ∆Q2

= (µ′
1 − µ′′

1)mA − (p′ − π′)VB + (p′′ − π′′)VA + T ′SB − T ′′SA − ∆Q2

= (µ′
1 − µ′′

1)mA − (p′ − π′)VB + (p′′ − π′′)VA + SB(T ′ − T ′′). (2.52)

Here the first law for closed systems and U = µm − pV + TS have been used. The

contributions of the mass dm′
1 to ∆Q2 and ∆W2 are

dW2 = [(µ′
1 − µ′′

1) − (p′ − π′)υB + (p′′ − π′′)υA + sB(T ′ − T ′′)]dm′
1 (2.53)

dQ2 = T ′′(sB − sA)dm′
1. (2.54)

(c) reversible heat engine between thermal bathes at T ′′ and T ′ < T ′′ (step 4):

Already in step 1 and step 2 heat has been extracted from the hot thermal bath (T ′′).

There remains

dQ′′
4 = deQ

′′ − deQ
A
1 − deQ

′′
1 − dQ2. (2.55)

By inserting Eqs. (2.47, 2.54) into Eq. (2.55) and by using

µ′′
1 = hA − T ′′sA = h′′

1 − T ′′s′′1 (2.56)

one obtains

dQ′′
4 = deQ

′′ + T ′′(s′′1 − sB)dm′
1. (2.57)

Hence, according to Eq. (2.44) the heat engine performs the work

dW4 = −deQ
′′

T ′′ (T ′′ − T ′) − (s′′1 − sB)(T ′′ − T ′)dm′
1 (2.58)

and supplies the heat

dQ′
4 = −dW4 − dQ′′

4 = −deQ
′′ T

′

T ′′ − T ′(s′′1 − sB)dm′
1 (2.59)

to the cold thermal bath (T ′).
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Now we have to sum over steps 1–4. The total work performed can be obtained from

Eqs. (2.45, 2.46, 2.48, 2.49, 2.53, 2.58)

dW rev = dW ′′
1 + dW A

1 + dW2 + dW ′
3 + dW B

3 + dW4

= −(p′υ′
1 − p′′υ′′

1 )dm′
1 +

[deQ
′′

T ′′ + s′′1dm′
1

]

(T ′ − T ′′) + (µ′
1 − µ′′

1)dm′
1 (2.60)

in perfect agreement with Eqs. (2.36, 2.41, 2.42).

The heats exchanged with the hot (T ′′) and cold (T ′) thermal baths are given by

dQrev, hot = deQ
A
1 + deQ

′′
1 + dQ2 + dQ′′

4 = deQ
′′ (2.61)

dQrev, cold = dQ′
4 + deQ

′
3 + deQ

B
3 = deQ

′ − (dW rev − dW ) (2.62)

as can be shown with the help of Eqs. (2.55, 2.50, 2.59, 2.40, 2.38, 2.60, 2.36, 2.56) and by

using µ′
1 = hB −T ′sB . deQ

′ is the heat exchanged between the heterogenous system and the

cold thermal bath in the irreversible process. From Eq. (2.42) and from the positive sign of

the dissipation function it follows that

−dQrev, cold = −deQ
′ + (dW rev − dW ) = −deQ

′ − T ′diS ≤ −deQ
′. (2.63)

If the two subsystems reversibly exchange heat and mass, less heat is supplied to the cold

thermal bath (T ′) than for irreversible heat and mass transfer. This heat difference is con-

verted into work in the reversible case. The change in internal energy is independent of the

path of the process, since it is merely determined by the initial and the final state.

2.1.2.3 Entropy Production in Continuous Systems

In a continuous system, intensive quantities such as density, pressure, temperature, concen-

tration, etc., depend on the space–coordinates in a continuous manner. The mass balance of

each of the K components of the mixture is thus given by a continuity equation

∂ρk

∂t
= −~∇ · (ρk~vk) +

r∑

j=1

νkjJj k = 1 . . . K, (2.64)

where ρk = mk/V is the mass density of component k, ~vk is the velocity of component k,

νkj/Mk is the stoichiometric number and νkjJj the production of k per unit volume in the

j–th chemical reaction. Summing Eq. (2.64) over all substances k and using Eq. (2.17) one

obtains the law of conservation of mass

∂ρ

∂t
= −~∇ · (ρ~v) (2.65)
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with the total density

ρ =

K∑

k=1

ρk =

K∑

k=1

mk

V
=

m

V
(2.66)

and the center of mass velocity

~v =

K∑

k=1

ρk

ρ
~vk = ck~vk, (2.67)

where the total mass m =
∑

mk and the weight fractions ck = mk/m have been introduced.

The energy balance for a volume element of a continuous system arises from the concept of

heat, since such a space element represents an open region. We have seen in Sec. 2.1.1 that

it was meaningful and useful to define the heat dQ supplied to a single open phase for an

infinitesimal state change using Eq. (2.6). Then the corresponding change of internal energy

is given by

dU = dE − dEkin − dEpot = dQ +

K∑

k=1

hkdemk + dW − dEkin − dEpot. (2.68)

The conversion of Eq. (2.68) to continuous systems reads

∂(ρu)

∂t
+ ~∇ · (ρu~v)

︸ ︷︷ ︸

⇒ dU

= −~∇ · ( ~JQ +

K∑

k=1

hk
~Jk)

︸ ︷︷ ︸

⇒ dQ+
PK

k=1 hkdemk

+

K∑

k=1

~Jk · ~Fk − p ~∇ · ~v
︸ ︷︷ ︸

⇒ dW−dEkin−dEpot

−
3∑

i,j=1

Πij
∂vi

∂xj
,

︸ ︷︷ ︸

⇒viscous flow

(2.69)

where u = U/m is the specific internal energy and ~JQ is the heat flow3, which is defined by

this equation. Furthermore

~Jk = ρk(~vk − ~v) (2.70)

is the mass flow of component k, ~Fk the force per unit mass exerted on component k, Πij the

viscous pressures, vi the three components of ~v in a rectangular coordinate system, and xj the

three cartesian space coordinates. The brackets and arrows show which terms in Eq. (2.69)

correspond to which terms in Eq. (2.68). This is not immediately obvious for the expressions

containing work, kinetic energy and potential energy. For a derivation see Ref. [40].

From the Gibbs relation (2.15) we obtain for the local rate of increase of the entropy density

in the volume element

∂(ρs)

∂t
=

1

T

∂(ρu)

∂t
− 1

T

K∑

k=1

µk
∂ρk

∂t
, (2.71)

where s = S/m is the specific entropy.

3In the book by de Groot and Mazur [16] ~JQ is called reduced heat flow ( ~J ′

q).
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Just in the same way as for homogenous systems (Sec. 2.1.2.1) and heterogenous systems

(Sec. 2.1.2.2) the entropy balance equation is derived by inserting mass balance (2.64) and

energy balance (2.69) in the Gibbs relation (2.71). If the following relations are used

~∇
(µk

T

)

= hk
~∇
( 1

T

)

+
1

T
(~∇µk)T (2.72)

~∇p =

K∑

k=1

ρk(~∇µk)T (Gibbs Duhem relation) (2.73)

Tsk = hk − µk (2.74)

T ρs =

K∑

k=1

ρk(hk − µk) = ρu + p −
K∑

k=1

ρkµk, (2.75)

one obtains
∂(ρs)

∂t
+ ~∇ · (ρs~v) = −~∇ · ~JS + σ (2.76)

with the entropy flow

~JS =
~JQ

T
+

K∑

k=1

sk
~Jk (2.77)

and the local entropy production

σ =
[

~JQ +

K∑

k=1

hk
~Jk

]

· ~∇
( 1

T

)

− 1

T

K∑

k=1

~Jk ·
[

T ~∇
(µk

T

)

− ~Fk

]

+
1

T

r∑

j=1

AjJj −
1

T

3∑

i,j=1

Πij
∂vi

∂xj
≥ 0, (2.78)

where the affinity Aj has been defined by Eq. (2.19). The entropy flow has its analog in

Eq. (2.21) for the entropy flow in homogenous systems. Three of the terms in Eq. (2.78)

have already been encountered in homogenous (Sec. 2.1.2.1) and heterogenous (Sec. 2.1.2.2)

systems. The first part of Eq. (2.78) including heat ( ~JQ) and mass ( ~Jk) fluxes is analogous

to the entropy production in a discontinuous system (Eq. (2.35)), where chemical reactions

are excluded. Entropy production because of chemical reactions (
∑

AjJj/T ) also appears

in homogenous systems (Eq. (2.22)). Only the terms concerning external forces (~Fk) and

viscous flow (Πij) have not been considered before. The inequality sign in Eq. (2.78) is valid

for the actual irreversible course of the processes inside the volume element. The equality

sign holds for the reversible limiting case, i.e. if the thermodynamic equilibrium conditions

are satisfied within the system.
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Alternative expressions for the local entropy production are

σ = ~JQ · ~∇
( 1

T

)

− 1

T

K∑

k=1

~Jk ·
[

(~∇µk)T − ~Fk

]

+
1

T

r∑

j=1

AjJj −
1

T

3∑

i,j=1

Πij
∂vi

∂xj
(2.79)

σ = T ~JS · ~∇
( 1

T

)

− 1

T

K∑

k=1

~Jk ·
[

(~∇µk) − ~Fk

]

+
1

T

r∑

j=1

AjJj −
1

T

3∑

i,j=1

Πij
∂vi

∂xj
(2.80)

which follow from Eq. (2.78) with Eq. (2.72) or with Eqs. (2.74, 2.77), respectively.

2.1.3 Phenomenological Equations and Onsager Coefficients

It is known empirically that for a large class of irreversible phenomena and under a wide range

of experimental conditions the irreversible flows are linear functions of the thermodynamic

forces [16]

Ji =
∑

j

LijXj , (2.81)

where Ji and Xi are any of the cartesian components of the independent fluxes and ther-

modynamic forces appearing in the expression for the entropy production, which is of the

form

σ =
∑

i

JiXi. (2.82)

The quantities Lij are called phenomenological coefficients or Onsager coefficients and the

relations (2.81) will be referred to as the phenomenological equations, Onsager equations

or linear laws. From the requirement σ ≥ 0 follows that all diagonal elements are positive

Lii ≥ 0, whereas the off–diagonal elements must satisfy conditions of the form LiiLkk ≥
1
4(Lik + Lki)

2. Furthermore the Onsager Reciprocal Relations imply Lik = Lki.

In the following the phenomenological equations (2.81) will be given in explicit form for con-

tinuous systems without chemical reactions and viscous flow phenomena. Relations between

the Onsager coefficients and the experimentally accessible diffusion coefficients and heat con-

ductivities will be deduced for binary liquids. The dependence of Onsager coefficients on the

choice of enthalpy or entropy zero will be discussed. Finally, an expression for the Soret

coefficient in dilute solutions will be derived, which will be compared to the result of Duhr

and Braun [24].
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2.1.3.1 Phenomenological Equations

If we exclude chemical reactions and viscous flow phenomena and if we replace the K-th

diffusion current ~JK in the entropy production (2.79) by

~JK = −
K−1∑

k=1

~Jk (2.83)

we obtain

σ = − 1

T 2
~JQ · ~∇T − 1

T

K−1∑

k=1

~Jk · [{~∇(µk − µK)} T − ~Fk + ~FK ], (2.84)

which contains only independent fluxes and forces. Hence the phenomenological equations

read

~JQ = −Lqq

~∇T

T 2
−

K−1∑

k=1

Lqk
{~∇(µk − µK)} T − ~Fk + ~FK

T
(2.85)

~Ji = −Liq

~∇T

T 2
−

K−1∑

k=1

Lik
{~∇(µk − µK)} T − ~Fk + ~FK

T
i = 1 . . . K − 1 (2.86)

with Onsager reciprocal relations Lqi = Liq and Lik = Lki. An important special case of

Eqs. (2.85, 2.86) is a binary mixture (K = 2) in the absence of external forces (~F1 = ~F2 = 0)

~JQ = −Lqq

~∇T

T 2
− Lq1

{~∇(µ1 − µ2)}T

T
(2.87)

~J1 = −L1q

~∇T

T 2
− L11

{~∇(µ1 − µ2)}T

T
, (2.88)

where L11 ≥ 0, Lqq ≥ 0, L1q = Lq1, and L11Lqq − L2
1q ≥ 0.4 In mechanical equilibrium

~∇p =

K∑

k=1

ρk
~Fk (2.89)

pressure gradients vanish in the absence of external forces and from the Gibbs Duhem relation

(2.73) follows

{~∇(µ1 − µ2)} p,T =
1

c2
(~∇µ1)p,T . (2.90)

4L11, L1q , Lq1 and Lqq are the phenomenological coefficients used by de Groot and Mazur [16] (see also
footnote 3).
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Therefore instead of Eqs. (2.87, 2.88) one may write

~JQ = −Lqq

~∇T

T 2
− Lq1

(~∇µ1)p,T

c2T
(2.91)

~J1 = −L1q

~∇T

T 2
− L11

(~∇µ1)p,T

c2T
. (2.92)

Eqs. (2.87, 2.88) are based on the expression (2.79) for the entropy production σ. Alterna-

tively σ from Eq. (2.78) or from Eq. (2.80) may be used as a starting point. Using Eq. (2.78)

the phenomenological equations for a binary liquid in the absence of external forces read

~JQ + (h1 − h2) ~J1 = −lqq

~∇T

T 2
− lq1~∇

(µ1 − µ2

T

)

(2.93)

~J1 = −l1q

~∇T

T 2
− l11~∇

(µ1 − µ2

T

)

(2.94)

with l11 ≥ 0, lqq ≥ 0, l1q = lq1, and l11lqq − l21q ≥ 0. Starting from Eq. (2.80) one obtains

T ~JS = ~JQ + T (s1 − s2) ~J1 = −γ T 2
~∇T

T 2
− δ T

~∇(µ1 − µ2)

T
(2.95)

~J1 = −βT 2
~∇T

T 2
− αT

~∇(µ1 − µ2)

T
(2.96)

with α ≥ 0, γ ≥ 0, δ = βT , and αγ − β2T ≥ 0.5

Of course all descriptions Eqs. (2.87, 2.88), Eqs. (2.93, 2.94), and Eqs. (2.95, 2.96) are equally

valid and any of the sets of Onsager coefficients may be used. It will turn out, however, that

L1q and Lqq are invariant against shifts of entropy or energy zero. In contrast, l1q and lqq

depend on choice of enthalpy zero and β and γ depend on choice of entropy zero.

2.1.3.2 Relation between Onsager Coefficients, Diffusion Coefficients and Heat

Conductivities

The experimentally accessible coefficients are the heat conductivity in the uniform state κ0

(~∇c1 = 0), the heat conductivity in the stationary state κ∞ ( ~J1 = 0),6 the Dufour coefficient

D′′, the heat of transport Q⋆
1, the thermal diffusion coefficient DT , and the diffusion coefficient

5α, β, γ, and δ are the phenomenological coefficients as introduced by Landau [57]. Landau uses the
abbreviation µ = µ1 − µ2. Landau’s heat flow ~q is related to ~JQ by ~q = ~JQ + (h1 − h2) ~J1.

6The heat conductivity λ of de Groot and Mazur [16] corresponds to κ0, whereas Landau’s κ [57] is identical
to κ∞.
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D. They are defined by

~JQ = −κ0
~∇T − ρ1

(∂µ1

∂c1

)

p,T
TD′′~∇c1

= −κ∞~∇T + Q⋆
1
~J1 (2.97)

~J1 = −ρD~∇c1 − ρc1c2DT
~∇T. (2.98)

By comparing Eqs. (2.87, 2.88), Eqs. (2.93, 2.94), and Eqs. (2.95, 2.96) to Eqs. (2.97, 2.98) one

obtains the following relations between phenomenological coefficients, diffusion coefficients

and heat conductivities

κ∞ =
1

T 2

(

Lqq −
L2

1q

L11

)

=
1

T 2

(

lqq −
l21q

l11

)

= γ − β2 T

α
≥ 0 (2.99)

D =
L11

ρ c2 T

(∂µ1

∂c1

)

p,T
=

l11
ρ c2 T

(∂µ1

∂c1

)

p,T
=

α

ρ c2

(∂µ1

∂c1

)

p,T
≥ 0 (2.100)

c1c2DT =
L1q

ρT 2
=

l1q − l11(h1 − h2)

ρT 2
=

α

ρ

[∂(µ1 − µ2)

∂T

]

p,c1
+

β

ρ
(2.101)

D′′ = DT (2.102)

Q⋆
1 = c1

(∂µ1

∂c1

)

p,T
T

DT

D
(2.103)

κ0 = κ∞ + ρc1c2Q
⋆
1DT ≥ κ∞. (2.104)

Here Eq. (2.72), Eq. (2.90)7 and

~∇µi = (~∇µi)T +
(∂µi

∂T

)

c1,p

~∇T =
(∂µi

∂c1

)

p,T

~∇c1 +
(∂µi

∂T

)

c1,p

~∇T (2.105)

have been used. The inequalities Lii ≥ 0 and LiiLkk − L2
ik ≥ 0 imply κ∞ > 0, κ0 > 0 and

D > 0. From the reciprocal relation Lik = Lki follows D′′ = DT . The thermal conductivity

for the uniform state κ0 is larger than the thermal conductivity for the stationary state κ∞.

2.1.3.3 Invariance against Shifts of Enthalpy or Entropy Zero

It has already been noted, that not all Onsager coefficients are invariant against shifts of

enthalpy or entropy zero. Most authors, however, seem to be unaware of this fact, and only

in Ref. [62] there is one sentence mentioning the problem. Therefore we will now explain

in detail the reasons and consequences. Firstly, one has to calculate the derivations of the

chemical potentials and the partial specific enthalpies appearing in Eqs. (2.100, 2.101) from

7Landau’s result [57] for D is recovered by replacing c−1
2 [∂µ1/∂c1]p,T by [∂µ/∂c1]p,T in Eq. (2.100).
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the Gibbs free energy of mixing

∆Gmix = G(p, T,m1,m2) − G0
1(p, T,m1) − G0

2(p, T,m2)

= m
(

c1[µ1(p, T, c1) − µ0
1(p, T )] + c2[µ2(p, T, c1) − µ0

2(p, T )]
)

. (2.106)

G is the Gibbs free energy of the mixture, G0
i the Gibbs free energy of pure component i,

mi the total mass of component i in the mixture, µi the chemical potential of component i

in the mixture, µ0
i the chemical potential of pure component i, and m = m1 + m2 the total

mass. ∆Gmix can be obtained from an equation of state and is invariant against shifts of

enthalpy or entropy zero.

With c2 = 1 − c1 and Eq. (2.90) follows

µ1(p, T, c1) − µ2(p, T, c1) =
[∂(∆Gmix/m)

∂c1

]

p,T
+ µ0

1(p, T ) − µ0
2(p, T ) (2.107)

and thus

1

c2

(∂µ1

∂c1

)

p,T
=

[∂(µ1 − µ2)

∂c1

]

p,T
=
[∂2(∆Gmix/m)

∂c2
1

]

p,T
(2.108)

[∂(µ1 − µ2)

∂T

]

p,c1
= −(s1 − s2) =

[∂2(∆Gmix/m)

∂c1∂T

]

p
− (s0

1 − s0
2) (2.109)

h1 − h2 =
[∂(∆Gmix/m)

∂c1

]

p,T
− T

[∂2(∆Gmix/m)

∂c1∂T

]

p
+ (h0

1 − h0
2) (2.110)

Here si and hi are the partial specific entropy and enthalpy of component i in the mixture,

and s0
i and h0

i are the specific entropy and enthalpy of the pure substance i. s0
i and h0

i depend

on choice of entropy or enthalpy zero and therefore [∂(µ1−µ2)/∂T ]p,c1 and (h1−h2) also do.

Note that component 1 and 2 generally have different zero points of entropy and enthalpy.

The measurable coefficients κ∞, D, and DT , in contrast, have to be invariant under shifts of

enthalpy or entropy zero. This has the following consequences for the Onsager coefficients

(cf. Eqs. (2.99-2.101)): L11 = l11 = αT , L1q and Lqq do not depend on the choice of enthalpy

or entropy zero. l1q and lqq depend on the choice of enthalpy zero. β and γ depend on the

choice of entropy zero. In particular, by inserting Eq. (2.109) into Eq. (2.101) β is found to

be of the form

β = α(s0
1 − s0

2) + ∆β, (2.111)

where ∆β does not depend on entropy zeros.

It is instructive to consider the experiments that correspond to the terms appearing in

Eq. (2.109):

−s1 + s2 and
[∂2(∆Gmix/m)

∂c1∂T

]

p
= −s1 + s2 + s0

1 − s0
2 (2.112)
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experiment 1 ⇒ (s1 − s2) experiment 2 ⇒ (s1 − s2 + s0
2 − s0

1)

↓∆m1 = ∆m
∆m2 = −∆m

m1,m2, p, T

m1 + ∆m ,m2 − ∆m, p, T

↓
A B

A B

m1,m2, p, T

m1 + ∆m, m2 − ∆m,
p, T

m1 = ∆m, m2 = 0,
p, T

m1 = 0, m2 = ∆m,
p, T

.

.

Figure 2.2: Experiments corresponding to the two terms of (2.112).

The first term of (2.112) is related to an experiment in an open system, to which an amount

∆m of substance 1 is added and from which an amount of ∆m of substance 2 is removed

(see Fig. 2.2, experiment 1). The entropy change of the system is given by

∆Sopen = (s1 − s2)∆m. (2.113)

According to Eq. (2.21) the entropy change of the open system cannot be directly related to

the heat exchanged with the surroundings. Therefore ∆Sopen is not a measurable quantity.

Accordingly the term −(s1 − s2) depends on the choice of the zero point of entropy.

The second term in (2.112) corresponds to an experiment in a closed system consisting of two

subsystems. At the beginning subsystem A contains the masses mA
1 = m1, mA

2 = m2 and

subsystem B contains the masses mB
1 = ∆m, mB

2 = 0. At the end of the experiment A has

mA
1 = m1 + ∆m, mA

2 = m2 − ∆m and B has mB
1 = 0, mB

2 = ∆m (see Fig. 2.2, experiment

2). The entropy change of the total system is made up from the entropy changes of the two

subsystems

∆Sclosed = ∆SA + ∆SB = (s1 − s2)∆m + (s0
2 − s0

1)∆m. (2.114)

If the experiment is performed reversibly, the entropy change ∆Sclosed can be measured

by measuring the heat exchanged with the surroundings. This is in agreement with the

invariance of (−s1 + s2 + s0
1 − s0

2) against shifts of entropy zero.
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2.1.3.4 Expression for the Soret Coefficient of a Dilute Solution

The Soret coefficient ST is the ratio of the thermal diffusion coefficient DT and the diffusion

coefficient D. From Eqs. (2.100, 2.101) follows

ST :=
DT

D
=
{[∂(µ1 − µ2)

∂T

]

p,c1
+

β

α

}{

c1

(∂µ1

∂c1

)

p,T

}−1
. (2.115)

For ideal mixtures or dilute solutions with c1 → 0 one has [57]

(∂µ1

∂c1

)

p,T
c1 =

kT

M1
, (2.116)

where M1 is the mass of one particle of component 1. With the definition

∆S∗ = (s1 − s2 + s0
2 − s0

1)M1 (2.117)

Eq. (2.115) becomes

ST = −∆S∗

kT
+

M1(
β
α + s0

2 − s0
1)

kT
= −∆S∗

kT
+

M1

kT

∆β

α
. (2.118)

∆S∗ is the change of entropy for the experiment 2 sketched in Fig. 2.2, where one particle of

substance 1 is added to subsystem A and M1/M2 particles of substance 2 are withdrawn from

subsystem A. ∆β has been introduced in Eq. (2.111). Both ∆S∗ and ∆β/α are invariant

against shifts of entropy zero.

Duhr and Braun [23, 24] derived for a solute–solvent system

ST = −∆S

kT
, (2.119)

where ∆S is the solvation entropy. Here the solute (component 1) is assumed to be highly

diluted in the solvent (component 2). If we identify ∆S with ∆S∗ from Eq. (2.117), it follows

from comparison to Eq. (2.118)

β
?
= α(s0

1 − s0
2), ∆β

?
= 0 (2.120)

in the model of Duhr and Braun. This implies

~J1
?
= α[~∇(µ1 − µ2) + (s0

1 − s0
2)

~∇T ] = α~∇(µ1 − µ2 − µ0
1 + µ0

2). (2.121)

In thermodynamic equilibrium one has ~∇T = ~∇µ = 0. In the description of Duhr and

Braun, both the non–equilibrium and the equilibrium stationary states are characterized by

the same condition ~∇(µ1 − µ2 − µ0
1 + µ0

2) = 0, regardless whether temperature gradients are

present or not. This might be questionable.
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According to Ref. [24] the solvation entropy is given by

∆S = ∆S(hydr) + ∆S(ionic) = A
(

∆shydr −
β̃σ2

eff

4εε0T
× λDH

)

, (2.122)

where S(hydr) and S(ionic) are the entropy of water hydration and the entropy of ionic shielding,

A is the surface of one particle of component 1, ∆shydr = ∆S(hydr)/A is the particle area

specific hydration entropy, ε0 is the vacuum permittivity, ε is the dielectric constant, β̃ =

1+ T
ε

∂ε
∂T = 2.3, σeff is the effective surface charge density, and λDH is the Debye length. Duhr

and Braun measured the Soret coefficients of single DNA and polystyrene beads in aqueous

solutions and analyzed the dependence on salt concentration, i.e. on λDH, on temperature T ,

and on molecule size A. They found a good agreement between experimental data and their

model Eqs. (2.119, 2.122). However, it might be possible to explain their data just as well

by Eq. (2.118) with ∆S∗ = ∆S from Eq. (2.122), if appropriate assumptions about ∆β/α

are made. For example one could conclude from Fig. 3(a) in Ref. [24], that ∆β/α does not

depend on the Debye length λDH. We are not sure, whether ∆β = 0 and thus β = α(s0
1 − s0

2)

necessarily follows from the data presented in Ref. [24].

To summarize, the following questions come up from the model of Duhr and Braun: Does

β = α(s0
1 − s0

2) hold? Or equivalently: Are non–equilibrium stationary states characterized

by the condition ~∇(µ1 − µ2 − µ0
1 + µ0

2) = 0? Answers can be given, if Onsager coefficients

are calculated from diffusion and thermal diffusion data by Eqs. (2.100, 2.101). For that

purpose the derivations of the chemical potentials have to be calculated from an equation

of state according to Eqs. (2.108, 2.109). The answer to above questions is “No” in case of

polymer blends, as was recently shown by Voit [104]. He obtained Onsager coefficients for

poly(dimethyl-siloxane)/poly(ethyl-methyl-siloxane) over a wide concentration range from

diffusion and thermal diffusion data by using the Flory Huggins theory. The expression

∆β/α = (β/α + s0
2 − s0

1) was found to depend on concentration and to be of same order of

magnitude as ∆S∗/M1 in Eq. (2.118). In a next step Onsager coefficients of simple mixtures

and polymer solutions should be evaluated, as for these systems there exist both, reliable

diffusion and thermal diffusion data (simple mixtures: e.g. Ref. [110]; polymer solutions: e.g.

Ref. [82]), as well as successful equations of state (simple mixtures: Peng–Robinson equation

of state [79], Soave Redlich Kong equation of state [79]; polymer solutions: cubic equation

of state [59], perturbed hard sphere chain equation of state [38]).

In case of polymer solutions, another important argument should be mentioned in this con-

text. It can be shown theoretically and experimentally, that the Onsager coefficient L11 = αT

depends on hydrodynamic interaction, whereas the thermal diffusion coefficient DT as well

as the Onsager coefficient L1q do not (see Ref. [11, 87, 117, 85] and Sec. 2.2.5). According to

Eq. (2.101) and with the help of Eq. (2.109), β can be expressed in terms of L1q as follows

β = α(s1 − s2) +
L1q

T 2
. (2.123)
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L1q does neither depend on entropy zeros nor on hydrodynamic interaction. If β = α(s0
1 − s0

2)

was valid, L1q ∝ α would follow, which contradicts both, experimental and theoretical find-

ings.

2.2 Reference Velocities

2.2.1 Reference Velocities and Diffusion Currents

In chapter 2.1 the diffusion flow was always given by

~Jk = ρk(~vk − ~v) k = 1 . . . K, (2.124)

where ~v was the center of mass velocity. Because of

K∑

k=1

~Jk = 0 (2.125)

only K−1 diffusion flows are independent. Sometimes it is more convenient to use a diffusion

flow [40]

~J a
k = ρk(~vk − ~v a) k = 1 . . . K (2.126)

with an arbitrary reference velocity

~v a =

K∑

k=1

ak~vk (2.127)

and
K∑

k=1

ak = 1. (2.128)

From Eqs. (2.126, 2.127, 2.128) one obtains the following relation between the fluxes:

K∑

k=1

ak

ck

~J a
k = 0 (2.129)

For ak = ck one has ~v a = ~v and ~J a
k = ~Jk. The three other important reference velocities are:

1. the mean volume velocity

~v vol =
K∑

k=1

ρkυk~vk =
K∑

k=1

φk~vk (2.130)

with weights ak = ρkυk = φk. υk and φk are the partial specific volume and the volume
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fraction of component k in the mixture. The corresponding diffusion flows

~J vol
k = ρk(~vk − ~v vol) k = 1 . . . K (2.131)

are related to each other by
K∑

k=1

υk
~J vol
k = 0. (2.132)

2. the velocity ~vK of species K with weights ak = δkK . Hence

~J rel
k = ρk(~vk − ~vK) k = 1 . . . K − 1 (2.133)

are independent and

~J rel
K = 0. (2.134)

3. the mean molar velocity

~v mol =

K∑

k=1

xk~vk (2.135)

with weights ak = xk = Nk/N (mole fraction of species k). The fluxes

~J mol
k = ρk(~vk − ~v mol) k = 1 . . . K (2.136)

fulfill the relation
K∑

k=1

~J mol
k

Mk
= 0, (2.137)

where Mk is the molecular mass of component k.

