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Abstract

The development of high-performance light harvesting devices has been one of the main fo-
cuses of the photovoltaics community and materials with high crystallinity and low defect
concentrations have been thought to be the perfect candidates. In the past decade metal-
halide perovskites have challenged this conventional understanding of semiconducting be-
havior. They have successfully been used in optoelectronic applications with unexpected
and remarkably high efficiencies, despite the significant inhomogeneities in local chemistry,
defect density, and lattice structure introduced through the facile synthesis methods typ-
ically used to grow perovskite films for photovoltaic applications. Furthermore, the full
material class of halide perovskites exhibits tremendous chemical and structural hetero-
geneity leading to a great diversity of optoelectronic properties. This thesis contributes to
the atomistic understanding of the effect of different forms of heterogeneity on structural
and optoelectronic properties of metal-halide perovskites through an in-depth theoretical
study using state-of-the-art first principles calculations.

Double metal-halide perovskites are an emerging class of materials with promising
semiconducting properties. In these materials, chemical heterogeneity is introduced through
the alternating mono- and trivalent metal cations that build the inorganic crystalline lat-
tice. We use density functional theory and ab initio many-body perturbation theory
within the G0W0 approximation and the Bethe-Salpeter equation approach to study the
effect of this chemical heterogeneity on the electronic and excited state structure of halide
double perovskites. We find that the magnitude of exciton binding energies and the sig-
nificance of local field effects in these materials are highly dependent on their band edge
orbital character and thus provide atomistic insight into light-matter interactions in this
technologically relevant class of materials.

By lowering the dimensionality of both single and double metal-halide perovskites via
incorporation of large organic molecules, additional structural heterogeneity is introduced
because of symmetry breaking along one direction. We perform first principles density
functional theory calculations to investigate the effect of macroscopic structural hetero-
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geneity on the structural and electronic properties of such quasi-2D single and double
perovskites. We disentangle the effects of chemical substitution, atomic structure, and di-
mensionality on the electronic structure of these systems and find significant steric effects
and band gap changes in both single and double quasi-2D materials in stark difference to
their 3D counterparts.

Finally, we study local structural microscale heterogeneities in the all-inorganic halide
perovskite CsPbBr3 introduced through intrinsic defects, focusing specifically on halogen-
mediated vacancy migration, which has been demonstrated to contribute the most to
phase segregation and material degradation. We perform first principles density functional
theory calculations to compute energy barriers and minimum-energy pathways of bromine
vacancy migration in the bulk and at the surface of cubic CsPbBr3. Moreover, we analyze
the effect of macroscopic structural heterogeneities at the surface by passivation of the
perovskite surface with alkali-halide monolayers. Our results show that the undesirable
substantially lower migration barrier at the surface can be mitigated through passivation
with suitable alkali-halide monolayers.



Kurzdarstellung

Die Entwicklung effizienter Solarzellen ist einer der Hauptschwerpunkte der Photovoltaik-
Community und hochkristalline Materialien mit geringer Defektkonzentration gelten als
die perfekten Kandidaten dafür. In den letzten zehn Jahren haben Metall-Halogenid-
Perowskite dieses konventionelle Verständnis des Halbleiterverhaltens in Frage gestellt.
Sie wurden erfolgreich in optoelektronischen Anwendungen mit unerwarteten,
bemerkenswert hohen Wirkungsgraden eingesetzt, trotz der erheblichen Inhomogenitäten
in lokaler Chemie, Defektdichte und Gitterstruktur, die durch die einfachen Synthesemeth-
oden, die typischerweise zum Züchten von Perowskitfilmen für photovoltaische Anwen-
dungen verwendet werden, eingeführt wurden. Darüber hinaus weist die gesamte Materi-
alklasse der Halogenid-Perowskite eine enorme chemische und strukturelle Heterogenität
auf, die zu einer großen Vielfalt optoelektronischer Eigenschaften führt. Diese Disserta-
tion trägt zum atomistischen Verständnis des Einflusses verschiedener Formen der Het-
erogenität auf strukturelle und optoelektronische Eigenschaften von Metall-Halogenid-
Perowskiten durch eine eingehende theoretische Studie unter Verwendung modernster
first-principles Rechnungen bei.

Metall-Halogenid Doppelperowskite sind eine Materialklasse mit vielversprechenden
halbleitenden Eigenschaften. In diesen Materialien hat chemische Heterogenität ihren
Ursprung in den abwechselnden ein- und dreiwertigen Metallkationen, die das anorgan-
ische Kristallgitter bilden. Wir verwenden Dichtefunktionaltheorie und ab initio Viel-
teilchenstörungstheorie innerhalb der G0W0 Näherung und der Bethe-Salpeter-Gleichung,
um den Einfluss dieser chemischen Heterogenität auf die elektronische Struktur und die
angeregten Zustände von Halogenid-Doppelperowskiten zu untersuchen. Wir stellen fest,
dass die Größe der Exzitonenbindungsenergien und die Bedeutung lokaler Feldeffekte
in diesen Materialien stark von ihrem Bandkantenorbitalcharakter abhängen und liefern
damit atomistische Einblicke in Licht-Materie-Wechselwirkungen in dieser technologisch
relevanten Materialklasse.

Durch die Verringerung der Dimensionalität sowohl von Einfach- als auch Doppelper-
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owskiten durch den Einbau großer organischer Moleküle wird zusätzliche strukturelle
Heterogenität aufgrund von Symmetriebrechung entlang einer Richtung eingeführt. Wir
führen first principles Dichtefunktionaltheorie Rechnungen durch, um den Einfluss
makroskopischer struktureller Heterogenität auf die strukturellen und elektronischen Eigen-
schaften solcher quasi-2D Einzel- und Doppelperowskite zu untersuchen. Dabei unter-
suchen wir systematisch die Auswirkungen chemischer Substitution, atomarer Struktur
und Dimensionalität auf die elektronische Struktur dieser Systeme und finden signifikante
sterische Effekte und Bandstrukturänderungen sowohl in einfachen als auch in doppelten
quasi-2D Materialien, die sich deutlich von ihren 3D Gegenstücken unterscheiden.

Schließlich untersuchen wir lokale strukturelle Heterogenitäten durch intrinsische De-
fekte im rein anorganischen Halogenid-Perowskits CsPbBr3, wobei wir uns speziell auf die
halogenvermittelte Leerstellenmigration konzentrieren, die nachweislich am stärksten zur
Phasensegregation und zum Materialabbau beiträgt. Wir führen first principles Berech-
nungen durch, um Energiebarrieren und Pfade minimaler Energie für die Migration von
Brom-Leerstellen im bulk und an der Oberfläche von kubischem CsPbBr3 zu berech-
nen. Darüber hinaus analysieren wir den Einfluss makroskopischer struktureller Hetero-
genitäten an der Oberfläche durch Passivierung der Perowskitoberfläche mit Alkalihalogenid-
Monolagen. Unsere Ergebnisse zeigen, dass die unerwünschte, wesentlich niedrigere Mi-
grationsbarriere an der Oberfläche durch Passivierung mit geeigneten Alkalihalogenid-
Monolagen abgeschwächt werden kann.
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Chapter 1

Introduction

The global energy demand is known to continuously increase due to the economic and
industrial growth in both developing and developed countries. Although traditional re-
sources, e.g. coal, oil and gas, account for almost 75% of the total energy production [1],
they have also been leading to an alarming increase in pollution. Its dreadful conse-
quences such as global warming and threats to human health, have stimulated intensive
research to develop alternative renewable energy solutions. Fortunately, sunlight alone
can provide sustainable energy exceeding the global consumption rate even in the most
aggressive scenarios and thus, the direct use of solar energy seems to be one of the most
promising alternative approaches to conventional energy generation. Photovoltaic de-
vices converting solar energy into electricity are one of the main topics in the important
challenge of developing new strategies to harvest solar energy. To design scalable and
efficient light harvesting devices, a deeper understanding of the fundamental properties
of absorber materials is of vital importance, therefore the relatively new computational
science comes into play. Computational science, which in the recent years became an es-
tablished complement to purely experimental and theoretical sciences, exploits available
computer power to gain enriched understanding from basic laws of physics and forecast
new properties and materials suitable for specific practical applications [2]. A key compo-
nent of computational science is represented by the emerging field of materials modelling
in which a very broad range of theoretical models are implemented to derive quantitative
description of certain physical properties [3].

In this context, the present thesis focuses on the computational study of metal-halide
perovskites, a very promising class of absorber candidates, and some of their fundamen-
tal physical properties that are critical for understanding and designing of optoelectronic
applications. In the recent years, several reports showed, using various characterisation
methods, that these materials feature tremendous structural and chemical heterogene-
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ity [4–6]. Despite the fact that it has been suggested that the structural and chemical
heterogeneity negatively impacts the device performance, metal-halide perovskites have
been used in optoelectronic applications with outstanding efficiencies [7, 8].

The stoichiometry of metal-halide perovskites is described by the general chemical
formula ABIIX3, where A is an organic or anorganic cation, BII is a divalent metal cation
and X3 is a halide anion. In the ideal cubic structure, the metal cations are octahe-
drally coordinated, while the halide anions form an inorganic lattice of corner-sharing
BII-centered octhahedra, with the A-site cations sitting in the center of the cuboctahe-
dral cavities between octahedra. The prototypical metal-halide perovskite used in pho-
tovoltaic applications is methylammonium lead iodide (MAPbI3, MA=CH3NH3) [9] and
its common substitutes are other Pb-based perovskites due to their outstanding semi-
conducting properties [10, 11]. Although the facile growth of metal-halide perovskites
through simple synthesis methods is one of the main advantages of this class of materials
that would potentially help the industrialisation, it is also the main cause of variable and
complex non-uniformities. The ’soft’ lattice of perovskites accommodate pronounced lo-
cal heterogeneity both on short length scales (<100 nm) and across long ranges (>10µm)
that impact their structural and optoelectronic properties [6]. The halt in large scale-
commercialisation of Pb-based halide perovskites because of their poor stability against
moisture, heat and light exposure [12, 13] motivated the search for finding various strate-
gies to mitigate this issue and render new, more stable materials featuring the same advan-
tageous properties. Here, we analyse several halide perovskites obtained using two of the
most important strategies, i.e. dimensional reduction [14] and heterovalent substitution
at metal site [15, 16]. These different approaches alter the stoichiometry of metal-halide
perovskites and introduce additional global chemical and structural heterogeneity through
successful incorporation of a wide range of chemical elements in the perovskite structure,
leading to a tremendous diversity of optoelectronic properties.

The present thesis features two main parts concerned with the study of the impact
of different macroscopic and microscopic inhomogeneities on the structural, electronic
and optical properties of metal-halide perovskites. This analysis requires a theoretical
framework that can accurately simulate the quantum phenomena involved in the absorp-
tion and processing of photons in these complex systems. Therefore, Chapter 2 briefly
summarizes the theoretical background of the computational methods used throughout
this thesis, covering density functional theory (DFT), GW formalism and Bethe-Salpeter
equation (BSE) approach. Next, the impact of macroscopic inhomogeneities on electronic
properties of metal-halide perovskite is discussed in Chapter 3. We bring into focus 2D
Ruddlesden-Popper Pb-based perovskites in order to analyse how their overall structural
heterogeneity influence the electronic structure of these materials. We then shift our
attention to the emerging class of 3D double halide-perovskite (elpasolites) and their
lower-dimensionality derivatives to study the effect of chemical heterogeneity through
substitutions at metal sites. Chapter 4 is dedicated to the analysis of optical properties
of several prominent members of Ag-pnictogen and Ag-icosagen double metal-halide per-
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ovskites Cs2AgB
IIIX6 with BIII=Bi, Sb, In, Tl and X6=Cl, Br. Further, we discuss the

applicability of a standard phenomenological theory typically used to gain insights from
experimental data. In Chapter 5 we return to the fully-inorganic CsPbBr3 perovskite to
study the process of migration of one of the most common microscopical inhomogeneities,
i.e. halogen vacancies. Finally, Chapter 6.1 provides a short summary and an outlook on
the further investigations that can be carried out to deeper understand the compelling
facts uncovered through this work. From a computational point of view, in order to
reach correct and reliable conclusions, one must have a systematic understanding of the
sensitivity of the results on the computational setup. Therefore all technical details of
practical calculations presented through this thesis are provided in the Appendix.
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Chapter 2

Theoretical framework

First principles calculations based on DFT, including spin-orbit coupling (SOC) for treat-
ing heavy atoms [17], represent a powerful tool for investigating both fully inorganic
and hybrid organic-inorganic metal-halide perovskites [18, 19]. This approach has been
widely used for computing structural, electronic and thermal properties such as funda-
mental band gaps, electron and hole effective masses, carrier mobilities, heat capacities
and many other. In one prominent DFT study, Nagamatsu et al. used first principles
calculations to compute the critical temperature of magnesium diboride (MgB2) super-
conductor [20]. Another great progress in the field of materials modelling was represented
by the atomic-scale simulation of the time evolution of nanoscale diamonds at low tem-
perature using ab initio molecular dynamics methods [21], conducted by Raty et al. [22].
More recently, Filip et al. scanned a relatively wide range of lead-free perovskites in search
for revolutionary materials to be used as absorbers in solar cells [23].

Despite the numerous studies employing DFT, the standard approximations used to
DFT lead to notoriously underestimated band gaps [24], a drawback that driven great
efforts to develop advanced techniques to yield reliable and accurate predictions. In
order to overcome this shortcoming, new methods including the time–dependent DFT
(TDDFT) [25], Green’s function-based many-body perturbation theory (MBPT) [26–28]
and Bethe-Salpeter equation (BSE) approach [29] have been developed and applied to
recent theoretical calculations. It has been proven that the GW approach can be used to
successfully predict (quasiparticle) band gaps and dispersion relations from first principles
for solids [30–32], interfaces [33], and molecules [34]. Furthermore, used together with
the BSE, it can predict optical properties of materials remarkably accurately [29, 35–
37]. Typical calculations of the ground and excited–state properties using the GW+BSE
method can be broken into three steps that will be briefly summarized over the next
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sections:

• the solution of the ground–state structural and electronic properties (section 2.1)

• the calculation of the quasiparticle energies and wavefunctions within the GW ap-
proximation for the electron self–energy operator (section 2.3)

• the calculation of the two–particle correlated electron–hole excited states through
the solution of Bethe-Salpeter equation (section 2.4)

Exhaustive descriptions of the presented methodologies can be found in Refs. [3, 38, 39]
for DFT, Refs. [26, 32, 40–44] for GW and Refs. [29, 45] for GW+BSE. Additional to this
overview of the general methodology used throughout the thesis, in section 2.2 we present a
specific DFT method routinely used to determine transition states in materials practically
employed to describe the migration process of inhomogeneities of simple CsPbBr3 metal-
halide perovskite in chapter 5.

2.1. Density Functional Theory

A wide variety of computational and theoretical methodologies, all related or based on
DFT, are nowadays used in state-of-the-art materials modelling [3]. This can only sug-
gest that DFT is an effective technique for qualitatively and quantitatively investigating
ground-state properties of materials. The foundations of DFT were first introduced by
Hohenberg and Kohn in 1964, when they introduced the first ab initio model of interacting
inhomogeneous electron gas [46].

2.1.1. Many-body Schrödinger equation

Complex materials are theoretically modelled as collections of electrons and nuclei glued
together by the subtle interplay between repulsive (between pairs of electrons and pairs
of nuclei, respectively) and attractive (between electrons and nuclei) Coulomb interac-
tions [3]. In principle, their stationary behaviour can be described by solving the following
associated many-body time-independent Schrödinger equation (in atomic units):[

−
∑
i

1

2
∇2

i −
∑
I

1

2MI

∇2
I +

1

2

∑
i ̸=j

1

|ri − rj|

+
1

2

∑
I ̸=J

ZIZJ

|RI −RJ |
−
∑
i,I

ZI

|ri −RI |

]
Ψ = EtotΨ,

(2.1)

where MI and ZI represent the atomic masses and numbers, respectively, RI and ri are
the positions of nuclei and electrons, respectively, Ψ is the total many-body wave function
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and Etot is the total energy. We note that the indices i and j run from 1 to total number
of electrons N , while the indices I and J run from 1 to total number of nuclei M . In
practice, equation 2.1 is practically impossible to solve (with the exception of very small
molecules) due to the very large number of component particles.

In the following, we assume the Born-Oppenheimer approximation [47], which de-
couples the degrees of freedom of electrons and nuclei, and only solve the Schrödinger
equation of the electrons, assuming MI → ∞. In this assumption, the kinetic energy
of nuclei can be neglected and the Coulomb repulsion between nuclei becomes constant,
leading to the definition of the total electronic energy [3]:

E = Etot −
1

2

∑
I ̸=J

ZIZj

|RI −RJ |
. (2.2)

Furthermore, the nuclear coordinates can be treated as external parameters leading to
Ψ becoming a function that describes electrons in a Coulomb potential created by the
nuclei:

Vn(r) = −
∑
I

ZI

|r−RI |
. (2.3)

Following this deduction and using the relations 2.2 and 2.3 in equation 2.1, on can write
the fundamental equation of electronic structure theory [3]:[

−
∑
i

1

2
∇2

i +
∑
i

Vn(ri) +
1

2

∑
i ̸=j

1

|ri − rj|

]
Ψ = EΨ. (2.4)

The first term in equation 2.4 represents the many-body Hamiltonian

Ĥ = −
∑
i

1

2
∇2

i +
∑
i

Vn(ri) +
1

2

∑
i ̸=j

1

|ri − rj|
, (2.5)

where T̂ =
∑
i

1

2
∇2

i is the kinetic energy, V̂ext =
∑
i

Vn(ri) is the external potential of the

nuclei and v̂ =
1

2

∑
i ̸=j

1

|ri − rj|
is the electron-electron interaction.

As previously described in Ref. [3], the limitations of the many-body Schrödinger
equation lie in the description of the Coulomb repulsion between electrons and stimulated
extensive research to find methods that can treat the effects of electron-electron interac-
tions with sufficient accuracy [48–54]. The most dramatic simplification is the independent
electrons approximation which neglects the interactions between electrons, but introduces
two considerable shortcomings. The solution of the Schrödinger equation within this ap-
proximation which can be written as as a product of independent single-particle wave
functions [52] Ψ(r1, r2, ..., rN) = ϕ1(r1)ϕ2(r2)...ϕN(rN), does not obey Pauli’s exclusion
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principle [55]. Furthermore, the Coulomb potential in equation 2.4 cannot actually be
neglected since it is of the same order of magnitude as the other terms. A less drastic
simplification that still assure a single-particle description is the mean-field approxima-
tion, which assumes that every electron ”feels” the same average Hartree potential created
by the other particles in the system [50]. Since the electrons are not classical particles, this
approximation does not yield quantitatively accurate predictions of materials at atomic
scale [3]. Further developing this reasoning, for a given Coulomb term, the energy can be
minimised with respect to the variations of the orthonormal single-particle wave functions
ϕi(r) and the concept of Hartree-Fock non-local potential arising from Pauli’s exclusion
principle is introduced for the first time [53]. The equations governing first principles
materials modelling are derived in the Kohn-Sham approach that is an exact mapping of
the interacting many-body problem onto a system of single particle equations, in which
all quantum-mechanical exchange and correlation effects are by definition contained in
the exchange-correlation potential.

2.1.2. Hohenberg and Kohn theorem

In general, the total electronic energy of any quantum state of a N -electron systems in
equilibrium is a functional of the electronic wave function

E = E[Ψ(r1, r2, ..., rN)]. (2.6)

The theorem of Hohenberg and Kohn [46] is based on three premises: first, the external
potential of the nuclei in the ground state is uniquely determined by the electron den-
sity, second, the external potential in any quantum state is uniquely determined by the
many-body electronic wave function and third, the total energy in any quantum state is
a functional of the many-body electronic wave function. Combining these three presump-
tions, the total energy of of a many electron system in the ground state can be treated as
a functional of the electron density:

E = E[n(r)]. (2.7)

Furthermore, the total energy of the ground state can be obtained by minimising the total
energy functional with respect to the electron density:

δE[n]

δn
= 0. (2.8)

Using the Rayleigh-Ritz variational principle, the previous relation can be written as:

E =

∫
drn(r)Vn(r) + ⟨Ψ[n]| T̂ + v̂ |Ψ[n]⟩ , (2.9)

where ⟨Ψ[n]| T̂+v̂ |Ψ[n]⟩ is a universal functional which needs to be accurately determined
in order to successfully describe the ground state of the many-electron system.
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2.1.3. Kohn-Sham equations

While the first term in equation 2.9 explicitly depends on the electron density n, the de-
pendence on the electron density is only implicit in the kinetic energy T̂ and the Coulomb
repulsion energy Ŵ . To address this issue, Kohn and Sham [54] reformulated the energy
functional as the sum between kinetic and Coulomb energy of independent electrons and
an extra term accounting for the difference:

E[n] = Ts[n] + EH [n] + Eext[n] + Exc[n], (2.10)

where Ts[n] = −
∑
i

∫
drϕ∗

i (r)
∇2

2
ϕi(r) is the kinetic energy of the non-interacting N -

electron system, EH =
1

2

∫∫
drdr′

n(r)n(r′)

|r− r′| is the classical electrostatic Hartree energy

and Eext =

∫
drn(r)Vn(r) is the external energy. The last term in equation 2.10 is the

so-called exchange-correlation (xc) energy functional and it contains every contribution
excluded from the first terms.

In order to accurately treat complex materials, the relativistic effect of spin-orbit
coupling needs to be taken into account [56, 57] by solving the Dirac equations [58] where
the single-particle Kohn-Sham wave functions are replaced by two-component spinors [54,
59] and the total energy needs to be minimised with respect to the electron density n(r)
and the spin density nσ(r) [3]. However, in the following all the equations will be written in
a non-relativistic framework and assuming a spin-unpolarized system, for simplicity. Using
the reformulation introduced in equation 2.10, the set of independent-particle equations
can be written in a spin-unpolarized formulation that is generally known as the Kohn-
Sham equations [54]:[

Ts[n] + Vext[n] + VH [n] + Vxc,σ[n]

]
ϕn(r) = ϵnϕn(r), (2.11)

where VH [n] =

∫
dr′

n(r′)

|r− r′| is the Hartree potential and Vxc[n] =
δExc[n]

δn
is the exchange-

correlation potential. The external potential Vext[n] can be the exact, full potential or a
so-called ”pseudopotential”, that replaces the strong Coulomb potential of the nuclei and
the tightly bound core electrons by an effective ionic potential acting on the valence
electrons only. ϵn and ϕn(r) are the Kohn-Sham eigenvalues and corresponding single-
particle eigenfunctions, respectively. The electron density is defined as the sum over all
occupied Kohn-Sham orbitals ϕn(r):

n(r) =
N∑
i=1

fn|ϕn(r)|2, (2.12)
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while the total number of electrons can be obtained by summing over all occupation
numbers fn:

N =
N∑
i=1

fn. (2.13)

In practical DFT calculations, the Kohn-Sham equations defined by 2.11, 2.12 and 2.13
are solved self-consistently until the variation of the electron density between two consec-
utive steps is smaller than a predefined threshold value.

2.1.4. Exchange-correlation approximations

In principle the Kohn-Sham equations 2.11 are exact and could be solved analytically.
However, there is no known exact (closed) form of the xc potential and therefore, in
practice one must resort to numerical approximations to solve these equations. In the
following we will present only a brief summary of the approximations used in the cal-
culations presented throughout the next chapters. A detailed overview of all different
approximations can be found in Ref. [60].

The local density approximation (LDA) [61, 62] is the simplest approximation to the
xc energy and it bears an explicit dependence on the electronic density. The hypothesis
of LDA states that the xc energy in a complex system can be locally approximated with
the xc energy in an homogeneous electron gas. This idea of constructing the xc energy of
a real system using that of an homogeneous electron gas model has been suggested even
before the DFT itself [48, 49, 63, 64]. Within this assumption, the exchange part at each
r point depends only on the electron density at the same point:

ELDA
x [n(r)] = −3

4

(
3

π

)1/3 ∫
n4/3(r)dr. (2.14)

In contrast, the correlation part has no known analytical form and it needs to be nu-
merically computed using Monte-Carlo methods [61]. Based on these calculations, the
correlation energy has been parametrized and therefore, several LDA energy functionals
have been developed over the years [62, 65, 66]. Despite the rudimentary assumption that
complex systems can be approximated with homogeneous electron gas, the LDA predicts
surprisingly reasonable results for a large number of materials. However, the LDA leads
to an absolute error of molecular atomization energies of the order of 1 eV [60].

Another class of xc energy approximations explicitly dependent on the electron density
is the generalized gradient approximation (GGA), that improves the LDA by taking into
account both the electron density at each r point as well as the rate of its spatial variation:

EGGA
xc [n(r)] =

∫
f(n(r),∇n(r))dr. (2.15)
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The functional f(n(r),∇n(r)) in the expression of this semi-local approximation (equa-
tion 2.15) have been constructed such that it reproduces the exact result as good as
possible. The GGA approximation of Perdew, Burke and Ernzerhof (PBE) [67] have
been defined used this non-empirical framework, where all free parameters are deter-
mined to satisfy known exact constraints of the xc energy, and is currently one of the
most common approximations used in computational materials modelling. Another ap-
proach to construct the functional f(n(r),∇n(r)) is to fit the xc energy to extensive sets
of test molecules. An example of such an approximation is BLYP functional, which is
parametrized semi-empirically and formed by the exchange functional of Becke [68] and
the correlation functional of Lee, Yang and Parr [69]. Although GGA significantly im-
proves the LDA results and renders good predictions for a wide range of materials, it still
leads to an absolute error of molecular atomization energies of the order of 0.3 eV [60] and
it even dramatically fails for certain systems because of the large self-interaction error
(SIE) [62].

The so-called hybrid functionals have been designed to correct this drawback and soon
became one of the most popular approximations used in computational chemistry. Within
this framework firstly established by Becke [70], the xc energy is defined as the sum of
three terms: a fraction of exact exchange Eexact

x and semi-local approximations of the
correlation and exchange energy denoted by Eapprox

c and Eapprox
x , respectively:

Ehybrid
xc = αEexact

x + (1− α)Eapprox
x + Eapprox

c . (2.16)

Similar to the case of functional f(n(r),∇n(r)) in the formulation of GGA, the fraction α
of exact exchange energy can be obtained either by fitting to large test sets of molecules
or based on the adiabatic connection formalism [67, 71]. An example of such a hybrid
approximation is the so-called PBE0 functional defined by Adamo et al., which is a
variation of the previously described PBE [67], with α = 0.25 [72].

