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Abstract 

Counteracting global warming requires intensifying decarbonization efforts across all sectors. To this 

end, the global residential building sector faces an urgent need to progress towards the climate goals, as 

it accounts for over a sixth of greenhouse gas emissions and over a quarter of energy consumption, most 

of which are caused by warm water and space heating and cooling. However, many economically and 

ecologically sensible retrofit measures are not conducted, among other reasons because of high per-

ceived uncertainty regarding financial savings. Against this background, this doctoral thesis aims to 

contribute to successfully shaping the heat transition in the residential building sector by investigating 

three main aspects. The first aspect deals with reducing the perceived risk for energetic retrofitting by 

providing reliable data-driven decision support, as there is currently a research gap regarding long-term 

(i.e., annual) prediction for residential buildings and the resulting consequences of increased prediction 

accuracy. The findings in this thesis provide strong evidence that data-driven energy quantification 

methods reduce prediction errors by about 50% compared to the legally prescribed engineering methods. 

Assuming rational decision-making and setting up an agent-based building stock model, this increase in 

prediction accuracy translates into a substantial rise in energetic retrofitting from about 0.98% to 1.68%. 

Within the model setting, further prediction accuracy gains allow the retrofit rate to eventually exceed 

the envisaged 2% to successfully shape the heat transition in the residential building sector. The second 

aspect deals with understanding and managing the remaining risks connected to energetic retrofitting 

applying concepts from quantitative finance. To this end, this thesis follows literature and differentiates 

technological and operational risks (first aspect) from contextual and economic risks (second aspect). 

The findings indicate that risk perception is crucial for evaluating energetic retrofitting. Moreover, the 

findings provide the theoretical basis and highlight the potential of diversifying and hedging the remain-

ing risk on the financial markets via risk transfer contracts. The third aspect deals with carefully tailored 

policy measures by constructing spatially and temporally differentiated incentive mechanisms to allo-

cate scarce financial resources efficiently, maximizing the greenhouse gas emission reductions per mon-

etary unit invested. The findings indicate significant influence from regionally differing socio-economic 

factors on energetic retrofitting. Moreover, time-dependent subsidy schemes incentivizing early retro-

fitting reduce greenhouse gas emissions substantially. Assuming rational decision-making, greenhouse 

gas emission reductions per monetary unit invested for time-dependent subsidy schemes exceed the 

reductions by static subsidy schemes by up to 675%. In summary, this cumulative doctoral thesis com-

prises seven research articles and aims to contribute to the heat transition in the residential building 

sector by applying artificial intelligence and concepts from quantitative finance and deriving managerial 

and policy implications for all focal aspects. 

 

Keywords: Data analytics, Machine learning algorithms, Risk management, Energy efficiency,  

Energetic retrofitting, Energy informatics, Final energy performance  
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I. Introduction 

I.1. Motivation 

Climate change is among the most compelling challenges of our time. A sharp increase in the extinction 

of flora and fauna, the rapid retreat of glaciers and arctic ice, and worsening extreme weather events 

worldwide leading to famine and migration are just some of the catastrophic consequences of global 

warming (Kling and Ackerly, 2020; Vargo et al., 2020). On this background, climate change shines a 

harsh spotlight on the fragile nature of our modern, globalized world, demonstrating how destructive 

disturbances to this system can be (Armitage and Nellums, 2020; Pan and Zhang, 2020; Thomas et al., 

2020). This confronts us with the clear realization that climate change has become a colossal threat that 

we must urgently address. 

Tackling this issue and collectively mitigating climate change unites the world’s population more than 

any other goal in the past (Keller et al., 2019). This is reflected in the Paris Agreement concluded in 

2015 at the international climate conference. Here, almost all the countries worldwide committed them-

selves to working together, shaping the climate transition, and creating a planet that can sustain human 

life (Beiser-McGrath and Bernaue, 2019; Falkner, 2016; McGrath and Bernauer, 2017). Limiting global 

warming to well below two degrees Celsius compared to pre-industrial levels is the central goal of the 

ambitious Paris Agreement (Glanemann et al., 2020). This, consequently, requires intensifying decar-

bonization efforts to curb greenhouse gas emissions concomitantly (Forster et al., 2020). However, de-

spite these ambitious international climate goals, the current state of the low-carbon transition paths 

lacks significantly behind the set goals, requiring higher activities across all sectors (Da Graça Carvalho, 

2012; Häckel et al., 2017; Michelsen and Madlener, 2016; Roelfsema et al., 2020). 

The global residential building sector accounts for 17% of greenhouse gas emissions and 27% of energy 

consumption and, therefore, faces an urgent need to progress towards decarbonization (Nejat et al., 2015; 

Robert and Kummert, 2012). Here, warm water and space heating and cooling stand out as predominant 

energy consumers, highlighting the paramount relevance of energy efficiency in the residential building 

sector (Ürge-Vorsatz et al., 2015). To this end, most of the current national building stocks were con-

structed before thermal standards and more stringent building codes came into place (e.g., European 

Commission (2014), Jennings et al. (2011)). Considering low demolition and reconstruction rates, a 

sharp increase in energetic retrofitting is essential for achieving climate goals. However, many econom-

ically and ecologically sensible retrofit measures are not conducted because, among other reasons, high 

upfront investments, coupled with uncertain energy savings and risk aversion on the side of the home-

owner, form substantial investment barriers (Amecke, 2012). This phenomenon has coined the term 

energy efficiency gap (Jaffe and Stavins, 1994). In fact, most major markets exhibit annual retrofit rates 
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of about 1% (International Energy Agency, 2020), albeit retrofit rates of about 2% are required to suc-

cessfully shape the heat transition (Deutsche Energie-Agentur GmbH, 2021). 

Against this background, it becomes apparent that further measures must be taken. Promising options 

are, among others, reducing the perceived risk for energetic retrofitting by providing reliable decision 

support, conducting further risk mitigation measures by applying concepts from quantitative finance 

such as risk transfer contracts, and incorporating carefully tailored policy measures (Achtnicht and 

Madlener, 2014; Csutora and Zsóka, 2011). 

I.2. Research aim 

In 2002, the European parliament and council passed a directive declaring mandatory energy perfor-

mance certificates (EPC). This directive should contribute to increasing energetic retrofitting by inform-

ing about possible retrofit measures and the buildings’ final energy performance (FEP) – the annual 

amount of energy required for space and water heating, cooling, and ventilation per square meter effec-

tive building area under the climatic conditions of a test reference year and location (Arcipowska et al., 

2014; European Parliament and the Council, 2002; Poel et al., 2007). EU member states have incorpo-

rated the details regarding EPCs into their national legislation in different ways (although there is over-

lap in most cases), which is why we focus on Germany as an example. Here, EPCs are issued by qualified 

auditors conducting on-site inspections and using by-law prescribed energy quantification methods 

(EQM) to ensure high quality in the results. These by-law prescribed engineering EQMs are based on 

physical laws to calculate thermal dynamics and energy behavior (Zhao and Magoulès, 2012), thus re-

quiring detailed information on building components (Arcipowska et al., 2014). If the input data quality 

is low, e.g., because the insulation materials are unknown and cannot be determined with reasonable 

effort, the result will also be erroneous. To this end, EPCs are subject to criticism for failing to mean-

ingfully impact retrofit activity due to low FEP prediction accuracy (Hardy and Glew, 2019). 

Data-driven EQMs were introduced in research to overcome the shortcomings of engineering EQMs, 

obtaining promising results (Sutherland, 2020). Data-driven EQMs learn underlying dependency struc-

tures from available data without relying on expert knowledge of building physics or precise information 

on building components (Amasyali and El-Gohary, 2018). In turn, this allows enhancing FEP prediction 

accuracy while simultaneously simplifying data collection. However, there is a lack of studies on data-

driven EQMs in residential buildings with a focus on long-term (annual) energy prediction, as required 

for EPCs (Amasyali and El-Gohary, 2018; Wei et al., 2018). Thus, the first research aim of this doctoral 

thesis is to investigate whether data-driven EQMs based on machine learning algorithms (MLA) as an 

alternative to engineering EQMs can increase the FEP prediction accuracy. 

Following the first research aim, two subsequent considerations are important for data-driven FEP pre-

dictions: (1) to which degree will homeowners subjectively perceive the results as trustworthy, and (2) 
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how do differing prediction accuracies translate to in- or decreased retrofit activity. Regarding the for-

mer, MLAs are often considered black-box models, bearing the disadvantage of highly complex inner 

structures and calculation mechanics (Foucquier et al., 2013). Understanding how MLAs derive their 

predictions is essential to reduce perceived uncertainty and contribute bridging the energy efficiency 

gap (Mohseni et al., 2018). Otherwise, the opposite effect of reduced retrofit activity may arise despite 

higher prediction accuracy, in case the decrease in trust from increased computational complexity out-

weighs the accuracy gains. In this regard, the field of explainable artificial intelligence (XAI) enables 

understanding the predictions of the applied MLA. More precisely, XAI allows generating more ex-

plainable models, enabling homeowners to understand and trust their predictions while maintaining high 

prediction accuracy (Barredo Arrieta et al., 2020). Regarding consideration (2), robust statements on the 

effect of higher prediction accuracy on the retrofit rate are not available at present. Despite a large vol-

ume of research (particularly in the engineering disciplines) on the evaluation and refinement of FEP 

prediction accuracy, no study has addressed this research gap. Thus, the second research aim is to in-

vestigate these challenges and opportunities of data-driven FEP prediction. On the one hand, this in-

cludes the evaluation of data-driven EQMs’ explainability and, on the other hand, the impact prediction 

accuracy has on the retrofit rate within an agent-based building stock model (BSM) and under the as-

sumption of rational decision-making. 

