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Abstract Giant thermal and solutal non-equilibrium fluctuations are observed in shadowgraphy experi-
ments on liquid mixtures subjected to a temperature gradient. For large temperature differences, both the
temperature and the composition dependence of the relevant thermophysical parameters and the nonlinear
terms in the diffusion equation need to be taken into account, leading to a nonlinear concentration profile.
For temperature differences exceeding the inverse of the Soret coefficient, in our example approximately 10
K, the usual data evaluation yields increasingly wrong diffusion and Soret coefficients that are off by almost
a factor of two for a temperature difference of 50 K. A local model that treats the measured shadowgraph
signal as a superposition of the contributions from every layer of the sample is able to capture the essential
trend and yields a good agreement with experimental data. The results are important for the application
of shadowgraphy as a tool for the measurement of Soret and diffusion coefficients, where large temperature
gradients promise a good signal-to-noise ratio.

1 Introduction

Thermodynamic non-equilibrium fluctuations (NEFs)
are observed in liquids under the influence of a temper-
ature or a concentration gradient [1,2]. Their amplitude
is proportional to the square of the respective gradi-
ent and diverges for small wavevectors ∼ q−4. In the
absence of gravity, the growth of the amplitude is only
limited by the finite sample size [3,4]. Under gravity
conditions, the amplitude levels off below a critical roll-
off wavevector qro due to buoyancy and sedimentation
[5].

Shadowgraphy (SG) has become the method of choice
for the investigation of NEFs, and the technique has
been turned into an analytical tool for the measure-
ment of thermal diffusivities and diffusion and Soret
coefficients [6–15]. When a binary mixture is subjected
to a temperature gradient, the Soret effect leads to
a superimposed concentration gradient and both ther-
mal and solutal NEFs can simultaneously be observed.
For wavevectors larger than the thermal roll-off qT

ro,
the thermal diffusivity Dth = 1/(τT q2) follows directly
from the q-dependence of the correlation time τT of
the thermal NEFs and the Fickian diffusion coefficient
D = 1/(τ cq2) from the correlation time τ c of the solu-
tal ones for wave vectors larger than the concentra-
tion roll-off qc

ro. The Soret coefficient is defined by the
ratio of the concentration and the temperature gradi-
ent, which both can be determined from the amplitudes
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of the respective NEFs or, more conveniently, from the
critical roll-off wavevectors qT

ro and qc
ro [16]. In partic-

ular, the latter possibility distinguishes shadowgraphy
from other optical techniques, where concentration and
temperature changes are more directly measured via
associated refractive index changes.

Measurements of Soret and thermodiffusion coeffi-
cients require nonequilibrium conditions with a temper-
ature gradient. As a rule, a larger temperature gradient
translates to a better signal with less noise. But how
much is too much? For most techniques, the tempera-
ture differences are relatively small: below one mK for
thermal diffusion forced Rayleigh scattering (TDFRS)
[17–19], 1K for optical beam deflection (OBD) [20–22]
and 5–10 K in the case of optical digital interferome-
try (ODI) in the laboratory [23] or during the DCMIX
project aboard the International Space Station [24,25].

Common to all experimental techniques is the usual
assumption that the experiments are essentially per-
formed at the mean sample temperature, that devia-
tions from equilibrium are small, and that temperature
and composition dependences of system parameters and
transport coefficients are negligible. In this contribu-
tion, we will go beyond this linear model and investi-
gate the consequences of various nonlinearities for the
investigation of NEFs by means of the shadowgraphy
technique with large temperature gradients. We will
take both the temperature dependence of important
physicochemical parameters and nonlinear concentra-
tion profiles that result from the nonlinear thermodif-
fusion equation into account. The results of this paper
are particularly important for the application of shad-
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owgraphy as a tool for the measurement of diffusion,
thermodiffusion and Soret coefficients.

The work presented here has been performed within
the framework of the Giant Fluctuations (NEUF-DIX)
project of ESA, which aims at the investigation of NEFs
in complex multicomponent mixtures under micrograv-
ity conditions, and the associated CORA-MAP project
‘Technologies for Non-Equilibrium Systems’ (TechNES)
for the development of NEFs into diagnostic tools. One
major objective of these projects is the investigation of
non-ideal systems, including the case of large gradients
that give rise to nonlinearities and preclude the ana-
lytical modeling of the system by means of linearized
hydrodynamics [26,27].