Further developments on the hybrid functional lead to the range-separated hybrids
(RSHs) constructed such that the exchange electron-electron interaction is split into a
long-range (LR) and a short-range (SR) contribution. The importance of this approxima-
tion lies in the advantage of keeping the semi-local formulation of the exchange energy for
the SR portion, while using fully non-local exchange energy for the LR part. An example
of such approximation is the functional of Heyd Scuseria and Ernzerhof (HSE) [73], for
which the xc energy takes the form:

EHSE
xc = αEexact

x,SR (ω) + (1− α)Eapprox
x,SR (ω) + Eapprox

x,LR (ω) + Eapprox
c , (2.17)

where ω is a parameter used to tune the short-rangeness of the interaction. A particular
variation of this approach that have been demonstrated to yield exceptional good results
for a wide range of systems [74–76] is the so-called HSE06 functional where α = 0.25 and
ω = 0.2 [77]. We further note that the previously described PBE0 functional [72] can be
seen as a particular RSH case with ω = 0.
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2.2. The Nudged Elastic Band method

The motion of atoms within the crystal structure is an important process that is frequently
studied in computational science to understand fundamental processes such as diffusion
or to determine transition rates such as rates of chemical reactions.

The Nudget Elastic Band (NEB) is a geometry optimization technique used to compute
the minimum energy pathway (MEP) between two given local minima of the potential
energy surface [78]. Subsequently, the MEP is used to determine migration barrier for
the transition between the initial and final states within harmonic transition state theory
(hTST) [79]. An example of such a path is represented schematically in Figure 2.1, where
we show a potential energy surface with two local minima representing the initial and
final states and a maximum representing the saddle point between the fixed end points.

x

y

Figure 2.1: Schematic representation of nudged elastic band method reproduced from Ref. [80].
The dashed line is the elastic band converging to the MEP represented in solid line. The dots
along the MEP represent the intermediate replicas of the system.

The MEP is achieved by optimising a number of images or replicas of the system along
the reaction path [80]. These replicas are nothing else than geometrical configurations
of the system in intermediate states between the initial and final points. The adjacent
images are connected by springs to ensure the continuity of the path and simulate an
elastic band. Once the elastic band is constructed, an optimisation of the band converges
it to MEP [80]. In practice, the straightforward approach of disposing the images along a
linear interpolation between the initial and final states is, most of the time, a good enough
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starting point for the optimization process leading to the MEP.
The optimisation of the elastic band is achieved by minimising the forces acting on the

images. Note that within this constrained optimisation the forces are tangential at any
point along the path [78, 80]. Assuming an elastic band described by the fixed end points
R0, RN and N − 1 mobile intermediate images connected by identical springs with the
spring constant k, the sum acting on force i is computed as the sum between the spring
force and the true force:

Fi = F S
i −∇E(Ri), (2.18)

where E represents the energy of the system, the spring force F S
i is parallel and the true

force ∇E(Ri) is perpendicular to the local tangent. The spring force is given by

F S
i = k(|Ri+1 −Ri| − |Ri −Ri−1|)τ̂i, (2.19)

where k is the spring constant and τ̂i is the normalized local tangent at image i. Note that,
since we assumed the same k for all springs along the path, the images will converge to
the MEP with equal spacing. Generally, because of the perpendicular force ∇E(Ri) the
images around the saddle point will drift away from the local maximum [81]. Therefore,
the discrete representation provided by the NEB is not sufficient and the saddle point
has to be estimated using an interpolation scheme that can be problematic for a small
number of intermediate images.

To surpass this crucial issue, especially important in the calculation of migration
barriers, Henkelman et al. introduced the climbing image nudged elastic band method
(cNEB) by modifying the above algorithm such that the highest energy image h is not
affected by any spring force and as a result is driven to the saddle point [81]. The force
acting on this climbing (saddle) image is given by

Fh = −∇E(Rh) + 2∇E(Rh) · τ̂hτ̂h. (2.20)

We note that due to the fact that the climbing image does not feel the spring forces, the
spacing between the images on the either side of the saddle point in the final MEP will
be different[81].

The (c)NEB method is an established tool to understand the transition paths in com-
plex systems and have been successfully employed since late 1990s in combination with
DFT[82–84] and with empirical potentials [78, 85, 86]. On of the important recent topic
where the (c)NEB approached was used is the simulation of the ion migration process in
metal-halide perovskites to gain knowledge about the migrating species and find ways to
mitigate this undesirable effect[87–91].

2.3. GW formalism

The general aim of this thesis is to understand the structural, electronic and optical prop-
erties of some complex materials (namely, simple and double metal-halide perovskites).



Chapter 2 – Theoretical framework 14

One of the key quantities of our in-depth electronic structure analysis of the studied
compounds is the fundamental band gap that we theoretically compute by performing
quantum mechanical first principles calculations. In order to be relevant, the computed
values needs to be compared with the corresponding experimentally determined band
gaps.

One of the main drawbacks of using local and semi-local approximations for the
exchange-correlation part in DFT is the severe underestimation of the band gaps of semi-
conductors and insulators with respect to experiment [62, 92]. A method to correct
this misalignment is to use hybrid approximations, such as HSE screened hybrid func-
tional that leads to very accurate results for solids with small to medium band gaps [60].
However, even HSE still significantly underestimates the band gap of insulators [93].
Furthermore, the implementation of such a hybrid functional in practical applications is
notoriously difficult, limitations arising from the large number of particles necessary to
accurately simulate a real system and the tuning procedures necessary for the determi-
nation of various parameters. Therefore, the aim of this section is to describe the GW
approach. We note that the GW formalism is not computationally more efficient than
DFT calculations using hybrid functionals, but is has the great advantage of being a
parameter-free formalism. However, although GW approach is known to yield band gap
energies in better agreement with the experimentally determined ones [94], this property
should be seen with caution. In practice, G0W0, which is one of the most used flavors of
GW shows a stark dependence of the DFT starting point [95] and therefore the advantage
of being parameter-free is lost to some extent.

2.3.1. Theoretical spectroscopy

As described in Ref. [92], the band gap is generally defined as the difference between
electron affinity and ionisation potential (IP). The ionisation potential is experimentally
determined from photoelectron spectroscopy (PES) [96–98] and it is always below the
Fermi level (IP < EF ). IP represents the photoexcitation energy from an N -particle
ground state with total energy E(N) into an excited state s of an (N −1)-particle system
with total energy E(N − 1, s) upon removal of an electron [99]:

εs = E(N)− E(N − 1, s). (2.21)

The electron affinity (EA) is experimentally determined from inverse photoelectron spec-
troscopy (IPES) [100–102] and is at or above the Fermi level (EA ≥ EF ). EA is defined
as the addition energy released in the radiative transition in inverse photoemission given
by the difference between E(n+ 1, s) energy of an (N + 1)-particle system in the excited
state s and E(n) energy of the N -particle system in its ground state [99]:

εs = E(N + 1, s)− E(N), (2.22)
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The (N − 1)- and (N + 1)-particle systems are described by the transition amplitudes
ψs = ⟨N − 1, s| ψ̂(r) |N⟩ and ψs = ⟨N | ψ̂(r) |N + 1, s⟩, respectively, where ψ̂(r) is the an-
nihilation field operator.

Combining the equations 2.22 and 2.21, the energy of the band gap can be written as:

Egap = [E(N + 1)− E(N)]− [E(N)− E(N − 1)] . (2.23)

2.3.2. Single-particle propagator

In order to accurately compute Egap defined by equation 2.23 one needs to be able to
describe a quantum system with a variable number of particle. We therefore define the
single-particle Green’s function [44, 99, 103]:

G(r, t, r′, t′) = −i ⟨N | T̂{ψ̂(r, t)ψ̂†(r′, t′)} |N⟩ , (2.24)

where ⟨N | is the normalized ground state many body function and the time-dependent
field operators ψ̂(r, t) = eiHtψ̂(r)e−iHt and ψ̂†(r, t) = eiHtψ̂†(r, t)e−iHt are expressed in the
Heisenberg representation. T̂ is Wick’s time ordering operator [104] that arranges the
operators so that time decreases from left to right and the earlier time acts on the ground
state ⟨N | first. Both time orderings t > t′ and t′ > t are affordable in G(r, t, r′, t′) leading
to retarded (G+) and advance (G−) Green’s function. Equation 2.24 describes the scenario
where an electron with spin σ injected at point r and time t will propagate through the
interacting system, until it is annihilated at point r′ and a later time t′. Therefore, the
Green’s function is also known as propagator. Alternatively, the single-particle Green’s
function can be defined in reciprocal space as

G(k, t,k′, t′) = −i ⟨N | T̂{ck′(t′)c†k(t)} |N⟩ , (2.25)

where k is the wave vector and ck′(t′) and c†k(t) are the destruction and creation operators,
respectively. Furthermore, the retarded Green’s function can be transcribed in terms of
arbitrary single-particle eigenstates ϕk(r) of an unperturbed single-particle Hamiltonian

H0(r) =
∑
i

[
(−1

2
∇2

i ) + Vn(ri)

]
. In this case, the propagator corresponding to t′ > t

describes the probability amplitude that if at time t an electron in the state ϕk(r) is
added to the interacting system in its ground state, then at time t′ the system will be
in its ground state with added electron in the state ϕk′(r). To be able to extract the
energies from this quantity it has to be Fourier transformed, leading to the Lehman
(spectral) representation of Green’s function [27].Using the completeness relation for the
eigenstates, the single-particle propagator can be written as:

G(r, r′, ω) = lim
η→0+

∑
s

ψs(r)ψ
∗
s(r)×

[
Θε−EF

ω − (εs − iη)
− ΘEF−ε

ω − (εs + iη)

]
, (2.26)
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where ψs(r) = ⟨N | ψ̂(r) |N + 1, s⟩, ⟨N + 1, s| is an eigenstate of the (N+1)-particle system
and η is a positive infinitesimal such that δ ·∞ = ∞. The time ordering is assured by the

Heaviside step function Θx =

{
1 x > 0
0 x < 0

. We note that Green’s function is an extremely

powerful tool from which one can determine the expectation value of any single-particle
operator in the ground state, the ground state energy, momentum distribution, spin and
particle density, and one-electron excitation spectrum [32]. Generally, the poles of the
single-particle Green’s function defined by the equation 2.26 occur at values of ω equal to
the difference between the excited state energies of the interacting (N+1)-particle system
and the ground state energy of the interactingN -particle system. Within the Green’s func-

tion formalism, the diagonal spectral function A(r, r′, ω) =
1

π
ImG(r, r′, ω) sgn(EF − ω)

assumes the intuitive form of a many body density of states [99]:

A(r, r′, ω) =
∑
s

ψs(r)ψ
∗
s(r)δ(ω − εs). (2.27)

The equation of motion of previously described field operators, defined by the equa-
tion 2.5, relates the time derivative of ψ̂(r, t) to the commutator of the field operator

and the many-body Hamiltonian [99]: −i ∂
∂t
ψ̂(r, t) =

[
ψ̂(r, t), H

]
. Using the commutator

rules in the Heisenberg picture, one can Fourier transform the equation of motion for the
Green’s function introduced in equation 2.24 as [40]:[

ω−H0(r)− VH(r)

]
G(r, r′, ω)−∫

Σ(r, r′′, ω)G(r, r′′, ω)dr′′ = δ(r− r′),

(2.28)

where VH(r) is the Hartree potential previously defined is section 2.1 and Σ(r, r′′, ω) is
the so-called self-energy operator. Using the representation of single-particle propagator
from relation 2.26 in 2.28 we obtain the equation of motion in a form that resembles the
Kohn-Sham equations:

[H0(r)− VH(r)]ψs(r, ω) +

∫
Σ(r, r′′, ω)ψs(r

′′, ω)dr′′ = Esψs(r, ω). (2.29)

Comparing the above relation with the Kohn-Sham equations 2.11, it can noticed that
the exchange-correlation potential Vxc[n] has been replaced by the non-local self-energy
operator Σ(r, r′′, ω), which mimics the quasiparticle self-interaction [44, 105]. Therefore,
instead of solving a problem of many interacting electrons, equation 2.29 transform solves
the problem weakly interacting quasiparticles (QP), consisting of a bare additional elec-
tron (or hole) introduced in the ground state system screened by the surrounding cloud
of other particles [44, 105].
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2.3.3. Dyson’s equations

Assuming the most simple case of non-interacting particles, the self-energy operator
describing the QP self-interaction vanishes [32] and an equation of the non-interacting
Green’s function becomes apparent:[

ω −H0(r)− VH(r)

]
G(0r, r

′, ω) = δ(r− r′). (2.30)

When this expression is plugged back into the equation of motion, it renders the so-called
Dyson’s equation [32, 40, 105], that links the non-interacting Green’s function G0, to the
interacting one G [99]:

G = G0 +G0ΣG, (2.31)

where G0 is the non-interacting Green’s function.

2.3.4. Hedin’s equations

After introducing the concept of Green’s function and the main equations in the previous
sections, we now have to determine an expression for the QP self-energy to be employed in
our calculations. Hedin introduced the following set of exact coupled integro-differential
equations, where the Green’s function and the self-energy operator are expressed in terms
of the screened Coulomb interaction [26]:

G(1, 2) = G0(1, 2) +

∫
d(3, 4)G0(1, 3)Σ(3, 4)G(4, 2), (2.32a)

Σ(1, 2) = i

∫
d(3, 4)G(1, 4)W (1+, 3)Γ(4, 2, 3), (2.32b)

W (1, 2) = v(1, 2) +

∫
d(3, 4)v(1, 3)P (3, 4)W (4, 2), (2.32c)

P (1, 2) = −i
∫
d(3, 4)G(4, 2)G(2, 3)Γ(3, 4, 1), (2.32d)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3)+∫
d(4, 5, 6, 7)

∂Σ(1, 2)

∂δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3).

(2.32e)

Within the Hedin’s formulation, two generic notations have been employed: i = (ri, ti)
corresponding to an ensemble of variables consisting of spatial coordinate ri, time ti,
that is used to describe the ith-particle and i+ = (ri, ti + η) which is a similar set of
variables describing the ith-particle at a later time (ti + η). Furthermore, the Hedin’s set
of equations introduces three new quantities: the screened Coulomb interaction W (1, 2)

(also referred to as effective interaction), the irreducible polarisability P (1, 2) =
∂n(1)

∂V (2)
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describing the variation of the charge density at a small external perturbation and the

vertex function Γ(1, 2, 3) =
∂G−1(1, 2)

∂V (3)
describing the variation of Green’s function upon

an external perturbation.

In principle, the QP self-energy can be determined by solving Hedin’s equations defined
by the expressions 2.32a–2.32e self-consistently [40].

2.3.5. GW approach

In practice, Hedin’s functional integro-differential equations are extremely challenging to
solve exactly [99]. Consequently, the approach according to which the self-energy response
is neglected in the vertex function has been introduced to simplify the theory [40]. Within
this approach Γ(1, 2, 3) = δ(1, 2)δ(1, 3) and therefore the Hedin’s equations takes the
following simplified form:

G(1, 2) = G0(1, 2) +

∫
d(3, 4)G0(1, 3)Σ(3, 4)G(4, 2), (2.33a)

Σ(1, 2) = iG(1, 2)W (1+, 2) (2.33b)

W (1, 2) = v(1, 2) +

∫
d(3, 4)v(1, 3)χ0(3, 4)W (4, 2), (2.33c)

χ0(1, 2) = −iG(1, 2)G(2, 1), (2.33d)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3). (2.33e)

The etymology of the GW formalism derives from the equation 2.33b. The advantage of
GW framework is specifically this equation, which can be summarized in reduced form
as Σ = iGW [99]. We note that the irreducible independent paricle polarizability χ0

in the absence of the vertex function Γ is known as the Random Phase Approximation
(RPA) [106, 107]. The irreducible polarizability determines the frequency-dependent in-
verse dielectric function ε−1(r, r′, ω) which in turn screens the Coulomb interaction [99].

In principle, the exact way of solving equations 2.33a-2.33e is the full self-consist GW
approach (scGW ). Within this formalism, the GW quantities are computed iteratively,
until the interacting Green’s function from Dyson equation 2.33a is converged up to a
predefined threshold value. In practice, the use of scGW approach is hampered by its
extreme computational demands and some ongoing conceptual debates [99].

2.3.6. G0W0 approximation and beyond

The most common GW approximation is called G0W0 approximation, in which the single-
particle Green’s function G0 is computed directly from the first iteration of Dyson’s equa-
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tion, starting from the Kohn-Sham eigenvalues ϵn and eigenfunctions ϕn(r) [99]:

G0(r, r
′, ω) =

∑
n

ϕn(r)ϕ
∗
n(r

′)

ω − ϵn − iη sgn(ϵn − EF )
. (2.34)

We note that in equation 2.34, as well as in the following derivations, the spin dependence
have been omitted for clarity. The equation 2.34 is subsequently used to compute the
screened Coulomb interaction within RPA W0 and the self-energy Σ0 = iG0W0.

The Dyson’s equation 2.31 can be written in terms of Kohn-Sham single-particle wave
functions as

[H0(r)− VH(r)]ϕn(r) +

∫
Σ0(r, r

′, En)ϕn(r
′)dr′ = Enϕn(r). (2.35)

Comparing equations 2.35 and 2.11, it can be noticed that the Kohn-Sham Hamil-
tonian is similar with QP Hamiltonian, apart from the replacement of the exchange-
correlation potential Vxc with the self-energy operator Σ(En). Considering (Σ(En)− Vxc)
as a first-order perturbation to the Kohn-Sham Hamiltonian [42, 44], one can rewrite the
previous expression as [32, 105]:

En = ϵn + Z(ϵn) ⟨ϕn|Σ0(ϵn)− Vxc |ϕn⟩ , (2.36)

where the QP renormalization factor Z(ϵn) =

(
1− ∂Σ

∂ω

∣∣
ω=ϵn

)−1

results from the approx-

imation of the self-energy operator with the first term of a Taylor expansion around the
Kohn-Sham eigenvalues ϵn. We note that all the QP energies reported throughout this
thesis are computed using the expression 2.36.

The main problem of the G0W0 approximation is represented by its pronounced de-
pendence on the Kohn-Sham eigenvalues and eigenstates used as starting point [108–111].
The strong starting point dependence of G0W0 approximation, by more than 2 eV for band
gaps in solids [108], is caused by the underscreening which by being inverse proportional
to the eigenvalue gap ϵn is in turn impacted by the band gap underestimation at DFT
level. To mitigate this issue, other approximations that go beyond the one-shot G0W0

framework have been developed by including some level of self-consistency in Hedin’s GW
equations [99].

One such approximate self-consistent approach is to update only the single-particle
eigenvalues and is referred to as evGW . Within this framework, the real part of the
QP energies computed in the first G0W0 step from equation 2.36 are reintroduced in the
Green’s function expression 2.34 in the place of the Kohn-Sham eigenvalues ϵn. This
procedure is applied until the input quantities equal the output ones [99]. We note that,
despite the partial self-consistency, the dependence of the starting point is not totally
eliminated, mainly because the QP wave functions are not iterated self-consistently [112].
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Based solely on band gaps of molecular systems, evGW have been proved to perform bet-
ter than G0W0 leading to band gaps in good agreement with the experimental values [113,
114]. However, the overall evGW QP spectra are different from the experimental ones, es-
pecially at lower energies [112]. Furthermore, evGW significantly overestimates the band
gaps in solids [115]. Another approximate self-consistent scheme is the so-called quasi-
particle self-consistent GW (QSGW ) where the QP eigenvalues and eigenfunctions used
to create Green’s function are updated from the variationally best mean-field potential to
a given self-energy [99]. Several studies [116–119] reported that QSGW performs better
than G0W0 leading to more accurate band gaps.

Finally, we return to the fully self-consistent formalism discussed in the previous sec-
tion. Due to its extensive memory and computation requirements the scGW approach
has been implemented only for finite systems such as 3D and 2D homogeneous electron
gas [120, 121], very simple semiconductors [122, 123], atoms [124] and small molecules [112,
125–127]. While for finite systems scGW improves the accuracy of the first ionization
energies with respect to G0W0 [128], when analysing the entire spectrum it is usually out-
performed by G0W0 approximation if a suitable starting point is employed [112, 119, 127].
Furthermore, scGW approach is known to severely overestimates the band gap energies
of simple semiconductors [99].

Although appealing due to its generally outstanding performance, even the simplest
G0W0 approximation poses great technical challenges. For example performing GW cal-
culations for core levels is notoriously difficult due to increased sensitivity of core states
to the local environment [2, 99]. Taking into account spin dependence in GW calculation
is another complication that is crucial for electronic structure of topological insulators
and materials containing heavy atoms, highly influenced by the inclusion of SOC [99].
Recently, Aryasetiawan et al. introduced a generalization of Hedin’s equations to allow
the description spin-dependent interactions between particles [129, 130].

2.4. Bethe-Salpeter equation

The Green’s function formalism is an extremely powerful framework that allows not only
the calculation of particle addition and removal energies but also the analysis of opti-
cal properties such as photon absorption. To describe the optical properties, the two-
particle correlated electron-hole amplitude L (also known as four-point polarizability) is
needed [26]:

L(1, 2; 1′, 2′) = −G2(1, 2; 1
′, 2′) +G(1, 1′)G(2, 2′), (2.37)

where G2 is the two-particle Green’s function. Expressing the two-particle correlation
function in terms of one-particle Green’s function and its functional derivative with respect
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to the local potential, a Dyson-like equation is obtained for L [43]:

L(1, 2;1′, 2′) = L0(1, 2; 1
′, 2′)+∫

d(3, 4, 5, 6)L0(1, 4; 1
′, 3)

δ [v(3)δ(3, 4) + Σ(3, 4)]

δG(5, 6)
L(5, 2; 6, 2′),

(2.38)

where L0 = G(1, 2′)G(2, 1′). We further introduce the kernel functional defined as

K(3, 5; 4, 6) =
δ [v(3)δ(3, 4) + Σ(3, 4)]

δG(5, 6)
, (2.39)

and representing an effective two-particle interaction. Introducing the expression of K
into the Dyson-like equation 2.38, one get the Bethe-Salpeter equation (BSE):

L(1, 2;1′, 2′) = G(1, 2′)G(2, 1′)+∫
d(3, 4, 5, 6)L0(1, 4; 1

′, 3)K(3, 5; 4, 6)L(5, 2; 6, 2′).
(2.40)

For studying the optical absorption process is sufficient to know the reducible polar-
izability P̃ (1, 2) = −iL(1, 2; 1′, 2′). However, since there is no known exact expression
for the reducible polarizability, the BSE should be solved and then L function should be
contracted into two-point polarizability.

To mitigate the difficulty in solving BSE, lying in the calculation of kernel function
K, several approximations have been developed. Within the time-dependent Hartree
approximation the the self-energy Σ is completely neglected and BSE reduces to a Dyson-
like equation for irreducible polarizability defined in equation 2.32d:

P (1, 2) = P0(1, 2) +

∫
d(3, 4)P0(1, 3)v(3, 4)P (4, 2). (2.41)

We note that this approximation is equivalent with RPA [106, 107]. Another approxi-
mation for the kernel function is time-dependent Hartree-Fock approximation in which
Σ(1, 2) = iG(1, 2)v(1+, 2). However, in practice this approximation is not valid because
the attraction between the electrons and holes described by v(1+, 2) is unphysically large
due to the unscreened Coulomb interaction.

The most common approximation is the time-dependent screened Hartree-Fock, also
known as GW+BSE due to its core assumption:

Σ(1, 2) = iG(1, 2)W (r1, r2, ω = 0). (2.42)

In practical applications GW+BSE is solved in a product basis of occupied ⟨vk| and
unoccupied ⟨ck| states, for a specific excited state S and using the QP energies [29]:

(EQP
ck − EQP

vk )AS
vck +

∑
v′c′k′

⟨vck|K |v′c′k′⟩ = ΩSAS
vck, (2.43)



Chapter 2 – Theoretical framework 22

where AS
vck are the coefficients of the exciton wave function written in the free electron

and hole basis |vck⟩, ΩS is the excitation energy. The equation 2.43 is solved within the
Tamm-Dancoff approximation (TDA)[45], which ignores backward propagating electron-
hole pairs that are present in the exact BSE and assumes that the kernel consists of a
direct screened interaction and repulsive exchange term [99].

When GW+BSE first emerged in literature the research focused on describing the
excited state optical properties of simple semiconductors such as Si, GaAs and Li2O and
proved that optical absorption spectra and exciton binding energies obtained from BSE
are in very good agreement with experiment [29, 131–133]. Recently, GW+BSE started
to be extensively used for molecules [134–136] and complex 2D [137–142] and 3D [143–
149] solids.



Chapter 3

Electronic properties of metal-halide

perovskites

The mineral perovskite calcium titanium oxide (CaTiO3) was initially discovered in 1839
by the German mineralogist Gustav Rose [150]. Since the first crystallographic study
describing its crystal structure conducted in 1926 by Victor Goldschmidt [151], the mean-
ing of ’perovskite’ label has changed and now the term designates the class of materials
with crystalline structure similar to that of CaTiO3. The perovskite structure is one of
the most abundant in nature, magnesium silicate perovskite (MgSiO3) being the main
mineral found in the earth’s mantle [152, 153].

These materials are described by the generic chemical formula ABX3, where A and
B are cations of different sizes bounded by the X anion and can be classified based on
the nature of the anion in two main categories, i.e. oxide and halide perovskites [154].
The oxide perovskites have been extensively examined since 1956 and soon after a break-
through report proving the ferroelectricity of these materials [155] marked the beginning
of numerous experimental and theoretical studies exploring their favorable optoelectronic
properties for light-conversion applications [156–165]. Unlike their oxide analogues, the
interest in halide perovskites has surge not earlier than in the last two decades. Despite
their late disclosure, recently the number of studies has grown exponentially and revo-
lutionized the knowledge on semiconductor materials. The extensive research on halide
perovskites proved their exceptionally optoelectronic properties and revealed suitable can-
didates for photovoltaic applications such as solar cells, light-emitting devices, scintillators
and many more [166–172].

This thesis focuses on metal-halide perovskites solely and analyses in detail the struc-
tural, electronic and optical properties of some archetypal examples, as well as the changes

23
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induced by modifications of traditional perovskite structure.