In summary, the first two research aims provide the foundation for data-driven EQMs, examining the 

potential in terms of prediction accuracy and explainability and linking this potential to the retrofit rate 

under the limitations of the specific model setup and assumptions. However, this is a narrow focus on 

one source of risk because the FEP does not yet consider, for instance, energy prices and differing cli-

matic conditions. To this end, Mills et al. (2006) differentiate risks in energy savings projects into five 

categories: economic, contextual, technology, operational, and measurement and verification risks. For 

instance, economic risks cover uncertain future price paths for the underlying energy carrier, and con-

textual risks include uncertain weather and climate developments. Obviously, increasing FEP prediction 

accuracy can, by definition, not mitigate all these risks. Therefore, the resulting investment decision is 

stochastic and subject to risk even under perfect FEP prediction accuracy because, for instance, energy 

prices and weather developments still constitute stochastic influences. Here, applying risk transfer con-

tracts may further mitigate the underlying risk. Hence, the third research aim of this thesis is understand-

ing and managing the risks connected to energetic retrofitting from both the perspective of the home-

owners willing to enter risk transfer contracts and the respective issuer by applying methods from quan-

titative finance. More precisely, homeowners may either perceive energetic retrofitting as a risky invest-

ment with uncertain financial savings or as insurance against energy price exposure, leading to different 

retrofitting behavior. The remaining risk can be further mitigated through risk transfer contracts, diver-

sification, and hedging on the financial markets on the side of the issuer of the risk transfer contracts. 
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The previous research aims focused on individual energetic retrofit decisions and their immediate im-

pact. However, decarbonizing the residential building sector also requires intensifying efforts on the 

policy level through well-designed policy measures. Nonetheless, the mechanisms currently in place 

often follow a scattergun approach, not differentiating spatial or temporal circumstances to increase 

efficiency. Taking these circumstances into account allows for allocating scarce financial resources ef-

ficiently. Thus, the fourth research aim of this thesis is to examine spatially and temporally differentiated 

policy measures. This includes investigating the effect of socio-economic differences on energy effi-

ciency to design locally tailored policy measures and the effects of financial subsidy schemes incentiv-

izing either early or late retrofitting. 

Concluding, this doctoral thesis aims to contribute to successfully shaping the heat transition by over-

coming the current barriers hindering widespread energetic retrofitting. More precisely, the scope of this 

thesis is threefold: (1) Increasing the FEP prediction accuracy by applying data-driven EQMs and in-

vestigating the impact thereof on the retrofit rate in an agent-based BSM assuming rational decision-

making while accounting for explainability. (2) Understanding and managing the risks connected to 

energetic retrofitting. (3) Analyzing how to allocate scarce financial resources by differentiating spatial 

and temporal circumstances to maximize greenhouse gas emission reductions per monetary unit in-

vested. This way, the thesis opens with a highly specific topic, focusing on a single source of risk and 

individual decision-making as the basis for the following sections. Thereafter, the perspective is broad-

ened, and further risk factors are integrated. Finally, the perspective is shifted from individual decision-

making to a societal perspective. 

I.3. Structure of the thesis and embedding of the research articles 

This doctoral thesis disposes of a composite structure consisting of seven research articles that contribute 

to the stated research aims. Figure 1 illustrates the overarching structure and how each research article 

is embedded in the doctoral thesis. 

The remainder of this doctoral thesis is structured as follows: Following this introduction, Section II 

investigates the potential of data-driven EQMs for FEP prediction accuracy. Here, Research Article #1 

elaborates on benchmarking both engineering and data-driven EQM based on real-world data on the 

example of the German residential building stock. This section provides the basis for the remainder of 

the doctoral thesis (Research Articles #2 through #7) by establishing the competitive advantage of data-

driven EQMs compared to their engineering and legally prescribed counterpart. 
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Figure 1: Structure of the doctoral thesis and classification of the research articles. 

Section III deals with the challenges and opportunities of data-driven FEP prediction. Taking advantage 

of increased FEP prediction accuracy requires a high degree of explanatory power in the data-driven 

EQMs used. Else, missing trust and perceived uncertainty may compromise the prediction accuracy 

increments. Therefore, Subsection III.1 investigates how XAI can be applied to increase trust in the 

predictions of data-driven EQMs to overcome this often-claimed drawback of data-driven EQMs. Here, 

Research Article #2 substantiates the previous findings from Research Article #1 by further investigat-

ing and comparing the explainability of several EQMs. In a rigorous case study based on real-world data 

for the German residential building stock, Research Article #2 explores aspects of explainability by ap-

plying post-hoc explainability methods to different EQMs. 

Subsection III.2 then provides the missing link between FEP prediction accuracy and retrofit activity. 

So far, it is unclear which impact higher prediction accuracies have on the retrofit activity. Research 

Article #3 fills that research gap by applying an agent-based BSM to simulate retrofit activity for dif-

fering degrees of uncertainty in the underlying EQMs assuming rational decision-making. This enables 

quantifying the impact of FEP prediction accuracy gains on retrofit rates under the given model con-

straints. 

As mentioned, some types of risk, such as economic and contextual risk, will continue to impact retrofit 

decisions independent of the previous findings as the FEP does not consider these influences. Therefore, 

Section IV deals with understanding and managing the risks connected to energetic retrofitting, drawing 

on topics of quantitative finance to answer the stated research aims. In Subsection IV.1, Research Arti-

cle #4 first investigates the risk from the homeowner’s perspective. Here, the theoretical basis regarding 

risk perception when facing energetic retrofit decisions is covered. To this end, Research Article #4 

identifies two perspectives on risk, formulates a mathematical model regarding similarities and differ-

ences, and analyzes their influence on energetic retrofitting in a case study. 
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Subsection IV.2 subsequently covers further risk mitigation potential through risk transfer contracts, 

diversification, and hedging with financial derivatives on the financial markets. To this end, two differ-

ent types of energy savings insurances with negatively correlated claim structures are investigated. In 

contrast to Subsection IV.1, Research Article #5 thereby takes the perspective of an energy savings 

insurance company and not the homeowner’s perspective. 

Against the background of governments operating under monetary constraints, an efficient allocation of 

tax money is essential to maximize greenhouse gas emission reductions per monetary unit invested. 

However, most policy measures do not differentiate neither spatially nor temporally, leading to ineffi-

cient allocations. Therefore, Section V deals with carefully tailored policy measures. More precisely, 

Subsection V.1 covers the influence of socio-economic factors on building energy efficiency. Here, 

Research Article #6 investigates the UK building stock and performs several regression analyses to 

derive regional differences in the building stock. Subsequently, the article discusses exemplary locally 

tailored policy mechanisms. The focus on the UK is due to an abundance of publicly available EPC data 

necessary for this large-scale analysis. Several open data sources jointly containing 158 socio-economic 

factors enrich the EPC dataset. 

Subsection V.2 continues from the preceding research article. However, it considers the allocation prob-

lem from a temporal rather than a spatial perspective. To this end, Research Article #7 examines time-

dependent subsidy schemes as financial policy mechanisms, analyzing the impacts of early and late 

subsidizing on achieving the climate goals. More precisely, financial subsidy schemes incentivizing 

early retrofitting may lead to lock-in effects, which in turn leads to not realizing energy savings potential 

from technological advancements in the long run. However, at the same time, incentivizing early retro-

fitting results in longer periods in which the greenhouse gas emissions are realized, potentially minimiz-

ing the combined total emissions. The research article analyzes and discusses the discrepancy between 

the two opposing goals of minimizing annual emissions in 2050 and minimizing total greenhouse gas 

emissions until 2050. 

Section VI concludes this doctoral thesis by summarizing the major findings throughout the research 

articles in Subsection VI.1, stating relevant limitations and prospects for further research in Subsec-

tion VI.2, and acknowledging previous work inspiring this doctoral thesis in Subsection VI.3.  

Finally, Section VII lists the references, and Section VIII entails the appendix. The appendix provides 

additional information on the research articles included in this thesis in Subsection VIII.1, details the 

author’s contributions in Subsection VIII.2, and reproduces the (extended) abstracts in Subsection 

VIII.3. The supplementary material is not intended for publication and contains the full texts of all re-

search articles. 
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II. Artificial Intelligence for final energy performance prediction 

As mentioned, achieving the ambitious climate goals requires intensifying decarbonization efforts over 

all sectors, including increasing the rate of purposeful retrofit measures in the building sector. To over-

come investment barriers arising from uncertainty in energy savings, EPCs have been designed as im-

portant evaluation and rating criteria (Amecke, 2012; Arcipowska et al., 2014; European Parliament and 

the Council, 2002). However, because the legally prescribed engineering EQMs exhibit low prediction 

accuracy, the added value from EPCs is low, and research turned to more promising data-driven EQMs 

as alternatives (Hardy and Glew, 2019; Sutherland, 2020). Nonetheless, there is still a research gap 

regarding data-driven EQMs in residential buildings, focusing on long-term (annual) energy prediction, 

as required for EPCs (Amasyali and El-Gohary, 2018; Wei et al., 2018). Thus, it remains unclear 

whether and which data-driven EQMs can increase FEP prediction accuracy compared to engineering 

EQMs. Research Article #1, therefore, benchmarks several data-driven EQMs against their engineering 

counterpart to fill this research gap. 

More precisely, Research Article #1 addresses the research gap by implementing and tuning several 

MLAs on an extensive real-world dataset containing 25,000 German single and two-family buildings. 

Figure 2 provides descriptive statistics regarding the regional distribution and histograms for central 

variables. To this end, the representativeness of the dataset is ensured by applying post-stratification on 

the performance evaluation measures. Subsequently, the error in FEP prediction is compared between 

the MLAs and the engineering EQM based on another dataset of 345 additional buildings gathered by 

qualified energy auditors. This second dataset encompasses both the calculated FEP from the prescribed 

engineering EQM and the actual metered energy consumption. The article further benchmarks the 

MLAs against each other in-depth based on nested cross-validation on both building datasets to ensure 

robust results and comply with state-of-the-art machine learning practices. Moreover, the article exam-

ines several performance evaluation measures and analyzes two variables – the building age and the 

living space – in more detail to account for potential systematic biases. 