2 Experiment

We have used the identical shadowgraphy setup as
described in Ref. [16]. It is built around a Soret cell with
a vertical temperature gradient between two sapphire
plates, whose inner surfaces are located at z = 0 and
z = h. Their temperatures are kept at T1 = T (z = 0) =
T0 − ΔT/2 and T2 = T (z = h) = T0 + ΔT/2, respec-
tively. The thickness of the fluid layer is h = 5mm.
The thermal conductivity is approximately constant
(see below) throughout the sample and the mean sam-
ple temperature T0 is assumed close to the midplane of
the cell (Fig. 1).

The collimated beam of a superluminescent diode
(Superlum SLD, λ = 670 nm) is used for illumination
of the 13mm wide free aperture. The interference of
the scattered and primary beams are detected by a
CMOS camera (Hamamatsu Orca Fusion) at a distance
Z = 20.87 cm. The maximum employed acquisition rate
without pixel binning is 50Hz for up to 200 images and
10Hz for up to 1100 images. A wider dynamic range
was achieved by concatenating the structure functions
acquired with different sampling rates, thereby ensur-
ing a high sampling rate for the fast and a low sam-
pling rate for slow processes within the same structure
function. The temporal overlap of both series allows

Fig. 1 Sketch of the Soret cell for shadowgraphy experi-
ments. The sample is enclosed between two horizontal sap-
phire windows with a distance h kept at temperatures T1

and T2. The optical axis of the detection light beam is ori-
ented anti-parallel to the gravitational acceleration g. Even
for large temperature differences ΔT = T2 − T1, the mean
sample temperature T0 = T1+ΔT/2 is close to the midplane
of the cell

for a consistent amplitude normalization in the overlap
time regime. The sample is a solution of polystyrene
of Mw = 17.9 kg/mol with a polydispersity Mw/Mn =
1.03 (Polymer Standards Service GmbH) in toluene at
a concentration of c0 = 0.01 mass fractions.

3 Results and discussion

The steady-state concentration distribution in a binary
mixture of concentration c (mass fraction of first com-
ponent) is determined by the Soret coefficient ST via

∇c = −ST c(1 − c)∇T , (1)

which follows directly from the cancellation of the Fick-
ian diffusion and the thermodiffusion flows. In prac-
tically all Soret experiments, it is assumed that the
Soret coefficient is constant, and concentration changes
within the sample are small. In this case, the concen-
tration term on the right-hand side of Eq. (1) can
be approximated by the mean concentration c0 and
the constant concentration gradient is given by ∇c =
−ST c0(1 − c0)∇T . Measurements of the Soret coeffi-
cient at temperature T0 and concentration c0 require
the determination of ∇c and the knowledge of ∇T .

Although it is widely used, the validity of this lin-
earized approximation needs to be questioned for two
reasons. First, the nonlinear concentration term in Eq.
(1) can only be taken as constant for small concentra-
tion changes, which are only to be expected in the case
of small temperature differences ΔT � S−1

T . Note that
this criterion does not per se preclude strong temper-
ature and concentration gradients as long as they act
only over short distances. Secondly, the Soret coeffi-
cient ST (c, T ) itself, as well as other system parame-
ters, may depend on both concentration and tempera-
ture, which introduces yet another nonlinearity. Thus,
in the general case of finite temperature differences,
Eq. (1) holds only locally, the concentration gradient
∇c(x) becomes position dependent, and the concentra-
tion profile becomes nonlinear. In the following, we will
discuss this situation.

Temperature and concentration dependence of
thermophysical parameters

The purpose of this section is to provide expressions
for the temperature and concentration dependence of
all relevant thermophysical parameters that will later
be needed for the model calculations. Our goal is to
keep it as simple as possible and to catch only the rel-
evant dependencies, thereby ignoring the insignificant
ones. Since we are dealing with dilute solutions, we will
neglect the concentration dependence and consider only
the temperature dependence of certain parameters of
pure toluene. This is a reasonable approximation for
coefficients that depend only weakly on concentration,
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such as the thermal diffusivity or the thermal conduc-
tivity.