3.1. Chemical and structural diversity in metal-halide

perovskites

Figure 3.1 shows a schematic representation of the ideal cubic structure of a metal-halide
perovskite with the stoichiometric formula ABIIX3, where A+1 is an atomic or molecu-
lar cation, BII is a divalent metal and X−1 is a halide anion (F−, Cl−, Br− or I−). The
metallic cation BII is coordinated with six X−1 halide ions, forming a highly flexible frame-
work constructed of corner-sharing metal-centered octahedra. The A+1 cations occupy
the cuboctahedral cavities of this network. Thus, the cubic structure, belonging to the
Pm3̄m space group, features octahedral symmetry [173–175]. In the following, the cubic
perovskite phase will be referred to as an undistorted and untilted structure.

Figure 3.1: Schematic representation of cubic structure metal-halide perovskite.

The crystalline lattice of experimentally synthesised metal-halide perovskites is signif-
icantly distorted with respect to the ideal cubic structure [176]. These various distortions
can be inflicted by displacement of A or BII cation, leading to ferroelectric and antiferro-
electric effects, or by octahedral tilting, leading to potential changes of the unit cell size
and symmetry [173–175, 177]. In practice, the majority of the experimentally achievable
structures exhibit both octahedral tilting and cation displacements [178].

Furthermore, the crystalline lattice of metal-halide perovskites is also impacted by the
size of the component chemical elements, that can lead to 3D, 2D and even 1D compounds.
The dimensionality of the perovskite structure is described by the tolerance factor. This
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empirical concept was introduced by Goldschmidt in Ref. [151] as

t =
RA +RX√
2(RBII +RX)

, (3.1)

where RA, RBII and RX are the ionic radii of the elements in ABIIX3 metal-halide per-
ovskites. The close-packed cubic structure is achieved when both A and BII ions have
ideal size, yielding a tolerance factor that ranges between 0.9 and 1.0 [151, 154, 179, 180].
However, a tolerance factor as low as 0.71, corresponding to the case when A ions are
smaller and the BIIX6 octahedra tilt to fill the space, still ensure a perovskite crystal
structure although distorted into orthorhombic symmetry [181, 182]. The compounds
in which A and BII cations have similar ions radii, leading to a tolerance factor lower
than 0.71, tend to collapse into a 1D needle-like (ilmenite) structures. In contrast, the
compounds featuring a mismatch between the ionic radii of the chemical elements (A ion
too large or BII ion too small) distort in stable hexagonal variants [183] or even form
2D analogues of the perovskite structure [184]. This classification illustrates the great
diversity of metal-halide perovskites, ranging from conventional undistorted 3D to 1D
systems, that can accommodate ions with very different sizes as long as they satisfy the
global charge balance within the resulting compound.

One of the most studied class of materials is represented by the Pb-based hybrid
organic-inorganic halide perovskites, where A is a molecular cation and BII metal site is
occupied by lead. Their exceptional photophysical properties render them to be optimal
candidates for various optoelectronic applications, ranging from solar cells with power
conversion efficiencies exceeding 28%[7, 8], to light-emitting diodes (LEDs) [185, 186] and
radiation detectors [187, 188]. An example of such compound is the prototypical methy-
lammonium lead iodide perovskite (MAPbI3) which was firstly reported as an absorber
layer in a solar cell device by Kojima et al. in Ref. [170]. Hybrid Pb-halide perovskites
feature outstanding properties such as suitable band gap and low trap-state densities [10,
11]. Recently, the all-inorganic Pb-based halide perovskites have also come into focus
due to their improved stability [189] and have been successfully used in LEDs [190] and
high photoluminescence quantum yields of colloidal crystals and quantum dots [191, 192].
However, similar to their hybrid organic-inorganic derivatives, strong electric fields tend
to quickly degrade all-inorganic Pb-based perovskites [193]. Furthermore, ion segregation
usually present in Pb-base halide perovskite leads to band gap instability [194]. Both
hybrid and all-inorganic Pb-halide perovskites are easy to process from solutions forming
soft structures prone to point defects. This local inhomogeneities negatively impact the
structure, leading to increased instability against moisture, heat and light exposure [12].

In the effort to mitigate the stability issues of Pb-based 3D metal-halide perovskites [13],
the interest in lower dimensional derivatives is currently on the rise . Dimensional reduc-
tion is one of the most used techniques to manipulate solid structures and introduce new
functionalities by creating lower dimensional analogues [195]. Dimensional reduction of
inorganic sublattice in hybrid organic–inorganic perovskites, achieved by incorporation of
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large organic molecules such as butylammonium (BA) or phenylethylammonium (PEA),
leads to new materials that combine the exceptional optoelectronic properties of the 3D
counterparts with improved structural stability. These lower-dimensional derivatives fea-
ture additional structural heterogeneity due to the symmetry breaking along the long axis
of the organic molecules. One emerging class of such compounds is the family of two-
dimensional (2D) Ruddlesden-Popper (RP) perovskites, with general chemical formula
A’n−1A2BnX3n+1[196–201]. In hybrid organic-inorganic RP perovskites, A’ is an aliphatic
or aromatic alkylammonium cation separating the n-layer perovskite framework – a 2D
network of corner-sharing BX6 (B=Pb+2, X=I−, Br−) octahedra with small monovalent
organic cations A (A=CH3NH

+
3 , Cs

+). Generally, the perovskite slabs correspond to slices
taken along the (001) lattice plane of the 3D perovskite and the dimensionality of this
inorganic frame can vary from n → ∞ representing the limit of 3D perovskite down to
n = 1, representing a single monolayer. Figure 3.2 shows a schematically representation
of a 2D RP perovskite.

Figure 3.2: Schematic representation of the process of dimensional reduction via incorporation
of BA long organic molecule into a) 3D MAPbI3 bulk, resulting (BA)n(MA)n−1PbnI3n+1 2D RP
hybrid organic-inorganic Pb-halide perovskites with b) n = 1, c) n = 2 and d) n = 3 inorganic
layer thickness.

The 2D RP perovskites occupy a leading place among the intensively studied ma-
terials, due to their exceptionally optoelectronic properties such as tunable band gaps,
high defect tolerance, long carrier lifetimes and high photoluminescence (PL) quantum
efficiency [202–205], and improved structural stability towards moisture achieved by the
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hydrophobic organic molecules at the surface [196, 206, 207]. These materials feature
natural multiple-quantum-well structures, in which the quantum wells are represented by
the inorganic slabs, while the potential barriers are represented by the long organic link-
ers [208, 209]. Their relatively easy synthetic processing via mechanical exfoliation [210],
solution processing [211] or colloidal engineering [212] methods renders the 2D RP hybrid
perovskites as promising absorbers for photovoltaic applications [14].

Besides the instability of Pb-based halide perovskites under ambient conditions, these
materials also pose questions of environmental safety, being considered hazardous because
of the lead toxicity [213–215]. These drawbacks have prevented for years the large-scale
commercialization of one of the most common application, namely perovskite-based solar
cells, and driven the research to find new Pb-free metal-halide perovskites with similar
desirable optoelectronic properties.

The straightforward approach to design Pb-free metal-halide perovskites, is the ho-
movalent substitution of lead with isovalent cations from group-14 elements such as Ge2+

and Sn2+. Although having good optoelectronic properties, they are not stable and eas-
ily oxidize to the oxidation state +4, leading to a rapid degradation of the halide per-
ovskite [187, 216–218]. Furthermore, studies on ecotoxicity of halide perovskites showed
that Sn may not fully solve the health hazards of Pb-based solar cells [214]. Furthermore,
as showed in previous high-throughput computational studies [23, 219], they are also likely
to negatively impact the electronic properties by decreasing the band gaps and increasing
the effective masses. Another viable approach is the heterovalent substitution of Pb with
a combination of different mono- and trivalent metals cations, resulting in a chemical
heterogeneity consistently repeated throughout the entire crystal lattice. This process,
schematically represented in Figure 3.3, gives rise to the double halide perovskites (elpa-
solites) class of materials, with the general formula A2B

IBIIIX6 [220]. Even though these
compounds have been known since the 1880s and crystallographically characterized since
the 1930s, they saw a surge in interest much later, with the emergence of high throughput
scanning studies such as the one in Ref. [15].

Figure 3.3: Schematic representation of the process of theoretical doubling the unit cell of a
metal-halide perovskite.

Double perovkites crystallize in a 3D rock-salt ordered cubic structure, in which octa-
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hedrally coordinated BI and BIII metal cations occupy alternating lattice sites and have
an average nominal oxidation state allowing for the incorporation of metals with oxidation
states from +1 to +4 [15, 221]. This tremendous chemical diversity hints to the possibility
of obtaining a wide range of thermodynamically stable materials [222, 223]. Recently, the
interest in double perovskites has been on the rise due to their considerable structural
and electronic variety [221] and improved stability in terms of heat and moisture under
ambient conditions, compared to lead-based halide perovskites [224–226]. Many of the
possible candidates have been synthesized and studied as potential solar absorbers [227–
230], X-ray detectors [230], and scintillators [231].

3.2. Pb-based Ruddlesden-Popper hybrid perovskites

The optical properties of 2D RP perovskites are governed by dielectric and quantum con-
finement [202, 232–237], which has been shown experimentally [210, 234] and by means of
first principles and semiempirical electronic structure calculations [238, 239]. In contrast,
much less is known about the effects of dimensional reduction and the A-site cation on
the electronic properties of these materials. Ultraviolet (UV) and inverse photoemission
spectroscopy combined with density functional theory (DFT) calculations have been re-
ported for BA2PbI4 and BA2PbBr4, showing less band dispersion and a larger density of
states (DOS) at the band edges than in their 3D counterparts [240]. DFT calculations
by Gebhardt et al. [199] showed that the electronic structure of the layered bulk phase of
PEA2PbI4 is almost unaffected by reducing the dimensionality to a monolayer, suggesting
weak interactions between the molecular and perovskite sublattices along the stacking di-
rection. Furthermore, the interaction between these sublattices was shown to be governed
by steric effects in a study by Du et al. [241].

In this section we analyse the effect of dimensional reduction and the interplay between
the metal-halide and molecular contributions governing the electronic properties of 2D RP
Pb-based perovskites. To elucidate the effects of A-site organic cation to the electronic
structure, we study the 3D prototype CH3NH3PbI3 (MAPbI3) and the hybrid organic-
inorganic 2D perovkites A2PbI4, with A = C4H12N (BA), C8H12N (PEA). By comparing
the computed density of states (DOS) with the experimentally obtained one via ultraviolet
photoelectron spectroscopy (UPS), we reveal the electronic and structural contributions
of the molecular and perovskite sublattices.

3.2.1. Crystal structures

Figure 3.4 a) and b) shows the crystal structure of the 2D RP perovskites BA2PbI4 and
PEA2PbI4 as obtained from X-ray diffraction experiments under ambient conditions and
reported in Ref. [242] and [241], respectively.



29 3.2 – Pb-based Ruddlesden-Popper hybrid perovskites

Figure 3.4: Schematic representation of the crystal structures of a) Pbca phase of BA2PbI4,
b) P − 1 phase of PEA2PbI4, c) I4/mcm phase of MAPbI3 and d) Pm3̄m phase of MAPbI3.

BA2PbI4 is orthorhombic with Pbca symmetry at room temperature (RT). The per-
ovskite layers consisting of halide octahedra with Pb centers are separated along the
stacking direction by long organic BA molecules, resulting in a longer out-of-plane lat-
tice parameter c = 26.23 Å, and non-equal in-plane lattice parameters a = 8.43 Å and
b = 8.99 Å. PEA2PbI4, a more stable RP perovskite due to the longer PEA cation, is
triclinic with P − 1 symmetry, with in-plane lattice parameters a = b = 8.74 Å and
an out-of-plane lattice parameter of c = 32.99 Å. Contrary to its 2D RP counterparts,
MAPbI3 is known to occur in tetragonal phase, with I4/mcm symmetry, at room tem-
perature (RT) and undergo a phase transition at T = 327K. The crystal structure consists
of a 3D lattice of corner sharing PbI6 octahedra, with MA molecules in between. The
high-temperature cubic (Pm3̄m) and room-temperature tetragonal (I4/mcm) phases are
shown in Figure 3.4 c) and d). All structural parameters are listed in Table 3.1.

3.2.2. Experimentally determined structures

Figure 3.5 shows the valence band maximum (VBM) region of 2D BA2PbI4 and PEA2PbI4
and 3D MAPbI3 obtained from ultraviolet photoelectron spectroscopy (UPS), as well as
the first principles DOS, calculated using DFT with the PBE [67] exchange-correlation
functional. The UPS spectra presented in panel a) were achieved by our collaborators
in the Department of Macromolecular Chemistry I at the University of Bayreuth. The
comparison between our computed DOS and the experimental UPS spectra is known to
be notoriously complicated by several factors. First, while the highest occupied molecular
orbital eigenvalue should be equal to minus the ionization potential in exact Kohn-Sham
DFT, it is generally overestimated by up to 2 eV by the standard semilocal approxi-
mations like PBE. Second, the calculated DOS is typically compressed with respect to
experiment [243]. We therefore follow the approach by Tao et al. [244] in order to improve
the agreement with the UPS measurements and stretch our calculated DOS by ∼ 2.6%.
To match the onset and intensity of the experimentally determined spectra, the calculated
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Table 3.1: Lattice parameters (a, b, c in Å and α, β, π in ◦), unit-cell volume per formula
unit (Ω) in Å3, octaheron volume (ω) in Å3 and average Pb–I bond lengths for experimental
structures of tetragonal MAPbI3, BA2PbI4 and PEA2PbI4 as reported in Ref.[241, 242].

MAPbI3 BA2PbI4 PEA2PbI4

a (Å) 8.97 8.43 8.74
b (Å) 8.97 8.99 8.74
c (Å) 12.68 26.23 32.99

α(◦) 90.00 90.00 84.65
β(◦) 90.00 90.00 84.66
π(◦) 90.00 90.00 89.64

Ω(Å3) 254.84 496.68 624.57
ω(Å3) 43.92 42.12 42.27

dax
Pb−I(Å) 3.17 3.17 3.22

deq
Pb−I(Å) 3.22 3.195 3.175

DOS are red-shifted and multiplied by a normalization factor.

As shown in right panel of Figure 3.5, the electronic states in the vicinity of the VBM
remain unaffected by the A-site cation change due to their p-orbital character originating
from the inorganic PbI4 sublattice – a general trend of the Pb-based perovskites. In
agreement with previous reports [245–248], the DFT calculations show that the VBM of
all three systems consists of mainly I p with some Pb s orbital contributions, as depicted in
Figure 3.6. Furthermore, a closer look at the orbital character of the electronic structure
reveals a significantly larger contribution from the orbitals lying in the perovskite plane.
However, at the onset of the DOS, the 3D MAPbI3 is utterly different from the 2D RP
perovskites. The VBM of MAPbI3 is dictated by the equatorial halides, whereas in the
case of the 2D perovskites BA2PbI4 and PEA2PbI4 the VBM is derived primarily from
the axial ones.

Apart from the region close to the VBM, the overall electronic structure differs signif-
icantly across the three studied compounds. These differences are driven by the organic
cation through direct and indirect effects. To probe the former, we analyse the global
shape of both experimentally-determined and computed DOS and find that the electronic
states localized on the molecular linkers dominate the electronic DOS at different ener-
gies. Moreover, by replacing BA molecules with PEA, the strong feature originating from
the organic cation splits into two components and approaches the Fermi level. To ex-
plain this difference, we calculate the energies of highest occupied and lowest unoccupied
molecular orbitals (HOMO and LUMO) of all organic linkers and show in Table 3.2 that
the states dictated by the organic cations depend on the HOMO-LUMO gap of the free-
standing molecule. PEA has the smallest HOMO-LUMO gap, therefore PEA-based states



31 3.2 – Pb-based Ruddlesden-Popper hybrid perovskites

a) UPS b) DFT PEA2PbI4
BA2PbI4
MAPbI3

Figure 3.5: Total density of states (DOS) of valence band region as determined from a)
ultraviolet photoelectron spectra (UPS) and b) PBE+SOC DFT calculations, for 3D MAPbI3
(green), 2D BA2PbI4 (purple) and PEA2PbI4 (yellow), scaled with respect to the Fermi energy
level. The black dash marks the valence band onset. The shaded areas in the computed DOS
represent the projections onto molecular orbitals, as following: blue – states originating from
the inorganic perovskite backbone, red – states originating from the organic molecules.

are found at energies relatively close to the band edges. Furthermore, the magnitude of
interaction between the organic and inorganic sublattices is computed as the difference
between the total energy of 2D perovskites and the sublattices energy. BA interacts more
strongly with the PbI2 monolayer, having a slightly larger interaction energy than the
similar 2D perovskite PEA2PbI4. Notably, this interaction energy difference neither re-
sults in significant structural distortions nor seems to drastically influence the electronic
structure of the corresponding perovskites at RT. This observation is supported by the
computed total DOS represented in Figure 3.8 a), that show only minor changes in the
spectral shape near the onset of the VBM.

The indirect effects of the organic cations are a consequence of the different structural
distortions of the Pb-I cage induced by the molecules. These distortions influence the
occupied DOS around the VBM and determine the position of the onset in the UPS
spectra. The 2D RP perovskites feature an off-center displacement of the Pb ions in the
PbI6 octahedra, leading to alternating short and long Pb − I equatorial bond lengths.
Comparing the 3D MAPbI3 with the 2D RP PEA2PbI4 perovskite, the latter feature
distorted octahedra, with alternating tilt angles in the perovskite layer. Furthermore,
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a) b) c)

Figure 3.6: Computed PBE+SOC DOS spectra (of the valence band region) for experimentally
determined structures of a) MAPbI3; b) BA2PbI4 and c) PEA2PbI4. Individual projections of
the constituents are represented in colors as follows: contributions from organic cation in red,
contributions from Pb in blue, contributions from equatorial I in orange and contributions from
axial I in green.

as shown in Figure 3.7 c), the PbI6 octahedra are compressed in the perovskite plane
and elongated along the stacking direction, yielding an axial Pb–I bond length of 3.22 Å.
Figure 3.7 b) demonstrates that the more flexible (and small) BA molecule induces greater
structural distortions than PEA and therefore leads to a significantly different DOS.

3.2.3. Theoretically designed model structures

To discriminate between the effects of structural distortions represented in Figure 3.7 and
those of various organic molecules, we constructed a set of model monolayer systems, by
replacing the organic cation with Cs, with the distortions found in the experimental struc-
tures. In the following these monolayer model systems are referred to as MA-, BA- and
PEA-like distorted systems depending on the inherited distortions. A detailed description
of the monolayer model systems can be found in section A.2.3 of the Appendix.

Figure 3.8 a) shows a comparison between the DOS of these distorted systems and the
one of an undistorted model system with untilted and undistorted metal-halide octahedra
as found on average in the 3D cubic phase of MAPbI3, that highlight the large effect
of the Pb-I cage distortions in the 2D RP BA2PbI4 perovskite on the onset of the spec-
trum. Moreover, although featuring a very similar overall shape, the DOS of the model
systems with MA- and PEA-like distortions are different at the onset. To quantify this
difference, we integrate the DOS up to E = kBT (∼ 30meV) below the VBM for both
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Table 3.2: Computed band edge energies, HOMO-LUMO gaps of organic cations MA+, BA+

and PEA+, energy gap (Egap) between the molecular states in the band structure and the
interaction energy (Einter) of MAPbI3, BA2PbI4 and PEA2PbI4.

MA+ BA+ PEA+

HOMO (eV) -15.74 -11.56 -9.94
LUMO (eV) -6.29 -5.79 -5.37

HOMO-LUMO gap (eV) 9.45 5.77 4.57
Egap (eV) 8.77 7.50 4.47

Einter (meV/atom) -40.05 -27.43 -18.25

Figure 3.7: PbI6 octahedron of a) 3D MAPbI3, 2D RP b) BA2PbI4, c) PEA2PbI4. Yellow
arrows mark Pb − I bond lengths along the two in-plane directions (equatorial), as well as
perpendicular to those (axial) and are accompanied by the corresponding values.

the experimental structures and the model systems. As shown in Figure 3.8 b), there is
a stark dependence on the dimensionality, indicating a lower electronic conductivity for
the 2D RP BA2PbI4 and PEA2PbI4 perovskites, in agreement with previous reports [246,
249]. Furthermore, the integrated DOS is correlated with the octahedron volume such
that smaller volumes lead to larger distortions, yielding fewer states within the analysed
energy range. Moreover, the trend is similar for both the experimentally-determined
structures and monolayer model systems.

In summary, our first principles calculations demonstrated that while the direct con-
tributions of the A-site cation on the total DOS are localized deep in the valence band
region, the magnitude of the DOS close to the Fermi level, is related to structural dis-
tortions of the perovskite sublattice, which are due to steric interactions between the two
sublattices.
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Figure 3.8: a) Computed PBE+SOC total DOS for distorted systems featuring MA-like
(green), BA-like (purple) and PEA-like (yellow) distortions, as well as for the undistorted model
system (magenta), scaled with respect to the Fermi energy level. b) Integrated DOS for all
experimental and model systems from VBM (as computed with PBE+SOC) down to 30meV
below.

3.3. Computational screening of Pb-free double per-

ovskites

With the aim to find new Pb-free compounds with promising electronic properties, in this
section we scan a relatively wide range of double metal-halide perovskites by modifying
both metal cations and halogen anions. We study how chemical composition impacts the
electronic band structure and fundamental band gap of these materials, by performing
first principles DFT calculations within the PBE approximation and including the effect
of spin-orbin coupling (SOC) self-consistently.

Starting from the crystal structure of Cs2AgBiBr6, the most studied Pb-free double
metal-halide perovskite reported for the first time in Ref. [224, 225], we design new the-
oretical compounds by varying the elements at both metal sites as well as at halide site,
such that we form two groups of perovskites with BI=Ag, BIII=Bi, In, Tl and BI=Bi, K,
Rb, Cs, BIII=In, respectively. For every combination in each of these groups we analyse
three different possibilities for the halide site: X=Cl, Br, I. As previously stated in sec-
tion 3.2, reducing dimensionality of simple and double metal-halide perovskites is a great
strategy recently employed to improve the stability and tune optoelectronic properties of
Pb-based perovskites. We therefore extend our study to the 2D RP phase of the double
perovskites defined before, by replacing Cs with the longer BA organic molecule. The
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Figure 3.9: Schematic representation of the workflow used to design the theoretical 2D
Ruddlesden-Popper systems analysed further.

schematic representation of the process used to design the range of theoretical double
metal-halide perovskite structures is showed in Figure 3.9.

The workflow employed in this qualitative study consists of geometry optimizations of
both the 3D and 2D RP phase of all theoretically designed double perovskites, followed
by the computation of PBE fundamental band gaps of the relaxed systems. The results of
both structural optimization and electronic structure calculation are reported in Table 3.3.
We note that the use of PBE functional can yield band gaps by up to 2 eV lower than the
experimental values and it can even lead to negative values of the band gaps, corresponding
to a crossing of the valence and conduction bands at Fermi level. A similar behaviour has
been previously observed of in Ref. [95], where the authors compute a ”negative” band gap
for Cs2AgTlBr6 double perovskite using PBE. Despite the considerably underestimated
absolute values of the band gaps, the overall trends are still trust worthy. Therefore, we
conduct only a qualitative study whose results can narrow down the pool of Pb-free double
perovskites featuring promising electronic properties to be further analysed in detail using
improved methods.

Upon geometry optimization, we find that within the same combination of metal-sites,
the unit cell volume increases with the increase of halide radius. Furthermore, Figure 3.10
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Table 3.3: Unit cell volume (Ω in Å3) and PBE+SOC fundamental band gaps (EPBE
gap in eV)

of 3D Cs2B
IBIIIX6 and 2D RP BA2B

I
0.5B

III
0.5X4 with X=Cl, Br, I and BI=Ag, BIII=Bi, In, Tl

and BI=Bi, K, Rb, Cs, BIII=In, respectively. The negative values are artifacts of using PBE
and represent cases where a metallic character is predicted.

Metal-sites halide
all-inorganic 3D RP 2D

Ω (Å3) EPBE
gap (eV) Ω (Å3) EPBE

gap (eV)

Ag-Bi
Cl 303.97 1.32 1623.120 2.69
Br 351.34 0.96 1766.820 2.54
I 425.21 0.47 1980.249 1.80

Ag-In
Cl 280.83 0.73 1597.687 2.34
Br 325.82 0.01 1726.084 1.76
I 401.90 -0.44 1958.674 1.19

Ag-Tl
Cl 290.23 -0.65 1590.267 0.80
Br 336.29 -0.77 1731.537 0.60
I 413.15 -0.52 1973.096 0.31

Bi-In
Cl 348.87 0.05 1689.268 1.89
Br 393.79 -0.49 1837.604 1.16
I 472.26 -0.70 2068.900 0.62

K-In
Cl 324.55 3.63 1621.863 3.38
Br 377.69 2.42 1791.966 2.62
I 471.01 1.20 2028.423 1.85

Rb-In
Cl 343.64 3.74 1652.173 3.45
Br 398.57 2.56 1835.155 2.62
I 493.96 1.36 2073.472 1.88

Cs-In
Cl 369.93 3.89 1705.954 3.47
Br 426.14 2.78 1878.821 2.67
I 524.00 1.60 2122.833 1.82

shows that the fundamental band gap of the analysed double metal-halide perovskites
scales with the unit cell volume, independent of dimensionality. This result reinforces the
speculation that fundamental band gaps are tunable over a wide range through halide
substitution or hydrostatic pressure, as well as via chemical substitution at BI and BIII

metal sites.

Our results point towards Ag-Tl perovskites as one new family of low-gap 2D RP
materials. Therefore, in the following structural and electronic properties of both Ag-Tl
and the isoelectronic Ag-In RP double perovskites will be analysed using more accurate
methodologies. However, we note that the high toxicity of Tl is expected to considerably
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Figure 3.10: Fundamental band gap (in eV) as computed with PBE xc functional with respect
to unit cell volume (in Å3) for a) 3D and b) 2D double metal-halide perovskites. The different
combinations of metal sites are represented in color, while the different halides are represented
by different symbols as follows: Cl – dot, Br – square, I – triangle.

reduce their potential for optoelectronic applications. Furthermore, Ag-Bi and Ag-In 3D
double perovskites exhibit promising band gaps for photovoltaic devices. Thus, we will
employ advanced ab initio techniques to study both electronic and optical properties of
these double metal-halide perovskites.