  

Figure 2: Descriptive statistics for the pre-processed dataset on 25,000 German real-world single- and two-family buildings. 
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The results provide strong evidence that the data-driven EQMs outperform the engineering EQM by a 

large margin, each reducing the prediction error by almost 50%. However, the results do not support 

findings from literature that artificial neural networks and support vector regressions are particularly 

suited for FEP prediction (Amasyali and El-Gohary, 2018). Instead, extreme gradient boosting exhibits 

the highest prediction accuracy for most cases. Nonetheless, the differences are slight and general state-

ments require statistical hypothesis tests. Despite minor variations for aggregations in the variables 

“building age” and “living space”, the general tendency holds, indicating robust results. This is further 

substantiated by the additional error measures yielding similar results. Thus, data-driven EQMs are, in 

general, more suitable for residential building FEP prediction. Figure 3 visualizes the accuracies for the 

error measure coefficient of variation (CV), which is given as the root-mean-square error (instead of the 

standard deviation) divided by the mean. This adaptation of the CV is the most commonly used error 

measure in this domain, increasing comparability with related studies (Amasyali and El-Gohary, 2018).  

  

Figure 3: Coefficient of variation error measure for the different energy quantification methods for aggregations of the varia-

bles “building age” on the left-hand side and “living space” on the right-hand side. 

Research Article #1 leads to several managerial and policy implications. First, the results suggest poli-

cymakers should revise the current legislation and establish data-driven EQMs either as stand-alone 

EQMs or alongside their engineering counterparts. The higher FEP prediction accuracies may contribute 

to overcoming investment barriers by mitigating uncertainties connected to energetic retrofitting. This, 

in turn, contributes to achieving the climate goals, as the current state of the low-carbon transition paths 

requires higher retrofitting rates. Second, the results suggest that data-driven EQMs may be beneficially 

applied in other fields, e.g., asset management, urban planning, and insurance, because correctly evalu-

ating buildings’ energy efficiency is often essential to the economic success of companies (Bozorgi, 

2015). For instance, to collect cost-efficient information is particularly relevant for the initial energy 

evaluation of real estate, as energy-efficient buildings yield higher rents than energy-inefficient build-

ings (Cajias and Piazolo, 2013). Third, benchmarking MLAs should be focused on because most studies 

only evaluate individual algorithms and disregard comparisons, limiting the generalizability of their 

results. 
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III. Challenges and opportunities of data-driven final energy performance 

predictions 

III.1. Explainable long-term final energy performance prediction 

Facilitating data-driven EQMs to positively impact national retrofit rates requires that the generated 

results reduce the uncertainty that formed the investment barrier. This, in turn, necessitates both increas-

ing prediction accuracies and allowing homeowners to understand and trust the predictions. Because 

data-driven EQMs often exhibit complex structures and calculation methods, establishing trust requires 

explainability approaches from the field of XAI (Burkart and Huber, 2021; Mohseni et al., 2018). Oth-

erwise, perceived uncertainty resulting from the complex structures and black-box characteristics may 

compromise the prediction accuracy gains, potentially even reducing the willingness to energetic retro-

fitting (Golizadeh Akhlaghi et al., 2021). 

While research agrees that XAI generally enables understanding complex MLAs (Barredo Arrieta et al., 

2020), there is no consensus in the research community on specific definitions regarding the scope and 

measurement of XAI (Das and Rad, 2020). Likewise, application areas range from basic understanding 

and variable importance to capturing how MLAs work as a whole (Barredo Arrieta et al., 2020; Burkart 

and Huber, 2021; Doran et al., 2017). However, the literature generally differentiates transparent models 

interpretable by design and post-hoc explainability models (Moradi and Samwald, 2021). In both cases, 

quantifying the degree of explainability is difficult because explainability is often perceived subjectively 

(Burkart and Huber, 2021; Hoffman et al., 2018; Mohseni et al., 2018; Zhou et al., 2021). Additionally, 

increasing explainability usually decreases the prediction accuracy by restricting the solution space in 

the process. Thus, these two opposing goals form a trade-off (Shmueli and Koppius, 2011). 

The novel QLattice algorithm, inspired by Richard Feynman’s path integrals, is supposed to reach de-

sirable outcomes in the trade-off between prediction accuracy and explainability (Broløs et al., 2021; 

Wilstup and Cave, 2021). It applies symbolic regression to explain the dependent variable by independ-

ent variables using a set of mathematical expressions (Wilstup and Cave, 2021). It models and evaluates 

these mathematical expressions as a superposition of an infinite set of spatial paths in a multidimensional 

lattice space using repeated reinforcement to avoid high computation times (Broløs et al., 2021). The 

QLattice is supposedly less susceptible to overfitting and enables interpreting the regression as an ex-

plainable mathematical formula. Thus, the QLattice is also suitable for generating insights and relation-

ships between variables on top of predicting dependent variables (Broløs et al., 2021).  

Literature finds that more research on XAI for data-driven FEP prediction is required to leverage its full 

potential (Arjunan et al., 2020; Miller, 2019). Therefore, Research Article #2 sets out to examine the 

potential of the novel QLattice algorithm in terms of FEP prediction accuracy and explainability. To 
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this end, it substantiates the finding of Research Article #1 by additionally considering computational 

performance and explainability, building upon the same extensive real-world dataset. 

The results indicate that the QLattice indeed compromises between explainability and FEP prediction 

accuracy. To this end, the novel algorithm exhibits the worst prediction accuracy on the training data 

and the second to worst on the test data among the investigated MLAs. However, the differences are 

slight, and general statements regarding superiority require statistical hypothesis tests. At the same time, 

the QLattice as a transparent model presents an interpretable and understandable formula for how the 

variables interact for knowledgeable but non-expert applicants, fulfilling the requirements regarding 

trust. All models were additionally evaluated using post-hoc explainability approaches, yielding results 

that are approximately in line with each other.  

Despite multiple linear regression performing better in the specific case study of Research Article #2 in 

terms of computational performance, prediction accuracy, and explainability, the QLattice still provided 

more insight than the remaining EQMs in terms of explainability without major drawbacks in the re-

maining evaluation criteria. Considering the drawback of multiple linear regression not being able to 

handle non-linearities, the QLattice might establish itself as viable option for prediction tasks, as it does 

not focus solely on one individual evaluation criterion.  

The article bears several implications for research and practice. First, the QLattice may bridge the gap 

between data science and engineering disciplines in the context of FEP prediction by providing relevant 

insights to both disciplines about important variables and their complex interactions. Second, for this 

specific case study, the QLattice was dominated by multiple linear regression for all three evaluation 

criteria: prediction accuracy, computational performance, and explainability. However, for use cases 

exhibiting more non-linearities in the relationship between dependent and independent variables, we 

expect the QLattice to eventually exceed the prediction performance of multiple linear regression. Thus, 

the QLattice may emerge as a viable option for FEP prediction when more complex building character-

istics are included in the dataset. Additionally, the QLattice performs several data pre-processing tasks 

internally, making its application less error-prone for non-experts in the field of data science. Third, due 

to its transparent design, the QLattice might increase retrofit activity by reducing uncertainty and distrust 

as investment barriers for knowledgeable applicants (Golizadeh Akhlaghi et al., 2021). Fourth, because 

the QLattice depends on only a few and easily accessible input variables, its calculation scheme enables 

a simple self-service for homeowners to derive an initial assessment of their FEP before and after ener-

getic retrofitting, potentially sparking interest in gathering further retrofitting information. Fifth, the 

results suggest that future research should consider multiple evaluation criteria in an integrated manner 

to avoid omitting important sub-aspects such as explainability.  
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III.2. Influence of final energy performance prediction accuracy on retrofit rates 

The previous articles established the increased FEP prediction accuracy when switching from the legally 

prescribed engineering EQM to data-driven alternatives while simultaneously allowing for a certain 

degree of explainability. However, the implications and consequences arising from increased FEP pre-

diction accuracies are not yet discussed. Even though the relationship between increasing FEP prediction 

accuracy and an increased retrofit rate is intuitively plausible because of mitigated perceived uncertainty, 

no study has so far quantified the impact strength of FEP prediction accuracy on retrofit rates. However, 

this is a crucial characteristic because if the retrofit rate would, for instance, only marginally be impacted 

by increased FEP prediction accuracy, effortful refinements in the underlying EQMs to increase the FEP 

prediction accuracy would have an equally limited effect. 

To contribute to filling this research gap, Research Article #3 quantitatively investigates to which extent 

FEP prediction accuracy affects retrofit rates and the resulting CO2 emissions released in the residential 

building sector. To this end, the article builds on an agent-based building stock model (BSM) to derive 

this relationship, assuming rational decision-making. The retrofitting decision process of individual 

homeowners as agents is simulated for a stratified subsample of the previously introduced dataset on 

German residential buildings using the established risk preference function. By artificially varying the 

degree of uncertainty, i.e., the standard deviation in FEP prediction, the agents evaluate retrofit options 

differently and draw differing conclusions. This, in turn, allows deriving the impact of uncertainty in 

FEP prediction accuracy on the retrofit rate. The article then quantifies the comparative advantage in 

terms of increased retrofit rate and CO2 emission reduction potential of data-driven EQMs by inserting 

values from the literature. 

The results show a pronounced relationship between the FEP prediction accuracy and the retrofit rate as 

well as the CO2 emission reductions (c.f. Figure 4). The uncertainty values or standard deviation in FEP 

prediction for the currently applied engineering EQM result in an approximately 0.98% annual retrofit 

rate. Inserting the uncertainty derived for the MLA XGBoost in Research Article #1 increases the retrofit 

rate from 0.98% to 1.68% by about 70% or 0.7 percentage points, which is equivalent to a comparative 

advantage over the engineering EQM of almost 45 Mt by 2050 in CO2 emission reductions.  

The increase in economically sensible retrofit activity also yields higher social welfare and turnover. To 

this end, the estimated increase in social welfare scaled to the entire German residential building sector 

equals 310.19 mn € for the first year when revising current law and applying the data-driven EQM in-

stead of the engineering EQM. This value equals the reduced annual heating expenses (assuming long-

term average climatic conditions and no behavioral changes) less the retrofit investments and excludes 

foregone profits of energy companies. The additionally conducted retrofits also yield an increase in 

turnover of 1.195 bn €, fed into the economy. 
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Figure 4: Risk of final energy performance misprediction negatively influences the retrofit rate and CO2 emission reductions. 

In addition to the quantitative results, the article discusses further potential benefits. The higher invest-

ment volume potentially enables upcoming companies to establish themselves on the market, strength-

ening Germany as an export and business location and creating new jobs. Moreover, the government 

may benefit from increased FEP prediction accuracy via tax payments. Additionally, considering ambi-

tious climate goals, increasing FEP prediction accuracy by switching the underlying EQM may come at 

smaller opportunity costs than, for instance, financial subsidy programs to reach the same retrofit rate. 