Soret coefficient In order to solve Eq. (1) for arbitrary
temperature gradients, the knowledge of both the con-
centration and temperature dependence of the Soret
coefficient ST (c, T ) is required. Such data for polymer
solutions are hardly available, but for polystyrene in
toluene, an empirical parameterization is derived in Ref.
[28] on the basis of molar mass- and concentration-
dependent measurements at the reference temperature
T0 = 298.15K taken from Ref. [29]:

ST (c, T ) = ST (c, T0)
(

T0

T

)2.4

ST (c, T0) =
a

1 + b c β

a = 3.294 × 10−4 M0.58

β = 35.42M−0.5 + 0.82

b =
a

0.012
− 1 (2)

M is the molar mass in g/mol. While the concentra-
tion and molar mass dependence in Eq. (2) are based
on experiments over a broad molar mass and concen-
tration range, the temperature dependence was only
measured for a single relatively high molar mass of
M = 90 kg/mol and then assumed to hold also for all
other molar masses. In order to verify its applicability
also for significantly lower molar masses, we have mea-
sured the temperature dependence of ST (c = 0.01, T )
for M = 4.8 kg/mol, which contains just below 50
repeat units and barely reaches the polymer limit of
long chains, by means of the Thermal Diffusion Forced
Rayleigh Scattering (TDFRS) technique [17,18]. As
shown in Fig. 2, the parameterization of the temper-
ature dependence by Eq. (2), although not perfect, still
gives a good description even at this low-M limit of the
parameter range.

Thermodiffusion coefficient and diffusion coefficient A
parameterization of the diffusion coefficient D(c, T ) can
be obtained according to D = DT /ST with ST (c, T )
from Eq. (2). The thermodiffusion coefficient DT is
molar mass independent for chains exceeding the Kuhn
segment of approximately 1 kg/mol and its composition
dependence can be neglected as long as c stays below
about ten percent [30]. Its temperature dependence is
only weak and the DT data from the same temperature-
dependent TDFRS measurement as above can be fitted
by

DT = [1.20 + 0.73× 10−2(T − T0)]× 10−11m
2

sK
, (3)

again with the reference temperature T0 = 298.15K.
The experimental data with the fit are plotted in Fig.
2.

Also shown for comparison are the only available
other temperature-dependent measurements from Ref.

Fig. 2 Temperature dependence of the Soret coefficient ST

and the diffusion coefficient D (top) and of the thermal diffu-
sivity Dth and the thermodiffusion coefficient DT (bottom)
of PS (M = 4.8 kg/mol, c = 0.01) in toluene as measured by
TDFRS. The dashed curve for ST is calculated from Eq. (2)
and the one for D = DT /ST from Eqs. (2)–(3). DT is fitted
by Eq. (3) and Dth by Eq. (4). DT -data for M = 90 kg/mol,
c = 0.01 from Ref. [30] are shown for comparison

[30] for M = 90 kg/mol, which confirm the molar
mass independence of DT (T ). Thus, Eq. (2) provides
a decent description for ST (c, T ) over the entire rele-
vant molar mass, composition and temperature range
and, in combination with Eq. (3), also for D(c, T ) for
all molar masses and for polymer concentrations up to
at least c = 0.1. At even higher concentrations, DT

begins to slow down due to the approaching glass tran-
sition. Since no temperature-dependent data exist for
c > 0.1, the parameterization of DT and, hence, also
for D(c, T ) is limited to c < 0.1. There is a strong need
for new experimental data that would allow to extend
the parameterization also to higher polymer concentra-
tions. The experiments and simulations reported later
were conducted for a molar mass of M = 17.9 kg/mol,
but since we are currently also working with shorter
chains, we have tested the validity of Eq. (2) down to
the lower molar mass of M = 4.8 kg/mol.

Thermal diffusivity Figure 2 shows the temperature
dependence of the thermal diffusivity Dth of the sample,
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which has also been measured by TDFRS. Neglecting
its concentration dependence, it is parameterized by

Dth = [8.3 − 2.5 × 10−2(T − T0)] × 10−8 m2

s
, (4)

Thermal conductivity The temperature dependence of
the thermal conductivity κ(T ) of toluene has been
reported by Kashiwagi et al. [31]:

κ(T ) =
[
0.1307 − 2.88 × 10−4K−1 × (T − T0)

] W
m K

(5)
We use this expression also for our moderately concen-
trated polymer solutions.

Density and expansion coefficients Densities ρ(c, T )
were measured by means of a vibrating tube density
meter (Anton-Paar DSA 5000 M). Together with the
temperature dependence of the density of pure toluene
from Ref. [31], they lead to a parameterization

ρ(c, T ) = [863 + 182 c − 0.933 (T − T0)]
kg
m3

. (6)

Since higher-order terms are very small and can be
neglected, the thermal and the solutal expansion coef-
ficients are evaluated for c = 0.01 and T = T0 and
taken as constant (note that an erroneous value for βT

is reported in Ref. [16]):

βT =
1
ρ

(
∂ρ

∂T

)
p,c

= −1.08 × 10−3K−1 (7)