3.4. Electronic properties of Cs2AgBIIIX6 halide dou-

ble perovskites

In this section we analyse the effect of the chemical heterogeneity of double metal-halide
perovskites on their electronic properties. Being one of the best electrical conductors,
Ag is very promising for optoelectronic applications. Furthermore, in the octahedral
environment, the ionic radii of Ag+ (1.15 Å) is similar to those of Pb2+ (1.19 Å), and Bi3+

(1.03 Å), facilitating incorporation in the perovskite lattice [250]. Thus, by varying the
chemical composition at BIII- and X-site, we study the electronic structure of Cs2AgB

IIIX6

double metal-halide perovskites, with BIII=Bi3+, Sb3+, In3+ and X=Cl−, Br−. The results
on Ag-pnictogen family of double perovskites have been published in Ref. [149].

Ag-Bi double perovskites are the most studied Pb-free materials due to their excep-
tional semiconducting properties. The experimental synthesis of two members of this
double perovskites family – Cs2AgBiCl6 [16, 225] and Cs2AgBiBr6 [16, 224, 225] – was
successfully achieved, both via solid state reactions and via solution processing. Both
Cs2AgBiBr6 and Cs2AgBiCl6 are indirect band gap semiconductors with cubic crystal
structure (Fm3̄m phase) at room temperature [225, 251]. Although the electronic struc-
ture of Ag-Bi double perovskites has been extensively studied, there is still disagreement
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regarding their experimental band gaps. The magnitude of the indirect band gap of
Cs2AgBiCl6 has been reported to range between 2.20 eV [16] and 2.77 eV [225], while
the indirect band gap of Cs2AgBiBr6 has been experimentally determined to lie between
1.83 eV [224] and 2.25 eV [252]. Among the possible causes for these significant dissimi-
larities are different methods of sample preparation and techniques used to determine the
indirect band gap.

Concomitant with the successfully synthesis of Cs2AgB
IIIX6 (with B=Sb, Bi and

X=Cl, Br, I) perovskites, the entire family of pnictogen noble-metal double-halide per-
ovskites has been analysed via DFT computational screening [16]. Volonakis el al. demon-
strated that the investigated perovskites exhibit small carrier effective masses and indirect
band gaps below 2.7 eV, that decrease with the increase of the atomic radius of halogen
or pnictogen. Cs2AgSbCl6 double perovskite has been successfully synthesized for the
first time via solution-state reaction and experimentally characterized in Ref. [253]. More
recently, Dahl et al. [254] synthesized colloidal Cs2AgSbCl6 nanocrystals and, with the
use of Tauc plot, estimated an indirect band gap of 2.57 eV, in agreement with previous
theoretical [16] and experimental [253, 255] reports.

In the past decade, Cs2AgInCl6, another Pb-free double perovskite, also drew the
attention of the community due to its direct band gap character, long carrier lifetimes
and easy solution processability [256]. Its first synthesis and characterization [257], many
approaches have been explored to crystallize and modify its composition to yield suitable
derivatives for various applications [230, 247, 258–260]. Pioneering work [255, 257, 258,
261] revealed that Cs2AgInCl6 exhibit a wide direct band gap at the center of Brillouin
zone (Γ point). More recently, colloidal nanocrystals have also been synthesised [254, 262]
and improved photoluminiscence quantum yield have been reported.

In the following we analyse the electronic structure of Cs2AgB
IIIX6 double perovskites

with BIII=Bi3+, Sb3+ and In3+ X=Cl−, Br− that crystallize in a cubic unit cell with
Fm3̄m symmetry at RT and feature Ag- and BIII-centered alternating octahedra.

3.4.1. Electronic structure

The band structure of Ag-pnictogen family of halide double perovskite has been reported
primarily based on density functional theory (DFT) calculations with the local density
approximation (LDA) [16] and hybrid functionals [225], which are known to substantially
underestimate QP or fundamental band gaps of many halide perovskites [95]. Accu-
rate QP energies, and thus fundamental band gaps and band structures, can in princi-
ple be obtained using Green’s function-based ab initio MBPT. The GW QP band gap
of Cs2AgBiBr6 has been computed to be between 1.8 eV (G0W0@LDA) [23] and 2.2 eV
(GW0@PBE) [95], in good agreement with the range of experimental values. Further-
more, Ref. [23] reports an indirect band gap of 2.4 eV for the closely related Cs2AgBiCl6
double perovskite, as well as a direct gap ∼0.7 eV larger.

The electronic band structure of Cs2AgInCl6 has also been broadly studied and the
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experimentally-determined direct band gap at Γ has been reported to lie between 2.1 eV [230]
and 3.55 eV [259]. The fundamental direct gap has been computed within DFT to range
between 0.93 eV [263] (using PBE functional) and 3.3 eV [257] (using PBE0 functional).
Furthermore, Luo et al. reported the GW QP band gap to be 3.27 eV [230], in agreement
with the experimental values. The large spread of the experimental band gap values has
been attributed to the various preparation methods used in the synthesis of the perovskite
crystals [256], whereas the variation of computed values can be explained based on the
interplay between the different structural models and approximations for the exchange-
correlation functional.

While both Ag-Bi and Ag-In double perovskite families have been extensively studied,
to date there are only few reports on the electronic properties of Sb-based perovskites.
The indirect band gap of Cs2AgSbCl6 compound is computed to range between 2.4 eV
(HSE06) [253] and 2.6 eV (PBE0) [16].

Our workflow consists of computing the DFT Kohn-Sham eigenvalues EDFT
nk , which

are then perturbatively corrected to obtain the QP eigenvalues EQP
nk , as previously de-

fined by the equation 2.36 in Chapter 2. We find that Ag-pnictogen compounds show the
characteristics of indirect band gap semiconductors, with the fundamental gap lying be-
tween the valence band maximum (VBM) at the X (0, 2π/a, 0) point and the conduction
band minimum (CBM) at the L (π/a, π/a, 0) point of the Brillouin zone. In contrast,
Cs2AgInCl6 double perovskite exhibit a direct band gap at the Γ (0, 0, 0) point.

In agreement with previous reports[226, 264], the first conduction band of the Ag-
pnictogen double perovskites is predominantly derived of Bi p and halide p states, while
the first valence band features mainly Ag dz2 and halide p states. Furthermore, small
contributions from the BIII-metal s antibonding states and Ag s orbitals are observed at
the VBM and CBM, respectively. All compounds exhibit a lowest direct transition at X
with the exception of Cs2AgSbBr6, for which the the lowest energy direct band gap is
located at L due to the pronounced Ag s orbital character of the CBM. The composi-
tion of the valence band of Cs2AgInCl6 double perovskite is somewhat similar to that of
Ag-pnictogen double perovskites, featuring predominantly halide s and Ag d. However,
the lack of pnictogen p states leads to a transition of the VBM from the X point to Γ.
Furthermore, the orbital character of the conduction band is fundamentally different. The
CBM is located at Γ and is made of mainly halide p and diffuse In s states, with sizeable
contributions from the Ag s orbitals. Similar to lead-based perovskites, Cs-derived or-
bitals do not contribute to the states near band edges in none of the five studied double
perovskites. Figure 3.11 shows the QP band structure of cubic Cs2AgBiBr6, Cs2AgSbBr6
and Cs2AgInCl6 double perovskites, calculated within the G0W0 approximation [265],
overlayed with the orbital character of the energy bands. We note that the electronic
band structures of Cs2AgBiCl6 and Cs2AgSbCl6 are very similar with that of Cs2AgBiBr6
double perovskites in terms of both positions of the indirect band gap and direct lowest
transition, as well as orbital composition of the bands. Therefore, in Figure 3.11, we
represented only the fundamentally different electronic structures.
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Figure 3.11: Quasiparticle band structure of cubic Fm3̄m a) Cs2AgBiBr6, b) Cs2AgSbBr6
and c) Cs2AgInCl6 along the L [1/2, 1/2, 1/2]2π/a - Γ [0, 0, 0] - X [0, 1, 0]2π/a path, overlayed
with the orbital character of the bands. The size of the colored dots is proportional to the
percentage contribution of the orbital character to the electronic bands. Cs-derived orbitals do
not contribute to the states near the band edges and halide character was omitted for clarity.

The magnitude of the band gaps (direct and indirect), computed within both DFT
and G0W0 approximation, is reported in Table 3.4. The underestimation of the calculated
QP indirect gap (between the VBM at X and the CBM at L) with respect to the exper-
iments [16, 224, 225, 253] is a common feature of all Ag-pnictogen double perovskites
studied. However, this discrepancy is consistent with previous GW calculations [23, 95]
and can be explained based on the computational methodology employed, LDA approx-
imation chosen for the mean-field calculations leading to a small DFT band gap [266].
Although a different starting point has been chosen to investigate the electronic properties
of Cs2AgInCl6 double perovskite, we find a similar underestimation of the band gap with
respect to previous reports [230], highlighting the similarities between the LDA and PBE
exchange-correlation functionals.

As expected, the one-shot G0W0 approach leads to a rigid shift in the conduction band
energies, as compared to the DFT eigenvalues. The QP corrections determine a change
in both energy values and band dispersion in the valence band region, resulting in an
opening of the band gap of at least 0.7 eV, while generally preserving the shape of the
band edges.
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Table 3.4: DFT and G0W0 lowest indirect and direct QP band gap of cubic Cs2AgB
IIIX6 (with

BIII=Bi, Sb, In and X=Br, Cl).

QP band gap (eV)
Indirect Direct

XVBM → LCBM XVBM → XCBM

Cs2AgBiBr6
LDA 0.90 1.66
G0W0 1.67 2.41

Cs2AgBiCl6
LDA 1.27 1.89
G0W0 2.06 2.98

Cs2AgSbCl6
LDA 1.04 2.28
G0W0 2.26 3.43

XVBM → LCBM LVBM → LCBM

Cs2AgSbBr6
LDA 0.58 1.79
G0W0 1.41 2.74

ΓVBM → ΓCBM

Cs2AgInCl6
PBE — 0.91
G0W0 — 2.09

3.4.2. Effective mass

In order to quantify the change in the band dispersion observed in the previous section,
we compute the effective masses at the band edges corresponding to the lowest direct
transition.

The effective mass tensor is evaluated by computing the second derivatives of the
valence and conduction band edges with respect to the wave vector k along the three
crystallographic directions, as

1

m∗
αβ

=
1

h̄2
∂2ε

∂kα∂kβ
(3.2)

for α, β = x, y, z. The second-order partial derivatives are calculated numerically using
finite differences in the first order, then the effective mass tensor is diagonalized for the
conduction and valence band to obtain the electron and hole effective masses, respectively.
The isotropic hole and electron effective masses are calculated as the harmonic mean

m∗
h(e) =

3mh(e)1mh(e)2mh(e)3

mh(e)1mh(e)2 +mh(e)2mh(e)3 +mh(e)3mh(e)1

(3.3)

of the valence and conduction band effective masses, respectively, where the indices cor-
respond to three orthogonal directions in a reference frame where the matrix of partial
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derivatives is diagonal. The longitudinal effective mass, mh(e)3 , corresponds to the di-
rection from X to Γ as represented in Figure 3.11, while the transverse effective masses,
mh(e)1 and mh(e)2 , correspond to the two directions perpendicular to that path.

The effective masses of Cs2AgB
IIIX6 (BIII=Bi, Sb and X=Br, Cl) at the point of the

lowest direct transition calculated with DFT-LDA andG0W0@LDA, respectively, reported
in Table 4.4, are in good agreement with the values obtained from DFT in Ref. [16]. As
shown in Figure 3.11, the CBM at X of Bi-based and Cs2SbAgCl6 is almost dispersionless.
Therefore, the reduced effective mass was approximated with the isotropic hole effective

mass:
1

µ
=

1

m∗
h

. In contrast, for Cs2AgSbBr6 the lowest direct transition is at L instead of

at X (see Figure 3.11 c) and Table 3.4). Furthermore, at L the VBM changes its curvature
along two of the three orthogonal directions, yielding an ill-defined hole effective mass
and leading to the approximation of the reduced effective mass of Cs2AgSbBr6 with the

isotropic electron effective mass:
1

µ
=

1

m∗
e

.

Table 3.5: Effective masses of cubic Cs2AgB
IIIX6 (with BIII=Bi, Sb, In and X=Br, Cl) at the

band edges corresponding to the lowest direct transition (in units of the electron rest mass m0),
as computed within DFT and G0W0. The indices correspond to principal axes of the effective
mass tensor. m∗

h(e) is computed as the harmonic mean of the masses along the three principal
components. Hole effective mass of Cs3AgInCl6 double perovskite has been computed taking
into account both valence bands having their maximum at Γ.

Effective mass (m0)
mh1 mh2 mh3 m∗

h me1 me2 me3 m∗
e

Cs2AgBiBr6
LDA 0.79 0.73 0.17 0.36 — — — —
G0W0 0.72 0.67 0.15 0.31 — — — —

Cs2AgBiCl6
LDA 1.08 0.78 0.19 0.39 — — — —
G0W0 0.75 0.56 0.17 0.33 — — — —

Cs2AgSbCl6
LDA 1.25 0.98 0.17 0.39 — — — —
G0W0 0.96 0.71 0.15 0.32 — — — —

Cs2AgSbBr6
LDA — — — — 0.31 0.29 0.25 0.28
G0W0 — — — — 0.33 0.30 0.26 0.29

Cs2AgInCl6
PBE 0.70 0.28
G0W0 0.62 0.60 0.57 0.59 0.30 0.29 0.29 0.29

We note that the effective mass tensor of Ag-pnictogen double perovskites is highly
anisotropic, featuring an exceptionally low transverse effective mass along the direction
from X to Γ, in line with previous reports correlating the rocksalt packing of Ag and Bi
ions with noticeable anisotropic effects [221]. In contrast, as showed in Table 3.5, both
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electron and hole effective masses of Cs2AgInCl6 compound are isotropic. Along with the
VBM shift to Γ, the absence of BIII p orbitals also leads to a distinction between a light
hole originating from the disperse band and a heavy hole arising from the flat band. The
effective mass of the light hole, obtained by neglecting the effect of the dispersionless band,
is approximately half of that computed by taking into account both bands, suggesting
that the hole effective mass is highly dependent on the inclusion of the flat valence band.
Therefore, we report and hereafter employ only the hole effective mass computed as the
average between the light and the heavy hole.

3.5. Dimensional reduction of Pb-free double metal-

halide perovskites

As previously mentioned in section 3.1, the dimensional reduction of hybrid organic-
inorganic perovskites has been increasingly used as a strategy to improve their structural
stability [14]. While, the attention has been mainly focused on divalent cations-based per-
ovskites such as Pb-, Cu-, Mn-, Cd- and Sn-based [267], recent efforts have been directed
towards understanding the physical and optoelectronic consequences of dimensional reduc-
tion of double metal-halide perovskites [264, 268–270]. Connor et al. reported in Ref. [264]
an indirect-to-direct conversion of the band gap in Cs2AgBiBr6 double perovskite as the
inorganic lattice is thinned to a monolayer. The minimal effect of quantum confinement
observed in the lower dimensional Ag-Bi perovskites raises the question if this is a general
characteristic of dimensional reduction in double perovskites or its a particularity linked
to the specific chemical composition of Ag-Bi materials. In one of the first studies on 2D
double perovskites, Castro-Castro et al. reported that the interactions between the I− ion
and the inorganic lattice in 2D AuI-AuIII double perovskites, absent in the 3D analogues,
significantly perturb the electronic structure. Recently, Bi et al. [269] analysed the 2D
RP CuI-BiIII compound, but there is no 3D analogue for comparison. Thus, with just a
few reports on a very limited range of double perovskites, little can be learned about the
optoelectronic effects of dimensional reduction.

To probe the importance of the chemical heterogeneity in determining the effects of
dimensional reduction, in this section we compare dimensional confinement of a 3D halide
perovskite with essentially different electronic structure, i.e. the indirect gap semiconduc-
tor Cs2AgBiBr6 and the direct gap semiconductor, with a more delocalized electronic
structure Cs2AgTlBr6. Recently, the Ag-Tl 3D double perovskite have been synthesized
and characterised in a combined experimental and theoretical study [271]. Furthermore, it
has been demonstrated that it features an unusually small band gap of ∼0.95 eV and large
band dispersion. Here, we analyse the effects of dimensional reduction on the optoelec-
tronic properties of Cs2AgTlBr6 in a family of double hybrid organic-inorganic perovskites:
a 2D n = 2 perovskite ((A)2CsAgTlBr7; A = phenethylammonium (PEA), referred to as
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2-Tl, a 2D n = 1 perovskite ((3-BPA)4AgTlBr8; 3-BPA = 3-bromopropylammonium,
referred to as 1-Tl), and a quasi-one-dimensional (1D) n = 1 perovskite ((HIS)2AgTlBr8;
HIS = histammonium, referred to as 1’-Tl). Next, we study an isoelectronic and isostruc-
tural analogue of 1-Tl – the n = 1 double perovskite ((3-BPA)4AgInBr8, referred to as
1-In. We explore the evolution of the band structure in these reduced dimensionality sys-
tems of the Ag-Tl and Ag-In perovskite families by means of ab initio DFT. Furthermore,
we compare their electronic structure with that of (BA)4AgBiBr8 and (BA)2AgBiBr7 (re-
ferred to as 1-Bi and 2-Bi, respectively), that have been synthesised by Connor et al. in
Ref. [264]. We published the results presented in this section in Ref. [270], where these
various perovskite materials have also been experimentally synthesized and characterised.

3.5.1. Crystal structures

Figure 3.12 shows the single-crystal X-ray diffraction (SCXRD) lattice and structural de-
tails of Ag-Tl and Ag-In perovskites (3D and lower-dimensional) experimentally obtained
by exfoliation of crystals synthesized from solutions of the precursors in concentrated
hydrobromic acid as described in Ref. [270].

Figure 3.12: Experimental crystal structures of a) Cs2AgTlBr6 from Ref. [221] and lower-
dimensional derivatives b) (PEA)2CsAgTlBr7 (2-Tl; PEA = phenethylammonium), c) (3-
BPA)4AgBiBr8 (1-Tl; 3-BPA = 3-bromopropylammonium), d) (HIS)2AgTlBr8 (1’-Tl; HIS =
histammonium) and e) (3-BPA)4AgInBr8 (1-In). Insets show the colors of the crystals and are
reproduced from Ref. [270].

Dimensional reduction of Cs2AgTlBr6 halide double perovskite reported by Slavney et
al. in Ref. [271] as having cubic Fm3̄m symmetry at RT and represented in Figure 3.12 a),
leads to PEA2CsAgTlBr7 (2-Tl), a 2D RP perovskite with the thickness of inorganic
layer of n = 2. The perovskite lattice is two octahedral layers thick and is formed by
alternating Ag- and Tl-centered octahedra, with Cs cation inside the cavities between the
inorganic slabs and longer organic molecules separating these sheets (see Figure 3.12 b)).
Further dimensional reduction leads to n = 1 (3-BPA)4AgTlBr8 (1-Tl), featuring the
same perovskite framework with Ag and Tl cations alternating at B-sites and bilayers of
3-BPA cations separating the inorganic sheets (see Figure 3.12 c)).

Furthermore, as showed in Figure 3.12, the inorganic sheets in both 2D perovskites 2-
Tl and 1-Tl are heavily distorted, particularly at the Ag site. The off-centering movement
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of the Ag atoms in 2-Tl leads to the formation of a short bond of∼2.67 Å with the terminal
axial Br and a long bond of ∼3.08 Å with the bridging axial Br. Similar distortions have
been previously observed in some 2D oxide perovskites [272, 273] and in the closely related
2D RP (BA)2CsAgBiBr7 perovskite [264]. In 1-Tl, the Ag–Br octahedra show a tetragonal
distortion with two extremely short bonds of ∼2.56 Å between Ag and the axial terminal
Br and four long bonds of ∼3.06 Å and ∼3.14 Å between Ag and the bridging equatorial
Br. Although larger in magnitude, these distortions are similar with the ones observed in
analogous (BA)4AgBiBr8 [264]. The values of all Ag −Br and T l−Br bond lengths are
reported in Table 3.6.

Table 3.6: Structural details of (HIS)2AgTlBr8 (1’-Tl), (3-BPA)4AgTlBr8 (1-Tl),
(PEA)2CsAgTlBr7 (2-Tl) and (3-BPA)4AgInBr8 (1-In).

Structure
1’-Tl 1-Tl 2-Tl 1-In

Space group C2/c P2/c P − 1 P2/c

a (Å) 11.3098 8.4673 7.8618 8.4965
b (Å) 12.6075 7.8406 7.8618 7.8419
c (Å) 18.2064 26.1647 23.0185 26.1413

α(◦) 90.000 90.000 83.703 90.000
β(◦) 95.713 90.312 85.727 90.318
π(◦) 90.000 90.000 89.819 90.000

Ω(Å3) 2583.11 1737.02 1411.41 1741.73

daxAg−Br (Å) 2.6430 2.5665 2.6699, 3.0826 2.5565

deqAg−Br (Å)
3.0628 3.1421 2.8420, 2.8451 3.2060
3.7870 3.0576 2.9014, 2.8393 3.1257

daxT l−Br (Å) 2.6552 2.7410 2.6985, 2.6818 2.6717

deqT l−Br (Å)
2.7005 2.7452 2.7332, 2.7342 2.6872
3.3771 2.7055 2.7493, 2.7617 2.6584

We further decreased the dimensionality of the inorganic lattice of 1-Tl, using HIS
– an even bulkier organic spacer cation, and obtained (HIS)2AgTlBr8 (1’-Tl), a similar
perovskite featuring 2D n = 1 sheets of perovskite lattice separated by layers of HIS.
However, due to the very large cation, the perovskite backbone is significantly distorted,
resulting in a breaking of metal-halide octahedra. The inorganic layer features five metal-
bromide bonds with a standard average length, and a sixth unusually long metal-bromide
bond. Due to this long bond pointing in the same direction, the 2D inorganic lattice be-
comes a series of 1D in-plane chains (see Figure 3.12 d)). A detailed quantitative analysis
of the bond lengths showed in Table 3.6 reveals that the bonds parallel with the chain
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axis are similar with the equatorial bonds found in 1-Tl system, while the perpendicular
bonds are at least 21% longer than those of 1-Tl system. Thus, the 1’-Tl system is a
quasi-1D structure.

To study the effect of the chemical composition at BIII-site, we replace thallium with
indium in 1-Tl and obtain the isostructural and isoelectronic system (3-BPA)4AgInBr8
(1-In), which displays resembling distortions. Although similar, 1-In exhibits a slightly
larger axial compression of Ag − Br bond lengths, as showed in Table 3.6. It has been
reported that the InBr6 octahedron features a tolerance factor slightly larger that the
critical limit, suggesting an unstable 3D parent [257]. Indeed, although the crystallisation
of Cs2AgInCl6 has been reported in Ref. [257], to date there is no report of successful
experimental synthesis of the bromide analogues.

3.5.2. Electronic composition of layered perovskites

Although the Ag-Tl and Ag-In systems feature very similar distortions with the one
observed in the Ag-Bi layered double perovskites reported in Ref. [264], suggesting similar
structural consequences of dimensional reduction, the crystals showed in the insets of
Figure 3.12 exhibit significant color difference. While the crystals of n = 1 and n = 2
Ag-Bi are known to be a nearly identical shade of yellow [264], dimensional reduction of
Ag-Tl systems leads to a pronounced color change ranging from black for 2-Tl to maroon
for 1-Tl to red for 1’-Tl, suggesting a fundamental difference in the electronic structures
of these materials. To explore these underlying electronic differences we compare the band
structures of Ag-Tl systems with those of Ag-Bi systems, as computed with first principles
DFT approach. While the band structures of 1-Bi and 2-Bi are computed within the
PBE approximation, including spin-orbit coupling self-consistently, the band structures
of the Ag-Tl and Ag-In families of layered double perovskites were computed within the
HSE06 approximation, without taking into account the effect of spin-orbit coupling (see
Appendix A.2.4 for extensive computational details). The results of our fundamental
band gap calculations are reported in Table 3.7.

Figure 3.13 shows the crystal structures and the electronic band structures of n = 1
and n = 2 Ag-Tl and Ag-Bi 2D layered perovskites, overlaid with the orbital contributions.
Although Ag d and Br p states are the main contributions to the VBM of all four materials,
the 2-Bi system feature the additional contributions from Bi s orbitals as well. While
the valence band feature a remarkably similar orbital composition, the conduction band
is essentially different. In the case of Ag-Bi layered perovskites, the CBM is primarily
derived from Bi p and Br p orbitals, whereas the CBM of Ag-Tl perovskites is composed
of Tl s and Br p states. However, both 2-Tl and 2-Bi feature minor contributions from
Ag s orbitals. We hypothesize that this different composition of the conduction band is
one of the causes of the significantly different optical behavior of the Ag-Bi and Ag-Tl
perovskites reported in Ref. [270] and seen as the significant color difference. Furthermore,
we see a reversed trend of the band gap with the thickness of the inorganic layer in these
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2D layered perovskites. While the band gap of the Ag-Bi systems change from indirect
to direct when the dimensionality decreases from n = 2 to n = 1, for the Ag-Tl systems
we observe a direct-to-indirect gap transition as the perovskite lattice is thinned to a
monolayer.

Figure 3.13: Crystal structures (top) and electronic band structures of a) 2-Tl, b) 1-Tl, c) 2-
Bi, d) 1-Bi and e) 1-In overlaid with the orbital character of the bands. The size of the colored
dots is proportional to the percentage contribution of the orbital character to the electronic
bands. The halide contributions are present throughout, but there were omitted for clarity.

As expected, the band structure of 1-In showed in Figure 3.13 is similar to that of
isoelectronic 1-Tl perovskite. They both feature an indirect band gap and comparable
overall band dispersion. Furthermore, the orbital composition of the valence and conduc-
tion regions is similar between the two perovskites, with the VBM of the 1-In composed
of Ad d and Br p contributions and the CBM made of In s and Br p. However, the
significantly higher energy of the In 5s orbitals lead to a shift of the conduction band to-
wards higher energies, yielding a much larger band gap for 1-In as compared with that of
1-Tl. This result is consistent with both experimental observations [264] and theoretical
calculations for an analogous structure [274].