Conversion from a reference velocity ~v a to a second velocity ~v b is often necessary. The

transition from the diffusion current

~J a
j = ρj(~vj − ~v a) (2.138)

to the second diffusion current

~J b
k = ρk(~vk − ~v b) (2.139)

is realized by [16]

~J a
j =

K−1∑

k=1

[

δjk + (aK
bk

bK
− ak)

cj

ck

]

~J b
k =:

K−1∑

k=1

Bab
jk

~J b
k j = 1 . . . K − 1, (2.140)

where ak (bk) are the weights corresponding to ~v a (~v b) according to Eq. (2.127). The proof

of Eq. (2.140) is found by expressing both ~J a
j and ~J b

k in terms of the set of independent

velocities ~v1, ~v2, . . . , ~vK (this is done with the help of Eqs. (2.126, 2.127)) and by identifying
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the coefficients of these velocities. Three special cases of Eq. (2.140) shall be considered.

1. binary mixture (K = 2): Using a1 + a2 = b1 + b2 = 1, Eq. (2.140) reduces to

~J a
1 =

[

1 +
(

a2
1 − b2

b2
− (1 − a2)

) c1

c1

]

~J b
1 =

a2

b2

~J b
1 . (2.141)

Important examples are

~J vol
1 = ρ2υ2

~J rel
1 = φ2

~J rel
1 (2.142)

and

~J1 =
c2

ρ2υ2

~J vol
1 =

1

ρυ2

~J vol
1 =

c2

φ2

~J vol
1 = c2

~J rel
1 . (2.143)

2. transformation from center of mass velocity to mean molar velocity: Taking into ac-

count

xj =
Nj

∑K
i=1 Ni

=
cj/Mj

∑K
i=1 ci/Mi

(2.144)

one obtains from Eq. (2.140)

~J mol
j =

K−1∑

k=1

[

δjk + cj

(xK

cK
− xk

ck

)]

~Jk =
K−1∑

k=1

cj

xj

(∂xj

∂ck

)

~Jk j = 1 . . . K − 1, (2.145)

where the abbreviation

(∂/∂ck) ≡ (∂/∂ck)p,T,c1,...,ck−1,ck+1,...cK−1
. (2.146)

has been introduced. Accordingly the inverse transformation is given by

~Jj =
K−1∑

k=1

xk

ck

( ∂cj

∂xk

)

~J mol
k j = 1 . . . K − 1 (2.147)

with

(∂/∂xk) ≡ (∂/∂xk)p,T,x1,...,xk−1,xk+1,...xK−1
. (2.148)

3. transformation from center of mass velocity to mean volume velocity: With ρk = ckρ

it follows from Eq. (2.140)

~J vol
j =

K−1∑

k=1

[

δjk + (ρKυK
ck

cK
− ρkυk)

cj

ck

]

~Jk

=
K−1∑

k=1

[

δjk + ρj(υK − υk)
]

~Jk j = 1 . . . K − 1. (2.149)
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With the help of

∂ρ

∂ck
= −ρ2

( ∂ V

∂mk

)

p,T,m1,...,mk−1,mk+1,...,mK−1, m
= −ρ2(υk − υK) (2.150)

and

∂ρj

∂ck
=

∂(ρ cj)

∂ck
= ρ δjk +cj

∂ρ

∂ck

(2.150)
= ρ

[

δjk +ρj(υK−υk)
]

j, k = 1 . . . K−1 (2.151)

the conversion relation (2.149) takes the simple form

~J vol
j =

K−1∑

k=1

1

ρ

∂ρj

∂ck

~Jk j = 1 . . . K − 1. (2.152)

Then the inverse transformation is given by

~Jj =

K−1∑

k=1

ρ
∂cj

∂ρk

~J vol
k j = 1 . . . K − 1, (2.153)

with

(∂/∂ρk) ≡ (∂/∂ρk)p,T,ρ1,...,ρk−1,ρk+1,...ρK−1
(2.154)

and

(∂cj/∂ρk) =
1

ρ

[

δjk + cj

( υk

υK
− 1
)]

. (2.155)

Up to now we have discussed different reference velocities, which are not necessarily equal

to zero. All descriptions are equally valid, and any of the reference velocities can be chosen.

The transformation from one reference velocity to a second reference velocity according

to Eq. (2.140) does not involve any problems. The situation is more complicated, if the

vanishing of a reference velocity is considered. In general it is not possible to conclude from

the vanishing of one reference velocity that also all other reference velocities are equal to

zero. Remember that the reference velocities are generally complicated functions of space

and time

~v a = ~v a(~r, t). (2.156)

2.2.2 Prigogine’s Theorem

According to Eq. (2.79) the local entropy production without chemical reactions and viscous

flow phenomena is given by

σ = ~JQ · ~∇
( 1

T

)

− 1

T

K∑

k=1

ρk(~vk − ~v ) ·
[

(~∇µk)T − ~Fk

]

, (2.157)
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where ~Jk = ρk(~vk − ~v) has been used. Thus σ depends on the center of mass velocity ~v.

For mechanical equilibrium Prigogine [80] has shown that the center of mass velocity ~v in

Eq. (2.157) can be replaced by any other velocity ~v0.

σ = ~JQ · ~∇
( 1

T

)

− 1

T

K∑

k=1

ρk(~vk − ~v0) ·
[

(~∇µk)T − ~Fk

]

(2.158)

The proof of this theorem follows from the equality

K∑

k=1

ρk

[

(~∇µk)T − ~Fk

]

= 0, (2.159)

which can be derived by combining the mechanical equilibrium condition (2.89) with the

Gibbs Duhem relation (2.73).

It should be noted that ~v0 can take any value. For example by choosing ~v0 = 0 one obtains

σ = ~JQ · ~∇
( 1

T

)

− 1

T

K∑

k=1

~J lab
k ·

[

(~∇µk)T − ~Fk

]

, (2.160)

where

~J lab
k = ρk~vk k = 1 . . . K (2.161)

is the mass flow in the laboratory reference frame. It is, however, not possible to derive

phenomenological equations from Eq. (2.160). This can only be done, if σ =
∑

JiXi con-

tains independent fluxes Ji and forces Xi. The fluxes ~J lab
k in Eq. (2.160) do not fulfill this

requirement since they are related by

K∑

k=1

~J lab
k = ρ~v. (2.162)

Eliminating the K–th mass flow ~J lab
K from Eq. (2.160) does not solve the problem, because

then the resulting entropy production is no longer of the form σ =
∑

JiXi.

Phenomenological equations can only be written down for ~v0 = ~v a, where ~v a is a reference

velocity as given by Eqs. (2.127, 2.128). Then the linear homogenous relation (2.129) between

the diffusion fluxes ~J a
k = ρk(~vk−~v a) allows to express the entropy production in the required

form. More specifically, eliminating the K–th diffusion flow ρK(~vK − ~v a) from Eq. (2.158)

and using the abbreviation

~X a
k =

[

(~∇µk)T − ~Fk

]

− akcK

aKck

[

(~∇µK)T − ~FK

]

(2.163)

(2.159)
=

K−1∑

i=1

(

δik +
akci

aKck

)[

(~∇µi)T − ~Fi

]

, (2.164)
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one finds

σ = ~JQ · ~∇
( 1

T

)

− 1

T

K−1∑

k=1

~J a
k · ~X a

k , (2.165)

which contains only independent fluxes and forces. Hence the phenomenological equations

read

~JQ = −L a
qq

~∇T

T 2
−

K−1∑

k=1

L a
qk

~X a
k

T
(2.166)

~J a
i = −L a

iq

~∇T

T 2
−

K−1∑

k=1

L a
ik

~X a
k

T
i = 1 . . . K − 1 (2.167)

where L a
qq, L a

iq, and L a
ik are the Onsager coefficients corresponding to the reference velocity

~v a. Onsager’s reciprocity law states L a
ik = L a

ki and L a
iq = L a

qi. For ak = ck one has ~v a = ~v,

L a
qq = Lqq, L a

iq = Liq, L a
ik = Lik and the phenomenological equations (2.85, 2.86) from

Sec. 2.1.3.1 are recovered.

The Onsager coefficients corresponding to ~v a (L a
qq, L a

iq, L a
ik) are related to the Onsager

coefficients corresponding to ~v b (L b
qq, L b

iq, L b
ik) by

L a
qq = L b

qq (2.168)

L a
iq = L a

qi =

K−1∑

j=1

Bab
ij L b

jq =

K−1∑

j=1

Bab
ij L b

qj (2.169)

L a
ik =

K−1∑

j,l=1

Bab
ij L b

jl B
ab
kl , (2.170)

where Bab
ij has been defined in Eq. (2.140). Eqs. (2.168)–(2.170) are easily derived from

Eq. (2.140) and

~X b
l =

K−1∑

k=1

Bab
kl

~X a
k l = 1 . . . K − 1, (2.171)

where ~X a
k and ~X b

l are given by Eq. (2.164) and by the corresponding formulae with b in-

stead of a. Note that Eq. (2.164) and Eq. (2.171) are only true for mechanical equilibrium

(Eq. (2.89)).

An important special case of Eqs. (2.170)–(2.171) is a binary mixture with

L a
11 =

a2
2

b2
2

L b
11, B11 =

a2

b2
, ~J a

1 =
a2

b2

~J b
1 , ~Xa

1 =
1

a2
[(~∇µ1)T − ~F1] =

b2

a2

~X b
1 . (2.172)

The concluding remarks of Sec. 2.2.1 can be similarly repeated here: In mechanical equi-

librium symmetric Onsager coefficients can be introduced for any reference velocity and the

corresponding phenomenological equations are all equally valid. The transformation from
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one set of Onsager coefficients (L a
qq, L a

iq, L a
ik, reference velocity ~v a) to a second set of On-

sager coefficients (L b
qq, L b

iq, L b
ik, reference velocity ~v b) is easily performed with the help of

Eqs. (2.168)–(2.170). Only the fluxes in the laboratory reference frame ~J lab
k = ρk~vk are

problematic. Even though the entropy production might be expressed in terms of ~J lab
k ,

phenomenological equations cannot be written down for these fluxes.

Frictional formalism At the very end of this section we would like to mention the fric-

tional formalism of non–equilibrium thermodynamics and the relation between friction coef-

ficients and Onsager coefficients. According to Ref. [103],8 in the absence of external forces

and temperature gradients, multicomponent diffusion can be described by the general friction

equations
K∑

j=1

fijρj(~vi − ~vj) = −(~∇µi)p,T i = 1 . . . K (2.173)

and the entropy production

σ =
1

2T

K∑

i,j=1

fijρiρj(~vi − ~vj)
2. (2.174)

The symmetric friction coefficients fij can be related to the Onsager coefficients L rel
ik as

follows

f−1
ik = −L rel

ik

T
i, k = 1 . . . K − 1 (2.175)

fKi = fiK = − 1

ρK

K−1∑

k=1

fkiρk i = 1 . . . K − 1. (2.176)

Eqs. (2.173)–(2.176) follow from the Gibbs Duhem relation (2.73) and Eqs. (2.165, 2.167)

with ~J rel
i = ρi(~vi−~vK) and ~X rel

i = (~∇µi)p,T , if the symmetry fik = fki is taken into account.

For a binary liquid (K = 2) it is found from Eqs. (2.174, 2.176)

f12 =
ρ1

ρ2

T

L rel
11

=
c1

c2

T

L rel
11

(2.177)

Tσ = ~J rel
1

~X rel
1 = ( ~J rel

1 )2/L rel
11 = f12ρ1ρ2(~v1 − ~v2)

2 (2.178)

with ~J rel
1 = ρ1(~v1 − ~v2).

8Vink [103] uses the number density nk = Nk/V instead of the mass density ρk = mk/V and accordingly
the chemical potential per particle µ′

k = Mkµk.
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2.2.3 Definition of Diffusion Coefficients

Most generally, thermal diffusion coefficients D a,y
i,T , barodiffusion coefficients D a,y

i,p and mutual

diffusion coefficients D a,y
ik may be defined by

~J a
i = −D a,y

i,T
~∇T − D a,y

i,p
~∇p −

K−1∑

k=1

D a,y
ik

~∇yk i = 1 . . . K − 1, (2.179)

where ~J a
i = ρi(~vi − ~v a) is the mass flux with an arbitrary reference velocity (a = mass, vol,

rel, mol, . . . ; see Sec. 2.2.1) and yk is a composition variable (yk = ρk, ck, xk, . . . ). This is

the generalization of Eq. (XI.51) from Ref. [16] to non–isothermal, non–isobaric systems. It

is, of course, possible to relate these diffusion coefficients to the Onsager coefficients L a
qq, L a

iq,

L a
ik, which have been introduced in the last section by Eqs. (2.166, 2.167). From the Onsager

reciprocal relations one thus obtains symmetry relations between the diffusion coefficients.

However, we will not discuss this subject here, but will concentrate on transformations

between reference velocities and composition variables.

The transition from one composition variable yk to a second composition variable zl in the

presence of temperature and pressure gradients is realized by

~∇zl =
(∂zl

∂T

)

p,{yi}
~∇T +

(∂zl

∂p

)

T,{yi}
~∇p +

K−1∑

k=1

( ∂zl

∂yk

)

p,T,y1,...,yk−1,yk+1,...,yK−1

~∇yk. (2.180)

For example, ~∇ρl (gradients in mass density) can be evaluated from ~∇ck (gradients in weight

fraction) by

~∇ρl = −ρlα~∇T + ρlκ~∇p +

K−1∑

k=1

∂ρl

∂ck

~∇ck l = 1 . . . K − 1, (2.181)

with the thermal expansion coefficient α = V −1(∂V/∂T )p,m1,...,mK
, the isothermal compress-

ibility κ = −V −1(∂V/∂p)T,m1,...,mK
, and (∂/∂ck) from Eq. (2.146).9

The diffusion coefficients D b,z
i,T , D b,z

i,p and D b,z
ik , which are defined by

~J b
j = −D b,z

j,T
~∇T − D b,z

j,p
~∇p −

K−1∑

l=1

D b,z
jl

~∇zl, (2.182)

can be related to the diffusion coefficients D a,y
i,T , D a,y

i,p and D a,y
ik from Eq. (2.179) with the

9In [61] ~∇ρl =
P

(∂ρl/∂ci)~∇ci is used, although thermal diffusion phenomena are studied. The obtained
results are only true for mixtures with negligible thermal expansion.
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help of Eq. (2.140) and Eq. (2.180):

D a,y
i,T =

K−1∑

j=1

Bab
ij

[

D b,z
j,T +

K−1∑

l=1

D b,z
jl

(∂zl

∂T

)

p,{yi}

]

(2.183)

D a,y
i,p =

K−1∑

j=1

Bab
ij

[

D b,z
j,p +

K−1∑

l=1

D b,z
jl

(∂zl

∂p

)

T,{yi}

]

(2.184)

D a,y
ik =

K−1∑

j,l=1

Bab
ij D b,z

jl

( ∂zl

∂yk

)

p,T,y1,...,yk−1,yk+1,...,yK−1

(2.185)

Conventional choices of reference velocities ~v a and composition variables yk are: the center

of mass velocity ~v combined with weight fractions ck, the mean volume velocity ~v mol together

with mass densities ρk, and the mean molar velocity in combination with mole fractions xk.

In the absence of pressure gradients it is practical to introduce diffusion coefficients Di,T ,

Dik, D∗
i,T , D∗

ik, Di,T , Dik as follows:

~Ji = −ρ cicKDi,T
~∇T − ρ

K−1∑

k=1

Dik
~∇ck i = 1 . . . K − 1, (2.186)

~J mol
i

Mi
= −n xixKD∗

i,T
~∇T − n

K−1∑

k=1

D∗
ik

~∇xk i = 1 . . . K − 1, (2.187)

~J vol
i = −ρiφK Di,T

~∇T −
K−1∑

k=1

Dik
~∇ρk i = 1 . . . K − 1, (2.188)

Here ~J mol
i /Mi is a particle diffusion flux and n = N/V the total number density. The prefac-

tor of the thermal diffusion coefficients n xixK in Eq. (2.187) has been chosen in agreement

with the result of Ghorayeb and Firoozabadi [35]. They have shown that the expression

n xi(1 − xi)D
∗
i,T , which is used in Refs. [48, 100], is only correct for binary systems.

With the help of Eq. (2.145) and Eqs. (2.183, 2.185) the relation between the diffusion

coefficients D∗
i,T , D∗

ik and Di,T , Dik is easily found.

D∗
ik =

K−1∑

j,l=1

(∂xi

∂cj

)

Djl

( ∂cl

∂xk

)

(2.189)

D∗
i,T xi xK =

K−1∑

j=1

(∂xi

∂cj

)

Dj,T cj cK , (2.190)

where (∂/∂ck) and (∂/∂xk) have been defined by Eqs. (2.146) and (2.148).

The transition from diffusion coefficients Di,T , Dik to Di,T , Dik is more complicated, because

in the presence of temperature gradients the mass density can change alone due to the

thermal expansion of the medium. From Eq. (2.152) and the general conversion formulae
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Eqs. (2.183, 2.185) one obtains

Dik =
K−1∑

j,l=1

(∂ρi

∂cj

)

Djl

( ∂cl

∂ρk

)

(2.191)

Di,T ρiφK =

K−1∑

j=1

(∂ρi

∂cj

)[

Dj,T cjcK + α

K−1∑

k,l=1

Djl

( ∂cl

∂ρk

)

ρk

]

. (2.192)

Here the abbreviation (∂/∂ρk) from Eq. (2.154) has been used and

(∂cl

∂T

)

p,{ρi}
= −

K−1∑

k=1

∂cl

∂ρk

(∂ρk

∂T

)

p,{ci}
= −

K−1∑

k=1

∂cl

∂ρk
(−αρk) (2.193)

has been taken into account. The thermal expansion coefficient α has been introduced

before.10

For binary mixtures (K = 2) all diffusion coefficients can be expressed in terms of the general

binary diffusion coefficients D and DT from Sec. 2.1.3.2. Using (∂x1/∂c1) = x1x2/(c1c2) and

(∂ρ1/∂c1) = ρ2υ2 = ρ1φ2/(c1c2) it follows from Eqs. (2.189)–(2.192)

D∗
11 =

(∂x1

∂c1

)

D11

( ∂c1

∂x1

)

= D11 = D (2.194)

D∗
1,T =

(∂x1

∂c1

) c1 c2

x1 x2
D1,T = D1,T = DT (2.195)

D11 =
(∂ρ1

∂c1

)

D11

(∂c1

∂ρ1

)

= D11 = D (2.196)

D1,T =
1

ρ1φ2

(∂ρ1

∂c1

)[

D1,T c1c2 + αD11

(∂c1

∂ρ1

)

ρ1

]

= DT +
α

φ2
D. (2.197)

Hence the three fluxes from Eqs. (2.186)–(2.188) are given by

~J1 = −ρ c1c2DT
~∇T − ρD~∇c1 (2.198)

~J mol
1

M1
= −n x1x2DT

~∇T − nD~∇x1 (2.199)

~J vol
1 = −ρ1φ2 DT

~∇T − ρ1αD ~∇T − D~∇ρ1. (2.200)

The term ρ1αD ~∇T in Eq. (2.200) must not be neglected for small Soret coefficients ST :=

DT /D. For example in mixtures of organic liquids one typically has ST ≈ ±(1 . . . 10) ×
10−3/K [51, 112] and α ≈ 1 × 10−3/K [64]. Hence φ2DT and αD are of same order of

magnitude. Some authors define the Soret coefficient of dilute solutions in a different way

~J vol
1 = −D[~∇ρ1 + ρ1S

∗
T

~∇T ] (c1 ≪ 1, φ2 ≃ 1). (2.201)

10The second term on the right hand side of Eq. (2.192) is missing in Eq. (64) in Ref. [61].
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ST = DT /D and S∗
T are related by

S∗
T = ST + α. (2.202)

In ideal gases α is simply given by 1/T and S∗
T −ST = 1/T is sometimes called the ideal gas

contribution [24, 113] to the Soret coefficient. This is, however, rather misleading, since it

originates from thermal expansion and has nothing to do with thermal diffusion. Actually,

ρ1 is not the most appropriate composition variable in the presence of temperature gradients.

x1 or c1, which are not affected by thermal expansion, are preferable.

According to Eqs. (2.198, 2.199) the diffusion coefficients in a binary mixture do not change,

if the mass flux ~J1, the total mass density ρ and the weight fractions ci are replaced by the

particle diffusion flux ~J mol
1 /M1, the total number density n and the mole fractions xi [72].

The corresponding reference velocities, however, are generally not identical (~v 6= ~v mol).

Again we repeat, that any reference velocity ~v a or composition variable yk may be used for

the description of the problem and transition to another reference velocity ~v b or composition

variable zk is always possible. The transformation of the corresponding diffusion coefficients

is especially simple in case of binary mixtures, but of course also possible for multicomponent

mixtures.

2.2.4 Evolution Equations

Up to now we have derived equations, which relate a flux (mass or heat flux) to the gradients

of the composition variables ~∇y1, . . . , ~∇yK−1 and the temperature gradient ~∇T . (The pres-

sure is assumed to be constant.) These equations do not allow for determination of the space–

and time–dependent composition and temperature fields y1(~r, t), . . . , yK−1(~r, t), T (~r, t). For

this one needs evolution equations

∂yi

∂t
= f(y1, . . . , yK−1, ~∇y1, . . . , ~∇yK−1, ∆y1, . . . ,∆yK−1, T, ~∇T,∆T, ~v a, ~v ) (2.203)

∂T

∂t
= f(y1, . . . , yK−1, ~∇y1, . . . , ~∇yK−1, ∆y1, . . . ,∆yK−1, T, ~∇T,∆T, ~v a, ~v ), (2.204)

where the reference velocity ~v a and the center of mass velocity ~v have to be determined

separately. Under certain conditions the evolution equations (2.203, 2.204) take a very simple

form

∂yi

∂t
= Da,y

i,T ∆T +

K−1∑

k=1

Day
ik ∆yk (2.205)

∂T

∂t
= Dth∆T. (2.206)
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Eq. (2.205) and Eq. (2.206) are often called extended diffusion equation and heat equation.

In this section we will derive the general evolution equations (2.203, 2.204) and will discuss

under which conditions they simplify to Eqs. (2.205, 2.206).

2.2.4.1 General Evolution Equations for Composition Variables

According to Eq. (2.64) the time derivative of the mass density of component k is given by

∂ρk

∂t
= −~∇ · (ρk~vk) = −~∇ · ~J lab

k k = 1 . . . K, (2.207)

if chemical reactions are excluded. Onsager equations cannot be derived for the fluxes in the

laboratory reference frame (cf. Sec. 2.2.2). Therefore ~J lab
k in Eq. (2.207) has to be replaced

by ~J a
k = ρk(~vk − ~v a)

∂ρk

∂t
= −~∇ · ~J a

k − ~∇ · (ρk~v
a) k = 1 . . . K. (2.208)

If ~J a
k is expressed in terms of ~∇ρ1, . . . ~∇ρK−1 (Eq. (2.179) with yk = ρk and ~∇p = 0), the

general evolution equation for the mass density ρk is obtained:

∂ρk

∂t
= ~∇ ·

[

Da,ρ
k,T

~∇T +
K−1∑

j=1

Da,ρ
kj

~∇ρj

]

− ~∇ · (ρk~v
a) k = 1 . . . K − 1. (2.209)

From Eq. (2.208) and
∂ρ

∂t
= −~∇ · (ρ~v) (2.210)

follows

∂ck

∂t
=

∂

∂t

(ρk

ρ

)

=
1

ρ

∂ρk

∂t
− ρk

ρ2

∂ρ

∂t

= −1

ρ

[

~∇ · ~J a
k + ~∇ · (ρk~v

a) − ck
~∇ · (ρ~v)

]

k = 1 . . . K − 1. (2.211)

The general evolution equation for the weight fractions is thus given by

∂ck

∂t
=

1

ρ
~∇ ·
[

Da,c
k,T

~∇T +

K−1∑

j=1

Da,c
kj

~∇cj

]

− 1

ρ

[

~∇ · (ckρ~v a) − ck
~∇ · (ρ~v)

]

, (2.212)

where Eq. (2.179) with yk = ck and ~∇p = 0 has been used.

The general evolution equation for the mole fractions is found from Eq. (2.208) and

∂n

∂t
= −~∇ · (n~v mol). (2.213)
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One obtains

∂xk

∂t
=

∂

∂t

(nk

n

)

=
1

Mkn

∂ρk

∂t
− nk

n2

∂n

∂t

= − 1

n

[

~∇ ·
~J a
k

Mk
+ ~∇ · (nk~v

a) − xk
~∇ · (n~v mol)

]

k = 1 . . . K − 1. (2.214)

nk = Nk/V is the number density of particles of component k. Replacing ~J a
k according to

Eq. (2.179) with yk = xk and ~∇p = 0 yields

∂xk

∂t
=

1

nMk

~∇ ·
[

Da,x
k,T

~∇T +

K−1∑

j=1

Da,x
kj

~∇xj

]

− 1

n

[

~∇ · (nk~v
a) − xk

~∇ · (n~v mol)
]

. (2.215)

2.2.4.2 Extended Diffusion Equations for Composition Variables . . .

. . . in case of vanishing reference velocities It can sometimes be argued that a certain

reference velocity ~v a vanishes (see Sec. 2.2.4.3 below). Then the composition variables solve

the so called extended diffusion equations.

In case of vanishing mean volume velocity ~v vol = 0 it follows from Eq. (2.208) and Eq. (2.188)

∂ρi

∂t
= −~∇ · ~J vol

i = ~∇ ·
[

ρiφK Di,T
~∇T +

K−1∑

k=1

Dik
~∇ρk

]

i = 1 . . . K − 1. (2.216)

For small gradients ρi ≈ ρi,0, φK ≈ φK,0, Di,T , and Dik can be taken as constant. Here yk,0

denotes the equilibrium value of the composition variable yk. Hence the extended diffusion

equation for the mass density ρi reads

∂ρi

∂t
= ρi,0 φK,0 Di,T ∆T +

K−1∑

k=1

Dik∆ρk i = 1 . . . K − 1. (2.217)

If the center of mass velocity ~v vanishes it is found from Eq. (2.211) and Eq. (2.186)

∂ci

∂t
= −1

ρ
~∇ · ~Ji =

1

ρ
~∇ ·
[

ρ cicKDi,T
~∇T + ρ

K−1∑

k=1

Dik
~∇ck

]

i = 1 . . . K − 1. (2.218)

In isothermal, isobaric systems it follows from vanishing center of mass velocity that ~∇ρ = 0

(cf. Eq. (2.253) below) and one obtains

∂ci

∂t
= −1

ρ
~∇ · ~Ji = −~∇ ·

( ~Ji

ρ

)

= ~∇ ·
[K−1∑

k=1

Dik
~∇ck

]

i = 1 . . . K − 1. (2.219)

For small gradients (ρ ≈ ρ0, ck ≈ ck,0) Eq. (2.218) simplifies to the extended diffusion
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equation for the weight fractions ci

∂ci

∂t
= ci,0cK,0Di,T ∆T +

K−1∑

k=1

Dik∆ck i = 1 . . . K − 1. (2.220)

For vanishing mean molar velocity Eq. (2.214) and Eq. (2.187) can be combined to

∂xi

∂t
= − 1

n
~∇ ·
( ~J mol

i

Mi

)

=
1

n
~∇ ·
[

n xixKD∗
i,T

~∇T + n

K−1∑

k=1

D∗
ik

~∇xk

]

i = 1 . . . K − 1. (2.221)

In the absence of temperature and pressure gradients the number density is uniform as a

consequence of vanishing mean molar velocity and one has

∂xi

∂t
= − 1

n
~∇ ·
( ~J mol

i

Mi

)

= −~∇ ·
( ~J mol

i

Mi n

)

= ~∇ ·
[K−1∑

k=1

D∗
ik

~∇xk

]

i = 1 . . . K − 1. (2.222)

In case of small gradients n ≈ n0, xi ≈ xi,0, xK ≈ xK,0, D∗
i,T , and D∗

ik are approximately

constant and the extended diffusion equation for the mole fractions xi is obtained

∂xi

∂t
= xi,0xK,0D

∗
i,T ∆T +

K−1∑

k=1

D∗
ik∆xk i = 1 . . . K − 1. (2.223)

. . . in case of small perturbations In case of non–zero reference velocities, it is still

possible to derive simple evolution equations, if temperature and concentration gradients are

kept small and appropriate composition variables and fluxes are chosen.

For small deviations from equilibrium, the temperature gradient ~∇T and the gradients of the

composition variables ~∇yk are small. Taking into account the phenomenological equations

also the fluxes ~J a
k and the particle velocities ~vk are found to be small. One may then introduce

an ε ≪ 1 by

~∇T ∼ ε, ~∇yk ∼ ε, ~J a
k ∼ ε, ~vk ∼ ε, ~v a =

∑

ak~vk ∼ ε (2.224)

and neglect all terms of the order ε2.

Setting ~J a
k = ~Jk and ~v a = ~v in Eq. (2.211) yields

∂ck

∂t
= −1

ρ

[

~∇ · ~Jk + ~∇ · (ρk~v) − ck
~∇ · (ρ~v)

]

= −~∇ ·
( ~Jk

ρ

)

− 1

ρ2
~Jk

~∇ρ − ~v ~∇ck k = 1 . . . K − 1. (2.225)

For small gradients the second order terms ~Jk
~∇ρ and ~v ~∇ck can be neglected and the weight
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fractions solve

∂ck

∂t
≈ −~∇ ·

( ~Jk

ρ

)

= ~∇ ·
[

ckcKDk,T
~∇T +

K−1∑

i=1

Dki
~∇ci

]

≈ ck,0cK,0Dk,T ∆T +

K−1∑

i=1

Dki ∆ci k = 1 . . . K − 1, (2.226)

where Eq. (2.186) has been used.