βc =
1
ρ

(
∂ρ

∂c

)
p,T

= 0.210 (8)

Viscosity An empirical formula for the molar mass, con-
centration and temperature dependence of the dynamic
viscosity of PS/Tol is given in Ref. [28]. It was, how-
ever, developed in particular for high polymer concen-
trations that are entangled and already approach the
glass transition. It shows significant deviations at lower
concentrations, where it does not describe the tempera-
ture dependence very well [28]. A better parameteriza-
tion of the viscosity η of a dilute to semidilute polymer
solution in a solvent of viscosity η0 can be based on the
truncated Martin’s equation given in Ref. [32] for the
specific viscosity ηsp = η/η0 − 1:

ηsp = c̃[η]
(

1 + KH c̃[η] +
1
2
(KH c̃[η])2 +

1
6
(KH c̃[η])3

)

(9)
Here, KH ≈ 0.4 is the Huggins constant. The intrinsic
viscosity [η] is measured in mL/g and the concentration
c̃ = c ρ × 10−3 has the matching units g/mL. Equation
(9) gives a good description [32] up to at least c̃[η] = 2.

The molar mass dependence of the intrinsic viscosity
of a polymer in a given solvent is frequently described

by a scaling law [η] = KMa, known as the Kuhn–
Mark–Houwink–Sakurada or Staudinger–Kuhn equa-
tion. Wagner has reviewed this relation for atactic
polystyrene in various solvents and found a perceptible
deviation [33]. He suggests an improved parameteriza-
tion

log[η] = −0.538+0.203(log M)+0.0471(log M)2 (10)

for η in mL/g and M in g/mol. Equation (10) is valid
over the entire molar mass range, at least from 660 to
4 × 106 g/mol, and not very sensitive to temperature
[33].

The last missing ingredient is the temperature depen-
dence of the viscosity of toluene η0, for which standard
reference data are provided by Santos et al.[34] for a
pressure of 0.1 MPa:

ln η∗ = −5.2203 +
8.964
T ∗ − 5.834

(T ∗)2
+

2.089
(T ∗)3

(11)

The reduced variables are T ∗ = T/T0 and η∗ =
η0(T )/η0(T0) with T0 = 298.15K and η0(T0) =
554.2μPa s. Finally, the dynamic viscosity of the poly-
mer solution is calculated from Eqs. (9), (10), and
(11) as η(c, T ) = η0(T )(ηsp(c) + 1). Together with Eq.
(6), the kinematic viscosity ν(c, T ) = η(c, T )/ρ(c, T ) is
obtained.

The temperature and concentration profiles

Temperature profile The temperature profile is not
strictly linear because of the temperature dependence
of the thermal conductivity κ Eq. (5). The solution of
the stationary heat equation

∇ · (κ(T )∇T ) = 0 (12)

with a thermal conductivity that depends linearly on
temperature, κ(T ) = k0 + α(T − T0), is given by [35]

T (z) − T1

ΔT
=

−1 +
(
1 + 2βξ + β2ξ

)1/2

β
, (13)

with β = αΔT/k0, ξ = z/h, and T1 = T (z = 0) being
the temperature of the lower plate (Fig. 1). Equation
(13) together with κ(T ) from Eq. (5) yields a temper-
ature profile that is only slightly curved with a tem-
perature gradient that deviates by less than ±4 per-
cent from its mean value for a temperature difference
of ΔT = 30K.

Concentration profile Since ST (c, T ) in Eq. (2)
is a product of a concentration and a temperature-
dependent term, Eq. (1) can be solved in its one-
dimensional form after separation of variables to com-
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pute c(z) in the interval 0 ≤ z ≤ h:

∫ c(z)

c(z=0)

dc

ST (c, T0) c(1 − c)
=

∫ z

0

∇T (z)
(

T0

T (z)

)2.4

dz

(14)
with the local temperature from Eq. (13). The integrals
in Eq. (14) are computed numerically and the integra-
tion constant c(z = 0) is determined from the condition
of mass conservation:

∫ h

0

c(z)dz = c0h (15)

Figure 3 shows the stationary temperature and
concentration profiles and the respective gradients
obtained for a cell height of h = 5mm, a mean tem-
perature of T0 = 298.15K, a temperature difference of
ΔT = 30K, and a mean concentration of c0 = 0.01.
Due to the pronounced nonlinearity of the concentra-
tion profile, the mean values of both c and ∇c are no
longer observed in the center of the cell, but rather
shifted toward the cold side. As a consequence, their
positions do no longer coincide with the respective posi-
tions of T and ∇T , which are still almost perfectly cen-
tered. For the case of temperature-independent ther-
mophysical coefficients, where the nonlinearity stems
solely from the nonlinear diffusion equation, the con-
centration distribution and gradient still look very sim-
ilar, albeit with a reduced amplitude, in particular on
the cold side.