3.5.3. Electronic effects of dimensional reduction

Consistent with previous reports [264], we find that dimensional reduction of Cs2AgBiBr6
leads to a change in the nature of the band gap when the thickness of the perovskite
layer decreases to n = 1. A similar indirect-to-direct gap transition has been observed
while exfoliating bulk MoS2 to individual layers [275, 276]. Upon dimensional reduction
of Cs2AgTlBr6, despite the different orbital makeup, the calculations show a comparable
intriguing band gap transition.
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Figure 3.14 a) shows the crystal structure and electronic band structure of 3D double
perovskite Cs2AgTlBr6. In line with previous results [271], we compute a direct band gap
at Γ (0, 0, 0) point in the Brillouin zone. Although the absolute value of the band gap of
0.12 eV is significantly lower than the earlier reported values, our calculations correctly
predict the semiconducting properties of the material. The severely underestimation of
the band gap is explained in detail in Appendix A.2.4, based on the DFT approach used.
The VBM is composed of Ag d and Br p orbital contributions and the CBM has Ag s, Tl s
and Br p character. The pronounced dispersion of the conduction band is a consequence of
the increased electronic delocalization, due to better overlap between the spherical, more
diffuse Tl s orbitals with the halide p orbitals. The band structure of 2-Tl depicted in
Figure 3.14 c), is analogues to that of the 3D Cs2AgTlBr6 parent, with a computed direct
band gap at Γ of 1.22 eV and similar orbital composition and dispersion of the bands,
highlighting the correlation between the electronic structures of the 3D and 2D n = 2
Ag-Tl perovskites. To validate the hypothesis that the lower-dimensional derivatives of
Cs2AgTlBr6 (with the inorganic layer thickness n ≥ 2) inherit its electronic properties,
we construct a theoretical model system by optimizing the geometry of an n = 3 slab
cut from the 3D perovskite and referred to as 3M. The band structure of 3M showed in
Figure 3.14 b), is completely analogous to those of 3D Cs2AgTlBr6 and 2-Tl, reinforcing
the result that all materials with 1 < n <∞ have similar band structures.

Figure 3.14: Crystal structures (top) and electronic band structures of a) 3D Fm3̄m
Cs2AgTlBr6, b) 3M, c) 2-Tl, d) 1-Tl and e) 1’-Tl. Orbital contributions to the band structures
are showed in colors. The size of the colored dots is proportional to the percentage contribution
of the orbital character to the electronic bands. The halide contributions are present throughout,
but there were omitted for clarity. Analogous k-paths are plotted in all panels to demonstrate
the decrease in band dispersion with dimensional reduction and to highlight the abrupt change
in band structure at the n = 1 limit.

Dimensional reduction of the Ag-Tl perovskite lattice to a monolayer (n = 1) in 1-Tl
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leads to a striking change in the electronic band structure. Most notably, as showed in
Figure 3.14 d) and Table 3.7, the band structure of 1-Tl exhibits an indirect band gap
of 2.00 eV between the VBM at A (π/a, π/b, 0) and the CBM at B (π/a, 0, 0). Another
considerable difference with respect to the n ≥ 1 derivatives, is the reduced Ag s orbital
character of the conduction band in 1-Tl perovskite, leading to an almost pure Ag-to-Tl
transition between the band edges. Furthermore, similar to 2-Tl, the electronically 2D
nature of 1-Tl is highlighted by the lack of dispersion along the layer stacking direction.

Table 3.7: Calculated fundamental band gap of experimental and theoretical model structures.

System xc functional k-points Band gap (eV)

Cs2AgTlBr6

HSE06

Γ 0.12
2-Tl Γ 1.22
1-Tl AVBM → BCBM 2.00
1’-Tl VVBM → ΓCBM 2.17

1-In HSE06 AVBM → BCBM 3.30

2-Bi
PBE

AVBM → BCBM 1.66
1-Bi Γ 1.7

As previously demonstrated in Ref. [264], dimensional reduction impacts the electronic
structure both directly by reducing the thickness of the perovskite lattice and indirectly by
structural distortions. To discriminate between the direct effects inflicted by the reduced
dimensionality and those induced by the structural distortions on the electronic structure,
we construct model systems with inorganic layer thickness n = 1 and n = 2, referred to as
1M and 2M, featuring untilted and undistorted metal-halide octahedra as found in the
3D cubic Cs2AgTlBr6 parent (see Appendix A.2.4 for detailed description of the model
systems). The nature of the band gap in the model systems 1M and 2M is similar to
that of the gap in the analogues hybrid organic-inorganic layered perovskites 1-Tl and
2-Tl, respectively. Although as reported in Table 3.8 the CBM shifts to Γ for 1-Tl,
the nature of the lowest energy direct transition remains indirect, suggesting that the
direct-to-indirect gap transition is a direct consequence of dimensional reduction.

We validate our observation of the direct-to-indirect gap transition when the thickness
of the inorganic lattice is reduced to a monolayer by comparing the electronic structure
of 1-In with that of Cs2AgInCl6, the only related 3D perovskite available. While the
3D parent has been reported to have a direct band gap at Γ [257], 1-In features an
indirect band gap of 3.30 eV between the VBM at A and the CBM at Γ. This additional
confirmation of the direct-to-indirect band gap transition highlights the significance of
orbital symmetry in dictating the nature of the gap in both 3D double perovskites and
their layered derivatives [221, 255].

It is also worth noting that, although the quasi-1D system 1’-Tl features significant
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Table 3.8: Lowest energy transitions of experimental and theoretical model structures of Ag-Tl
layered perovskites as computed with HSE06.

k-points Energy gap (eV)

1-Tl
AVBM → BCBM 2.00
AVBM → ΓCB 2.13

Γ 2.65

1M
AVBM → BCB 1.84
AVBM → ΓCBM 1.65

Γ 1.72

2-Tl
Γ 1.22

VVB → ΓCBM 1.24

2M
Γ 0.98

VVB → ΓCBM 1.04

structural distortions, it still exhibits an indirect band gap of 2.17 eV, between the VBM
at V (π/a, π/b, 0) and the CBM at Γ. Furthermore, the orbital character of the bands
is similar with that of 1-Tl system, with the VBM composed of Ag d and Br p states
and Tl s and Br p orbitals dictating the character of the CBM. However, as showed in
Figure 3.14 e), the lower dimensionality of the system is apparent in the considerably
lower dispersion of the bands.

In summary, in this section we analysed the Ag-Tl layered double perovskites family by
means of ab initio first principles calculations and showed that while the electronic struc-
ture of 2D n ≥ 2 derivatives is remarkably similar to that of the 3D parent Cs2AgTlBr6
retaining the direct band gap, in the limit n = 1 the 2D layered perovskite 1-Tl has
a strikingly different electronic structure, featuring an indirect band gap. This indirect
gap is retained in the quasi-1D 1’-Tl material, despite the significant distortions of the
inorganic lattice. We demonstrated that the direct-to-indirect band gap transition is a
robust result by computing a similar transition for the isoelectronic 1-In layered per-
ovskite. Importantly, using calculations on undistorted model structures, we find that
this direct-to-indirect band gap transition is driven by dimensional reduction rather than
by the structural distortions of the perovskite lattice observed in the lower dimensional
materials. Furthermore, by comparing the effects of the dimensional reduction on Ag-Tl
and Ag-In families with those on the electronically distinct Ag-Bi family of layered double
perovskites, we showed that the intriguing transition of the band gap is dictated by the
symmetry of the orbitals governing the band edges.



Chapter 4

Optical properties of 3D halide

double-perovskites

This chapter presents a detailed analysis of the optical absorption spectrum of cubic
Cs2AgBiBr6 double perovskite, as computed within the G0W0+BSE approach. Further-
more, the non-hydrogenic nature of strongly localized resonant excitons in the double
perovskite series Cs2AgB

IIIX6 (B
III=Bi, Sb and X = Br, Cl) is explained. The limitations

of Elliott theory and the Wannier-Mott model to describe the optical excitations in these
materials is discussed in detail, as well as the impact of the anisotropy of effective masses
and local field effects. We published the results presented in this chapter in Ref. [149]. The
last section gives an overview on the particular optical properties of Cs2AgInCl6 double
perovskite, discussing the effect of band edges orbital character on the excited states.

4.1. Exictonic properties of Cs2AgBiBr6 double per-

ovskite

Despite recent studies [277–280] on excitonic properties of Cs2AgBiBr6 double perovskite,
the origin of the experimental peak observed at 2.8 eV measured in thin films is still con-
troversial as pointed out in Ref. [280]. In experiments performed on powder samples [224,
278], which report optical spectra for energies up to 2.7 eV, such a peak is absent and a
peak at lower energy is found. Furthermore, reported exciton binding energies differ by
almost a factor of 4. Based on temperature-dependent steady-state photoluminiscence
experiments, Steele et al. [278] estimated the exciton binding energy of Cs2AgBiBr6 to
be 70meV. Kentsch et al. [277] used femtosecond transient absorption measurements and

51
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found an exciton binding energy of 268meV by fitting the region of the direct transition
using the Elliott model [281]. Moreover, Ref. [148] reports an even larger exciton binding
energy (340meV) from first principles calculations. This wide spread of exciton binding
energies calls for a systematic study.

Figure 4.1 a) shows the linear optical absorption spectrum of cubic Fm3̄m phase
of Cs2AgBiBr6, computed by means of ab initio many body perturbation theory. By
comparing the absorption spectrum within the RPA with the one calculated within the
G0W0+BSE approach, one can observe that the inclusion of electron-hole interactions red-
shift the absorption spectrum. Furthermore, the electron-hole interactions give rise to a
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Figure 4.1: a) Calculated optical absorption spectrum of cubic Fm3̄m phase of Cs2AgBiBr6,
experimental optical absorption spectrum (inset). b) Calculated optical absorption spectrum
of tetragonal I4/m phase of Cs2AgBiBr6. The spectra calculated using the random phase
approximation (RPA) without local field effects are represented in purple and the ones computed
within G0W0+BSE approach are represented in green. The first dark and first bright excitonic
states are marked by a blue arrow labeled D and an orange arrow labeled B, respectively. The
experimental absorption spectrum from inset was adapted with permission from [280]. Copyright
2020 American Chemical Society.

new well-defined peak below the lowest direct band gap, indicative of a strongly bound
exciton. This peak is centered at an energy 570meV larger than the indirect band gap,
revealing the signature of a resonant exciton. Analysing the fine structure of this excitonic
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feature we find a group of three degenerate bright states (marked as B in Figure 4.1 a))
and an optically inactive (dark) state (marked as D) 80meV below the excitonic peak.

In order to facilitate the comparison with experiments, in which only signals from
bright states can be observed, we will focus on the description of first bright excitons
only, unless stated otherwise. Limitations of the DFT starting point previously reported
in both halide double perovskites and lead-based perovskites [95, 282] lead to a notice-
able underestimation of the QP band gap which results in a red-shift of ∼0.6 eV of our
BSE computed optical absorption spectrum with respect to the experimental spectrum
reported by Longo et al. in Ref. [280]. However, the lineshapes of the computed and
experimental absorption spectra are very similar and both feature a well-defined peak
before the onset of a broader continuum, albeit centered at different energies.

Furthermore, the excitonic feature at the onset of the optical absorption spectrum
persists for the low-temperature tetragonal I4/m phase [251], but the entire spectrum is
blue-shifted with respect to the cubic Fm3̄m phase by ∼150meV, as shown in Figure 4.1.
This shift of the BSE absorption spectrum is consistent with the slightly larger QP direct
band gap computed to be 2.54 eV. The band folding in the I4/m phase leads to the
formation of a range of dark excitonic states up to 414meV below the first bright state
(marked as D and B, respectively, in Figure 4.1 b)).

We define the exciton binding energy as the difference between the G0W0 lowest direct
transition and the computed excitation energy of the resonant bright exciton and report
a binding energy of 170meV that falls within the range of experimentally determined
values, but is half the value computed by Palummo et al. [148].

One of the causes for this discrepancy is the choice of the DFT starting point: LDA [61,
62] in our calculations vs. PBE [67] in Ref. [148]. Even though LDA and PBE are
qualitatively similar starting points for the GW approach, they lead to slightly different
results. The effect of using PBE as xc functional in the DFT calculations has been tested
and Table 4.1 shows that the while the DFT starting point does not modify the value of
the QP indirect band gap, it slightly lowers the lowest direct transition at the X point.

Table 4.1: Comparison between QP band gaps and computed exciton binding energy obtained
using evGW in Ref. [148] and using G0W0 in our calculations.

xc functional QP band gaps (eV) Binding energy (meV)
XVBM → LCBM XVBM → XCBM dark bright

evGW [148] PBE 2.1 2.7 480 340

G0W0
PBE 1.66 2.34 346 242
LDA 1.66 2.40 253 170

Despite the similarity of the band gaps, Figure 4.2 shows that the excitonic peak in the
absorption spectrum computed with a DFT-PBE starting point is red-shifted ∼50meV
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and the exciton binding energy is increased by approximately 42%. Even though there
are large variations in the exciton binding energy depending on the DFT starting point,
the presence of a well-defined peak due to electron-hole interactions is a robust result of
our calculations. Overall, we find that the choice of structure and exchange-correlation
functional can lead to a range of calculated exciton binding energies from 170meV to
240meV, which overlaps broadly with the range of experimental binding energies reported
in the literature.
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Figure 4.2: Optical absorption specta of Cs2AgBiBr6 computed with G0W0+BSE, using DFT-
LDA (green) and DFT-PBE (blue) starting point.

Another important difference between the setup of the calculations is the density of
the k-point mesh. We used a 2.5-times denser grid in order to compute the BSE binding
energies, but also tested the same 4× 4× 4 k-point grid as employed in Ref. [148]. With
this new setting we obtain an exciton binding energy of 301meV for the first bright state.

Other sources for the remaining difference of ∼40meV between our exciton binding
energy and the one reported in Ref. [148] are slightly different lattice parameters of the
cubic Cs2AgBiBr6 and the use of partially self-consistent GW in Ref. [148], that is known
to open up the QP band gaps by ∼0.3 eV for Cs2AgBiBr6 [95] and is likely also affecting
the static dielectric constant.

4.2. Excitonic properties of Ag-pnictogen double per-

ovskite family

As previously described in section 3.1, the heterovalent substitution at metal sites BI and
BIII is a broadly used approach for designing new materials with desired optoelectronic
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properties. In order to understand the effect of chemical composition at BIII site on the
excitonic properties of halide double perovskites, we analyse other members of the Ag-
pnictogen perovskite family as well. Following the same procedure and replacing Bi with
Sb and Br with Cl, we compute the BSE optical absorption spectrum of cubic Cs2AgBiCl6,
Cs2AgSbBr6, and Cs2AgSbCl6 and find that the high exciton binding energy is a common
feature of all four compounds in the series. As shown in Table 4.2, the binding energies
of the first bright state in Cs2AgB

IIIX6 compounds (BIII=Bi, Sb and X=Br, Cl) range
between 170 and 434meV and scale linearly with the G0W0 lowest direct band gap. The
binding energies of the strongly-bound excitons in these compounds are significantly larger
than those observed in the related 3D lead-halide perovskites [283], and similar with the
ones typically reported in quantum confined systems like Cs3Bi2I9 [147, 236].

Table 4.2: G0W0@LDA lowest direct transition (in eV), exciton binding energy (in meV),
static dielectric constant as computed within the random phase approximation, and average
electron-hole separation (in Å).

Direct gap (eV) ε∞ Exciton binding Average e-h
G0W0@LDA energy (meV) separation (Å)

Cs2AgBiBr6 2.41 5.92 170 6.3
Cs2AgSbBr6 2.74 5.96 247 7.6
Cs2AgBiCl6 2.98 4.68 333 5.3
Cs2AgSbCl6 3.43 4.77 434 5.6

To probe the expectation that such strongly-bound excitons are likely to be highly-
localized within the crystal lattice, we compute the probability distribution of the exciton
wave function

ΨS(re, rh) =
∑
vck

AS
vckψck(re)ψ

∗
vk(rh), (4.1)

where ψv(c)k(rh(e)) are single-particle DFT Kohn-Sham wave functions for the electrons
and holes, and AS

vck are coefficients corresponding to the excitonic state S, calculated
directly from the BSE. The excitonic wave function defined by equation 4.1 is computed
on an 8 × 8 × 8 supercell, a sufficiently large real-space supercell to accommodate the
entire wave function and ensure convergence. To visualize the excitonic wave function
in real-space, one needs to fix the position of the hole. For Cs2AgSbBr6, ΨS(re, rh =
r(Sb)) ≃ ΨS(re, rh = r(Ag)), so Figure 4.3 c) shows the resulting excitonic wave function
by summing over these two hole positions, while for all the other systems, ΨS(re, rh =
r(BIII)) ≫ ΨS(re, rh = r(Ag)), and Figure 4.3 a), b) and d) shows the excitonic wave
function when the hole is fixed on a BIII ion site. The extent of the excitonic wave function
can be qualitatively approximated by analysing the coefficients AS

vck from equation 4.1.
More than 85% of the excitonic wave function is confined within only one BIII-centered
octahedron and comprised of VBM → CBM transitions at the lowest direct gap with
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anisotropic orbital character, highlighting the heterogeneous nature of these excitons.
Note that, Cs2AgSbBr6 does not follow the same trend, featuring an exciton extended at
over at least three octahedra.

Figure 4.3: 3D representation of the probability density of the exciton wave function in real-
space for a) Cs2AgBiBr6; b) Cs2AgBiCl6; c) Cs2AgSbBr6 and d) Cs2AgSbCl6. An isosurface
containing 95% of the excitonic wave function is plotted. The red circles represent the average
electron-hole separation as computed with BSE, while the blue circles show the average electron-
hole separation if the exciton nature would have been hydrogenic. The silver spheres are Cs.

In order to quantitatively describe the spatial extent of the exciton, we employ a
similar approach as in Ref. [35] and define the electron–hole correlation function

FS(r) =

∫
Ω

d3rh|ΨS(re = rh + r, rh)|2, (4.2)

which renders the probability of finding the electron-hole pair separated by the vector
r = re − rh. We compute the integral as a discrete sum over three different hole positions
rh (hole fixed on a BIII ion site – rh = r(BIII), hole fixed on a Ag ion site – rh = r(Ag)
and hole fixed on a halide ion site – rh = r(X)) and over the first bright transition. To
approximately account for the symmetry and finite number of hole positions, we introduce
the weight wh and normalize FS(r) with respect to its cumulative sum

FS(r) =

∑
h

(
|ΨS(re = rh + r, rh)|2 · wh

)∑
e,h

(
|ΨS(re, rh)|2 · wh

) , (4.3)

where wh =

{
6 for re = r(X)
1 otherwise

. Using the distribution function defined by the expres-

sion 4.3, we compute the average electron-hole separation

σr =

√
⟨|r|2⟩ − ⟨|r|⟩2, (4.4)

where ⟨|r|n⟩ =
∫
Ω
d3r|r|nFS(r) is the n-th moment of the electron-hole correlation function

FS(r) and Ω the volume of the supercell, and use it to quantify the degree of localization of
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the excitonic wave function. As showed in Table 4.2, the high localization of the excitonic
wave function is another common feature of the studied compounds, but surprisingly, the
average electron-hole separation does not follow the linear trend described by the binding
energies. Precisely, as showed in Figure 4.7, the Cl-based double perovskites exhibit the
strongest localization, while Cs2AgSbBr6 exhibits the most delocalized exciton, although
its exciton binding energy is significantly higher than that of Cs2AgBiBr6 (247meV vs
170meV). This finding can be explained based on the spatial extent of the electronic states
from which the CBM is derived. Figure 4.4 shows that the average electron-hole separation
scales with the fractional contribution of the BIII p character of the CBM and demonstrates
that the reduced Sb p character of the CBM of Cs2AgSbBr6 (see Figure 3.11 b)) leads to
the delocalization of the excitonic wave function.

Cs2AgBiCl6 Cs2AgBiBr6 Cs2AgSbBr6Cs2AgSbCl6
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Figure 4.4: Percentage BIII orbital character of the CBM with respect to average electron-hole
separation as computed by solving the BSE.

4.3. Elliott Theory

Experimental analysis of optical absorption spectra with excitonic features often relies on
Elliott theory [281], a standard phenomenological theory of hydrogenic excitons in solids,
typically used to extract exciton binding energies and band gaps from experimental optical
absorption spectra. Within this theory, the absorption coefficient is given as the sum of
contributions from bound excitonic states and continuum states:

α(E) = αx(E) + αC(E). (4.5)
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The contribution from bound excitonic states αx(E) has the form of a line series at energies
Ex/n

2 below the band gap Egap, with the magnitude inverse proportional with n3

αx(E) = b0
|⟨Ψc|P |Ψv⟩|2

E

∞∑
n=1

4πE
3/2
x

n3
δ

(
E −

(
Egap −

Ex

n2

))
, (4.6)

while the absorption associated with continuum states has the form

αC(E) = ξ(E)αFree(E), (4.7)

where ξ is the Coulombic enhancement factor, due to the Coulombic attraction between
the unbound electrons and holes in the continuum and it is given by

ξ =
2π

√
Ex

E−Egap

1− exp
(
−2π

√
Ex

E−Egap

) . (4.8)

When the Coulombic interactions are fully screened, the exciton binding energy tends
towards zero and the free electron-hole absorption reads

αFree(E) = b0
|⟨Ψc|P |Ψv⟩|2

E
c−1
0 JDoS(E), (4.9)

where b0 is a proportionality constant and the joint density of states (JDoS) is given by

JDoS(E) =

{
c0
√
E − Egap if E > Egap

0 otherwise
with the constant

c0 =
1

(2π)2

(
2µ

h̄2

)3/2

× 2. With these expressions, the total absorption coefficient can be

written as the sum of bound excitonic (below gap) absorption and free (screened) electron-
hole absorption, multiplied by the Coulombic enhancement factor

α(E) = b0
|⟨Ψc|P |Ψv⟩|2

E

( ∞∑
n=1

4πE
3/2
x

n3
δ

(
E −

(
Egap −

Ex

n2

))

+
2π

√
Ex

E−Egap

1− exp
(
−2π

√
Ex

E−Egap

)c−1
0 JDoS(E)

)
.

(4.10)

In order to analyse the computed absorption spectra with the Elliott theory, the BSE
optical absorption spectra of the Cs2AgB

IIIX6 (BIII=Bi, Sb; X=Br, Cl) perovskites have
been fitted with the Elliott formula from equation 4.10, from 0.2 eV below the onset, up
to 1.2 eV above the onset via the fitting parameters b0, |⟨Ψc|P |Ψv⟩|2, Egap, Ex. In order
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a) Cs2AgBiBr6 b) Cs2AgBiCl6 c) Cs2AgSbBr6 d) Cs2AgSbCl6

Figure 4.5: Optical absorption spectrum of a) Cs2AgBiBr6; b) Cs2AgBiCl6; c) Cs2AgSbBr6
and d) Cs2AgSbCl6, where the RPA spectrum is represented in purple, the BSE spectrum in
green and the Elliott fit in blue.

to obtain a smooth spectrum, the absorption coefficient α(E) has been convoluted with

a Gaussian function g(x) =
1

σ
√
2π

exp

(
− x2

2σ2

)
, with line broadening σ.

As shown in Figure 4.5, the Elliott model fails to describe optical absorption lineshapes
for this entire family of double perovskites. More precisely, for the Sb-based perovskites,
Elliott theory does not predict the correct onset of the continuum region (see Figure 4.5 c)
and d)), while for the Bi-based perovskites the exciton binding energy estimated with
Elliott model falls within the same order of magnitude, but is at least 35% higher than
the BSE results. This observation is not unexpected, given that the Elliott formula for
optical absorption coefficient in the presence of bound electron-hole states is derived for a
direct band gap semiconductor with parabolic band edges, and weakly Wannier-Mott-like
excitons. Furthermore, this overestimation of the computed binding energy illustrates
that Elliott theory does not fully capture the nature of electron-hole interactions in this
system, and that the excitons do not obey the hydrogenic Wannier-Mott model [284].

4.4. Wannier-Mott model

The hydrogenic model of Wannier and Mott [284] is a conventional model typically em-
ployed for the description of hydrogenic excitons in inorganic semiconductor crystals with
small energy direct gaps, parabolic band edges, isotropic effective masses and high dielec-
tric constant [285]. We assess the nature of the excitons in the Cs2AgB

IIIX6 (BIII=Bi,
Sb and X=Br, Cl) double perovskites by comparing the first principles results with the
exciton binding energy predicted by the Wannier-Mott model.
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Within the hydrogenic model, the exciton binding energy is defined as

Ex =
1

n2

µ

meε2∞
RH , (4.11)

where RH is the Rydberg constant, m0 is the electron rest mass and the values of the
reduced effective mass of the exciton µ and the static dielectric constant ϵ∞ are obtained
from the G0W0 calculations. As previously showed in section 3.4.2, extremely low disper-
sion of the VBM at L (CBM at X) introduces a large uncertainty in the calculation of the
hole (electron) effective mass of Cs2AgSbCl6 (Cs2AgBiBr6, Cs2AgBiCl6 and Cs2AgSbCl6).
As consequence, for Cs2AgBiBr6, Cs2AgBiCl6 and Cs2AgSbCl6, µ is approximated with
the orientationally-averaged hole effective mass, while in the case of Cs2AgSbBr6, the
reduced mass is computed as the averaged electron effective mass.

Table 4.3: Exciton binding energies (in meV) of the two lowest energy bright states as calcu-
lated with G0W0@LDA+BSE (EBSE

x ) and the Wannier-Mott model (EWM
x ), and the deviation

(in %) of the Wannier-Mott predicted binding energy with respect to the BSE value.

n EBSE
x (meV) EWM

x (meV) Deviation

Cs2AgBiBr6
1 170 120 29%
2 93 30 68%

Cs2AgSbBr6
1 247 112 55%
2 145 28 81%

Cs2AgBiCl6
1 333 205 38%
2 141 51 64%

Cs2AgSbCl6
1 434 193 55%
2 243 48 80%

Table 4.3 reports exciton binding energies of the two lowest energy bright states as
calculated with G0W0+BSE and the Wannier-Mott model and demonstrates the non-
hydrogenic nature of the exciton in the studied double perovskites. The Wannier-Mott
model predicts, for the first bright excited state, a binding energy at least 30% lower
than the first principles result. Furthermore, the energy of the second excited state as
computed with G0W0+BSE deviates significantly from the hydrogenic Rydberg series,
being at least three times larger than the Wannier-Mott binding energy.