Similarly one obtains for the mole fractions from Eq. (2.214) with ~J a
k = ~J mol

k and ~v a = ~v mol:

∂xk

∂t
= − 1

n

[

~∇ ·
( ~J mol

k

Mk

)

+ ~∇ · (nk~v
mol) − xk

~∇ · (n~v mol)
]

= −~∇ ·
( ~J mol

k

nMk

)

− 1

n2

~J mol
k

Mk

~∇n − ~v mol~∇xk k = 1 . . . K − 1 (2.227)

Again for small gradients the terms ~J mol
k

~∇n and ~v mol~∇xk are of order ε2 and therefore

negligible. With Eq. (2.187) there results

∂xk

∂t
≈ −~∇ ·

( ~J mol
k

n Mk

)

= ~∇ ·
[

xkxKD∗
k,T

~∇T +

K−1∑

i=1

D∗
ki

~∇xi

]

≈ xk,0 xK,0 D∗
k,T ∆T +

K−1∑

i=1

D∗
ki ∆xi k = 1 . . . K − 1. (2.228)

By replacing ~J a
k and ~v a in Eq. (2.208) by ~J vol

k and ~v vol an evolution equation for the mass

density is obtained

∂ρk

∂t
= −~∇ · ~J vol

k − ~∇ · (ρk~v
vol) k = 1 . . . K − 1. (2.229)

Here the situation is more complicated than for the weight fractions Eq. (2.225) and for the

mole fractions Eq. (2.227). According to Eq. (2.224) the terms ~∇ · (ρk~v
vol) and ~∇ · ~J vol

k are

of same order of magnitude. In Sec. 2.2.4.3 we will derive (Eq. (2.248) below)

~∇ · (ρk~v
vol) = ρkα

∂T

∂t
+ second order terms, (2.230)

where α is the thermal expansion coefficient. Hence, if all gradients are small and second

order terms can be neglected, the evolution equation for the mass density is given by

∂ρk

∂t
≈ −~∇ · ~J vol

k − ρkα
∂T

∂t
k = 1 . . . K − 1. (2.231)

Only in case of steady temperature the second term on the right hand side of Eq. (2.231)



46 Chapter 2 Thermodynamic–Phenomenological Theory

can be dropped. Then a simple diffusion equation is obtained with the help of Eq. (2.188)

∂ρk

∂t
≈ −~∇ · ~J vol

k = ~∇ ·
[

ρkφK Dk,T
~∇T +

K−1∑

i=1

Dki
~∇ρi

]

≈ ρk,0 φK,0 Dk,T ∆T +

K−1∑

i=1

Dki ∆ρi k = 1 . . . K − 1. (2.232)

To resume, it could be shown that

∂ck

∂t
≈ −~∇ ·

( ~Jk

ρ

)

(Eq. (2.226))

∂xk

∂t
≈ −~∇ ·

( ~J mol
k

nMk

)

(Eq. (2.228))

∂ρk

∂t
≈ −~∇ · ~J vol

k − ρkα
∂T

∂t
(Eq. (2.231))

are simultaneously valid, if second order terms may be neglected. No additional assumptions

about the reference velocities ~v, ~v mol, and ~v vol are necessary. This means, for small gradients,

Eq. (2.226), Eq. (2.228), and Eq. (2.231) also hold in case of non zero reference velocities.

Note that Eq. (2.228) immediately follows from Eq. (2.226) because of

~J mol
k

nMk
=

K−1∑

i=1

(∂xk

∂ci

) ~Ji

ρ
(Eq. (2.145)) and

∂xk

∂t
=

K−1∑

i=1

(∂xk

∂ci

)∂ci

∂t
(2.233)

with the abbreviation (∂/∂ci) from Eq. (2.146). Similarly, with the help of

~J vol
k =

K−1∑

i=1

(∂ρk

∂ci

) ~Ji

ρ
(Eq. (2.152)) and

∂ρk

∂t
=

K−1∑

i=1

(∂ρk

∂ci

)∂ci

∂t
− αρk

∂T

∂t
(2.234)

Eq. (2.231) can be directly obtained from Eq. (2.226).11

2.2.4.3 Conditions for Vanishing of a Reference Velocity

The normal components of all velocities vanish at the boundary of the vessel. Therefore the

reference velocity ~v a vanishes everywhere, if ~∇ × ~v a = 0 and ~∇ · ~v a = 0. Many diffusion

experiments are performed in the absence of convection with ~∇×~vk = 0 for k = 1 . . . K and

hence ~∇× ~v a = 0. We will consider in the following only convection–free situations, where

it follows ~v a = 0 from ~∇ · ~v a = 0.

11In Ref. [61] all effects due to thermal expansion have been neglected (α = 0). ρk(x, t) is obtained by
solving (∂ρk/∂t) = −~∇ · ~J vol

k . From ρk(x, t) the weight fractions are calculated according to ck(x, t) =
ck,0 +

P

(∂ck/∂ρi)[ρi(x, t)−ρi,0]. It is stated that another solution c′k(x, t) would have been obtained from
solving (∂ck/∂t) = −~∇ · ( ~Jk/ρ). This is not correct and can be easily disproved by means of Eq. (2.153).
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By combining arguments of Agar [1] and Kirkwood et al. [49], we will derive a general

expression for ~∇ · ~v a. Note that de Groot and Mazur [16] also treated the problem of

vanishing reference velocities. They derived the following equations

~∇ · ~v vol =
K∑

k=1

(

ρk
∂υk

∂t
+ ρk~vk

~∇υk

)

(2.235)

~∇ · ~v = −1

ρ

(∂ρ

∂t
+ ~v ~∇ρ

)

(2.236)

~∇ · ~v mol = − 1

n

(∂n

∂t
+ ~v mol ~∇n

)

(2.237)

and followed that ~v vol (~v or ~v mol) vanishes, if the partial specific volumes (the mass or particle

density) are (is) uniform and constant in time. They considered, however, only isothermal

systems. In the presence of temperature gradients, partial specific volumes and densities are

space–dependent merely due to thermal expansion. Nevertheless reference velocities can also

vanish in non–isothermal systems.

From Eq. (2.208) it follows that

ρk
~∇ · ~v a = −∂ρk

∂t
− ~v a~∇ρk − ~∇ · ~J a

k k = 1 . . . K. (2.238)

Eq. (2.238) may be simplified with the help of

−
K∑

k=1

υk (dρk)p =

K∑

k=1

ρk (dυk)p = αdT, (2.239)

which is found from
K∑

k=1

φk =

K∑

k=1

ρkυk = 1 (2.240)

and

(dV )p = V αdT +
K∑

k=1

υkdmk =
[

d
( K∑

k=1

υkmk

)]

p
=

K∑

k=1

mk(dυk)p +
K∑

k=1

υkdmk. (2.241)

By multiplying Eq. (2.238) by υk, summing over all components, and using the relations

(2.239, 2.240) one obtains the general expression

~∇ · ~v a = α
∂T

∂t
+ α~v a~∇T + Σ a (2.242)

with

Σ a = −
K∑

k=1

υk
~∇ · ~J a

k = −~∇ ·
[ K∑

k=1

υk
~J a
k

]

+

K∑

k=1

~J a
k

~∇υk. (2.243)
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Before we discuss Eqs. (2.242, 2.243) for the reference velocities ~v vol, ~v, and ~v mol, we can

draw a few general conclusions which hold for an arbitrary reference velocity:

• For time–dependent temperature the reference velocities do not vanish. (∂T/∂t) as

well as ~v a are then of first order ∼ ε, where ε has been introduced in Eq. (2.224).

• For steady temperature the reference velocity vanishes (is of first/second order), if Σ a

vanishes (is of first/second order).

• The term α~v a~∇T is not important. For steady temperature and vanishing Σ a one has

~∇ · ~v a = α~v a ~∇T. (2.244)

with the solution ~v a ≡ 0 due to the boundary conditions. Otherwise, if ~v a is of order

n, then ~v a~∇T is of order n + 1 and can be neglected for small gradients.

• If all diffusion currents ~J a
k = J a

k ~ex of the individual species lie in one spatial direction

and if the system is isothermal, ~v a = v a~ex can be calculated from Eq. (2.242) by

~v a =

∫ x

−L
Σ a dx, (2.245)

where x = −L is the bottom of the cell.

Mean volume velocity Eq. (2.243) can be simplified by using Eq. (2.132)

Σ vol =
K∑

k=1

~J vol
k

~∇υk. (2.246)

Σ vol and, in case of steady temperature, also ~v vol vanishes, if

(a) the partial specific volumes are uniform with ~∇υk = 0. This occurs in isothermal dif-

fusion experiments where the partial specific volumes do not depend on concentration.

Examples of such systems are liquid mixtures where volume changes of mixing can be

neglected.

(b) the partial specific volumes are independent of concentration and have all the same tem-

perature dependence with αk = υ−1
k (∂υk/∂T )p,{ci} = α. Then Σ vol vanishes according

to Eq. (2.132), if

~∇υk =
dυk

dT
~∇T = αυk

~∇T (2.247)

is taken into account.
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(c) all diffusing species have identical partial specific volumes (υi = υ = ρ−1 for i =

1 . . . K). This is because of Eq. (2.150) a special case of (b). In this case also the center

of mass velocity vanishes (cf. page 49).

(d) all diffusing species have identical partial molar volumes, which is again a special case

of (b). Then also the mean molar velocity vanishes (cf. page 50).

Otherwise Σ vol is a second order term ∼ ε2 with ε from Eq. (2.224). Hence, for stationary

temperature distributions, also ~v vol is of second order ∼ ε2 and may be neglected if compared

to ~vk ∼ ε.

For time dependent temperature one obtains

~∇ · ~v vol = α
∂T

∂t
+ second order terms. (2.248)

In isothermal, one–dimensional systems ~v vol = vvol ~ex may be evaluated with the help of

Eq. (2.245) [49]. Especially simple results are obtained for a binary mixture with

Σ vol = J vol
1

∂υ1

∂x
+ J vol

2

∂υ2

∂x
=
(

1 +
υ1

υ2

ρ1

ρ2

)

J vol
1

∂υ1

∂x
=

J vol
1

ρ2υ2

∂υ1

∂x
= − D

ρ2υ2

∂ρ1

∂x

∂υ1

∂x
, (2.249)

Here Eqs. (2.132, 2.239, 2.240, 2.200) have been used. Then the mean volume velocity and

the flux in the laboratory reference frame are given by

vvol = −
∫ x

−L

D

ρ2υ2

∂ρ1

∂x

∂υ1

∂x
dx. (2.250)

J lab
1 = J vol

1 + ρ1v
vol = −D

∂ρ1

∂x
− ρ1

∫ x

−L

D

ρ2υ2

∂ρ1

∂x

∂υ1

∂x
dx. (2.251)

Center of mass velocity With ~J a
k = ~Jk Eq. (2.243) becomes

Σ = −
K∑

k=1

υk
~∇ · ~Jk. (2.252)

Σ and, in case of steady temperature, also ~v vanishes, if

• all species have the same partial specific volume (υi = υ for i = 1 . . . K). Then Σ is

equal to zero because of Eq. (2.125). Examples for such systems are isomer mixtures

or isotopic mixtures with not too different molecular masses.

Otherwise Σ as well as ~v are first order terms which may not be neglected.

In case of vanishing center of mass velocity it follows from Eq. (2.150) and Eq. (2.210)

~∇ρ = −αρ~∇T,
∂ρ

∂t
= 0 (~v = 0), (2.253)
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i.e. only in isothermal (and isobaric) experiments the density is uniform.

With the help of Eq. (2.149) the mean volume velocity can be related to the center of mass

velocity

ρk(~v − ~v vol) = ~J vol
k − ~Jk =

K−1∑

i=1

ρk(υK − υi) ~Ji. (2.254)

Obviously it follows from ~v = 0 (which is equivalent to υK − υi = 0) that also ~v vol = 0. The

converse is, however, not true: In general one may not conclude ~v = 0 from ~v vol = 0.

Mean molar velocity Setting ~J a
k = ~J mol

k in Eq. (2.243) yields

Σmol = −
K∑

i=1

υiMi
~∇ ·

~J mol
i

Mi
. (2.255)

Σmol and, in case of steady temperature, also ~v mol vanishes, if

• all components of the mixture have the same partial molar volume (υiMi = υKMK for

i = 1 . . . K − 1). This is fulfilled in diffusion experiments in perfect gases. In this case

Σmol vanishes according to Eq. (2.137).

Otherwise Σmol as well as ~v mol are first order terms, which may not be neglected.

An analogous derivation as in Eq. (2.254) yields: From ~v mol = 0 it follows ~v vol = 0.

Dilute binary systems In dilute binary systems all reference velocities are approximately

identical, as can be seen from Eq. (2.127) with K = 2, a1 ≪ 1, and a2 ≃ 1

~v a = a1~v1 + a2~v2 ≃ ~v2. (2.256)

Using

~J a
1 = ρ1(~v1 − ~v a) ≃ 0 (ρ1 ≪ 1) (2.257)

~J a
2 = ρ2(~v2 − ~v a) ≃ 0 (~v a ≃ ~v2) (2.258)

in Eq. (2.243) yields

Σ a ≃ 0 (~v a ≃ ~v2, ρ1 ≪ 1). (2.259)

Hence for steady temperature all reference velocities in dilute binary systems are negligible

if compared to ~v1. For time–dependent temperature one obtains from Eq. (2.242)

~∇ · ~v a ≃ α
∂T

∂t
(~v a ≃ ~v2, ρ1 ≪ 1). (2.260)
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2.2.4.4 Summary of Sections 2.2.4.1–2.2.4.3

1. Generally the reference velocities do not vanish. With the small ε from Eq. (2.224)

one typically has ~v ∼ ε, ~v mol ∼ ε, and ~v vol ∼ ε2 or ~v vol ∼ ε depending on whether the

temperature gradients are stationary (∼ ε2) or not (∼ ε). Nevertheless, even for non–

zero reference velocities simple diffusion equations can be derived, if the temperature

and concentration gradients are assumed to be small. They read (cf. Eq. (2.226),

Eq. (2.228), Eq. (2.231))

∂ck

∂t
≈ −~∇ ·

( ~Jk

ρ

)

≈ ck,0cK,0Dk,T ∆T +

K−1∑

i=1

Dki ∆ci k = 1 . . . K − 1

∂xk

∂t
≈ −~∇ ·

( ~J mol
k

n Mk

)

≈ xk,0xK,0D
∗
k,T ∆T +

K−1∑

i=1

D∗
ki ∆xi k = 1 . . . K − 1.

∂ρk

∂t
≈ −~∇ · ~J vol

k − ρkα
∂T

∂t
≈ ρk,0φK,0 Dk,T ∆T +

K−1∑

i=1

Dki ∆ρi − ρk,0 α
∂T

∂t

k = 1 . . . K − 1.

and are all simultaneously valid. For a binary mixture (K = 2) one has according to

Eqs. (2.194)–(2.197) D11 = D∗
11 = D11 = D and D1,T = D∗

1,T = D1,T − αD/φ2 = DT .

For multicomponent mixtures with K > 2 the relations between the diffusion coefficients are

given by Eqs. (2.189)–(2.192).

2. If the mean volume velocity is zero (e.g. in isothermal systems without volume

changes of mixing), the mass density solves according to Eq. (2.216)

∂ρk

∂t
= −~∇ · ~J vol

k = ~∇ ·
[

ρkφK Dk,T
~∇T +

K−1∑

i=1

Dki
~∇ρi

]

k = 1 . . . K − 1.

In general one may not conclude from ~v vol ≡ 0 that also ~v ≡ 0. The evolution equation for

the weight fractions in case of vanishing mean volume velocity is given by Eq. (2.211) with

~v a = ~v vol = 0 and ~J a
k = ~J vol

k from Eq. (2.188)

∂ck

∂t
=

1

ρ
~∇ ·
[

ρkφK Dk,T
~∇T +

K−1∑

i=1

Dki
~∇ρi

]

+
ck

ρ
~∇ · (ρ~v). (2.261)

3. If the center of mass velocity is zero (e.g. in isomer mixtures or isotopic mixtures

with not too different molecular masses and stationary temperature distribution), it follows

that also the mean volume velocity is zero and the corresponding fluxes agree ~J vol
k = ~Jk.
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Then the two diffusion equations Eq. (2.218) and Eq. (2.216)

∂ck

∂t
= −1

ρ
~∇ · ~Jk =

1

ρ
~∇ ·
[

ρ ckcKDk,T
~∇T + ρ

K−1∑

i=1

Dki
~∇ci

]

k = 1 . . . K − 1

∂ρk

∂t
= −~∇ · ~Jk = ~∇ ·

[

ρkφK Dk,T
~∇T −

K−1∑

i=1

Dki
~∇ρi

]

k = 1 . . . K − 1.

are simultaneously valid. Since all partial specific volumes are identical for vanishing center

of mass velocity, it results (∂ρj/∂ck) = (∂cj/∂ρk)−1 = ρδjk and cK = φK . Therefore the

relations (2.191, 2.192) simplify to

Dki = Dki (2.262)

Dk,T = Dk,T +
α

ρkφK

K−1∑

i=1

Dkiρi. (2.263)

2.2.4.5 Heat Equation

The evolution equation for the temperature is found by differentiating the specific entropy

s(T, ck, p) with respect to time:

∂s

∂t
=

cp

T

∂T

∂t
+

K∑

k=1

sk
∂ck

∂t
− α

ρ

∂p

∂t
. (2.264)

Here the specific heat at constant pressure cp has been introduced and the Maxwell relation

(∂s/∂p)T,{ci} = −α/ρ has been used. With the help of Eqs. (2.64, 2.65, 2.70, 2.76, 2.77) one

finds

ρ
∂ck

∂t
= −~∇ · ~Jk − ρ~v ~∇ck +

r∑

j=1

νkjJj (2.265)

ρ
∂s

∂t
= − 1

T
~∇ · ~JQ + σ +

1

T 2
~JQ

~∇T −
K∑

k=1

(

sk
~∇ · ~Jk + skρ~v ~∇ck + ρk~vk

~∇sk

)

, (2.266)

where s =
∑

skck has been used. If Eqs. (2.265, 2.266) are inserted into Eq. (2.264) the

general heat equation

ρcp
∂T

∂t
= −~∇ · ~JQ + αT

∂p

∂t
+ σT +

1

T
~JQ

~∇T − T
K∑

k=1

[

ρk~vk
~∇sk + sk

r∑

j=1

νkjJj

︸ ︷︷ ︸

second order terms

]

(2.267)
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is obtained.12 The temperature increases not only if heat flows into the system, but also

if irreversible processes occur within the system. The heat flux term ~∇ · ~JQ is, however,

usually much more important than the second order terms of Eq. (2.267), which are related

to irreversible processes. For constant pressure

ρcp
∂T

∂t
= −~∇ · ~JQ (2.268)

holds to very good approximation. The heat flow ~JQ in a binary mixture is given by

Eq. (2.97). In liquids the Dufour effect is in general negligible and one has

~JQ = −κ0
~∇T = −κ∞~∇T = −κ~∇T, (2.269)

where κ is the heat conductivity. Combining Eq. (2.268) and (2.269) yields the well known

heat equation

ρcp
∂T

∂t
= ~∇ · (κ~∇T ). (2.270)

In the presence of external heat sources, a source term has to be included in the heat equation

yielding

ρcp
∂T

∂t
= ~∇ · (κ~∇T ) + Q̇. (2.271)

For small deviations from equilibrium, κ may be assumed to be approximately constant and

with the definition of the thermal diffusivity

Dth =
κ

ρcp
(2.272)

one obtains
∂T

∂t
= Dth ∆T +

Q̇

ρcp
(2.273)

We would like to emphasize that two approximations were necessary for the derivation of the

heat equation: Both, the temperature increase due to irreversible processes and the Dufour

effect, have been neglected.

2.2.5 Thermodynamic Driving Forces

The derivation of thermodynamic driving forces is closely related to the issue of different

reference velocities. To deduce the actual hydrodynamic friction force on a diffusing particle,

both, the relative flux and the flux in the laboratory reference frame have to be considered.

In particular, relations between these fluxes are needed. In isothermal diffusion experiments

one typically has ~v vol = 0 and the flux relative to the mean volume velocity is identical to

the flux in the laboratory reference frame (see Sec. 2.2.4.3). Hence the conversion formulae

12Eq. (2.267) is equivalent to Eq. (4–6.20) in Ref. [40] as can be seen with the help of Eq. (2.70) and Eq. (2.79)
and by noting (cp/T ) ~∇T − (α/ρ)~∇p =

P

ck
~∇sk and (~∇µk)T = ~∇hk − T ~∇sk.
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from Sec. 2.2.1–2.2.2 can be used.

2.2.5.1 Diffusion Coefficient

First we will derive relations for the diffusion coefficient by considering the generalized forces

appearing in the dissipation function. Then we will consider external forces, which allow a

clearer definition of friction coefficients. An expression of the diffusion coefficient in terms of

these friction coefficient will be obtained. Finally, the thermodynamic driving force, which

is actually exerted on a particle during diffusion, will be calculated. For simplicity we will

consider only binary mixtures. The binary diffusion coefficient D as introduced by Eq. (2.98)

depends on concentration and temperature, but not on concentration gradients or tempera-

ture gradients. Hence the same D is measured, irrespective whether temperature gradients

are present or not. Therefore we may derive an expression for D by considering an isothermal

experiment.

Definition of generalized friction coefficients A generalized friction coefficient may

be introduced with the help of Eq. (2.167)

~X a
1 = −ρ1T

L a
11

(~v1 − ~v a) =: −f a
1 (~v1 − ~v a), (2.274)

where X a
1 is the generalized force from Eq. (2.172). The diffusion coefficient can be related

to the generalized friction coefficient with the help of Eqs. (2.100, 2.172, 2.274)

D =
φ2

a2
2

1

fa
1

ρ1

(∂µ1

∂ρ1

)

p,T
=

x2

a2
2

1

fa
1

x1

(∂µ1

∂x1

)

p,T
. (2.275)

Here
(∂µ1

∂c1

)

p,T
= ρ

φ2

c2

(∂µ1

∂ρ1

)

p,T
=

x1x2

c1c2

(∂µ1

∂x1

)

p,T
(2.276)

has been used, which follows from (∂ρ1/∂c1) = ρ2υ2 = ρφ2/c2 and (∂x1/∂c1) = x1x2/(c1c2).

Special cases of Eq. (2.275) are

D =
1

φ2f
vol
1

ρ1

(∂µ1

∂ρ1

)

p,T
(~v a = ~v vol a2 = φ2) (2.277)

D =
φ2

f rel
1

ρ1

(∂µ1

∂ρ1

)

p,T
(~v a = ~v2, a2 = 1) (2.278)

D =
υ2

f12
ρ1

(∂µ1

∂ρ1

)

p,T
(f12 = f rel

1 /ρ2). (2.279)

f12 has been introduced in the context of the frictional formalism (cf. page 37) and can

be related to Lrel
11 with the help of Eq. (2.177). Eqs. (2.277), (2.278) and (2.279) are the
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results of Schmitz [88], Berne and Pecora [7], and Vink [103], respectively.13 Of course

all these descriptions are equally valid. However, the physical significance of the different

friction coefficients is not clear. Only in the dilute limit all reference velocities and all friction

coefficients are identical (cf. Eq. (2.256)). By using

lim
x1→0

[

x1

(∂µ1

∂x1

)

p,T

]

= lim
ρ1→0

[

ρ1

(∂µ1

∂ρ1

)

p,T

]

=
kT

M1
(2.280)

Eq. (2.275) simplifies to

D =
kT

M1fa
1

(x2, a2 → 1). (2.281)

Eq. (2.281) is a well known result, which has already been found by Einstein [31, 32]. For

a brief summary of Einstein’s argument see Ref. [99]. Accordingly, in the dilute limit fa
1 M1

can be identified with the Stokes friction coefficient

fa
1 M1 = 6πηRh,1 (x2, a2 → 1), (2.282)

where η is the viscosity of the mixture and Rh,1 the hydrodynamic radius of species 1.

At finite x1, and in particular for x1 → 1, the interpretation of the friction coefficients

becomes difficult. Moreover, a friction coefficient fa
2 for species 2 cannot be introduced by

means of Eq. (2.274), as there exists only one independent generalized force in a binary

mixture.

Friction coefficients from consideration of external forces We will now propose an

alternative way to introduce friction coefficients. We will consider a homogenous mixture in

the absence of temperature gradients (c1, c2, T constant), where the external forces ~F1 and

~F2 are exerted on particles of species 1 and 2. The resulting flux can be evaluated according

to Eqs. (2.164, 2.167)

~J rel
1 = −L rel

11

T
~X rel

1 = −L rel
11

T

[(∂µ1

∂p

)

c1,T

~∇p − ~F1

]

= −L rel
11

T

[

υ1(ρ1
~F1 + ρ2

~F2) − ~F1

]

=
L rel

11

T
[φ2

~F1 − υ1ρ2
~F2] =

L rel
11

ρ1T
[ ρ1φ2

~F1 − ρ2φ1
~F2] (2.283)

Here the mechanical equilibrium condition (2.89) and (∂µ1/∂p)c1,T = υ1 have been used.

Generally the frictional force on a particle p is given by

~F frict
p = −~F ext

p = −fp~vp, (2.284)

13Note that these authors use molar rather than specific quantities: µ′

1 = M1µ1, υ′

2 = υ2M2, fSchmitz =
M1f

vol
1 , fBerne = M1f

rel
1 /NA, fVink = f12M1M2.



56 Chapter 2 Thermodynamic–Phenomenological Theory

if an external force ~F ext
p is exerted on p and if p moves with constant velocity ~vp. fp is the

friction coefficient, which is defined by this equation. With the help of Eq. (2.284) we will

now introduce friction coefficients f ′
1 and f ′

2 for the two species of the binary mixture. First

we assume ~F2 = 0. Since ~F1 is a force per unit mass, the force on one particle of species 1 is

M1
~F1. In the laboratory reference frame, this force is reduced due to a flow of particles 2 in

the opposite direction, which is caused by the walls of the system. Hence we have to set up

Eq. (2.284) in a reference system, that moves with ~v2:

M1
~F1 = f ′

1(~v1 − ~v2) =
f ′
1

ρ1

~J rel
1 (2.285)

Comparison of Eqs. (2.283, 2.285) yields

f ′
1 = M1

ρ1T

L rel
11 φ2

. (2.286)

In the same way the friction coefficient f ′
2 for species 2 can be introduced. Assuming ~F1 = 0

and choosing a reference frame that moves with ~v1, one obtains

M2
~F2 = f ′

2(~v2 − ~v1) = −f ′
2

ρ1

~J rel
1 (2.287)

and

f ′
2 = M2

ρ2
1T

L rel
11 ρ2φ1

. (2.288)

f ′
1 and f ′

2 are related to each other by

f ′
2 =

M2φ2ρ1

M1φ1ρ2
f ′
1 =

φ2x1

φ1x2
f ′
1 =

M2υ2

M1υ1
f ′
1. (2.289)

Eqs. (2.100, 2.172) yield

D =
ρ1M1

f ′
1

(∂µ1

∂ρ1

)

p,T
=

ρ1

f ′
1

(∂µ′
1

∂ρ1

)

p,T
(2.290)

with µ′
1 = M1µ1. From Eqs. (2.276, 2.73) there results

ρ1

(∂µ′
1

∂ρ1

)

p,T
=

x2

φ2
x1

(∂µ′
1

∂x1

)

p,T
=

x2

φ2
x2

(∂µ′
2

∂x2

)

p,T
=

φ1x2

φ2x1
ρ2

(∂µ′
2

∂ρ2

)

p,T
. (2.291)

Because of Eqs. (2.289, 2.291) the obtained expression for D is symmetric with

D =
ρ1

f ′
1

(∂µ′
1

∂ρ1

)

p,T
=

ρ2

f ′
2

(∂µ′
2

∂ρ2

)

p,T
(2.292)
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For ideally dilute solutions (ρ1 → 0 or ρ2 → 0) one obtains with the help of (2.280)

D =
kT

f ′
i

(ρi → 0, i = 1, 2), (2.293)

where f ′
i can be identified with a Stokes friction coefficient

f ′
i = 6πηRh,i (ρi → 0, i = 1, 2). (2.294)

Actual hydrodynamic friction force on a diffusing particle In the absence of external

forces, pressure and temperature gradients, Eqs. (2.133, 2.164, 2.167, 2.286, 2.131, 2.142,

2.132, 2.289, 2.73) yield

f ′
1(~v1 − ~v2) =

f ′
1

ρ1

~J rel
1 = −f ′

1

ρ1

L rel
11

T
(~∇µ1)p,T = −(~∇µ′

1)p,T

φ2
= −M1

~X vol
1 (2.295)

f ′
1(~v1 − ~v vol) =

f ′
1

ρ1

~J vol
1 =

f ′
1φ2

ρ1

~J rel
1 = −(~∇µ′

1)p,T = −M1
~X rel

1 (2.296)

f ′
2(~v2 − ~v vol) =

f ′
2

ρ2

~J vol
2 = −f ′

2υ1

ρ2υ2

~J vol
1 =

x1

x2
(~∇µ′

1)p,T = −( ~∇µ′
2)p,T . (2.297)

Obviously, the generalized forces are not the correct driving forces for the corresponding

fluxes: Whereas ~X vol
1 is the driving force for the relative flux ~J rel

1 , ~X rel
1 is the driving force

for the flux ~J vol
1 . The result is, however, sensible: The actual hydrodynamic friction forces

on particle 1 and 2 are given by f ′
1~v1 and f ′

2~v2. If the mean volume velocity vanishes, these

forces are equal to −(~∇µ′
1)p,T (cf. Eq. (2.296)) and −(~∇µ′

2)p,T (cf. Eq. (2.297)). A uniform

body force −(~∇µ2)p,T /υ2 per unit volume acting on particles of component 1 and 2 alike does

not produce relative motion of particles of species 1 and 2. In agreement with Eq. (2.295)

the relative flux can be obtained by assuming that each particle of species 1 is acted on by

a modified force

M1υ1

[

− (~∇µ1)p,T

υ1
+

(~∇µ2)p,T

υ2

]
(2.73)
= −(~∇µ′

1)p,T

φ2
(2.298)

and that particles of species 2 are force free. A similar reasoning can be found in Ref. [6].