However, these advantages face some restrictions as well, for instance, the shortage of skilled workforce. 

The results have several managerial and policy implications. First, FEP prediction accuracy is (among 

other impacting factors) a crucial element for boosting retrofit activity. As high FEP prediction accuracy 

supports the implementation and the market penetration of economically and ecologically sensible en-

ergetic retrofit measures, policymakers may benefit from progressing towards the climate goals, ener-

getic retrofit companies can increase sales and revenue, and homeowners are subject to lower energy 

expenditures. Revising the current legislation regarding data-driven EQMs is therefore highly advised. 

Second, the results within the specific model setting indicate the retrofit rate to eventually exceed the 

envisaged 2% to successfully shape the heat transition in the German residential building sector. Thus, 

there is further CO2 emission reduction potential for more accurate EQMs; hence, improving existing 

EQMs or introducing novel and more accurate EQMs appears fruitful. However, exact numbers may 

differ due to the assumptions made. Third, the results only cover FEP misprediction risk yet leave out 

other risk sources. Risk mitigation measures, such as risk transfer contracts (Research Article #5), to-

kenization of energy investments (c.f. “efforce”), or well-designed subsidy programs (Ahlrichs et al., 

2020; Mills, 2003), may further leverage the effect shown. 
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IV. Understanding and managing risk connected to energetic retrofitting 

IV.1. Understanding the risk perception of energetic retrofitting 

Promoting energetic retrofitting constitutes an important part of environmentally friendly energy policy. 

In this context, holistically understanding the investment decision-making of homeowners is essential 

to develop and implement effective policy instruments. However, the previous research articles focused 

on the technical aspect of FEP prediction accuracy for data-driven EQMs and the resulting 

consequences, not covering the homeowners’ holistic decision-making process. Thus, Research 

Article #4 investigates how homeowners perceive risk connected to energetic retrofitting to further 

broaden the scope of this doctoral thesis.  

In general, energetic retrofitting requires an upfront investment intended to enhance the energetic state 

of the building and resulting in reduced energy demand. This, assuming a volumetric tariff, reduces 

energy bill costs over time. Here, two different perspectives emerged in the literature.  

One stream of literature argues that the energy bill savings from reduced energy bill costs can be 

interpreted as uncertain cash flows following an initial investment (Häckel et al., 2017). These energy 

bill savings are impacted by, for instance, weather and commodity price developments, leading to a 

fluctuation in the energy bill savings commonly perceived as risk (Mills, 2003). Hence, the higher the 

investment volume and the corresponding energy bill savings, the higher the risk. Assuming risk-

aversion, homeowners invest less in energetic retrofitting, as larger investments correspond to larger 

fluctuations in the energy bill savings. Research Article #4 defines this perspective as the investment 

perspective.  

The other stream of literature does not focus on the energy bill savings, i.e., the reduction in energy bill 

costs, but on the remaining energy bill costs themselves. Naturally, energy bill costs are impacted by 

weather and price developments even if no energetic retrofitting is conducted (Thompson, 1997). Thus, 

in contrast to the investment perspective, the corresponding risk is not the fluctuation in the energy bill 

savings but the fluctuation in the remaining energy bill costs. Hence, higher investment volumes result 

in less fluctuating future cost streams due to reduced energy price exposure (Naumoff and Shipley, 

2007). Again assuming risk-aversion, homeowners invest more in energetic retrofitting, as larger 

investments simultaneously reduce the fluctuations of the remaining energy bill costs (Buhl et al., 2018). 

Research Article #4 defines this perspective as the energy bill perspective.  

Despite two perspectives, the underlying sources of risk remain the same because the perspectives are 

only different perceptions of the same objective risk (Slovic and Weber, 2002). Figure 5 illustrates both 

perspectives, showing energy bill costs over time with and without energetic retrofitting. The white-

colored area illustrates the savings achievable with energetic retrofitting, while the green area illustrates 

the remaining energy bill costs. 
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Figure 5: The investment perspective (white area) and energy bill perspective (green area) for an exemplary retrofit option. 

The grey dashed line represents the energy bill costs without energetic retrofitting and the solid line with energetic retrofitting. 

Research Article #4 formulates a mathematical decision model based on expected utility theory (Ber-

noulli, 1954) and constant absolute risk aversion utility functions to investigate the influence of the two 

perspectives on energetic retrofitting. The theoretical findings are further substantiated by conducting a 

Monte Carlo simulation based on a real-world example in a case study. The theoretical and empirical 

results are in line with each other and provide strong evidence that there are significant differences in 

the investment volume depending on the risk perception. To this end, homeowners evaluating energetic 

retrofitting from the energy bill perspective invest about 175% more compared to homeowners evaluat-

ing energetic retrofitting from the investment perspective. 

The results have three main implications. First, the article establishes risk perception as an influencing 

factor on energetic retrofitting. Understanding and correctly applying this factor is essential for deriving 

effective policy measures. For instance, the effect of carbon taxes depends on the homeowner’s risk 

perception. Higher energy bill costs due to carbon taxes also increase the savings after retrofitting, and 

consequently, the fluctuations in the savings. Hence, when evaluating from the investment perspective, 

carbon taxes make energetic retrofitting less attractive ceteris paribus. Second, understanding the two 

perspectives allows for nudging homeowners towards more sustainable investment behavior, as high-

lighted by the 175% investment increase in the case study. Thus, the theoretical considerations can en-

hance information campaigns and raise awareness of the risk-reduction potential of energetic retrofit-

ting. Third, the results partially explain contradictions in previous studies, as some results potentially 

only emerged due to the specific adopted perspective. 
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IV.2. Managing the risks connected to energetic retrofitting 

Research Article #4 addressed reducing perceived risk to increase energetic retrofitting. However, as 

already mentioned in the introduction, risk-averse homeowners will still not necessarily conduct eco-

nomically and ecologically sensible retrofit measures because the remaining perceived risk may still 

outweigh the benefits. Here, risk transfer contracts issued by a governmental organization or private 

companies may play an important role (Shogren and Taylor, 2008; Stern, 2011). 

In general, risk transfer contracts guarantee a certain project performance in return for a predefined 

premium and reimburse any shortfalls that breach a contractually defined threshold (Tol, 1998). On the 

example of energetic retrofitting, risk transfer contracts can take the form of energy efficiency insur-

ances (EEI) already prevalent in the business sector (Mills et al., 2006; Mills, 2003). Here, the risk event 

refers to higher energy demand during operation than initially predicted, also known as the performance 

gap (Calì et al., 2016). Thus, the insurer bears the project risks. In this way, risk transfer contracts may 

contribute to overcoming investment barriers arising from homeowners overrating the corresponding 

risk (Häckel et al., 2017; Töppel and Tränkler, 2019). 

Following the results in Research Article #3, risk mitigation connected to energetic retrofitting and the 

concomitant increase in the retrofit rate yields substantial economic benefits. Hence, issuing EEIs may 

be a viable business model if the transferred risk can be diversified accordingly. To this end, financial 

service providers may charge risk premia higher than the actuarially derived fair premium, as, in imper-

fect markets, the price of bearing risk within the firm is not necessarily equal to the price of passing it 

outside by capital markets. I.e., it may still be beneficial to acquire insurance at actuarially unfair rates, 

for instance, due to tax liabilities or inelastic supply of external financing (Froot et al., 1993; Hoyt and 

Liebenberg, 2011; Smithson and Simkins, 2005). Alternatively, issuing risk transfer contracts could be 

set up as a governmental self-sustaining funding model to spur retrofits, given the government’s revenue 

increase through tax payments. Therefore, Research Article #5 sets out to evaluate the diversification 

and hedging potential of EEIs from an insurer’s perspective. 

To this end, Research Article #5 stepwise evaluates portfolio risk mitigation on three levels based on 

the Solvency II regulatory framework: The first step investigates portfolios consisting of different con-

tractual types of EEIs, applying collective risk diversification. The two types considered are EEIs that 

guarantee maximum expenses and EEIs that guarantee minimum savings (c.f. Figure 6). The second 

step examines adding existing insurance portfolios such as property insurances applying cross-product 

line diversification. The third step analyzes the risk reduction when additionally hedging with financial 

derivatives on the capital market. 
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Figure 6: Visualization of the energy efficiency insurances and claim structures. 

The results indicate great diversification potential for EEIs. Constructing a minimum variance portfolio 

of different EEI types reduces the standard deviation compared to the stand-alone standard deviations 

by 89.14% and 48.97%, respectively, due to the opposing risk events for insurance claims. The second 

step, adding property insurances, further reduces the standard deviation by 10.63%. However, using 

weather derivatives, hedging on the financial markets did not bear substantial diversification potential, 

reducing the standard deviation by merely 1.6%. These results are in line with the Value at Risk and the 

negative semi-variance and were tested for robustness in a sensitivity analysis. The final minimum var-

iance portfolio consists of 76% EEIs, indicating their potential as a viable hedging alternative for other 

insurance portfolios. 

The results have several managerial implications. First, the results provide the foundation for further 

analyses fostering the market introduction of EEIs. Moreover, the results offer insights into how EEIs 

may affect existing insurance portfolios by reducing actuarial risks, entailing lower risk margins and 

regulatory equity capital. Second, insurers should proceed with both contractual types of EEI. The di-

versification potential arising from the opposing risk events is particularly interesting for insurers acting 

under Solvency II constraints, as it frees up regulatory equity capital, improving the respective return 

measures. Third, EEIs may replace financial derivatives based on risk events influencing the FEP as 

they exhibit similar risk characteristics. For instance, energy price derivatives or weather derivatives are 

acquired through third parties at market prices. As EEIs generate profit margins, they release funds 

leveraging business opportunities, allowing insurers to retain more financial resources at equal risk. This 

is in line with previous studies elaborating on the desirable risk characteristics of EEIs (Mills, 2003). 
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V. Spatially and temporally differentiated policy measures 

V.1. Impact of socio-economic factors on local energetic retrofitting needs 

In addition to understanding and managing risks, policy measures, such as financial subsidy schemes, 

can be established to further encourage homeowners to conduct energetic retrofitting (Filippini et al., 

2014; Weiss et al., 2012). However, current efforts in policy measures often fall short of the envisaged 

greenhouse gas emission reductions (Bergman and Foxon, 2020; Hall and Caldecott, 2016; Marchand 

et al., 2015). One reason might be that they are often designed as scattergun approaches without consid-

ering local circumstances (Jones et al., 2009; Kastner and Stern, 2015), albeit these circumstances influ-

ence the effectiveness of energetic retrofitting (Jones et al., 2009). Moreover, Morton et al. (2018) high-

light the necessity of locally tailored policies considering socio-economic and contextual factors instead 

of national policies.  