Figure 4.6 further demonstrates the non-hydrogeneity of excitons in these compounds
by showing the large underestimation of the Wannier-Mott model with respect to the
first principles binding energies. Similar with the G0W0+BSE calculations, the Wannier-
Mott model predicts a linear dependence of the binding energy on the lowest direct band
gap. However, the slope is significantly different and the deviation from the BSE results
increases with the increase of the absolute value of the binding energy.
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Figure 4.6: Variation of the exciton binding energy as computed within the BSE approach
(red) and the Wannier-Mott model (blue) with respect to the G0W0 lowest direct band gap.
The computed values are represented by solid points, while the solid lines are a guide to the eye,
representing the linear fit of the points.

As described in section 4.2 and expected in the case of excitons with large binding en-
ergy, they are highly-localized within the crystal structure (see Figure 4.7). Moreover, the
Wannier-Mott model systematically overestimates the average electron-hole separation by

more than 20% (σWM
r =

√
3

2
aH , where aH is the Bohr radius). However, as showed in

Figure 4.7 and discussed in section 4.2, the degree of localization does not follow the linear
trends expected from the calculations of the binding energies, with Cs2AgSbBr6 featuring
the most delocalized exciton.

The disagreement between the Wannier-Mott model and the first principles results is
due to the localization of electrons and holes in chemically distinct octahedra, resulting in
an anisotropic QP band structure of these halide double perovskites, that give rise to an
anisotropy of the reduced mass and noticeable local field effects in the dielectric function.
In the following these effects will be analysed in detail.

4.4.1. Anisotropy of the reduced masses

The anisotropy of the effective mass tensor is quantified by the anisotropy factor λ as
defined in Ref. [286]:

λ =

(
m⊥

m∥

)1/3

=


→ 1 m⊥ = m∥, i.e. fully isotropic effective mass
> 1 m∥ < m⊥
< 1 m∥ > m⊥

(4.12)
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Figure 4.7: Average electron-hole separation as computed with BSE (red) and as predicted by
the Wannier-Mott model (blue) with respect to the G0W0 lowest direct band gap.

where m⊥ =
2mh1mh2

mh1 +mh2

is the harmonic mean of the transverse hole effective masses and

m∥ = mh3 is the longitudinal hole effective mass.
Table 4.4 shows that the hole effective mass is highly anisotropic, with the longitudinal

component at least 4 times smaller than the transverse components. The light longitu-

Table 4.4: Hole effective masses of Cs2AgBiBr6, Cs2AgBiCl6, Cs2AgSbCl6 and electron effec-
tive mass of Cs2AgSbBr6 at the band edges corresponding to the lowest direct transition (in
units of the electron rest mass m0, expressed in a reference frame where the effective mass tensor
is diagonal), the anisotropy factor λ, as computed with G0W0@LDA and exciton binding en-
ergy (in meV) as computed within the G0W0+BSE approach (EBSE

x ), the Wannier-Mott model
(EWM

x ) and the Wannier-Mott model corrected for the effective mass anisotropy Ex(λ).

mh1 mh2 mh3 m∗
h λ EBSE

x EWM
x Ex(λ)

Cs2AgBiBr6 0.72 0.67 0.15 0.31 1.67 170 120 148
Cs2AgBiCl6 0.75 0.56 0.17 0.33 1.57 333 205 240
Cs2AgSbCl6 0.96 0.71 0.15 0.32 1.77 434 193 250

me1 me2 me3 m∗
e

Cs2AgSbBr6 0.33 0.30 0.26 0.29 1.07 247 112 113

dinal hole effective mass originates from the very disperse valence band along X to Γ.
Qualitatively, we find that the deviation between the exciton binding energy computed
with first principles and the one predicted by the Wannier-Mott model is direct propor-
tional with the anisotropy of the hole effective mass. However, this observation is not
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valid for Cs2AgSbBr6, for which the Wannier-Mott exciton binding energy is dictated by
the almost isotropic electron effective mass, corresponding to the lowest direct transition
at L.

Following the approach described by Schindlmayr in Ref. [286], namely taking into
account the effect of the effective mass anisotropy the corrected Wannier-Mott binding
energy becomes

Ex(λ) = −3

(
1

ε∞

)2(
2

m⊥
+

1

λ2m∥

)−1(
arcsinh

√
λ2 − 1√

λ2 − 1

)2

RH . (4.13)

As shown in Table 4.4, the inclusion of the effective mass anisotropy in the hydrogenic
model reduces the discrepancy between the first principles results and the Wannier-Mott
exciton binding energy. Furthermore, the correction to the isotropic Wannier-Mott model
increases with increasing anisotropy factor and the remaining difference can be attributed
to the local field effects and the non-parabolicity of the band edges.

4.4.2. Local field effects in the dielectric function

The first principles approach allow us to further disentangle the limitations of the Wannier-
Mott model, by transforming the full dielectric matrix in a simplified isotropic dielectric
matrix with static dielectric constant on the diagonal, i.e. ϵ(r, r′;ω) = ε∞. This change
not only suppresses the local field effects, but also leads to a uniform dielectric matrix.
This modification results in a red-shift of the absorption spectrum with electron-hole
interactions, leading to an underestimation of the exciton binding energy with respect to
the first principles result by at least ∼20% (see Table 4.5). Furthermore, we note that
the stronger the exciton is bound, the larger the local field effects are.

Table 4.5: BSE exciton binding energies (in meV) as computed with the full and uniform (ε∞)
dielectric matrix and the deviation (in %) of the former with respect to the latter.

EBSE
x (meV) Deviation

ϵ(r, r′;ω) ϵ(r, r′;ω) → ε∞

Cs2AgBiBr6 170 99 42%
Cs2AgSbBr6 247 158 36%
Cs2AgBiCl6 333 231 31%
Cs2AgSbCl6 434 348 20%

Figure 4.8 shows the imaginary part of the dielectric function computed with and
without local field effects. The inclusion of local field effects leads to a significant sup-
pression of the spectrum without electron-hole interactions, behaviour also reported in
previous studies [287, 288].
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b) Cs2AgBiCl6 c) Cs2AgSbBr6 d) Cs2AgSbCl6a) Cs2AgBiBr6
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Figure 4.8: Imaginary part of the dielectric function as calculated within RPA with (green)
and without (purple) local field effects for a) Cs2AgBiBr6, b) Cs2AgBiCl6, c) Cs2AgSbBr6 and
d) Cs2AgSbCl6.

4.5. Excitonic properties of Cs2AgInCl6 double per-

ovskite

Optical properties of Cs2AgInCl6 double perovskite have been studied both experimen-
tally [254, 258, 262, 289] and theoretically [230, 258]. Han et al. showed in Ref. [289] that
the weak absorption peak at the onset of the optical spectrum is a consequence of the
parity-forbidden direct transition at Γ. This finding is in line with the pioneering com-
putational work by Luo et al. that reported the existence of an optically inactive feature
with an exciton binding energy of 250meV [230]. However, to the best of our knowledge,
there is no quantitative information about the binding energy of the bright excitonic state
originating from near Γ allowed transitions. Motivated by this lack of detailed analysis,
as well as intrigued by the more delocalized electronic structure of the Cs2AgInCl6 dou-
ble perovskite discussed in section 3.4, we employ the previously described G0W0+BSE
approach to compute exciton binding energies and assess the nature of excitonic features.

Figure 4.9 shows that, similar with the case of Ag-pnictogen double perovskite fam-
ily, including electron-hole interactions leads to a red-shift of the optical absorption
G0W0+BSE spectrum with respect to the RPA spectrum, but contrary to the Ag-pnictogen
family, Cs2AgInCl6 does not exhibit any pronounced excitonic feature. In line with pre-
vious results [230, 258], we find several optically inactive excitonic states (marked with
D) originating from parity-forbidden direct transitions at Γ point in the Brillouin zone.
However, our computed exciton binding energy of 180meV for the dark state is 70meV
smaller than that reported by Luo et al. in Ref. [230] and can be explained based on
the different structures and methodologies adopted: Ref. [230] employs a partial GW0

self consistent scheme that is known to open up the QP band gap and as a consequence
it might also affect the static dielectric constant, and reports extrapolated binding en-
ergies. We find that the group of dark excitonic states is followed by three degenerate
bright states (marked with B), centered at 48meV lower than the direct band gap. Our
calculations show that these bright excitons originate from allowed transitions at points
around Γ, that are only 8meV larger, suggesting that, even though parity-forbidden, the
fundamental band gap of Cs2AgInCl6 could still be defined as the optical gap. This result,
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along with the low exciton binding energy, the direct band gap and improved stability
under ambient conditions render Cs2AgInCl6 double perovskite as a potential contender
for optoelectronic applications.

Egap

B
D

Figure 4.9: Optical absorption spectra of cubic Fm3̄m phase of Cs2AgInCl6 calculated using
RPA without local field effects (purple) and the G0W0+BSE approach (green). The first dark
and first bright excitonic states are marked by a blue arrow labeled D and an orange arrow
labeled B, respectively.

To assess the effect of the BIII-site chemical composition on the nature of the excitonic
states, we compare our computed BSE exciton binding energy with the one predicted by
the Wannier-Mott model using the formula 4.11. Contrary to the case of Ag-pnictogen
double perovskites, where one of the effective masses was ill-defined due to the lack of
band dispersion, in the case of Cs2AgInCl6 both electron and hole effective masses at the
band edges corresponding to lowest energy direct transition are well-defined. Therefore,
the reduced mass µ of Cs2AgInCl6 was computed as the average between the hole and
electron effective masses at the Γ point:

1

µ
=

1

m∗
e

+
1

m∗
h

, (4.14)

where the hole effective mass m∗
h was calculated as described in section 3.4.2. Table 4.6

shows that the Wannier-Mott predicted binding energy of the first optically inactive ex-
cited state is in exceptionally good agreement with the G0W0+BSE computed energy,
revealing an underestimation of only 5% . However, the Wannier-Mott prediction for the
second excited state deviates significantly from our computed binding energy, highlighting
the deviations from the Wannier-Mott model.
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Table 4.6: Exciton binding energies (in meV) of the first two lowest energy dark states as
calculated with G0W0+BSE (EBSE

x ) and the Wannier-Mott model (EWM
x ) and the deviation

(in %) of the Wannier-Mott predicted binding energy with respect to the BSE value.

n EBSE
x (meV) EWM

x (meV) Deviation

Cs2AgInCl6
1 180 189 5%
2 75 47 37%

While the non-hydrogenic character of the excitonic features in the Ag-pnictogen fam-
ily was linked to anisotropy of the reduced mass and sizeable local field effects in the
dielectric function (see section 4.4), our studies reveal that none of those play a signif-
icant role in the case of Cs2AgInCl6 double perovskite. As previously demonstrated in
section 3.4.2, despite the rock-salt packing of the crystal, with alternating Ag- and In-
centered octahedra, both electron and hole effective masses are highly isotropic. Further-
more, repeating G0W0+BSE calculations with uniform dielectric matrix ε(r, r′;ω) = ε∞,
we find that the excitonic transitions are almost unaffected, with the energy of the first
dark excited state decreasing by ∼10meV and that of higher excitonic states by less than
1meV. We attribute this particular behaviour to the fundamentally different orbital char-
acter at the band edges of Cs2AgInCl6 direct band gap double perovskite, in particular
to the diffuse s orbitals making up the CBM at and around Γ point.



Chapter 5

Halogen migration in all-inorganic

CsPbBr3 perovskite

Lead-halide perovskites have been one of the main focuses of the photovoltaics commu-
nity for over a decade due to their exceptional semiconducting properties, facile tunabiliy
through compositional engineering and power conversion efficiency exceeding 25% [8].
This class of materials have been extensively used as active layers in photovoltaic solar
cells [170, 290, 291], light-emitting diodes (LEDs) [292, 293], photo-detectors [294–296]
and X-ray scintillators [297]. In recent years, remarkable efforts have been made to im-
prove the perovskite-based optoelectronic devices via encapsulation [298] and passivation
of the perovskite layer [299], as well as (partial) replacement of the A-site cation [189].
However, lead-halide perovskites continue to be unstable towards moisture, oxygen, light,
heat, and electric fields [13], leading to a halt in commercialisation. Although believed
to be more stable, even all-inorganic halide perovskites are unstable under strong electric
fields [193].These poor characteristics of both organic-inorganic and all-inorganic halide
perovskites are presumably a result of point defects [11, 300–302], which facilitate mi-
gration of mobile ionic species, especially at the grain boundaries and surfaces of single
crystals [303], leading to material degradation and phase separation [304].

The mechanism of the defect-mediated ion migration has been extensively studied both
theoretically, using first principles calculations [88–90, 305–308], and experimentally [88,
185, 309–312]. Furthermore, various reports showed that the halide ions are the most
mobile species [89, 261, 313, 314]. For example, Eames et al. [88] and Meloni et al. [89]
experimentally determined the migration barriers in MAPbI3-based solar cell and proved
that halides are the main migration species in halide perovskite devices. Despite the large
number of studies, the activation energy for these migration processes is still under debate,

67
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with computed values spanning about one order of magnitude. However, they consistently
predict the halogen migration as the primary channel for the ionic conductivity observed
in halide perovskites [88–90, 306, 307, 313, 315].

While the majority of the mentioned studies focused on hybrid organic-inorganic per-
ovskites [88, 89, 91], recently the interest in all-inorganic CsPbX3 halide perovskites was
on the rise due to their very high photoluminescence quantum yields, with band gap en-
ergies and emission spectra tunable over the entire visible spectral region [191]. Kang
et al. conducted a theoretically study of intrinsic point defects in CsPbBr3 and predicted
that the halides are the most mobile species among the 12 point defects analysed [316].
Zhang et al. [186] demonstrated by means of ab initio calculations that the migration
path of halide atoms presents small deviation from the linear route and observed good
agreement with activation energy determined by temperature dependent conductivity
measurements [309, 310].

Even though all the studies mentioned above have focused on ion migration in the bulk,
the importance of the surfaces in the ion migration process is expected to increase with the
decrease in the size of perovskite nanocrystals. Furthermore, Xing et al. demonstrated in
Ref [317] that measured activation energies obtained by Arrhenius fitting of conductivity
data in the dark significantly increases with grain size, leading to an increasingly difficult
ion migration in large crystals, while Yun et al. showed that the ion migration process is
dominant at grain boundaries, using Kelvin probe force microscopy [318].

Recently, the effect of both surfaces and grain boundaries have been analysed using
theoretically approaches as first principles calculations [90, 91]. And while Meggiolaro et
al. showed in Ref. [91] that the migration barriers of interstitial halide vacancies are almost
unaffected by the presence of surfaces, Oranskaia et al. [90] demonstrated that the surface
decrease the migration barrier of Br both vacancies and interstitials in MAPbBr3 and
FAPbBr3 by at least 0.2 eV. Furthermore, as shown in Ref. [90], the migration barriers in
hybrid organic-inorganic perovskites are additionally influenced by the orientation of the
organic cation. However, DFT studies analyse ion migration process in fixed structural
models. The neglect of the rotations of the organic cation at room and higher tempera-
tures leads to significant differences in the potential energy landscape depending on the
choice of molecular orientation [319]. Motivated by this uncertainty in constructing a
suitable structural model of the hybrid organic-inorganic perovskites, corroborated with
the increasingly important role of surfaces in all-inorganic halide perovskite nanocrystals,
we focus on the ion migration process in the bulk and at the surface of CsPbBr3.

In this chapter we analyse the vacancy-mediated bromine migration process in fully
inorganic lead-halide perovskite CsPbBr3, by means of first principles DFT calculations.
Even though CsPbBr3 is orthorhombic with Pbnm symmetry at RT, we focus on the
highly symmetric cubic high temperature crystal structure with Pm3̄m symmetry [187]
and assess the open question of the influence of the surface on the vacancy-related bromine
migration process. Moreover, we study the impact of surface passivation with alkali-halide
monolayers on the migration barrier. We published the results presented in this chapter
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in Ref. [320].

5.1. Surface slab construction

To study how the presence of a surface impacts the halide migration process we con-
structed three systems with different dimensionality, i.e. a bulk and two (001) surface
slab supercells featuring different terminations – surface A is PbBr2-terminated, while
surface B is CsBr-terminated. Figure 5.1 shows a schematic representation of our com-
putational setup.
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}
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}
}
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A B 

3 mobile layers

3 fixed layers

Figure 5.1: Bulk and slab supercells with A (PbBr2) and B (CsBr) terminations. The label
Li (i = 1 − 6) enumerates layers in the slab structure. Surface slabs are separated by 30 Å of
vacuum along the [001] direction.

The surface slab supercells are constructed by repeating the PBEsol-optimized primi-
tive unit cell of Pm3̄m CsPbBr3 twice along [100] direction, once along the [010] direction
and six times along the out-of-plane [001] direction, yielding 2 × 1 × 6 slab unit cells.
A vacuum layer of 30 Å has been introduced along [001] direction and the bottom three
layers fixed to the bulk positions, while the top three remained fully mobile. We con-
struct a bulk system with the same number of layers (without vacuum) to facilitates the
comparison with the slab supercells, having the same defect concentrations and in-plane
boundary conditions. However, this specific setup (with asymmetric unit cells) is not
suitable for direct comparison with neither experimental results nor bulk calculations of
halide migration in symmetric structural models presented in Ref. [186, 308]. Therefore,
we extend our study to a 2× 2× 6 A-terminated surface slab and the corresponding bulk
model. A detailed description of the bulk geometry optimization, slab construction and
various tests showing the validity of the results can be found in Appendix A.4.
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5.2. Structural changes upon vacancy formation

As a first step towards computing the migration barrier, we perform structural optimiza-
tion for all structures shown in Figure 5.1. While the bulk system remains unaffected
by further geometry optimization, the slab structure is compressed at the surface, with
shorter axial (out-of-plane) Pb − Br bonds and almost unchanged equatorial (in-plane)
bonds. This effect is clearly visible in Figure 5.3 a) that shows the average relative varia-
tion of Pb−Br bonds per layer as compared to the bulk Pb−Br bond length of 2.93 Å.

Kang et al. showed in Ref. [316] that under Br-poor conditions, the formation of a
halide related vacancy is favoured over all possible point defects. Therefore, in the next
step, we analyse the effect of the creation of a bromine vacancy in each layer of the slab
system. Generally, a Br vacancy can occupy two symmetry-inequivalent positions in a
surface slab: axial and equatorial. However, due to the asymmetry of the 2× 1× 6 unit
cell, the equatorial positions are not equivalent in our setup. Figure 5.2 illustrates that
the creation of a vacancy leads to slightly different bond lengths depending on whether the
vacancy is introduced along [100] or [010] direction. Furthermore, these three inequivalent
vacancy positions have different energies in the bulk model as well, which is also an artifact
of the asymmetric unit cell.

[100]

[010]

[001]

2.938 Å

2.940 Å

2.940 Å

2.958 Å

a) b)

Figure 5.2: Top view of the A-terminated surface with the equatorial Br vacancy highlighted
in red. The green arrows mark Pb−Br bond lengths and are labeled with the respective values.

To qualitative analyse of the energetic ordering of these possibilities, we compute the
binding energy

EB = Ebulk
f − Eslab

f , (5.1)

where Ebulk
f and Eslab

f are the formation energies of a vacancy in the bulk and slab,
respectively and are defined as the energy difference between the pristine and the defective
system. The binding energy defined by the equation 5.1 quantifies by how much a vacancy
prefers to bind to the surface as compared to the bulk, such that positive values represent
favorable vacancy formation conditions. In agreement with findings for MAPbI3 reported
in Ref. [91], the results listed in Table 5.1 indicate that the surface is more prone to
defects, with L1 featuring the largest binding energy that converges towards zero in the
subsurface layers. Assessing the differences between the two surface terminations, we
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find that the binding energy of the Br vacancy at A-terminated surface is ∼190meV
higher than at B-terminated surface, suggesting favorable vacancy formation at surface
B. Moreover, the creation of a Br vacancy at the B surface is achieved by breaking one
Pb−Br bond, while the creation of a similar vacancy at the A surface implies the breaking
of two Pb−Br bonds. Considering this structural difference, we analyse the two different
surface terminations separately in the following. The significantly larger binding energy
of the vacancy along [010] as compared with the one for the other equatorial position is
an artifact of the asymmetric 2× 1× 6 unit cell setup. We note that migration between
an axial and an equatorial position is the shortest possible migration path in the bulk and
in subsurface layers. However, since our goal is to compare migration barriers in the bulk
with those at the surface and elucidate trends, in the following we will only focus on the
specific case of halide migration between two adjacent axial positions. Furthermore, the
axial-to-axial migration allows for a straightforward comparison of migration paths in all
layers of the supercell.

Table 5.1: Binding energies (EB) in eV of Br vacancies to the surface (results obtained using
the 2× 1× 6 setup).

Position Layer Termination EB (eV)

axial
1

A 0.42
B 0.23

2
A 0.22
B 0.23

3
A 0.05
B 0.02

equatorial along [100] 1
A 0.35
B 0.15

equatorial along [010] 1
A 2.57
B 2.43

Figure 5.3 b) and c) shows the average Pb − Br bond length average variation with
respect to that of the undistorted bulk system upon creating a Br vacancy and opti-
mizing the geometry of the defective system. The introduction of a halide vacancy at
A-terminated surface leads to severe distortions and sizeable contraction of the system,
whereas the creation of a Br vacancy at B-terminated surface leads to a less distorted
structure with smaller bond length variations. This large compression of more than 20%
in L1 of A-terminated is another artifact of the asymmetric 2× 1× 6 unit cell. As shown
in Figure A.10 of the Appendix, the overall compression of a symmetric 2×2×6 unit cell
upon vacancy formation is smaller, with a relative bond length variation of 3.4% in L1

of surface A and similar trends for subsequent layers. Although the absolute value of the
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bond length fluctuation upon introducing a halide vacancy in the subsurface layers differs,
the variation of the axial bond length is ∼5 times larger than the variation of equatorial
bonds. Furthermore, the compression of the slab system at the surface is considerably
reduced when the Br vacancy is created in the deeper lying layers.
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Figure 5.3: a) Relative variation of the bond lengths in the surface slab with respect to the
undistorted bulk bond lengths. Relative bond length variation when a Br vacancy is introduced
b) at A-terminated surface; c) at B-terminated surface; d) in the bulk. Each point represent
the average over all axial and equatorial Pb−Br bonds (per layer), respectively. The geometry
optimized structure is shown below each panel, with the position of the Br vacancy highlighted
in red.

Using the same approach, we studied the influence of vacancy creation within the
bulk structure and find similar consequences. Figure 5.3 d) shows that the insertion of Br
vacancy within the bulk leads to an appreciable compression in the vicinity of the vacancy.
However, the more rigid bulk structure (with fewer degrees of freedom in comparison with
the slab systems) leads to suppressed distortions and an overall negligible average variation
of the bond lengths.

5.3. Br-mediated vacancy migration

In the final step, we simulate the in-plane migration process of a Br-mediated vacancy
between two adjacent axial positions, using cNEB method. To asses the influence of the
different surfaces, we compute the migration barrier energies for a vacancy migrating in
the bulk system, at both A- and B-terminated surfaces and in the subsurface layers L2

and L3. As discussed in section 2.2, the migration energy is defined as the difference
between the total energies of the initial and saddle points.
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5.3.1. Bulk structure

The migration barrier of 0.65 eV computed for the 2 × 1 × 6 bulk unit cell is in good
agreement with the experimental values reported in the literature for cubic CsPbBr3,
ranging from 0.66 eV [309] to 0.72 eV [310]. Furthermore, the discrepancy of 40meV
between the migration energy reported by Zhang et al. in Ref. [186] and our result may
be explained based on different approximations for the exchange correlation potential and
phases of the CsPbBr3 perovskite (Ref. [186] analyses orthorombic phase of CsPbBr3,
within the PBE approximation). Note that we systematically overestimate the migration
barriers by neglecting the large, anharmonic vibrations reported for CsPbBr3 at room and
higher temperatures [321].

Figure 5.4 shows the profile of the migration energy of a Br vacancy in the 2×1×6 bulk
unit cell, along with the migration path. We link the almost straight path, with the rigid
lattice of the bulk. The closely packed network does not permit noticeable restructuring
of the lattice and force the migrating Br ion to move from one axial vacancy position to
the other along the shortest possible path.
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Figure 5.4: a) Energy profiles and b) migration paths for halide migration process within
the bulk system. The structure corresponds to the average atomic configurations of the two
equivalent endpoints of each cNEB calculation overlaid with the position of the migrating Br
ion along the migration path.

5.3.2. Unpassivated slab structure

The migration barriers for a Br-mediated vacancy migration at A- and B-terminated
surfaces and within the deeper lying layers of the 2× 1× 6 slab supercell are reported in
Table 5.2, showing the value corresponding to the bulk migration for comparison.
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Table 5.2: Calculated energies (in eV) of Br vacancy migration across two adjacent axial Br
positions, and deviation (in Å) from the straight migration path in CsPbBr3 perovskite

System
Mobile

Termination Layer
Migration

δ (Å)
layers energy (eV)

bulk 0.65 0.13

slab 3
A

1 0.40 1.24
2 0.29 0.94
3 0.30 1.04

B
1 0.31 0.77
2 0.30 0.67
3 0.30 0.70

slab 4 A

1 0.38 1.24
2 0.26 1.04
3 0.27 1.06
4 0.29 1.10

As showed in figure 5.5, the energy barrier of a Br vacancy migrating within the bulk
is substantially higher than that of a vacancy migration process at any of the two analysed
surfaces. Furthermore, the migration energy at B-terminated surface is lower than half
of that in the bulk structure, suggesting favorable vacancy-assisted diffusion of the halide
ions at the surface. The computed migration barrier at A-terminated surface is 90meV
larger than that at B-terminated surface, in agreement with previous observations showing
iodine vacancy clustering at MAI-terminated surfaces in MAPbI3 [322]. Curiously, the
computed migration barrier for a Br vacancy in subsurface layer L2 is ∼110 meV lower
than that directly at the surface and ∼55% lower than that in the bulk. Moreover, the
migration barrier in the deeper subsurface layers increases extremely slow and does not
reach the value obtained for the vacancy migration within the bulk structure. We believe
that this extremely slow convergence is an effect of our unit cell setup. As described in
section 5.1, the bottom layers of the surface slab are fixed to the bulk positions. This
constraint that introduces spurious strain in the structure the closer to the fixed layer,
might affect the magnitude of the calculated migration barriers especially in the deeper
lying layers. We therefore computed migration energies for an A-terminated surface slab
with four mobile layers as well. The absolute values of the corresponding migration
barriers reported in Table 5.2, are slightly lower but follow the same trend. To validate this
rather counterintuitive trend of migration barriers as a function of surface depth, we also
compute the migration barriers in a 2×2×6 unit cell setup and find the largest migration
energy of 0.48 eV in the bulk and the lowest energy of only 0.20 eV in L2 of A-terminated
surface slab. A detailed analysis of the results for the 2× 2× 6 unit cell can be found in
Appendix A.4. Figure 5.5 shows that this variation of the migration energy within the
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slab structure is correlated with the relative bond length variations of axial and equatorial
bonds with respect to the bulk, such that significant axial compression of the surface leads
to smaller migration energies. The observation that migration barrier is correlated with
sizeable bond length variation is in agreement with previous results showing that larger
lattice distortions lead to smaller migration energies for the through-cell migration of
a Br vacancy in organic-inorganic perovskites [90]. However, a combination of factors
is associated with the slightly higher migration barrier at the A-terminated surface as
compared to that of the deeper lying layers. The subtle interplay between the interface
with the vacuum layer and the extremely distorted structure with longer equatorial and
unusually smaller axial bonds at A-terminated surface leads to additional space for lattice
to restructure, which affect the absolute value of the migration energy.
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Figure 5.5: Migration energy and average bond length variation in the slab structure as a
function of the layer in which Br vacancy migration takes place. The migration energy in the
bulk is also shown in blue for comparison. Open and closed symbols correspond to the surface
slab with three and four mobile top layers, respectively.