Other authors have come to other conclusions [88, 90].

Relation between chemical potential and osmotic pressure In all formulae derived

for the diffusion coefficient Eqs. (2.277, 2.278, 2.279, 2.290) there appears ρ1(∂µ1/∂ρ1). This

expression can be related to the osmotic pressure, which is defined according to

π(µ2, T, ρ1) = p(µ2, T, ρ1) − p0(µ2, T ). (2.299)
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p0 is the pressure of the pure substance 2. Alternatively π can be written as a function of p,

T and ρ1:

π(p, T, ρ1) = p − p0

(
µ2(p, T, ρ1), T

)
(2.300)

In the literature, both expressions (∂π/∂ρ1)µ2,T [90, 55, 115, 73] and (∂π/∂ρ1)p,T [88, 82, 13,

96] are found. Sometimes wrong formulae are used [88, 96] and many of the used relations

only hold for incompressible fluids [82, 13, 115, 73]. Therefore we will now give a review of

relations between the derivations of the chemical potential and the osmotic pressure with

respect to ρ1. We will explicitely point out, if incompressibility has been assumed.

From Eqs. (2.299, 2.300) and by taking into account the Gibbs Duhem relation (2.73) the

derivations of the osmotic pressure π with respect to ρ1 are obtained

( ∂π

∂ρ1

)

µ2,T
=

( ∂p

∂ρ1

)

µ2,T
(2.301)

( ∂π

∂ρ1

)

p,T
= −

(∂p0

∂ρ1

)

p,T
= −

(∂p0

∂µ2

)

T

(∂µ2

∂ρ1

)

p,T
=

ρ1

ρ2υ0
2

(∂µ1

∂ρ1

)

p,T
, (2.302)

where υ0
2 is the specific volume of pure component 2. Expressions (2.301) and (2.302) may

be related to each other by

( ∂π

∂ρ1

)

p,T
=
( ∂π

∂ρ1

)

µ2,T
−
( ∂π

∂µ2

)

ρ1,T

( ∂p

∂ρ1

)

µ2,T

(∂µ2

∂p

)

ρ1,T
=

(∂µ2

∂p

)

ρ1,T

υ0
2

( ∂π

∂ρ1

)

µ2,T
(2.303)

Here
( ∂π

∂µ2

)

ρ1,T
=
( ∂p

∂µ2

)

ρ1,T
− 1

υ0
2

(2.304)

has been used, which follows from Eq. (2.299). For incompressible fluids one has

(∂µ2

∂p

)

ρ1,T
≈
(∂µ2

∂p

)

c1,T
= υ2 (incompressible) (2.305)

and Eq. (2.303) simplifies to

( ∂π

∂ρ1

)

p,T
=

υ2

υ0
2

( ∂π

∂ρ1

)

µ2,T
(incompressible). (2.306)

If there are no volume changes upon mixing (υ0
2 ≈ υ2) one obtains

( ∂π

∂ρ1

)

p,T
=
( ∂π

∂ρ1

)

µ2,T
(incompressible, υ0

2 ≈ υ2). (2.307)

In a similar way the derivations of the chemical potentials (∂µ1/∂ρ1)µ2,T and (∂µ1/∂ρ1)p,T
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can be related to each other

(∂µ1

∂ρ1

)

µ2,T
=

(∂µ1

∂ρ1

)

p,T
−
(∂µ1

∂p

)

ρ1,T

( ∂p

∂µ2

)

ρ1,T

(∂µ2

∂ρ1

)

p,T

=
(∂µ1

∂ρ1

)

p,T

[

1 +
ρ1

ρ2

(∂µ1

∂p

)

ρ1,T
(∂µ2

∂p

)

ρ1,T

]

. (2.308)

The second equality sign follows with the help of the Gibbs Duhem relation (2.73). For

incompressible fluids Eq. (2.308) reduces with the help of

φi = ρiυi = ρi

(∂µi

∂p

)

c1,T
≈ ρi

(∂µi

∂p

)

ρ1,T
(incompressible) (2.309)

to
(∂µ1

∂ρ1

)

µ2,T
=

1

φ2

(∂µ1

∂ρ1

)

p,T
(incompressible), (2.310)

which is used in Refs. [115, 73].

Finally, we will derive a general relation between chemical potential and osmotic pressure,

which also holds for compressible fluids. With the help of the Gibbs Duhem relation (2.73)

and Eq. (2.309) one finds

(∂µ1

∂c1

)

p,T
= −c2

c1

(∂µ2

∂c1

)

p,T
=

c2

c1

(∂µ2

∂p

)

c1,T

( ∂p

∂c1

)

µ2,T
=

φ2

ρ1

( ∂p

∂c1

)

µ2,T
. (2.311)

Now the weight fractions c1 can be replaced by the mass density ρ1 according to

(∂µ1

∂ρ1

)

p,T
=

(∂µ1

∂c1

)

p,T

(∂c1

∂ρ1

)

p,T
(2.312)

( ∂p

∂c1

)

µ2,T
=

( ∂p

∂ρ1

)

µ2,T

(∂ρ1

∂c1

)

µ2,T
(2.313)

(∂ρ1

∂c1

)

p,T

(∂c1

∂ρ1

)

µ2,T
= 1 −

(∂ρ1

∂p

)

c1,T

( ∂p

∂ρ1

)

µ2,T
= 1 − κ

κosm
, (2.314)

where κ and κosm

κ =
1

ρ1

(∂ρ1

∂p

)

c1,T
=

1

ρ

(∂ρ

∂p

)

c1,T
(2.315)

κosm =
1

ρ1

(∂ρ1

∂p

)

µ2,T
=

1

ρ1

(∂ρ1

∂π

)

µ2,T
(2.316)

are the isothermal and osmotic compressibility. Inserting Eqs. (2.312)–(2.314) into Eq. (2.311)

yields

ρ1

(∂µ1

∂ρ1

)

p,T
=

φ2

(1 − κ
κosm

)

( ∂p

∂ρ1

)

µ2,T
=

φ2

(1 − κ
κosm

)

( ∂π

∂ρ1

)

µ2,T
. (2.317)

In Ref. [55] Eq. (2.317) has been derived in a slightly different way.
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2.2.5.2 Thermal Diffusion Coefficient

We will show, that the force acting on a thermodiffusing particle cannot be derived by

considering the effects of external forces. This is only possible for isothermally diffusing

particles (see Sec. 2.2.5.1).

Eq. (2.86) for a binary mixture reads

~J1 = −L1q

T 2
~∇T − L11

T
[(~∇µ1)T − (~∇µ2)T − ~F1 + ~F2]. (2.318)

In Sec. 2.2.5.1 we have seen that Mi(~∇µi)p,T can be interpreted as the thermodynamic

force which acts on one particle of species i during isothermal diffusion. Hence the question

arises, whether such a force can also be found for a thermodiffusing particle. With the

help of Eq. (2.318) one may calculate the force, which brings a thermodiffusing particle to a

standstill. If we assume a homogenous mixture (c1 constant), where a force ~F1 is exerted on

the particles of component 1 and ~F2 = 0, we obtain

~J1 = −L1q

T 2
~∇T − L11

T

[(∂µ1

∂p

)

c1,T

~∇p −
(∂µ2

∂p

)

c1,T

~∇p − ~F1]

= −L1q

T 2
~∇T +

L11

T

φ2

c2

~F1
!
= 0 ⇒ ~F stop

1 =
L1q

L11

c2

φ2T
~∇T (2.319)

where Eqs. (2.89, 2.309) have been used. This “standstill–force” ~F stop
1 , however, is not the

force which acts on a moving thermodiffusing particle. As a flow field induced by external

forces is influenced by backflow effects, the Onsager coefficient L rel
11 depends according to

Eqs. (2.285, 2.286) on hydrodynamic interaction. Then, because of Eq. (2.172), also L11

does. On the other hand L1q, DT , and the thermophoretic velocity are insensitive to backflow

effects, as was shown theoretically [11] and experimentally [85]. Consequently, also the

force acting on a moving thermodiffusing particle has to be independent of hydrodynamic

interaction, i.e. independent of L11.

We think that the flow field around a thermodiffusing particle (particle p of component 1)

is conceptually different, depending on whether p is moving or not. According to arguments

of Anderson [4], Semenov [91], and Würger [114], no macroscopic flow field (i.e. |~v | ∼ r−3)

arises in case of moving thermodiffusing particles. This is plausible since the net force

on each volume element is equal to zero. Note that the same situation is encountered in

electrophoresis. If p is stopped by an external force, it still generates the same flow of species

2 over its surface as if it was moving. This leads to a macroscopic flow field (i.e. |~v | ∼ r−1)

and therefore the “standstill–force” ~F stop
1 depends on hydrodynamic interaction.

It should be mentioned that isothermal diffusion phenomena are different. Fickian diffusion is

analogous to sedimentation, where a net force is exerted onto a volume element thus leading

to a macroscopic flow field (i.e. |~v | ∼ r−1).
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2.2.6 Equations for the Analysis of Transient Grating Experiments

In the presence of temperature gradients the reference velocities generally do not vanish

(cf. Sec. 2.2.4.3). The applied gradients in transient grating experiments are, however, very

small (~∇T ≈ 1mK/10µm). Therefore Eq. (2.226) may be used for the description of our

thermal diffusion experiments (cf. Sec. 2.2.4.2). In the following only experiments on binary

mixtures will be considered so that Eq. (2.226) simplifies to

∂c

∂t
= ~∇ · [D~∇c + c(1 − c)DT

~∇T ]

with c = c1 and 1−c = c2. Here the general binary diffusion coefficients D1,T = DT and D11 =

D have been used (cf. Eqs. (2.194, 2.195) and corresponding explanations). Since second

order terms may be neglected just as well in the evolution equation for the temperature,

heat transport in transient grating experiments is described by the heat equation Eq. (2.271)

ρcp
∂T

∂t
= ~∇ · (κ~∇T ) + Q̇.

Thus Eqs. (1.2, 1.3) from Chap. 1 have been derived.
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Chapter 3

Boundary Effects in Holographic Grating

Experiments

In this chapter we develop a reasonably simple two-dimensional model to account for heat

conducting walls in transient grating experiments for the measurement of both heat and

mass transport. Specifically, we show that the signal generated by the temperature grating

depends on only three dimensionless parameters, which results in a significant reduction of

the dimension of the parameter space when compared to the very detailed model of Wang

and Fiebig [105] and Wang, Fiebig and Wu [106]. In the framework of our practically

applicable model, the measured apparent thermal diffusivity can be related to its true value

by simply finding the zero of an analytic function, instead of the much more time consuming

task of solving a set of coupled partial differential equations (PDEs). In binary liquids

the complex two–dimensional temperature profile also requires a two–dimensional treatment

of the concentration distribution. The normalized heterodyne diffraction efficiency of the

concentration grating, however, remains unaffected as long as signal contributions from the

temperature grating within the wall are negligible. We have performed experiments to test

our model over a wide range of both grating periods d and sample thicknesses ls and found

an excellent agreement between theoretical predictions and experimental data. Furthermore,

our model yields the same results for the pure temperature signal as the complex, three–

dimensional model of Wang et al., which proves that it contains, despite its simplicity, all

relevant aspects of the problem.

3.1 Heat and Mass Diffusion Analysis

Our model for the description of coupled heat and mass transport in multicomponent liquids

is based on the heat equation (Eq. 1.2)

ρcp∂tT = ~∇ · [κ~∇T ] + Q̇

and the extended diffusion equation (Eq. (1.3)) for the concentration c (weight fractions)

∂tc = ~∇ ·
[

D~∇c + c(1 − c)DT
~∇T
]

.



3.1 Heat and Mass Diffusion Analysis 63

In case of transient holographic grating experiments, the source term is given by the absorbed

laser power density, Q̇ = αI, with I being the light intensity within the holographic grating

and α the optical absorption coefficient. Before we treat the two dimensional problem of

heat flow into the walls, we briefly review the one-dimensional model.

3.1.1 One-dimensional Model

A simple experiment is the following [111]: A holographic grating is written into the sample

until the steady state is reached. At the time t = 0 the writing beams are switched off.

I(x, t) = I0(1 + cos qx) θ(−t) =







I0(1 + cos qx) : t < 0

0 : t > 0
(3.1)

The sample absorbs energy from the light field and the temperature T evolves according to

ρscp,s∂tT = κs∂
2
xT + αI (3.2)

where ρs is the density of the sample, cp,s the specific heat at constant pressure, κs the

thermal conductivity, which is assumed to be constant, and α the absorption coefficient.

The resulting temperature change can be written as

T (x, t) = T0(t) + Tq(t) cos qx. (3.3)

T0(t) describes the overall sample heating. Tq is the amplitude of the temperature grating

and can be detected by the read-out laser beam. For t ≥ 0 it is given by

Tq =
αI0

κsq2
exp(−Dth,sq

2t). (3.4)

Dth,s = κs(ρscp,s)
−1 is the thermal diffusivity of the sample.

For a binary liquid the spatial and temporal evolution of the concentration distribution c(~r, t)

is obtained by solving the diffusion equation (Eq. (1.3)) in one dimension. Since temperature

and concentration changes in our transient grating experiments are generally only very small,

the diffusion coefficients D and DT can be taken as constant and c(1−c) can be approximated

by c0(1 − c0), where c0 is the average concentration:

∂tc = D∂2
xc + DT c0(1 − c0)∂

2
xT (3.5)

In analogy to Eq. (3.3) we split the concentration into two parts.

c(x, t) = c0 + cq(t) cos qx (3.6)
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cq is the amplitude of the concentration grating and is the experimentally relevant variable.

For a switching–off experiment as it is given by Eq. (3.1), the concentration grating amplitude

decays exponentially.

cq = −ST c0(1 − c0)
αI0

κsq2
(Dth,s − D)−1

(

Dth,s exp(−D q2t) − D exp(−Dth,s q2t)
)

(3.7)

Here we introduced the Soret coefficient ST = DT /D.

Both the temperature grating and the concentration grating give rise to a refractive index

grating which acts as an optical phase grating on a probing laser beam.

n(x, t) − n0 = nq(t) cos qx =
[( ∂n

∂T

)

c,p

Tq(t) +

(
∂n

∂c

)

T,p

cq(t)
]

cos qx (3.8)

n is the refractive index at the readout wavelength. The respective contrast factors are

the temperature derivative of n at constant composition and pressure, (∂n/∂T )c,p, and the

concentration derivative of n at constant temperature and pressure, (∂n/∂c)T,p.

For experiments conducted within the weak modulation depth limit the heterodyne diffrac-

tion efficiency ζhet is simply proportional to the refractive index modulation depth nq and

the sample thickness ls [52].

ζhet ∝ nqls (3.9)

ζhet is the experimentally measured quantity. For the switching–off experiment (3.1) it decays

according to

ζhet ∝ αI0ls
κsq2

[( ∂n

∂T

)

c,p
exp(−Dth,s q2t) −

(∂n

∂c

)

T,p
ST c0(1 − c0)(Dth,s − D)−1

(

Dth,s exp(−D q2t) − D exp(−Dth,s q2t)
)]

, (3.10)

as follows from Eqs. (3.4, 3.7, 3.8, 3.9).

3.1.2 Two-dimensional Model

Under realistic experimental conditions, systematic deviations from the one–dimensional

model occur due to heat loss into the windows. To take this into account we propose the

following model:

Fig. 3.1 shows the coordinate system for analysis. The region |z| < ls/2 is of sample material,

which has thermal conductivity κs, density ρs, heat capacity cp,s and thermal diffusivity

Dth,s = κs(ρscp,s)
−1. For simplicity we suppose the sample to be infinitely extended in

x–direction. This is a good approximation, if the x–dimension Lx of the cuvette is much

larger than the grating period d = 2π/q. In our experiments we have Lx = 3.5mm and

d = 5 − 50µm.
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xsample

wall

wall

z

−ls
2

+ls
2

Figure 3.1: The coordinate system

The regions |z| > ls/2 are of wall material κw, ρw, cp,w, Dth,w = κw(ρwcp,w)−1. The approxi-

mation of infinite wall thickness is valid, if the penetration depth of the temperature grating

into the wall is very small compared to the thickness of the cell wall. In our case the pene-

tration depth is of order q−1 = 1 − 8µm and the thickness of the cell wall is lw = 1.25mm.

There is no y–dependence.

In our model we postulate that the infinite area of sample is heated by two laser beams of

uniform intensity, i.e. we consider the following switch–off experiment

I(x, z, t) = I0(1 + cos qx) θ(−t) =







I0(1 + cos qx) : t ≤ 0

0 : t > 0
. (3.11)

In practice however, the heated area corresponds to the diameter of the heating laser beam

w of a few millimeters. Moreover, the intensity distribution of the laser is not uniform but is

a rotationally symmetric Gaussian (TEM00 mode). Above all, the admixed dye absorbs the

energy from the light field according to Beer’s law, leading to an exponential decay exp(−αz)

of the intensity, where α is the absorption coefficient.

Ireal(x, y, z, t) = I0 exp(−2(x2 + y2)/w2) exp(−αz)(1 + cos qx) θ(−t) (3.12)

Further difficulties might arise, if the overlap length z0 of the two beams in z–direction is of

same order of magnitude as the sample thickness ls [92, 10, 29]. Nevertheless Eq. (3.11) is a

good approximation for our experiments. The diameter of the laser w ≈ 3mm is very large

compared to the grating period d = 2π/q ≈ 5− 50µm. Typically, the absorption coefficients

are small α ≈ 2/cm. For the thickest used cuvette with sample thickness ls = 200µm this

leads to exp(−αls) = 0.96. Finally we use thin cuvettes with ls ≤ 200µm and the two beams

intersect at small angles sin θ < 0.0515, so that z0/ls ≪ 1 holds.

As the sample is infinitely extended in x–direction, the intensity distribution (3.11) leads to



66 Chapter 3 Boundary Effects in Holographic Grating Experiments

temperature and concentration fields of the form

T (x, z, t) = T0(z, t) + Tq(z, t) cos qx (3.13)

c(x, z, t) = c0(z, t) + cq(z, t) cos qx. (3.14)

The evolution equations for the amplitude Tq of the temperature gratings within the sample

and the wall and for the amplitude cq of the concentration grating are given by the heat

equations

ρscp,s ∂tTq = κs(−q2 + ∂2
z )Tq + αI0 θ(−t) |z| < ls/2 (3.15)

ρwcp,w ∂tTq = κw(−q2 + ∂2
z )Tq |z| > ls/2 (3.16)

and the extended diffusion equation

∂tcq = D(−q2 + ∂2
z ) cq + DT c0(1 − c0)(−q2 + ∂2

z )Tq |z| < ls/2. (3.17)

The boundary conditions

Tq(|z| → ∞) → 0 (3.18)

D (∂zcq)|z|=ls/2− = −DT c0(1 − c0) (∂zTq)|z|=ls/2− (3.19)

and the matching conditions

Tq( |z| = ls/2
−) = Tq ( |z| = ls/2

+) (3.20)

κs (∂zTq)|z|=ls/2− = κw (∂zTq)|z|=ls/2+ . (3.21)

follow from continuity of temperature and heat flux and from vanishing mass flux into the

wall. For solid-liquid interfaces the contact resistance is in general negligible [65].

The two–dimensional generalization of Eq. (3.9) is

ζhet(t) = ζhet,T,s(t) + ζhet,c(t) + ζhet,T,w(t)

∝
(∂ns

∂T

)

c,p

∫ ls/2

−ls/2
Tq(z, t) dz +

(∂ns

∂c

)

T,p

∫ ls/2

−ls/2
cq(z, t) dz

+
(∂nw

∂T

)

c,p

[ ∫ −ls/2

−∞
Tq(z, t) dz +

∫ ∞

ls/2
Tq(z, t) dz

]

. (3.22)

Not only the temperature and concentration gratings in the sample with respective contrast

factors (∂ns/∂T )c,p and (∂ns/∂c)T,p but also the temperature grating in the wall with con-

trast factor (∂nw/∂T )c,p contribute to the heterodyne diffraction efficiency. However, the

contribution of the wall ζhet,T,w(t) is usually negligible as will be discussed later.

Before we proceed with the analysis, we would like to recapitulate the models of Nagasaka
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et al. [68] and Wang et al. [105, 106] to make the differences to our model clear. Nagasaka

et al. solve the three–dimensional heat equation in an infinite composite solid, where the

region z > 0 is of sample material and the region z < 0 is of wall material. Since they

use the method of Green’s functions, they need the initial temperature distribution in the

sample and the wall. They assume the initial temperature to be zero in the wall and periodic

with wave vector q and space–independent amplitude ∆T0 in the entire sample region z > 0.

Wang et al. solve the three–dimensional heat equation in a rectangular parallelepiped of

sample material. They consider the Gaussian intensity profile of the heating laser, but not

the exponential decay exp(−αz) of the intensity due to absorption. The effect of the walls is

accounted for in time dependent boundary conditions, which relate the temperature at the

boundary to the heat flux into the wall. They do not motivate these boundary conditions,

but to our knowledge they hold for infinite composite solids with heat generated only in the

plane of separation at a constant rate per unit time (see Eq. 2.15 (9) in Ref. [12]).

3.1.3 Stationary Solutions

The stationary solutions are found by solving Eqs. (3.15)–(3.17) setting ∂tTq ≡ ∂tcq ≡ 0

and θ(−t) ≡ 1 and taking into account the boundary and matching conditions (3.18)–(3.21).

This corresponds to the situation where the grating has been switched on at t = −∞ and

the observation is made at t = 0 immediately before the laser is switched off.

Tq(z, t = 0) =
αI0

κsq2

(

1 − cosh(qz)
[ κs

κw
sinh

qls
2

+ cosh
qls
2

]−1)

, |z| < ls/2 (3.23)

Tq(z, t = 0) =

αI0

κwq2
sinh

qls
2

[ κs

κw
sinh

qls
2

+ cosh
qls
2

]−1
exp(−q(|z| − ls/2)), |z| > ls/2 (3.24)

cq(z, t = 0) = −ST c0(1 − c0)Tq(z, t = 0), |z| < ls/2 (3.25)

Eqs. (3.23, 3.24) are plotted in Fig. 3.2 for the binary mixture of tetralin–dodecane with

a concentration of 50wt % of each component at 25◦C (κs = 0.13W/mK), quartz glass as

wall material (κw = 1.38W/mK) and different sample thicknesses (ls = 200µm, 100µm, and

10µm) and grating periods (d = 25µm and 50µm). αI0/κw = 5µK/µm2 has been chosen

according to typical experimental conditions. Both for increasing grating period d and for

increasing sample thickness ls the amplitude of the temperature grating Tq increases. The

penetration depth of the temperature grating into the wall is independent of sample thickness

ls and increases with increasing grating period d. For thick samples (ls = 200µm and 100µm)

Tq is nearly constant throughout the sample and its plateau value does not depend on the

sample thickness. The temperature grating in the wall is negligible. The value Tq(z = 0)

for d = 50µm is approximately four times larger than Tq(z = 0) for d = 25µm. This is

in accordance with Eq. (3.4) of the one–dimensional model, which predicts Tq ∝ q−2. For

ls = 10µm, however, dramatic deviations occur. The amplitudes are smaller than expected
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Figure 3.2: Stationary amplitude Tq(z, t = 0) of the temperature grating for κs/κw = 0.09 and
αI0/κw = 5 µK/µm2 as given by Eqs. (3.23, 3.24). The different line styles stand for the differ-
ent grating periods d = 25 µm and 50 µm. The curves are labeled with the sample thickness ls in
micrometers.

from Tq ∝ q−2 because of heat loss into the wall. Furthermore the temperature within the

sample no longer reaches a plateau and the temperature grating within the wall cannot be

neglected.

The temperature distribution in the sample is given by Eq. (3.13). In the stationary case

its periodic part Tq cos(qx) can be evaluated from Eqs. (3.23, 3.24) as shown in Fig. 3.3. To

facilitate comparison with Fig. 3.2 the parameters κs/κw = 0.09 and αI0/κw = 5µK/µm2

are the same in both figures. The contour lines in Fig. 3.3 reveal the penetration of the

temperature grating into the cell wall. The thick solid grid lines for d = 25µm and d = 50µm

correspond to the curves for the 10µm cuvette in Fig. 3.2.

For the stationary heterodyne diffraction efficiencies ζhet,T,s, ζhet,c, ζhet,T,w as defined in

Eq. (3.22) follows for t = 0

ζhet,T,s(t = 0) ∝
(∂ns

∂T

)

c,p

2αI0

κsq3

(qls
2

− sinh
qls
2

[ κs

κw
sinh

qls
2

+ cosh
qls
2

]−1)

(3.26)

ζhet,c(t = 0) = −
(∂ns

∂c

)

T,p

( ∂n

∂T

)−1

c,p,s
ST c0(1 − c0) ζhet,T,s(t = 0) (3.27)

ζhet,T,w(t = 0) ∝
(∂nw

∂T

)

c,p

2αI0

κwq3
sinh

qls
2

[ κs

κw
sinh

qls
2

+ cosh
qls
2

]−1
. (3.28)

Eqs. (3.26, 3.28) allow us to estimate the contribution of the temperature grating of the wall

ζhet,T,w to the heterodyne diffraction efficiency. In Fig. 3.4 this has been done, again for

the sample tetralin–dodecane, (50wt %, T = 25◦C) and quartz glass as wall material. In
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(b) d = 25 µm (A wrong figure is displayed in Ref. [42].)
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Figure 3.3: Periodic part of the stationary temperature distribution for ls = 10 µm, κs/κw =
0.09, αI0/κw = 5 µK/µm2, and d = 10 µm, 25 µm, and 50 µm. The sample extends
from z = −5 µm to z = 5 µm. The contour lines belong to the temperatures T =
±e−1Tmax,±e−2Tmax,±e−3Tmax,±e−4Tmax,±e−5Tmax, where Tmax = T (x = 0, z = 0).
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Figure 3.4: Ratio of the stationary heterodyne diffraction efficiencies of the wall ζhet,T,w and the
sample ζhet,T,s as given by Eqs. (3.26, 3.28) against the ratio of grating period to sample thickness
d/ls for κs/κw = 0.09, (∂nw/∂T )c,p = 9.72 × 10−6/K, (∂ns/∂T )c,p = −4.39 × 10−4/K.

the experimentally investigated range d/ls ≈ 0.025 − 5 the contribution of the wall ζhet,T,w

does not exceed 1% of the contribution of the sample ζhet,T,s. Typical experiments are

performed at d/ls ≈ 0.05, corresponding to ζhet,T,w/ζhet,T,s < 10−4, and any signal stemming

from the wall can safely be neglected. Fig. 3.5 shows the dependence of the stationary
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Figure 3.5: Normalized stationary heterodyne diffraction efficiency ζhet,T,s/ζhet,T,s(ls = 200 µm)
(3.26) as a function of sample thickness ls for grating period d = 10 µm. (κs/κw = ∞: perfectly
insulating walls, κs/κw = 0.09: sample tetralin–dodecane, 50 wt%, T = 25◦C and wall quartz glass,
κs/κw = 0: good approximation for sample tetralin–dodecane, 50 wt%, T = 25◦C and wall sapphire
with κs/κw = 0.004)
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heterodyne diffraction efficiency ζhet,T,s(t = 0) (3.26) on the sample thickness ls for grating

period d = 10µm. ζhet,T,s has been normalized on its value at ls = 200µm. In a one

dimensional model one would expect a linear decrease of the heterodyne diffraction efficiency

with decreasing sample thickness ls according to Eq. (3.9). In case of perfectly insulating

walls κs/κw = ∞ this is still true for the two–dimensional model. Otherwise, heat flows

into the cell walls. The thinner the sample the more important becomes this effect and the

heterodyne diffraction efficiency decreases faster than linear with decreasing ls.

3.1.4 Time Dependent Solutions

3.1.4.1 Decay of the Temperature Grating

The objective is to solve the evolution equations (3.15, 3.16) for the amplitude Tq(z, t) of

the temperature grating for arbitrary times t > 0. The initial condition is given by the

steady state solution (3.23, 3.24), the boundary and matching conditions by Eq. (3.18)

and Eqs. (3.20, 3.21). From Tq(z, t) the experimentally relevant quantities ζhet,T,s(t) and

ζhet,T,w(t) can be evaluated according to Eq. (3.22).