Nonetheless, despite several studies on the effect of socio-economic and contextual factors in general 

(Achtnicht and Madlener, 2014; Kastner and Stern, 2015; Palmer and Cooper, 2013; Wilson et al., 

2015), there is still a research gap regarding local differences in the buildings’ characteristics and energy 

efficiency as well as how socio-economic factors influence them. Understanding these differences and 

interdependencies is a prerequisite for an efficient resource allocation in the form of locally tailored 

policy measures (Fylan et al., 2016; Gerarden et al., 2017; Rosenow and Eyre, 2016). Especially when 

considering the current public health and economic crisis, it is essential to maximize emission reductions 

per monetary unit invested (Sengupta, 2020). Thus, Research Article #6 sets out to fill this research gap, 

investigating local differences in the residential building stock and allowing for deriving locally tailored 

policy measures. In this vein, Research Article #6 continues with broadening the scope from FEP pre-

diction uncertainty as a central yet highly specific influencing factor for energetic retrofitting, over risk 

perception and management in general, to taking a national perspective in policy measures. Due to data 

availability, the article focuses on England, Scotland, and Wales instead of Germany. 

The article first applies 𝜒2-independence tests to derive local differences in the residential building 

stock’s energy efficiency. This first step is a prerequisite for the subsequent analyses. Second, the indi-

vidual buildings were clustered using a k-means cluster analysis based on the feature selection resulting 

from a random forest classifier. For each archetypical cluster, the article derived the respective energetic 

retrofitting needs. Based on the distribution of the archetypes’ prevalence, local policymakers can easily 

determine the most prominent local retrofitting needs and formulate appropriate countermeasures ac-

cordingly in the form of policy mechanisms. Last, the article identified socio-economic factors influ-

encing energy efficiency by applying random forest regressions on different energy efficiency quantiles 

for each local authority.  
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The results confirm local differences in the building stock’s energy efficiency and archetype distribu-

tions. To this end, seven archetypes were identified, each standing out with one pronounced energetic 

retrofitting need except for one archetype exhibiting overall good building conditions. Both results were 

significant at the 5% significance level; despite a modest effect strength, the efficacy is expected to 

increase with more granular data. The results further show that the present energy efficiency level mod-

erates the effect of socio-economic factors on building energy efficiency. Nevertheless, some factors 

appear generally more important. For instance, the share of agriculture, forestry, and fishing in employ-

ment and the share of vacant houses are generally considered important. Figure 7 illustrates for all su-

perordinate domains their respective weighted importance depending on the energy efficiency quantile.1 

The figure indicates pronounced trends when omitting the extreme 1% and 99% quantiles. For instance, 

“Economic” and “Socio-economic” become gradually more important in contrast to “Employment” and 

“Housing”. Here, “Socio-economic” refers to one superordinate domain instead of summarizing all so-

cio-economic factors; the naming originates from the census 2011. Moreover, the results present two 

exemplary local tailored policy measures, considering the previous findings. 

 

Figure 7: Overview of weighted importance of domains explaining energy efficiency in the residential building sector. 

The results have several policy implications: First, policy measures should reflect local circumstances 

in building characteristics to be most effective. Building upon fine-granular data is advised during the 

design and monitoring stages. Second, it is essential to account for local circumstances regarding prev-

alent socio-economic factors. Even for two buildings from the same archetype, i.e., with the same ret-

rofitting need, differing socio-economic influences may necessitate differing policy measures. To this 

end, policymakers should further mind the moderating effect of energy efficiency on the influence of 

socio-economic factors to allocate scarce financial resources efficiently. Third, individual policy 

measures can be ranked and prioritized considering the archetype distribution of the residential building 

stock within a local authority. This provides an easy and fast tool for initial assessments. 

 
1 Each domain includes a different number of factors. 
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V.2. Impact of financial subsidy schemes on climate goals in the residential 

building sector  

Liu et al. (2020) differentiate policy measures into six subtypes, whereby financial support policies ap-

pear to be the most effective for energetic retrofitting (Filippini et al., 2014; Weiss et al., 2012). How-

ever, incentivizing early retrofitting might induce lock-in effects (Dubois and Allacker, 2015; Lee et al., 

2014; Leinartas and Stephens, 2015; Polly et al., 2011). For instance, as wall insulations often dispose 

of service lives of 50 years upwards, they are unlikely to be replaced again by the end of the climate 

goals in 2050.2 However, technological progress regarding heating system efficiency and thermal insu-

lation capacities provides increasingly energy-conserving solutions. Thus, even when adhering to strict 

thermal insulation standards, it is reasonable that many lock-in effects will arise when incentivizing 

early retrofitting, losing out on emission reduction potential. 

On the other hand, early retrofitting saves greenhouse gas emissions over longer periods, making even 

small improvements in the energetic state of buildings accrue to large volumes and contributing to coun-

teracting climate change (Nägeli et al., 2019; Streicher et al., 2021). Financial subsidy schemes can be 

tailored to either incentivize early or late retrofitting. Thus, as governments impact the retrofitting be-

havior through financial subsidy schemes and regulations (Dolšak et al., 2020), understanding the im-

pact of either retrofitting behavior is essential to provide sensible incentives. Therefore, Research Article 

#7 complements the spatial perspective for policy mechanisms by a temporal perspective, investigating 

time-dependent subsidy schemes to maximize emission reductions per monetary unit invested. 

To this end, Research Article #7 initializes a bottom-up agent-based BSM for the German residential 

building stock, simulating the years 2020 to 2050 and assuming several instances of time-dependent and 

static subsidy schemes, as well as rational decision-making. The investigated schemes are no subsidies 

(Zero Subsidies), the current subsidies (Business as Usual),3 no subsidies over the first 15 years and 

doubled subsidies afterward (Late Subsidies), and doubled subsidies over the first 15 years and no sub-

sidies afterward (Early Subsidies). For each subsidy scheme, the years until 2050 are simulated in which 

the homeowners (agents) decide for each year between several retrofit options based on their utility. Not 

retrofitting is also possible. Annual greenhouse gas emissions are calculated via an artificial neural net-

work and scaled to the German residential building sector. Thereby, the article connects back to Re-

search Article #1 (FEP prediction via MLA) and Research Articles #4 and #5 by additionally calculating 

the savings potential assuming risk-neutral agents (next to risk-averse agents), which is achievable by 

applying risk transfer contracts.  

 
2 The climate goals for Germany are formulated for 2045 but Research Article #7 considers the years until 2050 

to enable comparisons with related studies. 
3 The Business as Usual case corresponds to the subsidy scheme from the German governmentally owned bank 

for reconstruction and development (Bankengruppe 2021) that was discontinued in January 2022. 
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Figure 8: CO2 emissions for the German residential building sector until 2050 under different subsidy schemes. 

Figure 8 illustrates the emission development for risk-averse agents with overall reductions approxi-

mately in line with the literature (Diefenbach et al., 2016; Nägeli et al., 2020a; Streicher et al., 2020).4 

Nonetheless, reductions fall short of the envisaged intermediary and final reduction goals for 2030, 

2035, and 2045. The results provide strong evidence that Early Subsidies result in higher annual emis-

sions in 2050 than Late Subsidies, reducing the probability of achieving percentual emission reduction 

goals while simultaneously minimizing total greenhouse gas emissions. In this vein, total emission re-

ductions per monetary unit invested differ by almost 100%, i.e., subsidizing early retrofitting is almost 

twice as efficient as subsidizing late retrofitting and almost seven times as efficient as the current static 

subsidy schemes because the savings accrue over longer periods. More precisely, emission reductions 

per Euro invested equal 57.76 g/€ for Business as Usual, 231.93 g/€ for Late Subsidies, and 390.43 g/€ 

for Early Subsidies. Hence, despite evading lock-in effects, Late Subsidies are inefficient. 

The results have several policy implications. First, emission reduction levels for specific years (e.g., 

80% CO2 emission reduction until 2035) and total greenhouse gas emission goals do not follow the same 

objective; in fact, they are best supported by the opposite financial subsidy schemes. Due to the large 

impact on retrofitting exerted by governments through financial subsidy schemes and regulations, cor-

rectly incentivizing retrofitting is crucial for counteracting climate change. Second, the results partially 

explain contradictions in previous studies regarding lock-in effects. Third, risk-neutral evaluation in-

creased emission reductions per monetary unit invested by almost 250% compared to the risk-averse 

evaluation, not including operation and transaction costs as well as strategic behavior. This result high-

lights the potential of risk mitigation measures in connection to energetic retrofitting. 

 
4 The risk-neutral evaluation yielded higher yet similar reductions and is thus omitted to avoid redundancy. 
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VI. Conclusion 

VI.1. Summary 

Counteracting global warming requires intensifying decarbonization efforts across all sectors (Forster 

et al., 2020). To this end, the global residential building sector faces an urgent need to progress towards 

decarbonization, as it accounts for 17% of greenhouse gas emissions and 27% of energy consumption, 

most of which are caused by warm water and space heating and cooling (Nejat et al., 2015; Robert and 

Kummert, 2012; Ürge-Vorsatz et al., 2015). However, many economically and ecologically sensible 

retrofit measures are not conducted because of high perceived uncertainty regarding the financial sav-

ings (Amecke, 2012), which has coined the term energy efficiency gap (Jaffe and Stavins, 1994). 