Figure 5.6 b) and c) show a zoomed-in side view of the migration paths of the moving
Br ion, associated with the energy profiles showed in panel a). The structures of A- and
B-terminated surfaces represent an average over the atomic configuration of the equiv-
alent endpoints of the migration paths, overlaid with the representation of the path of
the migrating Br ion. While in the bulk the moving Br ion migrates along an almost
straight line, the migration path at both surfaces is described by a curve, with the saddle
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image pointing away from the surface. The shape of the migration path at the surface is
consistent with previous experimental [323, 324] and theoretical [87, 325] reports finding
similar curved migration paths for a vacancy drifting between an equatorial and an axial
position in inorganic oxide perovskites. More recently, various theoretical studies [88, 186]
reported similar curved paths for Pb-based halide perovskites.
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Figure 5.6: a) Energy profiles and migration paths for Br vacancy migration b) at the A-
terminated surface (blue) and c) at the B-terminated surface (green). The structures correspond
to the average atomic configurations of the two equivalent endpoints of each cNEB calculation
overlaid with the position of the migrating Br ion along the migration path. The definition of
the deviation δ from the linear path is shown in the structure corresponding to surface A.

To quantify the differences observed in the curvature of the migration path we compute
the deviation δ from the linear path defined as the perpendicular distance between the
position of the migrating Br ion in the saddle point configuration and the linear trajectory
determined by the initial and final positions and schematically represented in Figure 5.6 b).
As reported in table 5.2, we find that the migration Br ion follows an almost linear path in
the bulk, with a deviation more than 7 times lower than those at the surface, showing the
more flexible nature of the slab, which can deform and accommodate a defect more easily.
Furthermore, we find that at B-terminated surface the deviation δ is almost half than that
at A-terminated surface. This can be explained based on the less lattice restructuring
necessary to accommodate the Br vacancy at B-terminated surface.
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5.3.3. Surface passivation with alkali-halide monolayers

While in the previous sections we demonstrated that the migration barrier is highly in-
fluenced by the lattice distortions and surface restructuring, we now analyse the effect of
surface modification on Br vacancy migration energies.

One of the most common strategies to suppress ionic migration at the surface and
interfaces is passivation through surface modification [326]. Chemical surface treatment
with organic ligands is an extensively used method to achieve increased photolumines-
cence lifetimes and quantum yields [327, 328], but it leads to additional stability issues.
Recently, the passivation with simple inorganic alkali-halide salts has been suggested as an
alternative approach [329–331]. Chen et al. showed that introducing a NaCl layer at the
interface between the halide perovskite absorber and the electron- or hole-transport layers
in solar cells leads to an enhanced stability due to a more more ordered perovskite crystal
structure [330]. Furthermore, Apergi et al. showed using first principles calculations that
the electronic level alignment between the halide perovskite absorber and hole-transport
layer can be improved by using alkali-halide surface modifiers [331].

We investigate four alkali-halide monolayers (NaBr, NaCl, KBr and KCl) as possi-
ble candidates to reduce the halide-mediated migration at the surface of CsPbBr3. We
construct the passivated systems by placing the monolayers on top of the A-terminated
surface and optimizing the structures. An example of such a system is depicted in Fig-
ure 5.7 a) that shows a slab structure passivated with a NaCl monolayer. Upon geometry
optimization we find that the perovskite lattice is generally less compressed than the
unpassivated slab system. Figure 5.7 b) shows that for passivation with Na-based mono-
layers, the variation of Pb−Br axial bonds at A-terminated surface is less than 2% and
that of equatorial bonds is negligible. In contrast, passivation with K-based monolayers
does not reduce the distortions as much. Moreover, using KBr monolayer leads bond
lengths very similar to the ones in the unpassivated slab system. These larger distortions
are induced by the lattice mismatch between the perovskite and the KBr passivation layer
featuring bonds longer than those in the undistorted bulk structure. Na-based monolayers
feature bond lengths only 0.08 Å different from the undistorted bulk and thus one would
expect an increased migration barrier for the surfaces passivated with these Na-based
monolayers.

Using the approach previously described, we analyse the migration process of a Br-
mediated vacancy at the A-terminated surface of a slab passivated with Na-based mono-
layers, by introducing a Br vacancy in the surface layer and computing its migration
barrier. Figure 5.8 a) shows that the migration at the A-terminated surface is highly sup-
pressed when passivated with NaCl monolayer, featuring a migration energy of 0.57 eV,
only 80meV lower than that computed for the Br vacancy migration in the bulk. This in-
crease in the migration barrier is an indirect effect of the surface restructuring induced by
the NaCl monolayer with slightly smaller lattice parameter than the undistorted CsPbBr3
bulk. However, as shown in Figure 5.8 b), the vacancy follows a curved migration path,
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Figure 5.7: a) Slab supercell passivated with NaCl monolayer at A-terminated surface (top
and side views). b) Pb−Br bond length variation at surface A of the slab structure as a function
of passivation layer. For comparison, the Pb−Br bond lengths at surface A of the unpassivated
slab structure are represented as squares.

with a larger deviation than in the unpassivated system (δ = 1.68 Å), highlighting the
”softer” lattice of the slab surface system. Furthermore, we find that, influenced by the
larger distortions, the migration barrier of 0.48 eV computed for the NaBr-passivated
system is considerably lower than in the bulk and only 70meV larger than at the unpassi-
vated A surface. This difference in the migration barriers of the two Na-based-passivated
systems confirms our previous finding that larger distortions of the perovskite lattice lead
to smaller migration barriers.

In summary, in this chapter we presented a first principles DFT study of Br-mediated
vacancy through-cell migration in cubic CsPbBr3. Our first main finding is that the
migration barrier within the close-packed bulk structure is roughly twice as large as that
at either of the two CsBr-terminated or PbBr2-terminated (001) surfaces of the system.
Furthermore, we showed that the halide migration at the surface is facilitated by the larger
structural flexibility of the surface, allowing for significant bond lengths variations as
compared to the bulk. We also studied the effect of surface passivation with alkali-halide
monolayers and demonstrated that a thoughtful choice of the passivation layer might
decrease the ion migration at the surface, leading to a migration energy almost equal to
its bulk value. Our study demonstrated that surfaces facilitates the ion migration process
that is believed to be one of the main causes of the poor stability of perovskites. Our
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Figure 5.8: a) Energy profiles and migration paths for Br vacancy migration at the A-
terminated surface passivated with b) NaCl monolayer (blue) and c) NaBr monolayer (green).
The structures correspond to the average atomic configurations of the two equivalent endpoints
of each cNEB calculation overlaid with the position of the migrating Br ion along the migration
path.

observation that the migration barriers depend on the compression of the axial Pb− Br
bonds suggests that strain engineering could be another viable route for suppressing ion
migration in halide perovskites [332].
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Chapter 6

Conclusions and Outlook

6.1. Summary

A large part of the continuously growing research in the photovoltaics community is
focused on studying promising absorber materials for light harvesting devices and their
fundamental physical properties. In the past decade, metal-halide perovskites emerged as
a new class of such materials with great potential, despite their soft structure prone to
various kinds of inhomogeneities. With the present thesis we contributed to this topic by
providing a detailed understanding of how different heterogeneities affect the structural
and optoelectronic properties of metal-halide perovskites by means of state-of-the-art first
principles calculations.

In our pursuit to elucidate the intricacies of physical properties of metal-halide per-
ovskites, we concentrated our attention on three forms of inhomogeneities. We thus
analysed the effect of macroscopic chemical heterogeneity in 3D double metal-halide
perovskites, macroscopic structural heterogeneity in quasi-2D simple and double per-
ovskites and microscopic local structural heterogeneity in the all-inorganic halide per-
ovskite CsPbBr3.

The macroscopic structural heterogeneity manifests in RP perovskites through the
distinct separation of the inorganic perovskite backbone by long organic molecules. Our
results showed that the DFT electronic band structure of Pb-based RP perovskites at the
band edges is indirectly impacted by the organic cations via steric effects. Furthermore,
we demonstrated that the energetic position of the electronic states emerging directly from
the organic cation is inherited from the HOMO-LUMO gap of the freestanding molecule.

Motivated by the tremendous diversity of perovskite materials, we turned our atten-
tion to Pb-free compounds and performed a quick DFT screening of a series of 3D and

81
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quasi-2D double perovskites, which revealed two main families of Pb-free materials ex-
hibiting promising semiconducting properties. Therefore, in the next part of this thesis
we studied the electronic properties of Ag-Bi, Ag-Sb, Ag-In and Ag-Tl double metal-
halide perovskites. Using DFT and ab initio many-body perturbation theory within
G0W0 approximation, we demonstrated that the chemical heterogeneity of the 3D double
perovskites leads to high anisotropy of the effective masses and electronic states at the
band edges localized within individual octahedra. Furthermore, the lower-dimensional
derivatives of Ag-In and Ag-Tl double perovskites exhibit fundamentally different elec-
tronic properties than their 3D counterparts, highlighted by a striking change in color
as the thickness of the inorganic layer decreases. We also proved that the change in the
band gap character of these RP perovskites is a direct consequence of the dimensional
reduction.

The optical properties of the Pb-free double halide perovskites were also a subject
of interest in our broad study. Thus, in the next section of this thesis we performed
G0W0+BSE calculations for Cs2AgB

IIIX6 with BIII=Bi, Sb, In and X6=Br, Cl and com-
puted their absorption spectra, exciton binding energies and average electron-hole sep-
arations. We find that the Ag-pnictogen compounds exhibit strongly localized resonant
excitons. The binding energies of these excitons scale linearly with the lowest direct band
gap and their localization correlates with the composition of CBM. The exceptionally
high exciton binding energies of up to ∼450meV computed for these materials are similar
to what have been typically observed for quantum confined systems. We showed that
Elliott’s theory, the most common technique used to extract exciton binding energies
from experimental optical absorption spectra, fails for all these systems because it relies
on equivocal assumptions that are not generally valid regardless of the nature of anal-
ysed material. By computing and representing the excitonic wave functions in Ag-Bi and
Ag-Sb double perovskites, we demonstrated that the chemical “confinement” observed in
these compounds is caused by the localization of electrons and holes in chemically distinct
octahedra. For Cs2AgInCl6 we found that the parity-forbidden lowest direct transition
leads to a range of optically inactive excitonic states. However, by analysing the subse-
quent bright states, we noted that the fundamental band gap of Cs2AgInCl6 could still
be defined as the optical gap.

In the final part of this thesis we turned to all-inorganic simple perovskite CsPbBr3 in
an effort to understand one of the most common issues leading to material degradation,
namely the migration process of microscopic structural inhomogeneities represented by
Br-vacancies. We performed DFT calculations and used cNEB method to show that the
vacancy migration process is facilitated at the surface, for which we computed a migration
barrier that is roughly half of the value in the closed-pack bulk. Our results indicate that
the “softer” structure of the surface, affording for larger distortions, is responsible for the
significantly lower migration energy and curved path described by the Br-vacancy. We also
studied the effect of surface passivation with alkali-halide monolayers and validated our
hypothesis by showing that the migration process can be diminished through passivation
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with a judicious choice of a simple alkali halide salt.

6.2. Outlook

Despite the fact that we conducted a rather detailed study employing a high-level of
theory throughout our calculations, there are still several open questions.

For example, based on recent reports claiming that exciton binding energy is highly
affected by the coupling of free electrons and holes to phonons [283, 333], one possible
improvement would be the inclusion of polaronic and phonon screening effects within the
BSE formalism. However, the GW+BSE calculations are already known to be extremely
computational demanding and efforts to include dynamical screening from phonons are
still ongoing. Apart from the overall improvement of the agreement between the com-
puted and experimental binding energies, the inclusion of the electron-phonon coupling
is particularly relevant at one specific point in our work. The presence of multiple dark
excitonic states up to 414meV below the first bright state, arising from the band folding,
in the I4/m phase of Cs2AgBiBr6 suggests that the experimentally observed photolumi-
nescence ∼1 eV below the absorption onset could be related to phonon-assisted optical
transitions [334].

An intriguing feature observed in our study of optical properties in double metal-halide
perovskites is that even though Cs2AgInCl6 features similar chemical heterogeneity as the
Ag-pnictogen compounds, induced by the alternating metal sites, its excitonic properties
are essentially different. This suggests that optoelectronic properties of double metal-
halide perovskites are highly dependent on the band edge orbital character and calls for
further study to elaborate a robust model for elucidating the excitonic properties of the
already synthesised compounds and consistently predicting them for the perovskites that
currently are only at the stage of theoretical models.

Another compelling finding that have also been demonstrated in literature [264, 270] is
the change in the nature of the band gap when Ag-Bi and Ag-Tl perovskites are thinned
to monolayers. The direct band gap of Ag-Bi n = 1 RP perovskite combined with
its increased stability under ambient conditions render this material especially desirable
for photovoltaic applications. However, apart from some experimental optical spectra
recently reported [264], there is no in-depth study of the excitonic features of the layered
double metal-halide perovskites and the origin of the peak seen at the onset of the optical
absorption spectrum is still under debate. Furthermore, the change in the nature of the
band gap of Ag-Tl perovskites is not apparent in the optical absorption spectra [270]. We
note that by employing a GW+BSE approach one can assess the excitonic features, if
present, and evaluate the suitability of 2D RP perovskites for light-harvesting applications
through an in-depth analysis of the fine structure of the absorption spectra. Therefore,
one of our main focuses is to extend the study presented in Chapter 4 to experimentally-
determined and model systems of RP derivatives of the already studied double metal-
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halide perovskites.
Although further investigations are required for a full understanding of the optoelec-

tronic properties in these notoriously complex materials, we believe that this thesis un-
covers a new intuition for the physics of heterogeneous metal-halide perovskites and opens
up new paths in the research of these tremendously diverse and captivating compounds.



Appendix

Computational details

A.1. Convergence parameters in practical calculations

In this section we aim to describe the main convergence parameters involved in the per-
formed calculations. We note that the setups of the calculations for 2D perovskites are
based on parameters previously reported in literature and therefore no further testing
was done. For all other calculations, the convergence of the parameters described in the
following sections have been extensively tested and is presented in detail in the rest of
this chapter.

For electronic structure calculations of periodic systems, such as perovskite materials
analysed in this thesis, the most common approach is to use a plane-wave basis. Fur-
thermore, as demonstrated in Ref. [3, 335], their crystal perodicity allows us to rewrite
the KS eigenfunctions involved in DFT and G0W0 methodologies described in chapter 2
using Bloch’s theorem. Within this framework, KS orbitals can be written as a product
of a wave-like part with the same periodicity as the underlying lattice and a cell-periodic
part that can be further expanded in terms of a discrete plane-wave basis set:

ϕnk(r) =
1√
Ω

∑
G

cnk+Ge
i(k+G)·r, (A.1)

where Ω is the unit cell volume and G is a vector in the reciprocal lattice. In the equa-
tion A.1 the basis functions are known and the coefficients cnk+G are to be determined,
turning the solving of a set of KS equations into a problem of linear algebra, which can
be solved using standard diagonalization techniques.
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A.1.1. DFT calculations

The electronic charge density n(r) can also be written based on Bloch’s theorem as

n(r) =
∑
n

∫
BZ

dk

Ω

∑
G

cnk+Ge
i(k+G)·r, (A.2)

where
∑

n is a sum over occupied states and the integration is performed in the first
Brillouin zone. In practice, the Brillouin zone is sampled using a discrete mesh and the
integral is numerically computed on this grid of k-points. The density of the k-point mesh
increases with the increase of the system and in the limit of an ideal unbound crystal, the
k-point grid is infinite. However, calculations with extremely dense grids are prohibitive
and usually an optimal finite set of k-points is employed to sample the Brillouin zone.
For accurate practical calculations, the relevant physical quantities should be converged
with respect to the size of the k-point grid.

The sum
∑

G is performed for all vectors in the plane-wave basis. In principle, the
basis functions should form a complete functional space requiring an infinite number of
plane-waves. However, for computational reasons, the basis set necessarily consists of
a finite number of basis functions. In practice this number is determined by the cutoff

energy EMF
cut =

1

2

∣∣GMF
cut

∣∣2. Therefore, the convergence of the relevant quantities should

be tested against the maximum allowed kinetic energy of the plane-waves EMF
cut which

is a crucial parameter in DFT calculations. Since larger EMF
cut leads to denser basis set

approaching a complete one and smaller EMF
cut reduces the number of coefficients to be

computed, the cutoff energy is usually determined as a compromise between numerical
accuracy and computational load.

The main challenge of the plane-wave basis set based calculations is the accurate
description of localized features such as core orbitals. To overcome this issue the strong
Coulomb potential is replaced by a weaker pseudopotential [336] using the frozen core
approximation first introduced by Fermi [337] where the valence electrons are separated
from the tightly bound core electrons. Therefore, the valence region features smooth
pseudo wave function identical to the all-electron one while the pseudo wave function of
the core region is nodeless and has the same norm as the all-electron wave function. As
consequence, the chemical bonding in crystalline systems is accurately described using the
combination of plane-wave methodology and pseudopotential concept [338]. Two of the
most common formalisms for designing pseudopotentials are projector augmented waves
(PAW) [339–341] and norm-conservation [342–344]. The results presented in this thesis
were obtained using one of these two approaches depending on the software package in
which the calculations were performed.
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A.1.2. G0W0 calculations

One of the most computationally demanding step is calculation of (static or frequency-
dependent) polarizability and dielectric function. In the BerkeleyGW software package
these quantities are computed within the RPA using as input the electronic eigenvalues
and eigenfunctions from a mean-field reference system [345]. The static RPA polarizability
is expressed in a plane-wave basis based on the equation [42]:

χGG′(q; 0) =
occ∑
n

unocc∑
n′

∑
k

M∗
nn′(k,q,G)Mnn′(k,q,G′)

1

Enk+q − En′k
, (A.3)

where M∗
nn′(k,q,G) = ⟨ϕnk+q| ei(q+G)·r |ϕn′k⟩ are the plane-wave matrix elements. In

practice, the number of plane-waves is determined by |q+G|2 < Eε
cut, where E

ε
cut is the

polarizability cutoff energy and the number of unoccupied states n′ is determined such
that the highest unoccupied state has an energy corresponding to Eε

cut [345]. Therefore, in
equation A.3 there is only one independent convergence parameter. One should converge
either polarizability cutoff or number of unoccupied states, keeping the other parameter
fixed at the correspondent value.

The RPA dielectric matrix can be obtained from the polarizability defined in equa-
tion A.3, as described in Ref. [345]:

εGG′(q; 0) = δGG′ − v(q+G)χGG′(q; 0), (A.4)

where the bare Coulomb interaction v(q +G) has the following form for the crystalline
systems:

v(q+G) =
4π

|q+G|2
. (A.5)

Furthermore, using the equations A.4 and A.5, the screened Coulomb interaction is defined
as

WGG′(q; 0) = ε−1
GG′(q; 0)v(q+G′). (A.6)

All the calculations presented in this thesis were performed using the Godby-Needs
generalised plasmon pole model [32, 44, 346] (GPP) to extend the dielectric response to
non-zero frequencies. Within GPP model, the dynamic screening is expressed as discussed
in Ref. [42] by the following equation:

εGG′(q;ω) = δGG′ +
Ω2

GG′(q)

ω2 − ω̃2
GG′(q)

, (A.7)

where Ω2
GG′(q) and ω̃2

GG′(q) are the effective bare plasma frequencies and are determined
by evaluating the RPA dielectric matrix at ω = 0 and ω = iωp, ωp being the plasma
frequency [32, 44, 346].
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The self-energy operator Σ in QP equation 2.36 can be written as the sum between
the screened exchange operator ΣSX and the Coulomb-hole operator ΣCH [26, 40, 42].
Furthermore, both exchange and correlation self-energy matrix elements can in turn be
expressed in a plane-wave basis set [42]. Using the form for the dielectric function given
by the GPP model in equation A.7, the self-energy matrix elements can be written as
described in Ref. [42, 345]:

⟨ϕnk|ΣSX(E) |ϕn′k⟩ = −
occ∑
m

∑
q

∑
GG′

M∗
mn(k,−q,−G)Mmn′(k,−q,−G)

×
[
δGG′ +

Ω2
GG′(q)

(E − Emk−q)2 − ω̃2
GG′(q)

]
v(q+G′)

(A.8a)

⟨ϕnk|ΣCH(E) |ϕn′k⟩ =
1

2

∑
m

∑
q

∑
GG′

M∗
mn(k,−q,−G)Mmn′(k,−q,−G)

× Ω2
GG′(q)

ω̃GG′(q(E − Emk−q − ω̃GG′(q)
v(q+G′)

(A.8b)

In the expressions of the self-energy matrix elements the last sums run over all q
points of the grid used to sample the Brillouin zone and all G vectors defined by a set
cutoff energy. In equation A.8a the first sum includes all occupied m states, while in
equation A.8b both occupied and unoccupied states. This leads to the presence of two
interdependent convergence parameters: total number of states and screened Coulomb
cutoff energy. In practice, the convergence of the QP band gap is tested first with respect
to the screened Coulomb cutoff while keeping the number of total bands extremely high
such that m→ ∞ and next against total number of bands m while assuming a constant,
very high value for the dielectric matrix cutoff energy

A.1.3. BSE calculations

The BSE defined in equation 2.43 of section 2.4 is solved in two main steps: first, the
electron-hole interaction kernel Keh is constructed on a coarse k-point grid and then the
kernel is interpolated to a much more denser (fine) k-point grid and diagonalized.

All calculations presented in chapter 4 were performed usingKeh within the static limit
as defined in Ref. [345], where it can be expressed as the sum Keh = Kd +Kx between a
screened direct interaction Kd and a bare exchange interaction Kx. The two components
are expressed in plane-wave basis set as firstly described by Rohlfing et al. [29]:

⟨ϕvck|Kd |ϕv′c′k′⟩ =
∑
GG′

M∗
cc′(k,q,G)WGG′(q; 0)Mvv′(k,q,G

′), (A.9a)
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⟨ϕvck|Kx |ϕv′c′k′⟩ =
∑
G!=0

M∗
vc(k,q,G)v(q+G)Mv′c′(k,q,G). (A.9b)

Usually, the coarse k-grid used to construct these matrices is the same as the one used
to calculate the dielectric matrix ε−1

q as discussed in the previous section. In principle in
the number of valence v and conduction c bands are convergence parameters that should
be tested to acquire accurate optical absorption spectra. However, in practice the range
determined by the energy corresponding to v and c, respectively is approximately 10 eV,
ensuring an optical spectrum converged beyond the visible region [345].

Very dense k-point grids are required to capture the dependece of the exciton binding
energies and absorption spectra with the joint density of states (JDoS) in periodic systems.
Since the direct calculation of kernel matrix elements on such a fine grid is computationally
inaccessible the electron-hole kernel computed on a coarse k-grid and interpolated on the
fine one. The final step is the diagonalization that leads to the set of exciton eigenvalues
ΩS and eigenfunctions AS

cvk which in turn can be used to obtain the absorption spectrum.
The convergence of the relevant quantities should be tested against the density of points
in the fine k-grid used for the interpolation of the kernel.

A.2. Electronic properties

A.2.1. Computational screening of Pb-free double perovskites

The study presented in section 3.3 was conducted using Vienna Ab-initio Software Package
(VASP) [347, 348] software package and projector augmented wave (PAW) pseudopoten-
tials [349], provided by VASP libraries. For all geometry optimisation calculations we
sampled the Brillouin zone using k-grids with 12× 12× 12 points for the bulk materials
and 4×4×2 for the 2D RP compounds, respectively and the PBEsol (a version of PBE ap-
proximation specifically revised for solids) functional [350] to approximate the xc energy.
The electronic band structure calculations were performed using PBE functional [67], on
a 8 × 8 × 8 k-point mesh for bulk systems and 4 × 4 × 2 for the quasi-2D RP deriva-
tives. Furthermore, the effect of spin-orbit coupling (SOC) was included self-consistently
throughout all the calculations.

Our computational screening had Cs2AgBiBr6 double perovskite as starting point.
All the other studied structures are theoretical systems achieved by replacing the cor-
responding ions in the crystal lattice of the bulk or 2D RP derivative of Cs2AgBiBr6
and optimising the respective structure without imposing any constraints, i.e. atomic
positions, unit cell shape and volume were allowed to modify during the structural re-
laxations. Therefore, we tested the convergence of the plane-wave cutoff energy only for
Cs2AgBiBr6 and used the same value for all the other compounds. In Figure A.1 we show
that the chosen value of 450meV for the cutoff energy ensures a convergence of the total
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energy to within ∼10meV. Thus, we performed all calculation using the same value for
the plane-wave cutoff energy.
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Figure A.1: Cs2AgBiBr6 total energy (in eV) with respect to plane-waves kinetic energy cutoff
for. Closed symbol represents the value selected to be used further.