The shadowgraphy experiment

In the following treatment of the shadowgraphy experi-
ment and the differential dynamic analysis (DDA) [36–
42], we closely follow our previous publication [16],
albeit with a notation that is somewhat better adapted
to the current literature [6].

The light scattered by NEFs in a thin liquid layer is
recorded at a distance Z from the center of the layer by
the sensor of the camera. Starting point is the structure
function of Fourier transformed difference images in q-
space [6]:

C(q,Δt) = 2T̃ (q)S(q)[1 − f(q,Δt)] + B(q) (16)

It contains an optical transfer function [36] T̃ (q) =
4 sin2(q2 Z/(2k)), a background term B(q), the static
structure factor of the fluctuations S(q) and the inter-
mediate scattering function f(q,Δt), that comprises a
thermal and a solutal mode:

f(q,Δt) =
ST (q)
S(q)

exp
(

−Δt

τT

)
+

Sc(q)
S(q)

exp
(

−Δt

τ c

)

(17)
The static structure factors of the thermal and the solu-
tal NEFs add up to the total static structure factor

Fig. 3 Concentration and temperature along the vertical
axis (top) and corresponding gradients (bottom). The dia-
monds indicate the respective mean values, which are shifted
away from the center of the cell particularly in the case
of the nonlinear concentration profile. PS(17.9 kg/mol)/Tol,
c0 = 0.01, T0 = 298.15 K, ΔT = 30 K

S(q) = ST (q) + Sc(q). They diverge for large wavevec-
tors proportional to q−4,

Si(q) =
Ii
0

1 + (q/qi
ro)4

i = T, c , (18)

and they are cut off by gravity (gravitational accelera-
tion g) below the respective roll-off wavevectors [43]

qT
ro =

(
βT g∇T

νDth

)1/4

and qc
ro =

(
βcg∇c

νD

)1/4

.

(19)

The two time constants are given by [44]

τT (q) =
1

Dthq2(1 + (qT
ro/q)4)

(20)

τ c(q) =
1

Dq2(1 + (qc
ro/q)4)

. (21)
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The static structure factors and the time constants
are determined from fits of the bimodal structure func-
tion (16) for fixed q-values.

The usual data evaluation is based on the assumption
of a thin sample with constant concentration and tem-
perature gradients throughout the liquid and with effec-
tively constant values of all thermophysical parameters
of the sample that correspond to the mean temperature
in the center of the cell. In particular for systems with
large Soret coefficients, such as polymer solutions or col-
loidal dispersions, and/or large temperature differences
ΔT > S−1

T , the concentration profile shows, however, a
pronounced nonlinearity and ∇c is far from being con-
stant. For the 30K temperature difference shown in Fig.
3, it increases by almost a factor of 20 from the hot to
the cold plate.

Since the amplitudes of the NEFs (Eq. (18)) are pro-
portional to the square of the respective gradient [2],

IT
0 ∼ |∇T |2

νDth
and Ic

0 ∼ |∇c|2
νD

, (22)

the signal of the solutal NEFs emerging from a thin
layer near the cold wall in Fig. 3 will be about a fac-
tor of 400 stronger than the corresponding signal near
the hot wall. Because of the nonlinear concentration
profile, the measured signal will in particular not corre-
spond to the conditions in the center of the cell. Since
the time constants τT (q) and τ c(q) also depend on ∇T
and ∇c via the roll-off wavevectors (Eq. (19)), they will
also vary from layer to layer. The temperature and con-
centration dependence of the optical contrast factors is
generally only weak and has been neglected in Eq. (22).

Modeling of structure functions for thick samples

In order to understand how the experiments and the
extracted data, e.g., diffusion and Soret coefficients,
are affected, we will now simulate the expected multi-
modal measured signals. Then, we will apply the same
standard data evaluation procedure as for real measure-
ments, which is not aware of the nonlinearities, to these
computed signals. The extracted coefficients can then
be compared to the known input values and to shad-
owgraphy experiments.