Against this background, this doctoral thesis aims to contribute to successfully shaping the heat transi-

tion in the residential building sector by investigating three main aspects: First, this work aims to reduce 

the perceived risk for energetic retrofitting resulting from FEP misprediction by providing reliable data-

driven decision support. Second, following the differentiation of risk connected to energetic retrofitting 

by Mills et al. (2006), the remaining risk (mainly economic and contextual risk arising from uncertain 

energy prices and weather developments) is analyzed and managed to further increase energetic retro-

fitting by applying concepts from quantitative finance. Third, carefully tailored policy measures are 

examined to efficiently allocate scarce financial resources and maximize emission reductions per mon-

etary unit invested. All three focal points allow deriving managerial and policy implications. 

On the first aspect, Section II lays the foundation for the following analyses by offering insights into 

data-driven FEP prediction as an alternative to the legally prescribed engineering EQM. Here, the results 

in Research Article #1 provide strong evidence that the data-driven EQMs outperform the engineering 

EQM by a large margin, reducing the prediction error by almost 50%. This finding, tested for robustness 

and systematic bias, suggests revising the current legislation and establishing data-driven EQMs for FEP 

prediction to overcome investment barriers by mitigating uncertainties connected to energetic retrofit-

ting. Section III complements these findings by elaborating on the challenges and opportunities of data-

driven FEP prediction. Here, Research Article #2 is concerned with explainability as an often-claimed 

drawback of data-driven EQMs. The results indicate that both transparent models and post-hoc explain-

ability approaches applied to untransparent models yielded high levels of explainability and prediction 

accuracy. A special focus is on the novel QLattice algorithm that is specifically designed for explaina-

bility. Research Article #3 subsequently provides the missing link between FEP prediction accuracy and 

the retrofit rate, under the assumption of rational decision-makers. The results indicate that currently 

available data-driven EQMs may already increase the retrofit rate from 0.98% to 1.68% by about 70% 

or 0.7 percentage points, which is equivalent to a comparative advantage over the engineering EQM of 

almost 45 Mt by 2050 in CO2 emission reductions. The article further elaborates on the substantial in-

crease in social welfare and turnover resulting from the increased retrofit activity. Albeit there are many 
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more influencing factors impacting the retrofit rate, further FEP prediction accuracy potential already 

allows the retrofit rate to eventually exceed the envisaged 2% to successfully shape the heat transition 

in the German residential building sector within the model setting. 

On the second aspect, Section IV deals with understanding and managing the risks connected to ener-

getic retrofitting. This broadens the scope from one important yet highly specific risk factor (FEP mis-

prediction) to risk in general impacting energetic retrofitting. Research Article #4 provides the theoret-

ical basis regarding risk perception when facing energetic retrofit decisions from the homeowner’s per-

spective and validates the derived formulas in a case study. The theoretical model indicates higher in-

vestments in energetic retrofits when homeowners evaluate from the energy bill perspective. The case 

study substantiates these findings, quantifying an investment surplus of 175% for homeowners evaluat-

ing energetic retrofitting from the energy bill perspective compared to homeowners evaluating energetic 

retrofitting from the investment perspective. This knowledge allows enhancing information campaigns 

and deriving adequate policy measures, as well as nudging homeowners towards more sustainable in-

vestment behavior. Subsequently, Research Article #5 aims to diversify and hedge the remaining risks 

from energetic retrofitting via risk transfer contracts on the financial markets applying collective risk 

diversification, cross-product line diversification, and hedging with financial derivatives. The results 

indicate the great diversification potential of EEIs in a portfolio context, implying substantial market 

potential of risk transfer contracts for energetic retrofitting, which may, in turn, further reduce invest-

ment barriers. Moreover, EEIs may also replace existing hedging alternatives such as weather deriva-

tives based on the same risk factors. As EEIs generate profit margins, they release funds leveraging 

business opportunities, allowing insurers to retain more financial resources at equal risk. 

On the third aspect, Section V investigates both spatially and temporally differentiated policy measures 

to foster their full potential and maximize greenhouse gas emission reductions per monetary unit in-

vested. Research Article #6 investigates the local differences in the residential building stock as well as 

the impact of socio-economic factors on energy efficiency to allow for deriving locally tailored policy 

measures. The results provide strong evidence for regional differences and significant impact from so-

cio-economic factors, whereby the energetic state of the buildings exerts a moderating effect on these 

factors. The article concludes that policy measures should reflect local circumstances in building char-

acteristics to be most effective. Research Article #7 complements this spatial perspective with a temporal 

perspective. The article examines time-dependent financial subsidy schemes to weigh early emission 

reduction potential from incentivizing early retrofitting against potential lock-in effects and not realizing 

higher savings from technological progress later on. The results indicate that, despite accepting lock-in 

effects and potentially missing annual emission reduction goals, incentivizing early retrofitting indeed 

minimized total greenhouse gas emissions for the considered period until 2050. To this end, the emission 

reductions per monetary unit invested are up to 675% higher for early subsidy schemes compared to 

static subsidy schemes. 



23 

 

From an overarching perspective, the results of the individual articles show coherent and sequential 

approaches to relevant and contemporary issues, revealing various synergies between the individual 

findings. From the specific decision support of individual homeowners solely based on the FEP predic-

tion accuracy as a decision criterion, over the inclusion of further risk factors, to an overall societal 

perspective, solution approaches are presented for the respectively identified research gaps. In this way, 

this doctoral thesis considers the complete spectrum, from the decision of individuals to policy measures, 

and gives relevant policy and managerial implications regarding the respective research questions. 

Thereby, the individual articles build on each other so that the results of the more specific research 

articles are incorporated into the more general articles. For instance, the high FEP prediction accuracy 

of data-driven EQMs not only improves the issuance of EPCs – and, therefore, the decision support for 

energetic retrofitting – but may also be applied in the subsequent articles’ analyses to improve their 

result quality.  

In summary, the analyses in this doctoral thesis have revealed the great potential of data-driven methods 

and concepts from quantitative finance to support counteracting climate change. Although further re-

search is required, promising approaches may soon mature into more advanced solutions. Ultimately, 

policymakers will have to incorporate these solutions into (multi-) national legislation.  

With this thesis, I hope to encourage researchers, practitioners, and policymakers to elaborate on these 

concepts to contribute a small but important step towards achieving the climate goals. 

VI.2. Limitations and future research 

As any research endeavor, the articles within this doctoral thesis are subject to limitations and likewise 

give rise to prospects for further research. The following paragraphs provide a non-conclusive overview; 

detailed limitations and prospects for further research are listed in the individual research articles. 

First and foremost, the results of this doctoral thesis largely depend on the underlying data quality. The 

individual articles relied on several extensive real-world datasets, each with its individual benefits and 

shortcomings. More precisely, five of the presented research articles rely on a dataset comprising 25,000 

German single- and two-family houses, one article draws from EPC data of 20 million English, Scottish 

and Welsh buildings, and the last articles initializes a case study based on average buildings character-

istics of German commercial buildings. Hence, all articles’ findings are limited by the quality of the 

underlying datasets. To this end, relevant information was missing, particularly regarding occupant be-

havior and important building characteristics, which necessitated making assumptions. This first limita-

tion is particularly relevant for Research Article #6 because the socio-economic factors were only avail-

able on an aggregated basis for each local authority. In general, publicly available data for this domain 

is scarce (Carpino et al., 2019). Thus, future research might increase the findings’ validity by gathering 

further and more complete data. It is reasonable to assume that more extensive documentation on 
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building materials, insulation, and energetic retrofitting will be recorded for the future building stock. 

For the existing building stock, on the other hand, expensive and complex test drilling is sometimes 

necessary to derive insulation material and thickness, whereby the efforts often outweigh the benefits of 

additional data points. An expansion of smart home appliances can also ensure access to occupants’ 

presence and behavior data. If this data is enriched with socio-economic factors - in compliance with 

strict data protection guidelines - this provides an excellent basis for validating the presented results and 

further research. 

Second, all research articles within this doctoral thesis may be subject to model risks. Models are sup-

posed to simplify reality to such a degree that underlying interdependencies are understandable and 

analytically tractable. Thus, although results were tested for robustness and systematic bias where ap-

plicable, relying upon a model always bears the risk of over-simplifying the underlying causalities and 

leaving out relevant elements, yielding incorrect results. For instance, Research Article #1 and Research 

Article #2 benchmarked several MLAs. The results are limited to the well-selected yet restricted choice 

of algorithms and the pre-processing and tuning steps conducted despite thorough training and hyperpa-

rameter tuning. In addition, Research Article #3 and Research Article #7 applied (agent-based) BSMs, 

while Research Article #5 built upon Markowitz’s portfolio theory (Markowitz, 1952). Thus, these ar-

ticles are also subject to the respective model assumptions and limitations. This restriction particularly 

holds for the assumption of rational decision-making made in Research Articles #3 and #7. Future re-

search might substantiate the findings by lifting some of these limitations. In particular, the stepwise 

relaxation of assumptions may provide a good starting point for successively generalizing the results. In 

addition, future research might investigate further algorithms in the benchmarking process or validate 

findings by reproducing the results with alternative models and methodologies.  

Third, despite continuously broadening the scope and including further external influences, this doctoral 

thesis cannot provide a holistic picture of the heat transition on its own. The highly interconnected nature 

of the globalized world and the energy system, in particular, requires the heat transition to be addressed 

in an integrated perspective along with related endeavors such as the energy transition and the mobility 

transition. Naturally, a holistic depiction of all these challenges is beyond the scope of this doctoral 

thesis. Nonetheless, future research might complement and refine the results by considering related top-

ics. A key concept that has not been addressed in this doctoral thesis is the rebound effect, which states 

that anticipated savings resulting from investments in more efficient appliances are frequently not real-

ized due to changes in consumer behavior (Berkhout et al., 2000; Sorrell and Dimitropoulos, 2008). For 

instance, in the example of energetic retrofitting, this translates to adjusting thermostat settings and rais-

ing the indoor temperature after acquiring a more efficient heating system since the price for thermal 

comfort is reduced. Further restrictions in the scope of this doctoral thesis are the focus on residential 

buildings, one climatic region, and excluding self-generation. Therefore, compelling research directions 
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include transferring the analyses to other climatic areas, investigating non-residential buildings, and 

integratively considering, for instance, the heat transition and the energy transition. 

This doctoral thesis is subject to many more minor limitations listed in the individual research articles. 