A.2.2. Cs2AgBIIIX6 halide double perovskites

All mean-field DFT calculations in section 3.4 have been performed using the Quantum
espresso software package [351, 352]. The electronic structure of Cs2AgB

IIIX6 halide
double perovskites, with B=Bi, Sb and X=Br, Cl has been computed using LDA [61,
62] for the xc functional, while for that of Cs2AgInCl6 we used PBE [67]. We used a
set of norm-conserving, fully relativistic Troullier-Martins[344] pseudopotentials similar
with the ones from Ref. [226], where it has been demonstrated that the semicore states
are particular important for the calculation of the QP energies. Therefore, the following
electronic configurations have been employed throughout in our calculations: 5s25p66s1

for Cs, 4s24p64d105s1 for Ag, 5d106s26p3 for Bi, 4d105s25p3 for Sb, 4d105s25p1 for In, 4s24p5

for Br and 3s23p5 for Cl.
Figure A.2 shows that the self-consistent ground-state calculations have been per-

formed such that the total energy is converged to within 5meV. For Ag-pnictogen double
perovskites we used a plane-waves kinetic energy cutoff of 150Ry (∼2040 eV), while for
Cs2AgInCl6 a plane-waves kinetic energy cutoff of 60Ry (∼816 eV) was employed. The
calculations for all materials have been performed by sampling the Brillouin zone on a
10× 10× 10 Γ-centered uniform k-point mesh, comprising 220 irreducible points.

The zeroth-order one-particle Green’s function G0 and screened Coulomb interaction
W0 in order to obtain the QP band structure have been constructed using the DFT
eigensystem computed with the above settings. As showed in Ref. [16, 226, 264], the
spin-orbit coupling leads the formation of an isolated conduction band in the Bi-based
compounds, due to a splitting of Bi p1/2 and Bi p3/2 states, of at least 1.5 eV. To account for
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Figure A.2: a) Total energy, b) indirect band gap of Ag-pnictogen materials and c) lowest
direct band gap (in eV) with respect to plane-waves kinetic energy cutoff for Cs2AgBIIIX6

halide double perovskites. Closed symbols represent the values selected to be used further.

this effect, fully-relativistic spin-orbit coupling (SOC) has been employed self-consistently
in the construction of G0 andW0 for Ag-pnictogen materials. In contrast, for Cs2AgInCl6,
as demonstrated in Ref. [257], SOC does not influence the electronic band structure.
Therefore, our calculations for Ag-In double perovskite do not include SOC.

All GW calculations have been performed using the BerkeleyGW software pack-
age [345], with the generalized plasmon-pole method of Godby and Needs [346]. To
establish the computational setup we checked the convergence of all parameters described
in section A.1.2. Figure A.3 a) shows the convergence of the static dielectric constant ε∞
with respect to the polarizability cutoff. Figure A.3 b) and c) show the convergence of the
lowest direct band gap with respect to interdependent parameters screened Coulomb cut-
off and number of bands. To determine the optimal values we first analysed the variation
of the lowest energy direct gap with the screened Coulomb cutoff, while keeping the to-
tal number of bands fixed to 1000 for Ag-pnictogen perovskites and 800 for Cs2AgInCl6.
Second, we fixed the cutoff energy to 10Ry for Ag-pnictogen materials and 8Ry for
Cs2AgInCl6 and checked the convergence of the lowest energy direct gap with respect to
total number of bands.
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Figure A.3: a) Static dielectric constant (ε∞) with respect to polarizability cutoff energy and
G0W0 lowest energy direct band gap (in eV) as a function of b) screened Coulomb cutoff energy
(using 1000 bands) and c) total number of bands (using a screened Coulomb cutoff of 10Ry)
for Cs2AgB

IIIX6 halide double perovskites. Closed symbols represent the values selected used
in our setup.

We used a 600 bands for Ag-pnictogen materials and 400 bands for Cs2AgInCl6, a
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polarizability cutoff of 10Ry (136 eV) and 8Ry (109 eV) for Ag-pnictogen and Ag-In
double perovskites, respectively, and an energy cutoff of 60Ry (816 eV) for the bare
Coulomb interaction. As showed in Figure A.3, using these parameters we achieve QP
band gaps converged to within 50meV and static dielectric constant converged to within
10−3. DFT and G0W0 electronic band structures showed in Figure A.4 are obtained by
Wannier interpolation using the Wannier90 code [353]. We note that the use of G0W0

approximation opens up the band gap of all studied materials by at least 0.8 eV. We used
a set of 42 and 24 maximally localized Wannier functions for the valence and conduction,
respectively, to accurately interpolate the DFT band structures of Cs2AgB

IIIX6 double
perovskites in the vicinity of the band gap, corresponding to Ag s, Ag d, BIII s, BIII p and
X p states, with BIII=Bi, Sb and X=Br, Cl. For Cs2AgInCl6 we used 14 and 16 Wannier
functions for the valence and conduction region, respectively, corresponding to Ag s, Ag
d, In s, In d and Cl p states.
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Figure A.4: DFT (blue dashed line) and G0W0 (green solid line) Wannierized band structures
of a) Cs2AgBiBr6; b) Cs2AgBiCl6; c) Cs2AgSbBr6 and d) Cs2AgSbCl6, e) Cs2AgInCl6.

The effective masses reported in section 3.4.2 were calculated using the Wannier inter-
polation scheme and a grid spacing of 0.02 Å−1. The effective masses are determined by
calculating the second derivatives of the valence and conduction band edges, evaluating
them numerically on a dense reciprocal space grid. In Table A.1 we show an extensive
analysis of the parameters introducing uncertainties in the effective mass calculation for
the particular case of Cs2AgBiBr6 double perovskite but we note that all studied materials
display a similar behaviour. The interpolation scheme used to compute the energies of
the bands leads to a systematic error of ∼8%, while the grid spacing introduced a further
error of up to ∼14% in the calculated hole effective mass. The DFT starting point is
another source of uncertainty in the effective mass calculations.

Note that, as previously stated, for Ag-pnictogen materials we employed DFT-LDA
starting point, whereas for Cs2AgInCl6 we used DFT-PBE as starting point.
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Table A.1: Effective masses and reduced mass at X (in units of the electron rest mass m0),
BSE and Wannier-Mott exciton binding energies (in meV) of cubic Cs2AgBiBr6 for LDA and
PBE starting points.

Methodology Grid Effective masses (m0)
theory interpolation spacing (1/Å) m∗

h m∗
e µ

G0W0@LDA
linear 0.093 0.33 1.23 0.26

Wannier
0.093 0.35 1.12 0.27
0.020 0.31 0.86 0.23

A.2.3. Pb-based 2D Ruddlesden-Popper perovskites

The results presented in section 3.2, were computed via DFT calculations performed
within the generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) [67] as
implemented in VASP [347, 348], using PAW potentials [349] that are part of the VASP
library. The PAW pseudopotentials have the following atomic configurations: 2s2p3 for
N, 1s1 for H, 2s22p2 for C, 6s26p2 for Pb and 5s25p5 for I. All the calculations include the
effect of fully-relativistic spin-orbit coupling (SOC) self-consistently. We used Γ-centered
k-point grids with 2× 2× 1 points for the ground-state calculations and 6× 6× 2 points
for the density of states (DOS) calculations, respectively, and a cutoff energy for the
plane-wave expansion of 500 eV. All model systems with layer thickness of n = 1 were
designed by replacing the organic cation with Cs. The undistorted model system has
been constructed using untilted and undistorted metal-halide octahedra as found in the
3D cubic phase (with Pm3̄m symmetry) of MAPbI3, with Pb-I bond lengths of 3.15 Å. The
distorted model systems MA-, BA- and PEA-like feature the tilts and distortions found
in the experimental structures of tetragonal I4/mcm MAPbI3, BA2PbI4 and PEA2PbI4,
respectively. In order to avoid spurious interactions between periodic images in these
monolayer model systems, a vacuum layer of at least 20 Å was introduced and a dipole
correction was applied in all calculations.

A.2.4. Dimensional reduction of Pb-free double perovskites

In section 3.5, we carried out first principles DFT calculations on single-crystal X-ray
diffraction structures (SCXRD) to understand the effects of reduced dimensionality on the
electronic structure of the Ag-Tl, Ag-In and Ag-Bi families of layered double perovskites.

All calculations were performed using VASP [347, 348] and PAW pseudopotentials [349],
with the following atomic configurations: 5s25p66s1 for Cs, 6s26p1 for Tl, 4d105s1 for Ag,
6s26p3 for Bi, 5s25p1 for In, 4s24p5 for Br, 2s22p2 for C and 2s22p3 for N. To sample
the Brillouin zone, we used k-point grids containing 4 × 4 × 4 points for the 3D double
perovskites Cs2AgTlBr6, Cs2AgInCl6 and Cs2AgBiBr6 and 2 × 2 × 1 points for the 2D
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derivatives 2-Tl, 1-Tl, 1’-Tl, 1-In, 2-Bi and 1-Bi. Furthermore, we used a cutoff energy
of 500 eV for the plane-wave expansion and obtained band gaps converged within 50meV.

The electronic band structure of Ag-Bi layered double perovskites was computed using
PBE exchange-correlation functional [67] and including SOC self-consistently. In line
with the results from Ref. [264], we found that the inclusion of SOC highly impacts the
electronic bands of Ag-Bi layered double perovskite family, introducing a large spin-orbit
splitting between the J = 1/2 and J = 3/2 bands in the conduction region. However, the
valence band remains almost unaffected by SOC due to its predominantly Ag d, Bi s and
Br p character and the lack of contribution from Bi p states.

Despite the well known limitations of the semilocal approximations to the exchange-
correlation functional leading to underestimation of the bandgaps in semiconductors, the
overall features of the electronic band structures, as well as trends for band gap and band
dispersion are generally predicted very well. Thus, our choice of using PBE is justified.
However, as reported in Ref. [271], for Cs2AgTlBr6 the use of PBE leads to an nonphys-
ical metallic character of the system, by pushing the CBM below the VBM. To correct
this severe underestimation of the band gap we used the screened hybrid functional of
Heyd, Scuseria and Ernzerhofer (HSE06) [77] for all members of the Ag-Tl and Ag-In
double perovskite families. Although the absolute values of band gaps are still seriously
underestimated, HSE06 exchange-correlation functional yields qualitatively accurate re-
sults, predicting the Ag-Tl materials to be semiconductors. Furthermore, the trend of the
HSE06 computed band gaps (ECs2AgTlBr6

gap < E2-Tl
gap < E1-Tl

gap < E1’-Tl
gap < E1-In

gap ) is in line with
the experimentally determined trend in the absorption onsets reported in Ref. [270]. Note
that, to obtain band gaps with absolute values comparable with the experimental ones,
one need to explicitly account for electron-hole interactions. Furthermore, we tested the
effect of SOC and obtained almost no change in the bands dispersion, leading to band
gap differences lower than 0.1 eV. This is a consequence of the predominantly s orbital
character of the CBM in these materials. Therefore, the effect of SOC have been neglected
in all calculations for Ag-Tl and Ag-In materials.

Next, to disentangle the effect of dimensional reduction from the ones of structural
distortion induced in the perovskite lattice, we computed the electronic structure of a
series of undistorted model systems. The undistorted model systems with perovskite
layer thickness n = 1 and n = 2 (1M and 2M) discussed in section 3.5 were constructed
with Ag−Br and T l−Br bond lengths of 2.81 Å and2.73 Å, respectively, corresponding
to the average bond lengths in the 3D parent Cs2AgTlBr6 material. The undistorted
model systems were constructed such that the organic molecules have been replaced by
Cs cations. To avoid the spurious interactions between the periodic images of the unit
cells, a vacuum layer of 20 Å was introduced between the perovskite layers and a dipole
correction was applied.

Figure A.5 shows that the general features of the electronic band structures of 1M
and 2M are very similar to those of 1-Tl and 2-Tl. The model systems retain the
nature of the band gap observed in the experimentally-determined perovskite structure,
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suggesting that the direct-to-indirect gap transition in n = 1 derivatives is induced by
the reduced dimensionality of the inorganic layer. However, the structural distortions
present in the experimental structures 1-Tl and 2-Tl lead to significant differences in the
band dispersion of these systems. The CBM of 1M shifts to Γ, leaving the lowest energy
transition to take place between the VBM at A and the CBM at Γ. Moreover, structural
distortions indirectly impact the band gaps, leading to lower gaps in the model systems
as compared to the experimental structures.

c) 2D, n=1, 1M d) 2D, n=2, 2M

-1.5

0.0

1.5

X Γ V

E
n

e
rg

y
(e

V
)

Tl s

Ag d

-1.5

0.0

1.5

B Γ A

E
n

e
rg

y
(e

V
)

-1.5

0.0

1.5

X Γ V

E
n

e
rg

y
(e

V
)

b) 2D, n=2, 2-Tl

Ag d

-1.5

0.0

1.5

B Γ A

E
n

e
rg

y
(e

V
)

a) 2D, n=1, 1-Tl

Tl s

Ag d

Tl sTl s

Ag d

Figure A.5: Electronic band structures of the experimental structures of a) n = 1 1-Tl, b)
n = 2 2-Tl and the analogous undistorted model systems c) 1M and d) 2M, as computed with
HSE06 approximation, overlaid with the orbital character of the bands. Note that the halide
contributions were omitted for clarity. The corresponding crystal structures are showed on top
of each panel to facilitate the comparison.

The n = 3 model system used in section 3.5 to demonstrate the preserving of the
indirect nature of the band gap in 2D n ≥ 2 derivatives, was constructed by cutting out
a three-octahedra-thick perovskite layer from the 3D parent Cs2AgTlBr6 and relaxing
its structure. The geometry optimisation was performed using DFT in the generalized
gradient approximation PBE [67] with the van der Waals corrections computed using
Tkatchenko and Scheffler method [354].
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A.3. Optical properties of Cs2AgBIIIX6 halide double

perovskites

All calculations presented in chapter 4 were performed in BerkeleyGW software pack-
age [345], using the Tamm-Dancoff approximation (TDA) [45] for the electron-hole inter-
action kernelKeh, expanded in a set of 22 valence and 22 conduction bands, corresponding
to an energy window of at least 8.85 eV. We further note that a Gaussian smearing of
50meV was applied in the optical absorption spectra.

The optical properties of Ag-pnictogen double perovskites discussed in sections 4.1
and 4.2 were computed by solving the BSE using 16 occupied and 8 unoccupied states.
Figure A.6 a) shows that interpolating Keh from a 4× 4× 4 coarse k-point grid to a fine
grid comprising 12 × 12 × 12 k-points leads to the exciton binding energy converged to
within 10meV.

a) b)

Cs2AgBiBr6
Cs2AgBiCl6

Cs2AgSbCl6

Cs2AgSbBr6
dark

bright

Figure A.6: Binding energy of the first bright excited state as a function of the number of
k-points used for the interpolation of the kernel for a) Ag-pnictogen and b) Cs2AgInCl6 double
perovskites. Closed symbols represent the values selected to be used further.

The optical properties of Cs2AgInCl6 double perovskite presented in section 4.5 were
obtained by solving BSE with 2 occupied and 1 unoccupied states, yielding a convergent
absorption spectrum up to at ∼5 eV above the onset. Because the band edges at the lowest
energy direct transition are very disperse, a considerably dense k-point grid is required to
sample the bands and to accurately interpolate the kernel. Since the BSE calculations are
essentially prohibitive for extremely fine grids, to achieve a high density k-point mesh, we
use the patched sampling scheme, originally described in Ref. [132]. Therefore, in order to
achieve k-point grids finer than 34×34×34 points, we diagonalized the BSE Hamiltonian
taking into account only k-points in a small patch around the Γ point. Figure A.6 b) shows
that using an interpolation mesh with 50× 50× 50 k-points exciton binding energies are
converged to within better than 5meV. However, we note that to be able to represent the
optical absorption spectrum the entire Brillouin zone should be sampled. Therefore, the
optical absorption spectrum presented in Figure 4.9 was computed using a 34 × 34 × 34
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fine grid.
For clarity reasons, a detailed summary of our complete computational setups for the

results presented in chapter 4 is showed in Table A.2.

Table A.2: Computational setup and resulting QP band gaps and exciton binding energies for
Ag-pnictogen and Ag-In halide double perovskites.

Input Ag-pnictogen Ag-In

DFT

xc functional LDA PBE
cutoff energy (Ry) 150 60

k-point grid 10× 10× 10 10× 10× 10
spin-orbit coupling yes no

G0W0

ε cutoff (Ry) 10 8
Σc cutoff (Ry) 10 8
Σx cutoff (Ry) 60 48

bands 600 400

BSE

states in kernel
22 occupied 22 occupied

22 unoccupied 22 unoccupied
input k-point grid 4× 4× 4 4× 4× 4

interpolation k-point grid 12× 12× 12 50× 50× 50

states on the interpolated grid
16 occupied 2 occupied
8 unoccupied 1 unoccupied

A.4. Halogen migration in CsPbBr3

The structural models depicted in Figure 5.1 of section 5.1 are constructed based on the
optimized structure of the experimental high temperature crystal structure of CsPbBr3
with Pm3̄m symmetry. First step in the creation of a surface slab system is establishing
the necessary values of the input parameters for a well-converged bulk calculation. The
main parameters that influence the computational cost and accuracy are the k-point mesh
and the energy cutoff of the plane-wave expansion. In order to converge the total energy
of the bulk with respect to these two interdependent parameters, one need to first fix one
of them at a very large value and converge the total energy with respect to the other one
and then interchange the parameters and repeat the procedure. Using this approach, we
first fixed the cutoff energy to 500 eV and tested the convergence of the total energy of the
bulk with respect to the number of points in the k-point grid used to sample the Brillouin
zone. Figure A.7 a) shows that a 4× 4× 4 k-grid lead to a total energy converge within
43meV. Next, we fixed the k-point grid to a mesh of 12× 12× 12 points and converged
the total energy of the bulk with respect to the cutoff energy. Figure A.7 b) shows that
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calculations using a cutoff energy of 300 eV yield a total energy with only 1meV lower
than that obtained with the maximum tested value. Last, we performed a geometry
optimisation of the bulk structure, using DFT within the PBEsol approximation [350] as
implemented in VASP [347, 348]. We also checked the validity of our optimized lattice
parameter by computing the total energy of the bulk as a function of different lattice
parameters and show in Figure A.7 c) that this convergence test yield the same result.
Note that the resulting optimized lattice parameter of 5.86 Å is in very good agreement
with the experimental value from X-ray diffraction [355].
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Figure A.7: Total energy of the cubic CsPbBr3 bulk (Ebulk in eV) as a function of a) k-point
grid (in one dimension, with cutoff energy fixed at 500 eV), b) energy cutoff for the plane-wave
expansion (with k-point grid fixed at 12 × 12 × 12) and c) lattice parameter (with previously
determined values for the energy cutoff and k-point grid). Closed symbols represent the values
selected to be used in our setup.

Second step is the convergence of the surface energy with respect to the slab thickness.
The total number of layers in the slab structure must ensure the convergence of the surface
energy

σ =
1

2
(Eslab −NEbulk) (A.10)

where Eslab is the total energy of the slab system, Ebulk is the energy per atom of the bulk,
N is the number of atoms in the surface slab structure and 1/2 pre-factor accounts for
the two surfaces of a slab supercell. Furthermore, the effect of fixing layers on the surface
energy has also been tested. Figure A.8 a) and b) shows that our unit cell setup featuring
6 total layers, 3 of which fully mobile, grants a surface energy converged to within 25meV
with respect to the slab thickness. Note that, by constraining the bottom layers to the
bulk atomic positions, spurious strain is introduced in the structure closer to the fixed
layers.

Third, in order to avoid spurious interactions between periodic images, a vacuum layer
must be introduced between neighbouring slabs. In Figure A.8 c) we show that our choice
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Figure A.8: Surface energy per atom (in meV) a) as a function of number of total layers. Total
energy of the supercell featuring 6 layers along out-of-plane [001] direction (Eslab in eV) b) as
a function of mobile layers and c) as a function of vacuum layer height between adjacent unit
cells. Closed symbols represent the values selected to be used in our setup.

of 30 Å of vacuum along the [001] direction is sufficient to cut any interactions between
adjacent unit cells.

In summary, all calculation were performed using PAW pseudopotentials [349], a cutoff
energy of 300 eV for the plane-wave expansion and a k-point grid with 4×4×4 and 4×4×1
points for the bulk and and slab systems, respectively. All structural optimisations were
performed with fixed volume and shape of the unit cells and featuring a convergence
criterion of at least 0.05 eV/Å for the forces and 10−4 eV for the energy.

The migration paths and energies were computed using the climbing-image nudged
elastic band (cNEB) method [81] described in section 2.2. We simulated the vacancy-
mediate bromine migration using three intermediate images between the fixed initial and
final states of the system that have been optimized beforehand. The migration barrier
energy has been computed as the difference between the energy of the saddle point and
the energy of the initial state of the transition.

To validate our computational setup, we repeated the cNEB calculation of the mi-
gration between two adjacent axial positions at the A-terminated surface with five in-
termediate images and find a migration energy of 0.36 eV, 40meV lower than our result
obtained with three NEB images. The energy profile and migration path are shown in
Figure A.9 and are qualitatively similar to our results with three NEB images. This dif-
ference between the migration energies can be attributed to slightly different settings that
we chose. The calculations with 3 images were done on a 4× 4× 1 k-grid and optimized
with a conjugate gradient algorithm and a convergence criterion of 0.05 eV/Å, while the
calculation with 5 images was done on a 2× 4× 1 k-grid using a LBFGS algorithm and
a convergence criterion of 0.001 eV/Å.

Axial-to-axial migration paths have also been reported for cubic (but highly distorted)
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Figure A.9: a) Energy profiles and migration paths for the axial-to-axial migration in L1 of
the A-terminated surface, as computed with the cNEB approach using 5 (panel b) and 3 (panel
c) intermediate images, respectively. The structures correspond to the average atomic configu-
rations of the two equivalent endpoints of each cNEB calculation overlaid with the position of
the migrating Br ion along the migration path.

bulk MAPbBr3 and FAPbBr3 by Oranskaia et al. using 7-13 NEB images [90]. These
migration energies are ∼0.68 eV and ∼0.45 eV (depending on the direction in the dis-
torted unit cell) for MAPbBr3 and ∼0.85 eV for FAPbBr3, and the energy profile of the
axial-to-axial path looks qualitatively similar to our calculations. Furthermore, more
recently Smolders et al. reported migration energies for orthorhombic CsPbBr3 using 4
NEB images, and although absolute values are hard to compare due to different unit cell
setups, structural symmetries and differences in the details of the DFT calculations, the
energy profile of the axial-to-axial migration path reported in Ref. [308] appear to be
qualitatively similar as well. Therefore we conclude that the use of 3 images introduces
only a small systematic error in our calculations, but does not change the trends.

In order to confirm that the result of significantly smaller migration energy at the
surface than in the bulk is robust, we also test it against the size and symmetry of the
slab supercell. Using the same approach, we designed a 2 × 2 × 6 bulk system and
2 × 2 × 6 A-terminated surface slab supercell. First, we calculated the bond length
variation upon vacancy introduction in the 2 × 2 × 6 slab unit cell. As expected, the
axial compression directly at the surface is smaller in the larger unit cell than that in
the 2 × 1 × 6 unit cell. However, Figure A.10 shows that the trends as a function of
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the surface layer are similar. Generally, the size of distortions will be smaller for larger
supercells, but they will not vanish, and hence the migration energies will differ from
the ones in the bulk. Similarly, bond length variations in the bulk will also decrease
upon going to larger unit cells. Furthermore, both are restricted by the same boundary
conditions in the in-plane directions, facilitating the direct comparison between these two
dimensional different systems. However, neither the bulk nor the surface models are good
representations of real systems in the limit of dilute vacancy concentrations.
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Figure A.10: Relative bond length variation when a Br vacancy is introduced at the A-
terminated surface for a) 2×1×6 unit cell and b) 2×2×6 unit cell, respectively. The geometry
optimized structure is shown below each panel, with the position of the Br vacancy highlighted
in red.

Next, by computing the migration energies throughout the A-terminated surface slab
of both unit cell setups, we find that the result of a much lower migration energy at the
surface also holds for a larger unit cell. The comparison of the migration energies in the
two unit cells shown in Table A.3 reveals a 0.17 eV reduction of the migration energy in
the bulk and a 0.12 eV reduction of the migration energy at the surface as a consequence
of using a larger, symmetric unit cell. The migration energy is smaller for the surface
slab than in the bulk. In both unit cell setups, L2 features the lowest migration energy,
followed by a slight increase in L3. We attribute this finding to an interplay of axial
bond length contraction and equatorial bond length elongation at the surface and the
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slow convergence of the migration energy towards the bulk value to the presence of fixed
layers in our surface slab model.

Table A.3: Calculated migration energies (in eV) for a Br vacancy migration across two
adjacent axial halide positions in the bulk and in the A-terminated surface slab.

System Migration energy (eV)
2× 1× 6 2× 2× 6

bulk 0.65 0.48

slab L1 0.40 0.28
slab L2 0.29 0.20
slab L3 0.30 0.26



List of abbreviations

3-BPA 3-Bromopropylammonium
Ag Silver
BA Butylammonium
Bi Bismuth
Br Bromine
BSE Bethe-Salpeter Equation
CBM Conduction Band Minimum
(c)NEB (climbing-image) Nudged Elastic Band
Cl Chlorine
Cs Caesium
DFT Density Functional Theory
EA Electron Affinity
evGW Eigenvalue Self-consistent GW
FA Formamidinium
GPP Generalised Plasmon Pole
HIS Histammonium
(h)TST (harmonic) Transition State Theory
HOMO Highest Occupied Molecular Orbital
HSE xc screened hybrid functional of Heyd, Scuseria and Ernzerhofer
I Iodine
In Indium
IP Ionisation Potential
IPES Inverse Photoelectron Spectroscopy
LDA Local Density Approximation
LED Light Emitting Diode
LUMO Lowest Unoccupied Molecular Orbital
MA Methylammonium
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MBPT Many Body Perturbation Theory
MEP Minimum Energy Pathway
PAW Projector Augmented Wave
Pb Lead
PBE xc functional of Perdew, Burke and Ernzerhof
PEA Phenethylamine
PES Photoelectron Spectroscopy
QE Quantum Espresso software package
QP Quasi-Particle
QSGW Quasiparticle Self-consistent GW
RP Ruddlesden-Popper
RPA Random Phase Approximation
RT Room Temperature
Sb Antimony
scGW self-consistent GW
SCXRD Single-Crystal X-Ray Diffraction
SOC Spin-Orbit Coupling
TDA Tamm-Dancoff Approximation
TDDFT Time-Dependent Density Functional Theory
Tl Thalium
UPS Ultraviolet Photoelectron Spectroscopy
VASP Vienna-Ab-initio-Simulation Package
VBM Valence Band Maximum
WM Wannier-Mott model
xc exchange-correlation
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