Analytical solutions For d/ls → 0 and d/ls → ∞ analytical expressions for the hetero-

dyne diffraction efficiencies ζhet,T,s(t) and ζhet,T,w(t) as defined in (3.22) have been found by

using the Laplace transformation method. If d/ls → 0 (thick samples) they are given by

ζhet,T,s(t)

ζhet,T,s(t = 0)
→ exp(−Dth,s q2t) + O(d/ls) (3.29)

ζhet,T,w(t)

ζhet,T,w(t = 0)
→ 1 − κs

κs − κw

(

erf
√

Dth,w q2 t − κw

κs
erf
√

Dth,s q2 t

)

+
κs

κs − κw
×

exp(−bDth,w q2 t)√
a

(

erf
√

aDth,w q2 t − erf

√

a
κ2

w

κ2
s

Dth,s q2 t

)

+ O (exp(−qls)), (3.30)

where a = (Dth,w − Dth,s)κ2
s(κ

2
sDth,w − κ2

wDth,s)
−1 and b = (κ2

s − κ2
w)Dth,s(κ

2
sDth,w −

κ2
wDth,s)

−1. Note that erf
√

a t/
√

a is real also for negative a. Eq. (3.29) corresponds to

the result of the one–dimensional model (see Eqs. (3.4, 3.8, 3.9)). The time evolution of the

heterodyne diffraction efficiency of the wall is complicated, but of no importance as

ζhet,T,s(t = 0)

ζhet,T,w(t = 0)
→ (∂ns/∂T )c,p

(∂nw/∂T )c,p

[(

1 +
κw

κs

)
qls
2

− κw

κs

]

→ ∞ for
qls
2

=
πls
d

→ ∞. (3.31)

Hence, in the limit d/ls → 0 all diffracted intensity comes from the sample and not from the

wall (see also Fig. 3.4).
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The case d/ls → ∞ (infinitely thin samples) leads to

ζhet,T,s(t)

ζhet,T,s(t = 0)
→ erfc

√

Dth,w q2 t + O(ls/d) (3.32)

ζhet,T,w(t)

ζhet,T,w(t = 0)
→ exp(−Dth,w q2 t) + O(ls/d) (3.33)

and

ζhet,T,s(t = 0)

ζhet,T,w(t = 0)
→ (∂ns/∂T )c,p

(∂nw/∂T )c,p

qls
2

→ 0 for
qls
2

=
πls
d

→ 0, (3.34)

i.e. the contribution of the sample to the heterodyne diffraction efficiency is negligible for

d/ls → ∞ and all signal is generated by the wall.

Numerical solutions For other values of d/ls we solved the PDE (3.15, 3.16) with initial

condition (3.23, 3.24), boundary condition (3.18) and matching conditions (3.20, 3.21) nu-

merically. It is preferable to perform the simulations on scaled equations. Therefore we get

results for the dimensionless temperature T̃q = κwq2(αI0)
−1 Tq that depends on the scaled

time t̃ = Dth,w q2t, the scaled space coordinates x̃ = qx, z̃ = qz and the dimensionless

parameters κs/κw, Dth,s/Dth,w and d/ls. The experimentally relevant quantities ζhet,T,s(t)

and ζhet,T,w(t) as defined in Eq. (3.22) can be calculated from the scaled temperature T̃q as

follows

ζhet,T,s(t)

ζhet,T,s(t = 0)
=

∫ qls
2

0 T̃q(z̃,Dth,w q2t) dz̃
∫ qls

2

0 T̃q(z̃, t = 0) dz̃
=

κs

κw

∫ qls
2

0 T̃q(z̃,Dth,w q2t) dz̃
qls
2 − sinh qls

2 [ κs

κw
sinh qls

2 + cosh qls
2 ]−1

(3.35)

ζhet,T,w(t)

ζhet,T,w(t = 0)
=

∫ ∞
qls
2

T̃q(z̃,Dth,w q2t) dz̃
∫ ∞

qls
2

T̃q(z̃, t = 0) dz̃
=

∫ ∞
qls
2

T̃q(z̃,Dth,w q2t) dz̃

sinh qls
2 [ κs

κw
sinh qls

2 + cosh qls
2 ]−1

, (3.36)

where the steady state solutions ζhet,T,s(t = 0), ζhet,T,w(t = 0) and T̃q(z̃, t = 0) are given by

Eqs. (3.26, 3.28) and Eqs. (3.23, 3.24). Remember that the ratio of the two normalization

factors, ζhet,T,w(t = 0)/ζhet,T,s(t = 0), is plotted in Fig. 3.4 for the system tetralin–dodecane

and quartz glass as wall material.

Figs. 3.6 and 3.7 show the simulated normalized heterodyne diffraction efficiencies (3.35) and

(3.36). Also plotted are the analytical solutions (3.29, 3.30) and (3.32, 3.33). In Fig. 3.6 the

results of the simulations are shown for typical experimental parameters κs/κw = 0.1 and

Dth,s/Dth,w = 0.1. Fig. 3.6(a) shows the results for the heterodyne diffraction efficiency of

the sample’s temperature grating. For d/ls = 0 it decays exponentially with time constant

τth = (Dth,sq
2)−1 according to Eq. (3.29). For increasing d/ls it decreases faster. The

temperature grating in the sample does not only decay because of heat diffusion in x-direction,

but also because of heat flux into the wall. Remarkably, the heterodyne diffraction efficiencies
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Figure 3.6: Decay of the temperature grating for κs/κw = 0.1, Dth,s/Dth,w = 0.1 and d/ls =
0, 0.5, 1, 5, and d/ls → ∞.
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of the sample’s temperature grating for not too large d/ls > 0 can still be described very well

by exponential functions exp(−t/τth) with time constants τth < (Dth,sq
2)−1. For example,

exponential fits of the function ζhet,T,s(t)/ζhet,T,s(t = 0) yield for d/ls = 0.5

τth =
9.06

Dth,wq2
=

1

1.104Dth,sq2
and | ζhet,T,s(t)

ζhet,T,s(t = 0)
− exp(−t/τth)| ≤ 0.0053 (3.37)

and for d/ls = 5

τth =
1.88

Dth,wq2
=

1

5.32Dth,sq2
and | ζhet,T,s(t)

ζhet,T,s(t = 0)
− exp(−t/τth)| ≤ 0.0077. (3.38)

Note that the same exponential fit will later be employed for the evaluation of the mea-

sured heterodyne diffraction efficiency. As the experimental data contain additive noise, the

absolute rather than the relative error is the relevant quantity in Eqs. (3.37) and (3.38).

It is obvious that for very large values of d/ls, in particular for d/ls → ∞, an exponen-

tial fit of ζhet,T,s(t)/ζhet,T,s(t = 0) does not make any sense. However, large values of d/ls

are experimentally irrelevant. We confirmed that in the experimentally investigated range

d/ls ≈ 0.025 − 5 an exponential description of the simulated heterodyne diffraction efficien-

cies of the sample’s temperature grating works very well with deviations below 0.01, which

is smaller than the typical noise amplitude (cf. Eqs. (3.37, 3.38)).

The decay of the temperature grating in the wall is presented in Fig. 3.6(b). The simulated

results for d/ls = 0.5 and d/ls = 1 are very well approximated by the analytical solution

(3.30) for d/ls = 0. Differences between the three curves cannot be resolved in the plot.

For our experiments the heterodyne diffraction efficiency of the wall’s temperature grating

is negligible, as has been shown in Fig. 3.4.

Under certain conditions, e.g. if the thermal diffusivity of the sample is much higher than

the one of the wall, the heterodyne diffraction efficiencies might evolve in a quite complicated

manner. Fig. 3.7 pictures the case κs/κw = 0.1 and Dth,s/Dth,w = 10. For d/ls = 5 and

d/ls = 10 the heterodyne diffraction efficiencies of the sample’s temperature grating display

a bimodal behavior (see Fig. 3.7(a)). The temperature grating in the sample decays because

of heat diffusion in x-direction and because heat is transported into the wall. In the case

Dth,s/Dth,w = 10 heat cannot diffuse very effectively inside the wall. There comes a time

when the temperature in the wall is higher than the temperature in the sample and heat

will flow back from the wall into the sample. This leads to the second slow mode in the

heterodyne diffraction efficiency of the sample’s temperature grating.

Calculation of the apparent thermal diffusivity Dth,app As we have seen in Fig. 3.6(a),

the heterodyne diffraction efficiencies of the sample’s temperature grating for not too large

values of d/ls can be approximated by exponential functions. To analyze our experimental

data, it would be sufficient to know the time constants τth = (Dth,appq
2)−1 of these exponen-
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tial functions. Knowledge of the exact temperature distribution Tq(z, t) is not necessary. Also

the heterodyne diffraction efficiency of the wall’s temperature grating is of no importance for

our experiments.

A least square fit of exp(−Dth,appq
2t) to the function ζhet,T,s(t)/ζhet,T,s(t = 0) with Dth,app

as adjustable parameter requires

f(Dth,app) =

∫ ∞

0

(

ζhet,T,s(t)

ζhet,T,s(t = 0)
− exp(−Dth,appq

2t)

)2

dt = minimum. (3.39)

This is equivalent to finding Dth,app such that

−2
∫∞
0 ζhet,T,s(t) exp(−Dth,appq

2t) dt

ζhet,T,s(t = 0)
+

1

2Dth,app q2
= minimum. (3.40)

Even though we do not know ζhet,T,s(t), we can evaluate

∫∞
0 ζhet,T,s(t) exp(−Dth,appq

2t) dt

ζhet,T,s(t = 0)

(3.22)
=

∫ ls/2
0

∫∞
0 Tq(z, t) exp(−Dth,appq

2t) dt dz
∫ ls/2
0 Tq(z, 0) dz

=

∫ ls/2
0 T̄q(z,Dth,app q2) dz
∫ ls/2
0 Tq(z, t = 0) dz

. (3.41)

T̄q(z, p) denotes the Laplace transformation of Tq(z, t). A Laplace transformation reduces a

PDE to an ordinary differential equation (ODE). Therefore the Laplace transformation of

the PDE (3.15, 3.16) can be easily solved. For z ≤ ls/2 the solution is

T̄q(z, p) =
αI0

κsp q2

([

1 − cosh(qz)
[ κs

κw
sinh

qls
2

+ cosh
qls
2

]−1
]

− 1

1 + p
Dth,s q2

[

1 −

√

1 + p
Dth,w q2 cosh

(
√

1 + p
Dth,s

qz

)

κs

κw

√

1 + p
Dth,s q2 sinh

(
√

1 + p
Dth,s q2

qls
2

)

+
√

1 + p
Dth,w q2 cosh

(
√

1 + p
Dth,s q2

qls
2

)

])

.

(3.42)

From Eqs. (3.40), (3.41), (3.23) and (3.42) follows that Dth,app has to fulfill the condition

g(Dth,app) = minimum (3.43)
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with

g(x) =
1

x

(

− 3

[

qls
2

− sinh qls
2

κs

κw
sinh qls

2 + cosh qls
2

]

+
4

1 + x
Dth,s

[

qls
2

− 1
√

1 + x
Dth,s

×

√

1 + x
Dth,w

sinh

(
√

1 + x
Dth,s

qls
2

)

κs

κw

√

1 + x
Dth,s

sinh

(
√

1 + x
Dth,s

qls
2

)

+
√

1 + x
Dth,w

cosh

(
√

1 + x
Dth,s

qls
2

)

])

.

(3.44)

Eq. (3.43) leads to the conditional equation

∂g

∂x

∣
∣
∣
x=Dth,app

= 0, (3.45)

which relates Dth,app to the parameters q, ls, Dth,s, Dth,w, κs, and κw. Note that the ra-

tio Dth,app/Dth,s respectively Dth,app/Dth,w only depends on the dimensionless parameters

Dth,s/Dth,w, κs/κw and qls. In a typical experiment Dth,app is measured and then the un-

known parameter, e.g. Dth,s, is determined such that Eq. (3.45) is fulfilled.

Fig. 3.8 shows the solutions of Eq. (3.45) for Dth,s/Dth,w = 0.1 and κs/κw = 0.1, i.e. for the

same parameters as in Fig. 3.6(a). For d/ls → 0 the apparent thermal diffusivity tends to

the true thermal diffusivity of the sample, Dth,app/Dth,s → 1. The earlier results (3.37) and

(3.38) for Dth,app = (τth q2)−1 at d/ls = 0.5 and d/ls = 5 are indicated by filled diamonds.

The dashed line shall remind us, that for too large values d/ls an exponential fit of the
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heterodyne diffraction efficiency ζhet,T,s(t)/ζhet,T,s(t = 0) is no longer a good approximation.

Nevertheless, the behavior of Dth,app/Dth,s for d/ls → ∞ is in accordance with Eq. (3.32).

An exponential fit exp(−a0x) of the function erfc
√

x leads to a0 = 2.213, corresponding to

Dth,app/Dth,s = 22.13 in Fig. 3.8.

The conditional equation for Dth,app (3.45) is an important result, since solving Eq. (3.45) nu-

merically is a much simpler task than simulating the PDEs (3.15, 3.16) with initial condition

(3.23, 3.24), boundary condition (3.18) and matching conditions (3.20, 3.21). Eq. (3.45) can

be used to analyze experimental data under the conditions, that the measured temperature

signal decays approximately exponentially, the contributions of the wall to the heterodyne

diffraction efficiency is negligible (can be checked by comparison of Eq. (3.26) and Eq. (3.28)),

and the approximations of our model are valid (infinite extension in x–direction, infinite wall

thickness, no y–dependence, laser intensity given by Eq. (3.11), no contact resistance be-

tween sample and wall). Under these premises the measured temperature signal is equal to

ζhet,T,s(t), it decays with time constant τth = (Dth,appq
2)−1 and Dth,app can be determined

according to Eq. (3.45).

3.1.4.2 Decay of the Concentration Grating

The concentration distribution cq(z, t) evolves according to the extended diffusion equation

(3.17) with initial condition (3.25) and boundary condition (3.19). To solve this problem the

complete knowledge of Tq(z, t) is necessary. However, we are actually not so much interested

in the concentration distribution cq(z, t). The relevant quantity is the measured heterodyne

diffraction efficiency of the concentration grating ζhet,c(t) as defined in Eq. (3.22).

To obtain an evolution equation for ζhet,c(t) we integrate the extended diffusion equation

(3.17) over the sample thickness (|z| < ls/2). Taking into account the boundary condition

(3.19) and the definitions of the heterodyne diffraction efficiencies (3.22) we arrive at

∂tζhet,c = −D q2ζhet,c −
(∂ns

∂c

)

T,p

(∂ns

∂T

)−1

c,p
DT q2c0(1 − c0)ζhet,T,s. (3.46)

Eq. (3.46) is solved by

ζhet,c(t) = ζhet,c(t = 0) exp(−D q2t) −
(∂ns

∂c

)

T,p

(∂ns

∂T

)−1

c,p
DT q2c0(1 − c0)

∫ t

0
ζhet,T,s(t

′) exp(−D q2(t − t′)) dt′, (3.47)

where ζhet,c(t = 0) is given by Eq. (3.27).

Further simplification of Eq. (3.47) is not possible without knowledge of ζhet,T,s(t). In general

we do not have an analytical expression for ζhet,T,s(t), so that we do not have an analytical

expression for ζhet,c(t) either. Making certain assumptions about ζhet,T,s(t), however, allows

us to obtain analytical approximations to Eq. (3.47).
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If the heterodyne diffraction efficiency of the sample’s temperature grating ζhet,T,s can be

approximated exponentially

ζhet,T,s(t) = ζhet,T,s(t = 0) exp(−Dth,app q2t), (3.48)

Eq. (3.47) simplifies to

ζhet,c(t) = ζhet,c(t = 0)(Dth,app −D)−1
(

Dth,app exp(−D q2t)−D exp(−Dth,app q2t)
)

. (3.49)

But we can get an approximate solution for ζhet,c(t) even without knowing precisely the time

evolution of ζhet,T,s(t). Whensoever the temperature signal evolves fast on the timescale of

the concentration signal (Dth ≫ D), the second term in Eq. (3.47) can be neglected and we

get to

ζhet,c(t) = ζhet,c(t = 0) exp(−D q2t). (3.50)

In the case Dth ≫ D the concentration signal (3.50) decays exponentially always with the

same time constant τ = (Dq2)−1, independent from the ratio grating constant to sample

thickness d/ls.

3.1.4.3 Decay of the Total Heterodyne Diffraction Efficiency

The heterodyne diffraction efficiency is defined in Eq. (3.22). For realistic experimental

parameters the heterodyne diffraction efficiency of the wall is negligible (see Fig. 3.4) and

Eq. (3.22) reduces to

ζhet(t) = ζhet,T,s(t) + ζhet,c(t). (3.51)

In the experimentally investigated range d/ls ≈ 0.025 − 5 the heterodyne diffraction effi-

ciencies of the sample’s temperature grating can be approximated exponentially. Then the

heterodyne diffraction efficiencies ζhet,T,s and ζhet,c are given by Eqs. (3.48, 3.49). Inserting

Eqs. (3.48, 3.49) into Eq. (3.51) leads to

ζhet(t) = ζhet,T,s(t = 0) exp(−Dth,app q2t) +

ζhet,c(t = 0)(Dth,app − D)−1
(

Dth,app exp(−D q2t) − D exp(−Dth,app q2t)
)

= ζhet,T,s(t = 0)
[

exp(−Dth,app q2t) −
(∂ns

∂c

)

T,p

(∂ns

∂T

)−1

c,p
ST c0(1 − c0) ×

(Dth,app − D)−1
(

Dth,app exp(−D q2t) − D exp(−Dth,app q2t)
)]

. (3.52)

Eq. (3.52) is identical to the equation of the one–dimensional model (3.10), except that the

thermal diffusivity of the sample Dth,s has been replaced by the apparent thermal diffusivity

Dth,app. This leads to the important result that neglected heat loss into the wall results
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in a wrong thermal diffusivity Dth,app, whereas the correct values are still obtained for the

collective diffusion coefficient D, the thermal diffusion coefficient DT , and the Soret coefficient

ST . For a one–component system with c ≡ c0 = 1 Eq. (3.52) simplifies to

ζhet(t) = ζhet,T,s(t) = ζhet,T,s(t = 0) exp(−Dth,app q2t). (3.53)

Eqs. (3.52) and (3.53) will be used as working equations to analyze the experimental data.

3.2 Experimental Technique and Sample Preparation

Experimental technique The holographic grating setup has been described in detail

elsewhere [109, 53]. An argon ion laser (488 nm or 515.5 nm) was used for writing and a

HeNe laser (632 nm) for readout of the refractive index gratings in a heterodyne detection

scheme. The coherent superposition of the diffracted and the reference wave was detected

with a single–mode optical fiber connected to a photomultiplier tube. The temperature was

controlled by a circulating water thermostat and set to 25◦C for all experiments. The contrast

factor (∂n/∂c)T,p was determined with an Abbe refractometer. (∂n/∂T )c,p was determined

interferometrically as described in Ref. [111].

Sample preparation The pure substances toluene, tetralin and dodecane have been pur-

chased from Merck, Acros and Aldrich, respectively. The purities of the chemicals are in

excess of 98%. Sample preparation is done in a similar way as for light scattering experi-

ments. An inert dye (quinizarin) is added to the pure substances for optical absorption at

the writing wavelength, but ideally not at the readout wavelength. While absorption at λr

is not a principal problem, it results in avoidable sample heating. The absorption coefficient

at the writing wavelength was α ≈ 2 cm−1. For the experiments with binary mixtures, these

solutions were mixed with equal weights. The liquids were filled into thoroughly cleaned and

dried cuvettes, discarding the first filling. After the second filling the cuvettes were closed

with Teflon plugs and sealed with Parafilm. Before and after each measurement the cuvette

was weighed. No weight loss was observed in any experiment. Cuvettes with layer thick-

nesses of ls ≈ 200, 100, 50, or 10µm (Hellma) and self made sapphire cells with ls = 112 or

119µm were used. For the (∂n/∂T )c,p measurement cuvettes with a path length of 10mm

(Hellma) were employed.
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3.3 Results and Discussion

3.3.1 Measurements on Pure Toluene

One–component systems with c = 1 are suitable to study the decay of the temperature grat-

ing. As they cannot exhibit concentration modulations, the time evolution of the heterodyne

diffraction efficiency can be related directly to the time evolution of the temperature grating.

In a first step we investigated toluene at T = 25◦C in cuvettes of two different wall materials,

quartz glass and sapphire. Quartz glass is frequently used for optical experiments. At

T = 25◦C and under normal pressure it has a thermal conductivity κw = 1.38W/mK and

a thermal diffusivity Dth,w = 84.8 × 10−4 cm2/s [71]. However, if a good heat coupling

between the sample and the thermal bath is desired, sapphire, having a very high thermal

conductivity, is a much better choice. Under the same conditions as above, T = 25◦C and

normal pressure, its thermal conductivity and thermal diffusivity are κw = 40W/mK and

Dth,w = 1300 × 10−4 cm2/s [56].

To study the influence of the cell wall, we varied the sample thickness ls as well as the

grating period d. We used quartz glass cuvettes of thicknesses ls = 12, 55, 100, and 200µm

and sapphire cuvettes of thicknesses ls = 112 and 119µm. The thickness was measured

interferometrically by counting the interference fringes in a spectrometer. The accuracy was

generally better than 1%. The grating period was varied from d ≈ 5µm up to d ≈ 50µm.
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Figure 3.9: Results for toluene at T = 25◦C: plotted are the relative deviations (Dth,app−Dth,s)/Dth,s

of the measured thermal diffusivity value Dth,app from the reference value Dth,s = 8.8 × 10−4 cm2/s
against the ratio of sample thickness to grating period d/ls. Different symbols refer to different sample
thicknesses ls. Filled symbols are for quartz and open symbols for sapphire cells.

The experimentally measured decay of the heterodyne diffraction efficiency after switching
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of the laser has been fitted to the working equation (3.53). The results for Dth,app are shown

in Fig. 3.9. The x and y axes represent, respectively, the ratio of grating period to sample

thickness d/ls and the relative deviation of the experimental value Dth,app from the reference

value Dth,s = 8.8×10−4 cm2/s, which was obtained from the extrapolation for d/ls → 0. The

theoretical curves have been calculated from (3.45) using Dth,s/Dth,w = 0.10, κs/κw = 0.10

for quartz glass and Dth,s/Dth,w = 0.007, κs/κw = 0.004 for sapphire. The experimentally

measured values, both for quartz glass and sapphire, are described very well by the theoretical

curves. As the theory predicts, Dth,app only depends on the ratio d/ls. In the range d/ls < 1

the measured thermal diffusivity Dth,app is almost independent from the wall material and

the results for sapphire cannot be distinguished from the results for quartz glass. For larger

values of d/ls, however, the temperature grating decays significantly faster in a sapphire

cuvette, because of the more efficient heat transport into the wall. Regrettably no sapphire

cells have been available for this parameter range.
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Figure 3.10: Determination of the thermal conductivity κs and the thermal diffusivity Dth,s of toluene
using the results for toluene in quartz glass cuvettes (grey symbols in Fig. 3.9). Each single experiment
yields a curve Dth,s(κs). All curves of all different experiments intersect in the same point, which
gives us the searched properties κs and Dth,s of toluene.

In Fig. 3.9 the theoretical curves have been evaluated from the ratios Dth,s/Dth,w and κs/κw,

which requires knowledge of the thermal conductivity κs and the thermal diffusivity Dth,s

of the sample. The usual situation, however, is different: The properties of the sample are

unknown and shall be determined by analyzing the experimental data. This has been done in

Fig. 3.10 for the measurements of toluene in quartz glass cuvettes (grey symbols in Fig. 3.9).

One single experiment gives us a value for Dth,app at a certain d/ls. From that we can

calculate a curve Dth,s(κs) using Eq. (3.45), provided that we know the parameters κw and

Dth,w of the wall. Then the true thermal conductivity κs and thermal diffusivity Dth,s of
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the sample correspond to one point of the curve Dth,s(κs). To determine κs and Dth,s, we

have to calculate at least two curves Dth,s(κs) from two experiments at different d/ls and

find their point of intersection. This works especially well, if we use one experiment with

small d/ls ≈ 0.1 and one experiment with large d/ls ≈ 5. For toluene we found in this way

Dth,s = 8.8 × 10−4 cm2/s and κs = 0.14W/mK.

We would like to point out an important difference between the generally applied one–

dimensional and our two–dimensional model. Assuming a one–dimensional model, one single

experiment is sufficient to determine the thermal diffusivity of the sample Dth,s. The thermal

conductivity κs, however, cannot be extracted from the experimental data. With our two–

dimensional model, in contrast, at least two experiments at different d/ls are required, but

they yield both Dth,s and κs. From the intersecting curves in Fig. 3.10 it can be seen that

Dth,s can always be determined with a high accuracy, whereas a precise measurement of κs

requires at least one measurement with a large value of d/ls. For small d/ls, as employed for

typical experiments, any reasonable assumption about κs leads to a good approximation to

the true Dth,s.
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Figure 3.11: Comparison of our results for toluene in quartz glass cuvettes to the experimental and
theoretical data obtained by Wang et al. [105, 106]. The axes are as in Fig. 3.9.

Fig. 3.11 compares our results for toluene in quartz glass cuvettes to the results obtained by

Wang et al. [105, 106]. The meaning of the axes is the same as in Fig. 3.9. The experimental

technique of Wang et al. differs only slightly from ours, but their theoretical model is much

more complicated. They performed a three–dimensional numerical simulation on a PDE.

The simulation parameters are the grating period d, the sample thickness ls, the absorption

coefficient α, the thermal diffusivities of the sample Dth,s and of the wall Dth,w, the thermal

conductivities of the sample κs and the wall κw, the pulse duration time th of the pulsed laser,

and some more. So many parameters, however, do not seem to be necessary, as can be seen
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in Fig. 3.11. If plotted against the ratio d/ls, the results of all their simulations for toluene

(Fig. 8 in [106]: d = 50µm, ls varied, α = 0.2mm−1, th = 800µs; Fig. 9 in [106]: d varied,

ls = 0.5mm, α = 0.2mm−1, th = 800µs; Fig. 3 in [105]: d = 50µm, ls varied, α = 0.8mm−1,

th = 1200µs; Fig. 6 in [105]: d varied, ls = 0.5mm, α = 0.8mm−1, th = 1200µs) coincide, at

least within the resolution of the plot, on one single curve. Furthermore they are in very good

agreement with results from our model, which depend only on the dimensionless parameters

d/ls, Dth,s/Dth,w and κs/κs and have been obtained in a much simpler way, namely by finding

the zero of Eq. (3.45). Moreover, Wang’s experimental data (Fig. 4 in [105]: d = 50µm, ls

varied, α = 0.8mm−1, th = 1200µs; Fig. 7 in [105]: d varied, ls = 0.5mm, α = 0.8mm−1,

th = 1200µs) is described very well by our theory. Unfortunately Wang et al. performed

experiments and simulations only up to d/ls = 0.5, so that it is not possible to compare the

results over a wider range of d/ls, where deviations from the one–dimensional model become

more pronounced (Fig. 3.9).

3.3.2 Measurements on Binary Systems

Binary systems feature both a temperature and a concentration grating. We studied the

binary mixtures of tetralin–dodecane and of tetralin–toluene at c = 0.5 and T = 25◦C. The

same quartz glass cuvettes of thicknesses ls = 12, 55, 100, and 200µm as for toluene were

used and the grating period was varied from d ≈ 10µm to d ≈ 50µm.

Fig. 3.12 shows four experimental curves measured for the system tetralin–dodecane at differ-

ent sample thicknesses ls and grating periods d. They correspond to zero power of the writing

laser and have been obtained by extrapolation of five experimental curves at different laser

powers between P = 50mW and P = 800mW to P = 0. This extrapolation is important for

comparison of cuvettes with different sample thicknesses to exclude effects of sample heating.

The normalized heterodyne diffraction efficiency ζhet(t)/ζhet(t = 0) has been plotted against

the reduced time D q2t, where the collective diffusion coefficient D = 6.5 × 10−6 cm2/s of

the system tetralin–dodecane has been obtained by fitting Eq. (3.52) to the experimental

data (see Fig. 3.14). The fast and slow process correspond, respectively, to the decay of

temperature and concentration grating. Whereas the temperature grating decays faster with

increasing d/ls, the concentration grating decays according to Eq. (3.50) always with the

same time constant τ = (Dq2)−1. Other than heat, mass cannot be transported into the cell

walls. Therefore the integrated property ζhet,c as defined in Eq. (3.22) cannot decay faster

than with τ = (Dq2)−1, even if the dependence of the concentration distribution cq(z, t) on z

is very complicated and mass fluxes in z–direction are present. The ratio of the amplitudes of

concentration and temperature signal ζhet,c(t = 0)/ζhet,T,s(t = 0) is, according to Eq. (3.27),

independent of grating period d and sample thickness ls.

Fitting all the other experimental curves extrapolated to zero laser power to the working

equation (3.52) yields the apparent thermal diffusivity Dth,app (Fig. 3.13), the collective
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Figure 3.12: (a) Measured decay of the heterodyne diffraction efficiency ζhet(t)/ζhet(t = 0) against
the reduced time D q2t for the system tetralin–dodecane at different sample thicknesses ls and grating
periods d = 2π/q. The collective diffusion coefficient D = 6.5× 10−6 cm2/s is the same for all curves.
Also plotted are the least–squares fits of Eq. (3.52) to the experimental data (solid lines). (b) Residuals

(∂ns/∂T )c,p (∂ns/∂c)T,p

tetralin–dodecane −4.39 × 10−4/K 0.117

tetralin–toluene −5.15 × 10−4/K 0.045

Table 3.1: Contrast factors for the binary systems tetralin–dodecane and tetralin–toluene, 50 wt%,
T = 25◦C. The values for tetralin–dodecane are from Ref. [111].
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Figure 3.13: Results for the binary systems tetralin–dodecane (grey symbols) and tetralin–toluene
(white symbols), 50 wt%, T = 25◦C: The relative deviations (Dth,app − Dth,s)/Dth,s of the exper-
imental value Dth,app from the reference value Dth,s = 8.0 × 10−4 cm2/s for tetralin–dodecane and
Dth,s = 8.4×10−4 cm2/s for tetralin–toluene are plotted against the ratio of grating period to sample
thickness d/ls. Different symbols refer to different sample thicknesses ls.

diffusion coefficient D (Fig. 3.14) and the Soret coefficient ST (Fig. 3.15). To calculate the

latter, the contrast factors (∂ns/∂T )c,p and (∂ns/∂c)T,p had to be measured (Tab. 3.1).

In Fig. 3.13 the relative deviation of the experimental value Dth,app from the reference value

Dth,s (Dth,s = 8.0 × 10−4 cm2/s for tetralin–dodecane and Dth,s = 8.4 × 10−4 cm2/s for

tetralin–toluene) is plotted against the ratio of grating period to sample thickness d/ls. The

theoretical curves have been evaluated from Eq. (3.45) with κs/κw = 0.09, Dth,s/Dth,w = 0.09

for tetralin–dodecane and κs/κw = 0.09, Dth,s/Dth,w = 0.1 for tetralin–toluene. In the range

d/ls ≤ 5 they differ less than 0.8% and cannot be distinguished within the resolution of the

plot. The agreement between theory and experiment is excellent for both systems.