We assume that the sample is composed of paral-
lel horizontal slices with different values of tempera-
ture and concentration, for which Eqs. (16) to (22) hold
individually. The total recorded signal C(q,Δt) is then
computed as a linear superposition by averaging Eq.
(16) over the cell height. For this purpose, we intro-
duce the vertical coordinate z as an additional variable
for all quantities that depend on T and c and, thus, on
the position within the cell. Equation (16) now becomes

C(q,Δt) =
1
h

∫ h

0

2T̃ (q, z)S(q,Δt, z)dz + B0 . (23)

The local temperature T (z) and concentration c(z) are
given by Eqs. (13) and (14), respectively. It should

Fig. 4 Simulated structure functions for different positions
0 ≤ z ≤ h. The solid line is the average C(q, Δt) as observed
in an hypothetical experiment with q = 115 cm−1. The dot-
ted line corresponds to the center of the cell at z = h/2.
PS(17.9 kg/mol)/Tol, c0 = 0.01, T0 = 298.15 K, ΔT = 30K

be noted that such an incoherent linear superposition
[44] of the scattering from the different horizontal lay-
ers contains the approximation of uncorrelated fluc-
tuations in the z-direction. Assuming that the verti-
cal size of the fluctuations is as large as the horizon-
tal one, we expect this assumption to be applicable as
long as q � 2π/h ≈ 12.6 cm−1, which holds for almost
all experimental wavevectors [45]. Besides the tempera-
ture and the concentration themselves and their respec-
tive gradients, the temperature and/or concentration
dependence of the following quantities has been taken
into account to calculate C(q,Δt) according to Eq. (23):
the Soret coefficient ST , the diffusion coefficient D, the
thermal diffusivity Dth, the kinematic viscosity ν, and
the density ρ. In addition, the optical transfer function
T̃ (q) also depends weakly on z due to the different dis-
tances Z between the individual layers and the sensor.

Figure 4 shows C(q,Δt) for a fixed wave vector q =
115 cm−1 and a temperature difference of ΔT = 30K.
Besides the experimentally observable mean structure
function C(q,Δt) according to Eq. (23) (black solid
line), also the structure functions Ci(q,Δt, z) for the
individual layers are shown. As expected from the z-
dependence of the concentration gradient shown in Fig.
3, the structure function with the largest amplitude
originates from the layer at the cold window at z = 0
and the one with the lowest amplitude from the hot
window at z = h. All structure functions for layers
in between, i.e., for 0 < z < h, comprise the shaded
region. The broad spreading of the solutal amplitudes
by a factor of 30 is a consequence of both the tem-
perature and concentration dependencies of the ther-
mophysical parameters and of the nonlinearity of the
diffusion equation (1). All thermal contributions, the
fast modes, are confined within a narrow band with
an amplitude variation by merely a factor of two. An
important observation is that in particular, the observ-
able averaged solutal structure function (thick solid
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Fig. 5 Variation of the amplitudes of the thermal and solu-
tal contribution to the static structure factor (top) and
thermal and solutal time constants (bottom) over the cell
height from z = 0 (cold, dashed lines) to z = h (hot, solid
lines). The dotted lines correspond to the center of the cell
at z = h/2. Simulation PS(17.9 kg/mol)/Tol, c0 = 0.01,
T0 = 298.15 K, ΔT = 30 K

line) is substantially different from the one that cor-
responds to the center of the cell (Ci(q,Δt, z = h/2),
dotted line).

Figure 5 shows how the static structure factors and
the time constants vary over the height of the cell for
the individual layers between z = 0 and z = h. Again,
the much broader dispersion of the solutal NEFs when
compared to the thermal ones is evident. As shown in
Fig. 5, also the roll-off wavevectors are different for the
different layers.

Evaluation of simulated and experimental data

Once the simulated averaged structure functions C(q,Δt)
are computed, they are treated in the same way as
experimental correlation functions that are extracted
from a time series of shadowgraph images. Thus, the
next step is to fit the simulated averaged structure func-
tion (the black solid line in Fig. 4) with the bimodal
structure function of Eqs. (16) and (17). The fits to both
the simulated and the experimental data are shown in

Fig. 6 Fits of simulated averaged structure functions
(top) and experimental structure functions (bottom) with
bimodal structure factor from Eq. (16) for three different
q-values. PS(17.9 kg/mol)/Tol, c0 = 0.01, T0 = 298.15 K,
ΔT = 30K

Fig. 6 for three q-values with an applied temperature
difference of ΔT = 30K. Although the two contribu-
tions to the simulated structure functions are not single-
exponential, due to the dispersion of the time constants
τ c and τT , the fits match surprisingly well and hardly
show any systematic deviation that could become visi-
ble in the presence of experimental noise.