Therefore, the reader is referred to the supplementary material to avoid a too fine-grained enumeration.  
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Energy Performance of Residential Buildings in Germany”. In: Business & Information Systems Engi-
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Research Article #6: Impact of socio-economic factors on local energetic retrofitting needs - a data 

analytics approach 
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VIII.2. Individual contribution to the research articles 

This doctoral thesis is cumulative and consists of seven research articles that comprise the main body of 

work. Six of the seven research articles were developed in teams with multiple co-authors. This section 

provides details on the respective research settings and highlights my contributions to each article. 

Research Article #1, titled “Benchmarking Energy Quantification Methods to Predict Heating Energy 

Performance of Residential Buildings in Germany,” was co-authored by a team of two. Both co-authors 

were jointly responsible for writing the text of the originally submitted version and the revised versions 

of the article. All co-authors collaborated to develop a methodological approach for benchmarking dif-

ferent methods for quantifying the energy performance of buildings, which allows for comparing the 

predictive performance of approaches from engineering and data science. Further, all co-authors con-

tributed equally to the evaluation and analysis of the results and the derivation of managerial and policy 

implications to enhance the final energy performance prediction accuracy. In the research project, I was 

specifically responsible for setting up the technical environment, writing the underlying programming 

code, and performing quantitative analyses. 

Research Article #2, titled “Explainable Long-Term Building Energy Consumption Prediction Using 

QLattice,” was co-authored by a team of three. All co-authors were to differing parts responsible for 

writing the text of the originally submitted version and the revised versions of the article. Further, all 

co-authors contributed to the analysis and discussion of the results. As a subordinate author of this arti-

cle, I was responsible for writing and revising parts of the article covering the computational perfor-

mance and the QLattice algorithm, analyzing the results, and discussing the evaluations. 

Research Article #3, titled “The influence of building energy performance prediction accuracy on ret-

rofit rates,” was co-authored by a team of two. As the leading author of this article, I developed the basic 

idea and created its content to a large extent. Specifically, I determined the research methodology, ana-

lyzed and structured literature, wrote the underlying code, graphically visualized the results, and was 

largely responsible for evaluating and discussing the results and deriving implications for practice and 

research. Although I am the leading author of this project, the co-author was involved in analyzing the 

results, writing and revising the text, and discussing the results throughout the project. 

Research Article #4, titled “Understanding the Risk Perception of Energy Efficiency Investments: In-

vestment Perspective vs. Energy Bill Perspective,” was co-authored by a team of four. Three authors, 

including myself, were jointly responsible for writing the text of the originally submitted version and 

the revised versions of the article. As a team, we agreed that two co-authors and I should assume the 

roles of leading authors of the research article. The other co-author contributed as a subordinate author, 

mainly in the form of feedback during the submission and review process and in his role as a scientific 

supervisor and mentor. All leading authors jointly elaborated on the methodological approach to analyze 

how the investment and energy perspective influence decision-making with a theoretical model and a 
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case study based on real-world data of the German retrofitting market. Further, all leading authors con-

tributed equally to the evaluation and analysis of the results and the derivation of policy measures pro-

moting the energy bill perspective for higher investments in energetic retrofitting. In the case study 

conducted, I was particularly responsible for the rigorous mathematical setup to allow for correct energy 

savings calculations.  

Research Article #5, titled “Managing the risks of energy efficiency insurances in a portfolio context: 

an actuarial diversification approach,” was co-authored by a team of four. All co-authors were jointly 

responsible for writing the text of the originally submitted version and the revised versions of the article. 

All co-authors collaborated to develop a methodological approach for setting up the energy efficiency 

insurance designs and diversifying the portfolio. Further, all co-authors contributed equally to the eval-

uation and analysis of the results and the derivation of managerial and policy implications to enhance 

the final energy performance prediction accuracy. In the research project, I was specifically responsible 

for setting up the technical environment, writing the underlying programming code, and evaluating, 

analyzing, and graphically visualizing the results. 

Research Article #6, titled “Impact of Socio-Economic Factors on Local Energetic Retrofitting Needs 

- A Data Analytics Approach,” was co-authored by a team of four. Three authors, including myself, 

were jointly responsible for writing the text of the originally submitted version and the revised versions 

of the article. As a team, we agreed that two co-authors and I should assume the roles of leading authors 

of the research article. The other co-author contributed as a subordinate author, mainly in the form of 

feedback during the submission and review process and in his role as a scientific supervisor and mentor. 

All leading authors jointly elaborated on the methodological approach to combine and analyze the dif-

ferent data sources so that the impact of socio-economic factors on local energetic retrofitting needs 

could be identified. Further, all leading authors contributed equally to evaluating and analyzing the re-

sults and deriving locally tailored policy measures considering retrofitting needs and socio-economic 

factors. I was particularly responsible for ensuring a sound methodological approach regarding the data 

analysis methods applied. 

Research Article #7, titled “Impact of Financial Subsidy Schemes on Climate Goals in the Residential 

Building Sector,” was not co-authored by another author. In this project, I developed the basic idea and 

created its content. Specifically, I determined the research methodology, analyzed and structured litera-

ture, wrote the underlying programming code, graphically visualized the results, and was responsible 

for evaluating and discussing the results and deriving implications for practice and research.  
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VIII.3. Research Article #1: Benchmarking energy quantification methods to 

predict heating energy performance of residential buildings in Germany 

Authors: Simon Wenninger, Christian Wiethe 

Published in: Business & Information Systems Engineering (2021) 

Abstract: To achieve ambitious climate goals, it is necessary to increase the rate of purposeful 

retrofit measures in the building sector. As a result, Energy Performance Certifi-

cates have been designed as important evaluation and rating criterion to increase 

the retrofit rate in the EU and Germany. Yet, today’s most frequently used and le-

gally required methods to quantify building energy performance show low predic-

tion accuracy, as recent research reveals. To enhance prediction accuracy, the re-

search community introduced data-driven methods which obtained promising re-

sults. However, there are no insights in how far Energy Quantification Methods are 

particularly suited for energy performance prediction. In this research article the 

data-driven methods Artificial Neural Network, D-vine copula quantile regression, 

Extreme Gradient Boosting, Random Forest, and Support Vector Regression are 

compared with and validated by real-world Energy Performance Certificates of 

German residential buildings issued by qualified auditors using the engineering 

method required by law. The results, tested for robustness and systematic bias, show 

that all data-driven methods exceed the engineering method by almost 50% in terms 

of prediction accuracy. In contrast to existing literature favoring Artificial Neural 

Networks and Support Vector Regression, all tested methods show similar predic-

tion accuracy with marginal advantages for Extreme Gradient Boosting and Support 

Vector Regression in terms of prediction accuracy. Given the higher prediction ac-

curacy of data-driven methods, it seems appropriate to revise the current legislation 

prescribing engineering methods. In addition, data-driven methods could support 

different organizations, e.g., asset management, in decision-making in order to re-

duce financial risk and to cut expenses. 

Keywords: Energy informatics; Energy quantification methods; Energy performance certifi-

cates; Benchmarking; Data-driven methods; Machine learning algorithms; Building 

energy; Data analytics 

  



40 

 

VIII.4. Research Article #2: Explainable long-term building energy consumption 

prediction using QLattice 

Authors: Simon Wenninger, Can Kaymakci, Christian Wiethe 

Published in: Applied Energy (2022) 

Abstract: The global building sector is responsible for nearly 40% of total carbon emissions, 

offering great potential to move closer to set climate goals. Energy performance 

certificates designed to increase the energy efficiency of buildings require accurate 

predictions of building energy performance. With significant advances in infor-

mation and communication technology, data-driven methods have been introduced 

into building energy performance research demonstrating high computational effi-

ciency and prediction performance. However, most studies focus on prediction per-

formance without considering the potential of explainable artificial intelligence. To 

bridge this gap, the novel QLattice algorithm, designed to satisfy both aspects, is 

applied to a dataset of over 25,000 German residential buildings for predicting an-

nual building energy performance. The prediction performance, computation time, 

and explainability of the QLattice is compared to the established machine learning 

algorithms artificial neural network, support vector regression, extreme gradient 

boosting, and multiple-linear regression in a case study, variable importance ana-

lyzed, and appropriate applications proposed. The results show quite strongly that 

the QLattice should be further considered in the research of energy performance 

certificates and may be a potential alternative to established machine learning algo-

rithms for other prediction tasks in energy research. 

Keywords: Building energy performance; Energy quantification methods; Energy performance 

certificates; Explainable AI; Machine learning algorithms; QLattice 
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VIII.5. Research Article #3: The influence of building energy performance pre-

diction accuracy on retrofit rates 

Authors: Christian Wiethe, Simon Wenninger 

Extended Abstract5: Studies estimate the financial burdens of climate change to increase with 

each year of inaction by 0.6 trillion US dollars (Sanderson and O’Neill, 

2020). To curb the progress of climate change requires significant CO2 emis-

sion reductions across all sectors and industries. To this end, the residential 

building sector faces an urgent need to reduce CO2 emissions, as it accounts 

for 20% of the final energy demand and causes over 22% of CO2 emissions 

worldwide. Hence, it constitutes a good option for decarbonization through 

widespread energetic retrofitting (International Energy Agency, 2019). 

However, conducting energetic retrofits is mainly a financial investment de-

cision, with homeowners evaluating upfront costs and financial savings from 

lower energy expenditures over time (Sutherland, 1991). To this end, risk 

aversion on the homeowner's side and uncertainty connected to the financial 

benefits of energetic retrofits (stemming largely from inaccurate FEP pre-

dictions) form a significant investment barrier (Amecke, 2012). This leads 

to many economically and ecologically sensible retrofitting measures that 

are not performed, which coined the term energy efficiency gap (Jaffe and 

Stavins, 1994). Even though there is plenty of literature on FEP prediction 

accuracy of different methods, the resulting impact of accuracy gains, i.e., 

the relationship to the retrofit rate and CO2 emission reduction potential, are 

not yet determined. Thus, the question arises to what extent does FEP pre-

diction accuracy affect retrofit rates and the resulting CO2 emissions re-

leased in the residential building sector? 