Figs. 3.14 and 3.15 show the measured collective diffusion coefficients D and Soret coefficients

ST against d/ls. As already seen in Fig. 3.12 the concentration signal ζhet,c does not depend

on d/ls and therefore all experiments yield the same collective diffusion coefficients D and

Soret coefficients ST . Small deviations are only observable for the system tetralin–toluene at

d = 51.84µm, corresponding to a very small scattering angle of 0.36◦, and ls = 55 and 12µm.

However, it should be pointed out that, compared to the dramatic increase of the apparent

thermal diffusivity Dth,app, these deviations are only minute. The system tetralin–dodecane,

in contrast, does not show any dependence of D and ST on d/ls and behaves in perfect

agreement with the predictions of our model.
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Figure 3.14: Results for the binary systems tetralin–dodecane (grey symbols) and tetralin–toluene
(white symbols), 50 wt%, T = 25◦C: Measured collective diffusion coefficients D against the ratio of
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3.4 Conclusion

For thin samples or large grating periods heat conducting walls become important in transient

grating experiments. The heat loss into the cell walls leads to a nearly exponential decay

of the temperature grating with a time constant τth = (Dth,app q2)−1 < (Dth,s q2)−1. Dth,app

and Dth,s are the apparent and the true thermal diffusivities of the sample. The experimental

results can be reproduced theoretically by solving the two–dimensional heat equations for

the sample and the wall on condition that the temperature and the heat flux is continuous

over the interface. Even though it was not possible to solve these PDEs analytically, a

conditional equation (Eq. (3.45)) could be found, which relates the ratio Dth,app/Dth,w to

the three dimensionless parameters d/ls, κs/κw and Dth,s/Dth,w. d is the grating period,

ls is the sample thickness, κs/w is the thermal conductivity of the sample and the wall,

respectively, and Dth,w is the thermal diffusivity of the wall. Whereas simulation of the

PDEs requires substantial computational effort, the conditional equation (3.45) allows for

easy determination of the parameters of the sample from the measured Dth,app. For this

purpose the thermal diffusivity Dth,w and the thermal conductivity κw of the wall should

be known. If the thermal conductivity κs of the sample is also known, the true thermal

diffusivity Dth,s can be directly evaluated from the apparent thermal diffusivity Dth,app.

For small ratios of grating period to sample thickness d/ls < 0.5, as employed for typical

experiments, the dependence of Dth,app on κs is weak. Any reasonable assumption about

κs will lead to a good approximation for the true Dth,s. In case of unknown κs, one single

experiment is not sufficient to evaluate the thermal diffusivity of the sample Dth,s. From two

experiments at different grating periods d or sample thicknesses ls, however, Dth,s as well as

κs can be determined. For a precise determination of κs at least one measurement should be

performed at a large d/ls, where Dth,app depends stronger on κs.

Other than the temperature signal, the concentration signal is not affected by deviations from

one–dimensional heat conduction. The complicated temperature distribution in the sample

Tq(z, t) cos(qx) leads to a complicated concentration distribution cq(z, t) cos(qx), where mass

fluxes in z–direction are present. Experimentally observable, however, is only the integrated

property
∫ ls/2
−ls/2 cq(z, t) dz. As mass cannot flow into the cell wall, this quantity can only

decay by diffusion in x–direction. Therefore, independent from sample thickness and grating

period, the concentration signal decays with τ = (Dq2)−1, where D is the collective diffu-

sion coefficient of the sample. The ratio of the stationary amplitudes of concentration and

temperature signal can be evaluated analytically (Eq. (3.27)). It is proportional to the Soret

coefficient ST and independent from sample thickness and grating period. Thus, neither the

time constant of the concentration signal nor its normalized amplitude depend on grating

period or sample thickness. In transient grating experiments the walls significantly influence

heat transport, but they have no effect on the measurement of mass transport.



89

Chapter 4

Optical Diffusion Cell with Periodic Resistive

Heating

We have developed a new instrument for the measurement of heat, mass and thermal diffusion

in liquids [43]. In the following the design of the sample cell with two interdigitating arrays

for heterodyne readout will be described and the mechanism for signal generation will be

analyzed in detail. From the time dependent diffraction efficiency the thermal diffusivity,

the thermal and the Fickian diffusion coefficient and the Soret coefficient can be obtained.

Similar to holographic grating experiments with very thin sample cells (cf. Chap. 3), heat

penetration into the wall plays a major role and requires a detailed treatment. The suitability

of the approach is demonstrated with measurements on reference systems. Stability issues

of this prototype instrument will also be discussed.

4.1 Experimental Setup and Principles of Measurement

4.1.1 Setup

The basic idea of the new method is explained in Fig. 4.1. We have built cuvettes that have

a grating of conducting, transparent strips of indium tin oxide (ITO) on the inner side of

one of their windows. The distance between two strips is d′ = 20µm but only every other

strip is current–carrying. By flipping the switch the other set of strips is connected to the

voltage source (1 . . . 10V). The distance between two current–carrying strips as well as the

grating period of the resulting temperature grating is d = 2d′ = 2π/q = 40µm. In this way

the diffraction of the ITO–grating of period d′ can be easily separated from the diffraction

of the temperature grating. Having different grating periods the two gratings diffract at

different angles (see Fig. 4.5). Of course another possibility to separate the diffraction of

the two gratings would be to switch on and off only every other strip and do not care

about the other set of strips. However, if the electric current flows alternately through the

two sets of strips, only the periodic part of the temperature field is switched, whereas the

overall heating stays nearly constant. This is a major advantage as will become clear later

(Sec. 4.3.2). Furthermore, this technique allows to double the signal amplitude.
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Figure 4.1: Sketch of the cell: A grating of transparent conducting strips (ITO) is on the inner side
of one of the windows. When heated by an electric current I a temperature grating will build up in
the sample. Only every other strip is current–carrying. This allows to separate the diffraction of the
ITO–grating from the diffraction of the temperature grating.

Fig. 4.2 shows the design in detail. All structures have been made by photolithographic

processes (see Sec. 4.1.2). First an ITO–pattern resembling interdigital electrodes has been

sputtered onto the window. Each of the 150 ITO–strips is 3mm long, 10µm wide, lito =

175nm high and has an electrical resistance of about 15 kΩ. Two sets of strips exist: set

1 and set 2. Set 1 is in electrical contact with the electrode 1, set 2 with the electrode 2

(see Fig. 4.2(a)). In a second step two layers of polyimide, an insulating and very resistant

polymer, have been applied on the substrate. These layers are 5 to 10µm thick and have holes

of 10µm × 50µm. Fig. 4.2(b) shows their shape and position relative to the ITO–structure.

Finally two 200 nm thick layers of chromium have been vapor deposited onto the insulating

layers, as can be seen in Fig. 4.2(c). As illustrated in Fig. 4.3 the holes in the insulating layers

and the chromium electrodes on top of them serve to contact independently all strips of set

1 and all strips of set 2. In that way the strips of one of the sets can be current–carrying,

whereas no electric current passes through the other set of strips. The lateral dimensions of

the ITO–electrodes are given in Fig. 4.2(a).

To switch between strips of set 1 and strips of set 2 a fast electronic switch (τswitch ≈ 1µs)

was built, which can be controlled by a PC. The window with the strips is of soda lime

glass, the opposite window is of sapphire (high thermal conductivity 40W/(mK)) to keep

the overall sample heating small. The thickness of the windows is lw = 1mm. The soda lime

glass window has lateral dimensions 2mm × 2mm, the sapphire window 16mm × 10mm.

The two windows with a spacer of ls ≈ 100µm in between have been sealed with a solvent–

resistant glue (Torr Seal, Varian) to form a cuvette. Two boreholes in the sapphire window

allow filling of the cuvette and can be closed by Teflon plugs. Four wires with banana plugs
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Figure 4.2: Multilayer-structure of ITO-strips, insulating layers and chromium layers on the cuvette
window. Two sets of strips exist that can be alternately connected to the voltage source. The picture
to the right below is a scanning electron microscope micrograph (SEM).

have been attached to the four electrodes by conductive lacquer (see Fig. 4.4).

The experimental setup is shown in Fig. 4.5. Readout of the refractive index gratings is

done similar to laser–induced transient grating experiments. A HeNe laser (633 nm) is used

as reading laser and a heterodyne detection scheme (see Sec. 4.1.3) is employed. The co-

herent superposition of the diffracted and the reference wave is detected with a single–mode

optical fiber connected to a photomultiplier tube. The phase between diffracted and refer-

ence wave is adjusted and stabilized by an active phase tracking mechanism as described

in Ref. [52]. Typically, experiments have been averaged over 1000–2000 cycles. The con-

trast factors (∂n/∂c)T,p and (∂n/∂T )c,p can be determined with an Abbe refractometer and

interferometrically as described in Ref. [111].

4.1.2 Fabrication of Multilayer Structures

The ITO and the chromium structures have been patterned by lift of processes using an

image reversal resist (TI 35ES MicroChemicals). Cleaning of the substrates, spin coating,

soft baking, reversal baking, developing and stripping was performed according to the data

sheet of the TI 35ES. A custom–built photo mask with anti reflective chrome on soda lime

glass has been purchased from Photronics. The coated substrates have been exposed in a

EVG 620 (EV Group) mask aligner. AZ 400 K (MicroChemicals) was used for developing.

The ITO (ITO–target, Balzers, no reactive sputtering) was RF–sputtered using a Balzers

BAS 450, operating at a sputtering power of 400W and a sputtering rate of 7 nm/min in an
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(a) Scanning electron microscope (SEM) micrograph visualizing the layer composition: A trapezium has been cut
into the multilayer structure with a focused ion beam (FIB, ZEISS 1540 XB). For explanation compare to Fig. 4.3(b).
It should be noted that the quality of the vapor deposited chromium layers was not always as bad as here (see Fig. 4.2
right below and Figs. 4.8(a,b)). Anyway, as long as the chromium layer makes contact with the ITO electrode, holes
in the chromium layer do not matter.
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(b) Schematic sketch of the multilayer structure explaining the SEM picture above (Fig. 4.3(a)).

Figure 4.3: Sectional view of the multilayer structure illustrating the function of the holes in the
insulating layer
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Figure 4.4: Photograph of the cuvette: the two windows with a spacer in between have been sealed
to form a cuvette. The ITO strips are on the upper side of the lower window. The window above has
two boreholes to allow filling of the cuvette. Four wires with banana plugs are attached to the four
electrodes by conductive lacquer.
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Figure 4.5: Sketch of experimental setup. A HeNe laser (633nm) is used for readout of the refractive
index grating in a heterodyne detection scheme
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100 µm

Figure 4.6: Light microscope picture of structured photo resist TI 35ES just before ITO–sputtering:
Each strip is 10 µm wide. Two alignment marks can be seen.

argon atmosphere of pressure 2 · 10−3 mbar. A Balzers Ba 510 coating unit with a residual

pressure of 10−5 mbar was used for electron beam physical vapor deposition of chromium (Cr

granulate, > 99.9%, umicore) at a rate of 3 Å/s. Finally the resist was stripped with technical

acetone. Fig. 4.6 shows the structured TI 35ES resist after exposure and development ready

for ITO–sputtering.

The insulating layers have also been structured by a photolithographic process. The photo-

sensitive polyimide (HD 4000, HD MicroSystems) was processed according to the data sheet.

Again the EVG 620 mask aligner was used for exposure. A negative exposure mask was

prepared from a positive mask (Photronics, see above) in the same manner as the chromium

layers except for using TI 35ES this time not as a negative, but as a positive resist. The

initial idea was to use SiO2 or Al2O3 for the insulating layers. In this case a positive exposure

mask would have been needed and was therefore bought. However, these materials resulted

in very holey layers when sputtered and did not serve as insulators. The exposed polyimide

was developed with cyclopentanone (Fluka, > 99%) and rinsed with a symmetric mixture of

cyclohexanone and γ–butyrolactone (both Fluka, > 99% and > 98%). It was never possible

to develop the polyimide completely, but the residues were always thinner than ≈ 150 nm

and could be removed by O2 plasma edging in an Anatech SP 100 plasma system (Anatech

Ltd.). The applied plasma power was 80W, the pressure was approximately 0.5Torr and the

exposure time 15min.

Many problems occurred during the fabrication of the multilayer structures. Initially the

mask aligner was not correctly set up and wedge error compensation did not work. There-

fore the substrate on the chuck of the mask aligner was tilted in relation to the mask (see

Fig. 4.7(a)). This leads to a very non–uniform UV–intensity distribution on the substrate.

The left side of the substrate and the mask are in contact as desired. The gap between

substrate and mask to the right leads there to a smaller exposure dose due to reflection
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Figure 4.7: Mask aligner with wedge error: (a): Sketch of mask aligner: The substrate on the chuck
is tilted in relation to the mask, (b): Resist after exposure and development: The exposure dose on
the right side was too small and developing leads to peeling of resist structures. Each strip is 10 µm
wide. Moreover interference fringes can be seen.

losses. Therefore an adequate developing time could not be found. Whereas the resist in

Fig. 4.7(b) is not completely developed on the left hand side, it is overdeveloped on the

right hand side. Moreover interference phenomena at a thin air wedge lead to a modulated

intensity distribution known as Newton rings. This modulates the thickness of the developed

resist irrespective of the microstructures. The resulting interference fringes can also be seen

in Fig. 4.7(b). The structures in Fig. 4.7(b) is a 2 cm× 2 cm array of 10µm wide strips with

20µm distance, which has been initially used to find the correct process parameters. Later

always the pattern explained in Fig. 4.2 and shown in Fig. 4.6 was used for the ITO–strips.

Further problems with fabrication of the multilayer structures are listed in Fig. 4.8.

4.1.3 Heterodyne Detection

A distinction between homodyne and heterodyne detection must be made in optical scattering

and diffraction experiments. Without careful treatment of the background, there is always

the risk of mixed or unknown coherence conditions and the determined diffusion coefficients

may be off by a factor of two. According to Ref. [52] heterodyne detection is superior to

homodyne detection in situations as considered here.

The intensity I as seen by the detector contains both homodyne and heterodyne contributions

I = |Es + Eref eiφ + Ec eiθ|2 + E2
inc

= E2
s + E2

ref + E2
c + E2

inc

+ 2EsEref cos φ + 2EsEc cos θ + 2ErefEc cos(θ − φ). (4.1)

Es is the electric field amplitude of the diffracted beam, also called signal. Ec > 0 is the

coherent electric field amplitude of the background intensity. It originates from unavoidable

scratches or dust particles on the cuvette windows. Eref > 0 is the electric field amplitude
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Figure 4.8: Some problems encountered during fabrication of multilayer structures:
(a): Since the polyimide is not completely developed, the chromium electrode is not in contact with
the ITO–strip. This multilayer structure could not be used for experiments. As in Fig. 4.3 a trapezium
has been cut into the multilayer structure with a focused ion beam.
(b): Zoom of (a)
(c): Because of the problem described in (a,b) the remaining polyimide was removed by plasma
edging. Here plasma edging was over done and the ITO strips were burnt. This multilayer structure
could not be used for experiments, as the resistance of the burnt ITO–strips is too high.
(d): Sometimes stripping of the ITO–sputtered substrates was difficult. µm–sized particles of ITO,
which are not part of the desired structure, sticked to the substrate and electrically contacted ITO–
strips of set 1 and set 2. In principle, the multilayer structure can still be used for experiments, as
merely the amplitude Tq of the resulting temperature grating is reduced. By reducing Tq at constant
total heating, however, unwanted transient heating effects become visible in the detected heterodyne
diffraction efficiency at the expense of the real signal (see Sec. 4.3.2). Therefore these defects should
be avoided.
All pictures are SEMs.



4.1 Experimental Setup and Principles of Measurement 97

of the reference beam. Einc is the incoherent electric field amplitude of the total background

intensity. φ is the phase shift between the signal Es and the reference Eref , θ is the phase shift

between the signal Es and the coherent background Ec. The phase of Es is arbitrarily chosen

to zero. The phase of the reference φ may be adjusted by means of a piezo mounted mirror.

Other than φ the phase θ cannot be properly controlled, as it depends on a randomly selected

local oscillator on the cuvette window. Even though it may be changed by readjusting some

mirrors, it cannot be set to an arbitrary value. For convenience the proportionality factor be-

tween E2 and I is set to unity. Shom = E2
s is the homodyne and Shet = 2EsEref +2EsEc cos θ

is the heterodyne signal. The total background Iφ
b = E2

ref + E2
c + E2

inc + 2ErefEc cos(θ − φ)

depends on φ.

Part of the heterodyne signal S′
het = 2EsEref can be separated if two measurements with

φ = 0 and φ = π,

Iφ=0 = E2
c sin2 θ + E2

inc + (Es + Ec cos θ + Eref)
2 (4.2)

Iφ=π = E2
c sin2 θ + E2

inc + (Es + Ec cos θ − Eref)
2, (4.3)

are combined according to

(Iφ=0 − Iφ=π)/2 = 2EsEref + I ′b, φ=0 = S′
het + I ′b, φ=0, (4.4)

where I ′b = 2ErefEc cos(θ − φ). The heterodyne signal S′
het as determined from Eq. (4.4) is

robust against non ideal phase jumps π + δ or against a non ideal adjustment of the phase

shift φ = φ0 6= 0, since

(Iφ=φ0
− Iφ=φ0+π+δ)/2 = S′

het(cos φ0 + cos(φ0 + δ))/2 + (I ′b, φ=φ0
+ I ′b, φ=φ0+δ)/2. (4.5)

Merely the amplitude of S′
het is reduced and the background value changes, but the expression

Iφ=φ0
− Iφ=φ0+π+δ remains free of homodyne contributions.

In Sec. 4.2 we will solve the differential equations always for switching on processes: No

current has been flowing for t < 0, at t = 0 the voltage is switched on and for t > 0 the strips

of set 1 are current–carrying. The corresponding electric field amplitude of the diffracted

beam is given by

Eoff→on
s (t) = E0, set 1

s α(t), (4.6)

where E0,set 1
s is the signal produced by strips of set 1 in the stationary state and

α(t) =
( ∫ t

0
g(t′) dt′

)(∫ ∞

0
g(t′) dt′

)−1
, (4.7)

with g(t) being the linear response function. The experiments, however, have been actually

conducted in a slightly different way. The voltage was not switched on and off, but was
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switched between strips of set 1 and strips of set 2. Es evolves according to

Ei→j
s (t) = E0, set i

s (1 − α(t)) + E0, set j
s α(t), (4.8)

if the voltage is switched over from strips of set i to strips of set j at t = 0 . There is always

a slight asymmetry and strips of set 1 do not produce the same signal as strips of set 2. Only

for a perfectly symmetric cuvette both sets of strips would generate the same signal with

E0, set 1
s = −E0, set 2

s . To be able to compare the experimental data (switching set 1 ↔ set 2) to

the theoretical results of Sec. 4.2 (switching off → on), the function α(t) has been extracted

from the measured intensities I1→2
φ=0 , I1→2

φ=π , I2→1
φ=0 and I2→1

φ=π via

α(t) = [y(t)/y(t → ∞) + 1]/2, (4.9)

where the purely heterodyne y(t) has to be evaluated according to

y(t) = (I1→2
φ=0 − I1→2

φ=π − I2→1
φ=0 + I2→1

φ=π )/2 = S1→2
het − S2→1

het . (4.10)

Remember that the motivation for this apparently complicated procedure is to keep the

average heat insertion into the sample time invariant in order to avoid transient heating

effects.

Of course all the above considerations implied Eref , Ec and Einc to be constant. If they drift

slowly in time, y(t) contains contributions of unknown time dependence and cannot be used

to calculate α(t). Unfortunately, we were not able to reduce all (thermal) drift effects to zero.

A slight drift of Eref could be directly observed by blocking the probing beam and otherwise

performing the experiment as usual (see Sec. 4.3.2). Nevertheless, for lack of alternatives, all

data were analyzed according to Eqs. (4.9, 4.10) knowingly accepting some artefacts.

0 1 2 3 4 5 6 7
t/τ

Ib

0
0 1 2 3 4 5 6 7

t/τ
0

IbI(φ=π)

I(φ=0) I(φ=0)

I(φ=π)

Figure 4.9: Possible signals Iφ=0 and Iφ=π in a heterodyne detection scheme, where the reference
is provided by a local oscillator on the cuvette window (laser–induced grating experiments): left:
Ec > E0

s , right Ec < E0
s

Despite of all similarities with laser–induced grating experiments we apply slightly different

heterodyne detection schemes depending on whether the temperature grating is generated
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optically or electrically. In laser induced grating experiments the reference wave may be

provided by scratches on the cuvette window and the phase jump of π can be realized by

shifting the phase of the diffracted beam. No extra reference beam is needed [52]. The result

(1) in Ref. [52] is recovered from Eq. (4.1), if Ec in Eq. (4.1), is set to zero and Eref is

identified with the electric field amplitude generated by the local oscillator on the window

(Eref → Ec). Then, if we assume the following time dependence for Es

Es = E0
s (1 − 2e−t/τ ), (4.11)

two scenarios Ec > E0
s and Ec < E0

s are possible. The corresponding intensities Iφ=0 and

Iφ=π are shown in Fig. 4.9.

With the new technique the phase θ between the diffracted beam and the local oscillator on

the cuvette window cannot be controlled. A reference wave has to be provided by splitting

off part of the readout beam, which is then aligned parallel to the diffracted signal beam (see

Fig. 4.5). The phase φ of this reference is controlled by means of a piezo mounted mirror. For

this detection scheme and with Es from Eq. (4.11) many possibilities for the signals Iφ=0 and

Iφ=π can be observed, depending on the values of E0
s , Ec, Eref and θ (Fig. 4.10). Situations

as E+
c < −E0

s or E−
c > E0

s lead according to Eq. (4.4) to a small Shet and should be avoided

by adequate adjustment.

4.1.4 Sample Preparation

The pure substances toluene, dodecane, tetralin and isobutylbenzene have been obtained

from Merck, Aldrich, Acros and Aldrich. The purities of the chemicals are in excess of 98%.

Sample preparation is done in the same way as for light scattering. Other than for laser

induced grating experiments no dye has to be added to the sample. For the experiments

with binary mixtures, the solvents were mixed with equal weights. The liquids were filled

into the thoroughly cleaned and dried cuvette. The cuvette was sealed with Teflon plugs.

4.2 Heat and Mass Diffusion Analysis

We use a similar model for the description of the experiment as in Sec. 3.1. However, the

source term Q̇ in the heat equation (Eq. (1.2))

ρcp∂tT = ~∇ · [κ~∇T ] + Q̇,

is now given by the electrical power density. In case of a binary liquid also the extended

diffusion equation (Eq. (1.3)) is needed, which describes the spatial and temporal evolution
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Figure 4.10: Possible signals Iφ=0 and Iφ=π in a heterodyne detection scheme, where an extra reference
beam is used (new technique). E+

c and E−
c are defined according to E+

c = Ec cos θ + Eref and
E−

c = Ec cos θ − Eref . The first column (first row) shows the four possible curve shapes for Iφ=0

(Iφ=π) and the corresponding conditions for E+
c and E0

s (E−
c and E0

s ). They can be combined in ten
different ways resulting in ten different scenarios.
(a) also possible: Iφ=0 < Iφ=π for all t, (b) also possible: Iφ=0 > Iφ=π for all t
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of the concentration c of component 1 (weight fractions)

∂tc = ~∇ · [D~∇c + c(1 − c)DT
~∇T ].

In the following we will take the thermal conductivity κ, the mass diffusion coefficient D, the

thermal coefficient DT , and c(1 − c) ≈ c0(1 − c0) as constant, which is reasonable for small

concentration and temperature changes.

4.2.1 Evolution Equations

Fig. 4.1 shows the coordinate system for analysis. The region −ls < z < 0 is of sample

material, which has thermal conductivity κs, density ρs, heat capacity cp,s and thermal

diffusivity Dth,s = κs(ρscp,s)
−1. The region 0 < z < lw is of soda lime glass (κw, ρw, cp,w,

Dth,w = κw(ρwcp,w)−1). For simplicity, we suppose the sample to be infinitely extended in x–

direction and to be heated by an infinite number of infinitely thin (lito → 0) ITO–strips. This

is a good approximation, if the grating period d is much smaller than the x–dimension of the

heated area Lx but much larger than the thickness of the ITO–strips lito and if, additionally,

lito is much smaller than the sample thickness ls and the window thickness lw, respectively.

In our case, we have Lx = 3mm, d = 40µm, lito = 175nm, ls = 100µm, and lw = 1mm. As

the thermal conductivity of sapphire is very high (40W/(mK)), the temperature at z = −ls

is, by good approximation, given by the temperature of the thermal bath. There is no y

dependence.

We expand the electrical power density per unit area S(x) = Q̇(x) lito and the temperature

and concentration fields in a Fourier series with q = 2π/d.

S(x) =







4S0 : k d − d
8 ≤ x ≤ k d + d

8 , k = 0, 1, 2, . . .

0 : else
(4.12)

= S0

[

1 + 2
∞∑

k=1

sin(πk/4)

πk/4
cos kqx

]

(4.13)

= S0 + Sq cos qx + S2q cos 2qx + . . . (4.14)

T (x, z, t) = T0(z, t) + Tq(z, t) cos qx + T2q(z, t) cos 2qx + . . . (4.15)

c(x, z, t) = c0(z, t) + cq(z, t) cos qx + c2q(z, t) cos 2qx + . . . (4.16)

In our experiment we detect first order diffraction (see Fig. 4.5) and therefore only the first

Fourier coefficients Tq and cq are experimentally relevant.

Considering all approximations mentioned above, Tq and cq initially being zero

Tq(z, t = 0) = cq(z, t = 0) = 0 (4.17)
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evolve according to

∂tTq = Dth,s (−q2 + ∂2
z )Tq −ls ≤ z ≤ 0 (4.18)

∂tTq = Dth,w (−q2 + ∂2
z )Tq 0 ≤ z ≤ lw (4.19)

and

∂t cq = D(−q2 + ∂2
z ) cq + DT c0(1 − c0)(−q2 + ∂2

z )Tq − ls ≤ z ≤ 0. (4.20)

The boundary conditions

Tq(z = lw) = Tq(z = −ls) = 0 (4.21)

D∂zcq|z=zsb
= −DT c0(1 − c0)∂zTq|z=zsb

where zsb = 0−,−ls (4.22)

and the matching conditions

Tq(z = 0+) = Tq(z = 0−) (4.23)

κw ∂z Tq|z=0+ + Sq = κs ∂z Tq|z=0− (4.24)

with Sq = 4
√

2
π S0 follow from continuity of temperature and heat flux and from vanishing

mass flux into the windows.

4.2.2 Refractive Index Grating and Heterodyne Diffraction Efficiency

Both the temperature grating and the concentration grating give rise to a refractive index

grating

n(x, z, t) = n0(z, t) + nq(z, t) cos qx + n2q(z, t) cos 2qx + . . . , (4.25)

which acts as an optical phase grating on a probing laser beam. n(x, z, t) is the refractive

index at the readout wavelength. For experiments conducted within the weak modulation

depth limit the first order heterodyne diffraction efficiency ζhet is simply proportional to the

refractive index modulation depth nq [29] or, in case of z–dependent nq, to the integral over

nq along the z–direction:

ζhet(t) = ζhet,T,s(t) + ζhet,c(t) + ζhet,T,w(t) (4.26)

∝
∫ 0

−ls

(∂ns

∂T

)

c,p
Tq(z, t) dz +

∫ 0

−ls

(∂ns

∂c

)

T,p
cq(z, t) dz +

∫ lw

0

(∂nw

∂T

)

p
Tq(z, t) dz

Not only the temperature and concentration gratings within the sample with respective

contrast factors (∂ns/∂T )c,p and (∂ns/∂c)T,p, but also the temperature grating in the window

with contrast factor (∂nw/∂T )p contribute to the refractive index grating and, thus, to the
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Figure 4.11: Stationary amplitude of the temperature grating for ls = 100 µm in the case of optical
and electrical heating, if the same power is absorbed in both experiments (S0 = π

4
√

2
Sq = αI0ls).

heterodyne diffraction efficiency.

4.2.3 Stationary Solutions

The stationary solutions (t → ∞) can be found by solving Eqs. (4.18– 4.20) setting ∂tTq =

∂tcq ≡ 0 and taking into account the boundary and matching conditions Eqs. (4.21–4.24).

The solutions are especially simple for ls, lw → ∞.