The results of these fits that are performed for every
single q are the amplitudes and the time constants of the
thermal and the solutal mode, which are plotted in Fig.
7. The linear slopes on the high-q side yield the thermal
diffusivity Dth and the diffusion coefficient D, respec-
tively. On the low-q side, at q-values smaller than the
positions of the maxima in the τ -plots, the experimen-
tally determined times systematically deviate from the
simple model, as frequently observed in shadowgraphy
experiments. Such deviations are to be expected, since
the simulation does not account for additional effects
that might become important for small q-vectors, e.g.,
the coupling of concentration, temperature and wall-
normal velocity fluctuations [46]. These larger exper-
imental times are also reflected in Fig. 6 for, e.g.,
q = 115 cm−1, where the solutal mode is shifted to
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Fig. 7 Results of the evaluation of the simulated structure
functions (colored symbols) in comparison with experimen-
tal data (crosses). Top: Static amplitudes (thermal, solutal
and total) of the the structure function C(q, Δt → ∞).
The dashed curves are fits of Eq. (16) to the simulated
curves. Bottom: Thermal and solutal time constants τT (q)
and τ c(q) The solid lines are fits of Eqs. (20) and (21),
respectively. The vertical dashed lines indicate the q-values
of the structure functions in Fig. 6. PS(17.9 kg/mol)/Tol,
c0 = 0.01, T0 = 298.15 K, ΔT = 30K

somewhat longer times when compared to the simu-
lation.

The roll-off wavevectors qc
ro and qT

ro are determined
from a simultaneous fit of Eqs. (16) to (18) to the q-
dependence of the static amplitudes as obtained from
the time-dependent fits of the structure functions (Fig.
7). They are plotted in Fig. 8 both for the simulation
and the experiment. The agreement is reasonable albeit
not perfect.

As predicted by Eq. (19), the plot of qT
ro vs. ΔT 1/4 is

nicely linear over the entire temperature gradient range.
The dashed line is the prediction from Eq. (19) for T0 =
298.15K without taking any variation of parameters
across the cell height into account.

The solutal counterpart qc
ro follows Eq. (19) only for

small temperature differences ΔT � 10K, as shown by
the linear fit to the lowest three simulated data points.
For larger temperature differences, both the simulated
and the experimental data increasingly deviate toward
larger wavevectors. Equation (2) yields a Soret coeffi-
cient of ST = 0.092K−1. The deviation from the linear

Fig. 8 Thermal (qTro) and solutal (qcro) roll-off wavevec-
tors as obtained from fits of the static structure factors
of the simulated (sim) measurements and of the exper-
imental (exp) data. The dashed lines correspond to the

q1/4-prediction of Eq. (19). The error-bar like vertical
lines indicate the range of qcro for the different layers.
PS(17.9 kg/mol)/Tol, c0 = 0.01, T0 = 298.15 K, ΔT = 30K

fit becomes significant for ΔT > S−1
T ≈ 10K, which

is where the concentration profile inside the cell starts
to become nonlinear. The vertical lines in Fig. 8, which
resemble error bars, indicate the range over which qc

ro
varies from layer to layer between z = 0 and z = h.
Remarkably, the simulated and measured qc

ro are sig-
nificantly shifted from their initial center position for
ΔT > S−1

T toward the cold layer at z = 0.
Finally, the Soret coefficient is calculated from the

roll-off wavevectors according to [16]

ST =
−1

c(1 − c)
βT

βc

D

Dth

(
qc
ro

qT
ro

)4

. (24)

Unfortunately, the dependence on the fourth power
of the roll-off wave vectors leads to a rather unfavor-
able error-amplification. As an alternative approach,
the temperature gradient can be taken directly from the
applied temperature difference instead of the thermal
roll-off wavevector [8]. For the experiments reported
here, the difference is negligible, as can be seen from
the very good agreement of the simulated and experi-
mental values of qT

ro in Fig. 8.
Figure 9 shows Dth, D, and ST as obtained from the

evaluation of the simulated structure functions in com-
parison with the experimental values. Up to ΔT ≈ S−1