The article designs an agent-based building stock model (BSM) to derive the 

relationship between FEP prediction accuracy and retrofit rate, assuming ra-

tional decision-making, to contribute to filling this research gap. The retro-

fitting decision process of individual homeowners as agents is simulated for 

a stratified subsample of an extensive real-world dataset of 25,000 German 

residential buildings using the established risk preference function. By var-

ying the degree of uncertainty, the article derives the impact of uncertainty 

 
5 At the time of writing, this research article is under review for publication in a scientific journal. Therefore, 

an extended abstract, taken from the research article, is provided here. 
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in FEP prediction accuracy on the retrofit rate, given the limitations from the 

chosen model setting. To this end, inserting FEP prediction accuracy values 

from literature allows determining the CO2 emission reduction potential re-

sulting from available and more accurate EQMs, i.e., the CO2 emission re-

duction potential of changing regulatory frameworks and altering the legally 

prescribed EQMs. 

Results indicate that higher prediction accuracies positively affect the retro-

fit rate. Using data-driven prediction methods from research significantly 

increases the retrofit rate by over 70% from around 0.98% to 1.68% com-

pared to the legally prescribed engineering method. This equals CO2 emis-

sion reductions of almost 45 Mt by 2050 for Germany and leads to a surplus 

in consumer rent of 310.19 mn €, while investments in retrofits increase 

about 1.195 bn €, and the government benefits from tax payments and saved 

opportunity costs. 

The results have several managerial and policy implications. First, accuracy 

in the FEP prediction is, among other impacting factors, crucial for high ret-

rofit rates. This is relevant both for policymakers and – where legally possi-

ble – independent energetic retrofit companies providing FEP predictions. 

A reputation for high FEP prediction accuracy supports the implementation 

and market penetration of economically and ecologically sensible energetic 

retrofit measures (however, other constraints such as a shortage of skilled 

workforce still apply). For companies, this means a direct increase in sales 

and revenue, while for policymakers, this supports the heat transition to meet 

climate goals. Additionally, homeowners benefit from lower energy expend-

itures over time. Therefore, a change to more accurate available EQMs is 

advised. Second, the results show that there is still high potential for CO2 

emission reductions when further increasing FEP prediction accuracy, par-

ticularly when considering the over-proportional increase in potential retro-

fits for increasing FEP prediction accuracy. To this end, improving existing 

EQMs or introducing novel and more accurate EQMs appears fruitful. En-

gineering EQMs could benefit from more occupant data to calibrate their 

models accordingly. Other constraining variables for engineering EQMs are 

the available time and qualification of the respective auditor. For data-driven 

EQMs, the widespread implementation of smart home appliances and smart 

meters can help to increase FEP prediction accuracy through enhanced data 

availability and quality. In addition, approaches of explainable artificial 
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intelligence could further reduce uncertainty and increase trust in data-

driven models, which are often referred to as "black boxes" (Barredo Arrieta 

et al., 2020). Third, the results argue for further risk mitigation measures. 

Considerable approaches include, for instance, risk transfer contracts in the 

form of energy savings insurances, tokenization of energy investments (c.f. 

“efforce”), or well-designed subsidy programs (Ahlrichs et al., 2020; Mills, 

2003). The additional reduction of perceived risk during the investment pro-

cess will again over-proportionally increase the retrofit rate. On the part of, 

e.g., financial service providers or retrofit companies, this may even provide 

a lucrative business model through risk premia while applying diversifica-

tion and hedging (Baltuttis et al., 2019). On the part of policymakers, this 

could be set up as a governmental self-sustaining support model to boost 

retrofits. Fourth, the implemented status-quo bias affected the results, as al-

most all agents considered installing double-glazed windows, while far 

fewer agents considered more advanced alternatives. It may be beneficial to 

raise awareness for new and potentially superior insulation or heating system 

technologies. Moreover, this holds for customers and energy consultants, as 

status-quo bias has also been reported on the side of installation companies. 

Thus, next to FEP prediction accuracy, the awareness of retrofit options may 

significantly benefit the retrofit rate. 

Keywords: Building stock model; Climate goals; Energy quantification methods; Data-

driven methods; Machine learning algorithms; Data analytics; Decision-

making; Risk 
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VIII.6. Research Article #4: Understanding the risk perception of energy effi-

ciency investments: investment perspective vs. energy bill perspective 

Authors: Sebastian Rockstuhl; Simon Wenninger; Christian Wiethe, Björn Häckel 

Published in: Energy Policy (2021) 

Abstract: Promoting energy efficiency is an important element of environmentally friendly 

energy policy and necessary to avert climate change. In this context, understanding 

the investment decision-making of individuals is important to develop and imple-

ment effective policy instruments. Literature analyzing decision-making of energy 

efficiency investments and especially the influence of connected risk finishes with 

two different conclusions, i.e., analyzes risk from two different perspectives. First, 

studies within the investment perspective describe investment risk, caused by vola-

tile future energy bill savings, as a key barrier for energy efficiency investments. 

Second, studies within the energy bill perspective argue that energy efficiency is 

reducing energy price exposure and the resulting decrease of overall risk is de-

scribed as investment promoting. This dichotomy in risk perception is the focus of 

our study. With the help of a theoretical model as well as a case study based on real-

world data of the German retrofitting market, we analyze how the contrary perspec-

tives influence expected utility, i.e., decision-making. Thereby, we find that deci-

sion-makers invest more in energy efficiency when evaluating from the energy bill 

perspective and derive important implications for environmentally friendly energy 

policymaking. 

Keywords: Energy efficiency; Risk evaluation; Expected utility theory; Case study 
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VIII.7. Research Article #5: Managing the risks of energy efficiency insurances in 

a portfolio context: an actuarial diversification approach 

Authors: Dennik Baltuttis, Jannik Töppel, Timm Tränkler, Christian Wiethe 

Published in: International Review of Financial Analysis (2020) 

Abstract: To achieve ambitious international climate goals, an increase of energy efficiency 

investments is necessary and, thus, a growing market potential arises. Concomi-

tantly, the relevance of managing the risk of financing and insuring energy effi-

ciency measures increases continuously. Energy Efficiency Insurances encourage 

investors by guaranteeing a predefined energy efficiency performance. However, 

literature on quantitative analysis of pricing and diversification effects of such novel 

insurance solutions is scarce. This paper provides a first approach for the analysis 

of diversification potential on three levels: collective risk diversification, cross 

product line diversification, and financial hedging. Based on an extensive real-

world data set for German residential buildings, the analysis reveals that underwrit-

ing different Energy Efficiency Insurance types and constructing Markowitz Mini-

mum Variance Portfolios halves overall risk in terms of standard deviation. We 

evince that Energy Efficiency Insurances can diversify property insurance portfo-

lios and reduce regulatory capital for insurers under Solvency II constraints. More-

over, we show that Energy Efficiency Insurances potentially supersede financial 

market instruments such as weather derivatives in diversifying property insurance 

portfolios. In summary, these three levels of diversification effects constitute an 

additional benefit for the introduction of Energy Efficiency Insurances and may 

positively impact their market development. 

Keywords: Energy efficiency investment; Energy efficiency insurance; Energy portfolio risk 

management; Energy portfolio optimization; Risk diversification 
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VIII.8. Research Article #6: Impact of socio-economic factors on local energetic 

retrofitting needs - a data analytics approach 

Authors: Jakob Ahlrichs; Simon Wenninger; Christian Wiethe, Björn Häckel 

Published in: Energy Policy (2022) 

Abstract: Despite great efforts to increase energetic retrofitting rates in the residential build-

ing stock, greenhouse gas emissions are still too high to counteract climate change. 

One barrier is that policy measures are mostly national and do not address local 

differences. Even though there is plenty of research on instruments to overcome 

general barriers of energetic retrofitting, literature does not consider differences in 

local peculiarities. Thus, this paper aims to provide guidance for policy-makers by 

deriving evidence from over 19 million Energy Performance Certificates and socio-

economic data from England, Scotland, and Wales. We find that building arche-

types with their respective energetic retrofitting needs differ locally and that socio-

economic factors show a strong correlation to the buildings’ energy efficiency, with 

the correlation varying depending on different degrees of this condition. For exam-

ple, factors associated to employment mainly affect buildings with lower energy 

efficiency whereas the impact on more efficient buildings is limited. The findings 

of this paper allow for tailoring local policy instruments to fit the local peculiarities. 

We obtain a list of the most important socio-economic factors influencing the re-

gional energy efficiency. Further, for two exemplary factors, we illustrate how local 

policy instruments should consider local retrofitting needs and socio-economic fac-

tors. 

Keywords: Energy efficiency; Local environmental policy; Residential building stock; Socio-

economic effects; Data mining; Environment; England; Scotland; Wales; Energy 

performance certificates; Socio-economic 
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VIII.9. Research Article #7: Impact of financial subsidy schemes on climate goals 

in the residential building sector 

Authors: Christian Wiethe 

Published in: Journal of Cleaner Production (2022) 

Abstract: The international Paris agreement climate goals regarding the residential building 

sector were mainly incorporated into national legislation as CO2 emission reduction 

levels for specific years (e.g., 80% CO2 emission reduction until 2035). Financial 

subsidy schemes incentivizing early retrofitting can lead to lock-in effects, not re-

alizing energy savings potential from technological advancements in the long run 

and potentially failing emission reduction goals. However, early retrofitting leads 

to CO2 emission reductions over longer periods, minimizing the combined total CO2 

emissions. Depending on which of these two conflicting goals is pursued, differing 

subsidy schemes are suitable to incentivize respective retrofits. Knowledge about 

the effects of these subsidy schemes is relevant to setting correct incentives. We, 

therefore, investigate the difference in CO2 emission reductions of time-dependent 

subsidy schemes per monetary unit invested. We apply an agent-based building 

stock model for a case study to the German residential building stock using an ex-

tensive real-world dataset. Results indicate that prioritizing early retrofits reduces 

the probability of achieving emission reduction goals while simultaneously mini-

mizing total CO2 emissions. Total CO2 emission reductions per monetary unit in-

vested differ up to 675% compared to static subsidy schemes. We conclude that 

political incentive mechanisms should not be designed to meet the climate goals but 

instead minimize total CO2 emissions. 

Keywords: Building stock model; Energetic retrofitting; Energy policy; Machine learning al-

gorithms; Agent-based; Risk 

 