Tq(z, t → ∞) =
Sq

q

1

κw + κs
e−q|z| (4.27)

cq(z, t → ∞) = −ST c0(1 − c0)Tq(z, t → ∞) (z < 0) (4.28)
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Here we introduced the Soret coefficient ST = DT /D. The approximation of infinite window

and sample thickness is valid, if the penetration depth of the temperature grating is small

compared to the thicknesses of sample and window. In our experiment the penetration

depth is of order q−1 = 40µm/(2π) = 6µm and the sample and window thicknesses are

ls = 100µm and lw = 1mm. In Fig. 4.11 the stationary amplitude of the temperature

grating Tq(z, t → ∞) given by Eq. (4.27) is compared to the amplitude resulting from optical

heating in a laser induced grating experiment. The latter is given by Eqs. (3.23, 3.24), if

t = 0 and z are replaced by t → ∞ and z− ls/2. (In Sec. 3.1 the stationary state corresponds

to t = 0, since switching off experiments have been considered there. Moreover different

coordinate systems (Figs. 3.1 and 4.1) are used in Sec. 3.1 and in this section.) In our new

experiment the sample is heated electrically at its boundary z = 0, whereas in a laser induced

grating experiment the sample is heated optically in the volume −ls ≤ z ≤ 0 with power

density Q̇(x) = αI0(1 + cos(qx)). α is the absorption coefficient of the sample and I0 the

intensity of the laser that generates the holographic grating. For S0 = αI0ls the same power

is absorbed in both experiments and a sensible comparison between optical and electrical

heating is possible. αI0
κw

= 5µK/µm2, ls = 100µm, κs/κw = 0.1 and d = 40µm correspond

to typical experimental conditions. In Figs. 4.11(a) and 4.11(b) the influence of the grating

period d is studied for κs/κw = 0.1. In the optical experiment Tq(z, t → ∞) depends in a

complicated way on d (cf. Sec. 3.1.3). For small d the maximum value Tq(z = −ls/2, t → ∞)

is proportional to d2, for very large d proportional to d. Moreover Tq(z, t → ∞) changes

its shape with increasing d markedly. While it is nearly constant throughout the sample

for small d, it strongly varies within the sample for larger d. In the electrical experiment,

in contrast, all Tq(z, t) can be scaled to lie on a common curve by z̃ = qz, T̃q = qTq for

any d = 2π/q. To study the role of the heat conductivity of the window κw the values

κw = 0 (perfectly insulating walls), κw = 0.5 (dense flint, an optical glass with very small

κw) and κw = 1.4 (fused silica, an optical glass with very large κw) have been considered

in Figs. 4.11(c) and 4.11(d). In the optical experiment the shape of Tq(z, t → ∞) changes

with κw. Its maximum value Tq(z = −ls/2, t → ∞) is scarcely affected by κw. Again, in the

electrical experiment all Tq(z, t) can be scaled to lie on a common curve by T̃q = (κw +κs)Tq.

The amplitude Tq(z, t → ∞) grows with decreasing κw according to (κw + κs)
−1. One might

have the idea to use an optical glass with small κw, e.g. dense flint, to maximize Tq and thus

the heterodyne diffraction efficiency. It is, however, not clear, whether a small κw has any

real advantage. With decreasing κw also unwanted transient heating effects increase. They

lead to a thermal drift of the heterodyne signal and thus to erroneous values for diffusion and

Soret coefficients (see Sec. 4.3.2). Hence we have chosen soda lime glass irrespective of its

thermal conductivity κw because it is superior to dense flint and many other optical glasses

concerning cost and chemical resistance.

According to Eq. (4.26) the heterodyne diffraction efficiencies are obtained from integration
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of Eqs. (4.27, 4.28):

ζhet,T,s(t → ∞) ∝
(∂ns

∂T

)

c,p

Sq

q2

1

κw + κs
(4.29)

ζhet,T,w(t → ∞) ∝
(∂nw

∂T

)

p

Sq

q2

1

κw + κs
(4.30)

ζhet,c(t → ∞) = −
(∂ns

∂c

)

T,p

(∂ns

∂T

)−1

c,p
ST c0(1 − c0)ζhet,T,s(t → ∞) (4.31)

It is instructive to compare the heterodyne diffraction efficiencies of the temperature grat-

ing achievable by electrical heating ζel.
het,T,s (Eq. (4.29)) and by optical heating ζopt.

het,T,s in a

laser induced grating experiment (Eq. (3.26)). For κs/κw = 0.1 and d/ls = 0.4 one finds

ζopt.
het,T,s/ζ

el.
het,T,s = 5.4αI0ls/S0. This means that 5.4 times more power has to be absorbed in

the new experiment to obtain the same heterodyne diffraction efficiency as in the laser in-

duced grating experiment. In laser induced grating experiments the power density is usually

αI0 ≈ 5 · 106 W/m3. For U = 1V the same power is absorbed in the new experiment with

S0 = αI0ls = 500 W
m2 , for U = 2.2V the same heterodyne diffraction efficiency is obtained

with S0 = 5.4αI0ls = 2700 W
m2 . The applied voltage U can be related to the power density

per unit area S0 by U = 3mm
√

S0 · 200Ω.

4.2.3.1 Stationary Solutions for lito 6= 0

Temperature grating in the stationary state for lito 6= 0 In case of not negligible

thickness lito of the ITO strips the stationary temperature distribution T (x, z) solves

∂x[κ(x, z)∂xT (x, z)] + ∂z[κ(x, z)∂zT (x, z)] + Q̇(x, z) = 0, (4.32)

where

κ(x, z) =







κs : within sample

κito : within ITO-strips

κw : within window

(4.33)

=







κs : z ≤ −lito
κs+κito

2 + 2(κito−κs)
π

∑∞
i=0

(−1)i

2i+1 cos[(2i + 1)2qx] : −lito < z < 0

κw : z ≥ 0

(4.34)

and Q̇(x, z) =







4Q̇0 : within heated ITO-strips

0 : elsewhere
(4.35)

=







0 : z ≤ −lito

Q̇0 + 2Q̇0
∑∞

k=1
sin(πk/4)

πk/4 cos kqx : −lito < z < 0

0 : z ≥ 0

. (4.36)
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If the approximations of infinite window and sample thickness lw, ls → ∞ and infinite exten-

sion in x–direction remain valid, T (x, z) has to satisfy the following boundary conditions

∂xT (x, z)|x=0 = ∂xT (x, z)|x=d/2 = T (x, z → ∞) = T (x, z → −∞) = 0. (4.37)

For simplicity the ambient temperature has been set to zero. The temperature T (x, z) for

x < 0 and x > d/2 can be obtained by symmetry considerations

T (d/2 + x, z) = T (d/2 − x, z), T (x + d, z) = T (x, z). (4.38)

We define

∆T (x, z) = T (x, z) − T0(x, z), (4.39)

where T0(x, z) is the solution of

∂x[κ(x, z)∂xT0(x, z)] + ∂z[κ(x, z)∂zT0(x, z)] + Q̇0 = 0. (4.40)

Note that T0(x, z) is a function of x with period d′ = d/2 = π/q. ∆T (x, z) solves

∂x[κ(x, z)∂x∆T (x, z)] + ∂z[κ(x, z)∂z∆T (x, z)] + Q̇(x, z) − Q̇0 = 0 (4.41)

∆T (x, z) is periodical with period d = 2π/q and can therefore be expanded in a Fourier

series.

∆T (x, z) = T0q(z) + Tq(z) cos(qx) + T2q(z) cos(2qx) + . . . =

∞∑

i=0

Tiq(z) cos(iqx) (4.42)

Inserting Eq. (4.42) in the heat equation (4.32) and considering the boundary conditions

(4.37) one finds

z ≥ 0 : T0q(z) = 0, Tiq(z) = Ai e
−iqz (i ≥ 1) (4.43)

z ≤ −lito : T0q(z) = 0, Tiq(z) = Bi e
iqz (i ≥ 1) (4.44)

where Ai and Bi are determined by the requirement of continuity of temperature and heat

flux at z = 0 and z = −lito. Unfortunately, calculation of Ai and Bi was not possible, since a

solution for ∆T (x, z) within −lito < z < 0 could not be found because of problems with the

convergence of the Fourier series. If ∆T (x, z) is expanded in one single Fourier series within

−lito < z < 0, the second derivative of this Fourier series with respect to x does not converge

to ∂2
x∆T (x, z). Three Fourier series within the heated ITO–strips (0 ≤ x ≤ d/8), the sample

(d/8 ≤ x ≤ 3d/8) and the “cold” ITO–strips (3d/8 ≤ x ≤ d/2) are also no solution to the

problem, as they do not converge to the actual value of the temperature at x = d/8 and

x = 3d/8.
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Figure 4.12: Lowest Fourier coefficients Tiq(z) as defined in Eq. (4.42). For lito/d = 0.001 they have
been calculated numerically. The analytical approximation (4.45) valid for small lito is also shown.
(κs/κw = 0.1, κito/κw = 10, d = 40 µm)
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Figure 4.14: Lowest Fourier coefficients Tiq(z) as defined in Eq. (4.42). For lito/d = 1000 they have
been calculated numerically, for lito → ∞ an analytical solution (4.46) has been found. (κs/κw = 0.1,
κito/κw = 10, d = 40 µm)

Only for lito → 0 and for lito → ∞ analytical solutions could be found. For lito → 0 one

obtains by combination of Eq. (4.27) and Eq. (4.36)

∆T (x, z) =
2Q̇0lito

q

1

κw + κs

∞∑

k=1

sin(πk/4)

(πk2/4)
e−kq|z| cos(kqx). (4.45)

In this case the k–th Fourier coefficient of ∆T (x, z) originates from the k–th Fourier coefficient

of Q̇(x, z). For lito → ∞ the z–dependence within −lito < z < 0 can be neglected and one

obtains

∆T (x) = Q̇0







−3x2/(2κito) + d 2(13/κs + 8/κito)/384 : 0 ≤ x ≤ d/8

(x − d/2)2/(2κs) − d 2(14/κs + 1/κito)/384 : d/8 ≤ x ≤ 3d/8

(x − d/2)2/(2κito) − d 2(11/κs + 4/κito)/384 : 3d/8 ≤ x ≤ d/2

=
2Q̇0

q2κito

∞∑

k=1

{
(κito

κs
− 1
)(

1 − cos(πk/2)

2

)cos(πk/4)

k2

+
4

π

[

1 −
(κito

κs
− 1
)cos(πk/2)

2

]

sin(πk/4)

k3

}

cos(kqx). (4.46)

Other than for lito → 0 here there exists no direct relation between the first Fourier coefficient

of ∆T (x)

Tq =
4
√

2Q̇0

πq2

[ 1

κito
+

π

4

κito − κs

κsκito

]

=
Q̇q

q2

[ 1

κito
+

π

4

κito − κs

κsκito

]

(4.47)
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and the first Fourier coefficient of the heating Q̇q cos(qx). The temperature distribution

arising from Q̇q cos(qx) is given by

Q̇q

q2







cos(qx)/κito + (1/κs − 1/κito)/
√

2 : 0 ≤ x ≤ d/8

cos(qx)/κs : d/8 ≤ x ≤ 3d/8

cos(qx)/κito − (1/κs − 1/κito)/
√

2 : 3d/8 ≤ x ≤ d/2

=
Q̇q

q2

κito + κs

2κitoκs
cos(qx) +

Q̇q

q2

κito − κs

πκitoκs

∞∑

j=0

(−1)j

2j + 1

{cos[(4j + 1)qx]

4j + 1
− cos[(4j + 3)qx]

4j + 3

}

. (4.48)

Its first Fourier coefficient
Q̇q

q2

[ 1

κito
+

2 + π

2π

κito − κs

κsκito

]

(4.49)

is not equal to Tq as given by Eq. (4.47): This means, that Tq is not only generated by Q̇q

but also by the Q̇iq’s with i > 1.

For arbitrary values of lito the temperature distribution ∆T (x, z) can be evaluated numer-

ically. Numerical solutions for κs/κw = 0.1, κito/κw = 10 and d = 40µm are shown in

Fig. 4.12 (lito/d = 0.001), Fig. 4.13 (lito/d = 1) and Fig. 4.14 (lito/d = 1000). In Fig. 4.12

and in Fig. 4.14 also the analytical solutions (4.45) and (4.46) for lito → 0 and lito → ∞
have been plotted. Obviously lito → 0 is a good approximation for lito/d = 0.001. For

lito/d = 0.005, which corresponds to our experimental situation, the relative deviations be-

tween the numerical solution and the analytical approximation for negligible lito are smaller

than 0.2% within the sample (z < 0). Within the window (z > 0) the relative deviations

reach values up to 3.5%, which is however of no importance, since the heterodyne diffraction

efficiency of the window is negligible in typical experiments (see Sec. 4.2.4.3).

Refractive index grating for lito 6= 0 In case of negligible thickness of the ITO layer

lito → 0 the amplitude of the refractive index grating nq only depends on Tq and the higher

Fourier harmonics do not need to be considered. For lito 6= 0 this is no longer true. If no

concentration modulations are present, the refractive index distribution within −lito ≤ z ≤ 0

is given by

n(x, z) =







nito + (∂nito/∂T )c,p T (x, z) : within ITO-strips

ns + (∂ns/∂T )c,p T (x, z) : within sample
. (4.50)

nito and ns are the refractive indices of the ITO–strips and of the sample at the readout

wavelength at ambient temperature. Remember that the ambient temperature has been set

to zero. Therefore T (x, z) is the difference between the actual temperature at (x, z) and

the ambient temperature. n(x, z) can be evaluated in a Fourier series. The first Fourier
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coefficient of n(x, z) within −lito ≤ z ≤ 0 is given by

nq(z) =
(∂nito/∂T )c,p + (∂ns/∂T )c,p

2
Tq(z)

+
(∂nito/∂T )c,p − (∂ns/∂T )c,p

π

∞∑

k=0

(−1)k

2k + 1

(

T(4k+1)q(z) + T(4k+3)q(z)
)

, (4.51)

where the Tiq(z) have been defined in Eq. (4.42). According to Eq. (4.51) higher Fourier

harmonics of T (x, z) contribute to nq(z) and thus to the heterodyne diffraction efficiency

ζhet − ζhet,c ∝
∫ −lito

−∞
(∂ns/∂T )c,p Tq(z) dz +

∫ 0

−lito

{(∂nito/∂T )c,p + (∂ns/∂T )c,p
2

Tq(z)

+
(∂nito/∂T )c,p − (∂ns/∂T )c,p

π

∞∑

k=0

(−1)k

2k + 1

(

T(4k+1)q(z) + T(4k+3)q(z)
)}

dz

+

∫ ∞

0
(∂nw/∂T )c,p Tq(z) dz (4.52)

For lito → 0 the second integral in Eq. (4.52) tends to zero, as the temperature is admittedly

maximum but nevertheless finite within −lito ≤ z ≤ 0.

4.2.4 Time Dependent Solutions

4.2.4.1 Temperature Grating

For ls, lw → ∞ analytical albeit complicated solutions of Eqs. (4.17, 4.18, 4.19, 4.21, 4.23,

4.24) have been obtained in the following way. The solution T̄q(z, p) of the Laplace–trans-

formed problem is easily found

T̄q(z, p) =
Sq

p

e
√

q2+p/Dth,s z

κs

√

q2 + p/Dth,s + κw

√

q2 + p/Dth,w

z ≤ 0 (4.53)

T̄q(z, p) =
Sq

p

e−
√

q2+p/Dth,w z

κs

√
q2 + p/Dth,s + κw

√
q2 + p/Dth,w

z ≥ 0. (4.54)

Now the inverse Laplace transforms of Eqs. (4.53, 4.54) have to be calculated. This will be

first done for the case z = 0 . The Laplace transform of the temperature at z = 0 can be

written as

T̄q(z = 0, p) =
Sq

q(κ2
w − κ2

s)

{

κw

p
√

1 + p
Dth,wq2

− κs

p
√

1 + p
Dth,sq2

+
κsκw

κ̃2

1

p + D̃thq2

(

κs
√

1 + p
Dth,wq2

− κw
√

1 + p
Dth,sq2

)}

, (4.55)
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where

1/κ̃ =

√

Dth,w − Dth,s

κ2
w Dth,s − κ2

s Dth,w
(4.56)

D̃th =
Dth,sDth,w(κ2

w − κ2
s)

κ2
w Dth,s − κ2

s Dth,w
. (4.57)

For typical parameters of window and sample κ̃ and D̃th are real and positive. However,

all results presented here are also valid for imaginary κ̃ and negative D̃th. The temperature

Tq(z, t) is real and positive in any case. Since

f̄(p) =
1

(p + a)
√

1 + p/b

⇒ f(t) = e−at

√
b√

a − b
erfi
√

(a − b)t = e−at

√
b√

b − a
erf
√

(b − a)t. (4.58)

holds for b > 0 and real a, the inverse Laplace transform of Eq. (4.55) is given by

Tq(z = 0, t) =
Sq

q(κ2
w − κ2

s)

{

κw erf
√

Dth,wq2t − κs erf
√

Dth,sq2t

+
κsκw

κ̃
e−D̃thq2t

[

erfi
(κs

κ̃

√

Dth,wq2t
)

− erfi
(κw

κ̃

√

Dth,sq2t
)]
}

. (4.59)

erf x is the error function and erfi x = erf(ix)/i is the imaginary error function. erfi x is real

for real x. For z > 0 one has

T̄q(z, p) = T̄q(z = 0, p) e−
√

q2+p/Dth,w z. (4.60)

and therewith, using the Faltung theorem

Tq(z, t) =

∫ t

0
Tq(z = 0, τ)

z exp[− z2

4Dth,w(t−τ) ] e
−Dth,w q2(t−τ)

2
√

πDth,w (t − τ)3/2
dτ z > 0. (4.61)

The fraction in Eq. (4.61) is the inverse Laplace transform of e−
√

q2+p/Dth,w z. In the same

manner one finds for z < 0

Tq(z, t) =

∫ t

0
Tq(z = 0, τ)

−z exp[− z2

4Dth,s(t−τ) ] e
−Dth,s q2(t−τ)

2
√

πDth,s (t − τ)3/2
dτ z < 0. (4.62)

The integrals in Eqs. (4.61, 4.62) have to be solved numerically. In Figs. 4.15 and 4.16 this has

been done for typical parameters κs/κw = 0.1, Dth,s/Dth,w = 0.1, d = 40µm, Sq = 4
√

2
π S0,

S0/κw = 500µK/µm. The temperature evolves fastest at z = 0 and for increasing |z| more

and more slowly. As Dth,s/Dth,w = 0.1 the temperature in the sample Tq(−|z|, t) always
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Figure 4.15: Time dependent amplitude of the temperature grating Tq(z, t) at various positions z for

typical parameters κs/κw = 0.1, Dth,s/Dth,w = 0.1, d = 40 µm, Sq = 4
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evolves slower than the temperature in the window Tq(+|z|, t). Only for very long times

Tq(z, t → ∞) becomes symmetrical with respect to z = 0.

Integration of Eqs. (4.61) and (4.62) over z leads to the heterodyne diffraction efficiencies

ζhet,T,s and ζhet,T,w as defined in Eq. (4.26).

ζhet,T,w(t) ∝
(∂nw

∂T

)

p

∫ t

0
Tq(z = 0, τ)

√
Dth,w e−Dth,w q2(t−τ)

√

π (t − τ)
dτ (4.63)

ζhet,T,s(t) ∝
(∂ns

∂T

)

c,p

∫ t

0
Tq(z = 0, τ)

√
Dth,s e−Dth,s q2(t−τ)

√

π (t − τ)
dτ. (4.64)

Again the integrals in Eqs. (4.63, 4.64) have to be solved numerically to obtain ζhet,T,s(t)

and ζhet,T,w(t). This has been done for various samples (toluene: Figs. 4.17, 4.19; dode-

cane: Fig. 4.17; air: Fig. 4.18; binary mixture of isobutylbenzene and dodecane (c0 = 0.5):

Fig. 4.22) and will be discussed in Sec. 4.3.

4.2.4.2 Concentration Grating

With the temperature Tq(z, t) being known we could now solve the extended diffusion equa-

tion (4.20) for the concentration distribution cq(z, t) with initial condition (4.17) and bound-

ary condition (4.22). However, we are actually not so much interested in cq(z, t). The rele-

vant quantity is the measured heterodyne diffraction efficiency ζhet,c as defined in Eq. (4.26).
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To obtain an evolution equation for ζhet,c, we integrate Eq. (4.20) over the sample region

(−ls < z < 0). Taking into account the boundary condition (4.22) we arrive at

∂tζhet,c = −Dq2ζhet,c −
(∂ns

∂c

)

T,p

(∂ns

∂T

)−1

c,p
DT q2c0(1 − c0)ζhet,T,s. (4.65)

Eq. (4.65) is solved by

ζhet,c(t) = −
(∂ns

∂c

)

T,p

(∂ns

∂T

)−1

c,p
DT q2c0(1 − c0)

∫ t

−∞
ζhet,T,s(t

′)e−Dq2(t−t′) dt′, (4.66)

which can be simplified to

ζhet,c(t) = ζhet,c(t → ∞)[1 − e−Dq2t], (4.67)

if the temperature signal evolves fast on the timescale of the concentration signal (Dth,s ≫ D).

For our experiments Eq. (4.67) is a good approximation and will be used throughout this

chapter, since typically Dth,s ≈ 10−3 cm2/s and D ≈ 10−5 cm2/s for small molecules and less

for polymeric or colloidal systems.

4.2.4.3 Total Heterodyne Diffraction Efficiency

According to Eq. (4.26) the total heterodyne diffraction efficiency is given by

ζhet(t) = ζhet,T,s(t) + ζhet,T,w(t) + ζhet,c(t).
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The heterodyne diffraction efficiencies of the window’s and the sample’s temperature grat-

ing, ζhet,T,w(t) and ζhet,T,s(t), are given by Eqs. (4.63, 4.64) with (4.56, 4.57, 4.59). The

heterodyne diffraction efficiency of the concentration grating ζhet,c(t) follows from Eq. (4.67)

with (4.29, 4.31). In general the contribution of ζhet,T,w to the total heterodyne diffraction

efficiency is negligible,

ζhet(t) = ζhet,T,s(t) + ζhet,c(t), (4.68)

since the contrast factor of the window (soda lime glass) (∂nw/∂T )p = 2.8 × 10−6/K [89]

is much smaller than the contrast factors of most samples. Organic solvents typically have

(∂ns/∂T )c,p ≈ −5 × 10−4/K [111]. There are only few exceptions to this rule, like water

around 4 ◦C or the sample air with (∂ns/∂T )p = −0.87×10−6/K. In case of a one–component

system with c ≡ 1 one has ζhet,c ≡ 0 and

ζhet(t) = ζhet,T,s(t) + ζhet,T,w(t). (4.69)

For pure organic liquids the heterodyne diffraction efficiency of the window can be neglected

and Eq. (4.69) further reduces to

ζhet(t) = ζhet,T,s(t). (4.70)

The adequate equation for analysis of experiments on binary liquids is Eq. (4.68). It contains

the known parameters q, κw, Dth,w and the unknown parameters of the sample κs, Dth,s,

D, ST = DT /D, (∂ns/∂T )c,p and (∂ns/∂c)T,p. The parameter Sq enters linearly and is

therefore of no importance as only normalized signals are studied. In principle, it would be

possible to fit the experimental data by Eq. (4.68) to obtain κs, Dth,s, D and ST = DT /D, if

the contrast factors (∂ns/∂T )c,p and (∂ns/∂c)T,p have been determined separately. This is,

however, difficult due to the complicated expression (4.64) for ζhet,T,s(t). Moreover, in many

cases heat diffusion is not of interest and only mass and thermal diffusion phenomena shall

be studied. We have found that a reasonable parameterization of the temperature signal is

obtained by [1 − e−(t/τth)β
], which is much easier to handle than the full expression (4.64).

Therefore the following working equation

ζhet(t) = ζhet,T,s(t → ∞)[1 − e−(t/τth)β

] + ζhet,c(t → ∞)[1 − e−Dq2t]

= ζhet,T,s(t → ∞)
(

1 − e−(t/τth)β − A[1 − e−Dq2t]
)

(4.71)

with fit parameters τth, β, D and A = (∂ns/∂c)T,p (∂ns/∂T )−1
c,p ST c0(1 − c0) will be used

for analysis of the thermal diffusion experiments. τth and β are discarded, since they have

no direct physical meaning. From the remaining fit parameters one obtains the diffusion

coefficient D, the thermal diffusion coefficient DT , and the Soret coefficient ST = DT /D, if

(∂ns/∂T )c,p and (∂ns/∂c)T,p are known.
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4.2.5 Sample Heating

The first term S0 in Eq. (4.14) causes overall heating of sample and windows. For one–

dimensional heat transport along the z–axis the corresponding stationary temperature dis-

tribution T0(z, t → ∞) is linear within the sample and the windows. For simplicity the

ambient temperature is set to zero. At z = −ls − lw and z = lw one has radiation boundary

conditions ∓κw ∂zT0 + HT0 = 0 with H being the convection heat transfer coefficient. At

z = 0 heat is produced and therefore κw ∂z T0|z=0+ + S0 = κs ∂z T0|z=0− holds. Within this

model the following stationary temperature distribution is obtained:

T0 = S0
Csoda

C

(

Csap +
z + ls
κw, sap

)

− ls − lw ≤ z ≤ −ls (window: sapphire) (4.72)

T0 = S0
Csoda

C

(

Csap +
z + ls

κs

)

− ls ≤ z ≤ 0 (sample) (4.73)

T0 = S0

Csap + ls
κw

C

(

Csoda −
z

κw, soda

)

0 ≤ z ≤ lw (window: soda lime), (4.74)

where Csap = H−1
sap + lw/κw, sap, Csoda = H−1

soda + lw/κw, soda and C = Csap + Csoda + ls/κs.

κw, soda and κw, sap are the thermal conductivities of soda–lime glass and sapphire. Elsewhere

in this chapter κw, soda is called κw and κw, sap is approximated to be infinite. Hsap and Hsoda

are the convection heat transfer coefficients at z = −ls − lw and z = lw. They depend on the

surface geometry, on the nature of motion of the surrounding air (free or forced convection)

and on the airs thermodynamic and transport properties. According to Ref. [47] typical

values for free convection of gases are H = 2 . . . 25W/(m2 K). In our experiment we have

ls = 100µm, lw = 1mm, κs ≈ 0.1W/(mK), κw,soda = 1.12W/(mK), κw,sap = 40W/(mK)

and therewith ls/κs ≈ lw/κw, soda ≈ 10−3 Km2/W and lw/κw, sap = 2.5 · 10−5 Km2/W. Thus

one has H−1
sap,H

−1
soda ≫ ls/κs, lw/κw, sap, lw/κw, soda and Eqs. (4.72, 4.73, 4.74) simplify to

T0 ≈ S0

Hsap + Hsoda
for all z. (4.75)

With S0 = 500W/m2 and Hsap = Hsoda = 10W/m2K one obtains from Eq. (4.75) T0 =

25K. Obviously this overestimates the overall heating. The one–dimensional model does not

describe correctly the situation. In the experiment only an area of Aheated = 3mm × 3mm

is heated, whereas the total surface of the cuvette is approximately 5 cm2. Lateral heat

transport within the cuvette and emission over the entire cuvette surface result in smaller

warming of sample and windows than predicted by Eq. (4.75). A rough estimation for the

actual T0 can be obtained as follows. Because of H−1
sap,H

−1
soda ≫ ls/κs, lw/κw, sap, lw/κw, soda

the temperature rise T0 can be approximated to be constant within sample and windows.

Then, T0 can be related to S0 via

S0Aheated =

∫

~jq
~dA ≈ HsapT0Asap + HsodaT0Asoda, (4.76)
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where ~jq is the heat current. The integral in Eq. (4.76) has been evaluated using the radiation

boundary condition. Instead of the entire cuvette surface only its front Asap = 1.6 cm × 1 cm

and its back side Asoda = 2cm × 2 cm need to be considered thanks to its small thickness of

2.1mm. Using again S0 = 500W/m2 and Hsap = Hsoda = 10W/m2K one finds a reasonable

T0 ≈ 0.5K. Temperature rises of the same order of magnitude have been reported for laser

induced grating experiments [52].

Huge convection heat transfer coefficients up to H = 20kW/(m2K) can be reached if a

liquid e.g. water flows over the surface of the cuvette [47]. In such a case the thermal

contact resistances H−1
sap and H−1

soda are negligible. If we additionally assume κw,sap → ∞ and

κw,soda = κw, we obtain from the one–dimensional model (4.72, 4.73, 4.74)

T0 =
S0

κs

lw
κw

ls
κs

+ lw
κw

(ls + z) − ls ≤ z ≤ 0 (sample) (4.77)

T0 =
S0

κw

ls
κs

ls
κs

+ lw
κw

(lw − z) 0 ≤ z ≤ lw (window: soda lime). (4.78)

Within these approximations the maximum temperature is given by

T0(z = 0) =
S0

κw

lw
+ κs

ls

≈ 0.25K (4.79)

and the heat flux through the window and through the sample are equal because of

κs∂zT0|z<0

κw∂zT0|z>0
=

κs

κw

lw
ls

≈ 1. (4.80)

The parameters for evaluation of Eqs. (4.79) and (4.80) S0 = 500W/m2, lw = 1mm,

ls = 100µm, κs ≈ 0.1W/(mK), κw = 1.12W/(mK) have been chosen according to typi-

cal experimental conditions. Because of lateral heat transport the actual temperature rise in

case of negligible thermal contact resistances Hsap
−1 and Hsoda

−1 will be one to two orders

of magnitude smaller than predicted by Eq. (4.79). However, H−1 ≈ 0 is hardly achievable

as an optical experiment with water flowing permanently over the surfaces of the cuvette is

not easy to design.

4.3 Validation of the Method

4.3.1 Measurement of Heat Diffusion

One–component systems, which cannot exhibit concentration modulations, are suitable to

study the build–up of the temperature grating. To verify the theoretical predictions of

Sec. 4.2.4.1 we studied in a first step pure toluene, pure dodecane and an empty cuvette.
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Fig. 4.17 shows the results for dodecane and toluene. The theoretical curves have been

calculated from Eqs. (4.63, 4.64) using the following parameters: dodecane: Dth,s = 7.89 ·
10−4 cm2/s, κs = 0.13W/mK [107, 111]; toluene: Dth,s = 8.8 · 10−4 cm2/s, κs = 0.14W/mK

[42]; soda–lime glass (crown glass): κw = 1.12W/mK, Dth,w = 57.7 · 10−4 cm2/s [89]. As

can be seen in Fig. 4.17(a), the heterodyne diffraction efficiency of the window ζhet,T,w(t)

is negligible if compared to the heterodyne diffraction efficiency of the sample ζhet,T,s(t).

ζhet,T,s(t) rises much faster than an exponential curve with time constant τth = (Dth,sq
2)−1.