T
all three coefficients agree rather well with their nom-
inal values, but beyond they deviate significantly. In
particular, the apparent Soret coefficient deviates by a
factor of two from its true value at T = T0 and c = c0 for
ΔT = 50K. The deviations of the diffusion coefficient
and the thermal diffusivity are less pronounced and
amount to approximately 25 and 12 percent, respec-
tively.
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Fig. 9 Measured (exp) and simulated (sim) diffusion coef-
ficients D (top), Soret coefficients ST (middle) and ther-
mal diffusivities Dth (bottom) as a function of the applied
temperature difference ΔT . The literature values (lit) are
directly computed from Eqs. (2) and (3) and coincide with
the simulated values for ΔT → 0. Also shown are sim-
ulations performed for the case of temperature and con-
centration independent thermophysical parameters (labeled
as const). PS(17.9 kg/mol)/Tol, c0 = 0.01, T0 = 298.15 K,
ΔT = 30 K

Also shown in Fig. 9 are the coefficients that have
been obtained from a simulation that neglects all
temperature and concentration dependencies and only
takes the nonlinearity of the concentration profile into
account. As expected, the ΔT -dependence of the mea-
sured Dth and D results only from the temperature
and concentration dependencies and not from the non-

linearity of the diffusion equation. The deviation of ST

for larger ΔT , on the other hand, follows mainly from
the nonlinearity of the concentration profile and is even
weakened by the temperature and concentration depen-
dencies of the parameters. As for qc

ro in Fig. 8, the mea-
sured and simulated coefficients are only correct for suf-
ficiently small ΔT < S−1

T .

4 Summary and conclusions

We have investigated a problem that is inherent to
many nonequilibrium experiments, which require finite
temperature and/or concentration gradients in order
to generate a measurable signal. The results are then
typically assigned to a fixed temperature, which fre-
quently corresponds to the mean sample temperature.
Whether this approach is valid or not cannot easily be
predicted. It depends on the temperature dependence of
all relevant physicochemical parameters. For the poly-
mer solution studied here, the most crucial question is,
whether the underlying transport equations, the heat
equation and the extended diffusion equation, can be
linearized with respect to the temperature and concen-
tration gradients. While this assumption is generally
fulfilled for the temperature gradient, which is approx-
imately constant even for large temperature differences
of say ΔT = 50K, the concentration gradient devel-
ops a pronounced nonlinearity already for much smaller
temperature differences. The major reason for the non-
linear concentration gradient is the nonlinear term in
the extended diffusion Eq. (1).

We have modeled the measured shadowgraphy signal
as a superposition of the signals from parallel thin fluid
layers, each of which characterized by its own temper-
ature and concentration, and the respective gradients.
Even though both the amplitudes of the concentration
mode and the corresponding relaxation time constants
vary over a broad range, as shown in Figs. 4 and 5,
the superposition of the individual structure functions
looks very ordinary and does not contain an appar-
ent hint to the nonlinearity. It still can be approxi-
mated almost perfectly by the double-exponential fit
of Eq. (17). The amplitudes, time constants and roll-
off wavevectors that are extracted from these fits differ,
however, significantly from the values expected from
a linear model. In our example, this has led to sig-
nificantly underestimated diffusion coefficients and to
Soret coefficients that are overestimated by almost a
factor of two for a temperature difference of 50K.

We have compared our simulations to experimental
shadowgraphy results for the diffusion and Soret coeffi-
cient as measured with different temperature gradients
and found good agreement. It is difficult to generalize
our findings, but it can be said that the signal anomaly
mainly results from both the nonlinear concentration
profile and from the temperature and concentration
dependence of the system parameters. Thus, as a rule
of thumb, the temperature difference should not exceed
the inverse Soret coefficient: ΔT < S−1

T . In particular
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for dilute solutions of high polymers [29], where the
Soret coefficient can easily exceed 1K−1, this require-
ment can lead to severe experimental limitations that
require careful consideration. In our example in Fig.
9, the apparent Soret coefficients deviate toward larger
values, which makes the criterion ΔT < S−1

T a safe one
when checked against the experimentally determined
Soret coefficient. Such a good-natured overestimation
is, however, not guaranteed. The direction depends on
details of the experiment and on the concentration and
temperature dependence of ST (c, T ). This might quite
as well lead to an unfavorable underestimation of the
Soret coefficient when measured with too large temper-
ature gradients.

Our results are a contribution to the Giant Fluctua-
tions and the TechNES projects of the European Space
Agency ESA and the BTGIANT project of the Ger-
man Aerospace Center DLR, which aim at the under-
standing of NEFs in non-ideal systems as encountered
in the presence of large gradients both on ground and
in microgravity.

Acknowledgements We thank H. Bataller, M. Carpineti,
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A.T. Ndjaka, V. Shevtsova, W. Köhler, Eur. Phys.
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Köhler, E. Kufner, J.M. Ortiz de Zárate, J. Peetersen,
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