To be able to compare the time evolution of ζhet,T,s(t) and ζhet,T,w(t) they have been normal-

ized to unity in Fig. 4.17(b). As expected from the values of the thermal diffusivities, the

heterodyne diffraction efficiency of the sample evolves slower than the heterodyne diffraction

efficiency of the window. Since dodecane and toluene have similar thermal diffusivities and

heat conductivities, also the corresponding heterodyne diffraction efficiencies are similar. In

particular ζhet,T,w(t) of dodecane and toluene cannot be distinguished within the resolution

of the plot. Also shown in Fig. 4.17(b) are the experimental data on toluene and dodecane.

The experiments have been performed using voltages between 1 and 2V. The measured het-

erodyne diffraction efficiencies ζhet(t) did not depend on the applied voltage and were very

reproducible. Moreover they are perfectly explained by theory. As can be seen in Fig. 4.17(a)

the signal from the window ζhet,T,w(t) is negligible and one expects ζhet(t) = ζhet,T,s(t) – in

excellent agreement with the experiment.

In case of an empty cuvette, however, the heterodyne diffraction efficiency of the window

is no longer negligible. The contrast factors of air (∂ns/∂T )p = −0.87 × 10−6/K and

of soda–lime glass (∂nw/∂T )p = 2.8 × 10−6/K are of same order of magnitude. Again,

ζhet,T,s(t) and ζhet,T,w(t) have been calculated from Eqs. (4.63, 4.64). The parameters for

air Dth,s = 1530 · 10−4 cm2/s and κs = 0.02W/mK have been taken from Ref. [41]. Note

that κ̃ as defined in Eq. (4.56) is purely imaginary for the sample air. Even so Tq(z, t) is

real, since κ̃−1erfi(x/κ̃) = −(Im κ̃)−1erf(x/Im κ̃) for κ̃ = i Im κ̃. The results for ζhet,T,s(t),

ζhet,T,w(t) and ζhet(t) = ζhet,T,s(t) + ζhet,T,w(t) are shown in Fig. 4.18(a). Due to the huge

thermal diffusivity of air Dth,s = 1530 ·10−4 cm2/s the heterodyne diffraction efficiency of the

sample ζhet,T,s(t) evolves faster than that of the window ζhet,T,w(t). Although the stationary

heterodyne diffraction efficiency of the wall is larger than the stationary heterodyne diffrac-

tion efficiency of the sample (ζhet,T,w(∞) > |ζhet,T,s(∞)|), at very short times t < 0.007ms

one has ζhet,T,w(t) < |ζhet,T,s(t)|. Accordingly ζhet(t) = ζhet,T,s(t) + ζhet,T,w(t) is negative

at very short times and positive for longer times. In Fig. 4.18(b) the measured heterodyne

diffraction efficiencies for the sample air are compared to the normalized analytical results

from Fig. 4.18(a) above. Because of the small contrast factors, the experimental signals were

extremely small. To be able to detect a signal a voltage of U = 10V had to be applied. For

long times the measured heterodyne diffraction efficiencies did not reach plateau values, but

drifted slowly and irreproducibly away. This drifting can be explained by transient heating of

the whole cuvette (see Sec. 4.3.2), which is pronounced for U = 10V. But also on short times
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Figure 4.18: Heterodyne diffraction efficiencies for the sample air
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the agreement between measured and theoretically predicted ζhet is very poor. Strangely,

the experimental total heterodyne diffraction efficiency ζhet seems to be better described by

the theoretical heterodyne diffraction efficiency of the window ζhet,T,w. Possibly, convection

inhibits build–up of the temperature grating within the empty cuvette, whereas the temper-

ature grating within the window evolves in almost the same manner as in a convection–free

situation described by Eqs. (4.63, 4.64). Then one has ζhet,T,s(t) ≈ 0 and ζhet(t) ≈ ζhet,T,w(t).

To summarize, build–up of the temperature grating in organic liquids can be very well ex-

plained by our theory. For the sample air problems have been encountered. However, the

main goal of our apparatus is to study processes in liquids and understanding of these pro-

cesses is absolutely satisfactory.

4.3.2 Thermal Stability of the Heterodyne Signal

In Fig. 4.19 three types of experiments on pure toluene at a voltage of U = 2V are com-

pared: switching on and off strips of set 1, switching on and off strips of set 2 and switching

between strips of set 1 and strips of set 2. The experimentally obtained heterodyne diffrac-

tion efficiencies are compared to the theoretical prediction of Sec. 4.3.1. For t < 10ms

the agreement between experiment and theory is very good in all cases. For longer times,

however, an unwanted and irreproducible drift of the heterodyne signal appears in the ex-

periments where only one set of strips is switched. Obviously, transient heating of sample

and cuvette causes considerable phase drifting of the involved beams Es, Ece
iθ and Erefe

iφ

and thus becomes visible in the measured intensity. The degree of perturbation by thermal

drift effects depends on the uncontrollable phase θ of the local oscillator, which explains the

unreproducibility of the experimental curves. These drift effects vanish almost completely,

if the voltage is switched between strips of set 1 and strips of set 2. Only by introducing

this alternate switching concept, long time instabilities due to fluctuating thermal load of

the entire sample are suppressed and measurement periods characteristic for mass diffusion

become accessible.

The heterodyne diffraction efficiencies in Fig. 4.19 have been calculated from the measured

intensities Iφ=0 and Iφ=π according to Eqs. (4.9, 4.10). The averaged Iφ=0 and Iφ=π are

shown in Fig. 4.20. Switching occurs at t = 0, t = 337.5ms and t = 675ms. As has

been already seen in Fig. 4.19, signal drifts are almost completely suppressed for alternate

switching. Furthermore the signal amplitude is twice as high as for switching on and off.

Diffusion processes in binary systems have similar time constants τ ≈ 50ms as the time

constant of the transient heating effects. This makes analysis of the corresponding heterodyne

diffraction efficiencies complicated, as the two processes cannot be separated. Fig. 4.21 shows

the measured intensities Iφ=0 and Iφ=π for the symmetric mixture of tetralin and dodecane

(c0 = 0.5) at U = 1.5V, where the voltage has been alternately switched between strips of

set 1 and strips of set 2. Other than for one–component systems, one cannot tell from this
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(c0 = 0.5) at U = 1.5 V. The voltage has been switched alternately between strips of set 1 and strips
of set 2. In a second step the probing beam has been blocked and only the reference beam has been
recorded while otherwise performing the experiment as before.

data whether transient heating effects disturb the signal. However, by blocking the probing

beam and otherwise performing the experiment as usual, thermal drift effects can be directly

observed. As can be seen in the inset, the intensity of the reference beam shows a slight time

dependence with a time constant of about 50ms

|Eref |2 ≈ |E0
ref |2 + ǫ[1 − e−t/(50 ms)] (4.81)

even for alternate switching. For switching on and off only one set of strips the amplitude ǫ

increases by a factor of 5 to 10. The recorded intensity |Eref |2 is a coherent superposition of

the transmitted light and the scattered light from scratches or dust on the cuvette window.

The phases of these local oscillators drift with respect to each other due to transient heating

effects, which explains the time dependency in Eq. (4.81). Further examinations revealed

that the amplitude ǫ depends quadratically on the applied voltage ǫ ∝ U2, i.e. linear on the

heating power. Since the signals stemming from the temperature and concentration grating

also increase quadratically with increasing U , the degree perturbation of the heterodyne

signal by thermal drift effects does not depend on the applied voltage.

As has already been mentioned, it was not possible to completely eliminate all transient

heating effects. Because the cuvette is slightly asymmetric, the thermal load is not exactly

identical for both sets of strips and a slight long–time drift of the signal also remains for alter-

nate switching. This can further be reduced by averaging over repeated minor readjustments
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of some mirrors, which result in random variations of the phase angle θ.

4.3.3 Measurement of Mass and Thermal Diffusion

Having discussed and understood heat diffusion processes in Sec. 4.3.1, we will now test the

applicability of our new technique for measurements of diffusion and thermal diffusion. We

have chosen the three binary mixtures of dodecane, isobutylbenzene (IBB) and tetralin at

a concentration of c0 = 0.5 g/g, as their Soret, diffusion and thermal diffusion coefficients

already have been determined in a benchmark test [75] and are well known. All measurements

have been performed at room temperature T ≈ 25 ◦C.

Fig. 4.22 shows the normalized heterodyne diffraction efficiency of IBB–dodecane as obtained

from two different experiments. The fast and the slow process correspond, respectively, to

the build–up of the temperature and the concentration grating. In addition, irreproducible

contributions from transient heating effects are contained in the slow mode (see Sec. 4.3.2).

These drift effects cannot be treated quantitatively and are ignored in the analysis. The

slow mode is identified with ζhet,c and fitted by Eq. (4.67). The fast mode can be described

theoretically by evaluating the heterodyne diffraction efficiency of the sample’s temperature

grating ζhet,T,s from Eq. (4.64) using Dth,s = 7.7 × 10−4 cm2/s and κs = 0.14W/mK. How-

ever, in this section we are not interested in heat diffusion, but only in mass and thermal

diffusion. Therefore, instead of complex calculations according to Eq. (4.64), the temperature

signal can simply be fitted to [1− e−(t/τth)β
], as has already been explained in Sec. 4.2.4.3. A

very good agreement between the measured temperature signal, the calculated heterodyne



124 Chapter 4 Optical Diffusion Cell with Periodic Resistive Heating

(∂n/∂T )c,p [10−4 K−1] (∂n/∂c)T,p

IBB-dodecane (c0 = 0.5 g/g) −4.51 0.0628

tetralin-IBB (c0 = 0.5 g/g) −4.74 0.0544

tetralin-dodecane (c0 = 0.5 g/g) −4.39 0.1170

Table 4.1: Contrast factors from Ref. [111]

diffraction efficiency and this fit function is found in Fig. 4.22. Four fit parameters are in-

volved: τth and β are discarded. The two other fit parameters A and τc = (Dq2)−1 yield ST

and D, if the contrast factors (∂ns/∂T )c,p and (∂ns/∂c)T,p are known.

Fig. 4.23 shows the obtained fit parameters A and τc = (Dq2)−1 for the system IBB–

dodecane. The scatter around the mean value is caused by thermal drift effects. The error

bars represent standard deviations. The measurements have been performed using voltages

of U = 1.5V and U = 2V. Again, no dependence on U was found. The amplitude A of the

signal varies slowly from experiment to experiment, which can be explained by a slow drift

of the uncontrollable phase θ defined in Eq. (4.1). The arrows indicate that some mirrors

have been readjusted to alter the phases of the involved beams before performing the next

experiment. This leads to an abrupt change of A. The time constant of the slow mode τc

shows a slightly different behavior than A. It varies stronger and faster from experiment to

experiment. Moreover, pronounced jumps after readjusting the mirrors cannot be observed

for τc. Our experimental results are compared to the values for A and τc, which are expected

from the benchmark [75]. Agreement is found within the errors.

For the two other mixtures, tetralin–IBB and tetralin–dodecane, mean values of A and τc

have been obtained in the same way by averaging over approximately 80 experiments, where

each experiment has been averaged over approximately 2000 cycles. From these mean values

the coefficients ST , D, and DT = ST D have been evaluated and are listed in Tab. 4.2 under

“electrical heating”. Contrast factors have been taken from Tab. 4.1. For comparison also

the benchmark results [75] and the results obtained from laser induced grating experiments

(optical heating) [111] are given in Tab. 4.2. Within the errors all coefficients agree. However,

the experimental errors in case of electrical heating are larger than for optical heating, where

transient heating effects can be reduced to zero. Since transient heating effects make an

additive, non multiplicative contribution to the signal, they become less important for larger

signals. Therefore the smallest errors are found for the system tetralin–dodecane. Here the

amplitude of the signal is rather large (A = −0.63) and contributions of transient heating

effects become almost negligible. The “most difficult” mixture is tetralin–IBB with A = −0.1.

Even though thermal drift effects can lead to larger as well as smaller signal amplitudes,

generally they seem to lead to an overestimation of ST and an underestimation of D. These

two effects cancel out in the thermal diffusion coefficient DT = ST D, which is in very good

agreement with the benchmark values.
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Figure 4.23: Obtained fit parameters A and τc = (Dq2)−1 for the system IBB–dodecane (c0 =
0.5 g/g). A and B refer to the respective experiments in Fig. 4.22. The arrows indicate readjustment
of some mirrors. The values expected from the benchmark test [75] are also included.

IBB-dodecane tetralin-IBB tetralin-dodecane

c0 = 0.5 g/g c0 = 0.5 g/g c0 = 0.5 g/g

opt. heating 9.9 ± 0.6 8.4 ± 0.7 6.26 ± 0.09

D [10−6 cm2s−1] benchmark 9.5 ± 0.4 8.5 ± 0.6 6.21 ± 0.06

el. heating 8.8 ± 0.9 7.5 ± 1.4 6.3 ± 0.2

opt. heating 3.95 ± 0.08 3.46 ± 0.07 9.45 ± 0.09

ST [10−3 K−1] benchmark 3.9 ± 0.1 3.3 ± 0.3 9.5 ± 0.5

el. heating 4.2 ± 0.7 3.6 ± 0.9 9.5 ± 0.4

opt. heating 3.9 ± 0.2 2.9 ± 0.2 5.9 ± 0.1

DT [10−8 cm2s−1K−1] benchmark 3.7 ± 0.2 2.8 ± 0.1 5.9 ± 0.3

el. heating 3.7 ± 0.7 2.7 ± 0.8 6.0 ± 0.3

Table 4.2: Comparison of results for the coefficients D, ST and DT as determined from laser induced
transient grating experiments [111] (optical heating), in the benchmark [75] and by the new technique
(electrical heating)
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Figure 4.24: Normalized heterodyne diffraction efficiency for pure water, pure ethanol and a ethanol–
water mixture. Unexplained effects occur and neither heat nor mass diffusion can be determined from
these curves. Pure toluene, in contrast, still behaves as expected.

An important advantage of the new technique is that no dye needs to be added to the

sample. This is particularly interesting for aqueous systems, where inert dyes are difficult

to find. We therefore tried to measure pure water (milli pore, 18MΩ), pure ethanol (Merck,

> 99.9%), and an ethanol–water mixture (ethanol: c0 = 0.4 g/g). As can be seen in Fig. 4.24,

a strange, unexplainable albeit reproducible behavior was found. Build–up of a temperature

grating and a concentration grating cannot be identified in these curves. In between, we

made measurements on pure toluene to test the cuvette and correct temperature signals

were obtained. Obviously, polar liquids cause additional unexpected problems, which might

be explained by electrochemical reactions at the ITO electrodes. Potentially, this can be

prevented by covering the ITO strips with a thin and inert protective layer.

4.4 Conclusion

We have developed a new instrument for the measurement of heat, mass, and thermal dif-

fusion based on electrical heating of ITO strip arrays on a micrometer scale and optical

readout by diffraction. The measurement process and signal generation have been analyzed

in detail. An analytical solution of the time dependent, two dimensional heat equation was

found, assuming sample and window to be semi–infinite. It describes correctly the build–up

of the temperature grating as has been checked experimentally for the pure liquids dodecane

and toluene and for the binary symmetric mixture of IBB and dodecane. Hence, the new

technique is well suited for the determination of thermal diffusivities of liquids.
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Mass and thermal diffusion have been measured in the three “benchmark mixtures” IBB–

dodecane, tetralin–IBB, and tetralin–dodecane. The experimental data have been analyzed

by fitting of a simple working equation (4.71), which has been derived by solving the two–

dimensional extended diffusion equation. The obtained fit parameters yield the Soret coeffi-

cient ST , the diffusion coefficient D and the thermal diffusion coefficient DT = ST D, if the

contrast factors (∂n/∂c)T,p and (∂n/∂T )c,p are known. ST , D, and DT could be determined

correctly for all mixtures within the experimental errors. The errors are, however, larger

than in laser–induced grating experiments. Responsible for this are transient heating effects

of similar time constants as (Dq2)−1, which disturb the signal in an unreproducible manner

depending on the particular, uncontrollable phase relation between the involved beams. The

thermal drift of the heterodyne signal could not be completely eliminated, but still reduced

by keeping the average thermal load on sample and cuvette approximately constant during

the experiment. This has been achieved by switching the voltage alternately between two

sets of strips instead of switching on and off only one set of strips. Asymmetries of the

cuvette, which lead to unbalanced thermal loads of the two sets of strips, remain a problem.

Construction of a more symmetric cuvette would further reduce transient heating effects and

allow for a more precise determination of ST and D. Up to now polar liquids cannot be

measured in our cuvettes. The reason is still not clear, but possibly electrochemical effects

occur at the ITO–electrodes, which could be inhibited by a thin protective layer over the

ITO–strips. More work is needed to clarify and resolve this problem.
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Chapter 5

Summary

In the first part of Chap. 2 we have given a brief review of the thermodynamic–phenomeno-

logical theory relevant for a correct description of the Soret effect. It comprises the formu-

lation of the first law in open systems, the calculation of the entropy production, and the

derivation of the phenomenological equations. This section is based on the books by de Groot

and Mazur [16] and by Haase [40] and contains also some own results. We have explicitely

derived a relation between reversible work and dissipation function, if heat and mass are ex-

changed reversibly and irreversibly between the two homogenous phases of a non–isothermal

heterogenous system. Moreover we have discussed in detail, whether Onsager coefficients are

invariant against shifts of enthalpy or entropy zero. Furthermore some comments on recent

literature work have been made, since thermodynamic principles are not always correctly

incorporated.

The aim of the second part of Chap. 2 was to obtain evolution equations for the composition

variables (extended diffusion equation) and the temperature (heat equation), which allow

for the interpretation of the time–resolved experiments of Chaps. 3 and 4. The derivation

of the extended diffusion equation is closely related to the issue of different reference veloc-

ities. Therefore general diffusion fluxes relative to arbitrary reference velocities have been

introduced, phenomenological equations have been derived for these fluxes with the help of

Prigogine’s theorem, and general diffusion coefficients have been defined by generalizing the

considerations of Ref. [16] to non–isothermal systems. With this preparatory work done, we

could show that an extended diffusion equation holds, if a certain reference velocity is zero,

or, if all gradients are small and second order terms may be neglected. Existing models have

been extended and modified to obtain the conditions for vanishing of a reference velocity in a

non–isothermal multicomponent system. Furthermore an evolution equation for the temper-

ature, the heat equation, has been derived. Finally the problem of thermodynamic driving

forces has shortly been treated. Even though it seems to have little relation to reference

velocities and evolution equations, interesting results for the actual hydrodynamic friction

force acting on a diffusing particle could be found by using the relations previously derived

in this section.

In Chaps. 3 and 4 we have treated the measurement of heat, mass and thermal diffusion in

transient grating experiments.
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In Chap. 3 we have presented a two-dimensional model to account for the role of heat con-

ducting walls in the measurement of heat transport and Soret effect driven mass transport

in transient holographic grating experiments. Heat diffusion into the walls leads to non-

exponential decay of the temperature grating. Under certain experimental conditions it

can be approximated by an exponential function and assigned an apparent thermal diffu-

sivity Dth,app < Dth,s, where Dth,s is the true thermal diffusivity of the sample. The ratio

Dth,app/Dth,s depends on only three dimensionless parameters, d/ls, κs/κw, and Dth,s/Dth,w.

d is the grating period, ls the sample thickness, κs and κw the thermal conductivities of sam-

ple and wall, respectively, and Dth,w the thermal diffusivity of the wall. If at least two

measurements are performed at different d/ls, both Dth,s and κs can be determined. Instead

of costly solving partial differential equations, the unknown parameters can be obtained by

finding the zero of an analytic function. For thin samples and large grating periods, heat con-

duction into the walls plays a predominant role and consequently the concentration grating

in binary mixtures is no longer one-dimensional. Nevertheless, the normalized heterodyne

diffraction efficiency of the concentration grating remains unaffected and the true mass and

thermal diffusion coefficient and the correct Soret coefficient are still obtained from a simple

one–dimensional model. All theoretical predictions have been tested by experiments on pure

and binary liquids over a wide range of grating periods and sample thicknesses. Excellent

agreement has been found in all cases.

A new transient grating technique for the measurement of heat, mass and thermal diffusion

in liquids has been introduced in Chap. 4. Similar to holographic grating experiments, a

temperature grating is created in the sample. Thermal expansion transforms the temperature

into a refractive–index grating, which is read by diffraction of a readout laser beam. In a

multicomponent mixture an additional concentration grating is formed by thermal diffusion

driven by the temperature gradients of the temperature grating. Differently to laser induced

dynamic grating experiments we use Joule heating instead of optical heating. For that

purpose we have built cuvettes which have a grating of transparent conducting strips on the

inner side of one of their windows. If heated by an electric current a temperature grating will

build up in the sample. Both, the heat equation and the extended diffusion equation, have

been solved in two dimensions to allow for quantitative data analysis. Our apparatus and

method of analysis have been validated by measurements of heat, mass and thermal diffusion

in pure and binary liquids. Heat diffusion can be correctly determined as was shown for pure

toluene, pure dodecane and the symmetric mixture of isobutylbenzene–dodecane. Mass and

thermal diffusion was studied in the three symmetric mixtures of dodecane, isobutylbenzene

and tetralin. The obtained diffusion and Soret coefficients agree with the literature values

within the experimental errors. Uncompensated transient heating effects limit the resolution

of the experimental technique.
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Deutsche Zusammenfassung

Der erste Teil des zweiten Kapitels gibt einen kurzen Überblick über die thermodynamisch–

phänomenologische Theorie, und zwar vor allem im Hinblick auf Diffusion und Thermo-

diffusion. Er umfasst die Formulierung des ersten Hauptsatzes in offenen Systemen, die

Berechnung der Entropieproduktion und die Herleitung der phänomenologischen Gleichun-

gen. Obwohl dieses Unterkapitel auf den Büchern von de Groot und Mazur [16] und von

Haase [40] basiert, enthält es doch auch einige eigene Ergebnisse. So wurde beispielsweise

sowohl reversibler als auch irreversibler Wärme– und Massenaustausch zwischen den zwei

homogenen Phasen eines nicht isothermen heterogenen Systems untersucht. Daraus konnte

der Zusammenhang zwischen reversibler Arbeit und Dissipationsfunktion explizit hergeleitet

werden. Weiterhin wurde ausführlich diskutiert, ob Onsager Koeffizienten invariant gegen

Verschiebungen des Enthalpie– und Entropienullpunktes sind. Mit Hilfe dieser eigenen Re-

sultate wurden Widersprüche zu thermodynamischen Gesetzen in kürzlich erschienenen Pub-

likationen gefunden.

Das Ziel des zweiten Teils des zweiten Kapitels war es, Entwicklungsgleichungen für die

Kompositionsvariablen (erweiterte Diffusionsgleichung) und für die Temperatur (Wärme-

diffusionsgleichung) zu erhalten, die eine Auswertung der zeitaufgelösten Experimente aus

den Kapiteln 3 und 4 ermöglichen. Um die erweiterte Diffusionsgleichung herzuleiten, muss

man als erstes die Problematik verschiedener Referenzgeschwindigkeiten verstanden haben.

Deswegen wurden zunächst verallgemeinerte Diffusionsflüsse relativ zu beliebigen Referenz-

geschwindigkeiten eingeführt, für die man dann zum einen phänomenologische Gleichungen

mit Hilfe des Theorems von Prigogine herleiten und zum anderen verallgemeinerte Diffu-

sionskoeffizienten definieren kann. Dazu wurden die Betrachtungen aus Ref. [16] auf nicht

isotherme Systeme verallgemeinert. Mit dieser Vorarbeit konnte gezeigt werden, dass erwei-

terte Diffusionsgleichungen gelten, wenn eine bestimmte Referenzgeschwindigkeit null ist,

oder wenn alle Gradienten klein sind und Terme zweiter Ordnung vernachlässigt werden

können. Existierende Modelle wurden erweitert und modifiziert, um die Bedingungen für das

Verschwinden einer Referenzgeschwindigkeit in einem nicht isothermen, multikomponentigen

System zu erhalten. Außerdem wurde eine Entwicklungsgleichung für die Temperatur, die

Wärmediffusionsgleichung, hergeleitet. Der letzte Abschnitt des Unterkapitels behandelt

die sogenannten thermodynamischen Kräfte. Obwohl sie anscheinend wenig mit Referenz-

geschwindigkeiten und Entwicklungsgleichungen zu tun haben, konnten interessante Ergeb-

nisse für die tatsächliche hydrodynamische Reibungskraft auf ein diffundierendes Teilchen

aus den zuvor hergeleiteteten Beziehungen gewonnen werden.
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Kapitel 3 und 4 befassen sich mit der Messung von Wärme–, Massen– und Thermodiffusion

in transienten Gitterexperimenten.

In Kapitel 3 wurde ein zweidimensionales Modell vorgestellt, um den Einfluss von wärmelei-

tenden Küvettenwänden auf die Messung von Wärme– und Massentransport in transienten

holographischen Gitterexperimenten zu berücksichtigen. Wärmediffusion in die Wände führt

zu einem nicht exponentiellen Abfall des Temperaturgitters. Unter bestimmten experimen-

tellen Bedingungen kann er aber durch eine exponentielle Funktion mit einer apparenten ther-

mischen Diffusivität Dth,app < Dth,s angenähert werden. Dth,s ist die tatsächliche thermische

Diffusivität der Probe. Das Verhältnis Dth,app/Dth,s hängt nur von drei dimensionslosen Pa-

rametern, d/ls, κs/κw, und Dth,s/Dth,w ab. d ist die Gitterperiode, ls die Probendicke, κs

und κw die Wärmeleitfähigkeiten von Probe und Wand und Dth,w die thermische Diffusivität

der Wand. Wenn mindestens zwei Messungen bei verschiedenen d/ls durchgeführt werden,

können sowohl Dth,s als auch κs bestimmt werden. Dazu ist keine aufwändige Simulation

von partiellen Differentialgleichungen nötig, da die unbekannten Parameter aus der Nullstelle

einer analytischen Funktion berechnet werden können. Für dünne Proben und große Gitter-

perioden wird die Wärmediffusion in die Wände sehr wichtig und das Konzentrationsgitter

in einer binären Mischung ist folglich nicht mehr eindimensional. Die normierte hetero-

dyne Beugungseffizienz des Konzentrationsgitters bleibt davon jedoch unbeeinflusst und die

wahren Soret– und Diffusionskoeffizienten können weiterhin aus einem einfachen eindimen-

sionalen Model ermittelt werden. Alle theoretischen Vorhersagen wurden durch Experimente

an einkomponentigen und binären Flüssigkeiten über einen großen Bereich von Gitterperio-

den und Probendicken getestet. In allen Fällen war die Übereinstimmung hervorragend.

Eine neue transiente Gittermethode für die Messung von Wärme–, Massen– und Thermo-

diffusion in Flüssigkeiten wurde in Kapitel 4 entwickelt. Ähnlich wie bei holographischen

transienten Gitterexperimenten wird ein Temperaturgitter in der Probe erzeugt. Die thermi-

sche Expansion wandelt dieses Temperaturgitter in ein Brechungsindexgitter um, das durch

Beugung eines Leselaserstrahls ausgemessen werden kann. In einer mehrkomponentigen Mi-

schung bildet sich wegen der Thermodiffusion, die durch die Gradienten des Temperaturgit-

ters getrieben wird, ein zusätzliches Konzentrationsgitter aus. Anders als in holographischen

transienten Gitterexperimenten wird die Probe bei der neuen Methode nicht optisch sondern

elektrisch geheizt. Dazu wurden Küvetten konstruiert, die ein Gitter aus transparenten und

leitfähigen Streifen auf der Innenseite eines Fensters haben. Wenn diese Streifen durch einen

elektrischen Strom erwärmt werden, entsteht ein Temperaturgitter in der Probe. Sowohl

die Wärmediffusionsgleichung als auch die erweiterte Diffusionsgleichung wurden in zwei Di-

mensionen gelöst, um die Messdaten quantitativ auswerten zu können. Durch Messungen

von Wärme–, Massen– und Thermodiffusion in einkomponentigen und binären Flüssigkeiten

konnte bestätigt werden, dass unser neues Messgerät in Verbindung mit der vorgeschlagenen

Auswertemethode korrekt funktioniert. Wärmediffusion wurde in reinem Toluol, reinem Do-

dekan und in der symmetrischen Mischung aus Isobutybenzol und Dodekan richtig bestimmt.
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Massen– und Thermodiffusion wurde in den drei symmetrischen Mischungen aus Dodekan,

Isobutybenzol und Tetralin untersucht. Die gewonnenen Massen– und Thermodiffusionskoef-

fizienten stimmen innerhalb der Fehler mit den Literaturwerten überein. Nicht kompensierte

transiente Aufheizungseffekte limitieren die Auflösung der Technik.
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[42] M. Hartung and W. Köhler. The role of heat–conducting walls in transient grating
experiments. Eur. Phys. J. E, 17:165–179, 2005.
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[53] W. Köhler and R. Schäfer. Polymer analysis by thermal–diffusion forced Rayleigh
scattering. Adv. Polym. Sci., 151:1–59, 2000.

[54] P. Kolodner, H. Williams, and C. Moe. Optical measurement of the Soret coefficient
of ethanol water solutions. J. Chem. Phys., 88:6512–6524, 1988.

[55] M. M. Kopswerkhoven, A. Vrij, and H. N. W. Lekkerkerker. On the relation between
diffusion, sedimentation, and friction. J. Chem. Phys., 78:2760–2763, 1983.

[56] Korth Kristalle. Data sheet of Al2O3, 2003.

[57] L. D. Landau and E. M. Lifschitz. Lehrbuch der theoretischen Physik, Band 6, Hydro-

dynamik. Akademieverlag, 1974.

[58] G. H. Langhammer, H. Pfennig, and K. Quitzsch. Thermodiffusion (Ludwig-Soret-
effekt) von Makromolekulen in Lösung. Z. Elektrochem., 62:458–480, 1958.

[59] V. Louli and D. Tassios. Vapor-liquid equilibrium in polymer-solvent systems with a
cubic equation of state. Fluid Phase Equilibria, 168:165–182, 2000.

[60] C. Ludwig. Diffusion zwischen ungleich erwärmten Orten gleich zusammengesetzter
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